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a b s t r a c t

In recent years deep neural networks have become the workhorse of computer vision. In this paper,
we employ a deep learning approach to classify footwear impression’s features known as descriptors
for forensic use cases. Within this process, we develop and evaluate an effective technique for feeding
downsampled greyscale impressions to a neural network pre-trained on data from a different domain.
Our approach relies on learnable preprocessing layer paired with multiple interpolation methods used
in parallel. We empirically show that this technique outperforms using a single type of interpolated
image without learnable preprocessing, and can help to avoid the computational penalty related to
using high resolution inputs, by making more efficient use of the low resolution inputs. We also
investigate the effect of preserving the aspect ratio of the inputs, which leads to considerable boost in
accuracy without increasing the computational budget with respect to squished rectangular images.
Finally, we formulate a set of best practices for transfer learning with greyscale inputs, potentially
widely applicable in computer vision tasks ranging from footwear impression classification to medical
imaging.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this work we develop an approach to train a deep Convo-
utional Neural Network (CNN) to classify features in footwear
mpressions for use in forensic applications. The features we
lassify are known as descriptors within the UK footwear forensic
units [1–4] and can be defined as recognisable units within a
footwear pattern which can be classified. The descriptors are used
by forensic practitioners to describe the makeup of a footwear
pattern. A similar use of descriptors has been proposed in litera-
ture for face recognition, termed as the linguistic descriptors [5].

Every footwear impression added to the UK’s National
Footwear Reference Collection (NFRC)1 is manually labelled with
the descriptors [1]. The NFRC is built on an agreed standard for
coding footwear patterns for different forces in the UK and at
the time of writing, to the best of our knowledge, is the biggest
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1 The National Footwear Reference Collection (NFRC) and The National
ootwear Database (NFD) are developed and maintained by Bluestar Software
td (BSL) [1].
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nc-nd/4.0/).
police-owned collection of footwear impressions in the world.
The NFRC footwear pattern collection is updated on a regular
basis [6].

The NFD is a successor of the NFRC where footwear labels are
maintained and added regularly. The NFRC records the custody
and crime scene marks while the NFD facilitates matching with
the NFRC footwear patterns. Currently, around 30 out of 43 police
forces in England and Wales, continuously send or update data in
the NFD [6].

The NFRC uses a total of 17 descriptors to identify a footwear
mpression. Each of the descriptors is assigned a unique name and
code. A shoe print or footwear impression may contain any subset
of these descriptors. The location of the descriptors are divided into
wo parts: (1) the heel/instep, and (2) the main sole (i.e. top).
n this study we do not exploit this location information in any
ay. A single descriptor can exist multiple times in a shoe print,
owever, the specific location (other than the heal/instep or main
ole) and frequency of the descriptor is not identified and counted.
Each of the 17 descriptors (Table 1) has specific semantics (for

the purpose of quick identification by forensics practitioner rather
than a computer), which relate to the name of the descriptor. For
example, descriptor D05: 5 sided, contains all shapes which are 5
sided; descriptor D09: Text indicates any text that can be found
on a shoe print. The number of possible geometric variations

that are usually found can potentially be infinite. For example,
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Table 1
Footwear descriptors for the UK’s National Footwear Reference Collection (NFRC).
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descriptor D09: Text can be any combination of characters and
fonts, while descriptor D05: 5 sided can be a rough pentagon of
ny shape and form. Two descriptors can overlap, resulting in
multiple descriptors from a single topological subpattern on
footwear impression. For example, descriptor D09: Text and
10: Logo usually overlap, as many logos contain text. Addi-
ionally, among the 17 descriptors, three are subcategories of
wo main/parent descriptors: D01-01: Wavy, D01–D02: Curved-
avy are the subcategories of D01: Bar, and D02-01: Target is
single subcategory of D02: Circular. While labelling with the
escriptors for a footwear impression, the microscopic patterns
f the impressions are not usually considered. For example, D12:
exture can contain microscopic patterns which are also D06: 6
 u

2

ided but usually D06: 6 sided is not labelled in such cases as these
icroscopic patterns are often not reliable and persistent [7]. All

he sided shaped descriptors (e.g. D03, D04, etc.) do not necessarily
ave very precise straight lines as sides but some curves and
eformations are ubiquitous.

.1. Footwear impression imaging methods

In UK policing collection of footwear evidence is normally
one in two scenarios: (1) collection of detainee footwear in cus-
ody, and (2) collection of crime scene marks. The vast majority
f the footwear impressions captured from detainees in custody
sually follow one of the below processes [8]:
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• Inked Impressions: The inked impressions are captured using
a specialist pad and paper kit (sometimes called a ‘Bigfoot
Kit’) [1,2,7]. The kit uses a pad with a reactive chemical and
specialist paper. The impressions can then be digitised using
an office document scanner, if required.

• Ink-less Impressions: A specialised footwear impression dig-
ital scanner is used in this case to capture the footwear
impression without any use of ink. This process produces
only a digital copy of the impression whereas the inked
impression also produces a physical copy on paper [1].

Additionally, some UK forces use coloured photographs of the
shoe sole as opposed to using one of the impression capturing
methods described above [1].

1.2. Identifying descriptors

In practice to date, the descriptors are manually identified by
xperts and are only used as an intermediate step to identify
pattern. Processes vary between police forces, however when
dding an impression to the NFRC, two independent experts
ndividually identify the descriptors. If both experts agree on the
et of identified descriptors, the footwear impression image is
abelled with the identified descriptors. However, when there is
disagreement between the two experts, the labelling process

nvolves a panel of experts for further analysis. The accuracy of
dentifying the descriptors by experts are thought to be ‘very high’,
owever, to the best of our knowledge, there was no empirical
tudy to quantify this accuracy [1].

.3. Limitations

The main limitation associated with manually identifying de-
criptors is the time and cost of human expertise. Although
forensic practitioners are able to directly identify many com-
mon footwear impressions without the need for classification
against the descriptors, classifying rare or new shoe models takes
onger. As there are tens of thousands of footwear models, it is
mpractical for a human expert to be able to accurately iden-
ify a specific model with only the descriptors. The NFRC/NFD
rovides a number of additional searching and ordering features
o make identification possible in a practical time span. These
eatures are generally used in the same way for all searches
looking at frequency/geography of distribution) and therefore
ake little time to use compared with the time taken to identify
escriptors. However, the most frequently worn footwear are
ery well known to the forensic practitioners thus are easily
abelled by them, without the need of any computer system, or
he descriptors. Since the accuracy of human footwear forensics
xperts are not empirically evaluated, the automated process can-
ot be argued to be same or better than human experts. Despite
his, clear use cases for an automatic descriptor identification
xist. For example, when a new footwear model is captured,
abelling would be completed by an expert, then blindly verified
y another. An automatic descriptor identification will be faster
nd have higher availability for the second check as the num-
er of human experts available is limited. Automatic descriptor
dentification could potentially replace the second opinion when
dding patterns to the NFRC (see Section 1.2).

. Automated descriptor inference

The automation of the descriptor analysis can provide rapid
dentification of the descriptors in a given impression, which in
urn will result in faster identification of a shoe model from its
rint, especially for an untrained (in terms of footwear analysis)
ersonnel. Additionally, the identified descriptors can be used
 t

3

Fig. 1. Different types of descriptors: D10, D11, D03 on two separate real inked
impressions.

to narrow down the search in the database with thousands of
footwear impressions. The automated approach, which is not only
capable of identifying the descriptors but also infer their topolog-
ical location (e.g. using Grad-CAM [9]) can be further beneficial
for training police users. Rapid automatic descriptor identification
can be achieved without involving a forensic expert, resulting
in faster determination of intelligence. The latter is particularly
important as the suspect will then have little time to destroy the
evidence and can be questioned sooner (ideally before leaving
custody), resulting in a plausibly increased detection rate. In Eng-
land and Wales, there are around 25–30 (an estimation without
an official source) human experts who can identify the descriptors
currently, whereas there are 123,1712 law enforcement person-
nel [10] who may handle a case where identification of the
descriptors may be necessary. Automated descriptor identification
can potentially provide such expertise to all the law enforcement
personnel in the UK.

Due to large variability in the complex geometric shapes
and patterns of a descriptor, a simple template matching algo-
rithm [11] would be suboptimal. Each of the descriptors has an
pparent but variable high-level geometric semantics.
Fig. 1 shows two real-world inked impression with four de-

criptors each; D03, D09, D10, D11. As it can be seen, although
the same descriptors appear on both of the impressions, their
patterns are very distinct. While D10: Logo is an obvious exam-
ple, a more ‘stable’ D03: 3 sided also looks quite different. The
impression on the right has D03 with smother edges, and also
bigger in size than D03 found in the left impression. Also note that
although both the impressions have D11: Lattice, its appearance
is very distinct.

As a result, designing filters to identify the descriptors is not
practical. Instead, a deep learning based approach has been taken,
able to automatically learn the filters from the already existing
manually labelled dataset.

3. Input image resolution in deep neural networks

Training a deep neural network requires estimating a large
number of parameters in the order of hundreds of millions. The
matrix arithmetic operation performed to estimate these param-
eters are best suited for a Graphics Processing Unit (GPU) due
to a GPU’s better ability to perform highly parallel floating-point
operations when compared with a CPU (Central Processing Unit).

2 According to a statistical bulletin published on the 18th July 2019 by the
ome Office for England and Wales. This number of officers does not include
he British Transport Police.
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he GPU computational power are still limited however and
here are other bottlenecks like moving data between the main
emory and the GPU. As a result, a smaller model with a lower
umber of parameters is computationally more efficient than a
igger model with a larger number of parameters.
Apart from the base architecture (number of layers and units

er layer) of a neural network, the number of computations grows
pproximately quadratically with the resolution of the input im-
ge. Higher resolution images also take up more space in the
PU memory, which tends to be smaller than system memory,
imiting the batch size and further reducing the overall training
peed. In order to reduce the computational cost and facilitate
aster training, the input images are usually downscaled [12,13].
owever, the performance/accuracy of a neural network tends to
uffer when image resolution is reduced.
It should also be noted that the theoretical benefit of a higher

esolution image may not always increase with an ever increasing
esolution of that image, e.g. once we have already achieved the
heoretical upper bound of the accuracy for a specific domain.
n our case, we have very small and complex features defining a
lass (see Section 1), thus, the upper bound of the resolution with
beneficial impact on the model is assumed to be higher than in
he classification based tasks where the classes are usually more
pparent.

. Image interpolation techniques

Our dataset consist of high-resolution footwear impressions
hat have been captured via the means discussed in Section 1.1.
s deliberated on in Section 3, in practice the images resolution
eed to be reduced and there are a number of different image
nterpolation3 techniques that can be used here. In our exper-
iments, we investigate and benchmark various combinations of
image interpolation techniques, including:

• Nearest Neighbour interpolation (N), which is the least com-
putationally expensive and does not insert new colours in
the result. In this interpolation, only the nearest neighbour’s
pixel intensity is considered. The estimation function f on
a point (x, y) becomes a piecewise function with constant
value [14,15].

• Bilinear interpolation (B) is a linear interpolation over all
non-channel dimensions of an image, i.e. for a two dimen-
sional image it is the interpolation over both the X and Y
dimensions [16]. A straight line passing through two points
(x1, y2) and (x2, y2) between range x1 and x2 is the linear
interpolant of these two points. For a range of (x1, x2), the
slopes of the interpolant from both of these points (x1 and
x2) should be exactly the same, hence the following equation
of slopes can be formulated:

y − y1
x − x1

=
y2 − y1
x2 − x1

(1)

Solving Eq. (1) for y gives:

y = y1
( x2 − x
x2 − x1

)
+ y2

( x − x1
x2 − x1

)
(2)

Eq. (2) produces interpolation over the X direction. In case
of a two dimensional image for four different points on the
image, Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), Q22 =

(x2, y2), the task is to estimate the function f at a point (x, y).

3 We use the terms interpolation, resampling, downscaling, and resizing
nterchangeably.
 b

4

In this four points scenario, the linear interpolation on the
X direction using Eq. (2) gives us the following:

f (x, y1) =

( x2 − x
x2 − x1

)
f (Q11) +

( x − x1
x2 − x1

)
f (Q21) (3)

f (x, y2) =

( x2 − x
x2 − x1

)
f (Q12) +

( x − x1
x2 − x1

)
f (Q22) (4)

We can then use Eqs. (3) and (4) to interpolate on the Y
direction in order to estimate f (x, y):

f (x, y) =
y2 − y
y2 − y1

(
x2 − x
x2 − x1

f (Q11) +
x − x1
x2 − x1

f (Q21)

)

+
y − y1
y2 − y1

(
x2 − x
x2 − x1

f (Q12) +
x − x1
x2 − x1

f (Q22)

)
(5)

• Hamming (H) interpolation technique uses a sinc approxi-
mating kernel by multiplying (convolution operation as its
in the frequency domain) the well-known sinc [17] function
with the hamming [18] window function [19]. Eq. (7) is the
sinc function and Eq. (6) is the Hamming window function
with the window interval (−m,m)

Whamming = 0.54 + 0.46 cos
(

πx
m

)
(6)

sinc(x) =
sin(πx)

πx
(7)

Although an ideal interpolation technique is expected not to
alter any pattern within the image or introduce any artefact, most
of the interpolation techniques usually alter some image features
and also introduce artefacts when interpolated to reduce image
resolution [15,20]. Figs. 3, 4, and 5 shows how the interpolation
techniques discussed above can affect the features of a footwear
impression image at different resolutions.4 It is apparent from
he undersampled (Fig. 3) images that using different interpola-
ion techniques produce slightly different images. Although these
iscrepancies are aesthetically undesirable and can hamper the
erformance of the model, we leverage such differences as an
ffective image augmentation technique as described in Section 5.
As we can see, all three interpolated images closely resemble

he original (Fig. 2) at a higher resolution (Fig. 5) and at the same
ime their differences reduces. Comparing between the lowest
esolution images (Fig. 3), it is apparent that Nearest Neighbour
N) produces the most different looking downsampled image.
dditionally, all the lower resolution impression images pro-
uce descriptor D01: Bars which are angled whereas the original
Fig. 2) and higher resolution (zoom in for Fig. 5) impressions
ave descriptor D01: Bars which are straight lines with an angle of
◦. A study by [12] found that even a mildest quality loss of input
mages can greatly hamper the performance of a deep learning
odel. Glorot and Bengio [21] too found neural networks to be
usceptible to image noise.

. Experimental setup

In our experiments, we use ResNet-50, a popular 50 layer
NN architecture with residual connections [22], pre-trained on

4 Please zoom in to see how the interpolation pattern gradually resembles
he original image (Fig. 2) with increasing resolution. Zooming is required as
he images embedded in this paper go through arbitrary interpolation applied
y your browser or PDF reader.
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Fig. 2. Original image without any interpolation. Zoom in to circumvent distor-
tion introduced by the interpolation applied from the medium where this paper
is being viewed.

Fig. 3. Interpolation samples with fixed aspect ratio and varying sizes.
5

Fig. 4. Interpolation samples with fixed aspect ratio and varying sizes (zoom in
to see the original pattern).

the ImageNet dataset [23] with a custom head initialised using
the Glorot/Xavier initialisation [21] and optional, learnable pre-
processing layer (see below). The head consists of an adaptive
pooling layer, followed by two BatchNorm → Dropout → Lin-
ear/Dense blocks with ReLU non-linearity in between. The number
of units in the non-output linear layer was set to 512, while
the output layer has a total of 17 neurons with sigmoid acti-
vation functions, one per each descriptor type. The models are
trained using AdamW [24], a stochastic gradient descent based
backpropagation algorithm in two phases:

1. Initial training, where all the ResNet-50 body layers are
frozen and only the 2-layer head as well as the optional
preprocessing layer are trained with the learning rate of
1e − 3 and weight decay of 0.1.

2. Fine-tuning, where the whole network is trained using
discriminative learning rates [25] of between 1e − 6 and
1e − 4 and weight decay of 0.1.

We have experimented with various combinations of the fol-
lowing:
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Fig. 5. Interpolation samples with fixed aspect ratio and varying sizes (zoom in
o see the original pattern).

1. Loss function: In addition to the default Binary Cross En-
tropy (BCE) loss, which in our experiments was always
used in a cost-sensitive setting via class weighting (i.e. with
the cost of misclassification being inversely proportional
to class frequency in the training dataset), we have also
used the Soft-F1 loss in an attempt to maximise both preci-
sion and recall directly within the model training process.
The Soft-F1 loss is a simple generalisation of the F1 score
obtained by replacing the number of True Positives (TP),
False Positives (FP) and False Negatives (FN) with their
probabilistic counterparts [26]:

TP =

∑
i

yiŷi

FP =

∑
i

(1 − yi)ŷi

FN =

∑
i

yi(1 − ŷi)

where yi ∈ {0, 1} is the label for the ith data instance and
ŷi ∈ [0, 1] is the model prediction.

2. Channel configuration: All the original input images are
greyscale (single-channel), yet the pre-trained model ex-
pects RGB/colour inputs (three-channels). The simplest and
most popular approach to address this discrepancy is to
collate three identical copies of the greyscale input. Since
this approach seems wasteful, we have instead opted for
various compositions of the three-channel input obtained
via applying different interpolation techniques (see Sec-
tion 4) to the high resolution input image — these are
specified in Table 2.

3. Preprocessing layer: For the same reasons as described
above, we have included a number of learnable preprocess-
ing layers in our network. The rationale here was that the
distribution of greyscale images, particularly when collat-
ing three different interpolated versions of each image into
a single three-channel input, is different from the distri-
bution of natural RGB images from the ImageNet dataset.
The preprocessing layers we have used have been shown
in Fig. 6.
6

Table 2
Compositions of input channels via different combinations of interpolation
techniques.
Channels R G B

B-B-B Bilinear Bilinear Bilinear
B-H-N Bilinear Hamming Nearest neighbour
B-N-H Bilinear Nearest neighbour Hamming
H-B-N Hamming Bilinear Nearest neighbour
H-H-H Hamming Hamming Hamming
H-N-B Hamming Nearest neighbour Bilinear
N-B-H Nearest neighbour Bilinear Hamming
N-H-B Nearest neighbour Hamming Bilinear
N-N-N Nearest neighbour Nearest neighbour Nearest neighbour

Fig. 6. Learnable preprocessing layers: (a) cbn_1: 1 × 1 Conv and BatchNorm,
(b) cbn_3: 3 × 3 Conv and BatchNorm, (c) inc: inception-like transformation,
d) inc_d: dense inception-like transformation.

The training dataset consisted of 33,757 greyscale images re-
trieved from the NFRC with the class distribution as shown in
Fig. 7a. As it can be seen, the classes are dominated by D01,
02, D04 and D07, with D01-01, D02-01, D05 and D14 being

the least frequent. The validation set consisted of 1000 images
retrieved from the same database with the class distribution as
shown in Fig. 7b. The image resolution ranged from 180 × 60
to 15, 000 × 7, 000 and has been depicted in Fig. 8, where the
whiskers represent Q05 and Q95, and outliers have been omitted
for presentation clarity.

6. Results

Table 3 contains the aggregated results of the total of 180 ex-
periments run across 90 different combinations of hyper-
parameters as specified in Table 2 and Fig. 6. Each experiment
has been repeated twice with random initialisation, and the
average of these two runs was used to construct Table 3. In each
of the experiments, we have trained a custom head on top of
a fixed/frozen ImageNet pre-trained ResNet-50 for 10 epochs,
followed by 40 epochs of finetuning of the whole network. We
have opted for the Area Under the Precision–Recall Curve (PRAUC)
as the performance metric in order to decouple the results from
class-specific thresholds. PRAUC is a better measurement of per-
formance of a binary classifier than the AUC of the ROC (receiver
operating characteristic) curve [27,28] since ROC is very sensi-
tive to class imbalance and in our case class labels are heavily
imbalanced.

The first thing to notice is that according to the results, pre-
serving the aspect ratio of the input images (i.e. 352 × 144
resolution) always leads to better performance than when using
squished images (i.e. 224 × 224 resolution, see the ‘∆’ column
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Fig. 7. Class distribution.
Fig. 8. Original input image resolution.
in Table 3). This holds regardless of the type of resampling,
preprocessing and loss function used. It appears that preserving
the aspect ratio of the original images matters much more than
higher horizontal resolution (i.e. 144 vs. 224 pixels) and is the
best way of spending a fixed computational budget (the number
of input pixels in both cases is approximately equal (224 ×

224 = 50,176, 352 × 144 = 50,688). Although this performance
difference might be partially attributed to the nature of our inputs
(shoe impressions are long and thin, so squishing can introduce
significant distortions), the same can be said about many other
objects like people or vehicles. It is hence somewhat surprising
that 224 × 224 is the default transfer learning setting for popular
deep learning frameworks [29–31].

The average difference in PRAUC between the two resolutions
everything else being equal) is 0.0189 (2.8%), while the maxi-
um difference over all 180 runs reaches 0.0415 (6.5%). To put

hese numbers in context, the average difference between any
wo randomly initialised runs of each experiment is 0.0051, while
he maximum difference is 0.0206. Thus the observed effect is
nlikely to be a random fluctuation. For this reason, we limit
urther analysis to the results for the 352 × 144 (and higher)
esolutions, preserving the input aspect ratio.

A similar observation can be made when considering the loss
unction. BCE consistently outperforms the F1 LOSS, with the
average PRAUC difference of 0.0269 and the maximum difference
of 0.0374. Despite attractive theoretical properties of the F1 LOSS
as discussed in Section 5, the BCE loss proved to be a much better
choice in practice. For this reason we are not considering the F1
LOSS in the subsequent analysis.

The average difference in PRAUC among various combinations
of input channels (Table 4) is much less pronounced. The ap-
proach of creating an input to the network by ‘sandwiching’
the outputs of three different interpolation methods rather than
simply creating three identical channels (i.e. B-N-H vs. N-N-N),
does not seem to affect the PRAUC much, with the difference
between the best and worst performing approach being 0.0041.
Nevertheless, it is worth noting that the B-B-B approach, which is
the default in the existing deep learning frameworks [29–31], is

one of the worst performing. This seems to confirm the intuition

7

that the blurring effect characteristic for bilinear interpolation,
tends to make discrimination between different types of descrip-
tors more challenging. Another observation is that the influence
of input channel ordering on PRAUC can be almost as big as the
difference between the best and worst performing approach (the
difference between B-N-H and H-N-B is 0.0039). This is somewhat
surprising as in theory, the learnable preprocessing layer should
be able to ‘swap’ the input channel order if needed. However, in
the context of the average difference between any two randomly
initialised runs of each experiment, which as mentioned earlier
was 0.0051, the results given in Table 4 need to be declared
inconclusive.

The influence of the learnable preprocessing layer on PRAUC
is more substantial. As it can be seen in Table 5, the difference
between the dense inception-like transformation (inc_d) and no
transformation at all (no_tfm) reaches 0.0082. Since no_tfm is the
worst performing approach in our experiments, we conclude that
using some kind of learnable preprocessing is beneficial.

Table 6 presents the breakdown of the results by preprocess-
ing layers and input channel configurations. As it can be seen,
inc_d gives the highest PRAUC on average (0.7208), is the best
preprocessing method for 6 out of 9 input channel configurations,
and second best for additional 2. It is harder to identify the
best performing channel configuration as none of them seems
to be dominating across different preprocessing layers. However,
looking at preprocessing and channel configuration jointly, inc_d
with H-H-H gives the highest PRAUC of 0.7259, which is 0.0198
more than the worst performing combination (no_tfm with B-B-B)
and 0.0092 more than the average across all the entries in Table 6.

In Table 7 we report the results of a similar experiment,
this time with the resolution of the input images increased to
464 × 192. This lead to a significant increase of the PRAUC across
all tested combinations of preprocessing layers and input chan-
nel configurations, with the minimum, average and maximum
difference of 0.0132, 0.0221 and 0.0337 respectively. As before,
inc_d is the dominating preprocessing method, while none of the
input channel configurations seems to be a clear winner. Note,
that in Table 7, B-B-B is no longer as strongly dominated by other
input channel configurations as it was the case at lower input
resolutions due to the blurring effect now being less severe.
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able 3
erformance based on the Area Under the Precision–Recall Curve (PRAUC). ‘∆’ denotes difference between the two resolutions. Max for each column in bold, min in
nderline.
Channels Preprocessing PRAUC

BCE LOSS F1 LOSS

352 × 144 224 × 224 ∆ 352 × 144 224 × 224 ∆

N-N-N cbn_1 0.7200 0.6969 0.0231 0.6927 0.6712 0.0215
N-N-N cbn_3 0.7171 0.6968 0.0203 0.6839 0.6741 0.0098
N-N-N inc 0.7205 0.6990 0.0215 0.6861 0.6706 0.0155
N-N-N inc_d 0.7215 0.6945 0.0270 0.6938 0.6712 0.0226
N-N-N no_tfm 0.7135 0.6940 0.0195 0.6902 0.6728 0.0174
H-H-H cbn_1 0.7113 0.6958 0.0155 0.6876 0.6694 0.0182
H-H-H cbn_3 0.7172 0.6939 0.0233 0.6852 0.6778 0.0074
H-H-H inc 0.7133 0.6931 0.0202 0.6878 0.6721 0.0157
H-H-H inc_d 0.7259 0.7044 0.0215 0.6923 0.6753 0.0170
H-H-H no_tfm 0.7169 0.6995 0.0174 0.6874 0.6732 0.0142
B-B-B cbn_1 0.7177 0.6956 0.0221 0.6872 0.6733 0.0139
B-B-B cbn_3 0.7165 0.6974 0.0191 0.6892 0.6710 0.0182
B-B-B inc 0.7176 0.6976 0.0200 0.6914 0.6705 0.0209
B-B-B inc_d 0.7198 0.699 0.0208 0.6960 0.6679 0.0281
B-B-B no_tfm 0.7061 0.6913 0.0148 0.6895 0.6649 0.0246
N-B-H cbn_1 0.7198 0.6981 0.0217 0.6879 0.6702 0.0177
N-B-H cbn_3 0.7118 0.6958 0.0160 0.6879 0.6690 0.0189
N-B-H inc 0.7127 0.6957 0.0170 0.6851 0.6703 0.0148
N-B-H inc_d 0.7204 0.6931 0.0273 0.6899 0.6725 0.0174
N-B-H no_tfm 0.7158 0.6972 0.0186 0.6878 0.6705 0.0173
N-H-B cbn_1 0.7118 0.6919 0.0199 0.6894 0.6665 0.0229
N-H-B cbn_3 0.7201 0.7005 0.0196 0.6890 0.6732 0.0158
N-H-B inc 0.7161 0.6973 0.0188 0.6943 0.6701 0.0242
N-H-B inc_d 0.7189 0.6988 0.0201 0.6965 0.6750 0.0215
N-H-B no_tfm 0.7144 0.6971 0.0173 0.6896 0.6675 0.0221
B-H-N cbn_1 0.7167 0.6953 0.0214 0.6893 0.6698 0.0195
B-H-N cbn_3 0.7200 0.7007 0.0193 0.6895 0.6734 0.0161
B-H-N inc 0.7206 0.6907 0.0299 0.6865 0.6724 0.0141
B-H-N inc_d 0.7156 0.6976 0.0180 0.6896 0.6697 0.0199
B-H-N no_tfm 0.7092 0.6972 0.0120 0.6914 0.6720 0.0194
B-N-H cbn_1 0.7169 0.7011 0.0158 0.6863 0.6709 0.0154
B-N-H cbn_3 0.7187 0.6991 0.0196 0.6866 0.6670 0.0196
B-N-H inc 0.7177 0.6977 0.0200 0.6854 0.6761 0.0093
B-N-H inc_d 0.7232 0.7016 0.0216 0.6874 0.6642 0.0232
B-N-H no_tfm 0.7149 0.6968 0.0181 0.6891 0.6711 0.0180
H-N-B cbn_1 0.7178 0.6982 0.0196 0.6875 0.6704 0.0171
H-N-B cbn_3 0.7124 0.6963 0.0161 0.6875 0.6667 0.0208
H-N-B inc 0.7134 0.6985 0.0149 0.6849 0.6728 0.0121
H-N-B inc_d 0.7176 0.6984 0.0192 0.6896 0.6693 0.0203
H-N-B no_tfm 0.7107 0.6987 0.0120 0.6897 0.6678 0.0219
H-B-N cbn_1 0.7224 0.6929 0.0295 0.6889 0.6698 0.0191
H-B-N cbn_3 0.7171 0.6939 0.0232 0.6850 0.6732 0.0118
H-B-N inc 0.7146 0.7007 0.0139 0.6861 0.6685 0.0176
H-B-N inc_d 0.7242 0.6975 0.0267 0.6966 0.6751 0.0215
H-B-N no_tfm 0.7118 0.6915 0.0203 0.6865 0.6706 0.0159

µ 0.7167 0.6969 0.0199 0.6889 0.6709 0.0180
b

Table 4
Performance for 352 × 144 input resolution, BCE loss, and various input channel
configurations, averaged over preprocessing methods, sorted by PRAUC.
Rank Channels PRAUC (↓)

1 N-N-N 0.7185
2 B-N-H 0.7183
3 H-B-N 0.7180
4 H-H-H 0.7169
5 B-H-N 0.7164
6 N-H-B 0.7163
7 N-B-H 0.7161
8 B-B-B 0.7155
9 H-N-B 0.7144

max(∆) 0.0041

In out final experiment, we have investigated increasing the
nput resolution to 928 × 384. As shown in Table 8, this has
esulted in further improvement in terms of PRAUC reaching
0.0280 on average. It is also apparent that with the increase in
the input resolution, the importance of interpolation diminishes
 t

8

Table 5
Performance for 352×144 input resolution, BCE loss, and various preprocessing
layers, averaged over input channel configurations, sorted by PRAUC.
Rank Preprocessing PRAUC (↓)

1 inc_d 0.7208
2 cbn_1 0.7171
3 cbn_3 0.7168
4 inc 0.7163
5 no_tfm 0.7126

max(∆) 0.0082

— the maximum difference among all the interpolation methods
is 0.0060, albeit achieved at significantly increased computational
cost.

6.1. Error analysis

In Fig. 9 we depict the PRAUC of our best model from Table 8,
roken down by class/descriptor. As it can be seen, some descrip-
ors seem to be relatively easy to classify; D01: Bar, D02: Circular,
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Table 6
PRAUC for 352 × 144 input resolution, BCE loss, and various combinations of pre-first layer transformations and
input channel configurations. The highest score in each column in bold. The highest PRAUC in each row in underline.
Channels Preprocessing µ max(∆)

cbn_1 cbn_3 inc inc_d no_tfm

B-B-B 0.7177 0.7165 0.7176 0.7198 0.7061 0.7155 0.0137
B-H-N 0.7167 0.7200 0.7206 0.7156 0.7092 0.7164 0.0114
B-N-H 0.7169 0.7187 0.7177 0.7232 0.7149 0.7183 0.0083
H-B-N 0.7224 0.7171 0.7146 0.7242 0.7118 0.7180 0.0124
H-H-H 0.7113 0.7172 0.7133 0.7259 0.7169 0.7169 0.0146
H-N-B 0.7178 0.7124 0.7134 0.7176 0.7107 0.7144 0.0071
N-B-H 0.7198 0.7118 0.7127 0.7204 0.7158 0.7161 0.0086
N-H-B 0.7118 0.7201 0.7161 0.7189 0.7144 0.7163 0.0083
N-N-N 0.7200 0.7171 0.7205 0.7215 0.7135 0.7185 0.0080

µ 0.7171 0.7168 0.7163 0.7208 0.7126 0.7167
max(∆) 0.0111 0.0083 0.0079 0.0103 0.0076
T
E

Table 7
PRAUC for 464 × 192 input resolution, BCE loss, and various combinations of
preprocessing layers and input channel configurations. The highest score in each
column in bold. The highest PRAUC in each row in underline.
Channels Preprocessing µ max(∆)

cbn_1 cbn_3 inc inc_d

B-B-B 0.7450 0.7407 0.7363 0.7369 0.7397 0.0086
B-H-N 0.7394 0.7334 0.7371 0.7400 0.7375 0.0067
B-N-H 0.7399 0.7365 0.7375 0.7399 0.7384 0.0035
H-B-N 0.7407 0.7409 0.7377 0.7477 0.7410 0.0070
H-H-H 0.7450 0.7404 0.7361 0.7441 0.7414 0.0089
H-N-B 0.7405 0.7425 0.7363 0.7411 0.7401 0.0062
N-B-H 0.7383 0.7311 0.7436 0.7432 0.7390 0.0125
N-H-B 0.7367 0.7429 0.7415 0.7451 0.7415 0.0084
N-N-N 0.7440 0.7303 0.7399 0.7459 0.7400 0.0156

µ 0.7410 0.7376 0.7385 0.7423 0.7399
max(∆) 0.0083 0.0126 0.0075 0.0090

Table 8
PRAUC for 928 × 384 input resolution, BCE loss, and various combinations of
input channel configurations. The highest PRAUC in bold.
Channels Preprocessing

inc_d

B-B-B 0.7715
B-H-N 0.7736
B-N-H 0.7718
H-B-N 0.7676
H-H-H 0.7681
H-N-B 0.7722
N-B-H 0.7695
N-H-B 0.7687
N-N-N 0.7696

µ 0.7703
max(∆) 0.0060

D04: 4 sided, D07: Complex and D08: Zigzag all have PRAUC >
.9, which is to be expected as these descriptors are relatively
lear cut (see Table 1). At the other end of the spectrum, D05: 5
ided followed by D13: Hollow and D01-02: Curved-wavy are the
ost challenging. Note, that D05 is not only the least frequent

n the dataset as per Fig. 7 (we have counteracted this by using
lass-weighting in the BCE loss), but it is also one of the subtler
escriptors in general. As it can be seen in Table 1, D05 can for
xample be a rectangle with one of the corners ‘cut off’, hence
asy to confuse with D04: 4 sided. In a similar vein, D13: Hollow
an easily be confused with a circle (D02: Circular), triangle (D03:
sided), square/rectangle (D04: 4 sided) etc. Some shapes on an

mpression can also represent multiple descriptors, for example
09: Text and D10: Logo will often overlap. Some overlays may be
ore complex such as D03: 3 sided and D13: Hollow. There may
ven be some examples of nested overlap such as D02-01: Target
which implies D02: Circular) and D13: Hollow, as a circle with the
9

able 9
xample prediction to illustrate confusion matrix calculation.
Descriptor D01 D02 D03 D04 D05 D06

Label 0 1 0 0 1 1
Score 0.3 0.9 0.2 0.8 0.6 0.6

centre missing is both a target and hollow. D14: Plain is unusual
in that when it applies to part of the shoe, it excludes the other
descriptors from that area.

In order to investigate this issue further, in Fig. 10 we show the
confusion matrix generated for the validation dataset. For each
validation image, if the predicted score for a descriptor which is
not present in the image (false positive) exceeds the score for a
descriptor which is in the image (true positive), then the two are
considered confused. An example is given in Table 9. The actual
labels are D02, D05 and D06. Since the score for D02 is the highest,
1 would be added to the diagonal entry for this descriptor. How-
ever, as the score for D04 (false positive) is higher than that for
D05 and D06, these are considered confused (i.e. either or both of
D05 and D06 are classified as D04) and hence 1/2 (i.e. one over
the number of potentially misclassified descriptors) is added to
the entries D05–D04 and D06–D04 of the confusion matrix.

As it can be seen in Fig. 10, D01 is the most frequently mis-
classified descriptor which can be partially explained by its preva-
lence in the dataset. In Fig. 11(a) we show an example of a D01:
Bar in the top right corner of the print, which has not been
detected by our model. At the same time, the model detected
D13: Hollow in the locations shaded in orange, although this
particular shoeprint impression has not been labelled with D13
by the human expert. However, due to wear, some of the 6 sided
shapes (D06) closed, and indeed now fit the description of D13.
Another example of undetected D01 is given in Fig. 11(b), where
in addition D11: Lattice has been misclassified as D04: 4 sided in
the areas highlighted by the heatmap — the lattice indeed consists
of 4 sided ‘cells’. In both of these examples, it is actually difficult
to state which descriptor D01 was confused with; it appears that
D01 was simply not detected, yet this would still be recorded in
the confusion matrix due to the way in which the matrix was
derived.

Another descriptor worth looking at is D05, which as men-
tioned before is the most rare in the dataset and has the lowest
PRAUC. D05 is most often misclassified as D06 or D12, while at
the same time D03, D04 and D07 are most often misclassified as
D05. An example can be seen in Fig. 11(c).

It is worth noting, that all three examples of errors in Fig. 11
have been selected on the basis of the highest loss (i.e. they are
as bad as it gets). It is reassuring that these do not result from
the model behaving in an unexpected fashion, but are rather due
to ambiguity in the inputs that may even cause disagreement

between expert users, requiring resolving by expert panel.
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Fig. 9. Per class PRAUC.
Fig. 10. Confusion matrix.
7. Conclusions

The descriptor identification task we have approached in this
study is of great significance for the forensic practitioners in the
UK and beyond. The descriptors are an agreed standard for coding
footwear patterns for different forces in the UK are in active use.
Although a human performance benchmark is not available at
this time, our model performs well with the PRAUC of over 0.77.
10
The mistakes that the model tends to make are mostly justifiable,
either by ambiguity or by overlaps in the input patterns, and
are not unlike what an inexperienced human would make. The
system that we have built has been deployed for testing by
selected police forces.

In the process of building the model, we have experimented
with a number of ways of feeding greyscale impressions to the
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Fig. 11. High loss misclassification examples.

ImageNet (RGB) pre-trained network. Our findings can be sum-
marised as the following ‘best practices’:

• Preserve the aspect ratio of the input images. This seems
particularly important if the object of interest (a shoeprint
in our case) has aspect ratio significantly different than
1 : 1 (i.e. ‘long and thin’ or ‘short and fat’). This advice
goes against the common practice in the computer vision
community of ‘squishing’ the input images to make them
square in order to use ImageNet pre-trained models. This
is unnecessary as current deep learning frameworks allow
one to feed rectangular images to the ImageNet pre-trained
models out of the box.

• Use as high input resolution as practical. In our experiments
increasing the input resolution always led to higher PRAUC
albeit at the cost of significantly increased computations,
which is an obvious constraint. The original resolution of the
input images can also be a limitation as there is little point
in upscaling such images.

• Use different interpolation methods to construct the three
input channels from greyscale images. Although the effect
of this approach that we have observed was modest, it was
positive nevertheless. It also seems that using the Nearest
Neighbour interpolation as one of the input channels is
beneficial, while using three identical channels obtained via
Bilinear interpolation is detrimental, particularly at lower
input resolutions.

• Use a learnable preprocessing layer. In our experiments,
these additional computations played a crucial role in the
process of adapting greyscale inputs to be used with a
colour-image pre-trained network, regardless of the inter-
polation method used. Learnable preprocessing combined
with different interpolation methods to construct the three
input channels gave the best results.
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