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Abstract

Heterogeneous multi-material volumetric modelling is an emerging and rapidly de-
veloping field. A Heterogeneous object is a volumetric object with interior structure
where different physically-based attributes are defined. The attributes can be of
different nature: material distributions, density, microstructures, optical properties
and others. Heterogeneous objects are widely used where the presence of the inte-
rior structures is an important part of the model. Computer-aided design (CAD),
additive manufacturing, physical simulations, visual effects, medical visualisation
and computer art are examples of such applications. In particular, digital fabri-
cation employing multi-material 3D printing techniques is becoming omnipresent.
However, the specific methods and tools for representation, modelling, rendering,
animation and fabrication of multi-material volumetric objects with attributes are
only starting to emerge. The need for adequate unifying theoretical and practical
framework has been obvious.

Developing adequate representational schemes for heterogeneous objects is in
the core of research in this area. The most widely used representations for defin-
ing heterogeneous objects are boundary representation, distance-based representa-
tions, function representation and voxels. These representations work well for mod-
elling homogeneous (solid) objects but they all have significant drawbacks when
dealing with heterogeneous objects. In particular, boundary representation, while
maintaining its prevailing role in computer graphics and geometric modelling, is
not inherently natural for dealing with heterogeneous objects especially in the con-
text of additive manufacturing and 3D printing, where multi-material properties are
paramount as well as in physical simulation where the exact representation rather
than an approximate one can be important.

In this thesis, we introduce and systematically describe a theoretical and prac-
tical framework for modelling volumetric heterogeneous objects on the basis of a
novel unifying functionally-based hybrid representation called HFRep. It is based
on the function representation (FRep) and several distance-based representations,
namely signed distance fields (SDFs), adaptively sampled distance fields (ADFs)
and interior distance fields (IDFs). It embraces advantages and circumvents disad-
vantages of the initial representations. A mathematically substantiated theoretical
description of the HFRep with an emphasis on defining functions for HFRep objects’
geometry and attributes is provided. This mathematical framework serves as the
basis for developing efficient algorithms for the generation of HFRep objects taking
into account both their geometry and attributes.

To make the proposed approach practical, a detailed description of efficient al-
gorithmic procedures has been developed. This has required employing a number of
novel techniques of different nature, separately and in combination. In particular,
an extension of a fast iterative method (FIM) for numerical solving of the eikonal
equation on hierarchical grids was developed. This allowed for efficient computation
of smooth distance-based attributes.
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To prove the concept, the main elements of the framework have been imple-
mented and used in several applications of different nature. It was experimentally
shown that the developed methods and tools can be used for generating objects with
complex interior structure, e.g. microstructures, and different attributes. A special
consideration has been devoted to applications of dynamic nature. A novel concept
of heterogeneous space-time blending (HSTB) method with an automatic control
for metamorphosis of heterogeneous objects with textures, both in 2D and 3D, has
been introduced, algorithmised and implemented. We have applied the HSTB in
the context of ‘4D Cubism’ project. There are plans to use the developed methods
and tools for many other applications.

Key words: heterogeneous volumetric objects, scalar fields, function representation.
distance fields, multi-materials, C1 continuity, hybrid representation, time-variant
objects
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Chapter 1

Introduction

There is a wide range of natural and man-made objects in the physical world. The
prevailing conventional computer technology successfully deals with homogeneous
objects made of a uniform material. There are a number of well-developed theoreti-
cal and practical methods for modelling, rendering, animating and fabricating such
objects. In particular, several well-established and mathematically substantiated
representational schemes has been developed for those objects.

However, the majority of objects, be they natural or digitally created, are not ho-
mogeneous. They can be composed of different materials and have a complex interior
structure with associated physical properties. Such objects are called heterogeneous
objects. This is a rather broad notion. In this work, we focus on developing a
theoretical modelling framework and practical methods to deal with heterogeneous
objects considering their geometric shape in concert with the internal attributes
representing the object’s properties. This will be beneficial for many existing and
emerging applications in such areas as CAD modelling, additive manufacturing,
multi-material design, bio-engineering, medical research, and others.

There will be a particular focus on dynamic (time-variant) heterogeneous ob-
jects. The theoretical and practical aspects of dealing with that kind of objects are
not properly developed. They are very important in such modern applications as
physical simulations, computer animation and visual effects (VFX).

In recent years, 3D printing technologies have become omnipresent across dif-
ferent industries and applications. The resolution capabilities of the modern 3D
printers is relatively high. Therefore, it is possible to reproduce an object with a
high level of detail including various multi-scale micro-structures in interior of the
object. Modern 3D printers are able to print with multiple materials that can be
mixed with each other. The modelling framework for heterogeneous objects should
be seamlessly matched with the technical aspects of up-to-date 3D printing.

Geometric shape of the heterogeneous object can be defined using different repre-
sentational schemes that have various advantages and drawbacks. The most widely
used representation for geometry definition is the boundary representation (BRep).
This representation is not exactly natural for defining objects with interior structures
unless some special techniques are applied, e.g. nested surface shells. Nevertheless,
this representation maintains its prevailing role due to its numerous well-known ad-
vantages. It is widely used in 3D printing as many file formats, including the most
popular STL format, assume a BRep object to be processed and printed.

With respect to attributes, heterogeneous objects can be split into two cate-
gories: composite objects and functionally graded materials (FGMs) and structures.
Composite objects are usually made of two or more constituent materials with sig-
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nificantly different physical properties. on the contrary, FGMs are constructed by
gradual variation of the material and structure in the composition over the volume.
This is reflected in introducing relevant attributes. This thesis deals with various
issues of how multiple attributes can be defined in heterogeneous objects.

Volumetric representations in the form of voxels are more natural for defining
such heterogeneous objects as they are based on volumetric grids. Voxels repre-
sent an object as a set of cubic cells at which the geometry along with the object
attributes are defined. However, this representation essentially approximates both
the geometry model and the material distribution in interior of the object as their
definition is limited by the resolution of the voxel grid.

on the other hand, function-based, and more specifically, distance-based repre-
sentations related to scalar fields of different kinds are able to represent the object
and its interior structure in both continuous and discrete forms. They are exact, em-
brace a wide range of geometric shapes and naturally define many physically-based
attributes. There are a lot of well-established operations for these representations.
Most of them provide distances to the object surface. The distance property is im-
portant in scalar field based modelling as it provides a predictable control over the
resulting field.

However, distance functions (DFs) are not essentially continuous, they can have
medial gradient discontinuities and are not necessarily smooth. This potentially
results in non-smooth surfaces. Undesired artefacts, such as creases, can appear
after applying some operations, for instance, blending and metamorphosis, which
are important for many applications.

As to attribute functions, they can be parameterised by distances to provide an
intuitive control over attribute distributions in interior of the object. However, if
the distance function is non-smooth, it could lead to undesired artefacts (stresses,
creases, etc.) in the defining attributes.

The most common schemes of that type are function representation (FRep),
the signed distance function representation (SDF), the adaptively sampled distance
function representation (ADF) as well as the shape aware distance fields which are
represented by functions that we call interior distance functions (IDF). We consider
these function-based and distance-based representations as a promising conceptual
and practical schemes to deal with heterogeneous objects, especially in the context of
a number of topical application areas concerned with exact volume-based geometric
modelling, animation, simulation and fabrication.

However, the existing representational schemes of that type appear in many
variations. For instance, SDFs can be obtained using various approximation or exact
methods that aim to solve one or several SDF drawbacks. ADFs can be defined using
various methods as well, but only some of them are capable to solve the problems
introduced in ADF original implementation (Frisken et al. 2000). IDFs unify a group
of methods that aim to compute various types of distances on the surface and in
interior of the object. Therefore, a single unifying framework that would cover all
variations of this type of representations have not been formulated yet. There is
an obvious need for a properly substantiated and unifying theoretical and practical
framework. This challenge can be considered in the context of the emergence of new
representational paradigms suitable for the advanced applications, such as modelling
of material structures, that was outlined and substantiated in (Regli et al. 2016).

In this thesis we propose a novel function-based representational scheme. Having
considered four representations identified above, we have chosen FRep as a basis
representation for constructing a novel hybrid framework that unifies advantages of
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FRep, SDFs, ADFs and IDFs and compensate for their drawbacks.
We introduce a mathematical framework called hybrid function representation

(HFRep) for defining a heterogeneous volumetric object with its attributes in contin-
uous and discrete forms. This representational scheme aims at dealing with hetero-
geneous objects with some specific time-variant properties related to both geometry
and attributes that are important in physical simulations and animations.

On the basis of the proposed theoretical framework, we have developed an algo-
rithmic procedure allowing to generate HFRep objects in terms of their geometry and
attributes. To make the approach practical, we have provided a detailed description
of the main steps of the algorithm and identified some problematic issues associated
with them. This has required developing some novel techniques and employing a
number of existing techniques of different nature, separately and in combination.
Among them is an adaptation of the fast iterative solver of the eikonal equation on
2D hierarchical grids that provides the solution which is continuous and smooth.

The proposed theoretical and algorithmic framework can be used for generating
various heterogeneous objects consisting of geometric and attribute parts that can
be considered in the context of CAD modelling, 3D manufacturing or artistic appli-
cations. The generated objects can be time-dependent. Therefore, such objects can
be used in dynamic simulations or applications where the presence of the interior
structure with specified attributes is important to take into account.

To show how the proposed approach works in the context of different appli-
cations, we have implemented several case-studies including those that deal with
colour, material and microstructure attributes in the interior of functionally-defined
shapes in the context of time-variant modelling. In particular, a novel heterogeneous
space-time blending technique allowing to handle geometric and attribute transfor-
mations simultaneously and interconnectedly. This method has been applied to the
heterogeneous objects of artistic nature, in particular within ’4D Cubism’ project.

1.1 Research Problems

In this thesis we are going to explore theoretical, algorithmic and practical research
problems concerned with exploring and developing a novel representation for het-
erogeneous objects. These research problems are formulated as follows:

1. In the current literature, the existing volumetric and function-based repre-
sentational schemes, potentially suitable for heterogeneous objects, appear in
many variations and the field as a whole exhibits a rather fragmented suite
of methods. A thorough survey of the relevant function-based representa-
tions is needed. on the basis of that survey, it will be possible to suggest a
proper classification of the existing representations as well as to identify their
advantages and drawbacks.

2. Function-based and distance-based representations are considered as a promis-
ing way to deal with heterogeneous objects. These representations define a
volume as a continuous scalar field with the field resolution bounded by the
computational precision. This type of volumetric representations allows for
defining attributes along with geometric shape of the object that is impor-
tant in the context of heterogeneous volumetric modelling. There is a need
for a properly substantiated and unifying theoretical and practical represen-
tational framework. This hybrid framework should be mathematically rigor-
ous and systematically described. The main functionality and properties of
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this framework should be developed. The objects, operations, and relations
should make the hybrid framework self-contained in terms of heterogeneous
object modelling.

3. More specifically, it is essential to investigate how the existing function-based
representations, related to scalar fields of different kinds, can be combined
together in a new hybrid representation for heterogeneous objects. The com-
bination of two or more representations together will allow to inherit their ad-
vantages and compensate for their drawbacks. One needs to explore whether
it is possible to construct the heterogeneous objects’ defining functions (that
should be in the core of the mathematical representational framework) that
are continuous and have a distance property everywhere in a Euclidean space.
If the defining function is at least one time differentiable, then it is smooth.
Finally, the distance property will provide a consistent and predictable way
for defining the geometric shape of the object as well as its attributes.

4. The theoretical framework should be supported by the algorithmic frame-
work. The basic algorithm, allowing to generate heterogeneous objects in
terms of their geometry and attributes, should be in the core of it. This algo-
rithm should be developed in detailed step-by-step manner and will probably
need to be supported by development of a number of specific techniques guar-
anteeing that the defining functions being constructed meet the framework’s
requirements.

5. It is essential to investigate how various attributes (e.g. colour, multi-materials,
microstructures) can be defined in the context of the new hybrid framework
for heterogeneous object modelling. It is important to identify how to estab-
lish correspondences between defined geometry and attributes to provide an
intuitive control over their definition necessary for practical work with it.

6. It is essential to investigate how heterogeneous objects defined by the new hy-
brid framework can be considered in the context of the dynamic applications,
taking into account time-variant geometry and attribute transformations that
should happen in an interconnected manner.

7. Finally, it is important to explore whether the proposed framework is suitable
to be used in several modern applications. Artistic applications with dynamic
flavour can be of particular interest.

1.2 Solution Statement

A number of original solutions have been achieved in the process of exploring and
solving the research problems presented in the previous section.

1. Four conventional representational schemes related to scalar fields of different
kinds, namely function representation (FRep), the signed distance function
representation (SDF), the adaptively sampled distance function representa-
tion (ADF) and the interior distance function representation (IDF) have been
identified along with their advantages and drawbacks. A formalisation of the
notions of FReps, ADFs and IDFs has been proposed.
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2. A mathematically substantiated modelling framework for heterogeneous ob-
jects called hybrid function representation (HFRep) that is based on the
combination of FRep with one of the three distance-based representations,
namely SDF, ADF and IDF, has been introduced. The mathematical prop-
erties of the HFRep function have been rigorously described. The properties
of the supported HFRep heterogeneous objects have been systematically de-
scribed, and the operations over HFRep objects, both those that preserve
Euclidean distances and those that do not, were identified.

3. The basic algorithm for generating HFRep objects in terms of their geometry
and attributes with taking into account the type of hybridisation has been
proposed.

4. The HFRep algorithmic framework that includes a detailed description of all
the steps of the basic algorithm for generating different types of distance fields
and their bi-pair hybridisation with FRep representation has been developed.
Several techniques allowing for constructing the FRep defining function with
particular properties have been suggested to use, both separately and in
combination.

5. A novel algorithmic solution for computing the signed vector-city distance
transform was developed. The hierarchical fast iterative method (HFIM)
method has been suggested and implemented in the form of a step-by-step
algorithm. The method provides at least C1 continuous unsigned distance
field that is restored at each cell of the grid using the PHT-splines. The
solution of the eikonal equation is computed using a modified version of the
first order Godunov upwind discretisation scheme for computations on the
hierarchical grids.

6. Several methods for defining various attributes (colour, microstructures, ma-
terials) in the interior of the 2D and 3D HFRep object have been suggested.

7. A novel method allowing for automatically controlled morphing between two
topologically arbitrary 2D shapes with sophisticated textures has been devel-
oped. The method allows for a smooth transition between source and target
objects (considered as HFRep objects) by generating in-between shapes and
associated textures without setting any correspondences between boundary
points or features.

8. A novel heterogeneous space-time blending (HSTB) method that can handle
holistic heterogeneous objects, rather than their geometric and attribute com-
ponents in separation, especially in the context of automatically controlled
metamorphosis between topologically arbitrary 3D and 4D textured objects,
has been proposed. The basic algorithm and several techniques, extended
to 3D, that solve the identified drawbacks, have been developed. The HSTB
method was technically implemented as the custom HSTB node SideFX Hou-
dini and was applied to deal with dynamic (time-variant) textured objects
in the context of an artistic project ’4D Cubism’.

1.3 Thesis Structure

This thesis is structured as outlined below.
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In chapter 2, the related works relevant to the topic of the research are discussed.
Several core representations for defining heterogeneous objects, namely boundary
representation, voxel representation as well as several function-based and hybrid
representations are reviewed. As heterogeneous objects consist of geometric and
attribute parts, state-of-the-art methods for defining attribute distribution in vol-
umes are discussed as well as how such objects can be considered in the context of
dynamic applications where the presence of the interior structure is important.

In chapter 3, the theoretical description of the introduced hybrid framework is
presented. This chapter covers important mathematical definitions that will serve as
the basis for constructing the hybrid framework. The definitions of the function rep-
resentation, adaptively sampled distance field and interior distance field are given in
this chapter. Important mathematical properties of the proposed hybrid framework
as well as the basic algorithm for its generation is presented. The theoretical frame-
work described in this chapter was first presented on Eurographics 2019 (Tereshin,
Adzhiev, Fryazinov, and Pasko 2019) and then published in paper ’Hybrid function
representation for heterogeneous objects’ (Tereshin, Pasko, et al. 2020, 2021).

In chapter 4, the algorithmic framework for the hybrid representation is discussed
in details. This chapter covers the main steps of the basic algorithm for the HFRep
generation introduced in the previous chapter. In this chapter a detailed description
of the extended fast iterative method (hierarchical fast iterative method) proposed in
this work is presented. At the end of this chapter the implementation of the proposed
hybrid framework and the obtained results are discussed. The adaptation of the
fast iterative method for the computation of the solution of the eikonal equation on
hierarchical grids as well as algorithmic implementation of HFRep were published in
paper ’Hybrid function representation for heterogeneous objects’ (Tereshin, Pasko,
et al. 2020, 2021).

The next two chapters 5 and 6 show how the proposed hybrid framework can
be used in two particular applications that deal with morphing of one object into
another one.

In chapter 5, a 2D automatically controlled metamorphosis without establishing
any correspondences between textured shapes or shapes defined by distance-based
functions with specified attribute distributions is described. The proposed method
is based on the combination of two well-established methods, namely space-time
blending and space-time transfinite interpolation. Several important mathemati-
cally substantiated techniques for enhancing the results of the space-time blending
are presented. Finally, applications and the obtained results are discussed. The
description of the proposed framework presented in this chapter was published in
paper ’Automatically Controlled Morphing of 2D Shapes with Textures’ (Tereshin,
Adzhiev, Fryazinov, Marrington-Reeve, et al. 2020).

In chapter 6, an extended space-time blending method for 3D heterogeneous
objects is proposed. This method allows to compute geometry and attribute trans-
formations simultaneously and interconnectedly. The introduced method is used
in an artistic application called ’4D Cubism’ and the results are presented at the
end of this chapter. This method was presented on Eurographics 2020 (Tereshin,
Anderson, et al. 2020).

In chapter 7, a summary of problems and solutions presented in this thesis is
given. The chapter concludes by outlining both the main contributions of the work
and the future research directions.
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Related Work

In this chapter we review different representations and methods for defining hetero-
geneous objects. The heterogeneous object consists of two parts: geometric shape
and attributes. Therefore, we start this chapter from reviewing of the representations
that are used to define the geometric shape of the heterogeneous object. We start
our literature review from the well-established boundary representation (BRep) that
still prevails in industry. Then we describe the voxel representation that is widely
used in volumetric modelling as well as in the context of the dynamic volumetric
simulations. After that, we describe the scalar field-based representations, namely,
implicit surfaces, FReps, RBFs, SDFs, ADFs, IDFs and various hybrid representa-
tions. We identify their advantages, drawbacks and made a comparative analysis.
Then we review various approaches for defining different attributes in objects inte-
rior.

As heterogeneous objects have interior structure, they are particularly useful
for the accurate dynamic simulations and dynamic transformations (e.g. morphing,
metamorphosis, etc.). In this work we are interested in time-variant objects that can
be used in such applications as morphing or metamorphosis. Therefore, we review
state-of-the-art methods for 2D and 3D morphing and metamorphosis operations.

At the end of this chapter we cover the core rendering techniques for heteroge-
neous objects with various specified attributes.

2.1 Heterogeneous Objects

Heterogeneous volumetric object modelling is a rapidly developing field that has a
variety of different applications. Volumetric modelling is concerned with computer
representations of object surface geometry as well as its interior. Homogeneous
volume modelling, better known as solid modelling, deals with volume interior uni-
formly filled by a single material. Heterogeneous object is a volumetric object with
geometric shape that is considered in concert with its internal attributes defined
for each point of the shape. These attributes represent such physical properties as
material, density, colour and others (Kou and Tan 2007; Li, Fu, et al. 2020). Let us
give a formal definition of the heterogeneous object:

Definition 2.1.1. Let the object OH be defined as a two component tuple: geometric
shape G ⊆ X in the form of a multidimensional point-set geometry, where X ⊂ Rn,
and attributes Ai corresponding to the physical and material properties of the object
OH . Then such an object OH is a heterogeneous object defined as:

OH := (G,A1, ..., An), (2.1)
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Figure 2.1: Examples of heterogeneous objects with various interior structure. a)
Various cellular structures. b) Voronoi-based foam structures. c) Various porous
scaffolds. d) Distance-based hierarchical scaffolds. Reprinted from (Li, Fu, et al.
2020).a.

aCreative Commons Attribution 4.0 International License (http://creativecommons.org/li
censes.by/4.0/), two images from the paper were combined in one).

where n ∈ N is the number of attributes.

This type of objects is widely used in applications where the presence of the
interior structures is an important part of the model. Additive manufacturing,
physical simulation and visual effects are examples of such applications.

In Fig. 2.1 we show several examples of heterogeneous objects. The geometric
shape G of the heterogeneous object consists of the surface and interior structure. As
it follows from this figure, the interior structure can be defined as cellular structures
(see Fig. 2.1, a), Voronoi-based foam structures (see Fig. 2.1, b), various porous
scaffolds (see Fig. 2.1, c, d). Various attributes Ai in interior of such objects can be
presented using distribution functions.

The most widely used representations for defining heterogeneous objects are
boundary representation, distance-based representations, function representation
and voxels. Boundary representation (BRep) (Lei et al. 2014) maintains its prevail-
ing role due to its numerous well-known advantages. It works well in solid modelling
for objects consisting of a set of polygonal surface patches stitched together to enve-
lope the uniform and homogeneous structure of its material. However, BRep is not
inherently natural for dealing with heterogeneous objects, especially in the context
of additive manufacturing and 3D printing (Livesu et al. 2017), where volume-based
multi-material properties are paramount as well as in physical simulation where the
exact representation rather than an approximate one can be important (Nealen et
al. 2006).

On the contrary, volumetric representations in the form of voxels (Wang et al.
2011) are more natural for defining such heterogeneous objects as they are based
on volumetric grids. Voxels represent an object as a set of cubic cells at which the
geometry along with the object attributes are defined. However, this representation
essentially approximates both the geometry model and the material distribution in
interior of the object, as their definition is limited by the resolution of the voxel grid.

On the other hand, function-based, and more specifically, distance-based repre-
sentations are able to represent the object and its interior structure in both contin-
uous and discrete forms (Jones, Baerentzen, and Sramek 2006).
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2.2 Boundary Representation

The boundary representation (BRep) (Muuss and Butler 1991) defines the object
as a set of connected surface elements. BRep consists of topological and geometri-
cal parts (surfaces, curves and points). The topology of the BRep object consists
of faces, edges and vertices. A geometrical part of the BRep object contains the
description of the points that belong to the surface of this object. BRep has a
number of well-established operations and can be defined using two well-developed
representational schemes, namely, parametric surfaces and polygonal meshes. In
this section we review the main advantages and drawbacks of BRep in the context
of the heterogeneous object modelling.

2.2.1 Parametric Representation

A parametric representation is defined as a mapping from the parametric space into
a possibly higher dimensional space

F (t) : Rm −→ Rn; F (t) = (f1(t), ..., fn(t)); t ∈ [a, b] ⊂ Rm (2.2)

where F (t) is a parametric object that is defined as a set of functions fn(t) param-
eterised by t ∈ [a, b]. This approach is widely used for defining complex curves or
surfaces

In most cases, a parametric object representation is based on polynomials that
are efficient to compute. For example, a parametric surface can be constructed using
two parametric curves C1(u) =

∑n
i=1 fi(u)P1,i and C2(v) =

∑m
j=1 gj(v)P2,j in u and

v directions, where P1,i and P2,i can be points or vectors. The resulting function can
be defined as:

F (u, v) =
n∑
i=1

m∑
j=1

fi(u)gj(v)Pij =
n∑
i=1

m∑
j=1

bij(u, v)Pij (2.3)

where bij(u, v) are basis functions, u and v are independent parameters and Pij can
be defined as points or vectors. Parametric surfaces usually consist of surface patches
F (u, v) which are defined by control points Pij. However, parametric surfaces do
not necessary go through these control points.

There are two basic types of parametric surfaces which are widely used in 3D
modelling: rational Beźıer surfaces (Piegl and Tiller 1997) and B-spline surfaces in
the form of the non-uniform rational B-splines (NURBS) (Versprille 1975). Beźıer
surfaces are represented with quadrilateral patches that are interpolating its corner
points. At each corner of the patch, which lies within the convex hull of its control
vertices, the tangent plane interpolates the corner vertex and the two neighbouring
edge vertices. The rational Beźıer patch can be defined as

F (u, v) =

∑n
i=1

∑m
j=1 ωijPijB

n
i (u)Bm

j (v)∑n
i=1

∑m
j=1 ωijB

n
i (u)Bm

j (v)
=

n∑
i=1

m∑
j=1

bij(u, v)Pij (2.4)

where ωij are non-negative weights, the Pij forms the control polygon, Bm
i (u), Bn

j (v)
are Bernstein polynomials, bij(u, v) are basis functions, and u, v are parameters.

Beźıer surfaces are continuous and require fewer points to represent curved sur-
faces. However, Beźıer patch meshes are difficult to render directly. It is complicated
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Figure 2.2: Examples of the NURBS surfaces. a) A Beźıer triangle patch. b) A
concept of the truck (NURBS model) a.

aThe truck model was used under Royalty Free License (https://www.cgtrader.com/free-
3d-models/vehicle/truck/renault-radiance).

to compute intersection operations with lines and to combine the meshes directly
with the perspective projection algorithms (Farin 2002).

On the other hand, NURBS surfaces (see Fig. 2.2, b) are more convenient to use.
NURBS surfaces consist of a small amount of patches. They provide the flexibility
to design a large variety of shapes, and they provide one common mathematical
form for standard analytical shapes and free-form shapes. NURBS can be defined
in general case as

F (u, v) =

∑n
i

∑m
j ωijDijN

n
i (u)Nm

j (v)∑n
i

∑m
j ωijN

n
i (u)Nm

j (v)
=

n∑
i

m∑
j

bij(u, v)Dij (2.5)

where ωi are non-negative weights, the Dij are control points, Nn
i (u), Nm

j (v) are
B-spline basis functions, bij(u, v) are basis functions and u, v are parameters.

The NURBS surfaces are invariant under affine transformations. They can be
used for designing a large variety of shapes and can be evaluated reasonably quickly
using numerically stable methods (Farin 1996; Plegl and Tiller 1995). The NURBS
curve or surface can be split into several rational Beźıer surfaces of the same degree.
These patches can be used for creating complex objects by stitching them together.

One of the important properties of the parametric surfaces is geometric continu-
ity. Formally, it can be defined for curves and splines as follows (Kiciak 2016):

Definition 2.2.1. (Geometric continuity, curves) A curve has a geometric conti-
nuity Gn of order n ≥ 1 if there exists a local regular parametrisation of this curve
that is Cn continuous in a neighbourhood of each point of this curve.

Definition 2.2.2. (Geometric continuity, surfaces) A surface has a geometric con-
tinuity Gn of order n ≥ 1 if there exists a local regular parametrisation of this surface
that is Cn continuous in a neighbourhood of each point of this surface.

The existence and continuity of the function derivatives guarantees the smooth-
ness of its graph. However, when we are dealing with parametric representations
(e.g Bézier curves/surfaces, NURBS), the continuity of derivatives of any parametri-
sation does not guarantee the smoothness of the curve or surface. Therefore, the
notion of the regularity of the parametrisation is introduced in both definitions
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Figure 2.3: A comparative picture of two types of continuity: parametric and geo-
metric. a) a non-smooth curve with a C2 continuous parametrisation; b) a curve with
G2 geometric continuity that has a parametrisation with discontinuous derivatives.
Reprinted from (Kiciak 2016)), Copyright ©2016, with permission from Morgan &
Claypool Publishers.

above. A vector function f(x0, ..., xn) of n variables x is regular at a point p if its
partial derivatives at p are linearly independent vectors (Kiciak 2016).

In Fig. 2.3 two planar curves with their parametrisation are shown. The graph
of the parametrisation fp(t) consists of two functions x(t) and y(t) and its three-
dimensional curve is obtained using the identity function z(t) = t. Both functions
x(t) and y(t) in Fig.2.3 (a) have continuous derivatives up to second order. However,
the curve has a point of discontinuity, where curves defined by these functions are
stitched together. On the contrary, the parametrisation of the curve in Fig. 2.3 (b)
has discontinuous derivatives at some points, but the curve is smooth at each point
(i.e. the tangent line exists) and its curvature is continuous.

Let us assume that a regular parametrisation fp(t), t ∈ [a, t0] is given and it
is essential to construct a parametrisation f ∗p (u), u ∈ [u0, b] that is Cn continuous
and its arcs defined by two parametrisations form a curve with geometric continuity
Gn. Let t = f(u), where f(u) is a monotone and at least Cn continuous and regular
function. If f(u0) = t0, then piecewise parametrisation will be defined on the domain
[f−1(a), b].

If we would like to obtain a curve with G1 geometric continuity, the following
interpolation conditions for the parametrisation f ∗p (t) should be satisfied:

f ∗p (u0) = fp(t0); f ∗′p (u0) = t1f
′
p(t0); t1 = f ′(u0). (2.6)

To obtain a curve with G2 geometric continuity, the following condition should be
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Figure 2.4: Example of the high resolution polygonal mesh of the robot (right
image) with its wireframe (left image) (the BRep model was done in Autodesk Maya
by the author).

also satisfied:

f ∗′p (u0) = t2fp(t0) + t21f
′′
p (t0) (2.7)

Finally, the curve with G3 geometric continuity should also satisfy this equation:

f ∗′′′p (u0) = t3f
′
p(t0) + 3t1t2f

′′
p (t0) + t31f

′′′
p (t0) (2.8)

Unfortunately, NURBS and Beźıer surfaces have a lot of drawbacks. The lack
of a proper geometric continuity can be crucial if a stitching operation between
two parametric surfaces is applied. It is difficult to compute intersections between
parametric surfaces or to detect self-intersections in them. To resolve these issues
different numerical solutions are applied (Guthe, Balázs, and Klein 2005; Wang
1996). Some of them deal with solving partial differential equations (PDEs). Some
others use numerically time-consuming approaches that, first, subdivide the surface,
then intersect them and, finally, refine the obtained result (Houghton et al. 1985).

2.2.2 Polygonal Representation

Formally, a polygon is defined as a closed region of the plane bounded by a finite
number of line segments stitched together to form a closed, non self-intersecting
closed curve (Satyan and O’Rourke 2011). A polygonal mesh (Mp) (see Fig. 2.4) is
a set of vertices (V ), edges (E ) and faces (F ) that defines the shape of a polyhedral
object (Hughes et al. 2014):

Mp = {V,E, F} (2.9)

V = {v1, ..., vn};
E = {e1, ..., el}; el = {vj, vk}; 0 < j, k ≤ n

F = {f1, ..., fm}; fi = {ej, ek, ..., ep}; 0 < j, k, p ≤ l;

This representation defines the object in the form of a shell, where the surface
of the object can be formed with triangles, quadrilaterals or other simple convex
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Figure 2.5: Shading of the triangle using barycentric interpolatiob.

polygons. One of the most widely used simplexes that can be used for approximating
the surface are triangles. The formal definition for the triangle meshes can be given
as follows (Giblin 2010):

Definition 2.2.3. A closed surface is a collection Mtr of triangles in some Euclidean
space that:

1. Mtr satisfies the intersection condition: two triangles are disjoint, or have
one or two vertices in common;

2. Mtr is connected;

3. every vertex v of a triangle of Mtr is connected through a simple closed poly-
gon.

Polygon meshes are widely used in many areas dealing with computer graphics
and geometric modelling, such as game development, film and animation produc-
tion, architecture, CAD modelling and others. There are a lot of well-established
operations for polygonal meshes like set-theoretic (Yongbin et al. 2009), smoothing
(Botsch et al. 2007), simplification (Heckbert and Garland 1997) and others. Polyg-
onal meshes are widely supported by the modern graphics hardware. Therefore, they
can be rendered using various algorithms and techniques in a fast and convenient
way.

Even if the geometry is approximated by a polygon grid, it is possible to obtain
a continuous distribution of some parameters on the surface of this object using
barycentric interpolation (Hormann 2014). For instance, in Fig. 2.5 we show an
example of application of the barycentric interpolation to colours defined in vertices
of the triangle. If the object is tetrahedralised (i.e. formed using tetrahedral primi-
tives), it is possible to continuously interpolate the data in interior of such a mesh
using barycentric interpolation.

The barycentric interpolation is based on the concept of barycentres or centres
of mass. Let us consider a system of n+ 1 particles with corresponding coordinates
p0, ...,pn and masses w0, ..., wn. In this case, the barycentre of this particle system
is the unique point p that satisfies

n∑
i=0

wi(p− pi) = 0 p =

∑n
i=0wipi∑n
i=0 wi

(2.10)

where wi are the barycentric coordinates of p with respect to pi. If we consider
data f0, ..., fn that can be obtained using some function f(pi) : Rm 7→ R. Then the
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Rep. Advantages Drawbacks

P
a
ra

m
et

ri
c

• Continuous surface representation;

• Bezier surfaces require fewer points to define curved
surface;

• NURBS provide one common mathematical form
for standard analytical shapes and free-form shapes;

• NURBS are invariant under affine transformations;

• Supports interactive shape design;

• Problematic to calculate intersections between
parametric surfaces;

• Problematic to resolve self-intersections;

• Problematic to render without conversion to polyg-
onal representation;

• Lack of geometric continuity;

P
o
ly

g
o
n

a
l

• A lot of different operations have been already de-
veloped;

• Efficient to use in different simulation-based and
animation-based techniques, where the goal is to
deform the boundary surface of the object;

• Efficient to render using different physically-based
techniques;

• Supports interactive shape design;

• Memory inefficient in terms of data storing;

• Approximated (discrete) representation of the ob-
ject;

• Suffers from self-intersections, holes and cracks and
other inconsistencies;

• Object is defined as a polygonal shell that results
in problems with defining heterogeneous objects;

Table 2.1: Advantages and drawbacks of the boundary representation.

barycentric interpolation for this data is defined as

F (p) =
n∑
i=0

Fbari(p)fi (2.11)

where Fbari(p) are barycentric basis functions. Some of them can be found in work
(Hormann 2014). We will need this notion in chapter 4 for implementing one of the
methods.

Polygon meshes can be used for creating implicit surfaces (Yngve and Turk 2002).
In this work the authors used implicit surfaces based on variational interpolation
technique. They created an iterative method which added new constraints to a
variational implicit representation in an iterative manner.

However, set-theoretic operations over polygonal meshes can suffer from self-
intersections. Polygonal meshes are also not suitable for operations that change the
topology of the object, such as morphing.

One of the possible solutions for solving self-intersections and intersections for
polygonal meshes was suggested in (Campen and Kobbelt 2010). They combined
adaptive octree with nested binary space partitions for guaranteeing exactness and
robustness of the intersection operations or construction of outer hulls which can be
suitable for a mesh repair tasks.

Polygonal meshes provide only an approximate description of the object that is
highly dependent on the amount of triangles/polygons. They are not well suited for
defining heterogeneous objects as polygonal meshes define only the surface of the
object, not its interior. One of the possible solutions was introduced in (Lei et al.
2014) where nested shells were suggested to use. Alternatively, in some CAD systems
the interior of the polygonal objects can be defined as a homogeneous material, but
it does not cover an uneven attribute distribution in interior of the object.
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Summary

In this section we have reviewed one of the widely used representations - the bound-
ary representation. This representation can be defined using parametric or polygonal
surfaces. However, as in this work we are considering volumetric representations that
are suitable for heterogeneous object modelling, we showed that BRep is not well-
suited for defining such objects, and it had various problems, e.g. self-intersections
and different inconsistencies.

According to the definition 2.1.1 of the heterogeneous object, the object con-
sists of geometric shape and attributes that are defined on the boundary and in its
interior. The core disadvantage of BRep for the heterogeneous multi-material volu-
metric modelling is that it is surface-based and the interior of the objects is hollow.
Beside that, BRep is an approximated representation (discrete) and unsmooth.

2.3 Volumetric Representations

In this section, we review six types of commonly used volumetric representations,
namely, voxel representation, implicit surfaces, function representation (FRep), signed
distance fields (SDFs), adaptively sampled distance fields (ADFs) and interior dis-
tance fields (IDFs) that are suitable for heterogeneous object modelling. We identify
their advantages and drawbacks. We also review the state-of-the-art methods for
their generation. At the end of this section we discuss hybrid approaches for volu-
metric modelling presented in the literature.

2.3.1 Voxel Representation

Boundary approximating representations can be defined as grids, voxels and hierar-
chical grids (e.g. octrees) (Goodman, O’Rourke, and Tóth 2017). The grids can be of
two types, namely regular or adaptive. Regular grids subdivide the n-dimensional
Euclidean space into cubes. Voxels are rectilinear grids, where each element has
equal size. They can also be defined using adaptive or hierarchical grids for efficient
representation of the volumetric object. Each voxel can store a scalar value (e.g
defining density of the material in the point) or a vector value (e.g defining colour,
velocity vector etc). This is one of the common data structures for storing and
processing volumetric data and for defining multi-material heterogeneous objects.

In Fig. 2.6 we show two examples of how voxel representation can be used. In
Fig. 2.6 (a) we can see a textured BRep airplane model that was converted to voxel
representation. Voxels can also be used for 3D painting. In Fig. 2.6 (b) of this figure
we show a picture of the robot that was drawn in a voxel-based painter Magicavoxel
(Simar 2020). The model in the picture is made of fixed-size voxels that store an
attribute property (color, textures, etc) specified by an artist.

However, voxels approximate data, and the level of detail highly depends on the
voxel grid resolution. The data stored in voxels is discrete and, generally, consume
a lot of memory.

As using regular voxel grids is inefficient in terms of memory handling, more
researchers turn their attention to the sparse adaptive solutions. One of them is
GigaVoxels introduced in (Crassin et al. 2009). It is based on generalised octrees
(N3-trees) with MIP-mapped 3D texture bricks in its leaves. This approach can
utilise both CPU and GPU computational capabilities. It handles the cases when
the details are concentrated at interfaces between dense clusters and empty space.
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Figure 2.6: Voxel based models. a) the voxelised model of the ’Red Baron’ plane
(BRep model) a; b) an example of the voxel-based art b.

aThe plane model (https://sketchfab.com/3d-models/red-baron-c1352e0038d8449999e5
d0cebb42786f/) was used under CC Attribution-ShareAlike licenses https://creativecommons.
org/licenses/by/4.0/

bThe robot model (https://sketchfab.com/3d-models/bastion-ganymede-overwatch
-b25da6e53d304c00a6bda81d26114ac5) was used under CC Attribution-ShareAlike licenses
https://creativecommons.org/licenses/by/4.0/

Unfortunately, this method is not suitable for handling dynamic objects. In (Laine
and Karras 2010) another octree-based solution that uses voxels was introduced. In
particular, authors state that the smoothness of the voxelised surface of the object
is not necessarily important. The method suffers from the discontinuities at voxel
boundaries that could introduce problems such as self-shadowing or interreflections
during ray tracing.

One of the most widely used voxel-based libraries presented in the industry
is OpenVDB (Museth 2013) which was developed by DreamWorks Studio. It is an
adaptive data structure that shares some characteristics with B+trees and facilitates
both uniform and adaptive sampling. It is memory efficient, supports time-varying
data, and it is suitable for representing volumetric object with its interior structure
and attributes. It is fully utilising CPU for multi-threading computations. Open-
VDB provides flexible and efficient control of the data, that is, unfortunately, still
discrete and approximate. Another promising voxel-based library was released quite
recently by NVIDIA and called GVDB (Hoetzlein 2016). This library is based on
the voxel database topology introduced in (Museth 2013) and it is also adaptive.
The main goal of GVDB is the full utilisation of GPU parallel computations for
data processing, particularly for handling time-variant objects and rendering.

To enhance memory efficiency while working with voxel representation, the stored
data can be compressed. In (Kämpe, Sintorn, and Assarsson 2013) the directed
acyclic graph (DAG) based structure was introduced to significantly reduce the size
of the sparse voxel octree. DAG solves the problem of the poor scaling with respect
to resolution. However, it is only suitable for handling the static data that is still
represented as discrete blocks. Later DAG method was extended in (Dado et al.
2016; Dolonius et al. 2019) to include compressed per-voxel simple attributes (e.g.
colours). In (Careil, Billeter, and Eisemann 2020) the DAG approach was further
enhanced to enable interactive modifications of the stored compressed data without
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Advantages Drawbacks

• Can be defined using regular and adaptive grids;

• Can store a lot of information about the object ge-
ometry and its attributes;

• Efficient to process;

• Can be used for dynamic simulations, e.g. particle
simulations;

• Efficient to render using physically-based tech-
niques;

• The stored data in voxels is essentially approxi-
mated (geometry and attributes) and discrete;

• Voxel representation is not smooth and can be dis-
continuous;

• Memory inefficient;

• Resolution dependent: the density of the voxel grid
controls the geometry quality of the defining object;

Table 2.2: Advantages and drawbacks of the voxel representation.

its decompression including compressed attributes.

2.3.2 Implicit Surfaces

Implicit surface S (Bloomenthal and Wyvill 1997) is defined as a set of points in
Euclidean space Rn where a scalar field equals to the given iso-contour value c ∈ R:

S = {p ∈ Rn/f(p) = c} (2.12)

where p = (x0, x1, ..., xn) is a point in Euclidean space Rn. Implicit volume (Schmidt
et al. 2007) V is similarly defined:

V = {p ∈ Rn/f(p) ≥ c} (2.13)

One of the important early works on implicit surfaces is Blinn’s work (Blinn
1982) where they were used for modelling and rendering of electron density maps
of a molecular structure. Electrons were represented by blobby objects, which were
defined as the sum of Gaussian bumps. The shape of the blobby object could be
changed by varying Gaussian bumps parameters. In Fig. 2.7 we show two examples
of implicit surfaces. In Fig. 2.7 (a) we show an object that consists of five blobby
objects and in Fig. 2.7 (b) we show five tori objects combined together.

Wyvill at al. (Wyvill, Mcpheeters, and Wyvill 1986) generalised blobby objects
and introduced soft objects. He suggested to define such objects as a surface of
constant value in a scalar field over three dimensions. He modified the exponential
function in the defining function of the blobby object by approximating it with
piecewise polynomial expressions.

Authors (Turk and O’Brien 2002) suggested to use an interpolating implicit sur-
faces which are smooth, satisfy the boundary constraints introduced in the interior,
on the boundary, and in exterior of the object. This implicit representation defined
closed surfaces of an arbitrary topology.

In (Shapiro and Tsukanov 1999) implicit surfaces defined by normalised distance-
based functions with a guaranteed differential property were described. It was stated
that there was a problem of interior zeroes in the scalar field generated using such
functions. The possible solution for it was found in (Shapiro 1999).

The BlobTree method suggested in (Wyvill, Guy, and Galin 1999), was based
on an implicit surface modelling system. In this work, the authors described an
implicit modelling method that used an expendable tree data structure for handling
geometry processing. However, the application of the Boolean operations to the
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Figure 2.7: The examples of the implicit surfaces with their polygonal grid that
were generated by the author in SideFX Houdini. a) five blobby objects united in
one object; b) five tori objects combined in one object.

Advantages Drawbacks

• At least C0 continuous functionally defined objects;

• Smooth object representation;

• Suitable for defining attribute distributions in inte-
rior of the object;

• Can be efficiently defined as a solution of the partial
differential equation;

• Problem of interior zeroes;

• Set-theoretic operations can introduce discontinu-
ities or junctions between surface elements;

Table 2.3: Advantages and drawbacks of the implicit surfaces.

implicitly defined objects introduced discontinuities or junctions between surface
elements (Wyvill, Guy, and Galin 1999).

An interactive shape design can be achieved using volumetric implicit partial
differential equations (PDEs) (Du 2003). This method has the following advan-
tages: by solving PDEs, both boundary and interior information can be obtained at
the same time; higher-order continuity can be provided for the geometric objects;
optimisation techniques can be used with the PDE models. Smooth results with
tangential continuity can be obtained using elliptic PDEs. The suggested method
could also handle material distributions inside the object (Du and Qin 2001).

The level-set method is another widely used technique for modelling implicit
surfaces introduced by Osher and Sethian in (Osher and Sethian 1988). Level-set
method is PDE based. The solution of PDE is defined as a continuous function that
evolves in time. This method handles topological changes and reduces the noise in
the data set. The level-set method can also be used for representing non-manifold
surfaces. In (Yuan, Yu, and Wang 2012) a novel class of object-space multi-phase
implicit functions was introduced. These functions were capable of accurate and
compact representation of the objects with multiple internal regions.
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Figure 2.8: Two objects that were defined using function representation. a) a 2D
character that was defined using 42 set-theoretic operations; b) a 3D cat character
that was created using HyperFun language (Adzhiev, Cartwright, et al. 1999).

2.3.3 Function Representation

The function representation (FRep) (Pasko, Adzhiev, Sourin, et al. 1995) defines
a geometric shape G of the object OFRep as a closed subsets of an n-dimensional
Euclidean space Rn using a real-valued defining function FFRep(p) that is at least C0

continuous (the formal definition for FRep will be given in section 3.2.1). The higher
order of continuity guarantees the existence of derivatives and, as a consequence,
the smoothness of the function (this will be discussed in more details in section 3.1).

FRep provides the information about point-membership (see Fig. 2.8, a), i.e. it
is positive inside, takes exact zero on the boundary of the object and negative in
exterior of the object. FRep is a high-level and uniform representation of multidi-
mensional geometric objects. The subject of particular interest is 4D objects with
fourth coordinate specified as a time.

FRep generalises implicit surface modelling and extends a constructive solid
geometry (CSG) approach. FRep has a closure property as operations applied to
the FRep defining functions produce continuous resulting FRep functions. The
FRep object can be defined as a primitive (e.g sphere, octahedron, cylinder, etc.) or
as a complex object that is defined in the form of a constructive tree. In this case,
primitives are stored in the leaves of the tree and operations are stored in its nodes.

There exist many well-developed operations, e.g set-theoretic operations, meta-
morphosis, blending and bounded blending and space-time blending (Pasko, Pasko,
and Kunii 2005), offsetting, bijective mapping and others (Pasko and Adzhiev 2004).
FRep covers traditional solids (Karczmarczuk 1999), scalar fields, heterogeneous ob-
jects including both static and time dependent volumes (Ďurikovič, Czanner, and
Inoue 2001). FRep is also suitable for defining volumetric microstructures (Pasko,
Fryazinov, et al. 2011) as well as for defining multi-scale cellular structures (Fryazi-
nov, Vilbrandt, and Pasko 2013). In (Pasko, Adzhiev, Schmitt, et al. 2001) FRep
was also extended for heterogeneous volumetric modelling using hypervolume repre-
sentation. The FRep function can be defined analytically, or with function evaluated
algorithm, or with a discrete scalar field. The defining function can be generated,
for example, for point clouds with an interpolating surface (Fayolle and Pasko 2016)
and mesh surfaces (Fryazinov, Pasko, and Adzhiev 2011). FRep can be extended
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Advantages Drawbacks

• FRep generalises implicit surface modelling and ex-
tends a constructive modelling approach;

• FRep supports point membership;

• FRep is closed guaranteeing to get at least C0 con-
tinuous resulting function;

• FRep covers solids, scalar fields, volumes, time-
dependent volumes and hypervolumes for hetero-
geneous object modelling.

• FRep has many well-developed operations that sup-
port multidimensional transformations in Rn;

• Distances can be obtained for a limited number of
FRep objects;

• FRep object can have a boundary with dangling
portions that are not adjacent to the interior of the
object;

• FRep has an unpredictable non-distance based be-
haviour of the resulting field and, as a consequence,
it is problematic to render in 3D.

Table 2.4: Advantages and drawbacks of the function representation.

with several other representations such as voxels, meshes and point clouds that can
be stored as primitives in the leaves of the FRep constructive tree (Adzhiev, Kaza-
kov, et al. 2000). This makes FRep essentially a hybrid representation of volumetric
objects as not only an object surface, but its interior is defined by a function.

In Fig. 2.8 we show 2D and 3D objects that were defined using FRep functions
and set-theoretic operations. In Fig. 2.8 (a) we show how the FRep field varies in
exterior and interior of the object using a 2D example. In general case, the FRep
field is not distance-based as field isolines do not precisely follow the object shape.
In Fig. 2.8 (b) we show a 3D FRep object that was generated using HyperFun
tools (Adzhiev, Cartwright, et al. 1999). The advantages and drawbacks of the
representation can be found in table 2.4.

2.3.4 Radial Basis Functions

Radial basis functions (RBFs) are widely used in the context of the approximation
of the multivariate functions. For instance, RBFs are used in the case when a
multidimensional data defined in points p ∈ Rn using some function fp = f(p) is
given, it is essential to find an approximate function fs : Rn 7→ R to the function
fp : Rn 7→ R from which the data is assumed to stem (Buhmann 2003). Formally,
RBFs are defined as follows:

Definition 2.3.1. (Radial basis functions) A radial basis function is a real-valued
function ϕ(p) that depends on the distance between the input and either the origin
ϕ(p) = ϕ(||p||) or some other fixed point pc called a centre, i.e. ϕ(p) = ϕ(||p −
pc||). The sum of such radial functions forms a basis for some function space to
approximate the input data represented by function values fs(p) as follows:

fs(p) =
m∑
j=1

λjϕ(||p− pj||), p ∈ Rn (2.14)

where λj are scalar parameters, || · || denotes a norm (e.g. Euclidean).

RBF functions are widely used in the context of the data approximation defined
on unstructured grids, e.g. the reconstruction of implicit surfaces out of the 3D
scanned point clouds. In (Carr et al. 2001) polyharmonic RBFs were used for the
reconstruction of the smooth, manifold surfaces from point-cloud data with repair-
ing holes in the reconstructed mesh. The proposed greedy algorithm reduces the
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Figure 2.9: A ’Stanford Bunny’ model that has holes (a) which were closed as the
result of applicaiton of the single level Duak-RBF operation (b), of the coarse level
Dual-RBF operation (c), of the multi-level Dual-RBF operation (d). Reprinted by
permission from Springer Nature: The Visual Computer (Lin et al. 2009) ©2009.

amount of required RBF centres, and the energy minimisation characterisation of
polyharmonic splines produces a smooth approximation of the surface. In another
work (Li, Wills, et al. 2004) was introduced an algorithm for fitting implicit surfaces
to a given data set using RBFs with ellipsoid constraints. The fitted shape is able
to capture the main features of the object in case, when the data sets are extremely
sparse. Authors (Pan and Skala 2007) described a method for reconstructing of the
implicit function out of the point cloud with associated surface normals with point
membership information, i.e. whether point belongs to the interior or exterior of
the reconstructed object. In (Samozino et al. 2006) an algorithm for the surface
reconstruction using Voronoi centred radial basis functions was proposed. The cen-
tres of RBF functions were selected among the vertices of the Voronoi diagram of
the sample data points. Authors (Lin et al. 2009) introduced a method for surface
reconstruction from the input point cloud using dual-RBFs. The idea of the method
was based on the physical polar field model that was combined with a multi-level
surface reconstruction strategy to effectively address the problem of holes filling.
The result of appliacation of this method to the model of the ’Stanford Bunny’ with
holes can be seen in Fig. 2.9.

In general case, RBF functions tend to oversmooth data, they might be not effi-
cient to compute. However, this type of functions provides a smooth and continuous
approximation of the reconstructed surface or function. RBFs can be used for ap-
proximating functions defined on unstructured grids. In the context of this thesis,
they can be used as an intermediate step for obtaining a FRep or SDF function from
the input point cloud.

2.3.5 Signed Distance Fields

The signed (oriented) distance function (SDF) FSDF (p) of a set X defines a distance
from the given point p ∈ X to the boundary ∂G of the geometric set G ⊆ X, where
the sign determines whether the point p belongs to X\G, ∂G or interior Gin of
the object. A more formal definition of the SDF representation will be given in
subsection 3.2.2. In this work we assume that SDF point membership rule is in
compliance with the FRep point membership rule.

The SDF function is at least C0 continuous as it might not be differentiable
at some points of Euclidean space Rn and it might has gradient discontinuities
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Figure 2.10: An example of the 2D shape that has gradient discontinuities on the
medial axes that are marked with red lines.

on the object’s medial axes. For instance, in Fig. 2.10 we mark this type of C1

discontinuities using red lines. As the SDF function satisfies the solution of the
eikonal equation ||∇FSDF || = 1, its gradient becomes discontinuous in points that
are marked with red lines.

Formally, the SDF function is Lipschitz continuous and Frećhete differentiable
that were proven, for example, in (Delfour and Zolsio 2010). Lipschitz continuity is
a strong implication of the function continuity that guarantees that the function is
uniformly continuous. Frećhete differentiability is a generalised directional derivative
of the vector function and the SDF function is a vector or a oriented function. A
formal definition for both notions will be given in section 3.1. Both properties prove
that SDF function is differentiable everywhere except those points where the cut
locus touches the surface and where the problem of gradient discontinuities arises.

There are a lot of operations defined for SDFs. One of them is offsetting (Bálint,
Valasek, and Gergó 2019). A lot of operations for SDFs were defined in (Payne and
Toga 1992). These are surface interpolation, multiple-object averaging, spatially-
weighted interpolation, texturing, blending, set-theoretic operation and metamor-
phosis. Morphological operations such as erosion and dilation (Serra 1988) can be
also applied to SDFs. SDF can be used for material definition in heterogeneous
objects (Biswas, Shapiro, and Tsukanov 2004), additive manufacturing (Barclay,
Dhokia, and Nassehi 2016), in collision detection problems, particle simulations
(Kim, Kim, and Lee 2015) and others. In Fig. 2.11 we show a 2D shape and a 3D
BRep object that were converted to the SDF representation. In Fig. 2.11 (a) we
show the SDF field generated for the FRep defined the 2D character using distance
transform algorithm. As it can be seen, the isolines are spaced equidistantly and
follow the shape of the object. In Fig. 2.11 (b) we show the 3D cartoon character
that was initially defined using BRep and then converted to the SDF representation
using the level-set method (Museth 2013). The advantages and drawbacks of SDF
can be seen in table 2.5.
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Figure 2.11: Two objects that were converted to signed distance fields. a) a FRep
2D character that was converted to the SDF object; b) a BRep 3D cartoon model a

that was converted to SDF level-set representation using OpenVDB library in SideFX
Houdini.

aThis a free to use model https://www.mixamo.com/#/?limit=96&page=1&type=Character.

Advantages Drawbacks

• SDF provides distances to the object surface both
inside and outside it;

• SDF is at least C0 continuous;

• SDF is a Lipschitz continuous function;

• SDF is Frećhet differentiable almost everywhere;

• SDF satisfies the solution of the eikonal equation;

• SDF supports point membership;

• SDF is effectively discretised, has a predictable field
behaviour and is efficiently rendered.

• SDF might not be differentiable at some points of
Euclidean Rn space. Loss of SDF differentiability
happens when the current point is sufficiently close
to a concave singularity (a concave corner/edge);

• SDF has discontinuous gradients on the object’s
medial axis;

• SDF is not smooth;

• SDF might not be suitable for attribute modelling
due to C1 discontinuity.

Table 2.5: Advantages and drawbacks of the signed distance function representa-
tion.

Approximate Methods for Computing SDFs

The most simple way for obtaining a discrete unsigned or signed distance field in
2D/3D Euclidean space is to calculate the distance transform (DT). This tech-
nique provides a mapping from one scalar field f1(p1) to another scalar field f2(p2)
such that f2(p2) = infp1:f1(p1=0) |p1 − p2|, where p1 = (x1, x2, ..., xn) and p2 =
(x1, x2, ..., xn) are points in an n-dimensional Euclidean space Rn. The distance
obtained by DT is usually unsigned.

The DT technique was first introduced in (Rosenfeld and Pfaltz 1966) by Rosen-
feld and Pfalz. They suggested to approximate Euclidean distance using a local
distance propagation which considerably reduces the execution time with a trade-
off in accuracy. Later this method was enhanced in several works (Borgefors 1984,
1986, 1996; Svensson and Borgefors 2002). The main idea of approaches was to
use the weighted optimal distances and proper sweeping templates (see Fig. 2.12)
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Figure 2.12: A chamfer distance template. In the forward pass distances a-f are
added to voxels in the current, z−1 and z−2 slices. In the backward pass, distances
are added to voxels in the current, z + 1 and z + 2 slices (Jones, Baerentzen, and
Sramek 2006), copyright line ©2006 IEEE.

to obtain the resulting DT and minimise the difference between Euclidean distance
and the obtained optimal weighted distance.

A more sophisticated and accurate way of calculating DT is to use the vector
distance transform (VDT). A particular case of VDT is the sequential Euclidean
distance transform (SEDT) introduced in (Danielsson 1980) for 2D images. He sug-
gested two versions of the algorithm that use four or eight neighbour points defined
in the 3 × 3 template. Four sweeps of the template were applied to the compu-
tational grid. During each sweep the computed distance in the current grid point
was compared with distances stored in the neighbour points. Then the minimised
Euclidean distance was stored in the current grid point. The SEDT algorithm was
improved in two works (Leymarie and Levine 1992; Ye 1988) where the signed vec-
tors for calculating DT were introduced. In (Mullikin 1992) the four-point signed
SEDT algorithm into three dimensions was extended. The obtained DT algorithm
was called the efficient VDT algorithm (EVDT). It used six sweeps of the defined
template matrix and can be applied to an anisotropically sampled data. Later the
EVDT algorithm was enhanced in (Satherley and Jones 2001) where the unsigned
vector-city VDT (VCVDT) algorithm was introduced. Authors suggested an eight
passes algorithm (four forward passes and four backward passes) with a complete
vector copy of the distance field.

SDFs can be computed using a number of different approximation techniques.
In (Biswas and Shapiro 2004) an approximate distance fields with non-vanishing
gradients were introduced. The main idea of this work was to use the normalised
approximation of the distance fields using piece-wise polynomials and to normalise
distance fields using the method introduced in (Rvachev 1982). Unfortunately, it
still might produce gradient discontinuities and consumes plenty of memory.

The signed approximate real distance functions (SARDF) were introduced in
(Fayolle, Pasko, and Schmitt 2008). In this work, the SDF modelling was extended
with set-theoretic operations preserving a distance property and being smooth at
the same time. In (Belyaevm, Fayolle, and Pasko 2013) signed Lp−distance fields
for SDF approximation using a family of generalised double-layer potentials were
introduced. Unfortunately, this approach has relatively high approximation errors
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near the sharp features of the object. In (Sanchez, Fryazinov, Fayolle, et al. 2015)
SDFs were approximated using a convolution filtering method. The generated SDF
function is smooth and at least C1 continuous.

Numerical Methods for Computing SDFs

The SDF field can be computed using numerical solutions of PDEs. One of the
equations that can be used for the numerical computation of SDF is the eikonal
equation. The eikonal equation is a non-linear PDE that is used for solving the
problems of wave propagation. Formally, it is defined as follows:

|∇f(p)| · fsp(p) = 1 (2.15)

where fsp(p) is a speed function, f(p) is the shortest time that is needed to travel
from the boundary of the set to its point p. In general case, speed function fsp(p)
controls the motion of the wave propagation from the seed region. However, if
the solution of the eikonal equation is computed in the context of the geometric
modelling, then fsp(p) = 1. In this case the solution of this equation gives the
signed distance from the boundary defined by f(p) = FSDF (p).

One of the important properties of the SDF representation is that its defining
function satisfies the eikonal equation (see table 2.5). This property shows that
the Euclidean distance is preserved. From this equation (2.15) also follows that
the SDF function has discontinuous derivatives in the points where its gradient is
discontinuous.

Another PDE that can be numerically solved to generate SDF is the level-set
equation (Osher and Sethian 1988):

∂f(p)

∂t
+ νn|∇f(p)| = 0; νn = ν · n (2.16)

where n = ∇f(p)/|∇f(p)| is the normal to the interface (e.g. boundary of the
object), ν = (u, v, w) is a velocity field and here f(p) is a level-set function. In
general case, the level-set function is non-distance based as it evolves in time through
equation (2.16). In (Sussman, Smereka, and Osher 1994) a reinitialisation equation
to restore the distance property of the computed solution of the level-set equation
was introduced. This reinitiliasation equation can be written as follows:

fτ (p) + sgn(f(p)0)(|∇f(p)| − 1) = 0 (2.17)

where sgn(·) is a smoothed-out signum function, f(p)0 : Rn 7→ R is a level-set
function that is transformed into SDF f(p) and τ defines a fictitious time that
controls the width of the band around the zero-level set, where a signed distance
will be computed.

The eikonal equation can be numerically solved using fast methods such as fast
marching method, fast sweeping method, fast iterative method and others. The
fast marching method (FMM) was introduced in (Tsitsiklis 1995). This method
gives a solution of the isotropic control problems using a first-order semi-Lagrangian
discretisation on the Cartesian grid.

Another popular method for solving the eikonal equation was introduced in (Zhao
2004) and called the fast sweeping method (FSM). It is an iterative algorithm that
uses Gauss-Seidel iterations with alternating sweeping ordering to obtain the nu-
merical solution of equation (2.15) on a rectangular grid.
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Figure 2.13: Adaptively sampled distance field that was restored using bilinear
interpolation. a) the subdivided 2D character using octree that was defined using
FRep; b) the computed and restored distance field for the 2D FRep defined character.

In (Jeong and Whitaker 2008) a fast method called the fast iterative method
(FIM) was introduced. It uses a first order upwind Godunov discretisation scheme
and independent update of the solution of the eikonal equation computed on a
regular grid. Unfortunately, this scheme introduces bounded errors as a trade off
for computational efficiency. In (Hong and Jeong 2017) an enhanced version of the
FIM algorithm called group-ordered FIM (GO-FIM) was proposed. It significantly
reduces redundant computations, which was the main drawback of the original FIM
algorithm.

The level-set method is an implicit representation of a moving front that was
introduced in (Osher and Sethian 1988). It is an efficient way of representing and
tracking the evolution of the interfaces according to equation (2.16). The main
advantage of this method is that it could handle various topological changes of the
object. To solve the defining level-set equations (2.16) - (2.17) a total variation
diminishing (TVD) Runge-Kutta scheme (Shu and Osher 1989) is used along with
a Godunov spatial discretisation of Hamiltonian.

Recently, an alternative and a more efficient way to compute SDF was introduced
in (Darbon and Osher 2016; Lee, Darbon, et al. 2017) using the Hopf-Lax formula.
The main advantage of this method is an independent parallel computation at each
grid point. In (Royston et al. 2018) this approach was used in the context of the
level-set method when the interface is defined on a grid.

2.3.6 Adaptively Sampled Distance Fields

An adaptively sampled distance function (ADF) (Frisken et al. 2000) is a distance
function that is computed on hierarchical grids, e.g. tree-like data structures. To our
knowledge, there is no well-established formal definition of ADF in the literature.
There are several works where ADF is interpreted in a different way compared to
(Frisken et al. 2000). For example, in (Wang et al. 2011) ADF was defined using
T-meshes with different interpolation operation for restoring the field, in (Koschier
et al. 2017) it was suggested to use a hierarchical hp-adaptation for constructing
ADF, in (Tang and Feng 2018) it was proposed to construct ADF using estimation
of the principal curvatures of the input surface. In this work we introduce a formal
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Advantages Drawbacks

• ADF data structure efficiently subdivides the Eu-
clidean space Rn according to the level of detail;

• ADF distances are adaptively sampled;

• ADF supports point membership;

• ADF possesses an efficient memory management:
in a small amount of memory a significant amount
of information about the object can be stored;

• ADF hierarchical tree data structure is fast to re-
build that make it possible to handle time-variant
objects;

• ADF can be efficiently rendered in real time.

• ADF field has C0 discontinuities where cells of the
different size appear as the result of the hierarchical
subdivision;

• ADF field has C1 discontinuities that are in-
troduced by the bilinear/trilinear interpolation
(Frisken et al. 2000) during reconstruction of the
field at each cell;

• ADF is not suitable for attribute modelling due to
C0 and C1 discontinuities.

Table 2.6: Advantages and drawbacks of the adaptively sampled distance function
representation.

definition of ADF, which will be presented in subsection 3.2.3. Here we give a more
informal definition that follows (Frisken et al. 2000).

The construction of the ADF function starts from subdividing the subset X of
Euclidean space Rn according to the local details of the geometric shape G ⊆ X
using some k-ary tree. Each node of this tree is represented by an n-dimensional cell
with vertices. We have to compute the distances at each vertex of each cell to the
subdivided boundary of the geometric shape ∂G of the object. The boundary of the
geometric shape is subdivided with some maximum tree depth. Then the distances
are restored inside each cell using some interpolation technique.

The ADF field, generated as it was described in (Frisken et al. 2000), has C0

discontinuities where the cells of different size appear, and it has C1 discontinu-
ities caused by the bilinear/trilinear interpolation that was used for restoring DF
at each cell. The ADF representation also provides the information about point
membership.

In Fig. 2.13 we show the ADF field that was generated for the FRep defined
2D character. In Fig. 2.13 (a) we show a subdivided 2D FRep object using a
quadtree data structure and in Fig. 2.13 (b) we show a computed and restored
distance field for this FRep object. The distances at each cell were restored using
bilinear interpolation. In the places, where the isolines are broken, we can see C0

discontinuities in the field and, where the field has sharp corners, we can identify
C1 discontinuities.

ADF can be used for an efficient interactive real-time modelling, e.g sculpting
as the tree data structure provides fast access to object’s geometry and its specified
attributes (Perry and Frisken 2001). ADF is suitable for solving surface restoration
problems (Deng et al. 2008; Tang and Feng 2018). It supports the same operations as
SDF. ADFs can be used in dynamic simulations (Koschier et al. 2017), for example,
morphing between shapes, as a hierarchical data structure can be efficiently rebuilt
at each animation frame (Frisken et al. 2000). The advantages and drawbacks of
ADF can be seen in table 2.6.

Methods for Computing ADFs

ADFs can be efficiently constructed using distribute computations. In (Yin, Liu,
and Wu 2011) a special distance adaptive sampling procedure through the octree-
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Figure 2.14: An adaptive reconstruction of ’Igea’ model using ADFs that are
restored with PHT-splines at each cell of the octree. Reprinted from (Wang et al.
2011), Copyright ©2011, with permission from Elsevier.

like structure was suggested to use. The authors introduced three sample types
depending on the distance from the mesh. This approach guaranteed an efficient
and accurate geometry processing. However, there were still some C0 discontinuities
at the border of the object.

Another way of setting up ADF was suggested in (Koschier et al. 2017) using the
hp-refinement technique, based on piecewise polynomial fitting. The main idea of an
hp-refinement is to refine the cell-size (h) while traversing the octree. Then applying
the adaptive sampling step at each cell and, finally, obtain the approximation of the
polynomial degree (p).

There are several works that suggested methods for solving C0 and C1 discon-
tinuities in the ADF field. In (Bastos and Celes 2008) the ADF implementation
with work around C1 discontinuities was introduced. A smooth reconstruction of
the surface normals is done by calculating and storing them separately from the
generated object. In (Wang et al. 2011) an ADF-like approach was suggested. The
distances inside each cell are calculated using PHT-splines, thus making the distance
field C1 continuous. In Fig. 2.14 we show the intermediate results of the adaptive
reconstruction of the ’Igea’ model using PHT-splines. As it follows from the picture
the resulting surface is smooth and continuous. In (Tang and Feng 2018) ADFs were
used for a multi-scale surface reconstruction. The C1 continuity of the restored field
is achieved using multi-scale B-spline functions.

ADFs can also be generated as a numerical solution of the eikonal or level-set
equation on adaptive Cartesian grids. In (Strain 2000) a fast numerical node-based
second-order semi-Lagrangian method for solving general moving interface problems
on hierarchical grids was proposed. The author solved the advection equation (2.16)
and applied the redistancing operation to the result to restore the signed distances.
In another work (Min and Gibou 2007) a second-order accurate semi-Lagrangian
level-set method on the non-graded adaptive Cartesian grids was proposed. The
described method produces a continuous resulting distance function and negligible
mass loss. In (Mirzadeh et al. 2016) a scalable algorithm for the level-set method
on dynamic adaptive quadtree/octree Cartesian grids was presented. The proposed
computational scheme was paralleled and a semi-Lagrangian method was applied
as it is free of any time-step restrictions. A possible alternative data structure to
quadtree/octree is a hash table (Brun, Guittet, and Gibou 2012) that only stores a
band of grid points adjacent to the interface. Instead of tree structure, in (Guittet
et al. 2015) the Voronoi interface method was used for subdividing the space. The
numerical method, suggested in that paper, was applied for solving elliptic problems
with discontinuities while the solution remains continuous and smooth.
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Figure 2.15: The SDF (a) and IDF (b) fields computed for the 2D polygon. This
example was generated by the author using method described in (Rustamov, Lipman,
and Funkhouser 2009).

There is lack of fast methods that were used for the computation of the eikonal
equation solution on hierarchical grids. Most of the methods were developed either
for triangulated meshes (Fu et al. 2011) (FIM) or tetrahedral meshes (Lelièvre,
Farquharson, and Hurich 2011) (FMM). However, a simplex free adaptive FSM
method for solving the level-set equation on n-dimensional binary tree data structure
was introduced in (Cecil, Osher, and Qian 2006).

2.3.7 Interior Distance Fields

Interior distance field (IDF) is not a well-established notion yet as in literature there
is neither a general approach for generating distance functions of this rather broad
nature nor one unique name for them. In this work we suggest to use this notion for
a representation with a defining function obtained as follows: the distance function
is computed on the boundary of the object as a shortest path between boundary
points and then the generated distances are smoothly interpolated in the object’s
interior. The formal definition will be given in the next chapter, subsection 3.2.4.

IDF is usually obtained by solving a partial differential equation (PDE) or ap-
plying some numerical method, e.g graph approaches (Liu, Ramani, and Liu 2011)
or Markov chains (Coifman and Lafon 2006). Among PDE-based methods the fol-
lowing methods can be considered as representative: geodesic distances obtained as
the solution of heat equation (Crane, Weischedel, and Wardetzky 2013), diffusion
maps combined with smooth barycentric interpolation of the distances in interior
of the object (Rustamov, Lipman, and Funkhouser 2009), the optimal mass trans-
port (Solomon, Rustamov, et al. 2014) and some others. IDF is usually used in the
tasks related to shape analysis (Rustamov, Lipman, and Funkhouser 2009), geome-
try restoration (Patanè and Spagnuolo 2012), morphing and less commonly for an
attribute definition in interior of the object (Fryazinov, Sanchez, and Pasko 2015).
IDF advantages and drawbacks can be seen in table 2.7.

SDFs and IDFs have very different distance field isolines due to the methods
that are used for their generation. In case of SDF, we compute the distances to
the surface of the object, while in case of IDF, the distances are computed on the
boundary and then extended to interior of the object.

In Fig. 2.15 we show a 2D comparative example. In Fig. 2.15 (a) we show an
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Advantages Drawbacks

• IDF is at least C0 continuous;

• IDF is shape-aware;

• IDF is deformed with the boundary;

• IDF is smooth;

• IDF is suitable for distance-based attribute defini-
tion in interior of the object.

• IDF can be computationally expensive;

• IDF field accuracy for some methods is highly de-
pendent on a time step and type of the used dis-
cretisation;

• IDF is defined only in interior of the object.

Table 2.7: Advantages and drawbacks of the interior distance function representa-
tion.

SDF field obtained for the ’H’ object. We can see that it is defined in interior as
well in exterior of the object. It has C1 discontinuities where the sharp features can
be seen in interior of the object. On the contrary, in Fig. 2.15 (b) an IDF field is
computed between ’source’ point ps and the other points of the 2D shape and is
defined only in interior of the shape and on its boundary. As it can be seen it is
smooth, shape-aware and completely different comparing to SDF. In Fig. 2.16 we
show a 3D comparative example of SDF and IDF fields that were computed for the
’Stanford Bunny’ model. In Fig. 2.16 (a) we show the IDF field computed on the
boundary of the object, and in (b) and (c) we show two mesh slices with computed
IDF and SDF fields in its interior. The IDF field is smoothly varies in interior of
the object while SDF does not.

Methods for Computing IDFs

In work (Rustamov, Lipman, and Funkhouser 2009) the generation of IDF is based
on the propagation of the distances computed on the boundary of the mesh in its
interior. The boundary surface of the mesh was embedded in a higher dimensional
space using diffusion maps (Coifman and Lafon 2006). The diffusion maps approxi-
mate Euclidean distance on the boundary. Then the computed boundary distances
are propagated in the interior of the mesh. This method is quite resourceful for
computations but provides accurate results.

In (Crane, Weischedel, and Wardetzky 2013) IDF was obtained using the solu-
tion of the heat equation. The suggested method consists of three steps: integrating
the heat flow for some fixed time, then calculating the vector field and, finally, solv-
ing the Poisson equation. The accuracy of this method depends on the particular
choice of the spatial discretisation. In work (Rustamov 2011), the interior heat ker-
nel signature was obtained using Laplace-Beltrami eigenfunctions and barycentric
coordinates. The interior distances were obtained by propagating Laplace-Beltrami
eigenfunctions defined on the boundary of the mesh, inside the mesh, using barycen-
tric interpolation. This representation provides a continuous distance field, and it
is insensitive to deformations.

Yu-Shen Liu and others (Liu, Ramani, and Liu 2011) suggested a graph-based
method for generating IDFs. The inner distance is calculated as the length of the
shortest path of the graph between landmark points. The obtained distances are
invariant to articulations and sufficiently accurately approximate Euclidean distance.
Unfortunately, these distances are very sensitive to concavity/convexity changes of
the shape. Authors (Fryazinov, Sanchez, and Pasko 2015) also used a graph-based
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Figure 2.16: The IDF field computed for the ’Stanford Bunny’ 3D tetrahedralised
mesh using the method described in (Rustamov, Lipman, and Funkhouser 2009)
and an SDF slice to show the difference in nature of these fields. a) the IDF field
computed on the boundary of the mesh. Black isolines show how the field is changing
according to the shape of the object; b) the interior slice of the mesh with computed
IDFs. The yellow point ps in the slice corresponds to the ’source’ point. c) the
SDF slice of the same model with computed interior and exterior distances. Colour
changing reflects how the distances are changing from interior to exterior of the
object.

algorithm for calculating IDFs and setting up materials in the interior of the object.
The distances were computed as an approximate Euclidean shortest path between
a point and the material feature. The obtained distance field was continuous and
differentiable everywhere.

A new method for calculating Earth Mover’s Distances was introduced in (Rub-
ner, Tomasi, and Guibas 2000) and enhanced in (Solomon, Rustamov, et al. 2014).
It can be used for the IDF calculation. They applied the theory of optimal mass
transportation and passed dual differential formulation with linear scaling. The
resulting distances are smooth, continuous and can be efficiently computed.

IDFs can also be obtained using spectral distances (Patané 2016; Patanè and
Spagnuolo 2012). One of the main properties of the spectral distances is their
capability of storing local geometric properties of the input shape, shape-awareness,
robustness to noise and tessellation.

2.3.8 Hybrid Representations

The main feature of any hybrid representation is that it unifies advantages of several
representations and compensate for their drawbacks. On the basis of FRep several
hybrid approaches were introduced. One of them is hybrid volumes (Adzhiev, Kaza-
kov, et al. 2000) which were defined as a combination of FRep and voxel represen-
tations. In (Pasko, Adzhiev, Schmitt, et al. 2001) the concept of hypervolumes was
introduced. It was an extension of the general object model (Kumar, Burns, et al.
1999) and unified the advantages of FRep and hybrid volumes. A heterogeneous ob-
ject was defined as an n-dimensional point-set with specified attributes, operations
and relations over them.

In (Adzhiev, Kartasheva, et al. 2002) a hybrid cellular-function representation
was proposed. It was based on hypervolumes combined with the cellular repre-
sentation and the constructive representation using FRep. The concept of implicit
complexes was introduced in (Kartasheva et al. 2008) which represented an ob-
ject with different type of cells that defined not only geometry of the object, but
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also its attributes. This model makes it possible to represent dimensionally non-
homogeneous elements and their cellular representations. The authors showed that
attributes may define not only the material, but any volumetric distribution such as
density or temperature. Another hybrid approach called hybrid surface representa-
tion was introduced in (Kim, Sukhatme, and Desbrun 2004). It was based on BRep
and an implicit surface representation. This representational scheme was used for
heterogeneous volumetric modelling and sculpting. Using image-based haptic tech-
niques with introduced hybrid approach the user is provided with tool to paint on
the surface of the object.

There is a number of works that describe hybrid representations based on SDFs,
ADFs and IDFs. The authors (Tsukanov and Posireddy 2011) introduced a hybridi-
sation of meshfree, RBFs, DFs and collocating technique for solving engineering
analysis problems. The proposed technique enables exact treatment of all boundary
conditions and can be used with both structured and unstructured grids. Sullivan
(Sullivan 2015) introduced hybrid ADFs which represented the object as a set of
cells.

The authors (Allegre et al. 2004) defined a new structure called HybridTree that
was based on an extended CSG tree. The HybridTree structure unified advantages
of skeletal implicit surfaces and polygonal meshes. The hybrid biharmonic distances
that were defined similarly to diffusion and commute-time (graph) distances were
proposed in (Lipman, Rustamov, and Funkhouser 2010) for solving some shape
analysis tasks. This type of distances provides both reasonable global and local
properties of the shape. They are smooth, but very expensive to compute. In (Kim,
Kim, and Lee 2015), a concept of the hybrid ADF was introduced for detailed
representation of the dynamically changing liquid-solid mixed surfaces. Solid and
liquid parts of the object were combined using their level-set values.

Summary

In this section we have discussed several representations, namely voxels, implicit
surfaces, FRep, RBF, SDF, ADF and IDF, as well as some hybrid approaches that
are suitable for heterogeneous volumetric modelling. Voxels can be used for defining
various volumetric shapes with different attributes specified per voxel, but this rep-
resentation is discrete and essentially approximates the geometry. On the contrary,
FRep is at least C0 continuous, the objects are defined by the functions that means
that they can be defined with nearly infinite precision, and it is already provides
different hybrid properties. Unfortunately, it is problematic to render and it has
a non-distance based unpredictable behaviour. The advantages and drawbacks of
FRep can be found in table 2.4.

SDFs, ADFs and IDFs provide different distance fields for the defining objects.
They provide a distance based predictable field behaviour for the defining object
and can be easily rendered. However, they also had their drawbacks that can be
found in tables 2.5, 2.6 and 2.7.

From the conducted review, it follows that FRep might serve as the basis for
constructing a hybrid representation that will unify advantages of FRep, SDF, ADF
and IDF and compensate for their drawbacks. In the next sections we will review
the state-of-the-art methods for defining attributes in volumetric objects to finally
formulate the hybrid framework for multi-material heterogeneous object modelling.
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2.4 Multi-Materials and Microstructures in Het-

erogeneous Modelling

Attribute distributions specified in heterogeneous objects OH can be uniform or
non-uniform. For instance, the simple example of the uniform distribution can
be a homogeneously coloured object. As to non-uniformity, it can be presented
as porous structures or microstructures with non-linear varying density or multi-
material distributions. In this section, we discuss the state-of-the-art on how multi-
materials, microstructures and porous structures can be efficiently represented in
heterogeneous objects.

2.4.1 Methods for Defining Multi-Materials in Heteroge-
neous Objects

A material can be represented as a composition of atoms of several chemical ele-
ments within the given volume. Atoms can be combined in different structures like
molecules, particles, grains, crystals and other, forming microstructures on several
scale layers. Materials can be characterised by its concentration or density repre-
senting the certain fraction of a single or multiple materials (Schmitz et al. 2016).

Generally, there are three classes of multi-material representations that are widely
used: composite materials, functionally graded materials (FGMs) and multi-materials
that are defined using additive manufacturing techniques. Composite materials can
be represented as a combination of multiple homogeneous materials with different
physical properties sharing the boundaries within an object. FGMs are composites
that consist of two or more materials that are gradually changing with position or
direction (Niino et al. 1987). Additive manufacturing techniques (Ngo et al. 2018)
provide methods for a digital fabrication of multi-material heterogeneous volumet-
ric objects using 3D printing. Multi-materials along with the geometry are defined
using voxels for fusing them together at the given volume element (Bader, Kolb,
Weaver, Sharma, et al. 2018; Brunton et al. 2018; Cimquest and Hewlett-Packard
Development Compahy 2014; Doubrovski et al. 2015) or for mixing several materials
together using a dithering technique (Stratasys 2014).

Multi-material heterogeneous volumetric objects consist of two elements. The
first element is a geometric shape of the object that can be defined using BRep, any
solid representational scheme or a scalar field (Biswas, Shapiro, and Tsukanov 2004;
Pasko, Adzhiev, Schmitt, et al. 2001). The interior of the object can be defined
as domains, partitions or cells sharing their boundaries. The second element is a
material distribution which can be set up in several different ways.

The material distribution can be defined by assigning a material index as an
integer value (Kumar and Dutta 1997) that is suitable for the composite materials
definition. Material distributions can be set up in a discrete manner storing its
values at each cell of the data structure, e.g. voxel (Hoetzlein 2016; Museth 2013).
They can also be defined using piecewise polynomials (Yuan, Yu, and Wang 2012)
or continuous scalar fields (Biswas, Shapiro, and Tsukanov 2004), which provide a
resolution independent material distribution or nearly infinite resolution controlled
by computer precision. There are several interesting examples discussed in (Biswas,
Shapiro, and Tsukanov 2004). In particular, the distance-based smooth and differ-
entiable attribute functions were applied to represent a parabolic distribution of the
graded refractive index in Y-shaped solid of the waveguide as it can be seen in Fig.
2.17. In this case, it is important that the distribution of the index of refraction is
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Figure 2.17: Refractive index distribution of a radial Y-branching waveguide.
a) Refractive index distribution specified for the Y-shaped one-dimensional tube;
b) Magnified distribution plotted as a surface over a 2D section. Reprinted from
(Biswas, Shapiro, and Tsukanov 2004), Copyright ©2004, with permission from
Elsevier.

uniform and smooth.

The Scalar Field Based Approaches

Piecewise continuous scalar fields are sufficient for defining a resolution indepen-
dent material distribution within a geometric shape of the object. One of the most
common approaches is to make a spatial partitioning of the object beforehand.
Then unique material distributions in obtained spatial regions are defined. The
voxel representation (Kaufman 1994; Wang et al. 2011) (see subsection 2.3.1) for
the volumetric objects is the most widely used approach, especially in case of ob-
jects that are further used for 3D printing (Bader, Kolb, Weaver, and Oxman 2016;
Bader, Kolb, Weaver, Sharma, et al. 2018). In Fig. 2.18 we show an example of
multi-material heterogeneous 3D printed object (a model of human brain), which
was defined using voxel representation (Bader, Kolb, Weaver, Sharma, et al. 2018).
The model demonstrates the bundles of axons in the brain with various connec-
tions. However, voxel representation has several significant restrictions that were
highlighted in table 2.2.

In (Kumar, Burns, et al. 1999) the geometric shape of the object was defined by a
topological cell complex with attributes defined per point with Ck continuous scalar
fields. The attribute at each point represents a material property (e.g colour) or a
material density. In (Bhashyam, Shin, and Dutta 2000) that approach was further
generalised. The authors defined several analytical material composition functions
that were used for the definition of the material independent of geometry.

Another variant of setting up material properties was suggested in work (Pasko,
Adzhiev, Schmitt, et al. 2001). A hybrid representation on the basis of FRep called
constructive hypervolume model was introduced. In this work object properties
were set up in a point-wise manner. The authors (Sharma and Gurumoorthy 2017)
suggested to use the decomposition of the geometry that relies on the existing class
of material distance-based functions. These functions were applied for the definition
of a material variation in heterogeneous objects using the medial axis transform.
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Figure 2.18: White matter tractography data of the human brain, created with the
3D Slicer medical image processing platform, visualising bundles of axons, which con-
nect different regions of the brain. Reprinted from (Bader, Kolb, Weaver, Sharma,
et al. 2018), Copyright ©2018, the Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science a.

aCreative Commons Attribution 4.0 International License (http://creativecommons.org/li
censes.by/4.0/).

Procedurally Defined Materials

In some cases, material distributions can be described in the closed form of an an-
alytical expression over the point coordinates. These expressions can be defined as
the pure polynomials or more general functions, e.g. trigonometric, exponential and
others. The authors (Kumar and Dutta 1998) suggested to use the power law in
the form of the polynomial function for describing multi-materials. In another work
(Gupta, Kasana, and Tandon 2010) logarithmic functions were suggested to use for
defining the material distribution in the object. The material function was defined
as a distance function from the end point of the first homogeneous region to the first
differential geometric point. In work (Bhashyam, Shin, and Dutta 2000) was pro-
posed a variety of different composition functions including polynomial, exponential
and trigonometric. In (Yang et al. 2014) was suggested to use Gaussian radial basis
function for interpolating between boundaries of the regions where materials were
defined. The resulting model is C∞ continuous and can handle complex structures.

The Feature-Based Approaches

The feature-based or source-based class of methods is another approach for defining
attributes in interior of the object. An object is partitioned into several regions and
in selected regions an attribute is assigned using a distribution function that creates
a source of gradient material (Biswas, Shapiro, and Tsukanov 2004; Park, Crawford,
and Beaman 2000; Qian and Dutta 2004). The materials are blended together using
specified weights that are proportional to the distance to a feature. In (Siu and Tan
2002a,b) a source-based approach was introduced. The attribute distribution was
defined using grading sources. These sources can be represented as points, lines,
and planes arbitrary placed in a space or at the surface boundary. The material
composition at the given point is evaluated in accordance with the distance from
the current point to each source.
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Summary

In this subsection we have discussed several classes of methods for defining attribute
distribution in interior of the object. There are some promising methods for attribute
definition that preserve continuity of the geometric shape and attribute distribution
in interior of the object. This class of methods utilises the functional nature of scalar
fields, particularly, distance-based. The parameterisation of the attribute functions
by the distance provides intuitive control for the attribute definition.

In this work we would like to consider the parameterisation of the attribute
functions by at least C1 continuous smooth distance functions as we want to avoid
the appearance of the stresses and creases in the modelling attribute. By applying
such parameterisation, we will be able to introduce a novel class of the smoothed
out attributes with intuitive control.

2.4.2 3D Printing

Polygonal representation is widely used in 3D printing. The industry standard file
format for 3D printing is STL that was introduced by 3D Systems company (3D
Systems 2020) in 1986. It is a simple data structure that could handle only the
description of the geometric shape. According to (Hiller and Lipson 2009), the STL
file format contains information only about a surface mesh and it is not capable to
represent colour, texture or any material. The geometry is stored as an unordered
list of triangles. As each triangle is stored separately, each vertex might be presented
repeatedly for every triangle. This leads to leaks in the defining geometry, where
small rounding errors results in vertices that are misaligned. Generally, this format
cannot be used for 3D printing of heterogeneous objects without extra steps (e.g.
represent each material by its own STL file (Lei et al. 2014)) or extensions of the
format.

In (Hiller and Lipson 2009) a revision of the STL format was proposed. The
modified version of the STL format was suggested to name additive manufacturing
file format (AMF). The AMF file format can represent one or multiple objects that
are arranged in a constellation. The geometric shape of the object is still defined as
a triangular mesh. The main advantage of the AMF format over the STL format
is that it is able to store the information about the colour and materials specified
for the object. Material distributions can be set up for the object using FGMs
defined by analytical functions of point coordinates. Relatively recently, the ISO
organisation (Subcommittee 2020) took a decision to replace the STL file format
with AMF. Unfortunately, it still provides no validation of triangular surfaces.

It was developed several alternatives to STL and AMF formats for 3D printing
that cover multi-material support (Qin et al. 2019) and most of them represent the
geometry using BRep. For instance, 3MF (3D manufacturing format) (3MF 2020)
format developed by Microsoft defines the geometry as a triangular mesh. This
file format is capable to store additional information about material and textures
defined for the object.

The most suitable way for defining heterogeneous objects in the context of 3D
printing is to use voxel based or similar data formats. For example, in (Kou, Tan,
and Sze 2006) was proposed a novel data structure based on non-manifold cellular
representations. This approach was able to define complex, smooth and versatile
material distributions upon the geometry. A voxel based method for layered man-
ufacturing was first introduced in (Chandru, Manohar, and Prakash 1995), where
several core problems were addressed such as slices generation, estimating surface

56



CHAPTER 2. RELATED WORK

Figure 2.19: The illustration of FAV 3D printing format that is suitable for print-
ing heterogeneous multi-material objects and was proposed by Fuji Xerox company
(Takahashi et al. 2018). Reptinted from (Takahashi et al. 2018), ©2018, Fuji Xerox
Co., Ltd. and Dr. Hiroya Tanaka a.

aCreative commons, Attribution, No Derivative Works, 4.0 International (https://creative
commons.org/licenses/by-nd/4.0/)

properties, etc. In (Doubrovski et al. 2015) a bitmap 3D printing method with
multi-material support that is also voxel-based was proposed. Quite recently, the
research scientists from Fuji Xerox have introduced a new format FAV (Fabricatable
voxel) (Takahashi et al. 2018) that allows users to design a complex distribution of
attribute values or internal structures to be 3D printed using voxel data structure.
In Fig. 2.19 we show a picture from the report by Fuji Xerox that describes how
multi-materials with different properties can be stored using FAV format.

2.4.3 Methods for Microstructure Generation

As it follows from the definition 2.1.1 of a heterogeneous object, the interior part
of such an object can be represented with different complex structures such as mi-
crostructures or porous structures. The interior structures can be used for providing
additional durability to the object that will be 3D printed with less material. They
can be important while computing dynamic simulations or for replicating the interior
structure of the real object. In computational material engineering, such structures
as microstructures are considered as the carrier of material properties and its density
distribution, which are derived from the features of the nano-scale and micro-scale
level of detail.

We can highlight two major types of heterogeneity depending on the scale level
of detail. If the material is defined as a non-uniform material density distribution
through the volume on the nano-scale level, then it is a compositional heterogeneity.
Otherwise, if the material is defined as a variable spatial structures, e.g porous
structures, lattices, scaffolds etc., on the micro-scale or meso-scale levels, then it is
a structural heterogeneity. Both types are widely used in the heterogeneous object
modelling (Markworth, Ramesh, and Parks 1995; Regli et al. 2016; Schmitz 2016).

The authors (Siu and Tan 2002b) introduced a method for modelling grading
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Figure 2.20: Multi-material FRep object with interior microstructures in the form
of the rods. One material was defined for the rods and another material was added
using blending operation. Reprinted from (Pasko, Fryazinov, et al. 2011), Copyright
©2011, with permission from Elsevier.

materials and interior structures of heterogeneous objects. The interior structure
of the object was defined using structure arrays that contained information about
both material composition and geometric structure of the object. In work (Schu-
macher et al. 2015) a method to define and preserve a spatially varying elasticity
property for the 3D printed objects with defined microstructures was presented.
Microstructures were specified using L2-distance fields normalised in the interval
[0, 1]d that corresponds to a metamaterial space. To avoid discretization errors each
microstructure sampling from the metamaterial space was smoothed using Gaus-
sian smoothing step. In work (Pasko, Fryazinov, et al. 2011) a novel approach for
modelling microstructures and irregular porous media using FRep was presented.
The described FRep-based method was used for constructing volumetric structures
with the size of the details that is orders of magnitude smaller than the overall size
of the object. The introduced method for generating microstructures is also suit-
able for multi-material object generation as it can be seen in Fig. 2.20. In another
work (Fryazinov, Vilbrandt, and Pasko 2013) the proposed method for generating
microstructures using FRep was generalised for the construction of the cellular struc-
tures. The geometry of a base unit cell was defined using FRep. Then, by applying
a periodic space mapping, this unit cell was multiplied over the object interior.

Microstructures can also be constructed using a tiling of the deformation domain
(Massarwi et al. 2018). The resulting tiling is stored as a deformation map that pro-
vided the mechanism for decoupling of the micro and macro structures. A particu-
larly interesting case of using microstructures was described in (Auzinger, Heidrich,
and Bickel 2018). In this work microstructures were used for modelling nanostruc-
tural colour using additive manufacturing techniques. The structural colours were
designed as a combination of the following methods: a full-wave simulation, a proper
parameterisation of the design space and a tailored optimisation procedure.

Porous structures are a particular sub-class of microstructures that is challenging
to generate due to their high degree of irregularity and intricacy of their geometrical
structure. As it was suggested in work (Kou and Tan 2010), they can be gener-
ated using a colloid-aggregation model. The authors used Voronoi tessellation for
partitioning the space into a collection of regions, which were merged together to
imitate the random colloid aggregations. An example of the generated models using
this method can be seen in Fig. 2.21. An alternative approach was suggested in
(Yoo 2012) where porous structures were defined using implicit solids, SDFs and
radial basis functions (RBF). These representations were used for modelling a min-
imal surface porous scaffold. The researchers from Autodesk Inc. (Michalatos and
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Figure 2.21: Example of the 3D porous structures generated using method de-
scribed in (Kou and Tan 2010). Reprinted from (Kou and Tan 2010), Copyright
©2010, with permission from Elsevier.

Payne 2018) suggested a modulated binarisation method that combined volumetric
texture coordinates with micropatterns halftonic techniques, which were defined by
potential fields of the texture coordinates. The obtained structures were specified
across multiple scales with assigned material properties.

Summary

Interior structures play an important role in heterogeneous volumetric modelling.
They can be defined at different scale levels and can be potentially specified as a
carriage of various attributes. The presence of the interior structures is important for
additive manufacturing to provide additional durability for the 3D printed objects.

As it follows from this subsection, there are a lot of different methods for defin-
ing micro-structures and porous-structures. For instance, they can be conveniently
defined using continuous functions, e.g FReps. However, FReps provide a non-
distance based field as we have discussed in subsection 2.3.3. Thus, it is hard to
use such objects in physically based simulations, 3D modelling and 3D rendering
without conversion to another representation. However, if FRep can be somehow
combined with distance-based representations, it is possible to obtain a convenient
and predictable way for defining various interior structures defined in heterogeneous
objects.

2.5 Dynamic Heterogeneous Objects

Heterogeneous objects are widely used in different physically-based simulations,
where the surface of the object as well as its interior structure participate in the
simulation process. Another application of volumetric objects is related to various
morphing tasks. In this section we review works dedicated to feature-based and
automatic morphing techniques as these methods deal with time variant objects.
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2.5.1 Feature-Based Morphing

In this subsection, we consider non-automatic methods for morphing with additional
user control. An early example of an in-between metamorphosis for 2D images
can be found in (Burtnyk and Wein 1976) where the authors present a system for
morphing between hand-drawn contour shapes with in-between shape generation.
The in-between interpolation relies on establishing correspondences between the
shapes along with stroke to stroke mapping. To fully utilise the system, a skeleton
must be set up. A similar method was presented in (Eisemann et al. 2008), where
pixel tiles are moved from one image to another according to the optical flow while
changing their colours.

Some attempts to introduce more flexible user control over morphing were under-
taken with user-defined feature segmentation. A feature-based image metamorphosis
technique was presented in (Beier and Neely 1992) for obtaining smooth transitions
between two images. This allows the user to define the pairs of corresponding fea-
tures in the source image and the target image that are further used for computing
in-between frames. This, however, heavily relies on the linear interpolation between
shapes which does not produce acceptable results in most cases. Higher quality in-
terpolation with provided corresponding boundary point pairs is described in (Alexa,
Cohen-Or, and Levin 2000).

The simplest technique for transforming one digital image into another in terms
of in-place morphing (when the input and target shapes are superimposed on one
another) is cross-dissolving (Smith 1987) where one image gradually disappears and
another appears through a per-pixel colour interpolation. This method can only
handle image morphing. According to (Lee, Wolberg, and Shin 1998; Wolberg
1998), cross-dissolving without pre-warping the initial and target shapes, produces
a poor result with a double-exposure effect. For obtaining best results two images
should be pre-warped to make the shapes similar by specifying control pixels. This
leads to the non-automatic approaches described, for example, in (Beier and Neely
1992; Smith 1987; Wolberg 1998).

Dalstein et al. (Dalstein, Ronfard, and Panne 2015) introduced a feature-based
method using the Vector Animation Complex, which is a vector graphics data struc-
ture. Their approach uses the space-time concept that is based on a parameterised
model for obtaining in-between frames. The suggested method is topology-aware,
can work with overlapping objects and supports colouring of the 2D faces. Unfortu-
nately, this method can produce discontinuous results because of the employed linear
interpolation and it also does not support colour/texture transformation between
frames.

2.5.2 Automatically Controlled Morphing

Averbuch-Elor et. al. in (Averbuch-Elor, Cohen-Or, and Kopf 2016) introduced a
data-driven method based on the inner-distance shape context technique to han-
dle geometry transformations and globally affine RGB transformations for colour
blending. Their in-between images are created by warping and blending an input
image toward a target image to align them. This method cannot handle objects
with different topology, and also does not take into account the interior texture of
the object.

Gao et. al. introduced a data-driven mesh morphing method in (Gao, Chen, et
al. 2017). Their method depended on patch-based and linear rotationally invariant
coordinates that can handle the deformations of models in a shape collection. This
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method works with objects of the same topology and does not handle texture or
colour transformations.

Liao et. al. (Liao et al. 2014) proposed an automatic method for optimisation-
guided image morphing that also supports the presence of greater dissimilarities
between images. The optimisation can take into account user-drawn points for
better aligning of image features. While providing intuitive results, this work does
not provide a method for dealing with objects of radically different topology.

A hybrid stroke-based solution (Jin and Geng 2015) deals with automatic genera-
tion of in-betweens for 2D facial cartoon animations. The key idea of the suggested
hybridisation is to combine the information about the approximate 3D geometry
with the multiple views of a character’s face from key frames to overcome the lack
of information. It facilitates automatic establishing of stroke correspondences. How-
ever, the strokes can be incorrectly annotated, and this method cannot handle mor-
phing between radically different images such as drawings with dissimilar strokes or
shapes.

An interesting approach was introduced by Neumann et. al. in (Neumann,
Alexander, and Neumann 2017) where a random walk algorithm was applied for
obtaining evolutionary image morphing. The proposed algorithm is based on the
usage of fitness functions for a per-pixel image transformation using random walks
and is only texture aware.

The most relevant group of methods for automatically controlled metamorphosis
is related to optimal mass transport (OMT). The OMT methods provide a solution
for the Monge-Kantorovich optimisation problem (Kantorovich 1948). This solution
provides the optimal way for moving a mass distribution from one domain to another
with minimal transportation cost. Typically the solution is obtained in the form
of the L2 Kantorovich-Wasserstein distances by solving the differential equation
defining the metric. In the context of the metamorphosis method it is important to
note that OMT-based methods are parameter free and not feature-based.

In (Haker et al. 2004) and (Zhu et al. 2007) an intensity-based OMT method was
introduced. The process of obtaining the in-between frames assumes computation
of the Kantorovich-Wasserstein distances which are used for generating the warping
transportation map between the initial and target images. Then the cross-dissolving
method is applied. In (Zhu et al. 2007), to overcome the double-exposure effect
caused by cross-dissolving, the authors introduced an intensity penalty term to the
mass moving energy functional.

A vector-valued OMT method was introduced in (Chen, Georgiou, and Tannen-
baum 2018). This method allows handling of the mass flow between vectorial entries
across a discrete or continuous space. The authors claimed that their approach is
suitable for a number of applications, in particular for colour image processing and
for morphing between colour distributions. They have provided an example of colour
interpolation for real-life images in the form of photos that can be seen in Fig. 2.22.
However, this is a pure image processing example without taking into account ge-
ometry.

The variational OMT approach (Maas, Rumpf, and Simon 2017) was applied to
grey-scaled textures with sharp features. In (Makihara and Yagi 2011) a method
for topology-aware shape morphing using cluster-based earth mover‘s distance flows
was introduced. Unfortunately, it cannot handle any colour or texture morphing.
The author (Lévy 2015) introduced a numerical topology-aware method for deal-
ing with geometric metamorphosis only. It is based on computing OMT between
density in the form of a piecewise linear function and a sum of Dirac masses. The
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Figure 2.22: Example of the OMT-based morphing method described in (Chen,
Georgiou, and Tannenbaum 2018) that interpolates corresponding vector-valued dis-
tributions. Reprinted from (Chen, Georgiou, and Tannenbaum 2018). Copyright
©2020 Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

authors in (Solomon, Goes, et al. 2015) and (Cuturi and Peyré 2016) introduced
a topology-aware method for solving the OMT optimisation problem using convo-
lutional Wasserstein distances that are approximated using entropic regularisation.
This method can only handle interpolation between blocks of pure colour.

In (Rehman, Pryor, and Tannenbaum 2007) a GPU based approach for solving
the OMT optimisation problem was suggested and applied to high frequency grey-
scaled images. Elsewhere the authors (Nader and Guennebaud 2018) introduced a
new solver for computing an approximated OMT that is derivative free and converges
within a few iterations. This method is topology-aware, preserves sharp features
during metamorphosis but does not support texture or colour transformations.

Volumetric Morphing Techniques

Most known solutions for volumes or scalar distance field representations work only
with geometry, and only few can handle both geometry and attribute transforma-
tions. Let us mention only the most representative related works here.

Breen and Whitaker (Breen and Whitaker 2001) introduced a level-set method
for representing the deformable surface of a densely sampled scalar function. A
colour interpolation is implemented using a trilinear interpolation combined with
the scan-conversion closest point method, where, unfortunately, the trilinear inter-
polation only handles simple colour transformations. Dinh et. al. (Dinh et al. 2005)
introduced a PDE based method that could transfer textures during shape trans-
formation. Their method is based on solving the Laplace equation for defining flow
lines that execute the bijective transformation between input and target objects. For
texture mapping they used the Laplace equation with the Laplace-Beltrami opera-
tor to establish pointwise correspondences between two objects defined by implicit
functions raised into 4D space.

Weng et. al. (Weng et al. 2013) introduced a metamorphosis method for objects
that are defined using distance fields that exploits a OMT-based method that pro-
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Figure 2.23: An OMT-based metamorphosis between a walking Tyrannosaurus-
Rex and a flying Dragon. Reprinted from (Barbier, Galin, and Akkouche 2005),
Copyright ©2005, with permission from Elsevier.

vides the optimal way for moving a mass distribution from one domain to another
with minimal transportation costs. For better alignment of initial and target objects
during metamorphosis, the method relies on establishing correspondences between
two objects that are used for computing a non-rigid warping function. Unfortunately,
this method is quite sensitive and cannot handle colour or texture transformations.

PDE based methods are in most cases computationally expensive. There are
also methods that are less expensive to compute but they usually produce less sat-
isfactory results. Barbier et al. (Barbier, Galin, and Akkouche 2005) introduced
a metamorphosis operation for textured objects using the BlobTree model where
initial and target objects are represented in 4D space. Geometry and texture trans-
formations are applied simultaneously using a warping function for geometry and
one of their blending functions for textures. In Fig. 2.23 we show how this method
was applied to two animated models. The accuracy of the shape transformations was
achieved using additional controls. Another method for metamorphosis between tex-
tured objects uses the unstructured lumigraph representation (Ludwig et al. 2015).
The texture transformation was achieved using a simple linear interpolation that
influenced the output quality.

Summary

As it follows from this section, methods and representational schemes for dynamic
heterogeneous objects are not well developed yet. We have reviewed works dedicated
to various feature-based and automatically controlled morphing and metamorpho-
sis methods. Only feature-based methods could efficiently handle geometry and
attribute transformations of any complexity simultaneously and interconnectedly.
However, there is lack of automatically controlled methods that could be applied to
heterogeneous objects with complex attributes (e.g textures, materials).

Many of the described methods for a 2D textured metamorphosis work reason-
ably well with pure image data (raster arrays or textures) rather than with textured
2D shapes. In the reviewed works we show that there is lack of methods that could
handle a heterogeneous metamorphosis automatically and without establishing any
correspondences between input and target objects. There were only several methods
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Figure 2.24: The result of the sphere-tracing algorithm a), and its concept b).

that could handle either metamorphosis between homogeneously coloured objects or
between two colourful pictures. The most relevant method in the context of auto-
matically controlled metamorphosis is OMT. This class of methods is parameter-free
and topology aware. However, the reviewed works did not provide the implemented
examples of metamorphosis between objects with sophisticated textures.

We can see that among 3D metamorphosis techniques there is also lack of meth-
ods that could handle both geometry and attribute transformations simultaneously
and interconnectedly. In case of OMT-based methods, establishing correspondences
can be important for better alignment of the initial and target objects.

2.6 Rendering of Multi-Material Heterogeneous

Objects

There are several well-established groups of methods that are used for rendering
heterogeneous volumetric objects. They are marching cubes based algorithms (Wu
and Sullivan Jr 2003), volume ray marching based algorithms (Hart 1996; Keinert
et al. 2014), splatting (Westover 1990; Westover 1991), shear-warp based techniques
(Lacroute and Levoy 1994), and texture-based algorithms (Fernando 2004).

The marching cubes method (Lorensen and Cline 1987) is used for converting the
volumetric object to the polygonal mesh that can be rendered using any convenient
graphics pipeline. While defining the position of the object surface, the algorithm is
searching for the intersection of the surface with the current cube. Then it defines
which of the triangles referring to the inside (set to zero) and outside (set to one)
of the object. After all sequential traversals of the cubes, the triangulated mesh is
obtained and surface normals are defined. The marching cubes algorithm was also
extended for rendering volumes with defined multi-materials (Wu and Sullivan Jr
2003). In the suggested algorithm, boundary surfaces between different materials
were extracted in one sweep of the image stack. The resulting object contains
no voids or overlaps between materials, and each material was bounded by the
triangulated surface.

In (Drebin, Carpenter, and Hanrahan 1988) a novel technique for rendering
volumetric objects represented as voxels taking multi-materials into account was
suggested. First, the input data volume is converted to material percentage volumes
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which were further used for composite volume generation. Then, to define surface
normals and boundaries between materials, the gradient operator was applied to
the density. The obtained object preserved the continuity of the input data volume
which was represented as a sampled continuous signal.

Another well-developed class of algorithms for volume rendering is the ray march-
ing based techniques which are widely used for rendering SDFs and ADFs. The main
idea of these methods is to find the intersection between the view ray initialised at the
camera view position and the scene with an object. In (Hart 1996) a ray marching
based algorithm called sphere tracing was proposed. The main goal of the suggested
technique was to render implicit surfaces or scalar fields, which could be creased,
rough and even defined by functions with discontinuous or undefined derivatives.
The concept of the sphere tracing can be described as follows (see Fig. 2.24, b).
For the given object defined by SDF, at each position along the view ray (Fig. 2.24
(b), red line) the distance in the current point is treated as a radius of the sphere
centred around the current position. If the sphere does not contain any surface, the
step along the ray is set to be equal to the current sphere radius. In (Keinert et al.
2014) an enhanced sphere tracing algorithm was described. Several techniques for
accelerating the rendering process, enhancing the intersection calculation between
the ray and the surface, and reducing discontinuity artefacts were proposed.

In work (Igouchkine, Zhang, and Ma 2018) a method for rendering multi-material
volumes taking into account the physically-based surface reflection function was
introduced. The volume rendering transfer function was extended for supporting a
surface-like behaviour at the boundaries between volume components and volume-
like behaviour inside the volume. They implemented their method using the ray
marching algorithm.

Summary

In this section we have discussed the core algorithms for rendering heterogeneous
objects that are defined using scalar fields. One of the slowest methods is marching
cubes that was also applied to the multi-material heterogeneous objects. Ray march-
ing based methods could suffer from an over-shooting problem if the step along the
ray is chosen not sufficiently small. On the contrary, a sphere-tracing method fully
utilises the nature of the distance fields. It could handle discontinuities and other
artefacts, and it is efficient for obtaining interactive rendering rates. This method
can also be applied for rendering multi-material objects taking into account different
physically-based properties of the attributes.

2.7 Conclusions

In this chapter we have discussed the core representations that are suitable for defin-
ing multi-material heterogeneous objects. The boundary representation (BRep) is
one of the most widely used, but least suitable for volumetric modelling as it is
surface-based, hollow inside, discrete (if it is polygon-based) and essentially approx-
imates the surface of the object. It is still a prevailing representation, particularly, in
3D printing, where the presence of interior structure is omnipresent, as most of the
supported formats are STL-based. In the case of multi-material 3D printing, this
format is cumbersome. One of the perspective directions is to develop voxel-based
formats. As it was discussed in subsection 2.4.2, Fuji XeroX have already introduced
a new format called FAV.
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As in this work we are dealing with multi-material heterogeneous objects, we
consider volumetric representations as the basis for the hybrid framework that will be
presented in chapter 3. We have reviewed several of them, namely implicit surfaces,
voxel representations, FRep, SDF, ADF and IDF, with identified advantages and
drawbacks. In volumetric modelling, the most widely used representation is voxels
due to their simplicity. However, as it was discussed in subsection 2.3.1, voxels
are not efficient in terms of computing as they might consume a lot of memory.
This problem can be solved using various adaptive approaches. Nevertheless, this
representation is discrete and essentially approximates the geometry and specified
attributes in interior of the voxelised object. The accuracy of the voxelised geometry
and attributes depends on the voxel grid resolution.

On the contrary, scalar-based fields are continuous (except ADFs) and the accu-
racy of the volume definition with specified attributes depends on the computational
precision. These representations can be efficiently processed, rendered and stored.
They can be converted to BRep or voxel representations that are widely used in
industry.

FRep is a representation that generalises implicit (surfaces) modelling and ex-
tends a CSG approach. The FRep defining function is at least C0 continuous, but
it can be enforced to be C1 continuous. There are a lot of well-established oper-
ations for FRep. It can be used for modelling microstructures, cellular structures
and porous structure by utilising its functional nature. Unfortunately, FRep is not
distance-based and, as a consequence, it can sometimes be problematic to render.
Some operations defined for FRep produce an unpredictable field.

On the other hand, distance-based representations (SDF, ADF and IDF) provide
a predictable and intuitive control for the geometric and attribute modelling. They
can be efficiently handled and rendered. However, each of the reviewed representa-
tions, namely SDF, ADF and IDF, have their drawbacks. SDFs are not smooth and
might not be differentiable everywhere, might have discontinuous gradients on the
medial axis and according to (Biswas, Shapiro, and Tsukanov 2004) are not suitable
for attribute modelling as they are C0 continuous. ADFs have C0 and C1 disconti-
nuities and are also not suitable for the attribute modelling. IDFs are defined only
in the interior of the object.

The discussed representations have a lot of fruitful advantages that can be found
in tables 2.4, 2.5, 2.6 and 2.7 that we would like to preserve and compensate for
their drawbacks. According to subsection 2.3.8, a possible solution to achieve this
goal is to construct a hybrid framework.

According to (Gómez et al. 2019), fast methods for solving the eikonal equation
have a variety of different applications. They can be used in path planning in robotics
(Do, Mita, and Yoneda 2014; Gao, Wu, et al. 2018), image segmentation (Forcadel,
Guyader, and Gout 2008), volumetric data representation (Museth 2013), visual
effects and others. However, they are not always efficient to compute, especially if
the implementation of the method is not paralleled. In this case, using adaptive
Cartesian grids (e.g. T-meshes, quadtrees, octrees etc.), it is possible to reduce the
amount of computations. The FIM method seems to be the best candidate to be
adopted for computations on adaptive grids as every node of the grid can be updated
independently.

One of the stated research problems in this work is dedicated to developing dy-
namic methods for heterogeneous volumetric objects. Particularly, we are interested
in morphing and metamorphosis techniques. In section 2.5, we have reviewed dif-
ferent works that are dedicated to solving the metamorphosis problem (both in 2D
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and 3D) of one object into another. We have identified that there is lack of meth-
ods that could handle both geometry and attribute transformation simultaneously
and interconnectedly without establishing any correspondences. We will show in
chapters 5 and 6 how to solve the automatically controlled metamorphosis problem
without establishing any correspondences in 2D and 3D.

According to section 2.6 there are a lot of methods for rendering heterogeneous
volumetric objects. Among all reviewed volumetric rendering techniques, the most
well-suited for distance-based objects is the sphere-tracing method. It is efficient to
use and it can be extended for handling physically based multi-materials.

As it follows from this review, all discussed representations for heterogeneous vol-
umetric modelling have their advantages and drawbacks. Some of them can be used
not only for defining the geometric shape of the heterogeneous object, but also for
defining various attribute distributions in interior of the object. In the next chapter
we will introduce a hybrid framework for heterogeneous volumetric modelling that
will combine advantages of several representations and compensate for their draw-
backs. This representation provides methods for defining various attributes, and the
defined objects can be made time-variant.
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Hybrid Function Representation:
Theoretical Framework

In this chapter we introduce and systematically describe a general approach for
defining and generating of heterogeneous volumetric objects using a hybrid function
representation (HFRep). The core of HFRep is FRep that is coupled with one of
the distance function-based representations, namely, SDF, ADF or IDF. HFRep
generalises their advantages and compensates for their drawbacks.

First, we give important mathematical definitions (e.g. metric space, distance
function, basic set notions, function continuity, Laplace-Beltrami operator and some
others) that will be further used in this and next chapters. Then we introduce
formal definitions of all mentioned function-based representations. In particular, we
formulate the mathematical definitions of FRep, ADF and IDF representations that
to our knowledge have not been presented in the literature yet. On the basis of this,
we propose a formal mathematical definition for the HFRep representation. We
prove the continuity of the HFRep defining function that depends on the continuity
of the FRep function and show that it preserves the Euclidean distance. We outline
mathematical basics of HFRep based on FRep and SDF, FRep and ADF, and FRep
and IDF hybridisations and formulate the basic algorithm for its generation. Finally,
we define supported types of the objects, operations and relations.

3.1 Mathematical Background

Let us introduce the mathematical definitions which will be used hereinafter. First
we introduce the definition of a metric space and a distance function that follows
(H. Dyer and E. Edmunds 2014):

Definition 3.1.1. (Metric space) Let X be a non-empty point set and let d : X ×
X 7→ R be such that for points ∀pi ∈ X ⊂ Rn the following conditions are satisfied:

d(p1,p2) ≥ 0 (3.1)

d(p1,p2) = 0⇔ p1 = p2

d(p1,p2) = d(p2,p1)

d(p1,p2) ≤ d(p1,p3) + d(p2,p3)

Then the function d(·, ·) is called a metric or a distance function on set X and the
pair (X, d) is called a metric space.

Part of this chapter was published in (Tereshin, Pasko, et al. 2020, 2021).
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In this work we are focusing on distance-based representations for defining volu-
metric objects. Let us introduce a more instrumental notion for the distance function
that satisfies definition 3.1.1 and that we will use subsequently in the next sections,
as follows (Schechter 1997):

Definition 3.1.2. (Distance function) Let X be a point set in a Euclidean vector
space Rn and let 〈·, ·〉 be an inner product defined in Rn. Then the Euclidean norm
of the point p ∈ X is defined as ||p|| =

√
〈p,p〉. If q ∈ X is another point, the

distance between these two points is defined as a function:

FDF (p, q) = ||p− q|| =
√
〈p− q,p− q〉, ∀p, q ∈ X ⊂ Rn (3.2)

In this work we deal with functionally defined objects that are specified as closed
point subsets G ⊆ X. As we are dealing with the objects defined by the functions,
a point membership classification is used to distinguish between exterior, boundary
and interior of the object. Therefore, let us introduce a formal definition of the
boundary ∂G of the subset G as follows:

Definition 3.1.3. (Boundary of the object) Let G be a subset of the defined metric
space (X, d). The boundary ∂G of this subset G is defined as G\Gin, where G =⋂
{GC : GC ⊇ G} is a closure of a metric space (X, d), GC is a closed set in X, and

interior of G is Gin =
⋃
{GU : GU ⊆ G}, where GU is an open set in G.

Both definitions of the open and closed subsets are closely related to the notion
of the topology. Formally, a topology can be defined as follows (Farenick 2016;
Schechter 1997):

Definition 3.1.4. (topology) A topology on a set X is a collection of T of subsets
X that satisfy the following three conditions:

1. both empty set ∅ and X are contained in T ;

2. T is closed under arbitrary unions:
⋃
α∈ΛGα ∈ T , where Λ is the main set

for all α;

3. T is closed under finite intersections:
⋂n
i=1Gi ∈ T .

The pair (X, T ) is called a topological space and its elements Gi ∈ T are called
open sets. The complements of the open sets are considered as the closed sets
GC ∈ T .

There are two important properties of the functions that we rely on in the next
sections: continuity and smoothness. The continuity of the function is defined as
follows (Delfour and Zolsio 2010):

Definition 3.1.5. (Function continuity) Let X be an open subset of Rn. Let C(X)
be the space of continuous functions X 7→ Rn. Let Nn be the set of all tuples
α = (α1, ..., αn) ∈ Nn. Then |α| is the order of α and ∂α is the partial derivative.
For an integer k ≥ 1

Ck(X) := {f ∈ Ck−1(X) : ∂αf ∈ C(X), ∀α, |α| = k} (3.3)

where

|α| =
n∑
i=1

αi, ∂α =
∂|α|

∂xα1
1 ...∂x

αN
N
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As it was mentioned in subsection 2.3.5, distance function is a vector function
and, therefore, it is Frećhete differentiable. Let us revise the formal definition of
this type of derivative that is defined on a vector space. According to (Delfour and
Zolsio 2010) Frećhete derivative is defined as follows:

Definition 3.1.6. (Frećhete derivative) Let V and W be normed vector spaces and
U be an open subset of V . A function f(x) : U 7→ W , x ∈ U is called Frećhete
differentiable at x if ∃A : V 7→ W is a bounded linear operator that satisfies

lim
||h||−→0

||f(x+ h)− f(x)− Ah||W
||h||V

= 0 (3.4)

In our work we will also need a stronger continuity notion namely Lipschitz
continuity. According to (Delfour and Zolsio 2010) it is defined as follows:

Definition 3.1.7. (Lipschitz continuity) A function f(p) is Lipschitz continuous
on subset X ⊂ Rn if for the given λ = 1 exists ∃c > 0, such as ∀p1,p2 ∈ X the
following inequality holds:

|f(p2)− f(p1)| ≤ c|p2 − p1|λ (3.5)

where c is a Lipschitz constant.

In case of distance functions, Lipschitz constant c is equal to one. In this work
we discuss functions that are either at least C0 or C1 continuous. A function f(·)
is said to be of class C0 if it is continuous on X ⊂ Rn. A function f(·) is said to be
of class C1 if it is one time differentiable and continuous on X ⊂ Rn.

Formally smoothness of the function follows from the previous definition and can
be defined as (Delfour and Zolsio 2010):

Definition 3.1.8. (Smoothness) A function f : X 7→ Rn is called smooth if it is
n-times differentiable, i.e. if it belongs to a specific class of functions that can be
defined as Cn(X) for which f (n) exists and it is continuous, particularly if it satisfies
C∞(X) =

⋂∞
n=1C

n(X).

The method (Rustamov, Lipman, and Funkhouser 2009) that was used for com-
puting the interior distance fields (see section 4.3) relies on two important notions:
the Laplace-Beltrami operator and its eigenfunctions. Both of them are widely used
in the context of shape analysis tasks. Let us give their formal definition here.

The Laplace-Beltrami operator is a generalisation of the Laplace operator to
functions defined on submanifolds in Euclidean space. According to (Delfour and
Zolsio 2010) this operator can be defined as follows:

Definition 3.1.9. (Laplace-Beltrami operator) The second order derivative of the
real-valued function f defined on Euclidean space Rn is defined using a Laplace-
Beltrami operator as

∆Γf := divΓ(∇Γf) (3.6)

where Γ is a submanifold of Euclidean space, ∆ is a Laplacian operator, and div(·)
is a divergence vector operator.

Laplace-Beltrami is a linear operator. Its eigenfunctions and eigenvalues are
obtained as a solution of the equation:

−∆u = λu (3.7)

where u is a non-zero eigenvector and λ is a corresponding eigenvalue.
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Figure 3.1: An illustration of the FRep and SDF fields obtained for the ’bat’ object
defined by the FRep function. a) the FRep field; b) the SDF field.

3.2 Formal Definitions of Function-based Repre-

sentations

In this section we outline four functionally-based representations with their math-
ematical definitions that will be used to devise the hybrid function representation.
We describe in necessary detail the mathematical basics of those representations and
propose the formal definitions for three of them, namely FRep, ADF and IDF. The
advantages and drawbacks of these representations were systematically outlined in
chapter 2, in tables 2.4, 2.5, 2.6 and 2.7.

3.2.1 Function Representation

Let us introduce the definition of FRep (Pasko, Adzhiev, Sourin, et al. 1995):

Definition 3.2.1. (FRep) Let the geometric shape of the object OFRep be defined
as a closed point subset G of n-dimensional point set X in Euclidean space Rn with
p = (x1, ..., xn) ∈ Rn using a real-valued defining function FFRep(p). Then function
representation is defined as

OFRep := FFRep(p) ≥ 0 (3.8)

The FRep function provides the information about point membership:
FFRep(p) < 0 p ∈ X\G
FFRep(p) = 0 p ∈ ∂G
FFRep(p) > 0 p ∈ Gin

(3.9)

where X is a subset of Euclidean space Rn, X\G is an exterior of the geometric
shape G, ∂G is the boundary of the geometric shape G of the object OFRep and Gin

is the interior of the G. The major requirement for FFRep(p) is to be at least C0

continuous. Note, that in this work we will consistently follow this point-membership
convention for all types of distance functions, meaning that they are positive inside
and negative outside with respect to the zero-level set.

The FRep function (see Fig. 3.1, a) provides the information about point mem-
bership, system of equations (3.9). The major requirement for FFRep(p) is to be at
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Figure 3.2: A constructive tree for the FRep object in the form of a ’snow flake’
that was converted to SDF. This tree consists of objects defined by SDF functions fi
stored in the tree leafs and operations applied to them stored in the tree nodes.

least C0 continuous. The main advantages and drawbacks of FRep were discussed
in subsection 2.3.3 and are presented in table 2.4.

FRep is a high-level and uniform representation of multidimensional geometric
objects. The subject of particular interest is 4D objects with fourth coordinate
specified as time. FRep generalises implicit surface modelling and extends a CSG
approach. FRep has a closure property as operations applied to the FRep defining
functions produce continuous resulting FRep functions. The FRep object can be
defined as a primitive (e.g. sphere, torus, cylinder, octahedron, etc.) or as a complex
object that is defined in the form of a constructive tree. In this case, primitives are
stored in the leaves of the tree and operations are stored in its nodes.

Fig. 3.1 (a) shows the FRep field obtained using 14 set-theoretic operations
applied to triangles and rectangles to construct the ’bat’. In Fig. 3.2 we present a
constructive tree that describes how a FRep object in the form of a ’snow flake’, that
was converted to SDF, was created using union ∪ and intersection ∩ set-theoretic
operations. In general case, the FRep field is not distance-based as interior and
exterior field isolines do not precisely follow the object shape in terms of its zero-
level set boundary.

3.2.2 Signed Distance Function

Let us introduce the definition of SDF that relies on definitions 3.1.1, 3.1.2 and 3.1.3:

Definition 3.2.2. (SDF) Let (X, d) be a metric space. Let the geometric shape G
of the object OSDF be specified in (X, d) as a point subset G ⊆ X. Then a signed
distance function FSDF (p) is defined as:

FSDF (p) =

{
d(p, ∂G) if p ∈ G
−d(p, ∂G) otherwise

(3.10)
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Figure 3.3: An ADF field generated for the FRep object ’heart’. The distance field
is restored using bilinear interpolation. a) The constructed quadtree for the ’heart’
object. b) The computed unsigned distance field with some C0 discontinuities shown
in the red circles.

where d(p, ∂G) ≡ FDF (p, ∂G). Then the SDF representation is defined as follows:

OSDF := FSDF (p) ≥ 0 (3.11)

SDF is at least C0 continuous as it might be not differentiable at some points of
Euclidean space Rn and it has gradient discontinuities on the object’s medial axes.
This means that SDF has the property of Lipschitz uniform continuity. The SDF
representation conventionally provides the information about point membership in
the same manner as FRep. SDF satisfies the solution of the eikonal equation. This
means that the Euclidean distance is preserved. The main advantages and drawbacks
of SDF were discussed in subsection 2.3.5 and are presented in table 2.5.

Fig. 3.1 (b) shows the SDF field generated for the ’bat’ object. As it can be
seen, the isolines are spaced equidistantly and follow the shape of the object.

3.2.3 Adaptively Sampled Distance Function

Adaptively sampled distance function (ADF) (Frisken et al. 2000) is a distance
function that is computed on hierarchical grids, e.g. tree-like data structures. ADF
satisfies all the requirements of definitions 3.1.1, 3.1.2 and 3.2.2. To our knowledge,
there is no well-established formal definition of ADF in the literature. In this work
we introduce a formal definition of ADF.

Let us first give the definition of the hierarchical tree structure:

Definition 3.2.3. (Hierarchical tree structure) Let a set of nodes and edges (Q,E)
be an undirected connected graph T that contains no loops and starts at some par-
ticular node of T . Then such a graph T is defined as a tree.

Let the space Rn be subdivided according to the local details using some k-ary
tree T := (Q,E) with nodes q ∈ Q. Each node q is defined as an n-dimensional
cell. According to the SDF definition 3.2.2 we need to compute the distance to the
boundary ∂G of the geometric subset G. Taking these preliminaries into account,
let us give the ADF definition:
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Definition 3.2.4. (ADF) Let the geometric shape G ⊆ X of the object OADF be
defined in a metric space (X, d). Let (X, d) be subdivided into nodes q ∈ Q with
corner vertices pi according to the level of detail using k-ary tree T := (Q,E).
Let the boundary ∂G be subdivided with the maximum tree depth, while X\G and
Gin be subdivided with some minimum tree depth. Let the corner vertices of the
boundary nodes q be defined as pbi. Then the distance function between these points
is d(pi,pbi) ≡ FDF (pi,pbi). Thereafter, the ADF distance function FADF (p) on the
tree T is restored at each node q using some interpolation function FI(p) and is
defined as follows:

FADF (p) =

{
(FI ◦ FDF )(p) if p ∈ G
−(FI ◦ FDF )(p) otherwise

(3.12)

The ADF representation is defined in the form of an inequation:

OADF := FADF (p) ≥ 0 (3.13)

The ADF field has C0 discontinuities on the edges of two adjacent cells of different
size and it also has C1 discontinuities caused by the bilinear/trilinear interpolation
that was used for restoring DF at each cell (Frisken et al. 2000). The ADF represen-
tation provides the information about point membership in the same conventional
manner as FRep. The generated ADF field for the FRep ’heart’ object can be seen in
Fig. 3.3. The distance field was restored using bilinear interpolation, therefore, the
field is non-smooth and has C0 discontinuities (some isolines are disconnected). The
advantages and drawbacks of the ADF representation were discussed in subsection
2.3.6 and given in table 2.6.

3.2.4 Interior Distance Function

Interior distance function (IDF) is not a well-established notion yet as in literature
there is neither a general approach for generating DFs of this rather broad nature nor
one unique name for them. Different approaches for IDF definition were discussed
in the previous chapter in subsection 2.3.7 as well as its advantages and drawbacks
in table 2.7.

In this work we suggest to use this notion for a representation with a defining
function obtained as follows: the distance function is computed on the boundary
of the object as a shortest path between boundary points and then the generated
distances are smoothly interpolated in the object’s interior. Let us introduce the
definition of IDF:

Definition 3.2.5. (IDF) Let the geometric shape G ⊆ X of the object OIDF be de-
fined in a metric space (X, d). Let points pbi belong to ∂G, and let points pink

belong
to Gin. Let a distance function d(pbi ,pbj) ≡ FDF (pbi ,pbj) = ||pbi − pbj ||Rn between
any boundary points pbi and pbj on a curved domain ∂G be recovered. Thereafter, by
constructing an interpolation function FI(FDF (pbi ,pbj),pink

) that is at least C1 con-
tinuous, boundary distances are extended to interior of the object OIDF . Therefore,
the IDF function can be defined as:

FIDF (pink
) = FI(FDF (pbi ,pbj ),pink

) (3.14)

where 0 ≤ i, j, < N , N is the number of boundary points, 0 ≤ k < M , M is the
number of interior points. The IDF representation is defined in the form of an
inequation:

OIDF := FIDF (p) ≥ 0 (3.15)
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Figure 3.4: An IDF field generated for the BRep tetrahedralised object ’fertility
statue’ using method presented in (Rustamov, Lipman, and Funkhouser 2009). a)
The IDF field computed on the boundary of the object. b) The slice of the IDF
field computed in interior of the object. The distances are computed between ’source’
point ps and the other points of the tetrahedral mesh.

Here the interpolation function FI(·) will depend on a particular representation
of the object. In case when the volumetric object is defined using voxel grids,
spline-based interpolations can be used. If the volumetric object is defined as a
tetrahedralised mesh (i.e. formed out of tetrahedras), then data can be interpolated
using barycentric interpolation. Note, that the boundary of the object is treated as
the source for generating interior distances.

In Fig. 3.4 we show an example of the computed IDF field for the tetrahedral
object of the ’fertility statue’. A simple procedure of IDF isolines generation can be
considered as a computation of distances from the fixed ’source’ point ps to other
points of the mesh. The obtained IDF field at the boundary and in the interior of
the mesh is smooth and shape-aware. The IDF field was generated using the method
proposed in (Rustamov 2011) and it is at least C1 continuous.

3.2.5 Hypervolume Representation

In this work we extend one of the frameworks discussed in section 2.4 for defining
heterogeneous objects. This framework was introduced in (Pasko, Adzhiev, Schmitt,
et al. 2001) and called the hypervolume representation. A hypervolume object is
defined as follows:

Definition 3.2.6. (Hypervolume) Let the geometric shape G of OHV
be defined by a

real-valued function FG(p),p ∈ Rn that is at least C0 continuous and let attributes
be defined by any FAi

(p). Then heterogeneous object OHV
is defined as:

OHV
:= (G,A1, ..., An) : (FG(p), FA1(p), ..., FAn(p)), (3.16)

where n ∈ N is the number of attributes.

In general case, attribute functions FAi
(p) are not necessarily continuous. How-

ever, as it was shown in (Biswas, Shapiro, and Tsukanov 2004), better control of
the attributes definition on the surface and in the interior of the distance-based
objects can be achieved when the attribute defining functions are parameterised by
the distances. This concept will be further discussed in this chapter.
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3.3 Hybrid Function Representation (HFRep):

Requirements

Let us formulate the requirements for the heterogeneous hybrid framework. Our
goal is to introduce the formalised and well established theoretical and practical
framework for heterogeneous object modelling that includes substantiated theory,
methods for modelling, attribute definition and operations to deal with supported
objects. The core of this framework is a proposed hybrid function representation
(HFRep) that is suitable for defining volumetric heterogeneous objects. We assume
that the geometric shape G of the given object is defined by FRep, and its defining
function is known. To devise the HFRep embracing advantages and circumvent-
ing disadvantages of FRep, SDF, ADF, IDF, it is essential to obtain a real-valued
defining function in an n-dimensional Euclidean space with the following properties:

1. The HFRep function should provide sufficiently accurate distance approxi-
mation in Euclidean space Rn.

2. The HFRep function should be at least C0 continuous with possibility to
enforce it to be at least C1 continuous.

3. The HFRep function should satisfy the point membership test: it should be
positive in interior of the geometric shape G, take exact zero values only at
the object boundary ∂G and it should be negative in exterior of the geometric
shape X\G;

4. The HFRep should be a multidimensional object representation; in particu-
lar, dealing with 4D objects is of paramount importance to cover time-variant
models with the fourth ’time’ coordinate;

5. The HFRep representation should be suitable for the heterogeneous object
modelling allowing for defining attribute functions related to the geometry;

6. The HFRep attribute functions should depend on evaluation point p ∈ G
and be parameterised by distance values of the obtained HFRep geometry
function.

The defining function of the HFRep object will be smooth (see definition 3.1.8)
if it is at least one times differentiable. Overall, the defining HFRep function that
is considered in concert with attribute functions parameterised by distances will be
suitable for dealing with multi-material aspects of heterogeneous objects including
time-variant ones.

3.4 HFRep: Definition

First, we provide a mathematical definition for the geometric aspects of HFRep.
Then we add the part related to attributes. The geometric shape G of an HFRep
object OHFRep is defined by geometric function FG(p) as follows:

Definition 3.4.1. (HFRep, geometric shape) Let the geometric shape G ⊆ X of the
object OHFRep be defined in a metric space (X, d). Given at least C0 or C1 continuous
FRep function FFRep(p), the distance to the object boundary ∂G is defined as (FI ◦
FDF )(p, ∂G) ≡ (FI ◦ FDF )(p), where FI(·) is at least C1 continuous interpolation
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Figure 3.5: The illustration of HFRep based on FRep and ADF with applied PHT-
spline (a polynomial spline over hierarchical T-mesh) interpolation to restore the
distance field at each cell. ADFs are generated using a numerical solution of the
eikonal equation on the quadtree. a) the FRep field; b) a hierarchical quadtree subdi-
vision; c) UDF computed on the quadtree with the applied PHT-spline interpolation
for restoring distances at each quadtree cell; d) the HFRep field that was obtained
using the generated ADF.

function and d(·, ·) ≡ FDF (·, ·) is an unsigned distance-based function, in particular
SDF, ADF or IDF. Then the HFRep function is defined as follows:

FG(p) := FHFRep(p) = (Fsign ◦ FFRep)(p) · (FI ◦ FDF )(p) (3.17)

where Fsign(·) is an at least C1 continuous function that provides a sign for the com-
puted function (FI ◦ FDF )(p) and satisfies the FRep point membership test, system
of inequations (3.9). Finally, the HFRep representation is defined as:

OHFRep := FHFRep(p) ≥ 0 (3.18)

We suggest to consider spline-based interpolation functions FI(·) as they provide
a smooth approximation of the computed discrete unsigned distance field. For more
details refer to section 4.4.

The continuity of the HFRep function FHFRep(p) depends on the continuity of
the FRep function FFRep(p). In the case when we are dealing only with geometric
shapes, it is sufficient to have C0 continuity for the HFRep function. Otherwise,
in case of heterogeneous object modelling, the HFRep function should belong to
the class of functions that are at least C1 continuous. This means that the HFRep
function have to be Lipschitz continuous, i.e. C0 continuous. This property is
inherited from the SDF representation.
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Figure 3.6: HFRep based on FRep and IDF. (a) ’Bat’ object and its FRep field;
(b) the HFRep ’bat’ object generated on the basis of the FRep object. The isolines
and colour show how the field changes from the source point ps towards the object
boundary.

Inherited from FRep Inherited from SDF Inherited from ADF Inherited from IDF

• The continuity of the
HFRep function depends on
the continuity of the FRep
function.

• HFRep represents multidi-
mensional objects, in par-
ticular 4D objects with the
fourth coordinate specified
as time.

• HFRep provides at least C0

continuous distance func-
tion.

• The HFRep function is Lip-
schitz continuous;

• The HFRep function sat-
isfies the solution of the
eikonal equation;

• The HFRep object can be
efficiently discretised and
rendered.

• HFRep provides at least C0

continuous distance func-
tion for any FRep object
that was spatially subdi-
vided according to the local
details using a hierarchical
data structure.

• Hierarchical data structure
can also be used for defin-
ing and storing object’s at-
tributes.

• HFRep provides at least a
C0 continuous unsigned dis-
tance function for any FRep
object in its interior if IDF is
used for obtaining distances;

• Distances in the interior
of the HFRep object are
shape-aware and deformed
with boundaries.

• There is also a potential for
modelling attributes in in-
terior of the volumetric ob-
ject.

Table 3.1: Properties of the hybrid function representation.

The HFRep function inherits the SDF function property, which preserves Eu-
clidean distance that can be computed as a solution of the eikonal equation. In the
next subsection we will formally prove that the HFRep function has these properties.

Now on the basis of definition 3.2.6, we can formulate the definition of the het-
erogeneous HFRep object OHV,HFRep

as follows:

Definition 3.4.2. (HFRep, heterogeneous object) Let the geometric shape G of
OHV,HFRep

be defined by at least C1 continuous FG(p) = FHFRep(p) distance-based
function. Let the attribute Ai be defined as a real-valued function FAi

(FHFRep(p),p).
Then the HFRep heterogeneous object OHV,HFRep

is defined as:

OHV,HFRep
:=

{
FG(p) := FHFRep ≥ 0

FAi
(FHFRep(p),p), i = [0, .., n] ∈ N

(3.19)

where n is a number of attributes.

In table 3.1 we outline properties that were inherited by HFRep from FRep,
SDF, ADF and IDF representations.

In Fig. 3.5 (d), we demonstrate the restored distance field computed on the
hierarchical grid obtained for the initial FRep object defined as a half circle with
two holes, Fig. 3.5 (a). There is neither C0 nor C1 discontinuities in the field as it
can be seen in Fig. 3.5 (c) or (d). All the isolines are smooth and continuous.

In Fig. 3.6 (b) we show a simple example of interior distances computed for
the FRep ’bat’ object, Fig. 3.6 (a), that was constructed using 14 set-theoretic
operations. First, the boundary of the FRep object was extracted for computing
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Figure 3.7: The STB-based metamorphosis operation over the initially FRep
’heart’ converted to HFRep and initially BRep ’cube’ converted to SDF ’cube’. Sup-
plementary video: figure3.7.mpg.

boundary distances. Then, the interior of the obtained convex contour was triangu-
lated. Finally, the boundary distances were propagated in interior of the shape as it
is described in (Rustamov, Lipman, and Funkhouser 2009). The black isolines show
that the obtained field is at least C1 continuous as they are smoothly changing in
the object interior.

Fig. 3.7 shows a metamorphosis between two oscillating 4D geometric shapes
(’heart’, initially the FRep object then converted to HFrep; ’cube’, initially the BRep
object then converted to SDF) using the space-time blending (STB) method (Pasko,
Pasko, and Kunii 2005; Tereshin, Anderson, et al. 2020). The result of application
of this method is a non-distance based continuous function that defines an object.

3.5 The Hybrid Function Representation: Math-

ematical Properties

In this section we will formally prove that the HFRep function has the following
properties:

• the continuity of the HFRep function depends on the continuity of the FRep
function and it is at least C0 or C1;

• the gradient of the HFRep function satisfies the eikonal equation;

Let us formally prove that the continuity of the HFRep function defined by
equation (3.17) depends on the continuity of the FRep function. To do this, first,
we will prove that the composition of a function for the sign definition Fsign(·) and
a FRep function FFRep(p) is at least C0 continuous.

Proposition 3.5.1. Let Fsign(·) be a function that Fsign(·) : R 7→ R and Fsign(·) ∈
C1(R,R). Let the FRep function FFRep(p) be a function that FFRep(p) : Rn 7→ R
that is either FFRep(p) ∈ C0(Rn,R) or FFRep(p) ∈ C1(Rn,R). Then the continuity
of the composition of these two functions (Fsign◦FFRep)(p) depends on the continuity
of the FRep function FFRep(p) and is either C0(R,R) or C1(R,R).

Proof. Let the function Fsign(·) be defined on some set B ⊂ R and the FRep function
FFRep(·) be defined on some set A ⊂ R. Let us assume that FFRep(A) ⊂ B. If
FFRep(p) is continuous at some point p ∈ A and Fsign(FFRep(p)) is continuous at
FFRep(p) ∈ B, then (Fsign ◦ FFRep)(·) ∈ A and is continuous at p. The proof of this
assumption will show that this composition is at least C0(R,R).
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Given some ε > 0, as it was stated, Fsign(·) is continuous at FFRep(p), then:

∃η > 0 : |p1 − FFRep(p)| < η,p1 ∈ B ⇔ |Fsign(p1)− Fsign(FFRep(p))| < ε (3.20)

As FFRep(·) is continuous in p ∈ A, then:

∃δ : |p2 − p| < δ,p2 ∈ A⇔ |FFRep(p2)− FFRep(p)| < η (3.21)

Taking into account inequations (3.20) and (3.21) we get that:

|p2 − p| < δ,p2 ∈ A⇔ |Fsign(FFRep(p2))− Fsign(FFRep(p))| < ε (3.22)

This inequation implies that (Fsign ◦ FFRep)(·) is at least C0(R,R) continuous.
To show that (Fsign ◦FFRep)(·) is at least C1(R,R) continuous, we have to prove

that at least first derivative of this function composition F ′sign(FFRep(p))FFRep(p)′

exists.
F ′sign(FFRep(p)) is differentiable at FFRep(p) and FFRep(p)′ is differentiable at p

only if the following limits exist:

Fsign(FFRep(p))′ = lim
|h|−→0

Fsign(FFRep(p+ h))− Fsign(FFRep(p))

|h|
(3.23)

FFRep(p)′ = lim
|h|−→0

FFRep(p+ h)− FFRep(p)

|h|

To show that this statement is true, let us assume that F ′sign(FFRep(·)) is differ-
entiable at FFRep(p) and FFRep(p)′ is differentiable at p. Then we can write the
following:

Fsign(FFRep(p))′ = lim
x−→p

Fsign(FFRep(x))− Fsign(FFRep(p))

|x− p|
(3.24)

FFRep(p)′ = lim
x−→p

FFRep(x)− FFRep(p)

|x− p|

Let h = x − p and as x −→ p then |h| −→ 0 and two equalities (3.23) holds. This
means that if Fsign(FFRep(·)) and FFRep(·) are differentiable, then their limits must
exist and vice versa. In this case the composition (Fsign ◦ FFRep)(p) is at least
C1(R,R) continuous.

Now, let us prove that the composition of the smoothing function FI(·) and
unsigned distance function FDF (p) is at least C1 continuous.

Proposition 3.5.2. Let FI(·) be an interpolation function that FI(·) : R 7→ R
and that is FI(·) ∈ C1(R,R). Let FDF (p) be a distance function that FDF (p) :
Rn 7→ R and that is FDF (p) ∈ C0(Rn,R). Then the composition of these functions
(FI ◦ FDF )(p) is at least C1(R,R) continuous.

Proof. Let us assume that we have three metric spaces (Xp, dp), (X, d) and (Xsm, dsm).
Xp ⊂ Rn is a set of points with a distance metric dp(p1,p2), X ⊆ Xp ⊂ Rn is a
set of values of the FDF (·) function in points of the set Xp with distance metric
d(FDF (p1, FDF (p2))) and Xsm ⊆ X ⊆ Xp ⊂ Rn is a set of the smoothed values of
FDF (·) with a distance metric dsm((FI ◦ FDF )(p1), (FI ◦ FDF )(p2)).

First, we show that the composition (FI ◦ FDF )(·) : Xp 7→ Xsm is uniformly
continuous on the set Xp that is equivalent (FI ◦ FDF )(·) ∈ C0(R,R).
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Let us assume that FDF (·) is uniformly continuous on Xp and FI(·) is uniformly
continuous on FDF (Xp). Given ε > 0, we want to find δ > 0 : {∀p, q ∈ Xp, dp(p, q) <
δ} such that:

dsm(FI(FDF (p)), FI(FDF (q))) < ε (3.25)

A function FI(·) is uniformly continuous on a set X if ∃δ1 > 0 : {FDF (p), FDF (q) ∈
X, d(FDF (p), FDF (q)) < δ1} and inequation (3.25) hold.

A function FDF (·) is uniformly continuous on a set Xp if ∃δ2 > 0 : {p, q ∈ Xp,
dp(p, q) < δ2} and the following inequation hold:

d(FDF (p), FDF (q)) < δ1 (3.26)

Let δ = δ2. Then ∀p, q ∈ Xp inequation (3.26) holds true and subsequently in-
equation (3.25) also holds true. Thus (FI ◦ FDF )(·) : {Xp 7→ Xsm} ∈ C0(R,R) is
uniformly continuous on Xp.

To show that the composition (FI ◦ FDF )(p) is C1(Rn,R) we have to prove that
Fsm(p)′ = ((FI ◦FDF )(p))′ exists in all points of set Xp ⊂ Rn. The C1 continuity of
the function FDF (p) can be provided only by the smoothing interpolation function
FI(·) that is at least C1 continuous and sufficiently accurate approximates the values
of FDF (p). This interpolation function FI(·) should satisfy the so called K-functional
of Peetre Kr,p(t) (Schumaker 2007) that can be defined for the function FDF (p) as
follows:

Kr,p(t)FDF = inf
g∈L′p[I]

(||FDF − (FI ◦ FDF )||p + tr||Dr(FI ◦ FDF )||p) (3.27)

where 1 ≤ p < ∞, t > 0 and r > 0 is an integer, Lp[I] is a Lebesgue space defined
on a space of bounded real-valued functions I in a closed finite interval [a, b]. Here
Dr is a differential operator that defines the rth derivative, and t controls the bal-
ance between the size of the derivative and approximation error. The K-functional
defines how well the function FDF (p) can be approximated by smooth functions. It
means, that in our case, the interpolation function FI(·), which will approximate
the distance function FDF (p), should be at least r = 1 times differentiable, while
the value of the K-functional Kr,p(t) should stay minimum.

Therefore, the continuity of the HFRep function is defined as:

CHFRep = min(Cm
(Fsign◦FFRep)(p), C

k
(FI◦FDF )(p)) (3.28)

where m = 0 or m = 1, k = 1, i.e. the minimum class of continuity between two
function compositions.

Let us formally prove that the gradient of the HFRep function satisfies the eikonal
equation. This property is essential to show that the Euclidean distance is preserved
by the HFRep function.

Proposition 3.5.3. Let the HFRep function FHFRep(p) : Rn 7→ R be given. Then
we state that the following holds true:

||∇FHFRep(p)|| ≈ 1 (3.29)

Proof. Let us recall the HFRep function:

FHFRep(p) = (Fsign ◦ FFRep)(p) · (FI ◦ FDF )(p)
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Now we can substitute it to equation (3.29) and rewrite it as follows:(
∂((Fsign ◦ FFRep)(p1) · (FI ◦ FDF )(p1)

∂p1

)2

+ ...+

(
∂((Fsign ◦ FFRep)(pn) · (FI ◦ FDF )(pn))

∂pn

)2

≈ 1

(3.30)

Here we take into account that HFRep function is a real valued function. In this case
we can omit the square root. For simplicity, we assume that (Fsign ◦ FFRep)(pi) ≡
Fsign ◦ FFRep and (FI ◦ FDF )(pi) ≡ FI ◦ FDF . Then we can open the brackets and
combine the terms accordingly:(

(FI ◦ FDF )
∂(Fsign ◦ FFRep)

∂p1

+ (Fsign ◦ FFRep)
∂(FI ◦ FDF )

∂p1

)2

+ ... (3.31)(
(FI ◦ FDF )

∂(Fsign ◦ FFRep)
∂pn

+ (Fsign ◦ FFRep)
∂(FI ◦ FDF )

∂pn

)2

≈ 1

(FI ◦ FDF )2

(
∂(Fsign ◦ FFRep)

∂p1

+ ...+
∂(Fsign ◦ FFRep)

∂pn

)2

+ (3.32)

+ (Fsign ◦ FFRep)2

(
∂(FI ◦ FDF )

∂p1

+ ...+
∂(FI ◦ FDF )

∂pn

)2

+

+ 2(Fsign ◦ FFRep) · (FI ◦ FDF )

(
∂(Fsign ◦ FFRep)

∂p1

∂(FI ◦ FDF )

∂p1

+ ...+

+
∂(Fsign ◦ FFRep)

∂pn

∂(FI ◦ FDF )

∂pn

)
≈ 1

We can further simplify the obtained equation:

(FI ◦ FDF )2||∇(Fsign ◦ FFRep)||2 + (Fsign ◦ FFRep)2||∇(FI ◦ FDF )||2+ (3.33)

+ 2(Fsign ◦ FFRep) · (FI ◦ FDF )∇(Fsign ◦ FFRep)∇(FI ◦ FDF ) ≈ 1

Now let us formally show that smoothed unsigned distance function ||∇(FI ◦
FDF )||2 ≈ 1. To do so, first, let us substitute this composition in the eikonal
equation and rewrite it similarly to equation (3.30):(

∂(FI ◦ FDF )(p1)

∂p1

)2

+ ...+

(
∂(FI ◦ FDF )(pn)

∂pn

)2

≈ 1 (3.34)

After applying the chain rule, we will obtain:(
∂(FI(FDF (p1))

∂FDF (p1)

∂FDF (p1)

∂p1

)2

+ ...+

(
∂(FI(FDF (pn))

∂FDF (pn)

∂FDF (pn)

∂pn

)2

≈ 1 (3.35)

It can be simplified further as follows:

||∇FDF (p)||2
((

∂(FI(FDF (p1))

∂FDF (p1)

)2

+ ...+

(
∂(FI(FDF (pn))

∂FDF (pn)

)2)
≈ 1 (3.36)

The approximate equality will hold true if the second term will be approximately
equal to one. Taking this into account, we can rewrite equation (3.33) as follows:

(FI ◦ FDF )((FI ◦ FDF )||∇(Fsign ◦ FFRep)||2 + 2(Fsign ◦ FFRep)× (3.37)

×∇(Fsign ◦ FFRep)∇(FI ◦ FDF )) ≈ 1− (Fsign ◦ FFRep)2
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(Fsign ◦ FFRep) =


−1, FFRep < 0

0 FFRep = 0

1, FFRep > 0

(3.38)

If (Fsign ◦ FFRep) = ±1, then we can rewrite equation (3.37) as:

(FI ◦ FDF )((FI ◦ FDF )||∇(Fsign ◦ FFRep)||2 ± 2∇(Fsign ◦ FFRep)∇(FI ◦ FDF )) = 0
(3.39)

The equation (3.37) will hold if one of the following conditions holds true:

(FI ◦ FDF ) = 0 (3.40)

or

(FI ◦ FDF )||∇(Fsign ◦ FFRep)||2 = ∓2∇(Fsign ◦ FFRep)∇(FI ◦ FDF ) (3.41)

This equality (FI ◦ FDF ) = 0 holds if the point p belongs to the boundary of the
object. Otherwise, the equation (3.37) will hold true only if the equation (3.41)
will be satisfied. Note that, as we have stated above, for relatively huge values
of the FRep function FFRep(p), the composition (Fsign ◦ FFRep)(p) will be equal
to ±1. Thus, the gradient of the composition ∇(Fsign ◦ FFRep) in equation (3.40)
will be equal to zero and this equation holds. That means that we can imply an
approximate equality in the eikonal equation.

If (Fsign ◦ FFRep) = 0, then we can rewrite equation (3.37) as:

(FI ◦ FDF )2||∇(Fsign ◦ FFRep)||2 ≈ 1 (3.42)

In this case (FI◦FDF )2 should be approximately close to zero, i.e. should compensate
the influence of this term ||∇(Fsign ◦ FFRep)||2.

Taking these assumptions into account we obtain:

||∇FHFRep(p)||2 = (Fsign ◦ FFRep)2||∇(FI ◦ FDF )||2 ≈ 1 (3.43)

3.6 HFRep: Object Generation

Let us outline in a step-by-step manner the algorithmic solution for the generation of
HFRep functions. The basic algorithm covers all paired combinations of FRep with
DF representations, namely SDF, ADF and IDF, and describes how to generate
geometric shape and specify attributes for it. Some steps of the basic algorithm
will depend on the particular type of DF paired with FRep. Let us start from the
basic algorithm for generating a geometric shape of the object OHV,HFRep

. Fig. 3.8
demonstrates the generated function field for each step of the basic algorithm.

3.6.1 Algorithm for HFRep Geometry Generation

1. According to the definition 3.4.1, we start the construction of an HFRep
object OHFRep from defining the FRep function FFRep(p) for its geometric
shape G. The FRep function FFRep(p) can be defined analytically, with
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Figure 3.8: The illustration of the basic algorithm: a) step 1: the computed field
of the ’robot’ FRep object; b) steps 2 - 3: the computed unsigned distance field that
can be obtained using, e.g., the distance transform or a numerical solution of the
eikonal equation. The obtained field is smoothed using some spline interpolation; c)
step 4: the generated HFRep field.

function evaluating algorithm or using a point cloud for which it is possible
to obtain a real-valued at least C0 continuous FFRep(p). It could also be a
complex FRep object that is obtained in the form of a constructive tree.

At this step, we can also enforce HFRep function FHFRep(p) to be at least
C1 continuous as its continuity depends on the continuity of FFRep(p). We
have to examine the obtained FFRep(p) for continuity and differentiability.

While processing HFRep objects, we should also consider several types of
set-theoretic operations with different continuity properties. This operations
belong to the class of R-functions introduced by Rvachev (Rvachev 1973).

The following systems can be used: R0, R1 and
0

R. R0 and R1 systems are

both C0 continuous and
0

R is Cn−1 continuous. We will discuss them in more
details in section 3.8.

Fig. 3.8 (a) shows the FRep field obtained for the ’robot’ object, that was
generated using 39 set-theoretic operations defined by equations (3.58) ap-
plied to circles and rectangles.

2. The values of the function FFRep(p) are used as an input for computing
distance functions FDF (p, ∂G) that should satisfy one of the definitions 3.2.2,
3.2.4 or 3.2.5. At this step we obtain an unsigned distance function that is
defined as:

FDF (p) = d(p, ∂G), ∀p ∈ X (3.44)

Fig. 3.8 (b) shows the unsigned distance field that was obtained on the basis
of a typical SDF generation algorithm SSEDT described in (Leymarie and
Levine 1992).

If the distances are computed using ADF, first, we need to subdivide the space
using a hierarchical data-structure, e.g. quadtree, Fig. 3.9 (b) and during
its construction we also need to compute basis functions, basis vertices and
extraction operators for the hierarchical splines. Then we need to compute
the distances at the corner vertices of each cell. Finally, we restore distances
in interior of each cell using at least C1 continuous hierarchical spline-based
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Figure 3.9: The illustration of HFRep based on FRep and ADF with applied PHT-
spline interpolation to restore the distance field at each cell. ADFs are generated
using a numerical solution of the eikonal equation on the quadtree. a) the FRep
field; b) a hierarchical quadtree subdivision (the maximum tree depth equals to 10
with 4201 leaves); c) UDF computed on the quadtree with the applied PHT-spline
interpolation for restoring distances at each quadtree cell; d) the HFRep field that
was obtained using the generated ADF.

interpolation to obtain a smooth and continuous distance field, e.g. shown
in Fig. 3.9 (c).

Specifically for IDFs, the function FDF (p) is defined according to equation
(3.14). Distances are computed on the boundary of the object OFRep and
then interpolated in its interior. In Fig. 3.10 (a) we can see the field of the
FRep-defined ’star’ object that was used for generating HFRep IDF-based
field that is shown in Fig. 3.10 (b).

In Fig. 3.11 (a) we show a possible extrapolation scheme that can be used to
obtain distances in exterior of the object and make an IDF-based field signed
at the last step of this algorithm. To do this, we need to use the boundary
distances (see Fig. 3.11 (a), dark blue circles) and an appropriate at least C1

continuous extrapolation operation, that will be used for obtaining distances
outside the object (see Fig. 3.11 (a), red circles).

3. The distance field obtained at the previous step is unsigned and discrete as it
was computed on the finite point subset X ⊂ Rn. To enforce the continuity
and smoothness of the computed field, we need to apply some at least C1

continuous interpolation function FI(·) to the generated unsigned field, e.g.
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Figure 3.10: (a) ’Star’ object and its FRep field; (b) the HFRep ’star’ object gen-
erated on the basis of the FRep object. The boundary of the FRep object (a) was
extracted and then used for computing boundary distances. The obtained distances
were interpolated in interior of the HFRep ’star’ object using barycentric interpola-
tion and mean-value coordinates. The isolines and colour show how the field changes
from the source point (white circle) towards the object boundary.

spline-based:

FsmDF (p) = (FI ◦ FDF )(p) (3.45)

We also need to apply a smoothing operation to an IDF field if at the previous
step an extrapolation operation was applied. Otherwise, IDFs are smooth
as smoothness is their inherent property. An important requirement for the
interpolation function FI(·) is to avoid introducing extra zeros in the distance
field generated using function FDF (p, ∂G).

4. Finally, as the distance field obtained after previous steps is unsigned, we need
to restore the field sign to distinguish between exterior X\G, boundary ∂G
and interior Gin of the object OHV,HFRep

. We suggest to use some at least C1

continuous step-function Fst(FFRep(p)) with the scope [−1, 1], that depends
on the values of the defining FRep function FFRep(p) and approximates its
well-defined behaviour (−1 in exterior of the object, 0 on the boundary of
the object and +1 in interior of the object). Therefore, the resulting HFRep
function FHFRep(p) is defined according to definition 3.4.1 as follows:

FHFRep(p) = (Fst ◦ FFRep)(p) · FsmDF (p) (3.46)

The HFRep field generated by this function can be seen in Fig. 3.8 (c). After
a geometric shape of the HFRep object OHFRep was generated, we can apply
different operations to it, provided that they are realised by functions which
are at least C0 continuous. The HFRep object is also compatible with other
distance-based objects. However, to preserve the distance properties for the
object obtained after applying multiple operations, we might need to apply
the steps of this algorithm again to this object.

There is a limited number of operations that preserve the distance property for
the geometric shape G of the object obtained after their application. These op-
erations are rigid (Euclidean) transformations: rotations, translations, reflections
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Figure 3.11: Two cases when extrapolation is important to enforce the continuity
of the field: a) when we have DF (light pink and light orange colours) for two objects
that are distantly placed in space. In this case we need to extrapolate the distance
values into the points of the green grid; b) when we computed the IDF and it is
essential to obtain distances in exterior of the object.

or their combination. Another distance preserving operations (Payne and Toga
1992) are offsetting, linear surface interpolation, surface blurring and compression,
set-theoretic operations (Rα function system with α = 0 or min(·, ·)\max(·, ·) op-
erations). We will discuss them in more details in subsection 3.8.1.

In cases of other operations (Reiner, Mückl, and Dachsbacher 2011) (e.g., scaling,
blending, twisting), set-theoretic operations in the form of R-functions (systems Rα

with α = 1 and
0

R) (Pasko, Adzhiev, Sourin, et al. 1995)) after their application,
we have to apply the basic algorithm to the obtained object to restore the distance
property. These operations will be discussed in subsection 3.8.2.

To make the HFRep representation continuous on the whole domain of the Eu-
clidean space Rn, we suggest to apply some at least C1 continuous extrapolation
operation (e.g. (Tam and Kurbatskii 2000; Wu, Deng, and Chen 2007)) to the gen-
erated field of the object. To explain this idea in more details, let us consider the
following example shown in Fig. 3.11 (b). In this figure we have two blue objects
defined on their own pink grids and spaced from each other, so their defining grids
are not overlapping. If we want to work with them, e.g. by applying some operation,
we need somehow to define the distances in the points of interest of the green grid.
One can extrapolate and average the distances between two pink grids and avoid
full reinitialisation of the distances for both objects.

3.6.2 Algorithm for HFRep Attribute Definition

To set up the attributes in interior of the HFRep object OHV,HFRep
, we assume that

we have obtained a C1 continuous distance function for a geometric shape. Now
we can deal with the attributes that are parameterised by the distances as it was
required by definition 3.4.2. Object attributes could be of different nature and
there is no single algorithm to define all of them. In this work we consider such
attributes as colours, microstructures, and simple 2D and volumetric textures based
on noise functions parameterised by distances. Let us formulate the basic algorithm
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for specifying an attribute component Ai of the OHV,HFRep
on the basis of already

defined geometry:

1. Depending on the nature of the attributes and how they are distributed
in interior of the object OHV,HFRep

, there are two possible types of object
partitioning: single and multiple partitions. At this step we need to subdivide
an object OHV,HFRep

according to the chosen partitioning scheme.

2. Then we specify and evaluate an attribute function FAi
(FHFRep(p),p) for

each partition to set up the attributes at the points p ∈ G. These functions
depend on the evaluation point coordinate and are parameterised by the
computed distance using FHFRep(p) values.

3. In case when we have a multiple partitioned object with several specified
attributes, we can obtain a single attribute function for all subsets Ai by
applying some interpolation, e.g. transfinite interpolation (Rvachev et al.
2001) or space-time transfinite interpolation (Sanchez, Fryazinov, Adzhiev,
et al. 2015).

The more detailed discussion how to deal with attributes will be provided in section
4.6.

3.7 HFRep: Objects

The HFRep object OHV,HFRep
consists of two parts: geometric shape G and attributes

Ai as it was discussed in section 3.4. The geometric shape G of the object can be
obtained as a conversion of the input object to the HFRep object. The input object
can be represented as follows:

• The FRep objects that are defined as algebraic solids expressed in the form of
polynomials (cylinder, octahedron, sphere etc.) (Pasko and Adzhiev 2004);

• The FRep objects that are defined as skeleton-based implicit surfaces: blobby,
soft objects, metaballs and convolution objects (Bloomenthal and Wyvill
1997; McCormack and Sherstyuk 1998);

• Objects that are defined as a discrete scalar fields (voxels) with trilinear or
higher order interpolation (e.g. (Adzhiev, Kazakov, et al. 2000));

• The BRep objects converted to implicit surfaces or FReps (Sanchez, Fryazi-
nov, and Pasko 2012);

• Objects that are reconstructed from scattered point clouds using radial-basis
functions (e.g. (Ohtake, Belyaev, and Seidel 2006)) or similar methods that
provides the defining function for the geometric shape of the object;

• Object that are defined using hypertextures, solid noise functions or extruded
noise (Perlin and Hoffert 1989);

• Objects that are defined using bivariate and trivariate splines (Lai 2009).

The resulting HFRep object can be converted into other convenient representa-
tion or treated differently depending on the application. We highlight several types
of the objects that can be obtained depending on the solving problem:
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• It can be volume objects represented as continuous signed distance function;

• It can be converted to the BRep representation;

• It can be a heterogeneous object with geometric shape defined as a smooth
continuous signed distance function;

• It can be a heterogeneous object with geometric shape and attributes (e.g.
materials) defined by a smooth continuous signed distance function;

• It can be time-dependent heterogeneous objects that can be converted into
time-dependent BRep objects.

The geometric shape of the HFRep object and its attribute part should be ef-
ficiently stored and processed. The HFRep object OHv,HFRep

can be defined using
adaptive voxel representations (e.g. OpenVDB (Museth 2013) or GVDB (Hoet-
zlein 2016)). Tree data-structures (quadtrees, octrees (Mehlhorn 1984) etc.) or
hash-tables (Zanni, Claux, and Lefebvre 2018) can be used instead as they can
be efficiently stored, processed, and they are fast to rebuild. The last property is
important for time-variant objects and different simulations.

3.8 HFRep: Operations

The operations that are defined for the HFRep objects can be subdivided into two
groups: the ones that preserve distances and the ones that make the field of the
obtained object non-distance based. For those operations that do not preserve
distance properties we have to apply the basic algorithm introduced in section 3.6
to the field obtained as a result of the operation to restore the distances. We briefly
outline them in this section.

3.8.1 Distance Preserving Operations

There are several operations that preserve distance property and that can be used
with HFRep and other distance-based objects. They are Euclidean transformations,
Affine transformations, set-theoretic operations that are defined using min(·, ·) or
max(·, ·) functions, metamorphosis and offsetting.

Affine Transformation

An affine transformation or affine map is a geometric transformation that is defined
as a function which maps an affine space onto itself while preserving both the dimen-
sion of any affine subspaces and the ratios of the lengths of parallel line segments.
The distances are preserved if all affine transformations are applied in Euclidean
group. Formally affine map is defined as follows:

faffine(v) = Av + vtr (3.47)

where A is an augmented matrix (affine transformation matrix: rotation, reflection),
v is a vector and vtr is a translation vector. If det(A) > 0, the transformation is
orientation-preserving, if det(A) < 0, the transformation is orientation-reversing.
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Figure 3.12: The HFRep object (a) that was constructed using five set-theoretic
operations applied to three cylinders and one sphere. b) The result of application
union and subtraction set-theoretic operations in the form of R0 R-function system
(3.50) that produces C0 continuous result. c) The result of application union and

subtraction set-theoretic operations in the form of R
0

R-function system (3.59) that
produces at least C1 continuous result. The main differences in the resulting object
after the application of these operations are highlighted in red areas.

Euclidean Transformations

This type of transformations are also known as rigid transformations that are a
geometric transformation of Euclidean space, which preserves the Euclidean distance
between every pair of points. These operations are rotations, translations, reflections
and their different combinations. A rigid transformation ftr(p) : Rn 7→ Rn, taking
into account distance preserving property, can be defined as:

FDF (ftr(p1), ftr(p2)) = FDF (p1,p2) (3.48)

and the Euclidean transformation is defined as:

ftr(v) = R(e, θ)v + vtr (3.49)

where R(e, θ) is a matrix describing the rotation of the vector v around axis e and
vtr is a translation vector. In Fig. 3.12 (a) we have applied several Euclidean
transforms to HFRep cylinders in the form of rotations. This do not violate the
distance property of the field.

Set-Theoretic Operations: Min/Max

There are not a lot of variations of set-theoretic operations that are able to pre-
serve distance property and are efficient to compute. The most commonly used set-
theoretic operations for scalar fields are defined as Rα system with α = 0 (Rvachev
1973):

f∪(f1(p), f2(p)) = 0.5(f1 + f2 + |f1 − f2|) = max(f1(p), f2(p)) (3.50)

f∩(f1(p), f2(p)) = 0.5(f1 + f2 − |f1 − f2|) = min(f1(p), f2(p))

These operations are associative and commutative. The main disadvantage of this
system is that it produces medial discontinuities in the resulting field. In Fig. 3.12
(a) we show an HFRep object that was obtained using five set-theoretic operations
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applied to three HFRep cylinders and one HFRep sphere. In Fig. 3.12 (b) it
can be visually seen that the resulting field is not smooth, and, therefore, it is C0

continuous.
We can formally show, that this system preserves the distance property. As we

have mentioned in subsection 2.3.5, the SDF function satisfies the solution of the
eikonal equation ||∇f(x)|| = 1. We can rewrite the eikonal equation as:√(

∂f(x)

∂x1

)2

+ ...+

(
∂f(x)

∂xn

)2

= 1 (3.51)

In distance-based modelling we are dealing with real-valued functions. Without any
loss of the generalisation, we can omit squared root. Instead of the function f(x),
we substitute, for example, f(f1, f2) ≡ f and obtain:(

∂f

∂f1

∂f1

∂x1

+
∂f

∂f2

∂f2

∂x1

)2

+

(
∂f

∂f1

∂f1

∂xn
+
∂f

∂f2

∂f2

∂xn

)2

= 1

After we raised in power of two both terms and collect its members accordingly,
we obtain:(

∂f

∂f1

)2[(
∂f1

∂x1

)2

+ ...+

(
∂f1

∂xn

)2]
+ 2

∂f

∂f1

∂f

∂f2

[
∂f1

∂x1

∂f2

∂x1

+ ...+
∂f1

∂xn

∂f2

∂xn

]
+

(3.52)

+

(
∂f

∂f2

)2[(
∂f2

∂x1

)2

+ ...+

(
∂f2

∂xn

)2]
= 1

We can further simplify the obtained expression, taking into account equation (3.51):(
∂f

∂f1

)2

||∇f1||2 + 2
∂f

∂f1

∂f

∂f2

∇f1∇f2 +

(
∂f

∂f2

)2

||∇f2||2 = 1 (3.53)

Let us assume that ||∇f1||2 = 1 and ||∇f2||2 = 1 that correspond to the eikonal
equation. Then we obtain:(

∂f

∂f1

)2

+

(
∂f

∂f2

)2

+ 2
∂f

∂f1

∂f

∂f2

∇f1∇f2 = 1 (3.54)

To avoid dependency on the gradient term, we have to state that ∂f
∂f1

∂f
∂f2

= 0. In
this case we obtain the following system of equations:

(
∂f
∂f1

)2

+

(
∂f
∂f2

)2

= 1

∂f
∂f1

∂f
∂f2

= 0

(3.55)

If we substitute either f∪(f1, f2) or f∩(f1, f2) from equations (3.50) to the system of
equations (3.55), we can see after taking into account the modulus in both of them,
that they satisfy the solution of this system.

Metamorphosis

Let us assume that we have two HFRep objects OHFRep,1, OHFRep,2 with geometric
shapes G1 and G2, and its defining functions FHFRep,1(p) and FHFRep,2(p). Then we
can define the linear metamorphosis for HFRep objects as follows:

FHFRep,3(p, t) = FHFRep,1(p)(1− g(t)) + FHFRep,2(p)g(t) (3.56)
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Figure 3.13: The result of metamorphosis operation computed between an HFRep
’orthocircle’ and an HFRep ’blobby’ objects. A) A sequence of inbetween frames for
the computed metamorphosis. B) Two frames that show the volumetric nature of
the input HFRep objects. Supplementary video: figure3.13.mpg.

where p is a multidimensional point, t parameter corresponds to time, g(t) is a
positively defined continuous function, that defines weighting coefficients for the
linear interpolation. The domain of the function g(t) corresponds to the interval
[0, 1]: g(t)|t=0 = 0 (only the first object exists) and g(t)|t=1 = 1 (only the second
object exists). It can also be formally proved that the linear metamorphosis preserves
the distance in the same manner as we did it for set-theoretic operations min and
max.

We can also apply this operation to the heterogeneous HFRep objects OHV,HFRep
.

In this case, we also need to handle attribute transformations, that can be done
using, for example, one of these methods: transfinite interpolation (Rvachev et al.
2001) or space-time transfinite interpolation (Sanchez, Fryazinov, Adzhiev, et al.
2015).

In Fig. 3.13 we show a sequence of inbetween frames that were obtained as the
result of linear metamorphosis operation applied to an HFRep ’orthocircle’ and an
HFRep ’blobby’ objects with defined 3D textures. The texture transformations were
handled using simple linear interpolation computed in HSV colour space. This ex-
ample was implemented in SideFX Houdini using OpenVDB voxels data-structure.
In Fig. 3.13 (B) we show two frames rendered as a fog with attributes to show that
these objects are volumetric.

Offsetting

The offsetting operations in solid modelling was introduced in (Rossignac and Re-
quicha 1986). Solid offsetting is a closed operation which means that the solid is
mapped to solid. An offsetting operation expands or contracts the initial object. The
iso-valued offset of the distance-based function was proved to preserve distances in
(Bálint, Valasek, and Gergó 2019). The iso-offset operation is defined as follows:

FDF (p, Goffset) = FDF (p, G)− c (3.57)

where Goffset is a geometric shape that was offset by the constant c ≥ 0 and p ∈
X\Goffset is a point.
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Figure 3.14: Three halves of HFRep pyramids with different offsets applied to
them to form shells with various thickness. a) the coloured OpenVDB fog that stores
HFRep values; b) an HFRep object defined using OpenVDB voxels.

In Fig. 3.14 (a) we show three coloured shelled HFRep pyramids with different
surface thickness that were combined together using set-theoretic operations defined
by the system of equations (3.50). To generate the shell for each pyramid object,
we need to negatively offset defining function of the initial pyramid. Then, we need
to subtract the result of this operation from the initial object. The resulting object
can be seen in Fig. 3.14 (b).

3.8.2 Non-Distance Preserving Operations

An operations that utilise different polynomial-based operations and trigonometric
functions as well as scaling operation do not preserve distances. In this case, as we
discussed earlier, we have to repeat the steps of the basic algorithm for the object
obtained as a result of such operations. These operations are set-theoretic operations

that are based on R-function systems R1 and
0

R, scaling, twisting, blending and
space-time blending.

Set-Theoretic Operations: R-function Systems R1 and
0

R

There are several R-function systems that are suitable for computing set-theoretic
operations. In this subsection we cover some of them. The most practically used set-
theoretic operations in the FRep modelling framework are defined as an Rα function
system with α = 1 (Pasko, Adzhiev, Sourin, et al. 1995):

f∪(f1(p), f2(p)) = f1 + f2 +
√
f 2

1 + f 2
2 (3.58)

f∩(f1(p), f2(p)) = f1 + f2 −
√
f 2

1 + f 2
2 ,

These functions have C1 discontinuity in points where both arguments are equal
to zero. They violate the distance property. The resulting function will be C0

continuous. If we need to obtain an at least C1 continuous resulting function, we
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can apply
0

R function system that is at least Cn−1 continuous (Rvachev 1982):

f∪(f1(p), f2(p)) =


f1f2(fn1 + fn2 )−

1
n , ∀f1 > 0, f2 > 0;

f1, ∀f1 ≤ 0, f2 ≥ 0;

f2, ∀f1 ≥ 0, f2 ≤ 0;

(−1)n+1(fn1 + fn2 )
1
n , ∀f1 < 0; f2 < 0;

(3.59)

f∩(f1(p), f2(p)) =


(fn1 + fn2 )

1
n , ∀f1 > 0, f2 > 0;

f2, ∀f1 ≤ 0, f2 ≥ 0;

f1, ∀f1 ≥ 0, f2 ≤ 0;

(−1)n+1f1f2(fn1 + fn2 )−
1
n , ∀f1 < 0; f2 < 0;

where f1(p) and f2(p) are any scalar field functions. This system has a better
distance approximation and it possesses associative and commutative properties. In
Fig. 3.12 (c) we show the result of application of these operations to three HFRep
cylinders and one sphere. If we compare it with the result, shown in Fig. 3.12
(b), we can see in the highlighted areas that the field in Fig. 3.12 (c) is smooth,
therefore, it is at least C1 continuous.

Scaling

The HFRep distance can be uniformly scaled by a factor s. Formally, uniform scaling
of the field is defined as:

FHFRep,s(p) = s · FHFRep(s−1p) (3.60)

where p is a point. Unfortunately, the scaling operation violates the Euclidean
distance, i.e. ||∇(s−1p)|| = s−1.

Twisting

A twist is a mathematical operation that defines the rate of rotation of a smooth
ribbon around the space curve Scurve = Scurve(l), where l is the arc length of Scurve
and e = e(l) is a unit vector perpendicular at each point to Scurve. According to
(Love 2013), twist operation is defined as:

Tw =
1

2π

∫ (
de

dl
× e
)
· dScurve

dl
dl (3.61)

where dScurve\dl is the unit tangent vector to Scurve. This can be rewritten in an
implicit form, for example for the case, when twisting operation is applied around
Z-axis, as follows:

x′ = x · cos(θ) + y · sin(θ); y′ = −x · sin(θ) + y · cos(θ); (3.62)

θ = (1− t)θ1 + tθ2; t =
z − z1

z2 − z1

where θ1 and θ2 are rotation angles, z1 and z2 are the points of the z-interval. As
this operation contains trigonometric functions it also violates the solution of the
eikonal equation.
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Figure 3.15: Example of importance of C1 continuity of the function field to avoid
stresses and creases in blending.

Blending

An analytical definition of blending that is based on R-function systems (Pasko,
Pasko, and Kunii 2005) can be applied to different types of solids including distance-
based. The operation of blending is an algebraic operation that produces a smoothed
transition between two input objects. The blending function Fblend(f1, f2) is defined
as:

Fblend(f1, f2) = F (f1, f2) + dispblend(f1, f2) (3.63)

where Fblend(f1, f2) is a blending function, F (f1, f2) is a set-theoretic operation de-
fined using one of the equations (3.50), (3.58) or (3.59), f1 and f2 are HFRep, or
any other distance-based functions, or FRep, and dispblend(f1, f2) is a displacement

dispblend(f1, f2) =
a0

1 +
(
f1
a1

)2
+
(
f2
a2

)2 (3.64)

Here a0, a1, a2 ∈ R are parameters controlling the shape of the blend. The result of
applying of this operation to two objects violates distance property.

In Fig. 3.15 we show the example of applying blending operation to two func-
tionally defined objects. In Fig. 3.15 (a) the result was obtained using equation
(3.63) and set-theoretic union operation defined as max(·, ·) R-function according
to equation (3.50). This system of R-functions is C1 discontinuous due to gradient
discontinuities on the medial axis. In Fig. 3.15 (b) we show same blending opera-
tion, but applied with union set-theoretic operation defined as another R-function
system (3.58), which becomes not differentiable only in points where both argu-
ments are equal to zero. If we compare Fig. 3.15 (a) and (b) we could see that the
result, shown in (a), is not smooth and has crease edge, shown in red circle, whilst
in image (b) the transition between two shapes is smooth. Similar problems will be
also observed in the case of applying the metamorphosis operation.
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3.8.3 Relations

We identify several possible relations for HFRep. Their list can be extended by
the user. These relations are inclusion, point membership, cell membership and
intersection.

Inclusion Relation

Let we have two HFRep objects with geometric shapes G1 and G2 that are defined
in a metric space (X, d) using functions FHFRep,1(p) and FHFRep,2(p), respectively.
Then the inclusion relation G1 ⊂ G2 is defined as a bi-valued predicate:

frin(p, G1) =

{
0 if FHFRep,1(p) < 0;p /∈ G1

1 if FHFRep,1(p) ≥ 0;p ∈ G1

(3.65)

where frin(p, G1) is a relation function. This relation is valid for all mentioned
variations of HFRep in this work.

Point Membership Relation

Let we have an HFRep object with geometric shape G that is defined using HFRep
defining function FHFRep(p) in a metric space (X, d). Let the boundary of the object
be defined as ∂G and object’s interior as Gin = G\∂G. Then we can formulate the
point membership relation as:

frpm(p, G) =


0 if FHFRep(p) < 0;p /∈ G
1 if FHFRep(p) = 0;p ∈ ∂G
2 if FHFRep(p) > 0;p ∈ Gin

(3.66)

where frpm(p) corresponds to point membership function. The point membership
written in this form is valid for HFRep that is based on SDF, ADF and IDF (if
the distances were extrapolated in exterior of the object). Otherwise, the point
membership for HFRep based on IDF consists only of two cases: when the point
p belongs to the surface ∂G, and when the point p belongs to the interior of the
object Gin.

When we are working with HFRep based on FRep and ADF, we can also in-
troduce a cell point membership as the Euclidean space is subdivided into multiple
nodes with cells using tree hierarchical structure. Let the cell geometry Gc be de-
fined as a quad or cube with a specified coordinate of one of the corners pci and the
side l size. Then we can identify whether current point p belongs to the cell interior
Gcin , its boundary ∂Gc or its exterior:

frpm(p, Gc) =


1 if p ∈ ∂Gc

2 if pci < p < pci + l⇔ p ∈ Gcin

0 otherwise

(3.67)

Intersection Relation

Let we have two HFRep objects with geometric shapes G1 and G2 that are de-
fined using HFRep functions FHFRep,1(p) and FHFRep,2(p) in a metric space (X, d).
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The intersection relation provides information about the presence of common points
between two geometric shapes. Formally, it is defined as:

frint
(G1, G2) =

{
0 if FHFRep,1(p) ∩ FHFRep,2(p) < 0⇔ G1 ∩G2 = ∅
1 if FHFRep,1(p) ∩ FHFRep,2(p) ≥ 0⇔ G1 ∩G2 6= ∅

(3.68)

This property is useful while solving collision detection problems that are based on
the search of the maximum FHFRep,1(p) ∩ FHFRep,2(p). This relation works for all
discussed combinations of FRep and SDF, ADF and IDF representations.

3.9 Conclusions

In this chapter we have introduced a theoretical framework for modelling volumetric
heterogeneous objects on the basis of a novel unifying functionally-based hybrid rep-
resentation called hybrid function representation (HFRep). In the previous chapter
we have identified four conventional representations related to scalar fields of differ-
ent kinds, namely FRep, SDF, ADF and IDF and identified their advantages and
drawbacks. In this chapter we have proposed a formalisation of those representa-
tions and introduced formal definitions for FRep, ADF and IDF representations.
This has allowed us to formulate the requirements for the unifying hybrid represen-
tation. The core of HFRep is FRep, which is coupled with one of the distance-based
representations, namely SDF, ADF or IDF.

The defining functions in the core of HFRep are continuous and have a distance
property everywhere in a Euclidean space. We have proven that the continuity
of the HFRep function depends on the continuity of the FRep function and it is
either C0 or C1. We have proven that the gradient of the HFRep function satisfies
the eikonal equation. This means that the HFRep function preserves Euclidean
distance property. We have defined the mathematical basics of the representation
and developed an algorithmic procedure allowing to generate HFRep objects both
in terms of their geometry and attributes. We have identified and described the
objects supported by the HFRep representation. Another important component
of the representation is the operations specified for the defined objects. We have
identified two groups of the operations. The operations in the first group preserve
Euclidean distance property while the operations in the second group violate it.

The theoretical framework presented in this chapter has been published as a
preprint (Tereshin, Pasko, et al. 2020) in arXive. A full-scale paper was published
in Graphical Models journal (Tereshin, Pasko, et al. 2021).

In the next chapter we will provide a detailed description of the algorithmic and
technical implementation of the basic algorithm provided in this chapter.
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Chapter 4

Hybrid Function Representation:
Algorithmic Framework

In the previous chapter we have introduced a theoretical hybrid framework for het-
erogeneous HFRep object modelling that unifies advantages of FRep, SDF, ADF
and IDF and compensates for their drawbacks. We have described the basic algo-
rithm for generating three different hybrid combinations of these representations,
namely, FRep and SDF, FRep and ADF, FRep and IDF. The first step of the basic
algorithm has been already discussed in section 3.6. In the next sections we discuss
steps 2 - 4.

For each HFRep combination we have to apply different algorithms for generating
unsigned distance field at the second step of the basic algorithm. First, we describe
algorithmic solutions for computing distances in the case, when HFRep is based
on FRep and SDF (section 4.1) using several well-established methods. Then we
introduce a detailed description of the hierarchical fast iterative method, proposed
in this work, for computing at least C1 continuous unsigned ADFs (section 4.2).
Finally, we describe an algorithmic solution for generating HFRep based on FRep
and IDF (section 4.3) that is based on the method described in the work (Rustamov,
Lipman, and Funkhouser 2009).

As the unsigned distances obtained at the second step of the basic algorithm are
computed in the finite number of points, distances are discrete and non-smooth. To
make them smooth and continuous in section 4.4 we briefly discuss several techniques
that can be used in this context.

To make the generated field signed according to the step four of the basic algo-
rithm, we give several smooth step-functions in section 4.5.

In the last section of this chapter we give several representative examples that
demonstrate how the proposed theoretical and practical framework works with het-
erogeneous objects. We briefly discuss our C++ implementation of the described
algorithms in this chapter and give a detailed description of our implementation of
the HFRep framework based on FRep and SDF in SideFX Houdini (Side Effects
Software 2020).

4.1 Algorithms for Generating SDF

In this section we consider the step two of the basic algorithm (section 3.6) with
respect to generating SDF. The generation procedure for the unsigned distance

Part of this chapter was published in (Tereshin, Adzhiev, Fryazinov, and Pasko 2019; Tereshin,
Pasko, et al. 2020, 2021).
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Figure 4.1: Offset template and sweeping masks for the 8-point Signed Sequential
Euclidean Distance Transform.

field (UDF) is implemented using three different methods: the signed sequential
Euclidean distance transform (SSEDT) (Leymarie and Levine 1992) for 2D case,
the vector-city vector distance transform (VCVDT) (Satherley and Jones 2001) for
3D case and the fast iterative method (FIM) (Jeong and Whitaker 2008) for both
2D and 3D cases. Let us briefly outline them.

4.1.1 Distance Transform Methods

The computation of any distance transform starts from the initialisation of the
computational grid. SSEDT in 2D and VCVDT in 3D algorithms are vector-based,
i.e. distances are defined as magnitudes of the vector values. SSEDT provides an
SDF field as an output and VCVDT provides an UDF field as an output if it is
implemented according to (Satherley and Jones 2001). In our implementation we
have made VCVDT algorithm to output the SDF field instead of the UDF field by
following the logic of the implementation of the SSEDT algorithm.

First, we need to initialise two computational vector grids G1 and G2 of equal
size according to Algorithm 1. We will store there vector components of the vector

distance fields
−→
F UDF1 and

−→
F UDF2 with their ||L||2 norm computed as:

||
−→
F UDFi

(x, y, z)|| =
√
F 2
UDFx,i

+ F 2
UDFy,i

+ F 2
UDFz,i

i = 1, 2,

where x, y and z are directions. The initialisation operation for both 2D and 3D
distance transform algorithms is the same. We initialise grid points pi of G1 with
zeroes where the FRep function is FFRep(pi) ≥ 0. The rest of the points are ini-
tialised with some relatively huge value. The grid points pi of G2 are initialised
similarly, but in an inverse manner.

Then, in case of the SSEDT computation, we need to apply four passes of the
offsetting distance templates (see Fig. 4.1) to both grids G1 and G2. First, we need
to compute two forward passes Pforward,1 and Pforward,2 of the offsetting distance
templates. Each pass is applied to both computational grids G1 and G2 in left to
right, top to bottom directions. Each pass offsets the vector values stored at each
point of both grids. Then we need to compute two backward passes Pbackward,3 and
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Algorithm 1: Signed vector distance transform

Input: two equal sized computational vector grids G1, G2; scalar grid G3; a
FRep field FFRep(pi); an UDF field FUDF (qi), qi ∈ G3

Output: FUDF (qi)
/* Initialisation for SSEDT and VCVDT */

1 for all points pi ∈ G1 do
2 if FFRep(pi) ≥ 0 then
3 FUDF,1(pi)← 0;
4 else
5 FUDF,1(pi)←∞;

6 for all points pi ∈ G2 do
7 if FFRep(x) ≥ 0 then
8 FUDF,2(pi)← 0;
9 else

10 FUDF,2(pi)←∞;

/* Start iterative computation of the DF */

11 if SSEDT then
12 Compute four passes of the distance matrix template shown in Fig. 4.1

for both grids G1 and G2;

13 if VCVDT then
14 Compute eight passes of the distance matrix template shown in Fig. 4.2

for both grids G1 and G2;

/* At each pass compare ||
−→
F UDFk

(pi)||, k = 1, 2 of the traversing grid

(G1 or G2) with its offset neighbours ||
−→
F UDFk

(pi + offset)|| */

15 if ||
−→
F UDFk

(pi)|| > ||
−→
F UDFk

(pi + offset)|| then

16
−→
F UDFk

(pi) =
−→
F UDFk

(pi + offset); k = 1, 2;

/* Compute signed distance field and store it in one dimensional

grid G3 of the same size as grids G1 and G2 */

17 for all points qi ∈ G3 do
/* To make FUDF (qi) signed, remove abs(·) */

18 FUDF (qi) = abs(||
−→
F UDF1(pi)|| − ||

−→
F UDF2(pi)||);

Pbackward,4 of the offsetting distance templates in the reverse directions in the same
manner.

In case of the VCVDT computation, we need to apply eight passes of the off-
setting distance templates (see Fig. 4.2) to both grids G1 and G2. First, we need
to apply four forward passes Pforward,1, Pforward,2, Pforward,3 and Pforward,4 of the
offsetting distance templates. They should be applied to both computational grids
G1 and G2 according to the arrows shown in Fig. 4.2. After that, we need to apply
four backward passes Pbackward,1, Pbackward,2, Pbackward,3 and Pbackward,4 of the offset-
ting distance templates to both computational grids G1 and G2. The direction of
their application is shown in Fig. 4.2.

For both algorithms SSEDT and VCVDT, at each pass we compare the dis-

tance ||
−→
F UDFi

(p)|| stored in the current point of the grid G1 or G2 with its off-

set neighbours ||
−→
F UDFi

(p + offset)||. We store the minimum vector distance
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Figure 4.2: Four offsetting distance templates for the vector-city vector distance
transform that form forward and backward passes. These templates are used to offset
the computing distance field values.

min(||
−→
F UDFi

(p)||, ||
−→
F UDFi

(p + offset)||) in the current point p of the grid G1 or
G2.

Finally, to obtain SDF we compute the difference between ||L||2 norms of two

vector fields
−→
F UDF1(p) and

−→
F UDF2(p) stored in grids G1 and G2. In our case, we

compute the absolute value of the difference between two distance norms to obtain
UDF, that will be further used for the generation of HFRep.

4.1.2 Fast Iterative Method

The main idea of the FIM method (Jeong and Whitaker 2008) is to solve the eikonal
equation selectively on grid nodes using the data structure, which is computationally
efficient, namely active list L (linked list). Let us recall the definition of the eikonal
equation that is used for solving wave propagation problems:

|∇f(p)| · fsp(p) = 1

where fsp(p) is a speed function, f(p) is a distance function if fsp(p) = 1.
As the relation between grid nodes was made to be loose, all the nodes in active

list can be updated simultaneously utilising the parallel architecture. During each
iteration, new elements are added to the active list and the band expands to include
all nodes that can be affected by the current update. A node can be removed from
the list if it is converged to some value with respect to the threshold condition, and
can be reinserted in the active list if any upwind neighbour‘s value is updated.

According to the Algorithm 2 (Hong and Jeong 2017), first, we need to do the
initialisation step and define the boundary conditions. The boundary conditions
consists of pre-initialisation of the solution of the eikonal equation U(x) at each
grid point x = (i, j, k) and adding ’source’ nodes to the active list L.

As we are dealing with FRep objects defined by the functions, we need to extract
the boundary of the FRep object. The initial solution U(x) is computed with respect
to the grid nodes x that are associated with the boundary points of the FRep
object. These nodes are initialised to zero. This means that they are effectively
defined as ’source’ nodes. As all computations are done on a discrete computational
grid, the defining FRep function of the object usually does not have exact zeros
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Algorithm 2: Fast iterative method

Input: grid G, solution U(x), active list L
Output: U(x)
/* Initialisation */

1 for all nodes x ∈ G do
2 if 0 ≤ FFRep(x) ≤ ε then
3 U(x)← 0;
4 add x to L;

5 else
6 U(x)←∞;

/* Updating nodes in active list L */

7 while active list L is not empty do
8 for all nodes x ∈ L do
9 Up ← U(x);

10 Uq ← solution of fGodunov(x) = 0;
/* If the solution is not converged */

11 if Up > Uq then
12 U(x)← Uq;
13 else

/* Check adjacent nodes xnb if they need further updates

*/

14 for all neighbours xnb of x do
15 if U(xnb) > U(x) and xnb /∈ L then
16 Up ← U(xnb);
17 Uq ← solution of fGodunov(xnb) = 0;
18 if Up > Uq then
19 U(xnb)← Uq;
20 add xnb to L;

at the boundary points. We manually define some small interval of values in the
neighbourhood of zero 0 ≤ FFRep(xb) ≤ ε, where ε > 0 is a relatively small value.
Then all grid nodes that are defined as ’source’ nodes should be added to the active
list.

After this, the process of updating the grid nodes begins. During this stage for
every node x in the active list L, the new U(x) is computed using the first order
upwind Godunov discretisation scheme that can be implemented using Algorithm
3 in 2D case (Gómez et al. 2019) or Algorithm 4 in 3D case (Jeong and Whitaker
2008). To check if the computed solution U(x) is converged, its values are compared
with the previous solution computed at the node x. If it is converged, node x is
removed from the active list L, and any neighbour nodes are added to active list L
if they are not in it.

4.2 Algorithm for Generating ADF

In this section we consider the step two of the basic algorithm (section 3.6) with
respect to generating ADF. Here we discuss how distance field can be numerically
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Algorithm 3: Godunov discretisation scheme in 2D (Gómez et al. 2019)

Input: current solution U(xi,j), step h along the grid G, scalar value fsp of
the speed function. Here we assume that fsp = 1.

Output: Unew(xi,j)
/* Compare stored U in the neighbour nodes of the current node xi,j

along X and Y directions and find the minimum one. */

1 UX = min(U(xi−1,j), U(xi+1,j));
2 UY = min(U(xi,j−1), U(xi,j+1));

3 if |UX − UY | ≤ h
fsp

then

4 Unew(xi,j) = 1
2
(UX + UY +

√
2h2

f2sp
− (UX − UY )2);

5 else
/* Linear update */

6 Unew(xi,j) = min(UX , UY ) + h
fsp

;

Algorithm 4: Godunov discretisation scheme in 3D (Jeong and Whitaker
2008)

Input: current solution U(xi,j,k), step h along the grid G, scalar value fsp
of the speed function. Here we assume that fsp = 1.

Output: Unew(xi,j,k)
/* Compare stored U in the neighbour nodes of the current node xi,j,k

along X,Y and Z directions and find the minimum one. */

1 UX = min(U(xi−1,j,k), U(xi+1,j,k));
2 UY = min(U(xi,j−1,k), U(xi,j+1,k));
3 UZ = min(U(xi,j,k−1), U(xi,j,k+1));

4 Unew(xi,j,k) = UZ + h
fsp

;

5 if Unew(xi,j,k) ≤ UY then
6 return Unew(xi,j,k);

7 Unew(xi,j,k) = 1
2
(UY + UZ +

√
2h2

f2sp
− (UY − UZ)2);

8 if Unew(xi,j,k) ≤ UX then
9 return Unew(xi,j,k);

10 Unew(xi,j,k) =
1
6
(2(UX + UY + UZ) +

√
4(UX + UY + UZ)2 − 12(U2

X + U2
Y + U2

Z − h2

f2sp
));

computed on adaptive Cartesian grids. We introduce an adaptation of the eikonal
solver, namely fast iterative method (FIM) (Jeong and Whitaker 2008) (for more
details see subsection 4.1.2), that we extend for computing distances on irregular
hierarchical grids. We call this extended method as a hierarchical fast iterative
method (HFIM). We implement the proposed method only for 2D case.

The algorithmic implementation of HFIM consists of several steps. The first step
is the hierarchical subdivision of the input object defined by the FRep function using
quadtree (see subsection 4.2.3). This step also covers the construction of the basis
functions for the interpolating PHT-spline surface that is at least C1 continuous.
A PHT-spline surface is specified as a tensor product of PHT-splines defined in a
parametric space (see subsection 4.2.6). The second step is the computation of the
HFIM method on quadtree (see subsection 4.2.2). The last step is the restoration
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of the computed unsigned distance field using the interpolating PHT-spline surface
generated on the previous step.

4.2.1 Hierarchical FIM (HFIM): Requirements

Distance-based scalar fields are widely used in geometric modelling and related tasks
for defining objects in a predictable way. We would like to introduce an exact method
for efficient computation of smooth distance fields on the adaptive grid that provides
at least C1 continuous distance field. It should satisfy the following requirements:

1. The algorithm should provide an independent node update, i.e. independent
update of the solution at each point of the computational grid (inherited
from the original FIM method);

2. The algorithm should rely on non-heterogeneous data-structure that is effi-
cient for sorting, inserting and removing new data (inherited from the original
FIM method);

3. The algorithm should be applicable to non-graded adapted grids, i.e. the
difference of levels between adjacent cells is unconstrained;

4. The algorithm should produce at least C1 continuous distance field;

The first requirement is essential for possible paralleling of computations on the
streaming architectures and cache coherency. Controlling the updating process of
the algorithm is essential for updating data stored in cache (e.g. local on the grid).
The second requirement is essential for efficient fit of the computed data in SIMD
memory or streaming architecture memory while keeping the updates of the stored
solution independent. These two requirements are inherited from the FIM method.
The third requirement is essential for performing independent computations on non-
graded hierarchical grids. The algorithm should be able to provide the solution of the
eikonal equation on the grid with different steps along the axis. The last requirement
is important for geometric modelling, especially in the case of heterogeneous object
modelling, where the attributes might depend on distance values. According to the
work (Biswas, Shapiro, and Tsukanov 2004), lack of differentiability of the distance
field leads to the stresses and creases in the modelling attributes when they are
parameterised by the distance.

4.2.2 HFIM: Algorithm

The adapted 2D HFIM algorithm follows the logic of the FIM algorithm for regular
grids (see Algorithm 2). In this work we consider a FRep object defined (Pasko,
Adzhiev, Sourin, et al. 1995) by the function FFRep(p) as an input for the HFIM
Algorithm 5. The major requirement for FFRep(p) function is to be at least C0 or
C1 continuous.

Let us outline the main steps of the HFIM algorithm. It consists of two parts:
initialisation of the hierarchical computational grid HG in the form of a quadtree
and computation of the nodes updates. We denote corner vertices of each quadtree
cell as a node xi,j, where i is the index of the leaf in the leaf array, and j is the index
of the corner vertex of the cell. The initialisation algorithm is defined as follows:

1. Let the object OFRep be defined by a FRep function FFRep(p) computed on
a regular grid. In Fig. 4.3 (a) we show the FRep field of ’i’ object that serves
as an input for the HFIM algorithm.
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Figure 4.3: The illustration of the main main computational steps of the HFIM
method. a) The FRep field of the ’i’ object computed on the regular grid. b) a
quadtree obtained for the ’i’ FRep object using quadtree. c) The computed unsigned
distance field with applied PHT-spline interpolation to restore the distance at each
quadtree cell.

2. After we have defined the FRep object OFRep, we subdivide the Euclidean
space according to the defining function FFRep(p): a sparse amount of cells
in exterior FFRep(p) < 0 of the object, a dense amount of cells on the bound-
ary FFRep(p) = 0 of the object, and an average amount of cells in interior
FFRep(p) > 0 of the object. This can be achieved using quadtree hierarchical
data-structure.

3. At each node xi,j of each leaf we store the corresponding value of the FRep
function FFRep(xi,j). The result of the quadtree subdivision of the Euclidean
space according to the FRep function FFRep(xi,j) can be seen in Fig 4.3 (b).

4. After the hierarchical subdivision is completed, we apply the boundary condi-
tions for solving the eikonal equation on it. We follow the FIM initialisation
scheme. We traverse the quadtree and initialise corresponding nodes xi,j
according to the following rule:

U(x) =

{
0 if 0 ≤ FFRep(xi,j) ≤ ε

inf otherwise
(4.1)

where ε ∈ R is a relatively small value that helps to isolate the zero level-set
of the FRep object OFRep, and inf is a relatively huge number.

5. We store each node that is defined as a ’source’ (U(xi,j) = 0) in the active list
L as a pair of indices (i, j). In our implementation the active list is defined
using std::list data structure.

After the initialisation of the hierarchical grid HG, we start an iterative compu-
tation of the solution of the eikonal equation on it. The iterative process stops when
the active list L is empty. For each pair of indices (i, j) stored in the active list L,
we compute an updated solution according to the following steps that correspond
to the Algorithm 5:

1. First, we obtain the solution UG(xi,j) of the the first order Godunov upwind
descritisation scheme fGodunov(xi,j) = 0 for the node xi,j, (i, j) ∈ L that is
written for the adaptive grid computations.
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Figure 4.4: T-mesh in the form of the quadtree. a) The subdivided space with
visualisation of the relationship between current node and its neighbours. b) The tree
structure of the T-mesh shown in part (a) with assigned pointers form the current
node to its neighbours. Coloured rectangles show that they have children nodes and
white rectangles show that they are leaves of the tree.

2. Then we compare UG(xi,j) with the previously computed solution U(xi,j) in
the node xi,j. If U(xi,j) > UG(xi,j), we update the value in the current node
xi,j of the tree and in the nodes that coincide with the current one.

3. If U(xi,j) < UG(xi,j), we start traversing the quadtree to find the neighbour

nodes x
(nb)
m,n of the current node xi,j in the horizontal and vertical directions.

If at this step we have found a T-junctional node in one of the directions,
we need to compute a ’ghost’ value as it was suggested in subsection 4.2.5.
In our implementation at this step we return a pair ((m,n), U(xm,n)) of two
indices and currently stored solution U(xm,n) of the eikonal equation. The
first index m points at the leaf array and the second index n points at the
cell vertices array.

4. For all found neighbours x
(nb)
m,n we check if the stored solution U(xnbm,n) is

greater then current solution U(xi,j). We also want to avoid unnecessary

computations by checking if the found neighbour node x
(nb)
m,n is already pre-

sented in the active list L or not.

5. Then we compute the solution UG(x
(nb)
m,n) of the first order Godunov upwind

discretisation scheme fGodunov(x
(nb)
m,n) = 0 in the current neighbour node x

(nb)
m,n.

6. If the solution UG(x
(nb)
m,n) is converged, i.e. U(xm,n) > UG(x

(nb)
m,n), we update

the solution stored in the current neighbour node x
(nb)
m,n with UG(x

(nb)
m,n), and

update it in the nodes x
(nb)
m∗,n∗ that coincide with the current one.

7. Then we check if x
(nb)
m,n and its coincide nodes x

(nb)
m∗,n∗ are presented in the

active list L, i.e. if (m,n) and (m∗, n∗) are found in L. If not, we add them
to the active list L before the node with indices (i, j).

8. After we finish parsing and updating all neighbours, we remove the current
node xi,j from the active list L and continue iterative computation until L is
empty.
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Figure 4.5: T-mesh example obtained using a quadtree subdivision of space with
boundary (black dots), crossing (yellow dots) and T-junction (red quads) nodes;
a) the initial mesh, b) mesh after the first refinement, c) mesh after the second
refinement.

9. Finally, we construct the PHT-spline interpolating surface using the com-
puted basis functions, basis vertices and Beźier coefficients in each cell and
restore at least C1 continuous solution of the eikonal equation. The computed
unsigned distance field can be seen in Fig. 4.3 (c).

In the next subsections we will cover the main steps of the algorithm in more
details.

4.2.3 Hierarchical Subdivision of the Domain

To adaptively subdivide R2 space with a defined FRep object we need to construct
a 2D T-mesh. A T-mesh is a hierarchical partition of the domain X ∈ Rn using
rectangular grid that allows T-junctions. T-junctions appear during the hierarchical
subdivision of space where the difference between levels of subdivisions is greater
than one (see Fig. 4.5, red quads). A particular case of the T-mesh is a quadtree/oc-
tree data-structures that subdivide the domain X in quad cells or cubes of different
size according to the level of details. A quadtree recursively subdivides the space
into four nodes, whilst octree subdivides the space into eight nodes at each iteration.
We show a typical quadtree in Fig. 4.4 (a), and its tree pointer-based node structure
in Fig. 4.4 (b).

We denote that a grid point in a quadtree is called a node of the quadtree. The
node that belong to the boundary of the domain we call a boundary node (see Fig.
4.5, black circles). The vertex that belong to the interior of the T-mesh and belong
to the centre of the crossings is called a crossing node (see Fig. 4.5, yellow circles).
The node that forms a T-junction is called T-junctional (see Fig. 4.5, red quads).

4.2.4 Discretisation Scheme

In this work we consider the numerical solution of the eikonal equation ||∇φ(p)|| = 1
(p is a point in R3) as a special case of nonlinear Hamilton-Jacobi partial differential
equation (PDE), defined on a non-graded adaptive Cartesian grids with a scalar
speed function. We are going to numerically solve a hyperbolic partial PDE given
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Algorithm 5: Hierarchical fast iterative method

Input: Function FFRep(p) computed on the regular grid, hierarchical grid
HG with ith leaf cell nodes xi,j and jth cell corner vertices, solution
U(x), active list L

Output: U(xi,j)
1 Active list lk contains elements (i, j): {
2 i - index pointing in the quadtree leaves array;
3 j - index pointing in the leaf corner vertices array j ∈ [0, 3];
4 };
/* Initialisation */

5 for all leaf nodes xi ∈ HG do
6 for j = 0; j < 3; j + + do
7 if 0 ≤ FFRep(xi,j) ≤ ε then
8 U(xi,j)← 0;
9 add (i, j) to L;

10 else
11 U(xi,j)←∞;

/* Updating nodes in active list L */

12 while L is not empty do
13 for all nodes lk ∈ L do
14 i = lk.x; j = lk.y;
15 Up ← U(xi,j);
16 Uq ← solution UG of fGodunov(xi,j) = 0 on HG;

/* Check if the solution UG(xi,j) is converged */

17 if Up > Uq then
18 U(xi,j)← Uq;
19 Update the solution U(xi∗,j∗)← Uq stored in all nodes xi∗,j∗ that

coincide with xi,j;
20 else

21 Find neighbour nodes x
(nb)
m,n of xi,j in the horizontal and vertical

directions and return a pair ((m,n), U(x
(nb)
m,n));

/* Check nodes xnbm,n if they need further updates; */

22 for all found neighbour nodes x
(nb)
m,n of xi,j do

23 if U(x
(nb)
m,n) > U(xi,j) and (m,n) /∈ L then

24 Up ← U(x
(nb)
m,n);

25 Uq ← solution UG of fGodunov(x
(nb)
m,n) = 0 on the HG;

26 if Up > Uq then

27 U(x
(nb)
m,n)← Uq;

28 Update the solution U(x
(nb)
m∗,n∗)← Uq stored in all

nodes x
(nb)
m∗,n∗ that coincide with x

(nb)
m,n;

29 if (m∗, n∗) /∈ L then
30 add (m∗, n∗) to L before (i, j);

31 add (m,n) to L before (i, j);

32 Erase (i, j) from L;

33 Restore the solution of the eikonal equation using PHT-splines;
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as follows (Jeong and Whitaker 2008):

H(p,∇φ) = |∇φ(p)|2 − 1

fsp(p)
= 0 ∀p ∈ Ω ⊂ Rn (4.2)

where H(p,∇φ) is the Hamiltonian, Ω is a domain in Euclidean space Rn, φ(p)
is a travel-time or distance from the specified source seed or seeds, and fsp(p) is
a positively defined scalar speed function. In geometric modelling speed function
fsp(p) is equal to one.

The solution of this equation defines the propagation of the wave-front from the
seed sources. The motion of the wave-front is controlled by the speed function fsp(p).
The solution of this equation (4.2) defines the geodesic distance of the shortest path
from the nearest seed point.

Typical hierarchical grid consists from cells of different sizes that results in a
different step size along the grid directions. To solve the PDE equation (4.2) on the
adapted hierarchical grid we use first order Godunov upwind discretisation scheme.
In 2D case it can be written as follows:

g(p) =

(
U(p)− Ux(p)

hx

)2

+

(
U(p)− Uy(p)

hy

)2

− 1

f 2
sp(p)

= 0 (4.3)

We need to solve it analytically for U(p) to obtain a numerical scheme that is
suitable for computing on non-graded adaptive grids. The solution can be obtained
in a straight-forward manner:

U(p) =

(
Ux
h2
x

+
Uy
h2
y

±

√
h2
x + h2

y − f 2
sp(p)(Ux(p)− Uy(p)2

fsp(p)hxhy

)
h2
xh

2
y

h2
x + h2

y

(4.4)

and can be easily generalised for the 3D case. Among two solutions we chose the
one that is positive. This type of update is called two-sided update as both neigh-
bours Ux(p) and Uy(p) are taken into account during computations. The solution is
accepted only when the following condition is satisfied: U(p) ≥ max(Ux(p), Uy(p)).
This is the upwind condition introduced in (Gómez et al. 2019) that is rewritten
here for the case of the adapted grids as follows:

|Ux(p)− Uy(p)| ≤ min(hx, hy)

fsp(p)
(4.5)

If the following upwind condition failed, then the one sided update is computed:

U(p) = min(Ux(p), Uy(p)) +
min(hx, hy)

fsp(p)
(4.6)

Let us formulate the Algorithm 6 for implementing the first order upwind Go-
dunov discretisation scheme that was used in the introduced HFIM Algorithm 5.
The input for this algorithm is a node xi,j for which we are going to compute a new
solution. Here index i points at the quadtree leaves array, and index j points at the
corner vertices array, where we store the solution. The main steps of the algorithm
are as follows:

1. First, we need to find all neighbour leaves of the current leaf xi.
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Algorithm 6: First order Godunov discretisation scheme for adaptive grids

Input: the node xi,j. Here we assume that fsp = 1.
Output: U(xi,j)

1 Find all neighbour nodes x
(nb)
m,n for xi,j in horizontal and vertical directions

taking into account T-junctions;
2 Get stored solutions and steps in neighbour nodes along the grid as tuples

(UR(x
(nb,R)
m,n ), hR), (UL(x

(nb,L)
m,n ), hL), (UT (x

(nb,T )
m,n ), hT ) and (UB(x

(nb,B)
m,n ), hB);

/* Compare two solutions in horizontal and vertical directions and

return the minimum one with corresponding step; */

3 (UX , hX) = min((UR(x
(nb,R)
m,n ), hR), (UL(x

(nb,L)
m,n ), hL));

4 (UY , hY ) = min((UT (x
(nb,T )
m,n ), hT ), (UB(x

(nb,B)
m,n ), hB);

/* Find minimum solution between UX and UY and return a tuple with

corresponding step; */

5 (Umin, hmin) = min((UX , hX), (UY , hY ));
/* Here fsp is a speed function that we choose equal to one; */

6 if |UX − UY | ≤ hmin/fsp then

7 U(xi,j) =

(
UX

h2X
+ UY

h2Y
±
√
h2X+h2Y −f2sp(UX−UY )2

fsphXhY

)
h2xh

2
y

h2x+h2y
;

8 else
9 U(xi,j) = Umin + hmin

fsp
;

2. Then we process the found leaves and search for the neighbour nodes of
the current node xi,j in horizontal and vertical directions. If in one of the
directions we get a T-junction node, we need to process it and restore the
’ghost’ value by applying the interpolation operation defined by equation
(4.7), which was introduced in subsection 4.2.5. Here and further, by ’ghost’
value we will assume a non-existing node opposite the T-junctional node
(see Fig. 4.5 imaginary neighbour nodes opposite to red quads). In our
implementation the output of this step is a vector of tuples with currently
stored solution U(x

(nb)
m,n) and step h along the grid.

3. After we have obtained all tuples (UR(x
(nb,R)
m,n ), hR), (UL(x

(nb,L)
m,n ), hL), (UT (x

(nb,T )
m,n ), hT )

and (UB(x
(nb,B)
m,n ), hB) with stored solutions and steps, we need to find the tu-

ples (UX , hX) and (UY , hY ) with minimum solutions in horizontal and vertical
directions with the corresponding steps.

4. To compute the upwind condition defined by the equation (4.5), we need to
find the minimum solution between UX and UY and return corresponding
tuple (Umin, hmin);

5. Then, if the upwind condition holds true, we compute the two sided update
defined by the equation (4.4). Otherwise, we compute a one sided update
defined by the equation (4.6) using the values stored in tuple (Umin, hmin) as
we want to minimise the computing solution.

4.2.5 Treatment of T-Junctions

To apply Godunov discretisation scheme we need to compute first derivatives of the
function U(p) on the non-regular Cartesian grid. This can be done by applying
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Figure 4.6: A scheme for computing ’ghost’ values in case of the T-junctions
presence in the obtained hierarchical grid.

finite difference discretisation of the first derivatives. The most problematic points
for computing this discretisation are T-junction nodes, i.e. a node for which there
is a missing neighbour node in one of the Cartesian directions. In Fig. 4.6 (a) we
show the typical case of the T-junction in 2D, where the node ν0 is a T-junction
node, νG is a ghost neighbouring node with its two neighbour nodes ν2 and ν3. In
this work we suggest to compute the value of the node-sampled function U(p) in
the ghost node νG as follows:

U(νG) =
U(ν2)s3 + U(ν3)s2

s2 + s3

(4.7)

Similar interpolation scheme can be obtained for 3D case. Here as it follows from
Fig. 4.6 (b) there are two possible cases when we need to compute ghost values. One
case corresponds to the nodes νG1 , νG3 and another to the node νG2 . To compute
the value of the node-sampled function U(p) in the ghost node νG1 , we can use a
second-order linear interpolation:

U(νG1) =
U(ν2)s1 + U(ν1)s2

s1 + s2

(4.8)

To compute the value of the node-sampled function U(p) in the ghost node νG2 , we
can use a bilinear interpolation:

U(νG2) =
sG23s2U(ν1) + sG23s1U(ν2) + sG12s2U(ν3) + sG12s1U(ν4)

(sG12 + sG23)(s1 + s2)
(4.9)

4.2.6 PHT-Spline Interpolation

As it follows from the HFIM algorithm, introduced in subsection 4.2.2, we need to
subdivide the Euclidean space according to the FRep function FFRep(p) values and
restore the distance field at each cell using PHT-splines.

A PHT-spline can be classified as a parametric representation (see subsection
2.2.1). It is a piecewise bicubic polynomial that is defined over hierarchical grids.
It can be also considered as a generalisation of B-splines (Deng et al. 2008) over
hierarchical grids.
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According to the subsection 4.2.3, a hierarchical grid can be constructed using
a quadtree. While subdividing the domain using quadtree, we need to compute
Bézier coefficients, basis functions and basis indices for further construction of the
PHT-spline interpolation. This can be done, for example, using an adaptation of
the NURBS model fitting algorithm (Deng et al. 2008). After applying these steps
we obtain a PHT-spline interpolating surface that can be further used for restoring
the distance field at each cell of the T-mesh defined by the quadtree.

Spline spaces over T-meshes

Formally, a linear spline space L(m,n, β, α, T ) over T-mesh T (Deng et al. 2008)
can be defined as:

L(m,n, β, α, T ) := {f(x, y) ∈ Cα,β(X) : f(x, y)|τ ∈ Pm,n,∀τ ∈ T} (4.10)

where Cα,β(X) is the continuity space of all bivariate functions in X that have Cα

continuity along X-axis and Cβ continuity along Y-axis, Pm,n is the set of all tensor
product polynomials with bi-degree (m,n), and τ is the cell of the T-mesh T . In
this work we consider the following C1 continuous spline space L(3, 3, 1, 1, T ) with
a dimension defined as follows:

dimL(3, 3, 1, 1, T ) = 4(Nb +N+); m ≥ 2α + 1; n ≥ 2β + 1 (4.11)

where Nb is the number of boundary vertices and N+ is the number of crossing
vertices.

Blossoming with De Casteljau’s Algorithm

Here we briefly describe how the blossoming with De Casteljau’s Algorithm 7 is done
following the logic of the work (Anitescu, Hossain, and Rabczuk 2018).

To compute the Bézier representation of the basis functions b(ξ1, ξ2) on the T-
mesh nodes, we need to subdivide the parent node τl,j into four sub-nodes τl+1,j1 , τl+1,j2 ,

τl+1,j3 and τl+1,j4 . To evaluate m Bézier polynomials b
(0)
i ∈ [ξk, ξk+1] in each spatial

direction and to subdivide the node τl,j into four sub-nodes, we apply De Casteljau‘s
algorithm (Piegl and Tiller 1997) that in one dimension can be written as follows:

b
(j)
i (ξ0) = (1− ξ0)b

(j−1)
i (ξ0) + ξ0b

(j−1)
i+1 (ξ0) i = 1, ...,m− j + 1; j = 1, ...,m

(4.12)

where ξ0 = 0.5 is a fixed knot ξ and its equality to 0.5 is essential for obtaining
a symmetric polynomial subdivision. This algorithm produces two sets of Bézier
polynomials b

(0)
0 , b

(1)
0 , ..., b

(m)
0 and b

(m)
0 , b

(m−1)
1 , ..., b

(0)
m that are defined on two new

segments [ξk, (ξk + ξk+1)/2] and [(ξk + ξk+1)/2, ξk+1].
In two dimensions, when we are processing a quadtree hierarchical data-structure,

we compute (m + 1)2 Beźier coefficients C
(τ)
i,j corresponding to a single basis func-

tion that is stored in a (m + 1) × (m + 1) matrix. We also need to compute
Beźier coefficients for four children nodes τch ≡ τl,jk , k = 1, ..., 4 that are stored
in a 2(m+ 1)× 2(m+ 1) matrix. First, we compute m+ 1 times 1D De Casteljau’s

algorithm for each row of the matrix C
(τm)
i,j and then 2(m+ 1) times for each column

of the resulting (m + 1) × 2(m + 1) array. Here τm corresponds to a parent node
that we are going to split with 2D De Casteljau’s Algorithm 8.
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Algorithm 7: De Casteljau’s algorithm in 1D

Input: Beźier coefficients b
(0)
1 , ..., b

(0)
m+1

Output: b
(j)
i (0.5)

/* Split the input curve defined with Beźier coefficients

b
(0)
1 , ..., b

(0)
m+1 into two curves at ξ0 = 0.5 */

1 for j = 1; j ≤ m; j + + do
2 for i = 1; i ≤ m− j + 1; i+ + do

3 b
(j)
i (0.5) = (b

(j−1)
i (0.5) + b

(j−1)
i+1 (0.5))/2;

Algorithm 8: De Casteljau’s algorithm in 2D

Input: C
(τm)
i,j for the parent node, polynomial degrees m and n

Output: new C
(τm)
i,j

/* Split the input Bézier coefficients C
(τm)
i,j matrix into four

matrices corresponding to the new child nodes τch */

1 for int i = 0; i < C
(τ)
i,j .rows(); i+ + do

/* Apply 1D De Casteljau’s algorithm in the row direction */

2 for j = 0; j < n+ 1; j + + do

3 [Csplit,1, Csplit,2]= computeDeCasteljau 1D(C
(τm)
i,j );

4 C
(τch)
j,all = [Csplit,1, Csplit,2];

/* Apply 1D De Casteljau’s algorithm in the column direction */

5 for j = 0; j < 2(m+ 1); j + + do

6 [Csplit,1, Csplit,2]= computeDeCasteljau 1D(C
(τch)
0,..,n,j);

7 C
(τch)
all,j = [Csplit,1, Csplit,2];

Truncation of Beźier Coefficients

The construction algorithm for the hierarchical basis functions has two problems.
The first of them is the violation of the unity partition:

m∑
i=0

Bi,m(ξ(1), ξ(2)) 6= 1 0 ≤ ξ(1), ξ(2) ≤ 1

Another one is the increase in the number of overlapping basis functions associated
with different hierarchical levels. Both problems can be solved by introduction of
a truncation operation for the hierarchical basis functions (Anitescu, Hossain, and
Rabczuk 2018; Kiss, Giannelli, and Jüttler 2014). This operation provides the linear
independence of the constructing basis functions and a sparse resulting linear system.

Here we follow the approach described in (Anitescu, Hossain, and Rabczuk 2018).
The constructed basis functions of a polynomial degree m are assumed to be at least
Cα,α continuous with the following condition 2α + 1 ≤ m that holds true. In our
case we consider the generated PHT-spline surface to be at least C(1,1) continuous.

The truncation process starts from splitting each of the four child nodes τl,j into
nine regions: four corner regions, four edge regions and one centre region (see Fig.
4.7). Then, as soon as we have obtained the new basis vertex, we have to set to zero
all Beźier coefficients in the regions that are close to it, i.e. one corner, two edge
and centre regions.
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Figure 4.7: The T-mesh nodes τl,j subdivided into nine regions with specified num-
ber of Beźier ordinates in each sub-region. The total number of Beźier ordinates is
(m+ 1)× (m+ 1) and each sub-region contains (α + 1)× (α + 1) ordinates.

Adding New Basis Functions

The refinement procedure is finished by insertion of the new basis functions in cells
τl,j of the constructed T-mesh. The insertion of the new basis functions (Anitescu,
Hossain, and Rabczuk 2018) consists of several steps. First, we have to compute

corresponding Beźier ordinates C
(τ)
i,j and new global basis indices. The new basis

functions form non-truncated B-splines that are computed using local knot vector
information. The local knot vector is defined for each new basis vertex. It consists
of three distinct knots that include the parametric coordinates of the knot-span
endpoints to the left and right of the new basis vertex as well as to the up and down
of it. In general case, the continuity Cα,α of the constructed B-spline depends on
the multiplicity of the knots. The multiplicity for interior knots is m − α and for
boundary knots is m+1. As we are considering splines with at least C1,1 continuity,
the multiplicity for interior knots will be m− 1, α = 1.

During the refinement process of the T-mesh that includes cross-insertion oper-
ation, some basis functions are set to zero according to the truncation step. Then,
new basis functions are added to the nodes τl,j after cross-insertions. The new basis
indices that are assigned to the new basis functions can be either the basis indices
corresponding to the removed basis functions or incrementally generated new ones.
If the polynomial degree is m = 2α + 1, then the construction algorithm for com-
puting new basis functions is simplified and follows the method described in (Jeong
and Whitaker 2008).
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Figure 4.8: The comparison of the field restoration at each subdivided hierarchical
cell using bilinear interpolation (a) and PHT-spline interpolation (b). In red circles
we can see the C0 discontinuity in the field isolines where the cells of different size
appear next to each other.

PHT-Spline Surface

The tensor product PHT-spline surface S(ξ(1), ξ(2)) for the spline space L(3, 3, 1, 1, T )
is defined using the Bézier representation (Deng et al. 2008):

S(ξ(1), ξ(2)) =
m∑
i=1

m∑
j=1

C
(PHT )
i,j Pi,j(ξ

(1), ξ(2)) (4.13)

Pi,j(ξ
(1), ξ(2)) =

m+1∑
i=1

m+1∑
j=1

C
(τ)
i,j Bi,j(ξ

(1), ξ(2)) (4.14)

where m = 3 is the polynomial degree, (ξ(1), ξ(2)) ∈ [0, 1] × [0, 1] are knot vectors,

C
(PHT )
i,j are the control points of the constructing PHT-spline surface S(ξ(1), ξ(2)),

Pi,j(ξ
(1), ξ(2)) are the PHT-basis functions in the Beźier form. Here C

(τ)
i,j are the

scalar Bézier ordinates of the basis functions computed for each child node τl+1,j

of the T-mesh. Bi,j(ξ
(1), ξ(2)) are the Bernstein basis functions that are defined as

a tensor product of Bernstein polynomials Bi,j(ξ
(1), ξ(2)) = Bi(ξ

(1))⊗ Bj(ξ
(2))(Piegl

and Tiller 1997).
As we have stated in subsection 3.2.3, the ADF field has C0 discontinuities that

arise after the hierarchical subdivision where cells of different size appear. In Fig.
4.8 (a) the discontinuities in the white isolines are located in the red circles. C1

discontinuities are introduced by the bilinear/trilinear interpolation that is used for
the field restoration in interior of each cell (see Fig. 4.8, a). As it can be seen in
Fig. 4.8 (b) the field generated by our method with PHT-spline restoration of the
distance field successfully solves these drawbacks. All the isolines are continuous
and smooth.

4.3 Generation of IDF

In this subsection we consider the step two of the basic algorithm (subsection 3.6)
with respect to generating IDF. IDFs are usually computed using the solution of
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Algorithm 9: HFRep based on FRep and IDF

Input: the FRep field FFRep(p), fixed source point psrc, the HFRep field
FHFRep(p)

Output: |FHFRep(psrc,V ∗l )|
1 Extracting FRep boundary: set of vertices and edges (V,E) in 2D or set of

vertices and faces (V, F ) in 3D;
2 Embed the extracted FRep surface Rn 7→ Rm using diffusion map:
Vi 7→ (e−λ1tφ1(V1), ..., e−λntφn(Vi));

3 Obtain eigenvectors φn(Vi)) and eigenvalues λn of the computed
Laplace-Beltrami operator on the boundary isocontour or surface;

/* Compute pairwise distances on the embedded surface: */

4 for i = 0; i < size of(V ); i+ + do
5 for j = 0; j¡size of(V ); j + + do
6 F 2

DF (Vi,Vj) =
∑n

k=1 e
−2λkt(φk(Vi)− φk(Vj))2;

7 Triangulate 2D isocontour or tetrahedralise generated FRep surface and
obtain new vertices V ∗l ;

/* Compute diffusion distances between source point psrc and

vertices V ∗l using barycentric interpolation: */

8 for l = 0; l < size of(V ∗); l + + do
9 for i = 0; i < size of(V ); i+ + do

10 for j = 0; j < size of(V ); j + + do
11 |FHFRep(psrc,V ∗l )| = F 2

IDF (psrc,V
∗
l ) =∑

i,j F
2
DF (Vi,Vj)ωi(psrc)ωj(V

∗
l )−

−1
2

∑
i,j F

2
DF (Vi,Vj)(ωi(psrc)ωj(psrc) + ωi(V

∗
l )ωj(V

∗
l ));

12 if Generate signed HFRep == true then
13 Voxelise obtained mesh;
14 Extrapolate distances in exterior of the mesh and get F ∗IDF (pl);

/* Generate HFRep on voxel grid Gvox with points pq: */

15 for q = 0; q < size of(Gvox); q + + do
16 FHFRep(pq) = (Fst ◦ FFRep)(pq) · F ∗IDF (pq);

some PDE equations or, alternatively, some graph-based approach. The generation
of IDFs is based on propagation of the distances computed on the boundary of the
mesh in its interior. We suggest to use the method described in (Rustamov, Lipman,
and Funkhouser 2009). We briefly outline the theoretical aspects of this method that
are essential for its reproduction.

4.3.1 Theoretical Background

According to the work (Rustamov, Lipman, and Funkhouser 2009), the computation
of IDF consists of three steps. Let us assume that we have a triangular mesh
with vertices νi ∈ R3, i = 0, ..., n. First, we embed these vertices νi in some m-
dimensional Rm space using a map νi 7→ ν∗i ∈ Rm. This map was suggested to
compute using diffusion maps introduced in (Coifman and Lafon 2006). It can be
obtained by computing an eigendecomposition {λk, φk}nk=1 of a discrete Laplace-
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Beltrami operator of the mesh. Then the diffusion map can be written as

νi 7→ (e−λ1tφ1(ν1), ..., e−λntφn(νi)) (4.15)

where t is the time parameter, λi is the ith eigenvalue and φi is the ith eigenvector
of the Laplace-Beltrami operator. Then the diffusion distance (Goes, Goldenstein,
and Velho 2008) can be written as a pairwise Euclidean distance:

F 2
DF (νi,νj) =

n∑
k=1

e−2λkt(φk(νi)− φk(νj))2 (4.16)

After we have computed diffusion distances on the surface of the mesh, we need
to extend them to the interior of the mesh using barycentric interpolation. If point
p ∈ Gin, then the barycentric representation of it can be defined as:

p 7→ p∗ =
∑
i

ωi(p)νi (4.17)

where ωi(·) are barycentric coordinates (e.g. mean-value coordinates).
Finally, distances in interior of the mesh can be obtained using computed diffu-

sion distances FDF (νi,νj) and barycentric interpolation as follows:

F 2
IDF (p, q) =

∑
i,j

F 2
DF (νi,νj)ωi(p)ωj(q)− (4.18)

− 1

2

∑
i,j

F 2
DF (νi,νj)(ωi(p)ωj(p) + ωi(q)ωj(q))

To compute the barycentric interpolation we used mean-value coordinates that were
defined in 2D case according to (Hormann and Floater 2006) and in 3D according
to (Ju, Schaefer, and Warren 2005).

4.3.2 Interior Distance Field Generation

To construct an HFRep based on FRep and IDF, we need to do several steps ac-
cording to the Algorithm 9. First, we need to extract the boundary of the FRep
object OFRep and use obtained points νi for the computation of the diffusion map
defined by equation (4.15) and, then, diffusion distances according to the equation
(4.16). In Fig. 4.9 we show the generated IDF field for the ’heart’ object. In Fig.
4.9 (a) we can see the generated diffusion map for the current object.

Then, we need to tetrahedralise the obtained mesh. After the diffusion distances
were computed on the surface of the mesh as it can be seen in Fig. 4.9 (b), they are
extended to the interior of the tetrahedralised mesh according to equation (4.18)
using barycentric interpolation with, e.g. mean-value coordinates. In Fig. 4.9 (c)
we show the obtained distances in the interior of the ’heart’ object.

Finally, if we need to obtain distances in the exterior of the object, we convert
the tetrahedral mesh to the voxel representation preserving the computed IDFs.
Thereafter, we can apply an extrapolation operation (e.g., using a wavenumber based
extrapolation (Tam and Kurbatskii 2000)) to the obtained IDF field to propagate
distances to exterior of the object. This operation will allow us to make the IDF field
signed at the last step of the basic algorithm. This step has not been implemented
yet and it is a matter of the future work.
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Figure 4.9: HFRep based on hybridisation of FRep and IDF representations. This
hybridisation was applied to a FRep ’heart’ object. The method for generating the
IDF representation was taken from (Rustamov, Lipman, and Funkhouser 2009). a)
The diffusion map that was computed on the triangulated surface of the FRep ’heart’
object that is used for restoring distances on the boundary of the shape; b) The dis-
tances obtained on the boundary of the object shape that are shown as black isolines;
c) The tetrahedral slice of the mesh with isolines corresponding to the interior dis-
tances. The yellow point ps corresponds to the ’source’ point defined in the object
interior.

4.4 Smoothing an Obtained Distance Field

In this section we briefly consider the step three of the basic algorithm (section
3.6). The obtained UDF function FDF (p) defined by equation (3.44) is discrete and
neither smooth nor continuous as the field obtained with this function is computed
in a finite number of points on a regular grid. To enforce at least C1 continuity
and essential smoothness for the obtained field, we need to use some at least C1

continuous interpolation function. This is achieved using spline functions of degree
m, such as B-splines or bicubic/tricubic splines (Knott 2000). Note, that the inter-
polation function should not introduce additional zeroes in the HFRep field. More
specifically, we suggest to use a bicubic spline or B-spline interpolation for the 2D
case, and a tricubic spline or B-spline interpolation for the 3D case.

4.5 Distinguishing Between Interior, Boundary and

Exterior of the Object

In this section we consider the step four of the basic algorithm (section 3.6). To
distinguish between interior and exterior of the HFRep object OHFRep, we need
to define a sign for the obtained UDF function FDF (p), which should be positive
inside, equals zero on the border of the object OHFRep and negative outside the
object OHFRep.

We suggest to obtain the sign using a smooth step-function that depends on the
values of the FRep function defined at the first step of the basic algorithm. The
step-function Fst(FFRep(p)) should satisfy the following requirements:

1. It should be approximately equal −1 when it corresponds to the exterior of
the FRep object, FFRep(p) < 0;

2. It should be approximately equal to 0 on the boundary of the FRep object,
FFRep(p) = 0;
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Figure 4.10: The illustration of the HFRep function continuity through varying
the slope controlling parameter sl of the step-function. a) Plots of four sigmoid func-
tions Fsig(·): hyperbolic tangent sigmoid function (sl = 10−10, blue line), algebraic
function (sl = 10−9, orange line), hyperbolic tangent function (sl = 104, green line)
and Gudermannian sigmoid function (sl = 104, red line). b) the HFRep ’star’ ob-
ject that was computed with sl = 0.00001 for Fsig, equation (4.19); c) the HFRep
’star’ object that was computed with sl = 0.1 for the Fsig, equation (4.19); all sharp
features are smooth, i.e. the HFRep function is C1 continuous.

3. It should be approximately equal to 1 inside the FRep object, FFRep(p) > 0;

4. It should be at least C1 continuous everywhere in a Euclidean space Rn;

5. It should barely modify the values of UDF.

6. It should not produce additional zeroes in the computed UDF field.

We have identified two classes of functions which satisfy these requirements.
They are sigmoid functions, Fsig(x), x ∈ R, and spline functions, Fsp(x), x ∈ R. In
this work we have tested four different sigmoid functions.

First function we have tested is the hyperbolic tangent sigmoid function (see Fig.
4.10, blue line). By controlling its slope parameter sl it is possible to get nearly
step-function behaviour around zero:

Ssig(x) =
r

1 + exp(−2x/sl)
− r

2
(4.19)

where r controls the range of the S(x) along y-axes. Parameter r should be equal
to two to make the function defined by the equation (4.19) propagate from −1 to
1 along the y-axis. To obtain a step-function like behaviour, the slope parameter
should be equal to some small value, e.g. sl = 10−40.

The second function we have tested is hyperbolic tangent function (see Fig. 4.10,
green line) defined as

Ssig(x) = tanh(sl · x) (4.20)

where sl parameter controls the slope of the function. Its behaviour is similar to the
step-function if sl coefficient is set up as a relatively huge value, for example, 1040.

Alternatively, the fourth function we have tried is an algebraic function (see Fig.
4.10, orange line) that is defined as:

Ssig(x) =
x√

sl + x2
(4.21)
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where sl parameter controls the slope of the function. The sl coefficient should be
close to zero value, e.g. sl = 10−40.

The last function we have tested is Gudermannian sigmoid function (see Fig.
4.10, red line) (W. Olver et al. 2010). In the general case, it is defined as the
solution of the integral of the hyperbolic secant

Ssig(x) =

∫ x

0

a · sech(sl · x)dx = a · arcsin(tanh(sl · x)) =

= a · arctan(sinh(sl · x)) = 2a · arctan(tanh(0.5 · sl · x)), (4.22)

−∞ < x < +∞

If a = 1 the defined function is bounded along Y -axis from −1.5 to 1.5. To clip it
to the new region along Y -axis from −1 to 1 we need to obtain a new value for a,
which is approximately equal to 0.642129. To obtain a step-function like behaviour
the slope parameter sl should be equal to some huge value, e.g. sl = 1040.

4.6 HFRep: Implementation and Results

In this section we discuss our implementation of the introduced framework. The
described theoretical framework is implemented as a C++ HFRep library of objects
and methods for generating and processing such geometric objects that satisfy all
theoretical aspects of the proposed framework. In particular, this implementation
provides the means for dealing with HFRep objects attributes that are parame-
terised by the distance values of at least C1 continuous HFRep function. The library
also provides functionality for generating time-variant heterogeneous HFRep objects
both in 2D and 3D. Finally, we describe our implementation of HFRep that is based
on FRep and SDF representations in SideFX Houdini (Side Effects Software 2020).
All examples in this and the following sections of this chapter were computed on a
laptop with a 2.6 GHz Intel Skylake 6700 processor and 16 Gb of RAM.

The implemented HFRep Library for heterogeneous volumetric modelling pro-
vides methods and tools for generating various HFRep objects both in 2D and 3D.
It includes implemented methods for the generation of FRep objects, computation
of UDFs for these FRep objects that depend on the chosen bi-pair hybridisation,
generation of HFRep objects, assignment of attributes to them and rendering the re-
sult. To render 3D HFRep objects we have implemented a sphere-tracing technique
that was discussed in section 2.6.

The HFRep library is implemented as a C++ library of classes and functions,
that is based on several external libraries including OpenGl (Silicon Graphics 2020),
OpenMP (OpenMP Architecture Review Board 2020), Eigen (Jacob and Guen-
nebaud 2020), GTS (The GNU Triangulated Surface Library 2020) and LibIGL
(Jacobson, Panozzo, et al. 2018). The implementation of the library is available on
the GitHub .

4.6.1 Examples of Attribute Handling

In this subsection we show how we practically work with HFRep heterogeneous
objects in terms of their attributes in the implemented C++ HFRep library.

In subsection 3.6.2, we have outlined the basic algorithm for generating HFRep
attribute functions. However, there is no universal approach for dealing with an

https://github.com/teshaTe/HybridFrep
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Figure 4.11: The illustration of the HFRep heterogeneous object based on the FRep
and SDF representations with incorporated microstructure. a) the rendered HFRep
’sphere’ object using the sphere-tracing method (left) and its isolines (right); b) the
rendered HFRep ’heart’ object using sphere-tracing method (left) and its isolines
(right);

HFRep object attributes because of their various nature. In this subsection we
show how the proposed framework works for some representative attributes, namely,
microstructures, colour and material attributes. We discuss the following examples:
the HFRep microstructures (Fig. 4.11), two heterogeneous objects with defined
procedural marble material parameterised by the HFRep distance (Fig. 4.14), an
HFRep 2D ’H’ object with three different parameterisations of the procedural wood
function by the IDF distance (Fig. 4.13) and a 2D example of metamorphosis
between two HFRep objects (Fig. 4.12).

Microstructures

In Fig. 4.11 we demonstrate how microstructures in interior of the OHFRep object
are integrated. The microstructures were defined as incorporated infinite slabs in
interior of the ’sphere’ and ’heart’ objects using set-theoretic operations defined by
equations (3.59). The infinite slabs were defined according to (Pasko, Fryazinov,
et al. 2011) as follows:

S(p) = sin(ν � p+ φ) + l; (4.23)

where S(p) ≥ 0 is a vector function, with components defined as a set of slabs
orthogonal to either X or Y or Z-axes, ν is a frequency vector with components
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Figure 4.12: The illustration of the metamorphosis between two HFRep textured
objects using the space-time blending and space-time transfinite interpolation tech-
niques. The texturing was made using procedural noise functions. Supplementary
video: figure4.12.mpg

Figure 4.13: The HFRep ’H’ object that is textured using a procedural function
(4.24) of the ’wood’ material. This function was differently parameterised (a), (b),
(c) by computed IDF for the given object.

defined as the distance between parallel slabs along one of the axes, p is a point
p ∈ X, φ is a phase vector with components defined as the position of slabs on
one of the axes with respect to the origin, and l, −1 < li < 1 is a threshold vector
that together with frequency parameter controls the thickness of each slab. Then
the basic algorithm was applied to the obtained function to compute the HFRep
objects with microstructures.

Procedural Textures

We can specify attributes as simple procedural textures. Fig. 4.12 shows two het-
erogeneous HFRep objects OHv ,HFRep with coloured wooden textures that were ob-
tained using a procedural function fwood(p). This function is constructed using hash
table htab(p) allowing for random sampling of the position values p multiplied by
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Figure 4.14: Two heterogeneous HFRep objects a) ’heart’ and b) torus with dif-
ferently parameterised and coloured marble materials.

the frequency ν. The procedural function for the ’wood’ can be defined as follows:

g(p) = htab(p · ν) · c; (4.24)

fwood(p) = g(p)− int(g(p));

where c > 1 is a constant, g(p) is a noise function, int(g(p)) is an integer part of
the function g(p) output value. To parameterise fwood(p) by the distance, we assign
the distance values to the frequency parameter ν.

Then a simple segmentation of the geometric shape of the objects was done (see
Fig. 4.12 (1)). We split the shape into four regions and assign colours using the
obtained HFRep distance function FHFRep(p) and procedural function fwood(p) that
defines the texture of the wood. The generated objects were used as inputs for
2D heterogeneous metamorphosis on the basis of the space-time blending (STB)
(Pasko, Pasko, and Kunii 2005) method to handle geometry transformation and the
space-time transfinite interpolation (STTI) (Fryazinov, Sanchez, and Pasko 2015)
to handle colour transformation (Tereshin, Adzhiev, Fryazinov, Marrington-Reeve,
et al. 2020). This example was implemented using C++ and OpenCV. The imple-
mentation of the method is available on the GitHub .

In another Fig. 4.13 we show three textured ’H’ HFRep objects. The textures
for these objects were generated using three different parameterisations of the pro-
cedural function for the ’wood’ by the computed IDFs. In Fig. 4.14 we show two
3D HFRep objects ’heart’, (a), and ’torus’, (b), with procedurally defined marble
material with different parameterisation by the HFRep distance.

4.6.2 Houdini Implementation: HFRep Based on FRep and
SDF

SideFX Houdini (Side Effects Software 2020) is the commercial software that covers
a diverse amount of areas of 3D production, from procedural geometric modelling
to animation and visual effects. It is an open environment and supports different
scripting APIs that can be used through socket communication. SideFX Houdini

https://github.com/teshaTe/2D-metamorphosis
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provides native support for Python scripting language as well as for its internal
scripting language VEX. SideFX Houdini has tools for volumes processing that
can be defined using integrated OpenVDB voxel library (Museth 2013) or its native
format for representing such type of the data. Both volume implementations support
SDF generation that is important for constructing our hybrid framework. As SideFX
Houdini is widely used in the industry, provides tools for the volumetric modelling
with SDF generation and flexible with providing API, we decided to implement our
hybrid framework that is based on FRep and SDF inside it.

Geometry Representation

The modelling pipeline in SideFX Houdini consists of nodes that define various
operations over different components of the system. These nodes form digital assets
that are constructed by connecting different operators defined in nodes. Some of
them allow the user to add new functionality to the system. Therefore, the modelling
system is flexible and follows the procedural paradigm.

In this subsection, we describe how HFRep objects were implemented in SideFX
Houdini. The procedure for the creation of HFRep objects is wrapped into a digital
asset that can be further used in any project as a separate modelling node. The
HFRep digital asset consists of OpenVDB node operators called VDB and VEX
operator (VOP) nodes. In Fig. 4.15 we show how the HFRep framework is created
inside SideFX Houdini (a), the interface of the HFRep node (b), and rendered
HFRep object (c) that was defined as a blobby object.

The implementation of the HFRep node follows the basic algorithm described
in section 3.6. First, as we are dealing with a VDB voxel-based representation,
we need to define the bounding box that will be further voxelised for creating a
computational grid. Initially, the bounding box is defined as a BRep cube that is
further converted into VDB fog. As we need to obtain an empty VDB volume in
the form of the bounding box, we create an empty volume VDB node and combine
it with already generated fog using ’activity union’ operation. Then we can use the
obtained computational voxel grid for generating FRep objects.

The FRep objects are defined in VEX Volume Wrangle VOP using internal
SideFX Houdini VEX scripting language. Currently, 24 primitives, namely sphere,
box, cylinder, decocube, chair surface, Hunt surface, Pilz surface, heart surface,
blobby, Kushner-Shmitt surface, McMullen model, quartic cylinder, tangled cube,
Klein bottle, Lame surface, tear drop surface, torus, ellipsoid, orthocircle surface,
Barth-Desic surface, elliptic cylinder, octohedron, pyramid and cone are imple-
mented. The list of the primitives can be easily extended, by adding new defining
equations into the VEX Volume Wrangle VOP.

To reduce the amount of voxels in the computational grid after we have generated
a FRep object, we apply a VDB resample operation and compute SDF. It disables
the unused voxels in the initial grid and fits the VDB bounding box to efficiently
store the generated geometry. Then we generate a smoothed SDF using the mean
curvature flow interpolation method. We also need to recompute the FRep field on
the resampled VDB grid to use it for restoring the sign of the HFRep field. We
define an empty VDB volume where we will store the computed HFRep field in the
VEX Volume Wrangle VOP. All the input data is computed on the voxel grids of
the same size. To restore the sign for the HFRep field we use the sigmoid function
defined using equation (4.19). As an output we provide the VDB representation,
the VDB tree data structure and the BRep representation.
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Figure 4.15: The SideFX Houdini implementation of the HFRep representation
based on hybridisation of FRep and SDF. a) The node diagram implementation of
HFRep; b) The user interface of the HFRep node; c) The rendered HFRep blobby
object.

Reinitiliasation Operation for The HFRep Field

As a user can apply various operations to the HFRep objects, the implemented
framework should take into account that some of the operations (see section 3.8)
preserve distance property and some of them violate it. According to the basic algo-
rithm (see section 3.6) we need to apply reinitialiasation operation. This operation
repeats all the steps of the basic algorithm and restore the distance property for the
HFRep object. Let us explain how we have implemented this operation in SideFX
Houdini.

In Fig. 4.16 we show the diagram of the reinitialisation algorithm. The input
for the implemented node is the HFRep scalar field that after one or several applied
operations lost its distance property. First, we need to restore the distance property
and compute the SDF field. We resample and rebuild the SDF field using a VDB
node. Then we need to initialise an empty VDB volume of the same size, where we
will store the regenerated HFRep field. We also need to smooth the computed SDF
field using the mean curvature flow interpolation method. As all fields should be
defined on the voxel grids of the same size, we need to reshape the input HFRep
field voxel grid according to the restored SDF voxel grid. Finally, we can regener-
ate HFRep distance field. This node outputs both the HFRep field and its BRep
representation.
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Figure 4.16: The SideFX Houdini implementation of the HFRep reinitialiasation
operation.

Implementation of the Set-theoretic Operations

Most of the operations, such as offsetting, bending, tapering and some others (see
section 3.8) that are applicable to scalar fields, including SDFs, are already imple-
mented in SideFX Houdini. We have implemented set-theoretic operations defined
by at least C1 continuous R-function system (3.59) and by another at least C0 contin-
uous R-function system (3.58). Our algorithmic implementation of these operations
inside SideFX Houdini is shown in Fig. 4.17 (a).

This node takes as an input a pair of distance-based fields (two HFReps or two
SDFs or their mix). First, we need to obtain a new VDB voxel grid with its size
equal to the sum of two input voxel grids and use it for initialisation of the empty
VDB volume. Then we can pass two input fields to the VEX Volume Wrangle
VOP, where we have implemented set-theoretic operations. The output of this node
can be either an HFRep or SDF field defined in the VDB voxel grid or its BRep
representation. In Fig. 4.17 (b) and (c), we show the result of application of the
set-theoretic intersection operation between ’Barth Desic’ and ’sphere’ objects using
equations (3.59).

We use our implementation of the set-theoretic operations for generating shelled
HFRep or SDF objects. In Fig. 4.18 (a) we show a diagram of the algorithm for
producing a shelled object. In Fig. 4.18 (b) we show an initial object to which we
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Figure 4.17: The SideFX Houdini implementation of the set-theoretic operations
in the form of two R-function systems. a) The diagram of the algorithm; b) A
Barth-Desic functionally defined object; c) A union of the Barth-Desic object with
sphere object defined by HFRep functions.

apply the algorithm for producing a shelled object, and, in Fig. 4.18 (c), we show
the result of the operation.

This operation has one input corresponding to either an HFRep or SDF defined
object stored in a VDB voxel grid. First we need to negatively offset the input
distance field and convert it to VDB. Then we need to reshape an obtained VDB
computational grid according to the input of the node to align voxel grid sizes
before further processing of the volumetric geometry. At the next step we apply
the set-theoretic operation of subtraction to remove a portion of the material from
the interior of the input volumetric shape defined by either an HFRep or an SDF
representation.

If we need to cut the object, we specify an empty VDB volume and define a
cutting plane in VEX Volume Wrangle VOP. Then we can subtract the voxelised
plane from the closed shape of the shelled object defined by HFRep or SDF. The
output of this operation is an HFRep object defined in a VDB voxel grid or its BRep
representation.

Algorithmic Solutions for Defining Various Attributes

There is a huge variety of attributes that can be specified in the interior of the
heterogeneous objects. In this subsection we will describe some methods for their
definition in the interior of the HFRep object that we have implemented in the
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Figure 4.18: The SideFX Houdini implementation of the shelled object. a) The
diagram of the algorithm; b) A union of the Barth-Desic object with sphere object
defined by the functions; c) A shelled object.

SideFX Houdini.
One of the important attributes of interior structure of practically any solid

object is microstructures. The method for the definition of such objects was intro-
duced in (Pasko, Fryazinov, et al. 2011) using a FRep representation. As the intro-
duced hybrid framework is based on the unification of the FRep representation with
distance-based representations, we can implement it and generate distance-based
microstructures. The algorithmic implementation of the node for the generation of
the HFRep microstructures in SideFX Houdini is shown in Fig. 4.19 (a). Its user
interface is presented in Fig. 4.19 (b).

This node has one optional input that can be useful when the computed mi-
crostructures will be inserted in interior of the HFRep or SDF object. This optional
input allows the node to use the same dimensions of the input VDB volume for
computations. This is important if the generated microstructures will be further
inserted in the input object. Otherwise, the size of the volumetric grid that will
be used for computations can be defined manually. The volumetric grid is defined
using Volume VOP. Then in the VEX Volume Wrangle VOP we define slabs with
a round or squared shape using FRep functions. The output of this node will be a
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Figure 4.19: The SideFX Houdini implementation of the HFRep microstructures.
a) The diagram of the algorithm; b) The user interface of the node; c) and d) are
the output of the node: slabs with round (c) and squared shapes (d).
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Figure 4.20: Four stages of the microstructures incorporation inside the HFRep
object that were implemented inside the SideFX Houdini.

fog volume.
To generate the SDF field using VDB operators, we need to convert the computed

fog to SDF using the VDB conversion node. Then to reduce the amount of active
voxels we apply the VDB resampling operation with rebuilding of the SDF field.

Then we follow the logic of the HFRep node architecture described earlier in this
subsection. We define two empty VDB volumes of the same size. One volume will be
used for storing the HFRep representation of the slabs and another for computing
the FRep functions of the slabs on the new VDB grid. Finally, we generate the
HFRep representation of the slabs in the VEX Volume Wrangle VOP.

As the slabs defined by the FRep function are infinite, we need to intersect them
with the HFRep cube with the size slightly less then VDB bounding box to obtain
a watertight HFRep geometry. Microstructures can be rotated in space before their
insertion in the geometry. The output of the current node can be either represented
as a VDB volume or a BRep surface. In Fig. 4.19 (c) and (d), we show the output
of the implemented node. In Fig. 4.19 (c) we show the rendered slabs with a round
shape and, in Fig. 4.19 (d), we show the rendered slabs with a squared shape.

The insertion of the modelled HFRep slabs into an HFRep geometry is straight-
forward. It is based on the algorithms already discussed in this subsection. In Fig.
4.20, we show in a step-by-step manner the process of the microstructure insertion
in the HFRep ’blobby’ object. In Fig. 4.20 (a), we show the generated HFRep
microstructures. Then, as we want to insert them into ’blobby’ object, we need to
execute three steps. First, we need to offset the ’blobby’ object volume as it is shown
in Fig. 4.20 (b). It will correspond to the interior of the object. At the next step,
we intersect the generated offset volume with the microstructures. The result of
this operation can be seen in Fig. 4.20 (c). Finally, we intersect the offset ’blobby’
volume with an initial volume to obtain a shelled object and union the result with
the microstructures. The result can be seen in Fig. 4.20 (d).

In Fig. 4.21 we show a 3D model of the COVID-19 cell that was obtained using
207 set-theoretic operations. In Fig. 4.21 (b), we can see the interior structure of the
COVID-19 cell (Mousavizadeh and Ghasemi 2020). The central part representing
the RNA and N-protein was defined using SDF that was further combined with the
HFRep spherical shell of the cell. The M-protein was also defined as a combination
of the SDF arc and two HFRep spheres. The rest of the elements were defined using
HFRep. Each element is mono-coloured and colours are assigned per-voxel.
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Figure 4.21: The COVID-19 cell model obtained as a combination of the HFRep
and SDF functions. a) Exterior of the virus cell; b) Interior of the virus cell.

4.7 Conclusions

In this chapter we have provided a detailed description of the algorithmic framework
and technical implementation of the basic algorithm introduced in section 3.6.

First, we have described the algorithms for generating the unsigned distance field
at the second step of the basic algorithm. The distance field can be computed using
one of the methods for the generation of SDF, ADF or IDF.

To generate SDFs, we have provided an algorithmic formalisation for two distance
transforms, namely the signed sequential Euclidean distance transform (SSEDT)
and the vector-city vector distance transform (VCVDT). We have also shown how
to implement the signed VCVDT algorithm which was originally introduced as an
unsigned distance transform.

To generate ADFs, we have proposed an extended FIM method for computation
of the solution of the eikonal equation on hierarchical grids. We name this method as
a hierarchical FIM (HFIM). We have provided a detailed description of the algorithm
for the 2D case that covers the process of quadtree generation and computation of the
PHT-spline interpolation. This allows us to obtain at least C1 continuous smooth
unsigned distance field.

Finally, to generate IDFs, we have used an algorithm introduced in (Rustamov,
Lipman, and Funkhouser 2009). We have developed a detailed step-by-step proce-
dure and discussed how to compute IDFs for the FRep objects and explained how
to generate the signed IDFs.

Then, according to the third step of the basic algorithm, we have to smooth
the generated unsigned distance field. We have given some recommendations on
smoothing techniques that can be applied in the context of the proposed hybrid
framework.

As the generated field is unsigned, we need to restore the sign at the fourth step.
To do so, we have identified several continuous smooth-step functions that have a
behaviour similar to the step functions.

Finally, we have discussed our implementation of the hybrid framework for multi-
material heterogeneous modelling. To prove the concept, we have implemented
several examples of the generation of heterogeneous HFRep objects. The attributes
for those objects were defined as a simple per voxel colouring or procedurally (e.g.
textures and microstructures). We have also presented a detailed implementation
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of HFRep based on FRep and SDF in SideFX Houdini.
In the next chapters we will show how some of the algorithms introduced in

this chapter can be applied in such applications as an automatically controlled 2D
metamorphosis between textured shapes and an ’4D Cubism’ artistic application
that is extended with attributes. Both applications utilise the distance-based rep-
resentations for describing 2D textured geometric shapes or heterogeneous 3D/4D
objects with multi-material attributes as input. This proves that the hybrid frame-
work introduced in the previous chapter along with its algorithmic implementation
presented in this chapter can be practically used.
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Chapter 5

2D Heterogeneous Space-time
Blending with Automatic Control

2D imagery is a well-established area dealing with generation and transformation of
both raster and vector images. Image dynamics is a more complex field concerned
with time-variant image transformations. 2D shape modelling is also considered a
well-researched area with its own established set of operations on shapes. However,
these areas are not always well connected to each other. We will consider these mat-
ters from a perspective of a heterogeneous shape modelling and computer animation
using the theoretical and practical framework developed in this work.

Morphing (or metamorphosis) means the visually smooth transition between two
given images or shapes. It is a commonly used operation in computer animation,
visual effects, computer art and design and it is especially relevant for consideration
in the above-defined context. There are several well-known solutions for 2D image
and shape metamorphosis, all of which require establishing some form of one-to-
one correspondences between two given images, boundaries of two given shapes or
between their particular features as it was discussed in section 2.5.

The general case where no correspondences between two given shapes or their
features and no foreground image segmentation are provided has not been fully
investigated yet, although several usage scenarios exist, for example:

1. In-between frames generation in a situation where there is no prior infor-
mation about the source and target frames, such as in a game environment,
where characters and assets are procedurally generated on the fly (Smelik
et al. 2014);

2. In a live TV show or any streaming on-line content, which changes dynami-
cally with no time available for establishing correspondences between frames;

3. In interactive applications aimed at non-professional users, or at users with
specific requirements, where the input can be generic and no correspondences
between source and target frames can be established.

All of the above cases are united by a lack of resources (time, information) or skills
(cognitive, educational) for establishing correspondences between two given shapes
or images. The important thing is that in all mentioned cases there is no need or
no opportunity to establish point-to-point or feature-to-feature correspondences. It

The material in this chapter (except subsection 5.1.1 and figures 5.2, 5.15 and 5.19) was
published in (Tereshin, Adzhiev, Fryazinov, Marrington-Reeve, et al. 2020). Copyright ©2020
Society for Industrial and Applied Mathematics. Reprinted with permission. All right reserved.

133



CHAPTER 5. 2D HETEROGENEOUS SPACE-TIME BLENDING WITH
AUTOMATIC CONTROL

Figure 5.1: The process of generating SDF: a) a textured shape is used as an
input; b) the input shape is binarised; c) the binarised shape is used for computing
the SDF.

is made automatically and no additional in-between frames should be drawn or any
parameters of the process changed by the user.

In this chapter, we present a method for computing metamorphosis of 2D shapes
defined either by raster images with various textured shapes or functionally defined
heterogeneous objects with defined attributes in their interior. The whole process
can be described as heterogeneous object transformations, where a shape and its tex-
ture (as a 2D spatial attribute) are changing synchronously and inter-connectedly. If
the initial and target objects are defined as images then they are converted to signed
distance fields (SDFs). The initial and target objects with specified attributes can be
also defined using distance-based functions including hybrid function representation
(HFRep), SDFs, adaptively sampled distance fields (ADFs) and interior distance
fields (IDFs) (only if the distances are extrapolated in exterior of the object).

Thus, to obtain morphing between two shapes with no correspondences we utilise
a revised version of the metamorphosis technique called space-time blending (STB)
(Pasko, Pasko, and Kunii 2005) for geometry and space-time transfinite interpolation
(STTI) for colours/textures (Rvachev et al. 2001; Sanchez, Fryazinov, Adzhiev, et
al. 2015). Both methods deal with functionally defined objects raised in a higher
dimensional space, where the last coordinate is time. Therefore, such objects can
be considered as time-dependent. Both methods do not require to establish any
correspondences between input and target shapes. However, by adding constraints
it is possible to obtain better shape and texture transformations.

By doing that, we allow for obtaining a smooth transition between source and tar-
get images or functionally defined objects without requirements for shape alignment,
topological conformity or establishing correspondences. The method is computation-
ally inexpensive, artist friendly and can be used in various interactive applications,
including educational games.

5.1 Theoretical Background: The Core Methods

In this section, we outline those specific concepts and methods that will serve as
a basis for the development of theoretical and practical framework for executing
automatically controlled morphing between 2D shapes with textures. We will intro-
duce representational schemes for 2D heterogeneous objects as well as the specific
methods called space-time blending (STB) and space-time transfinite interpolation
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Figure 5.2: The process of generating HFRep with attributes: a) a FRep defined
shape is used as an input; b) an input shape is converted to HFRep; c) for the
obtained HFRep a simple segmentation of the geometric shape is done with further
attribute definition using procedural noise functions parameterised by the distance.

(STTI). These methods will serve as the basis for a novel method for solving the au-
tomatic metamorphosis problem without establishing any correspondences between
two images or functionally defined heterogeneous objects (see section 5.2) as well as
for several mathematically substantiated new technical solutions for more visually
impressive results (see section 5.3).

5.1.1 Object Representations

In this chapter we mainly consider two representations for defining a geometric shape
of the input and target heterogeneous objects. They are SDF and HFRep. We will
briefly outline how input images can be converted to SDFs and how we can generate
HFRep objects with attributes.

If the input and target shapes are given as 2D raster images as it can be seen
in Fig. 5.1 (a), we can convert them to the SDF representation in two steps. First,
we need to binarise the input image (see Fig. 5.1, b) to extract the boundary of the
shape along with its interior. Then we compute the distance to the extracted shape
(see Fig. 5.1, c) using, for example, one of the signed distance transform (SDT)
algorithms discussed in subsection 2.3.5.

On the contrary, if we are dealing with HFRep objects, first, we have to define
the desired shape using FRep functions. Then, according to the basic algorithm
defined for HFRep in section 3.6, we need to compute the unsigned distance field
for the generated FRep object, for example shown in Fig. 5.2 (a). This can be done
using the distance transform algorithm. Finally, we need to restore the sign for the
HFRep field using the FRep field of the initial object. The generated HFRep field
is shown in Fig. 5.2 (b).

The attributes in interior of the obtained HFRep geometric shape can be defined
using a procedural texture. Fig. 5.2 (c) shows a heterogeneous HFRep object with
coloured wooden texture that was obtained using a procedural function fwood(p).
This function is constructed using hash table htab(p) allowing for random sampling
of the position values p multiplied by the frequency ν. The procedural function for
the wood can be defined as follows:

g(p) = htab(p · ν) · c; fwood(p) = g(p)− int(g(p)); (5.1)

where c > 1 is a constant, g(p) is a noise function, int(g(p)) is an integer part of
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Figure 5.3: The concept of Space-Time Blending: two given 2D shapes (two disks
and a cross, top left) are extended to 3D space as half-cylinders (top centre) with a
gap between them. Then a blending union operation is applied, adding material (top
right). Intermediate shapes are presented by cross-sections (bottom centre).

the function g(p) output value. To parameterise fwood(p) by the distance, we assign
the distance values to the frequency parameter ν.

Then a simple segmentation of the geometric shape of the objects was done. We
split the shape into four regions and assign colours using the obtained HFRep dis-
tance function FHFRep(p) and procedural function fwood(p) that defines the texture
of the wood.

5.1.2 Space-Time Blending

As it was mentioned in the introduction to this chapter, the input and target objects
can be defined as a 2D raster images or as a 2D distance-based (SDFs, HFReps,
ADFs, IDFs) heterogeneous objects. These objects can be of an arbitrary topology.
The main method that we are going to use for the realisation of metamorphosis
between such objects without any prior knowledge of their correspondences will be
space-time blending (STB) (Pasko, Pasko, and Kunii 2005). In its essence (see
Fig. 5.3), STB is a geometric operation of bounded blending performed in a higher
dimensional space. If we consider 2D shapes in that higher dimensional space, the
Z axis will be associated with time t. Blending between the initial shape S1 and the
target shape S2 (see Fig. 5.5) happens in the time interval t ∈ [0, 1], where, while
at t ≤ 0 only the first shape S1 exists, then at t > 0 it disappears and at time t = 1
the second shape appears and exists for any t ≥ 1. Let us outline the basics of this
method.

Let us introduce two input shapes S1 and S2 represented in that higher dimen-
sional space by distance-based functions f1t(x, y, t) and f2t(x, y, t) respectively. Then
the resulting function Fb(f1t , f2t , f3t) representing the blending between those two

136



CHAPTER 5. 2D HETEROGENEOUS SPACE-TIME BLENDING WITH
AUTOMATIC CONTROL

Figure 5.4: The intersection of two objects defined by the equations f1t(x, y, t) = x
and f2t(x, y, t) = y, restricted by the bounding solid represented by the function

f3t(x, y, t) = 1−
(
x
4

)2−
(
y
4

)2
defining the bounding disk. This is a simple illustration

of the geometrical meaning of coefficients ai, i ∈ [0, 3].

shapes is:

Fb(f1t , f2t , f3t) = F (f1t , f2t) + a0 · dispb(dr(f1t , f2t , f3t)), (5.2)

F (f1t , f2t) = f1t(x, y, t) + f2t(x, y, t) +
√
f 2

1t(x, y, t) + f 2
2t(x, y, t)

where dr(f1t , f2t , f3t) is a generalised distance function and F (f1t , f2t) is a set-
theoretical union of two shapes defined by the R-functions introduced by Rvachev
(Rvachev 1973). The resulting shape S2 obtained using the STB function Fb(f1t , f2t , f3t)
is affected by the bounding solid defined by the function f3t(x, y, t). The bounding
solid is a functionally defined object which restricts the area in which the actual
blending happens. In most cases it is convenient to use an intersection of two cut-
ting planes which can be seen in Fig. 5.5. In the case discussed here, the blending
operation will be bounded only along the time axis.

The displacement function dispb(dr(f1t , f2t , f3t)) is set up as

dispb(dr(f1t , f2t , f3t)) =

{
(1−d2r(f1t ,f2t ,f3t ))3

1+d2r(f1t ,f2t ,f3t )
, dr(f1t , f2t , f3t) < 1

0, otherwise
, (5.3)

where d2
r(f1t , f2t , f3t) is defined as

d2
r(f1t , f2t , f3t) =

{
d2r1

d2r1+d2r2
, dr2 > 0

1, otherwise
, (5.4)

d2
r1

(f1t , f2t) =

(
f1t(x, y, t)

a1

)2

+

(
f2t(x, y, t)

a2

)2

,

d2
r2

(f3t) =

{(f3t (x,y,t)

a3

)2
, f3t(x, y, t) > 0

0, otherwise
(5.5)
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Figure 5.5: The Space-Time Blending scheme.

The function dr1(f1t , f2t) is a generalised distance function between two shapes
f1t(x, y, t) and f2t(x, y, t). This function dr1(f1t , f2t) provides the algebraic distance
measure to both initial S1 and target shapes S2. The function dr2(f3t) controls the
influence of the function f3t(x, y, t) on the overall shape of the blend.

Coefficients a0, a1, a2, a3 ∈ R are non-zero numerical parameters. To describe
their geometrical meaning let us consider the example shown in Fig. 5.4. Let us
assume that f1t(x, y, t) = x, f2t(x, y, t) = y and as a bounding solid we use disk

f3t(x, y, t) = 1 −
(
x
4

)2 −
(
y
4

)2
. We apply the STB method to these. The coefficient

a0 defines the total displacement of the blending surface from two initial surfaces
S1 and S2, defined by f1t(x, y, t), f2t(x, y, t) and controls how much material will
be added or subtracted from the overall blend (see Fig. 5.4). Coefficients a1 and
a2 are proportional to the algebraic distance between the blending surface and the
original surfaces S1 and S2 defined by f1t(x, y, t) and f2t(x, y, t), and control the
blend symmetry (see Fig. 5.4). The coefficient a3 is proportional to the algebraic
distance between the blending surface and the surface of the bounding solid (see
Fig. 5.4) and controls the influence of function f3t(x, y, t) on the overall blend.

It is not always intuitive to describe a complex shape using FRep. That is why
we suggest to use signed distance fields (SDFs) in a discrete form introduced in
subsection 2.3.5, to define both shapes S1 and S2. This representation allows to
describe any type of geometrical shapes of any complexity in a predictable way.

In the 2D case, the basic STB algorithm can be described as follows:

Step 1. Two shapes S1 and S2 are defined by the functions f1t(x, y, t) and
f2t(x, y, t). These shapes are represented by scalar fields on the X, Y
plane (see Fig. 5.3, top left). Note that both shapes can have radically
different topology.

Step 2. Each shape is used as a cross section of a half-cylinder in 3D space, by
extending them in the Z dimension, with a gap in-between (see Fig.
5.3, top middle).

Step 3. The blending union operation adding material to the gap is applied to
the two half-cylinders (see Fig. 5.3, top right). The blending operation
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can be user controlled by varying ai coefficients.

Step 4. The Z dimension is used as time t. The cross sections of the blending
process along the Z axis between the source S1 and target S2 shapes
are marked with numbers (see Fig. 5.3, top right) and are shown at the
bottom of Fig. 5.3.

The implementation in 3D is essentially the same, but raises the shapes into 4D
and uses the fourth axis to represent time t.

5.1.3 Space-Time Transfinite Interpolation

As we are not only dealing with geometry but also with textures, we need a specific
technique for texture transformations. This means that in addition to a geometric
shape metamorphosis, it is essential to independently define colour and other at-
tribute transformations taking into account the initial and in-between shapes. One
of the possible ways was described in (Sanchez, Fryazinov, Adzhiev, et al. 2015),
where the authors proposed to apply transfinite interpolation (Rvachev et al. 2001)
to attributes such as colour. The proposed method was called space-time transfi-
nite interpolation (STTI) as it deals with functionally defined objects with specified
attribute distributions. The main idea of STTI is that two scalar fields defining
an initial and a target shapes are used for calculating normalised weights ω1(x, y, t)
and ω2(x, y, t) in equation (5.6) that are further used for computing intermediate
colours.

Let us introduce mathematical expressions for the STTI which we are going to
use in the next sections. Let us assume that the initial shape is S1 and that the
target shape is S2, which are defined by the functions f1t(x, y, t) and f2t(x, y, t).
The attribute interpolation between single-partitioned objects can then be defined
as follows:

c(x, y, t) = ω1(x, y, t)c1 + ω2(x, y, t)c2; (5.6)

ω1(x, y, t) =
f2t(x, y, t)

f1t(x, y, t) + f2t(x, y, t)
; ω2(x, y, t) =

f1t(x, y, t)

f1t(x, y, t) + f2t(x, y, t)

where c1 is the colour of the input shape S1, c2 is the colour of the target shape S2,
t ∈ [0, 1] and ω1(x, y, t) as well as ω2(x, y, t) are weights. The following constrains
should be satisfied:

• at the initial time step, t = 0: ω1(x, y, 0) = 1;ω2(x, y, 0) = 0; f1t(x, y, 0) ≥ 0;

• at the final time step, t = 1: ω1(x, y, 1) = 0;ω2(x, y, 1) = 1; f2t(x, y, 1) ≥ 0;

• ω1(x, y, t) + ω2(x, y, t) = 1.

In the general case, if the given shapes S1 and S2 have complex textures with
multiple semi-disjoint partitions with a constant attribute c̃j assigned to jth parti-
tion, the contribution of these partitions to the resulting attribute ci(x, y) at a given
external point (x, y) is:

ci(x, y) =

∑N
j=1 w̃j(x, y)c̃j∑N
j=1 w̃j(x, y)

; w̃j(x, y) =
1

_

fj(x, y)
, i = 1, 2 (5.7)
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where N is the number of partitions, w̃j(x, y) is the weight of each partition and
_

fj(x, y) is a function defining the quadratic Euclidean distance from the external
point (x, y) to the pixel in interior of the object. In the current work we consider
textured objects as single-partitioned objects and use the equation (5.7) for com-
puting the interpolated colours c1 and c2, where N in this case is the number of
pixels inside the textured shape.

5.2 Automatically Controlled 2D Heterogeneous

STB

In this section we describe in a step-by-step manner a novel method for solving
the problem of metamorphosis between 2D heterogeneous objects for generating
in-between textured shapes without the need to set any correspondences. The sug-
gested method combines the techniques described in section 5.1. However, as our
practical example demonstrates, a basic algorithm for using those techniques in their
standard form does not produce completely satisfactory results. We will, therefore,
identify the drawbacks of these techniques.

5.2.1 Heterogeneous STB: Statement of The Problem

Let us formulate the problem of metamorphosis between two objects with textures
as follows: given two textured objects with topologically arbitrary 2D shapes defined
by SDFs or HFReps f1(x, y) and f2(x, y), we aim at realising an automatic meta-
morphosis between those objects with a smooth transition between both geometric
shapes as well as their textures without establishing any correspondences between
them.

5.2.2 Description of The Basic Metamorphosis Method

Let us provide a systematic description of the method. Initial and target shapes S1

and S2 are represented as 2D images on a monocolored background, e.g. black or
white or as a HFRep scalar fields with defined attributes in interior of the shape and
some constant colour assigned in exterior of the shape. The steps of the algorithm
are as follows:

Step 1. If at this step two input shapes S1 and S2 are given as images, then
we convert both of them to binary images to extract the shapes. Then
we apply one of the signed distance transform methods that we have
reviewed in subsection 2.3.5 to obtain discrete SDFs FSDF1(p) : p 7→
FSDF1(p),∀p ∈ Ω and FSDF2(p) : p 7→ FSDF2(p),∀p ∈ Ω representing
those images in a pixel domain Ω where p = (x, y) is a pixel. The sign
of both functions f1(x, y) and f2(x, y) changes on the boundary of the
binarised shapes.

If two input shapes S1 and S2 are defined using an HFRep heterogeneous
object representation OHV,HFRep

, equation (3.19), then we have already
obtained smooth signed distance fields for these shapes. In this case,
we can skip the next step of the basic algorithm and proceed to the
third step. At this step we also have to convert HFReps with defined
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Figure 5.6: The result of applying the basic algorithm to compute the metamor-
phosis between two shapes. Supplementary video: figure5.6.mpg

attributes into 2D images that will be further processed at the last step
of the basic algorithm.

Step 2. For smoothing the discrete SDFs FSDF1(x, y), FSDF2(x, y) and convert-
ing them into a continuous representation in the form of the functions
f1(x, y) and f2(x, y), we apply an interpolation procedure between the
discrete SDFs values.

Step 3. The next step is applying STB to shapes S1 and S2 represented by the
SDFs or HFReps functions f1(x, y) and f2(x, y) in a continuous form
for generating intermediate frames of the metamorphosis. The texture
transformation is not considered yet as STB works only with geometry.

Step 4. To obtain the texture transformations we apply the STTI method de-
scribed in subsection 5.1.3 to the input images. We calculate the sum of
the colour attributes weighted by the distance from the current pixel to
other pixels using equation (5.7) without establishing correspondences.
The resulting images can be created with a transparent background and
superimposed on to any background image.

5.2.3 Advantages and Drawbacks of The Basic Method

Fig. 5.6 demonstrates how the suggested method works. It shows a sequence of
frames, demonstrating metamorphosis between an initial shape S1 represented as
three overlapping disks with different topology and various colours, and a target
shape S2 which is a red cross. We use the equations (5.2)-(5.4) with manually set
coefficients a0, a1, a2 and a3. As there was no automatic procedure for setting those
coefficients we had to experimentally select the values a0 = 2, a1 = 1.3, a2 = 1.5 and
a3 = 1, which resulted in the most acceptable results. The outcome of this example
allows us to make the following conclusions regarding advantages and drawbacks of
the suggested method. The method has the following obvious advantages:

• It allows for generating in-between shapes in terms of both geometry and
textures;
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• Initial and target shapes S1 and S2 can be defined using images or distance-
based representational schemes, e.g. SDFs or HFReps, that are capable to
define heterogeneous objects.

• Initial and target shapes S1 and S2 can be of an arbitrary complexity in terms
of geometry and topology. In particular, they do not need to have similar
shapes and can include disjoint components;

• Initial and target shapes S1 and S2 can overlap each other in-place or they
can be separated in space. The latter is a major issue when attempting
cross-dissolving.

The following drawbacks pertain to this method:

• A problematic smooth transition: some in-between shapes (see Fig. 5.6,
frames 1-3) appear overly similar, whilst there is an obvious non-smooth
jump-wise transition between some neighbouring shapes (see Fig. 5.6, frames
4-5). This is true for both geometry and colour;

• An additional unexpected inflation in some in-between shapes appears (see
Fig. 5.6, frames 3, 5);

• The manual control for choosing the working set of parameters is problematic,
especially for a non-specialist users. To realise an adequate automatic STB
control one needs to have a set of well-defined default parameters a0, a1, a2

and a3 in equations (5.2)-(5.4). However, the method for specifying those
parameters, especially taking into account specific features of the initial and
target objects, has not been developed yet.

In the next section a number of substantiated solutions for the mentioned prob-
lems will be described.

5.3 New Techniques Enhancing The Basic Method

In this section we are going to introduce new techniques for solving the drawbacks of
the method for automatic metamorphosis between 2D textured shapes introduced in
section 5.2. A solution for these can be achieved by either using one of the following
techniques or a combination of them. Let us briefly outline them:

• Half-cylinders smoothing: in subsection 5.1.2 it was mentioned that both
initial and target shapes are considered as cross-sections of half-cylinders in
3D space. As the STB method assumes that half-cylinders are defined using
set-theoretical operations, a rapid change in the gradient of the resulting
shape in the time interval t ∈ [0, 1] can appear because of the influence of
those operations. This rapid change visually results in a ’jump’ during shape
metamorphosis, which can be seen in Fig. 5.6, frames 4-5. This problem can
be solved by smoothing sharp-edges of half-cylinders by additionally applying
STB to them using equations (5.2)-(5.4).

• Automatic control of the STB parameters: it is non-trivial for a non-expert
user to select the satisfactory values for coefficients a0, a1, a2 and a3 defined
in equations (5.2)-(5.4). To simplify this we introduce an algorithm for the
automatic control of the coefficients a0, a1, a2 and a3. For this we use both
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Figure 5.7: The blending operation conducted between two circles and a cross that
are extended to 3D space. A) The result of the blending operation before applying
the smoothing operation; B) The result of the blending operation after applying the
smoothing operation; C) in-between cross-sections for the unsmoothed (C, top) and
smoothed cases (C, bottom).

image processing based techniques and interval arithmetic based estimations
for the coefficient a0 as well as exploiting the geometric meaning of the gen-
eralised distance dr1(f1t , f2t) in equation (5.4).

• New bounding solid functions: some undesirable additional inflation of the
shape during metamorphosis can appear even with automatic control of the
coefficients a0, a1, a2 and a3. For better shape transformation control between
the initial and target objects, we suggest to use two specific functions, each
defining a new bounding solid. One of these functions defines a truncated
cone and the other defines a truncated pyramid.

• Affine translation: we need to introduce a certain restriction on the distance
between initial and target shapes S1 and S2. If the distance exceeds the
defined limit, STB can produce disjoint in-betweenings. The problem can
be solved by applying an affine translation to either initial shape S1 or to
target shape S2 to satisfy the defined distance limit between them. In ad-
dition to this, an affine translation can be used as a shape inflation control
while conducting the metamorphosis using the suggested method described
in subsection 5.2.2.

All four proposed techniques will be discussed in details in this section.

5.3.1 Smoothing of The Half-Cylinders

One of the drawbacks of STB is the presence of fast transitions or ’jumps’ in the
t ∈ [0, 1] interval (see Fig. 5.5) in which the most significant shape transformation
happens. The cause of this is that when STB is applied to a half-cylinder, the result
is bounded by a plane orthogonal to the time axis. The set-theoretic subtraction of
the half-space from the infinite cylinder results in a sharp edge for a half-cylinder
boundary (see Fig. 5.7, A) and the sharp edge remains a significant feature in the

143



CHAPTER 5. 2D HETEROGENEOUS SPACE-TIME BLENDING WITH
AUTOMATIC CONTROL

resulting blend (see Fig. 5.7, A (bottom)). To avoid this effect, instead of using
the set-theoretic subtraction of the half-space, we will use a bounded blending sub-
traction. Smoothing can be achieved by applying a blending intersection operation,
removing material between the infinite cylinder and the bounding planar half-space
for both shapes (see Fig. 5.7, B):

Fb(f1t , f2t , f3t) = F (f1t , f2t) + a0 · dispb(dr(f1t , f2t , f3t)); (5.8)

F (f1t , f2t) = f1t(x, y, t) + f2t(x, y, t)−
√
f1t(x, y, t)

2 + f2(x, y, t)2;

where Fb(f1t , f2t , f3t) is the resulting blending function defining a smoothed half-
cylinder, dispb(dr(f1t , f2t , f3t)) is the displacement defined in equations (5.3)-(5.4),
and F (f1t , f2t) is a FRep set-theoretical intersection operation. If we compare the
two bottom pictures (A), (2) and (B), (2) in Fig. 5.7, we notice that smoothing the
sharp edges of the cylinders results in a smooth transition between two shapes (B,
bottom).

The smoothing process for initial and target shapes S1 and S2 can be described
as follows:

S1 : f1t(x, y, t) = fDF1(x, y, t); f2t(x, y, t) = −t; (5.9)

f3t(x, y, t) = t+ Pc, t ≥ −Pc;
S2 : f1t(x, y, t) = fDF2(x, y, t); f2t(x, y, t) = t− 1; (5.10)

f3t(x, y, t) = Pc − t, t ≤ Pc;

where f1t(x, y, t) is the SDF or HFRep function raised into three-dimensional space
defining either the initial shape S1 or the target shape S2, f2t(x, y, t) is the function
defining a smoothing object as the subtraction of the negative half-space along
time-axis t, f3t(x, y, t) is the bounding function restricting the area where the STB
bounding intersection happens and Pc is the position of the cutting plane on the
time-axis t. These functions are substituted in equation (5.8) for obtaining the
smoothed result. For smoothing both the initial shape S1 as well as the target
shape S2, we need to manually set the coefficients a0, a1, a2 and a3.

In lower half of Fig. 5.7 (part C), we compare the results before (C, top) and
after (C, bottom) application of the suggested smoothing method to both the initial
shape S1 (two circles) and the target shape S2 (a cross). As it follows from the figure,
after applying the smoothing operation to the half-cylinders, ’jumps’ between the
frames have disappeared and there are no more similar in-between shapes.

5.3.2 Automatic Control of Space-Time Blending Parame-
ters

Automatic control of the coefficients a0, a1, a2 and a3 allows us to make our approach
more user-friendly. Here we describe the derivation of the expressions for estimat-
ing the coefficients a0, a1 and a2. We intend to make these coefficients geometry-
dependent for better control of the blending shape in case of both in-place as well
as spaced image morphing. These coefficients should be greater or equal to 1 to
guarantee that a transition between the initial and target shapes is visible. This
procedure depends on the geometrical properties of both initial and target objects
and the geometrical meaning of the coefficients a0, a1 and a2 described in subsection
5.1.2.

Let us assume that a3 = 1. Then, according to equation (5.4) it does not affect
the bounding solid defined by the function f3t(x, y, t). At the initial step we need
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Figure 5.8: Geometrical scheme for estimating the coefficients a0 and a1 = a2,
where S1 is the initial shape and S2 is the target shape.

to find the circumscribed circles around initial shape S1 and target shape S2 shown
in Fig. 5.8. It is not essential that these two circles overlap. The radii of the
circumscribed circles R1 and R2 and their centre coordinates O1 and O2 are known.
As the input data is represented by the images, all the calculations are made in
a normalised coordinate system: x = x/Iw; y = y/Ih, where Iw and Ih are image
width and height.

The proposed estimation instead of using the bounded blending function Fb(f1t , f2t , f3t)
defined in equation (5.2), relies on a blending equation (Pasko, Pasko, and Kunii
2005) without time dependence introduced in the following form:

Fblend(f1, f2) = f1(x, y) + f2(x, y) +
√
f1(x, y)2 + f2(x, y)2 +

a0

1 + dr1(f1, f2)
(5.11)

dr1(f1, f2) =

√(
f1(x, y)

a1,2

)2

+

(
f2(x, y)

a1,2

)2

where f1(x, y) and f2(x, y) are functions with distance property and dr1(f1, f2) is a
generalised distance between the initial and target shapes represented by functions
f1(x, y) and f2(x, y).

The estimation process starts from finding the values for coefficients a1 and a2.
For simplification let us assume that the blending process will be symmetric. This
means that a1 = a2 = a1,2. As stated in (Pasko, Pasko, and Kunii 2005), coefficients
a1 > 0 and a2 > 0 are proportional to the algebraic distance between the blending
surface and the original surfaces S1 and S2 defined by functions f1(x, y) and f2(x, y).

To estimate coefficient a1,2 we suggest the following algorithm: the generalised
distance d2

r1
(f1, f2) used in equation (5.11) is equal to the quadratic distance ||s||2

(see Fig. 5.8) between two shapes S1 and S2. To calculate this distance we need to
solve two equation systems for both circles as well as segment O1O2 to define the
coordinates of points K1 and K2. Then the distance ||s||2 between K1 and K2 can
be defined as:

||s||2 = (xK2 − xK1)
2 + (yK2 − yK1)

2 (5.12)

Let us assume that that the generalised distance d2
r1

(f1(xK2 , yK2), f2(xK1 , yK1))
between shape S1 and shape S2 is equal to the quadratic Euclidean distance ||s||2
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Figure 5.9: Blending between shape S1 consisting of three circles, two of which have
a hole, and an orange cross S2 using the STB and STTI techniques. Supplementary
video: figure5.9.mpg

between these two shapes (see Fig. 5.8). Then we obtain the final estimation for
a1 = a2 = a1,2:

a1,2 =

√
f1(xK2 , yK2)

2 + f2(xK1 , yK1)
2

||s||2
(5.13)

To estimate coefficient a0 we suggest to use interval arithmetic (Moore, Kearfott,
and Cloud 2009). Here we provide an outline of the solution for the interval of the
coefficient a0. Let us assume for simplicity that two input shapes S1 and S2, defined
by functions f1 and f2 respectively, are represented by circumscribed circles (To
simplify further we will use f1 and f2). We bound the blending operation defined
by equation (5.11) using two tangential lines m1 and m2 (see Fig. 5.8), which can
be written in the general case as:

m1(x, y) = A1x+B1y + C1; m2(x, y) = A2x+B2y + C2

where A1, B1, C1 and A2, B2, C2 are constants that can be obtained by solving the
following system of equations:

Aix1 +Biy1 + Ci = R1

Aix2 +Biy2 + Ci = R2

A2
i +B2

i = 1

where i = 1, 2, (x1, y1) are the coordinates of point O1, (x2, y2) are the coordinates
of point O2, R1 is the radius of the circumscribed circle with the centre point O1

and R2 is the radius of the circumscribed circle with the centre point O2.
After solving this system the following coefficients are obtained:

A2,1 = RmXm ± Ym
√

1−R2
m;

B2,1 = RmYm ∓Xm

√
1−R2

m;

C2,1 = R1 − (A2,1x+B2,1y),

and the following coefficients Xm, Ym and Rm are defined as:

Xm =
x2 − x1

Dm

; Ym =
y2 − y1

Dm

; Rm =
R2 −R1

Dm

; Dm =
√

(x2 − x1)2 + (y2 − y1)2.
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The indices for A2,1, B2,1 and C2,1 are obtained using system of equations (5.14) and
are inverted here because we use the normalised coordinate system in which all the
calculations are conducted.

The final intervals for a0 can be written in a simplified form assuming that the
intervals for the functions [f1] = [f1min

, f1max ] and [f2] = [f2min
, f2max ] are as follows:a0 ≤ (A1x+B1y + C1 − (f1 + f2 +

√
f 2

1 + f 2
2 ))(1 + 1

a21,2
(f 2

1 + f 2
2 )),

a0 ≥ (A2x+B2y + C2 − (f1 + f2 +
√
f 2

1 + f 2
2 ))(1 + 1

a21,2
(f 2

1 + f 2
2 ))

(5.14)

For calculating the final interval this inequality equations system (5.14) should
be converted to the interval representation. First let us define the minimum and
maximum values for x and y taking into account that all the calculations are repre-
sented in a normalised coordinate system.

xmin = min(x1, x2)−Ri, xmax = max(x1, x2) +Ri,

ymin = min(y1, y2)−Ri, ymax = max(y1, y2) +Ri,
(5.15)

The index i for the radius Ri is chosen through the index of the variable obtained
using the min /max operation. The intervals for the following functions for the two
circles, written in the normalised form

fi =
√
x2 − 2xix+ x2

i +
√
y2 − 2yyi + y2

i −Ri; i = 1, 2

can be written as

[f1] =

[√
xminxmax − 2x1xmax + x2

1 +
√
yminymax − 2y1ymax + y2

1 −R1, (5.16)√
x2
max − 2x1xmin + x2

1 +
√
y2
max − 2y1ymin + y2

1 −R1

]
,

[f2] =

[√
xminxmax − 2x2xmax + x2

2 +
√
yminymax − 2y2ymax + y2

2 −R2,√
x2
max − 2x2xmin + x2

2 +
√
y2
max − 2y2ymin + y2

2 −R2

]
,

The inequality system of equations (5.14) can be rewritten using interval arith-
metic as

a0 ≤ [ min[g1min
b1max , g1maxb1min

, g1min
b1min

, g1maxb1max ], (5.17)

max[g1min
b1max , g1maxb1min

, g1min
b1min

, g1maxb1max ]]

a0 ≥ [ min[g2min
b1max , g2maxb1min

, g2min
b1min

, g2maxb1max ],

max[g2min
b1max , g2maxb1min

, g2min
b1min

, g2maxb1max ]]

[g1] = [A1xmin +B1ymin + C1 − fsmax , A1xmax +B1ymax + C1 − fsmin
]

[g2] = [A2xmin +B2ymin + C2 − fsmax , A2xmax +B2ymax + C2 − fsmin
]

[b1] =

[(
f1min

f1max + f2min
f2max

)
1

a2
1,2

+ 1,

(
f 2

1max
+ f 2

2max

)
1

a2
1,2

+ 1

]
[fsmin

, fsmax ] = [f1min
+ f2min

+
√
f1min

f1max + f2min
f2max ,

f2max + f2max +
√
f 2

1max
+ f 2

2max
]

The final interval for a0 can then be obtained depending on the following cases:
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• if a0 ≤ [a0min1
, a0max1

] ∩ a0 ≥ [a0min2
, a0max2

] and a0min1
< 0; a0min2

< 0 then
the final interval will be a0 ∈ [a0max1

, a0max2
];

• if a0 ≤ [a0min1
, a0max1

]∩a0 ≥ [a0min2
, a0max2

] and 0 ≤ a0min1
≤ 1; 0 ≤ a0min2

≤ 1
then the final interval will be a0 ∈ [1,max(a0max1

, a0max2
)];

• if a0 ≤ [a0min1
, a0max1

] ∩ a0 ≥ [a0min2
, a0max2

] = ∅ this may be an overesti-
mation for a0 and the final interval will be formed as a0 ∈ [a0min1

, a0max2
];

a0min1
≥ 1.

Fig. 5.9 shows an example of applying the smoothing operation to the half-
cylinders with automatic control of the coefficients a0, a1, a2 and a3. Comparing
these results with those shown in Fig. 5.6, generated using the basic algorithm
described in subsection 5.2.2, one can conclude that here the transition between
initial shape S1 and target shape S2 is smooth and there is no additional inflation
within in-betweens.

In case if circumscribed circles are not overlapping and their centres coincide,
the estimation procedure for a0 defined by system of inequations (5.14) should be
slightly modified. The coefficients a1 = a2 = a1,2 should be set to one and inequality
(5.14) will be rewritten as:

a0 ≤ ((x− xi)2 + (y − yi)2 −R2
i − (f1 + f2 +

√
f 2

1 + f 2
2 ))
(

1 +
1

a2
1,2

(
f 2

1 + f 2
2

))
,

where i = 1, 2 and depending on the chosen radius of the biggest circumscribed
circle max(R1, R2). In this case the blending area is restricted by the circumscribed
circle with the biggest radius. Then using interval arithmetic we can obtain the final
interval:

a0 ≤ [ min[fcmin
b1max , fcmaxb1min

, fcmin
b1min

, fcmaxb1max ], (5.18)

max[fcmin
b1max , fcmaxb1min

, fcmin
b1min

, fcmaxb1max ]]

[fc] = [(xmin − xi)(xmax − xi) + (ymin − yi)(ymax − yi)−max(R2
1, R

2
2),

(xmax − xi)2 + (ymax − yi)2 −max(R2
1, R

2
2)]

i =

{
1, if max(R2

1, R
2
2) = R2

1

2, if max(R2
1, R

2
2) = R2

2

.

where interval for [b1] was introduced in equation (5.17).

5.3.3 Truncated Cone and Truncated Pyramid as a Bound-
ing Solid

An additional inflation caused by the lack of the STB control can be reduced us-
ing a different technique. We suggest using a tighter bounding solid f3t(x, y, t),
represented as either a truncated cone or as a truncated pyramid, equations (5.10).

We assume that the circumscribed circles have been already obtained for both
initial object S1 and target object S2. To avoid shape inflation, we specify that the
entire metamorphosis process happens within the new bounding solid defined by
function f3t(x, y, t).

Let us introduce a truncated cone with circumscribed circles around initial
and target shapes S1 and S2 as its two bases. To obtain the defining function
f3t(x, y, t)cone for the truncated cone (Fig. 5.10, a), a simple linear interpolation
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Figure 5.10: New functions for defining the bounding solid f3t(x, y, t): a) Trun-
cated cone; b) Truncated pyramid. S1 is the initial object and S2 is the target object.

between the centres and radii of the circles is applied, where the parameter k is
defined in the interval k ∈ [0, 1], which is dependent on time t:

f3t(x, y, t)cone = R2
m − (x−

_

Xm)2 − (y −
_

Y m)2 (5.19)

Rm = R1 + (R2 −R1)k,
_

Xm = xc1 + (xc2 − xc1)k,
_

Y m = yc1 + (yc2 − yc1)k, k =
t− t1
t2 − t1

, t1 = −10; t2 = 10.

Here (xc1 , yc1) is the centre coordinates O1 of the circumscribed circle around initial
shape S1, (xc2 , yc2) is the centre coordinates O2 of the circumscribed circle around
target shape S2, R1 and R2 are the radii of the two circumscribed circles and t1 and
t2 are the minimum and the maximum values of the interval time t. We use the
values recommended for t1 and t2 from the article on STB (Pasko, Pasko, and Kunii
2005).

A truncated pyramid is defined (Fig. 5.10, b) with circumscribed rectangular
bounding boxes for initial and target shapes S1 and S2 as its two bases. For this
case we need to define each base of the pyramid as a result of the FRep set-theoretic
intersection operation and linear interpolation between widths the l1, l2, the heights
h1, h2 and the centres of the rectangles.

f3t(x, y, t)pyramid = (Lm − |x−
_

Xm|) ∩ (Hm − |y −
_

Ym|) (5.20)

Lm = l1 + (l2 − l1)k, Hm = h1 + (h2 − h1)k,
_

Xm = xr1 + (xr2 − xr1)k,
_

Y m = yr1 + (yr2 − yr1)k,

k =
t− t1
t2 − t1

, t1 = −10; t2 = 10.

Here (xr1 , yr1) and (xr2 , yr2) are the coordinates of the rectangles’ centres O1 and
O2.

To define a new function for the bounding solid as either a truncated cone or
a truncated pyramid we need to use the FRep set-theoretic intersection operation
∩ between either the cone defined by Fsolid(x, y, t) = f3t(x, y, t)cone or the pyramid
defined by Fsolid(x, y, t) = f3t(x, y, t)pyramid with the two time-cutting planes (t+10)
and (10− t)

f3t(x, y, t) = Fsolid(x, y, t) ∩ (t+ 10) ∩ (10− t) (5.21)
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Figure 5.11: Blending operation conducted between two shapes S1 (caterpillar) and
S2 (butterfly), using a) two half-planes as bounding solid function f3t(x, y, t)planes;
b) truncated pyramid as bounding solid function f3t(x, y, t)pyramid; c) truncated cone
as bounding solid function f3t(x, y, t)cone. Supplementary videos: figure5.11(a).mpg,
figure5.11(b).mpg, figure5.11(c).mpg

Figure 5.12: Blending operation conducted between two shapes S1 (caterpillar),
S2 (three butterflies) in case of in-place morphing using a) two half-planes as bound-
ing solid function f3t(x, y, t)planes; b) truncated pyramid as bounding solid function
f3t(x, y, t)pyramid; c) truncated cone as bounding solid function f3t(x, y, t)cone. Sup-
plementary videos: figure5.12(a).mpg, figure5.12(b).mpg, figure5.12(c).mpg

In Fig. 5.11 we present the results of applying three different methods with
automatic control of the coefficients a0, a1 and a2: (a) is the result of using two half-
planes defined by function f3t(x, y, t)planes = (t+10)∩(10−t), (b) is the result of using
the truncated pyramid defined by function f3t(x, y, t)pyramid and (c) is the result of
using the truncated cone defined by function f3t(x, y, t)cone. The metamorphosis
shape obtained using the two half-planes defined by function f3t(x, y, t)planes is quite
similar to the metamorphosis shape obtained using function f3t(x, y, t)pyramid, set
up as a truncated pyramid.

From Fig. 5.11 follows:

• Using the truncated pyramid (see Fig. 5.11, c) as the new bounding box
provides a more visually accurate result compared to that one obtained to
the two half-plane bounding solid (see Fig. 5.11, a), but it produces a slightly
more inflated result.

• Using the truncated cone (see Fig. 5.11, b) as the new bounding box results
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Figure 5.13: Blending operation conducted between two shapes S1 (caterpillar)
and S2 (butterfly) using affine translation. Supplementary video: figure5.13.mpg

in less inflation. The in-between shapes in this case are also quite different.
Note that for the truncated cone, better (smoother) results can be obtained
when the number of frames in the animation sequence is increased.

The criterion for using one of the suggested new bounding boxes is as follows:
if the distance d (see Fig. 5.10) between the centres of two circumscribed circles
satisfies the condition d ≤ (R1 + R2), the blending shape obtained with automatic
estimation of coefficients ai, i = 0, 1, 2, 3 might still have some additional inflation.
In case of an in-place animation, for example, when there is one big object trans-
formed into several smaller ones (see Fig. 5.12, a), it is recommended to apply one
of the introduced bounding solids. As it follows from Fig. 5.12 (b), using the trun-
cated pyramid produces slightly less inflated results compared to the bounding solid
defined as two bounding planes in Fig. 5.12 (a). Using the truncated cone provides
even better results (see Fig. 5.12, c).

5.3.4 Affine Translation for Space-time Blending Shape Con-
trol

If two shapes S1 and S2 are placed too far away from each other, there is a chance
that disconnections in in-between shapes might appear. To avoid this, shape S1 can
be left static and target shape S2 should be shifted closer to shape S1 or vice versa.
This can be achieved by applying an affine translation to shape S2.

The criterion for applying the affine translation is the following: if the distance d
(see Fig. 5.10) between the centres of two circumscribed circles satisfies the condition
d� (R1 +R2), where R1 is the radius of the first circle and R2 is the radius of the
second circle, then the two objects S1 and S2 are too far from each other. In this
case there is a chance that the algorithm for automatic estimation of the coefficients
ai, i = 0, 1, 2, 3 will not produce satisfying results, so additional enhancement is
essential.

Affine translation allows for reducing the additional shape inflation during the
STB metamorphosis. According to the algorithm presented in subsection 5.2.2, at
the first step we need to calculate SDT for both input and target shapes S1 and S2.
Then the geometric centres of the two shapes are superimposed at the initial time
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Figure 5.14: Metamorphosis between two textured shapes using SDFs, STB and
STTI, where initial shape S1 is a textured sun and target shape S2 is a textured cross.
Supplementary video: figure5.14.mpg

step. If two shapes are inside of each other, we need to calculate the interval for
a0 according to equation (5.18). Then, we need to check whether the shifted shape
S2 is still within the borders of the circumscribed circle around the static shape S1.
This can be achieved by solving the system of equations for both circles.

Two tangential lines can be drawn to these two circles when this system have
two non-coincident real solutions. In that case the algorithm for automatic control
of coefficient a0 described in subsection 5.3.2 can be used for the rest of the motion
of shape S2. After defining a0, a1 and a2, at each step, we apply mapping of the
SDT values from the initial position of shape S2 to its current position to compute
the in-between shapes.

After each SDT mapping is done, STB is calculated according to equations (5.2)-
(5.4) and an affine translation is applied to the result. The image sequence obtained
after applying the affine translation can be seen in Fig. 5.13, where the butterfly
(target shape, S2) is emerging from the caterpillar (static initial shape S1) while
moving towards its initial position. This operation does not produce any additional
shape inflation. At each step we use automatic control for recalculation of the
coefficients a0, a1 and a2 described in subsection 5.3.2 and apply a smoothing half-
cylinder operation to both shapes as described in subsection 5.3.1.

5.4 Algorithmic Implementation of Automatically

Controlled Heterogeneous STB

In this section we describe the implementation of the basic algorithm introduced in
subsection 5.2.2 with enhancing techniques that we have described in section 5.3.
We have implemented our algorithm using C++, the OpenCV (Intel 2020) library
for the basic image handling and OpenMP (OpenMP Architecture Review Board
2020) for multi-threading. All examples were computed on a laptop with a 2.6 GHz
Intel Skylake 6700 processor and 16 Gb of RAM. The implementation of the method
is available on the GitHub .

https://github.com/teshaTe/2D-metamorphosis
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Figure 5.15: The algorithmic scheme of the 2D heterogeneous STB. a) The algo-
rithm for the case when input and target object are defined by the images; b) The
algorithm for the case when input and target objects are heterogeneous objects de-
fined by the HFRep or SDF functions;

Let us outline the enhanced basic algorithm with technical details and recommen-
dations at which step to apply the introduced in this chapter techniques following
the Fig. 5.15 with algorithm diagrams (a) and (b). The algorithm (a) corresponds
to the case when the input and target shapes are defined as raster images, while the
algorithm (b) corresponds to the case when input and target shapes are represented
as an HFRep or SDF scalar fields with specified attribute distributions.

Step 1. First we define the input and target geometric shapes S1 and S2 with
textures. They can be presented as images (see algorithm in Fig. 5.15,
a) or using HFReps or SDFs with specified attribute distributions (see
algorithm in Fig. 5.15, b).

Step 2. Then, if the input and target geometric shapes S1 and S2 with textures
are given as images (see Fig. 5.15, a), first, we have to binarise them
to extract the geometric shapes. Then we can apply the signed sequen-
tial Euclidean distance transform (SSEDT) which implementation was
discussed in subsection 4.1.1 to compute SDFs for each image. The
computed SDFs are discrete. We suggest to smooth them using some
spline interpolation (e.g. B-splines or bicubic splines) to convert them
to a continuous distance field.

Otherwise, if the input and target geometric shapes S1 and S2 are de-
fined using HFReps or SDFs with specified attribute distributions (see
Fig. 5.15, b), first, we need to compute images with textures for them
that will be used during the next steps of the algorithm. If the geo-
metric shapes are defined using HFReps, we do not need to additionally
smooth them as this operation was already applied during the construc-
tion procedure of HFRep. In case of SDFs, we suggest to apply same
smoothing operation as we have discussed earlier at this step.

Step 3. At this step we will use images of the input and target geometric shapes

153



CHAPTER 5. 2D HETEROGENEOUS SPACE-TIME BLENDING WITH
AUTOMATIC CONTROL

Figure 5.16: Metamorphosis between two textured shapes S1 (text ’LOTUS’) and
S2 (lotus flower) using SDFs, STB and STTI. Supplementary video: figure5.16.mpg

S1 and S2 for estimating STB parameters a0, a1, a2 and a3. According
to the algorithm described in subsection 5.3.2, first, we have to find
circumscribed circles around the geometric shapes S1 and S2. This is
done using OpenCV library. Then we follow the mathematical outline
described in subsection 5.3.2 to compute the parameters. In general
case, we assume, that parameter a3 = 1. Note that the textures are not
considered at this stage.

Step 4. At this step we apply the smoothing half-cylinders algorithm described
in subsection 5.3.1 to both input and target shapes S1 and S2 repre-
sented with SDFs or HFReps.

Step 5. Then we need to define one of the bounding solids defined by the func-
tion f3(x1, x2, t) (t is the time) that will be further used in the STB
computation at the next step. Here we can apply one of the following
bounding solids: two half-planes, truncated pyramid or truncated cone.
To construct truncated pyramid we have to find circumscribed circles
around input and target geometric shapes S1 and S2. To construct
truncated cone we have to find circumscribed rectangles around input
and target geometric shapes S1 and S2. The rest of computations are
made according to subsection 5.3.3. Truncated pyramid and truncated
cone could significantly reduce the undesired additional inflation of the
inbetween shapes.

Step 6. The next step is applying the space-time blending (STB) to shapes
S1 and S2 represented by functions f1(x1, x2) and f2(x1, x2) that were
smoothed using smoothing half-cylinders technique applied at the fourth
step. This step is applied according to the equations (5.4)-(5.3). The
texture transformation is not considered yet as STB works only with
geometry.

Step 7. To get intermediate shapes with textures we apply the STTI method.
We calculate the sum of the colour attributes weighted by the distance
between a currently sampled pixel and the rest of the image pixels us-
ing equation (5.7) without establishing any correspondences between
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Figure 5.17: Metamorphosis between a multiply subdivided, textured star shape S1

and a textured moon S2 using the SDFs, STB and STTI techniques for a radical
topology change. Supplementary video: figure5.17.mpg

coloured partitions. The resulting images can be made with transpar-
ent background and superimposed on any background image.

Step 8. Finally, we can render the result as 2D images.

On the basis of some experiments that we conducted, we suggest setting up the
parameters for automatic control in case of applying one of the bounding solids
(truncated pyramid or truncated cone) as follows:

• for the truncated cone coefficient a3 = 0.03·min(R1, R2); for smoothing of the
half-cylinders the coefficients should be: for the initial shape S1: a0 = −0.8,
a1 = a2 = a3 = 1 and for the target shape S2: a0 = −0.5, a1 = a2 = a3 = 1.

• for the truncated pyramid coefficient a3 = 0.13 ·min(R1, R2); for smoothing
of the half-cylinders the coefficients should be: for the initial shape S1: a0 =
−0.3, a1 = a2 = a3 = 1 and for the target shape S2: a0 = −0.5, a1 = a2 =
a3 = 1.

If it is essential to use affine translations described in subsection 5.3.4, it should
be applied between the third and fourth step of the suggested algorithm. Note, that
coefficients a0, a1, a2 and a3 should be evaluated at each step of shape translation
using the algorithm described in subsection 5.3.2.

5.5 Applications and Results

In this subsection we will discuss the results of application of the proposed method,
shown in Figs. 5.9, 5.11, 5.13, 5.14, 5.16, 5.19, 5.21 and 5.22. In table 5.1 we
present the comparative timing results in frames per second (FPS) to demonstrate
that interactive frame rates have been achieved.

For the examples shown in Figs. 5.9, 5.14, 5.16, 5.17, 5.19, 5.21 and 5.22 we use
the following values as coefficients a0, a1, a2 and a3 for smoothing half-cylinders (see
subsection 5.3.1), which were obtained from a number of conducted experiments.
On the basis of this we suggest the following values for the initial shape S1: the
position for the cutting plane Pc = 5 and coefficients a0 = −0.3, a1 = a2 = a3 = 1.
For the target shape S2 we suggest the following values: the position for the cutting
plane Pc = 5 and coefficients a0 = −0.5, a1 = a2 = a3 = 1.
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Execution: Sequential / Parallel / Parallel + Scaled Image

Figure Average FPS Min FPS Max FPS a0 interval a1,2

Fig. 5.9 1.69 / 3.37 / 18.82 40.19/ 32.33 / 46.25 0.10 / 0.22 / 2.82 [2.49, 3.85] 1.12

Fig. 5.11
a) 0.78 / 1.64 / 13.46 38.98 / 31.08 / 42.38 0.08 / 0.17 / 2.21 [0.48, 3.26] 1.78

b) 1.23 / 2.42 / 16.18 38.32 / 30.61 / 42.63 0.14 / 0.29 / 3.76 [0.48, 3.26] 1.78

c) 0.52 / 1.20 / 10.47 35.32 / 27.66 / 40.33 0.07 / 0.17 / 2.22 [0.48, 3.26] 1.78

Fig. 5.13 0.10/ 0.14 / 2.52 0.09/ 0.10 / 1.63 0.02/ 0.03 /1.07 - -

Fig. 5.14 0.71 / 1.88 / 9.36 33.82 / 27.12 / 41.19 0.05 / 0.13 / 0.34 [-20.22, 2.58] 1.00

Fig. 5.16 0.59 / 1.29 / 12.30 33.70 / 26.88 / 40.20 0.04 / 0.10 / 1.21 [1.75, 2.85] 1.30

Fig. 5.17 0.49 / 1.26 / 12.72 37.36 / 26.40 / 40.32 0.04 / 0.09 / 1.33 [-21.01, 2.57] 1.00

Fig. 5.19 0.88 / 1.65 / 11.04 33.84 / 26.02 / 40.07 0.08 / 0.13 / 1.68 [-9.39, 1.11] 1.76

Fig. 5.21 1.23 / 2.44 / 20.10 34.28 / 29.62 / 41.10 0.06 / 0.14 / 1.93 [-18.58, 2.06] 1.00

Fig. 5.22 0.49 / 1.11 / 12.72 37.36 / 28.61 / 40.32 0.04 / 0.09 / 1.33 [3.57, 3.76] 1.00

Table 5.1: Comparison table of execution speeds for the image metamorphosis used
in the article with timings given as Frame per Second (FPS). In case of an affine
translation (see Fig. 5.13) the final two columns are left empty as intervals a0 and
a1,2 are dynamically recalculated at each step.

Figure 5.18: Comparison of the loss in quality between scaled and unscaled images
one while conducting metamorphosis; a) image scaled from 512 × 512 to 256 × 256
and after application of STB and STTI scaled back to 512× 512; b) original picture
without scaling.

In Figs. 5.9, 5.14, 5.16, 5.17, 5.19, 5.21, 5.22 and 5.23 we show the results
obtained using the combination of the suggested basic method with automatic con-
trol of the coefficients a0, a1 and a2 and smoothing of the half-cylinders. As it
follows from the figures, this combination of the techniques produces good quality
in-between shapes with a smooth transition between them and without an additional
undesired inflation. From table 5.1, it can be seen that this combination of methods
works with interactive rates.

In Fig. 5.11 we demonstrate the result obtained using the combination of the
suggested basic method with automatic control of the coefficients a0, a1 and a2,
smoothing of the half-cylinders and applying two new bounding solids. As dis-
cussed in subsection 5.3.3 the result will be slightly inflated when using a truncated
pyramid, and the shape of the in-betweens will be different, however, they will be
without an additional inflation when using a truncated cone instead. From table 5.1
it can be seen that both new bounding solids slow down the calculation, albeit not
drastically.

In Fig. 5.13 we demonstrate the result obtained using the combination of the
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Figure 5.19: Metamorphosis between two geometric shapes defined by HFRep func-
tions with defined attributes using procedural function of the wood. Supplementary
video: figure5.19.mpg

suggested basic method with automatic control for the coefficients a0, a1 and a2,
smoothing the half-cylinders technique and applying an affine translation to the
target shape. As it follows from the figure, applying an affine translation produces
the results without any additional inflation. Note that according to table 5.1, apply-
ing an affine translation can significantly reduce the calculation speed for the whole
metamorphosis.

In Figs. 5.16, 5.17, 5.19, 5.21, 5.22 and 5.23 we demonstrate that the introduced
method with automatically controlled metamorphosis can handle transformations
between multiple objects and objects with complex topologies and different textures
while simultaneously preserving smoothness of the transition and without undesired
inflation. In Figs. 5.17, 5.19, 5.21, 5.22 and 5.23 we also demonstrate that our
method can handle in-place morphing between initial and target shapes, in most
cases producing semantically meaningful in-betweens.

In Fig. 5.23 we present the morphing sequence of the textured curved symbol
into the textured cross. The texture applied to the curved symbol can be considered
as a texture with big changes in colour contrast. As it follows from this figure, our
method produces reasonably good results.

In Figs. 5.17 and 5.22 the initial shapes consist of disjoint, coloured patterns
that are then morphed into a target shape. In these examples using tiled shapes
we imitate the partitioning of textured objects and show that our method produces
satisfactory colour interpolation results without establishing any correspondences
between partitions. To make the segmentation of the textured shape a fully auto-
matic method, establishment of correspondences between the partitions is required,
which is a matter of future work. In table 5.1 we show that the generation of the
frame sequences for these examples is relatively fast, even for full image resolution.

In Fig. 5.19 we show the result of the application of the introduced metamorpho-
sis method to two textured HFRep objects defined by the functions. The objects are
subdivided into several areas for further definition of the attributes in their interior.
The textures in interior of the objects are defined using procedural function of the
wood (5.1).

With our method we can achieve interactive frame rates by conducting calcula-
tions on scaled images and then scaling them back to full size. This results in a loss
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Figure 5.20: Metamorphosis between two textured shapes using suggested method
a), c) and cross-dissolving b), d), where the initial shape S1 is the bud and the target
shape S2 is the flower. Supplementary videos: figure5.20(a).mpg, figure5.20(b).mpg,
figure5.20(c).mpg, figure5.20(d).mpg

of image quality of around 15− 20 percent which can be seen in Fig. 5.18.
As a potential application, we consider an educational game for children with

cognitive deficits, including those who are severely disabled. The concept is illus-
trated in Fig. 5.16. We have already started working on such a much needed game
with psychologists.

In Fig. 5.20 we compare the results of using our basic method with automatic
control of the coefficients a0, a1 and a2 and smoothing of the half-cylinders with
results obtained using the cross-dissolving method. From Fig. 5.20 follows that
even though cross-dissolving is a quick linear interpolation, it does not work for
gradually changing shapes nor shapes that are placed distantly from each other.
Methods working with user defined correspondences can produce more intuitive
image transformations, but using these methods is beyond the scope of this work.
In addition, providing sensible correspondences in the case of radically different
object topology is not an easy or obvious task, especially for non-expert users.

5.6 Conclusions

In this chapter we have presented a novel theoretical and practical method for deal-
ing with 2D textured shapes transformations during metamorphosis. It allows to
obtain a smooth transition between source and target textured objects with different
topologies without establishing any correspondences.

Most other methods do not provide automatic metamorphosis without establish-
ing some form of correspondences between two given objects or their features. The
most relevant methods to compare with in the context of automatically controlled
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Figure 5.21: Metamorphosis between two textured shapes using SDFs, STB, STTI
techniques and smoothed cylinders, where the round object is the initial shape S1 and
’i’ is the target shape S2. Supplementary video: figure5.21.mpg

Figure 5.22: Metamorphosis between two textured shapes S1 (tiled textured sun)
and S2 (textured ark) using SDFs, STB and STTI techniques for the case of the
in-place morphing. Supplementary video: figure5.22.mpg

metamorphosis are the optimal mass transport based methods, which do handle the
morphing in terms of both geometry and images even if the published works do not
provide many examples of metamorphosis between textured objects. Our method
can produce the in-between frames of reasonable (not always the highest) quality. It
is computationally light and oriented towards non-professional users in the context
of mainly artistic applications, especially requiring interactive rates, such as games
and live streaming.

The proposed basic algorithm relies on a combination of three techniques that
were used in the context of the 3D modelling of heterogeneous objects. These
techniques are SDFs, STB and STTI. The SDF representation is used for defining
functionally based objects. We have shown that HFRep can be also used as one
of its hybridisations based on FRep and SDF. In this case, 2D textured shapes are
defined using an extended hypervolume representation for HFReps, introduced in
section 3.4. The STB technique is used for generating a smooth sequence of the
in-betweens and controls only the geometry transformation, while STTI method
produces metamorphosed textures within generated intermediate geometric shapes.

We have identified a number of STB drawbacks in our basic algorithm that
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Figure 5.23: Metamorphosis between two textured shapes S1 (curved shape with
high frequency texture) and S2 (textured cross) using SDFs, STB and STTI tech-
niques for the case of the in-place morphing. Supplementary video: figure5.23.mpg

we have addressed by introducing several mathematically substantiated techniques.
The half cylinders STB smoothing technique has solved the problem of fast transi-
tions between the initial and target shapes. The STB method is controlled by four
parameters a0, a1, a2 and a3 that are not exactly intuitive to choose for the non-
experienced user. Therefore, we have introduced an automatic control for choosing
these parameters that allows a user to obtain a visually appealing in-between shapes.
For better control of the shape of the in-betweens generated using the STB method,
we have introduced two bounding solids, namely a truncated cone and a truncated
pyramid. The better shape control of the in-betweens can also be achieved by apply-
ing affine transformations to the target shape. These new techniques can be applied
separately and in combination.

We have also conducted numerous experiments to find the most suitable values
for parameters on which various morphing effects depend. Finally, we have imple-
mented a number of representative test examples proving that the approach does
work for in-place morphing, spaced images morphing and that it provides interactive
frame rates which is important for many emerging applications. The paper describ-
ing this method was published in SIAM Journal on Imaging Sciences (Tereshin,
Adzhiev, Fryazinov, Marrington-Reeve, et al. 2020).
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Chapter 6

3D Heterogeneous Space-Time
Blending in Artistic Applications

In this chapter we present a novel method called the heterogeneous space-time blend-
ing (HSTB). This method is an extension of a well-established space-time blending
(STB) (Pasko, Pasko, and Kunii 2005) described in detail in the previous chap-
ter. The STB-based technique had been developed to execute 2D metamorphosis
(morphing) between two geometric shapes. As to metamorphosis between the at-
tributes of the initial heterogeneous object and the target heterogeneous object, it
was implemented using the space-time transfinite interpolation (STTI) (Fryazinov,
Sanchez, and Pasko 2015). In fact, those two techniques were applied to geometric
and attribute components of the heterogeneous objects separately.

A natural idea is to develop a unifying method allowing to deal with blend-
ing and metamorphosis between heterogeneous objects without separately dealing
with their geometric and attribute components. As we will show in this chapter, the
STB method, used for geometry transformation, can be naturally combined with the
space-time transfinite interpolation (STTI) used for attribute (e.g. colour) trans-
formations. This newly developed HSTB method allows geometry and attribute
transformations to be interconnected and happen simultaneously in an higher di-
mensional specific STB space.

We then show that all the specific 2D metamorphosis techniques introduced in
the previous chapter can be extended for the HSTB method to work efficiently in 3D
for heterogeneous objects defined by distance-based functions that are at least C0

or C1 continuous. Finally, as proof of the concept, we show how how the developed
method can be applied to deal with dynamic (time-variant) textured objects in the
context of such artistic application as ’4D Cubism’ that was described in (Corker-
Marin, Pasko, and Adzhiev 2018) and was originally implemented for volumetric
geometric shapes without attributes.

6.1 Basic Algorithm for Computing 3D Hetero-

geneous Space-Time Blending (HSTB)

In this section we describe the basic HSTB algorithm. Whilst it is universal in its
essence with respect to the attributes of different nature, we will illustrate our ap-
proach using such an important and representative attribute as colour. Technically,
this means that a higher-dimensional specific STB space in which the geometry

Part of this chapter was published in (Tereshin, Anderson, et al. 2020).
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transformation is executed is associated with a 4D colour space with an added time
dimension.

Various attributes can be defined for initial and target objects O1 and O2 that can
be used in the HSTB method. The algorithmic implementation of the method can
also slightly varies as attribute transformation can be computed either simultane-
ously with geometry transformation in a higher dimensional STB space or separately
after it. To describe the steps of the basic algorithm, for simplicity we consider colour
as an attribute defined for initial and target objects O1 and O2.Our basic algorithm
approach is formulated as follows:

1. The definition of initial and target heterogeneous objects (Fig. 6.1, frame
1) as hypervolumes using some distance-based functions FDF1(p, A1) and
FDF2(p, A2) with attribute sets A1 and A2. We split them into two parts:
geometric FDF (p) and attribute A(a∗1, a

∗
2, ..., a

∗
n), where p is a point in n-

dimensional Euclidean space. The geometric part can be defined using an
SDF function:

FDF (p) =

{
d(p, ∂G) if p ∈ G
−d(p, ∂G) otherwise

where FDF (p) corresponds to SDF function, d(p, ∂G) is the minimal signed
Euclidean distance between point p and the surface ∂G of the object. Alter-
natively, the geometric part can be defined as an HFRep function:

FDF (p) = (Fst ◦ FFRep)(p) · Fsm(p, ∂G)

where FDF (p) corresponds to HFRep function, (Fst ◦ FFRep)(p) is the com-
position of the step-function Fst(·) and FRep function FFRep(p) that pro-
vides sign to the computed smoothed unsigned distance field Fsm(p, ∂G) =
(FI ◦FDF )(p, ∂G). Here FI is a spline-based interpolation function. Both ob-
jects can also be a combination of different DF types, e.g. SDFs or HFReps.

2. The use of attribute functions (e.g. procedural) A1 and A2 to define attribute
(colour) distribution according to the defining functions. We consider that
attribute functions A1 and A2 for both objects O1 and O2 are defined as
colour fields A1(a∗1, ..., a

∗
n) = c1(r1, g1, b1) and A2(a∗1, ..., a

∗
m) = c2(r2, g2, b2).

They are defined for each point of the objects O1 and O2 with the defining
functions FDF1(p) ≥ 0 and FDF2(p) ≥ 0.

3. Before applying STB method to both objects O1 and O2, we can use STB
automatic control described in the previous section for setting up STB con-
trolling coefficients a0, a1, a2 and a3.

4. To apply STB to both objects O1 and O2, we raise their defining functions
to the higher dimension and make them dependent on time t, applying an
additional STB operation defined by equations (5.4) to each object to ob-
tain a smooth transition between them (smoothing half-cylinders technique,
equations (6.7)):

Fb(f1t , f2t , f3t) = f1t(p, t) ∩ f2t(p, t) + a0dispb(f1t , f2t , f3t , a1, a2, a3)

where f1t(p, t) is the DF function raised to a higher-dimension, defining either
object O1 or object O2, f2t(p, t) is the function defining a smoothing object
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Figure 6.1: The heterogeneous STB metamorphosis between ’Barth Desic’ sur-
face and sphere that was applied with manual control. Supplementary video: fig-
ure6.1.mpg

as the subtraction of the negative half-space along time-axis t, f3t(p, t) is
the bounding function restricting the area of the STB bounding intersection
(∩) and Pc is the position of the cutting plane on time-axis t. At this step
we can manually define which function for the bounding solid to use (two
half-planes, truncated pyramid or truncated cone).

5. For each point in which blending function Fb(f1t , f2t , f3t) ≥ 0 and defining
functions f1t < 0, f2t < 0 of the objects, in the general case any operation
over attributes can be applied. Here we apply STTI defined by equations
(5.6)-(5.7) that is also executed in a higher dimension. Colours c1 and c2

can be defined in RGB or HSV colour spaces. If HSV colour space is used,
we need to find the shortest path between two ’hue’ values, and linearly
interpolate between them, weighted by w2, (equation (5.6)) while using the
STTI approach for ’saturation’ and ’value’ values. Finally, STTI is applied
and the resulting colour c is converted back to RGB colour space (see Fig.
6.9, B).

6.2 Automatic Control for The 3D Space-Time

Blending

As we have already discussed in the previous chapter, the space-time blending (STB)
method has several drawbacks. One of them is the manual control of the method,
particularly, the definition of STB coefficients ai, i = 0, .., 3 presented in system
of equations (5.4). Another one is an non-smooth shape transformation. Finally,
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Figure 6.2: Geometrical scheme for estimating the coefficients a1 = a2, where the
initial shape is defined by function f1 and the target shape is defined by the function
f2.

the STB method could produce inflated results. To solve these problems for 2D
applications, we have introduced automatic control for STB coefficients ai, smooth-
ing half-cylinders operation and new bounding solids. In this section we extend
introduced techniques to 3D.

6.2.1 Automatic Control of STB Coefficients

In this subsection we extend to 3D the automatic control for STB coefficients a1

and a2, which we have already discusses in subsection 5.3.2. Let us assume that we
have initial and target objects O1 and O2 defined by distance functions f1(p) and
f2(p) (e.g. HFReps, SDFs etc.). Let us also assume for simplicity that initial and
target objects are defined as a circumscribed spheres around them. The radii of
the circumscribed spheres R1 and R2, and their centre coordinates M1 and M2 are
known.

The proposed estimation for the coefficients ai also relies on a blending equation
(Pasko, Pasko, and Kunii 2005) without time dependence that in 3D case can be
written as follows:

Fblend(f1, f2) = f1(p) + f2(p) +
√
f 2

1 + f 2
2 +

a0

1 + dr1(f1, f2)
(6.1)

dr1(f1, f2) =

√(
f1(p)

a1,2

)2

+

(
f2(p)

a1,2

)2

where f1(p) and f2(p) are functions with distance property and dr1(f1, f2) is a
generalised distance between the initial and target shapes represented by functions
f1(p) and f2(p).

The estimation process starts from finding the values for coefficients a1 and a2.
Let us consider that a1 = a2 = a1,2 that corresponds to a symmetric blend between
initial and target objects O1 and O2. As stated in (Pasko, Pasko, and Kunii 2005),
coefficients a1 > 0 and a2 > 0 are proportional to the algebraic distance between
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the blending surface and the original surfaces of the objects O1 and O2 defined by
functions f1(p) and f2(p).

To estimate coefficient a1,2 we suggest the following algorithm: as it was discussed
in the previous chapter, the generalised distance d2

r1
(f1, f2), used in equation (6.1),

is equal to the quadratic distance ||s||2 (see Fig. 6.2) between two objects O1 and
O2 that can be defined as the distance between two points K1 and K2:

||s||2 = ||K2 −K1||2 (6.2)

To compute this distance we need to solve the following system of equations
taking into account that initial and target objects are assumed to be defined as
spheres with radii R1 and R2 and centres M1 and M2 (see Fig. 6.2):

fsp1(p) = ||p−M1||2 −R2
1

fsp2(p) = ||p−M2||2 −R2
2

px−M1x

a
=

py−M1y

b
= pz−M1z

c

(6.3)

where a = M1x −M2x , b = M1y −M2y and c = M1z −M2z , p corresponds to either
K1 or K2 and we solve this system for point p. The solution of this system for points
K1 and K2 can be written as follows:

Ki =

(
aRi√

a2 + b2 + c2
+Mix ,

bRi√
a2 + b2 + c2

+Miy ,
cRi√

a2 + b2 + c2
+Miz

)
i = 1, 2

(6.4)

Finally, we obtain the final estimation for a1 = a2 = a1,2:

a1,2 =

√
f1(K2)2 + f2(K1)2

||s||2
(6.5)

In Fig. 6.3 we show the result of applying of the proposed method for automatic
control of coefficients a1 and a2 that according to the proposed method of estimation
were equal to 0.41. Coefficient a3 was set to one and coefficient a0 was set to 0.3.
The resulting blending shape is less inflated and better controlled.

6.2.2 Smoothing Half-Cylinders

As it was stated in subsection 5.3.1, one of the STB drawbacks is the presence of
fast transitions in the time interval t ∈ [0, 1], where the most significant shape trans-
formation happens. In that subsection, we have discussed the causes of these fast
transitions. To compensate for this drawback, we have introduced a smoothing half-
cylinders technique for 2D case that can be extended to 3D case in a straight forward
manner. The smoothing procedure is based on the bounded blending intersection
operation that in 3D can be defined as follows:

Fb(f1t , f2t , f3t) = F∩(f1t , f2t) + a0 · dispb(dr(f1t , f2t , f3t)); (6.6)

F∩(f1t , f2t) = f1t(p, t) + f2t(p, t)−
√
f1t(p, t)

2 + f2t(p, t)
2;

where p is a 3D point, Fb(f1t , f2t , f3t) is the resulting blending function defining
a smoothed half-cylinder, dispb(dr(f1t , f2t , f3t)) is the displacement defined using
equations (5.3)-(5.4), and F∩(f1t , f2t) is a FRep set-theoretic intersection operation.

165



CHAPTER 6. 3D HETEROGENEOUS SPACE-TIME BLENDING IN
ARTISTIC APPLICATIONS

Figure 6.3: The HSTB result obtained with automatic control for the a1 and a2

coefficients. Supplementary video: figure6.3.mpg

The smoothing process for initial and target objects O1 and O2 can be described
as follows:

O1 : f1t
(p, t) = fDF1

(p, t); f2t
(p, t) = −t; f3t

(p, t) = t+ Pc, t ≥ −Pc; (6.7)
O2 : f1t

(p, t) = fDF2
(p, t); f2t

(p, t) = t− 1; f3t
(p, t) = Pc − t, t ≤ Pc;

where f1t(p, t) is the SDF or HFRep function raised into four-dimensional space
defining either the initial object O1 or the target object O2, f2t(p, t) is the function
defining a smoothing object as the subtraction of the negative half-space along time-
axis t, f3t(p, t) is the bounding function restricting the area where the STB bounding
intersection happens, and Pc is the position of the cutting plane on the time-axis t.
These functions are substituted in equation (6.6) for obtaining the smoothed result.
For smoothing both the initial object O1 as well as the target object O2, we need to
manually set the coefficients a0, a1, a2 and a3.

6.2.3 Truncated Cone and Truncated Pyramid as a Bound-
ing Solid

In subsection 5.3.3 we have introduced two new bounding solids for the additional
control of the undesired inflation caused by the lack of the STB control. These
bounding solids are truncated cone and truncated pyramid.

First, let us redefine bounding solid in the form of truncated cone in 3D space.
Let us assume that we have already obtained two bounding spheres with radii R1

and R2 for the initial and target objects O1 and O2. The cross section of each
sphere will be circles with radii R1 and R2 that will serve as the basis for the top
and bottom bases of the truncated cone. To avoid the blending shape inflation, we
specify that the entire metamorphosis process happens within the new bounding
solid defined by function f3t(p, t).

To obtain the defining function f3t(p, t)cone for the truncated cone, a simple
linear interpolation between the centres and radii of the circles is applied, where the
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Figure 6.4: New bounding solids for additional control of the STB metamorphosis.
a) Truncated cone; b) Truncated pyramid.

parameter k is defined in the interval k ∈ [0, 1], which is dependent on time t:

f3t(p, t)cone = R2
m − (px −

_

Xm)2 − (py −
_

Y m)2 − (pz −
_

Zm)2 (6.8)

Rm = R1 + (R2 −R1)k,
_

Xm = xc1 + (xc2 − xc1)k,
_

Y m = yc1 + (yc2 − yc1)k,
_

Zm = zc1 + (zc2 − zc1)k,

k =
t− t1
t2 − t1

, t1 = −10; t2 = 10.

Here M1(xc1 , yc1 , zc1) and M2(xc2 , yc2 , zc2) are the centres of the circles with radii R1

and R2 obtained as a cross sections of the bounding spheres generated for initial
and target object O1 and O2, t1 and t2 are the minimum and the maximum values
of the interval time t. We use the values recommended for t1 and t2 from the STB
paper (Pasko, Pasko, and Kunii 2005).

To redefine the bounding solid in the form of the truncated pyramid we will
apply the same steps as we have done earlier in this subsection. Let us assume that
we have obtained two rectangular bounding boxes around initial and target object
O1 and O2 with widths l1 and l2, heights h1 and h2 and depths d1 and d2. The cross
sections of these bounding boxes will be rectangles with centres in points M1 and
M2.

We define each base of the pyramid as a result of the FRep set-theoretic inter-
section operation in 3D space, and linear interpolation between the widths l1, l2,
the heights h1, h2, the depths d1, d2 and the centres of the rectangles. Then the
bounding solid in the form of the truncated pyramid is defined as follows:

f3t(p, t)pyramid = (Wm − |px −
_

Xm|) ∩ (Hm − |py −
_

Ym|) ∩ (Dm − |pz −
_

Zm|) (6.9)

Wm = l1 + (l2 − l1)k, Hm = h1 + (h2 − h1)k, Dm = d1 + (d2 − d1)k
_

Xm = xr1 + (xr2 − xr1)k,
_

Y m = yr1 + (yr2 − yr1)k,
_

Zm = zr1 + (zr2 − zr1)k, k =
t− t1
t2 − t1

, t1 = −10; t2 = 10.
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Figure 6.5: In this picture we show three sequences of frames to illustrate how
two half-planes, truncated pyramid and truncated cone bounding solids control the
blending shape. A) The bounding solid is is defined as an intersection of two half-
planes (t+ tc) and (tc− t). B) The bounding solid is defined as a truncated pyramid,
equation (6.9). C) The bounding solid is defined as a truncated cone, equation (6.8).
Supplementary videos: figure6.5(a).mpg, figure6.5(b).mpg, figure6.5(c).mpg

where M1(xr1 , yr1 , zr1) and M1(xr1 , yr1 , zr1) are the centres of the rectangular basis.
To define a new function for the bounding solid as either a truncated cone or a

truncated pyramid we need to use the FRep set-theoretic intersection operation ∩
between either the cone defined by Fsolid(p, t) = f3t(p, t)cone or the pyramid defined
by Fsolid(p, t) = f3t(p, t)pyramid with the two time-cutting planes (t+C) and (C− t)

f3t(p, t) = Fsolid(p, t) ∩ (t+ C) ∩ (C − t) (6.10)

where C is some constant.
In Fig. 6.5 we present three sequences of frames that are obtained using HSTB

computed with three different bounding solids. The initial and target objects ’utah
teapot’ and ’box’ were initially defined as BReps and then converted to SDFs. The
colour was interpolated using linear interpolation in HSV colour space weighted by
the values of the defining distance function for the second object (’box’).

In Fig. 6.5, (A), we show the STB result that was computed with a bounding
solid defined as two half-planes. If we compare it with the results obtained using
truncated pyramid (see Fig. 6.5, B) or truncated cone (see Fig. 6.5, C) as a
bounding solid, we can see that two-half planes produces the most inflated result.
The best shape control and colour interpolation is achieved using truncated pyramid.
In addition to it, it is hard to manually adjust the STB coefficients ai when the
truncated cone is set up as a bounding solid.

6.3 HSTB: Algorithm and Implementation

In this section we discuss an algorithmic solutions for space-time blending as well as
heterogeneous space-time blending with automatic control that were implemented
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Figure 6.6: The algorithmic implementation of the heterogeneous space-time blend-
ing. a) the algorithmic implementation of the STB method for handling geometric
transformations; b) the algorithmic implementation of the heterogeneous STB for
handling both geometric and attribute transformations simultaneously.

in SideFX Houdini (Side Effects Software 2020). We provide a detailed description
of our implementation with some examples.

6.3.1 Space-Time Blending Algorithm

In this chapter we have extended the automatic control for the STB method to
3D space. The heterogeneous STB method with semi-automatic control consists
of several parts, namely, techniques for automatic estimation of STB coefficients
a1, a2, the STB computation for geometry transformation and STTI computation
for attribute transformation. In this subsection we describe the algorithmic solution
for STB computation including its automatic control and new bounding solids.

In Fig. 6.6 we present an algorithmic diagrams for the heterogeneous STB
method implementation in SideFX Hodini. We split it into two parts. In Fig.
6.6 (a) we presented the algorithmic solution for the STB method without taking
into account attribute properties of the input objects O1 and O2 defined by the
functions f1(p) and f2(p). We also highlight the part of the algorithm (’Precom-
pute STB inputs’) that will remain the same for both STB and heterogeneous STB
implementations.

The input objects O1 and O2 defined by the functions f1(p) and f2(p) can be of
arbitrary topology and defined as HReps or SDFs, or BReps. If the input objects
are defined using BRep representation we can convert them to VDB SDF fog. Oth-
erwise, it is assumed that input objects are defined as VDB fog volumes. The main
advantage of the VDB fog volumes over level-set volumes is that it could store any
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Figure 6.7: In this picture we show the result of HSTB applied to two HFRep
objects. The initial multi-material object consists of two materials with defined mi-
crostructures in its interior and the target object ’torus’ has only one texture at-
tribute. Supplementary video: figure6.7.mpg

non-distance data that is crucial in case of STB as it does not preserve distances.
Then, we have to do several computational pre-steps before computing the STB
method.

On the first step, we need to apply smoothing the half-cylinders technique to
both input objects O1 and O2 defined by the functions f1(p) and f2(p), and raise
them into 4D space, where the fourth coordinate will be time t. This operation
defined by equations (6.7) is implemented in two VEX Volume Wrangle VOPs, and
it solves the STB problem related to fast transitions during metamorphosis. Then,
we need to pre-compute the STB controlling coefficients ai, i = 1, 2 in VEX Volume
Wrangle VOP using geometric information of the bounding boxes defined as the
spheres using introduced techniques in subsection 6.2.1 Finally, it is required to
compute in the VEX Volume Wrangle VOP one of the bounding solids discussed in
subsection 6.2.3 that are defined by the function f3.

These steps cover the ’Precompute STB inputs’ stage. The generated parame-
ters are used as an input for the STB computation in VEX volume wrangle using
equations (5.4)-(5.3). The output of this STB implementation will be either VDB
non-distance based fog or BRep surface.

6.3.2 Heterogeneous Space-Time Blending Algorithm

The algorithmic implementation of the automatically controlled heterogeneous space-
time blending (HSTB) is based on the STB algorithm that can be seen in Fig. 6.6
(a). According to the HSTB algorithm shown in Fig. 6.6 (b), we need to repeat all
steps of the ’Precompute STB inputs’ stage. We also need to specify attributes for
each input object O1 and O2 defined by HFRep or SDF functions f1(p) and f2(p).

The attributes can be defined procedurally using VEX volume wrangle VOP and
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stored in a separate VDB fog volume, where each voxel stores a vector of three float
values that correspond to colours. Alternatively, attributes can be defined as a
simple colour distribution with ’colour node’. Generally, the input objects O1 and
O2 can be represented as a merged VDB volume that consists of one fog voxel grid
with distance field values and one fog voxel grid that stores the attribute values.

We define an empty VDB volume that consists of two VDB fog grids, where
we will store the results of the computation of STB and STTI methods. First, we
compute the STB function Fb value for the current voxel according to equations
(5.4)-(5.3). Then, if Fb > 0, we apply STTI method defined by the equations (5.6)
- (5.7) to interpolate new colours in the added by blending function volume. The
attribute (colour) interpolation can be made in two colour spaces HSV and RGB.
Both STB and STTI methods are implemented in a single VEX volume wrangle.
The output of the HSTB node can be either a VDB fog volume that consists of two
VDB voxel grids or a BRep object with attributes transferred from the VDB volume
to its surface.

In Fig. 6.7 we show a sequence of frames that were obtained using HSTB. The
HSTB method was computed for the initial and target HFRep objects. The initial
HFRep object is obtained using several set-theoretic operations. First, a cylinder
was subtracted from the centre of the sphere. Then, using Algorithm 4.18 a shelled
sphere was obtained that was further combined with generated microstructures ac-
cording to the Algorithm 4.19. Finally, two materials were assigned to the shell
of the object and to its interior. In this example, the target HFRep ’torus’ object
rotates around its vertical axis.

6.4 HSTB: ’4D Cubism’

In this work, we broaden the concept of ’4D Cubism’ (Corker-Marin, Pasko, and
Adzhiev 2018), an artistic application that provides tools for creating artistic shapes
in a cubist style employing the STB method that could only deal with geometric
metamorphosis without attributes, by introducing attribute transformations and
the concept of heterogeneous STB for metamorphosis between volumetric objects.
We also apply this concept to the objects defined by different types of DF based
representations, e.g. SDFs and HFReps. All examples are implemented in SideFX
Houdini using the OpenVDB library for handling both attributes and geometry
transformations, rendered using an Intel Xeon E5-1650 3.20 GHz PC with 32 Gb of
RAM.

6.4.1 HSTB: Implementation

In the ’4D Cubism’ application the input objects are defined as BReps. The frame-
work described in (Corker-Marin, Pasko, and Adzhiev 2018), is based on shape
faceting, the conversion of the obtained after faceting BRep objects to SDFs, and
computation of the space-time blending (STB) to perform a smooth transformation
between two input SDF objects.

The aim of the shape-faceting step is to subdivide the shape of the input BRep
object into facets. A facet is considered as a solid piece of geometry obtained by
the set-theoretic intersection between some solid primitive (e.g. solid tetrahedron)
with the initial shape of the object converted to a solid. The shape faceting is
applied using octree data structure that subdivides the shape of the initial object
for further assignment of the facets. It is also possible to specify different unique
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Figure 6.8: The algorithmic implementation of the 4D Cubism with heterogeneous
attribute transformations.

transformations to each facet during this stage. Finally, the obtained distorted
shapes are converted to SDFs and STB is computed to obtain smooth blending
between input shapes.

In Fig. 6.8 we show an extended algorithm for the ’4D Cubism’ application
that also cover not only shape transformation, but also attribute transformations.
At the faceting step different HFRep objects can be used as facets. For each facet
we can assign different attributes (e.g. colours, textures). The attributes for the
input undistorted shape can be defined as 2D textures, or after their conversion to
SDFs they can be set up as 3D textures or procedural textures. After conversion
of the input shape to SDFs we can also define attributes in the form of HFRep mi-
crostructures incorporated in their interior (see subsection 4.6.2 for the algorithmic
implementation).

Instead of the STB method we introduce a heterogeneous STB method with a
possible semi-automatic control of STB parameters and additional shape control.
The heterogeneous STB method is based on STB and STTI methods coupled to-
gether and their implementation in SideFX Houdini was discussed in subsection
6.3.2.

6.4.2 Application and Results

We demonstrate our approach using three examples. The first example (Fig. 6.9)
applies heterogeneous STB to a heterogeneous oscillating SDF ’cube’ object and an
HFRep ’heart’ object. In the basic algorithm, we first define the initial (SDF ’cube’)
and target (HFRep ’heart’) objects. We then define the colour attributes for both
objects.

Next we raise both defining functions for the ’cube’ and the ’heart’ objects to
a higher STB dimension using equations (6.7). Finally, we apply the introduced
heterogeneous STB to both objects and compute both in-between geometry and
colour attribute transformations simultaneously using RGB (see Fig. 6.9, a) and
HSV (see Fig. 6.9, b) colour spaces We implemented interpolation in HSV using
linear interpolation and STTI interpolation. As it can be seen in Fig. 6.9, STTI
provides a smoother colour transition than linear interpolation, and using an HSV
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Figure 6.9: Result of applying heterogeneous STB to an SDF cube object and
an HFRep heart object. The result of applying (A) STTI for RGB colour inter-
polation; (B) STTI for HSV colour interpolation; (C) linear HSV colour interpo-
lation. Supplementary video: figure6.9(hsv linear).mpg, figure6.9(hsv stti).mpg, fig-
ure6.9(rgb stti).mpg

Figure 6.10: Frame sequence of heterogeneous STB applied to two heteroge-
neous objects with multiple features defined by HFRep and SDF. Supplementary
video: figure6.10(hsv linear).mpg, figure6.10(rgb stti).mpg, figure6.10(hsv stti).mpg,
figure6.10(hsv stti slice).mpg

colour space results in a smoother transition between colours comparing to an RGB
colour space.

In Fig. 6.10 we show a more complex example of two oscillating heterogeneous
objects with cubist coloured features demonstrating that HFRep objects can easily
be combined with SDF objects. First, two polygonal cubes are converted to Open-
VDB objects. Then SDF functions for both cubes are obtained. To specify where
coloured features will be added, both cubes are subdivided using an octree. Some
of the features are defined using HFRep, some using SDF representations. Next we
specify colour attributes for these cubes and assigned features. At the third step,
we combine functions that define features with functions specifying the base cubes,
using set-theoretic operations, and raise the resulting functions to a 4D space using
equations (6.7). Finally, we compute simultaneously STB and STTI (HSV colour
space) methods, and then map the STTI result computed in a separate voxel grid
to the obtained geometry. Note that operations on SDFs and HFReps cannot pre-
serve attributes in SideFX Houdini. Therefore, they are computed using separate
vectorised OpenVDB voxel grids.

In Fig. 6.11 we show a more sophisticated example of applying the proposed
HSTB technique in the context of ’4D Cubism’. We have applied the introduced
HSTB concept to a model of a walking person. As we have stated in the basic
algorithm (section 6.1), step five, we can use any operation for handling attribute
transformations. In this example we compute the attribute transformation in an
HSV colour space using STTI interpolation.
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Figure 6.11: A sequence of frames that shows the result of applying heteroge-
neous STB to two heterogeneous objects in the form of a walking figure with multiple
features defined by HFRep and SDF. A linear colour interpolation in HSV colour
space was applied to handle the attribute transformations. Supplementary video: fig-
ure6.11.mpg

6.4.3 Conclusions

In this chapter we have presented the concept of heterogeneous space-time blending
(HSTB) based on STB for handling geometry transformation and STTI for handling
attribute transformations. In the general case, instead of STTI, any method that
is suitable for attribute transformation can be used. We have extended several
STB techniques introduced in the previous chapter for additional shape control
during metamorphosis, namely smoothing half-cylinders, automatic control for STB
coefficients a1 = a2 and two new bounding solids (truncated cone and truncated
pyramid).

We have also presented the basic algorithm for implementing HSTB that we
further applied to dynamic objects (’4D Cubism’ (Corker-Marin, Pasko, and Adzhiev
2018)). We have suggested to compute attribute interpolation in HSV colour space
as colour transitions in this system are natural for a perception of human eyes. We
have implemented the basic algorithm in SideFX Houdini and provided a detailed
description of our implementation with corresponding examples.

We have extended ’4D Cubism’ application with volumetric attributes in the
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form of colour distributions that are parameterised by the position of the point or by
the bounding box values of the voxelised geometry. For representing heterogeneous
objects, we have used SDFs implemented inside OpenVDB and HFRep custom
node. The implementation of the HFRep node was discussed in subsection 4.6.2.
The HSTB method was presented in Eurographics short paper (Tereshin, Anderson,
et al. 2020).
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Chapter 7

Conclusions and Future Work

Heterogeneous multi-material volumetric modelling is an emerging and rapidly de-
veloping field.The particular focus of this research was on a systematic and rigorous
exploration of the fundamentals of the topic, namely on the mathematically sub-
stantiated and algorithmically developed representational schemes for heterogeneous
objects geometry and attributes.

The research has been conducted in accordance with the recognised scientific
methodology, and the thesis structure reflects the following stages of a well-established
research process: motivation with identification of the research questions (chapter
1), exploration of the state of the art in the field with conclusions related to the
topic’s subject, (chapter 2), theoretical exploration with suggestions and a rigorous
substantiation of the topic’s fundamentals (chapter 3), developing an algorithmic
framework allowing for the efficient practical implementation with introduction of a
number of novel computational procedures (chapter 4), development, to prove the
concept, of a number of practical methods in the context of particular applications,
especially of an artistic nature (chapters 5 and 6), and finally, conclusions with de-
tailed outline of original contributions and some directions for future works (this
chapter 7).

There is also an extensive ’References’ section as well as the author’s list of pub-
lications showing that all the main theoretical and practical results of this research
work have been peer-reviewed and published/accepted for publication in respectable
journals (full-scale papers in ’SIAM Journal of Imaging Sciences’, ’Graphical Mod-
els’) and conferences (short papers in Eurographics 2019 and 2020).

While the boundary representation will remain the main and prevailing instru-
ment for geometric modelling, we believe that the functionally-based representations
generalising a well-established implicit modelling approach, are becoming more im-
portant in the context of some important modern applications. Hopefully, the hybrid
modelling framework allowing conveniently and efficiently deal with heterogeneous
multi-material volumetric objects, including those of a time-variant nature, will find
its applications.

7.1 Contributions

Overall, we have introduced a theoretical and practical framework for modelling
volumetric heterogeneous objects on the basis of a novel unifying functionally-based
hybrid representation called HFRep. Let us summarise the specific main contribu-
tions of this work:
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• A thorough survey of the relevant function-based representations aimed at
their classification that allowed to identify four conventional representational
schemes related to scalar fields of different kinds, namely function representa-
tion (FRep), the adaptively sampled distance function representation (ADF)
and the interior distance function representation (IDF). Their advantages
and drawbacks have been systematically described. We have suggested a for-
malisation of the notions of ADFs and IDFs.The requirements for a hybrid
representational framework have been formulated.

• The introduction of a mathematically substantiated modelling framework for
heterogeneous objects called hybrid function representation (HFRep) that is
based on the combination of FRep with one of the three distance-based rep-
resentations, namely SDF, ADF and IDF to preserve their advantages and
compensate for their drawbacks. This novel representational scheme aims
to define multi-material heterogeneous objects with their interior structure
using a generalisation of the hypervolume model. The formal definition of
the HFRep has been formulated. The mathematical properties of the HFRep
function have been rigorously described. It was substantiated that the func-
tion is at least C0 or C1 continuous, smooth and, if it is C1 continuous, it
can be used for defining smoothed attribute distributions. It was shown,
the HFRep function can also be made time-variant. The properties of the
supported HFRep heterogeneous objects have been systematically described,
and the operations over HFRep objects, both those that preserve Euclidean
distances and those that do not, were identified. Finally, the basic algorithm
for generating HFRep objects in terms of their geometry and attributes has
been proposed.

• The introduction of a FIM-based method for the computation of the solu-
tion of the eikonal equation on 2D hierarchical grids. The hierarchical FIM
(HFIM) method provides at least C1 continuous unsigned distance field that
is restored at each cell of the grid using the PHT-splines. The solution of
the eikonal equation is computed using a modified version of the first order
Godunov upwind discretisation scheme for computations on the hierarchi-
cal grids. The accuracy of the computing the eikonal equation solution was
increased by handling T-junctions appeared in the hierarchical grid. The
step-by-step algorithm implementing the HFIM method has been suggested.
The detailed description covers the used data-structures, the basic quadtree
generation, the computation of PHT-splines and the technical implementa-
tion of the method.

• The detailed discussion of the methods for defining various attributes in the
interior of the 2D and 3D HFRep object. These attributes can be defined
either procedurally, or parameterised by the HFRep function that is at least
C1 continuous or on per-voxel basis. It is also possible to define microstruc-
tures in the interior of the HFRep object, that is particularly important for
the related 3D printing tasks.

• The introduction of a novel method allowing for automatically controlled
morphing between two topologically arbitrary 2D shapes with sophisticated
textures (raster colour attributes) using the established techniques, namely
the space-time blending (STB) coupled with space-time transfinite interpo-
lation (STTI). The method allows for a smooth transition between source
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and target objects (considered as HFRep objects) by generating in-between
shapes and associated textures without setting any correspondences between
boundary points or features. The method requires no preprocessing and can
be applied in 2D animation when position and topology of source and tar-
get objects are significantly different. The basic algorithm for this method
has been developed along with several novel techniques solving the identified
STB drawbacks. These techniques are half-cylinders STB smoothing, the au-
tomatic control for choosing STB coefficients, new bounding solids (truncated
cone and truncated pyramid) and affine transformations for better control of
the computing STB shape. The method can handle in-place morphing as
well as spaced objects morphing.

• The introduction of a novel heterogeneous space-time blending (HSTB) method
that can handle holistic heterogeneous objects, rather than their geometric
and attribute components in separation, especially in the context of auto-
matically controlled metamorphosis between topologically arbitrary 3D and
4D textured objects with their geometry and attribute transformations exe-
cuted simultaneously and interconnectedly. The basic algorithm and several
techniques, extended to 3D, that solve the identified drawbacks, have been
developed.

7.2 Future Work

A lot of research is still required to provide an efficient universal framework for
multi-material heterogeneous modelling using the HFRep representation.

It is essential to extend and develop new operations over HFRep objects in the
context of different applications, especially related to physical simulation, additive
manufacturing and visual effects. It is important to develop set-theoretical opera-
tion that are at least C1 continuous, preserve distance property and are efficient to
compute as most of the existing approaches have high complexity of computations.

In technical terms, we aim to develop an efficient HFRep field extrapolation
procedure beyond the computational domain that can also be used for extending
IDFs in exterior of the object and make IDFs signed. We plan to extend the method
for generating IDFs being computed on a tetrahedral mesh. This means voxelising
the mesh and defining a band of voxels in exterior of the mesh. Then we can
interpolate the IDF values to the centres of the voxels in interior of the voxelised
mesh and extrapolate obtained values to the empty voxels outside the voxelised
mesh.

One of the interesting directions will be introduction of the multi-material at-
tribute definition in the interior of the volumetric object using the diffusion-based
IDFs. IDFs are smooth and are at least C1 continuous. According to our simple tests
with parameterisation of the procedural texture functions by the IDF distances, we
were able to obtain very sophisticated textures. Another interesting and promising
direction will be the development of the HFRep distance-based volumetric sculpting
tool that is suitable for interactive modelling of the multi-material heterogeneous
objects.

There are several needed extensions and improvements to be further developed
and implemented for the introduced HFIM method. First, it is important to opti-
mise our implementation to increase the efficiency of computations. The GPU-based
version of the HFIM algorithm might increase the computational speed for 3D ob-
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jects. Then, to obtain more accurate resulting unsigned distance field, we need to
develop an automatic refinement of the computational hierarchical grid according to
the error-based estimation of the already computed solution of the eikonal equation.
Finally, there are plans to extend the HFIM method for computing the solution of
the eikonal equation on volumetric hierarchical grids, e.g. octrees.

The HSTB method introduced in this work could be expanded in the future by
exploring alternative approaches for interpolating attributes between two hetero-
geneous objects as well as by introducing an automatic feature-based colour seg-
mentation to achieve more sophisticated interpolation between textured objects. In
order to achieve further improvements, it will also be beneficial to focus on other
areas that were not touched upon in this work, such as optimisation of the colour
averaging algorithm or using a quad-tree or similar data structures for acceleration.
We are also planning to develop new methods for defining various attributes and
their transformations. We would like to broaden the class of attributes that we can
deal with using our HSTB approach, e.g. volumetric materials and transparency.
Finally, it is essential to develop an algorithm for estimating the STB controlling
coefficients in 3D case.

7.3 List of Publications

• Tereshin A., Adzhiev V., Fryazinov O., Pasko A., Hybrid Function Repre-
sentation with Distance Properties, In: Eurographics 2019 - Short Papers
(2019), pp. 17-20, doi: https://doi.org/10.2312/egs.20191004;

• Tereshin A., Adzhiev V., Fryazinov O., Marrington-Reeve F., Pasko A., Au-
tomatically Controlled Morphing of 2D Shapes with Textures, In: SIAM
Journal on Imaging Sciences, 13, 1, (2020), pp. 78-107, doi: https://doi.

org/10.1137/19M1241581;

• Tereshin A., Anderson E., Pasko A., Adzhiev V., Spacce-Time Blending for
Heterogeneous Objects, In: Eurographics 2020 - Short Papers (2020), pp.
45-48 , doi: https://doi.org/10.2312/egs.20201014;

• Tereshin A., Pasko A., Fryazinov O., Adzhiev V., Hybrid Function Represen-
tation for Heterogeneous Objects, preprint ArXive (2020), 26 pages. Preprint
of the paper: https://arxiv.org/abs/2012.15176;

• Tereshin A., Pasko A., Fryazinov O., Adzhiev V., Hybrid Function Repre-
sentation for Heterogeneous Objects, In: Graphical Models (2021), 114, pp.
101098, doi: https://doi.org/10.1016/j.gmod.2021.101098.

179

https://doi.org/10.2312/egs.20191004
https://doi.org/10.1137/19M1241581
https://doi.org/10.1137/19M1241581
https://doi.org/10.2312/egs.20201014
https://arxiv.org/abs/2012.15176
https://doi.org/10.1016/j.gmod.2021.101098


References

Allegre R., Barbier A., Galin E., and Akkouche S. (2004). “A Hybrid Shape Rep-
resentation for Free-Form Modelling”. In: Proceedings of the Shape Modeling
International 2004. SMI ’04. IEEE Computer Society, pp. 7–18.

3D Systems Inc. (2020). STL File Format. [viewed, November 2020]. url: http://w
ww.3dsystems.com/quickparts/learning-center/what-is-stl-file.

3MF Consortium (2020). 3D Manufacturing Format. [viewed, December 2020]. url:
http://3mf.io/specification/.

Adzhiev V., Cartwright R., Fausett E., Ossipov A., Pasko A., and Savchenko V.
(1999). HyperFun Project: A Framework for Collaborative Multidimensional F-
rep Modeling. Implicit Surfaces 99 Workshop (Bordeaux, France).

Adzhiev V., Kartasheva E., Kunii T., Pasko A., and Schmitt B. (2002). “Cellular-
Functional Modeling of Heterogeneous Objects”. In: Proceedings of the Seventh
ACM Symposium on Solid Modeling and Applications. SMA ’02. ACM, pp. 192–
203.

Adzhiev V., Kazakov M., Pasko A., and Savchenko V. (2000). “Hybrid System Ar-
chitecture for Volume Modeling”. In: Computers & Graphics 24.1, pp. 67–78.

Alexa M., Cohen-Or D., and Levin D. (2000). “As-rigid-as-possible Shape Interpola-
tion”. In: Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publish-
ing Co., pp. 157–164.

Anitescu C., Hossain Md N., and Rabczuk T. (2018). “Recovery-based error esti-
mation and adaptivity using high-order splines over hierarchical T-meshes”. In:
Computer Methods in Applied Mechanics and Engineering 328, pp. 638–662.

Auzinger T., Heidrich W., and Bickel B. (2018). “Computational Design of Nanos-
tructural Color for Additive Manufacturing”. In: ACM Trans. Graph. 37.4, No.
159, pp. 1–16.

Averbuch-Elor H., Cohen-Or D., and Kopf J. (2016). “Smooth Image Sequences for
Data-driven Morphing”. In: Computer Graphics Forum 35, pp. 203–213.

Bader C., Kolb D., Weaver J. C., and Oxman N. (2016). “Data-Driven Material
Modeling with Functional Advection for 3D Printing of Materially Heterogeneous
Objects”. In: 3D Printing and Additive Manufacturing 3.2, pp. 71–79.

Bader C., Kolb D., Weaver J. C., Sharma S., Hosny A., Costa J., and Oxman N.
(2018). “Making Data Matter: Voxel Printing for the Digital Fabrication of Data
Across Scales and Domains”. In: Science Advances 4.5, No. eaas8652, pp. 1–12.

Bálint C., Valasek G., and Gergó L. (2019). “Operations on Signed Distance Func-
tions”. In: Conference: The 11th Conference of PhD Students in Computer Sci-
ence, pp. 1–12.

Barbier A., Galin E., and Akkouche S. (2005). “A framework for modeling, animat-
ing, and morphing textured implicit models”. In: Graphical Models 67.3, pp. 166–
188.

180

http://www.3dsystems.com/quickparts/learning-center/what-is-stl-file
http://www.3dsystems.com/quickparts/learning-center/what-is-stl-file
http://3mf.io/specification/


REFERENCES

Barclay J., Dhokia V., and Nassehi A. (2016). “Additive Manufacturing Simulation
Using Signed Distance Fields”. In: Sustainable Design and Manufacturing 2016.
Ed. by Setchi R., Howlett R. J., Liu Y., and Theobald P. Springer International
Publishing, pp. 435–444.

Bastos T. and Celes W. (2008). “GPU-accelerated Adaptively Sampled Distance
Fields”. In: 2008 IEEE International Conference on Shape Modeling and Appli-
cations, pp. 171–178.

Beier T. and Neely S. (1992). “Feature-based Image Metamorphosis”. In: SIG-
GRAPH Computer Graphics 26.2, pp. 35–42.

Belyaevm A., Fayolle P.-A., and Pasko A. (2013). “Signed Lp-distance Fields”. In:
Computer-Aided Design 45.2. Solid and Physical Modeling 2012, pp. 523–528.

Bhashyam S., Shin K. H., and Dutta D. (2000). “An Integrated CAD System for
Design of Heterogeneous Objects”. In: Rapid Prototyping Journal 6.2, pp. 119–
135.

Biswas A. and Shapiro V. (2004). “Approximate Distance Fields with Non-Vanishing
Gradients”. In: Graphical Models 66.3, pp. 133–159.

Biswas A., Shapiro V., and Tsukanov I. (2004). “Heterogeneous Material Modeling
with Distance Fields”. In: Computer Aided Geometric Design 21.3, pp. 215–242.

Blinn J. F. (1982). “A Generalization of Algebraic Surface Drawing”. In: ACM
Transactions on Graphics 1.3, pp. 235–256.

Bloomenthal J. and B. Wyvill, eds. (1997). Introduction to Implicit Surfaces. Morgan
Kaufmann Publishers Inc.

Borgefors G. (1984). “Distance Transformations in Arbitrary Dimensions”. In: Com-
puter Vision, Graphics, and Image Processing 27.3, pp. 321–345.

Borgefors G. (1986). “Distance Transformations in Digital Images”. In: Computer
Vision, Graphics, and Image Processing 34.3, pp. 344–371.

Borgefors G. (1996). “On Digital Distance Transforms in Three Dimensions”. In:
Computer Vision and Image Understanding 64.3, pp. 368–376.

Botsch M., Pauly M., Kobbelt L., Alliez P., Lévy B., Bischoff S., and Rössl C. (2007).
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Keinert B., Schäfer H., Korndörfer J., Ganse U., and Stamminger M. (2014). “En-
hanced Sphere Tracing”. In: Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference. Ed. by Giachetti A. The Eurographics Association.

185

http://www.opencv.org/
http://www.eigen.tuxfamily.org/
http://www.libigl.github.io/


REFERENCES

Kiciak P. (2016). Geometric Continuity of Curves and Surfaces. Synthesis Lectures
on Visual Computing. Morgan & Claypool Publishers.

Kim J.-H., Kim C.-H., and Lee J. (2015). “A hybrid SDF for the detailed repre-
sentation of liquid–solid mixed surfaces”. In: Computer Animation and Virtual
Worlds 26.5, pp. 527–536.

Kim L., Sukhatme G. S., and Desbrun M. (2004). “A haptic-rendering technique
based on hybrid surface representation”. In: IEEE Computer Graphics and Ap-
plications 24.2, pp. 66–75.
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Solomon J., Goes F. de, Peyré G., Cuturi M., Butscher A., Nguyen A., Du T.,
and Guibas L. (2015). “Convolutional Wasserstein Distances: Efficient Opti-
mal Transportation on Geometric Domains”. In: ACM Transactions on Graphics
34.4, No. 66, pp. 1–11.

Solomon J., Rustamov R., Guibas L., and Butscher A. (2014). “Earth Mover’s Dis-
tances on Discrete Surfaces”. In: ACM Trans. Graph. 33.4, No. 67, pp. 1–12.

Strain J. (2000). “A Fast Modular Semi-Lagrangian Method for Moving Interfaces”.
In: Journal of Computational Physics 161.2, pp. 512–536.

Stratasys Ltd. (2014). Objet500 Connex3. white paper, p. 7. url: https://www.st
ratasys.com/.

191

http://www.sidefx.com/
http://www.opengl.org/
http://www.voxelmade.com/magicavoxel/
http://www.voxelmade.com/magicavoxel/
https://www.stratasys.com/
https://www.stratasys.com/


REFERENCES

Subcommittee F42.04 (2020). Specification for additive manufacturing file format
(AMF) Version 1.2 (ISO / ASTM52915-20). url: http://www.astm.org/cgi
-bin/resolver.cgi?ISOASTM52915.

Sullivan A. (2015). Hybrid adaptively sampled distance fields. Patent number: 9122270,
United States, US patent.

Sussman M., Smereka P., and Osher S. (1994). “A Level Set Approach for Comput-
ing Solutions to Incompressible Two-Phase Flow”. In: Journal of Computational
Physics 114.1, pp. 146–159.

Svensson S. and Borgefors G. (2002). “Digital Distance Transforms in 3D Images
Using Information from Neighbourhoods up to 5×5×5”. In: Computer Vision
and Image Understanding 88.1, pp. 24–53.

Takahashi T., Masumori A., Fujii M., and Tanaka H. (2018). FAV (Fabricatable
Voxel) File Format Specification. Tech. rep. Fuji Xerox Co. Ltd. & Social Fabri-
cation Laboratory of Keio University at Shonan-Fujisawa Campus (SFC).

Tam C. K. W. and Kurbatskii K. A. (2000). “A Wavenumber Based Extrapola-
tion and Interpolation Method for Use in Conjunction with High-Order Finite
Difference Schemes”. In: Journal of Computational Physics 157.2, pp. 588–617.

Tang Y. and Feng J. (2018). “Multi-scale surface reconstruction based on a curvature-
adaptive signed distance field”. In: Computers & Graphics 70. CAD/Graphics
2017, pp. 28–38.

Tereshin A., Adzhiev V., Fryazinov O., Marrington-Reeve F., and Pasko A. (2020).
“Automatically Controlled Morphing of 2D Shapes with Textures”. In: SIAM
Journal on Imaging Sciences 13.1, pp. 78–107. doi: doi.org/10.1137/19M124
1581.

Tereshin A., Adzhiev V., Fryazinov O., and Pasko A. (2019). “Hybrid Function
Representation with Distance Properties”. In: Eurographics 2019 - Short Papers.
Ed. by Cignoni P. and Miguel E. The Eurographics Association, pp. 17–20. doi:
doi.org/10.2312/egs.20191004.

Tereshin A., Anderson E., Pasko A., and Adzhiev V. (2020). “Space-Time Blending
for Heterogeneous Objects”. In: Eurographics 2020 - Short Papers. Ed. by Wilkie
A. and Banterle F. The Eurographics Association, pp. 45–48. doi: doi.org/10
.2312/egs.20201014.

Tereshin A., Pasko A., Fryazinov O., and Adzhiev V. (2020). Hybrid Function Rep-
resentation for Heterogeneous Objects. arXiv: 2012.15176 [cs.GR]. url: https
://arxiv.org/abs/2012.15176.

Tereshin A., Pasko A., Fryazinov O., and Adzhiev V. (2021). “Hybrid function
representation for heterogeneous objects”. In: Graphical Models 114, p. 101098.
doi: doi.org/10.1016/j.gmod.2021.101098.

The GNU Triangulated Surface Library (2020). [viewed, November 2020]. url: htt
p://www.gts.sourceforge.net/.

Tsitsiklis J. N. (1995). “Efficient algorithms for globally optimal trajectories”. In:
IEEE Transactions on Automatic Control 40.9, pp. 1528–1538.

Tsukanov I. and Posireddy S. R. (2011). “Hybrid Method of Engineering Analy-
sis: Combining Meshfree Method with Distance Fields and Collocation Tech-
nique”. In: Journal of Computing and Information Science in Engineering 11,
No. 031001, pp. 1–9.

Turk G. and O’Brien J. F. (2002). “Modelling with Implicit Surfaces that Interpo-
late”. In: ACM Transactions on Graphics 21.4, pp. 855–873.

Versprille K. J. (1975). “Computer-Aided Design Applications of the Rational b-
Spline Approximation Form.” AAI7607690. PhD thesis.

192

http://www.astm.org/cgi-bin/resolver.cgi?ISOASTM52915
http://www.astm.org/cgi-bin/resolver.cgi?ISOASTM52915
https://doi.org/doi.org/10.1137/19M1241581
https://doi.org/doi.org/10.1137/19M1241581
https://doi.org/doi.org/10.2312/egs.20191004
https://doi.org/doi.org/10.2312/egs.20201014
https://doi.org/doi.org/10.2312/egs.20201014
https://arxiv.org/abs/2012.15176
https://arxiv.org/abs/2012.15176
https://arxiv.org/abs/2012.15176
https://doi.org/doi.org/10.1016/j.gmod.2021.101098
http://www.gts.sourceforge.net/
http://www.gts.sourceforge.net/


REFERENCES

W. Olver F., Lozier D., Boisvert R., and Clark C. (2010). NIST Handbook of Math-
ematical Functions. Cambridge University Press.

Wang J., Yang Z., Jin L., Deng J., and Chen F. (2011). “Parallel and Adaptive
Surface Reconstruction Based on Implicit PHT-splines”. In: Computer Aided
Geometric Design 28.8. Solid and Physical Modeling 2010, pp. 463–474.

Wang Y. (1996). “Intersection of Offsets of Parametric Surfaces”. In: Computer
Aided Geometric Design 13.5, pp. 453–465.

Weng Y., Chai M., Xu W., Tong Y., and Zhou K. (2013). “As-Rigid-As Possible
Distance Field Metamorphosis”. In: Computer Graphics Forum 32.7, pp. 381–
389.

Westover L. (1990). “Footprint Evaluation for Volume Rendering”. In: SIGGRAPH
Computer Graphics 24.4, pp. 367–376.

Westover L. A. (1991). “Splatting: A Parallel, Feed-forward Volume Rendering Al-
gorithm”. UMI Order No. GAX92-08005. PhD thesis.

Wolberg G. (1998). “Image morphing: a survey”. In: The Visual Computer 14.8,
pp. 360–372.

Wu C., Deng J., and Chen F. (2007). “Fast Data Extrapolating”. In: Journal of
Computational and Applied Mathematics 206.1, pp. 146–157.

Wu Z. and Sullivan Jr J. M. (2003). “Multiple Material Marching Cubes Algorithm”.
In: International Journal for Numerical Methods in Engineering 58.2, pp. 189–
207.

Wyvill B., Guy A., and Galin E. (1999). “Extending the CSG Tree - Warping,
Blending and Boolean Operations in an Implicit Surface Modeling System”. In:
Computer Graphics Forum 18, pp. 149–158.

Wyvill G., Mcpheeters C., and Wyvill B. (1986). “Data Structure for Soft Objects”.
In: Visual Computer 2, pp. 227–234.

Yang N., Quan Z., Zhang D., and Tian Y. (2014). “Multi-morphology Transition
Hybridization CAD Design of Minimal Surface Porous Structures for Use in
Tissue Engineering”. In: Computer-Aided Design 56, pp. 11–21.

Ye Q.-Z. (1988). “The signed Euclidean Distance Transform and Its Applications”.
In: 9th International Conference on Pattern Recognition (IEEE Cat. No.88CH2614-
6). Vol. 1. IEEE Computer Society, pp. 495–499.

Yin K., Liu Y., and Wu E. (2011). “Fast Computing Adaptively Sampled Distance
Field on GPU”. In: Pacific Graphics Short Papers. Ed. by Chen B.-Y., Kautz J.,
Lee T.-Y., and Lin M. C. The Eurographics Association.

Yngve G. and Turk G. (2002). “Robust Creation of Implicit Surfaces from Polygonal
Meshes”. In: IEEE Transactions on Visualization and Computer Graphics 8.4,
pp. 346–359.

Yongbin J., Liguan W., Lin B., and Jianhong C. (2009). “Boolean Operations on
Polygonal Meshes Using OBB Trees”. In: 2009 International Conference on En-
vironmental Science and Information Application Technology. Vol. 1, pp. 619–
622.

Yoo D. (2012). “Heterogeneous Minimal Surface Porous Scaffold Design Using the
Distance Field and Radial Basis Functions”. In: Medical Engineering & Physics
34.5, pp. 625–639.

Yuan Z., Yu Y., and Wang W. (2012). “Object-space Multiphase Implicit Func-
tions”. In: ACM Transactions on Graphics 31.4, No. 114, pp. 1–10.

Zanni C., Claux F., and Lefebvre S. (2018). “HCSG: Hashing for Real-Time CSG
Modeling”. In: Proceedings of the ACM in Computer Graphics Interactive Tech-
niques 1.1, No. 15, pp. 1–19.

193



REFERENCES

Zhao H. (2004). “A Fast Sweeping Method for Eikonal Equations”. In: Mathematics
of Computation 74.250, pp. 603–627.

Zhu L., Yang Y., Haker S., and Tannenbaum A. (2007). “An Image Morphing Tech-
nique Based on Optimal Mass Preserving Mapping”. In: Transactions on Image
Processing 16.6, pp. 1481–1495.

194


	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Research Problems
	Solution Statement
	Thesis Structure

	Related Work
	Heterogeneous Objects
	Boundary Representation
	Parametric Representation
	Polygonal Representation

	Volumetric Representations
	Voxel Representation
	Implicit Surfaces
	Function Representation
	Radial Basis Functions
	Signed Distance Fields
	Adaptively Sampled Distance Fields
	Interior Distance Fields
	Hybrid Representations

	Multi-Materials and Microstructures in Heterogeneous Modelling
	Methods for Defining Multi-Materials in Heterogeneous Objects
	3D Printing
	Methods for Microstructure Generation

	Dynamic Heterogeneous Objects
	Feature-Based Morphing
	Automatically Controlled Morphing

	Rendering of Multi-Material Heterogeneous Objects
	Conclusions

	Hybrid Function Representation: Theoretical Framework
	Mathematical Background
	Formal Definitions of Function-based Representations
	Function Representation
	Signed Distance Function
	Adaptively Sampled Distance Function
	Interior Distance Function
	Hypervolume Representation

	Hybrid Function Representation (HFRep): Requirements
	HFRep: Definition
	The Hybrid Function Representation: Mathematical Properties
	HFRep: Object Generation
	Algorithm for HFRep Geometry Generation
	Algorithm for HFRep Attribute Definition

	HFRep: Objects
	HFRep: Operations
	Distance Preserving Operations
	Non-Distance Preserving Operations
	Relations

	Conclusions

	Hybrid Function Representation: Algorithmic Framework
	Algorithms for Generating SDF
	Distance Transform Methods
	Fast Iterative Method

	Algorithm for Generating ADF
	Hierarchical FIM (HFIM): Requirements
	HFIM: Algorithm
	Hierarchical Subdivision of the Domain
	Discretisation Scheme
	Treatment of T-Junctions
	PHT-Spline Interpolation

	Generation of IDF
	Theoretical Background
	Interior Distance Field Generation

	Smoothing an Obtained Distance Field
	Distinguishing Between Interior, Boundary and Exterior of the Object
	HFRep: Implementation and Results
	Examples of Attribute Handling
	Houdini Implementation: HFRep Based on FRep and SDF

	Conclusions

	2D Heterogeneous Space-time Blending with Automatic Control
	Theoretical Background: The Core Methods
	Object Representations
	Space-Time Blending
	Space-Time Transfinite Interpolation

	Automatically Controlled 2D Heterogeneous STB
	Heterogeneous STB: Statement of The Problem
	Description of The Basic Metamorphosis Method
	Advantages and Drawbacks of The Basic Method

	New Techniques Enhancing The Basic Method
	Smoothing of The Half-Cylinders
	Automatic Control of Space-Time Blending Parameters
	Truncated Cone and Truncated Pyramid as a Bounding Solid
	Affine Translation for Space-time Blending Shape Control

	Algorithmic Implementation of Automatically Controlled Heterogeneous STB
	Applications and Results
	Conclusions

	3D Heterogeneous Space-Time Blending in Artistic Applications
	Basic Algorithm for Computing 3D Heterogeneous Space-Time Blending (HSTB)
	Automatic Control for The 3D Space-Time Blending
	Automatic Control of STB Coefficients
	Smoothing Half-Cylinders
	Truncated Cone and Truncated Pyramid as a Bounding Solid

	HSTB: Algorithm and Implementation
	Space-Time Blending Algorithm
	Heterogeneous Space-Time Blending Algorithm

	HSTB: '4D Cubism'
	HSTB: Implementation
	Application and Results
	Conclusions


	Conclusions and Future Work
	Contributions
	Future Work
	List of Publications

	References

