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ABSTRACT 

Missing children face significant risks and although most return safely, a number 

remain missing or encounter serious harm. Children who frequently run away are 

especially vulnerable, being more susceptible to dangers like alcohol, drugs, 

exploitation and sexual abuse. Therefore, the current research aimed to identify risk 

factors associated with a child repeatedly going missing, to shed light on this crucial 

yet rarely investigated area.  

Our analyses of real missing children data from one UK police force from 

June 2018 to July 2019 (N = 909), revealed that over 80% of all missing child reports 

are repeat disappearances. A small minority of children who repeatedly go missing 

(8.3%), also accounted for more than half of all missing episodes. Moreover, the 

likelihood of a child going missing on multiple occasions is associated with having a 

history of criminal exploitation, being a perpetrator of violence, having adverse 

childhood experiences, being arrested and being in care. Finally, these factors can 

be incorporated into a risk assessment to accurately identify those individuals most 

at risk of going missing repeatedly. 

The results have practical implications, providing a means for police and 

partner agencies to reliably identify high-risk children even before they go missing, 

allowing them to put prevention strategies in place, and thereby improving 

safeguarding within their limited resources. 

Keywords: Repeat missing children, missing persons, missing children, 

vulnerability, practical implications, risk factors 
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CHAPTER 1: INTRODUCTION 

A missing person is: “anyone whose whereabouts is unknown whatever the 

circumstances of the disappearance. They will be considered missing until located 

and their well-being or otherwise established.” (Association of Chief Police Officers 

[ACPO], 2010, p. 8). Missing persons are the main non-crime problem for the police 

(Babuta & Sidebottom, 2018), impacting people from every walk of life (Shalev-

Greene et al., 2019). Recent figures reveal the enormity of the problem, with police 

across England and Wales in 2018/19 handling 382,960 calls about missing people 

(NCA, 2020). Going missing exposes an individual to harm (College of Policing 

[CoP], 2019), either physical, such as exploitation and abuse, or psychological and 

emotional harm.  

Missing Children 

Missing children dominate the literature because they are the most vulnerable 

in cognitive, emotional, and physical capabilities and go missing the most. Statistics 

show 60% of all missing incidents involve children (Department of Education [DoE], 

2014). Children go missing for a myriad of reasons. Running away often follows 

conflict at home, such as domestic violence, or neglect (Rees, 2011). Although many 

children leave voluntarily, they may have no alternative (Kurtz et al.,1991; Wade, 

2002). Some may be escaping from something, for example, bullying, while others 

may be “pulled” towards something, such as drug-taking, or crime (Newiss, 1999). 

Although the majority of children return safely, some come to serious harm 

(NCA, 2016). Many use drugs, one in eight survive by stealing, and one in eleven 

beg for food and money (Smeaton, 2009). Biehal et al. (2003) found that one in eight 

runaways were physically hurt, and one in nine reported sexual abuse. Recently, 

research has focused on exploitation. Child criminal exploitation occurs where an 
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individual or group takes advantage of an imbalance of power to coerce, control, 

manipulate or deceive a child into criminal activity (Home Office, 2019). Sturrock and 

Holmes (2015) found missing children are higher risk of trafficking, criminality, and 

violence. Going missing is also a critical risk factor for sexual exploitation (Jago et 

al., 2011).  

Children who repeatedly go missing are especially concerning, often having 

underlying vulnerabilities. Unfortunately, these repeat disappearances are frequent, 

with 38% of missing children returning home, only to go missing again within three 

months (NCA, 2019). Children who go missing three or more times are particularly 

vulnerable to dangers such as physical and sexual exploitation. Some studies have 

found specific categories of children run away more often (Hutchings et al., 2019). 

For example, those in care are at disproportionately high risk, often due to factors 

such as bullying from staff and other children and a desire to be with family (Hayden 

& Goodship, 2013). Overall, however, most studies are small and localised, reducing 

the generalisability of the findings, and researchers have examined only limited 

factors from the many potential influences. Consequently, the causes of repeat 

missing behaviour remain mostly unknown (Sidebottom et al., 2019). 

Demand on Services and the Need for Research 

The police have the “duty of care” for missing children (Hayden & Shalev-

Green, 2016), including risk assessment, family support, and searching for the child. 

Ideally, police practice should have a basis in scientific evidence about what works 

best (Sherman, 1998), an approach referred to as “evidence-based policing” (EBP) 

(Hoggett & Stott, 2012). Unfortunately, this is challenging, as research is limited, and 

findings diffuse slowly into police practice (Fyfe et al., 2015).  
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It is crucial to improve professional practice for missing persons, especially 

given the 20% year-on-year increase in missing people nationally (NCA, 2019). In 

particular, missing children are a significant demand on public services, with 

estimates suggesting missing person investigation equates to 14% of police time and 

annually costs between £394 million and £509 million, more than burglary and 

assault together (Babuta & Sidebottom, 2018). Missing children also draw in other 

professions, including the Local Authority Children’s Services, education and health 

providers. These costs are high and come when public service demand is increasing 

(Home Office, 2019), but funding is limited (Pepper et al., 2020).  

Research Aims and Objectives 

The current study will explore the extent, patterns and correlates of repeat 

disappearances by children. Then, by adopting a pragmatic stance (Fishman, 1999), 

the research will incorporate the pertinent factors into an evidence-based risk 

assessment, which will provide a means to reliably identify those individuals who are 

most likely to go missing repeatedly. The potential for harm increases every time a 

child runs away and developing such a tool will enable police forces and partner 

agencies to prioritise and target their preventive resources to support those who are 

the most vulnerable. Just as accurate forecasts of crime hotspots are useful when an 

officer is deciding where to patrol, a reliable forecast for a missing child will assist a 

police officer in determining what action to take to ensure they do not go missing 

again. There are three key objectives: 

1. Investigate the prevalence of repeat disappearances by children. 

2. Identify risk factors associated with a child going missing repeatedly. 

3. Develop a statistical model of risk factors that can be used in practice by 

police, to identify those individuals most at risk of going missing repeatedly.  
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CHAPTER 2: LITERATURE REVIEW 

The chapter addresses each objective. Section one examines the prevalence 

of repeat missing children, and section two considers factors that increase the 

likelihood of a child going missing repeatedly. Section three evaluates the use of 

statistical forecasting in the Criminal Justice System and how the police could apply 

it to missing children. The final section outlines the current study and introduces 

pragmatic psychology as an underlying epistemological framework. 

Objective 1 – The Prevalence of Repeat Disappearances by Children 

Compared to adults, children are more likely to go missing repeatedly 

(Sowerby & Thomas, 2016). Estimates show that between 29% (Rees, 2011) and 

75% (Sidebottom et al. 2019) of all missing child incidents are repeats. Obtaining an 

accurate figure is challenging, as many missing children go unreported, often due to 

a reluctance by the families to approach the police due to a negative perception of 

the authorities (Verhoeven et al., 2000). However, just as crime concentrates among 

places and offenders, it appears a small percentage of children go missing a 

disproportionate number of times.  

Similar concentrations exist throughout the crime analysis literature (Babuta & 

Sidebottom, 2018). For instance, a small proportion of all locations experience most 

crimes (Sherman, 1998), a limited number of victims suffer the majority of harm 

(Dudfield et al. 2017), and a few offenders have the most criminal convictions 

(Farrington et al. 2013).  

Sherman (2007) refers to this as the “Power Few”, the small percentage of 

victims, or offenders that suffer the most harm. Power few distributions provide the 

police with preventative opportunities. Targeting resources on those few perpetrating 

or suffering the most should yield the best results. For example, Barnham et al. 
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(2017) studied domestic violence cases from one UK police force and found that 3% 

of offenders were responsible for 90% of all of the harm. Similarly, Dudfield et al. 

(2017) found just 3% of victims in one police force, suffered 85% of all of the harm.  

To date, only a few studies have explored whether power-few distributions 

exist for missing children. Using police records from a Canadian city, Huey et al. 

(2020), found that 71 per cent of all missing children came from just five locations. 

Babuta and Sidebottom (2018) examined missing person cases from a UK police 

force and found that 5.2% of children who went missing ten or more times accounted 

for 30.4% of all childhood disappearances. Similarly, using data from another UK 

force, Sidebottom et al., (2019), found that 4.4% of children accounted for 28.4% of 

all missing incidents.  

Although it is difficult to generalise from three localised studies, the limited 

findings suggest in samples of missing children, a small minority of individuals will 

account for a sizeable proportion of all missing incidents. This is critical for the 

police, as targeting this group, could lead to sizeable reductions in the number of 

missing reports, preventing excessive demand on resources. Therefore, the first 

objective of the current study, is to examine the prevalence of repeat missing 

children to understand if there is a small group who go missing a disproportionality 

high number of times, with a view to focusing intervention on those individuals. 

Objective 2 – Risk Factors Associated with Going Missing Repeatedly 

It is not coincidental that some children go missing more frequently than 

others (Biehal et al., 2003), as a myriad of potential factors are involved. Within the 

literature, there are few psychological explanations of why people engage in such 

behaviour. Most discussion focuses on common associations between going missing 

and demographic and behavioural factors such as age, gender and drug misuse. 
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However, general strain theory (GST), which seeks to explain crime and 

delinquency, may offer a sound theoretical framework to underpin missing persons 

behaviour and motivations. 

GST has been applied to the behaviour of adults and children and argues that 

strains and stressors increase the likelihood of negative emotions like anger and 

frustration. These emotions then create pressure for corrective action, and crime and 

delinquency are possible responses (Agnew, 1999). GST proposes a broad range of 

strains that may contribute, including loss of positive stimuli (e.g., parental 

separation, unemployment), presentation of negative stimuli (bullying, abuse) and 

failure to achieve a goal (wealth, excitement and independence). As a response, 

crime and delinquency may allow the individual to address the source of strain 

(retaliation, violence) or alleviate the negative emotions (illicit drug use). Empirical 

tests of GST have linked the experience of strain to aggressive behaviours in school 

(Brezina et al., 2010), workplace violence (Hinduja, 2007), and substance abuse 

(Swatt, 2007). Applying GST to the current study, children experiencing strains such 

as abuse or parental separation could use running away as a coping strategy to 

escape such stressors. 

Understanding potential strains and factors will allow the police and social 

care to target at-risk individuals, better understand the context of their 

disappearance, and find potential ways to reduce the number of times they go 

missing. Unfortunately, due to methodological constraints such as limited access to 

relevant data, research is scant. Randomised control trials test cause and effect 

(Goldacre, 2013), but as it is unethical to deliberately expose a child to risk or take 

no action when one goes missing, there are none. Instead, existing studies use less 

rigorous cross-sectional designs, demonstrating correlations but not the underlying 
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cause or direction of the effect. For example, a UK survey found links between drug 

misuse and missing children (Rees, 2011). However, it is unclear if drugs are the 

cause (drugs increase risk-taking behaviour) or effect (being missing puts the child in 

risky situations) of going missing. Despite these limitations, six broad categories of 

factors have emerged, influencing the likelihood of a child repeatedly going missing. 

These are; being in care, an adverse family background, exploitation and crime, 

demographics, mental health, and substance misuse. 

Being in Care 

Children in care are overrepresented in missing persons reports (Biehal et al., 

2003). Care includes local authority, voluntary and independent sector residential 

care homes and foster care placements. One in ten looked after children go missing 

each year, compared to one in two hundred children living with their family (NCA, 

2019). Some disparity may be attributable to reporting procedures, carers being 

more vigilant due to their professional role (Hayden & Goodship, 2013). Also, many 

children in care probably started to go missing before they entered the care system 

(Hayden & Shalev-Green, 2016) so again distinguishing correlation or causation is 

difficult. Despite this, there is still a clear association, which has received remarkably 

little research investigation. Children may be trying to get away from something 

(push factors), such as arguments with staff, bullying from other children, or to get to 

somewhere or someone (pull factors), such as the desire to see family and friends 

(Finkelstein et al.,2002).  

GST may also provide a helpful lens. A key challenge to GST has been to 

explain why some individuals resort to crime or delinquency as a coping mechanism 

when others facing similar circumstances do not. GST proposes that particular 

variables may increase the likelihood of negative coping, such as a lack of social 
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support or other coping resources (Agnew, 1992). Children in care may lack support 

and loving relationships, which may increase their likelihood of going missing. 

Consequently, the current study hypothesised that children in care are more 

likely to go missing repeatedly (H1). 

Adverse Family Background 

Abuse and neglect are risk factors for running away. Hutchings et al. (2019) 

examined missing child cases from a UK police force and found that children who 

frequently went missing (three or more times in twelve months), were twice as likely 

to have a history of abuse and neglect. However, studies are limited, and the 

variables used are often poorly defined. For example, Baker et al. (2003) used a self-

report questionnaire to measure levels of emotional abuse experienced by teenage 

runaways. Unfortunately, the study did not fully explain the variables, leading to 

subjectivity in the responses. For example, the questionnaire asked the children 

whether they had experienced problems at home, but without a full explanation, this 

can have different meanings to different people. 

Research into Adverse Childhood Experiences (ACEs) may, however, help to 

fill this gap. ACE studies explore the impact of adverse childhood experiences on 

adulthood. Results provide strong evidence of a link between early physical and 

emotional abuse, loss of a parent, domestic abuse, divorce and parental drug use, to 

offending, physical illness and substance abuse later in life (Child Exploitation and 

Online Protection Command [CEOP], 2011; Dube et al., 2006). GST may also help to 

explain this negative relationship. GST describes chronic strain – repeat exposure to 

continuous strain that leads to negative emotional traits, like anger (Agnew, 2006). 

The more someone experiences a strain, the more likely they are to develop these 

traits, and the more extreme their response.  A dysfunctional homelife is a unique 



RISK FACTORS FOR REPEAT DISAPPEARANCES BY CHILDREN  21 

strain because it leaves fewer alternatives for avoidance, and therefore running away 

may be the only option in order to escape. 

Although ACE studies have not focused on missing children, given their 

profound influence on mental and physical health, and their potential as “push” 

factors, we hypothesised that children suffering an ACE are more likely to repeatedly 

go missing (H2).  

Exploitation and Crime  

Missing children are vulnerable to criminalisation and sexual exploitation. 

Sturrock and Holmes (2015) found evidence of gangs recruiting children to sell 

drugs. The National Crime Agency report that 80% of police forces have found cases 

of gang exploitation, with 15-16-year-old males being most at risk (NCA, 2017). 

Research also identifies running away as the top risk factors for child sexual 

exploitation (CSE) (Jago et al., 2011). Estimates show 90% of children who have 

been subject to grooming will also go missing (Department for Children, Schools and 

Families [DCSF], 2009) and those who go missing repeatedly, are twice as likely to 

have been sexually exploited (Hutchings et al., 2019). This potentially could either be 

a “pull” factor (they go to meet an abuser as they do not recognize the grooming as 

such), or a “push” factor (they are being abused and runaway as a means of 

escape). Emerging evidence also recognises that children who go missing from local 

authority care are particularly vulnerable to CSE (All-Party Parliamentary Group 

[APPG], 2019).  

Crime can be a cause as well as a consequence of going missing. A child may 

run away to avoid punishment for committing a crime. Alternatively, a child may 

commit crime as a result of being missing. For example, Shalev-Greene and Pakes 

(2014) found evidence of survival crimes. In a sample of 51 children reported 
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missing three or more times over one year, 82% had been arrested at least once, the 

most common offences being assault and theft. Based on these findings, we 

hypothesised that children suffering criminal exploitation (H3), children who have 

been arrested (H4) and children who have been perpetrators of violence (H5), are 

more likely to go missing repeatedly. 

Demographics 

Studies generally find girls are more likely to run away (Slesnick et al., 2013). 

UK statistics show females aged 12-17 years go missing the most (NCA, 2019). 

Data from the charity Missing People follows this trend, with 71% of 13-17-year-olds 

reported missing being female (Biehal et al., 2003). The gender difference may be 

due to the perception females are more vulnerable, increasing the number of missing 

reports; males may have alternative strategies to face or cope with distress, or it may 

be females are more susceptible to grooming (Smeaton, 2013).  

For age, the picture is still unclear. Most research suggests older children are 

more likely to go missing, with those 13 to 17 years reported missing the most 

(Babuta & Sidebottom, 2018; Graham & Bowling, 1995; Rees, 2011; Rohr, 1996). 

One possible explanation is older children experience more complex and interrelated 

life problems (Baker et al. 2003). In contrast, younger children are also more closely 

supervised and have less opportunity to runaway (Social Exclusion Unit, 2000). 

Therefore, we hypothesised that gender (being female) (H6) and age (being older) 

(H7), would be significant risk predictors for children to repeatedly go missing. 

Mental Health  

Strong associations exist between mental illness and going missing (Tarling & 

Burrows, 2004). UK statistics show depression and mental health are present in 25% 

of all missing reports (NCA, 2016). Looking specifically at adults, Gibb and 
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Woolnough (2007) analysed police missing reports and found 80% involved mental 

illness, including bipolar disorder, depression, psychosis/schizophrenia and 

dementia. This compares to an estimated one in six people in the UK who suffer 

mental health problems every week (McManus et al., 2016). Similarly, Holmes et al. 

(2013) looked at 5000 missing person cases and found 60% of persons who went 

missing had a mental health problem. Whilst studies have so far focused on adults 

and not repeat missing children, they are still valuable for this research and indicate 

the likely effect.  

Although carers and family may be more likely to report people with mental 

health issues missing (Sveticic et al., 2012), there appears a link between mental 

health and going missing. One possible explanation is that running away is a coping 

response to a crisis (Stevenson et al., 2013). Self-harm is another coping 

mechanism (McDougall et al., 2014) and research has found on average up to a 

third of missing incidents reported to the police involve suicide or self-harm (APPG, 

2019). It could be people go missing to harm themselves or to hide once they have 

done so. More research is urgently needed however, as studies have only used 

police data, but as many police forces do not routinely record if a missing person has 

self-harmed, the actual figures are likely to be significantly higher. Consequently, we 

hypothesised that children with a history of mental health and self-harm are more 

likely to go missing repeatedly (H8). 

Substance Misuse 

Although no studies have specifically examined substance misuse and 

running away repeatedly, several studies have found substance misuse does 

increases the risk of going missing (Browne & Falshaw, 1998; Hutchings et al., 

2019). Thompson et al. (2002) surveyed children admitted to emergency homeless 
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shelters in America and found that 65% reported using drugs or alcohol. As 

highlighted previously, a weakness for many such studies, however, is establishing 

the direction of the effect. Drugs could either be a cause of going missing (increasing 

risk-taking behaviour), or a consequence (putting the child in risky situations where 

drugs are available). Further research is needed; however, the existing evidence 

suggests that children with a history of substance misuse are more likely to go 

missing repeatedly (H9). 

Summary 

Few studies have compared the attributes of children who have been missing 

once, compared to those who go missing frequently. A range of personal and social 

factors may be involved, but the evidence is from small, cross-sectional samples, 

and further research is needed. The research has also primarily examined individual 

risk factors and not their interrelatedness. The variety of factors involved suggest 

there may also be complex interactions that give rise to different pathways to missing 

behaviour. For example, situational factors like poor relationships or lack of 

engagement at school, could increase a child’s vulnerability to criminal exploitation 

or drug misuse. 

Based on previous findings and in combination with practitioner experience, 

this study will include the following factors, in combination, into our scope of 

examination: being in care, adverse family background, criminal exploitation, being 

arrested, being a perpetrator of violence, age, gender, history of mental health and 

self-harm, and substance misuse.  
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Objective 3 – Identifying Those Individuals Most at Risk of Going Missing 

Repeatedly 

The last objective focuses on practical application and using the salient 

variables (identified in objective 2), to develop a risk assessment for operational 

police officers to be able to reliably identify the individuals most at risk of going 

missing repeatedly. Currently, after locating a missing child, the police complete a 

safe and well check to establish what support they may require. Safeguarding 

options range from taking no action, up to detaining the child under a Police 

Protection order. Correctly anticipating whether the child will run away again is vital. 

However, presently, there is no quantifiable or statistical method to help, and instead, 

the risk assessment relies on the professional judgment of the officer. Therefore, 

developing a more evidence-based tool/measure is crucial and will allow officers to 

more reliably identify the most vulnerable and quickly put prevention strategies in 

place before they go missing again. This section considers what type of measure 

may be most appropriate. Firstly, evaluating professional judgement (the current 

approach), the section then identifies two alternatives: statistical forecasting and 

structured professional judgement. 

Professional Judgement 

Traditionally, police officers use experience to make decisions, especially in 

missing person investigation. Known as professional judgement (Barends et al. 

2015), other stages of use include whether/when to arrest, bail, prosecution and 

conviction (Hyatt & Barnes, 2014). While professional judgement is flexible, making it 

invaluable for dynamic and complex situations, it is also prone to errors (Barends et 

al., 2015) such as cognitive bias (a systematic error in thinking). For example, 

researchers assessing the ability of social workers to detect child abuse found 
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professional judgement was only slightly better than guessing (Behavioural Insights 

Team, 2014).  

Professional judgement is particularly ineffective for risk decisions, for 

example those involving financial risk or personal loss (Arad-Davidson & Benbenisty, 

2008). Although there are no studies specific to missing persons, domestic violence 

research has found professional judgement led to inconsistent decision making, and 

a tendency for officers to over-estimate some factors like violence, while neglecting 

others like coercion and control (Robinson et al. 2016). These weaknesses are 

concerning given the enormous risks involved with missing children. The need for 

consistent, well-informed decisions has led to the development of evidence-based 

policing (EBP) (Keay & Kirby, 2017). Sherman (1998, p.2), proposed that “police 

practices should be based on scientific evidence about what works best”. EBP is 

growing, and methods such as statistical forecasting are now commonplace (Oswald 

et al., 2018).  

Statistical Forecasting in Policing 

Statistical forecasting eliminates human decision making and instead assigns 

values to risk variables such as violence, or substance misuse, to arrive at the 

probability of some outcome. Research consistently shows statistical forecasting is 

more accurate at predicting risk than professional judgement (Kahneman, 2011). The 

Kent Internet Risk Assessment Tool (KIRAT) is one example. The proliferation of 

indecent images of children on the internet has exceeded the resources required to 

investigate the suspects effectively. The KIRAT is an evidence-based framework for 

prioritizing the most dangerous offenders (those most likely to commit hands-on 

sexual offences against children). Using fourteen questions about the suspect 

(previous behaviour, access to children, current behaviour and circumstances), it 
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produces a risk score (low, medium or high). Research has found that the model 

could correctly classify 97.6% of high-risk offenders and 62.3% of low-risk offenders 

(Long et al., 2016), considerably higher than personal opinions of police officers. 

Recent advances in technology have led to a more advanced form of 

statistical forecasting - predictive policing. Predictive policing is primarily used to 

forecast crime (Meijer & Wessells, 2019). For example, Kent Police use predictive 

mapping to identify crime hotspots and have found it to be twice as effective as 

traditional intelligence-led methods (Kent Police, 2014). More recently, predictive 

policing is making predictions about individuals. Durham police developed the Harm 

Assessment Risk Tool (HART), which uses variables including past convictions, 

demographics, and postcode to predict the chance of individuals reoffending (Urwin, 

2016). HART can predict reoffending with 63% accuracy, significantly higher than the 

professional judgement of police officers (Oswald et al., 2018; Vettor et al., 2014).  

Several studies have applied statistical forecasting to missing persons. 

Researchers successfully predicted the distance a lost person would travel based on 

factors such as age, sex and mental condition (Gibb & Woolnough, 2007). Newiss 

(2011) further developed this to identify health and lifestyle factors which could 

predict if a missing person would come to harm. For example, for a missing middle-

aged male with depression, the likelihood of self-harm, or suicide increase. Adults 

who have recently ended a relationship, or those facing allegations of sexual abuse, 

are also at a high risk of harm (Eales, 2017).  

Overall, however, support for predictive policing is inconsistent (Vetter, 2014). 

By using an algorithm, Berk and Sorenson (2005) found that they could predict 60% 

of future domestic violence offences. Similarly, Greater Manchester Police found 

predictive crime mapping, was ten times more effective at reducing burglary than 
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traditional foot patrol (Fielding & Jones, 2012). However, other studies are less 

favourable. Sanders et al. (2015) used predictive modelling to estimate the risk of 

individuals becoming involved in gun violence, but after twelve months, there was no 

significant effect.  

Overall, it appears that statistical forecasting is not always reliable, and flaws 

in its methodology may explain this. Firstly, the assumption that all people are the 

same. Algorithms only deal with data that can be coded and formalised, compared to 

human analytical thinking. By grouping people and not considering the individual 

(Cooke & Michie, 2014), critics claim context is lost, and decisions are oversimplified 

(The Law Society of England and Wales, 2019). Oversimplification could be 

especially problematic for going missing, as the drivers can be hugely complex 

(Missing People, 2019).  

Secondly, statistics rely on the future replicating the past (Copson et al.,1997), 

and therefore, any dramatic changes could make a forecast suspect. For example, 

recent years have seen profound changes in how children socialise, with 83% of 12-

15-year-olds now owning a smartphone (Office for National Statistics [ONS], 2018). 

These factors are likely to affect missing behaviour, meaning any predictive model 

could quickly become outdated. 

The final flaw is assuming the data is accurate. If the information does not 

accurately represent the problem, outcomes may be suspect. For example, a large 

proportion of missing episodes go unreported (NCA, 2016), and therefore the data 

provides an incomplete snapshot of the problem and consequently prediction is 

potentially based upon a limited sample (University of Huddersfield, 2016). 

In summary, these flaws show a tension between statistical forecasting and 

professional judgement, which may make it unsuitable for missing person 
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investigation. The weaknesses in human decisions highlight the need for a predictive 

risk assessment model. However, the uncompromising approach of statistical 

forecasting means it cannot easily change or adapt to recognise the diversity of 

missing children. This has led to a third type of risk assessment – structured 

professional judgement. 

Structured Professional Judgement 

Structured professional judgment (SJP) attempts to resolve concerns around 

the inflexibility of algorithms while recognising the weaknesses of human decision 

making. SPJ still uses prediction models and algorithms to identify risk factors, but 

decision-makers retain the flexibility to consider additional case-specific factors 

(Doyle & Dolan, 2002). Bridging the gap between professional judgement and 

statistical forecasting (Douglas & Kropp, 2002), SPJ has become the gold standard 

risk assessment technique (National Institute for Mental Health in England, 2004). 

The Harm Assessment Risk Tool (HART) (described above) is applied in this 

way. Recognising that the risk assessment does not have all the information, it 

therefore only supports human decision-makers, rather than replacing them. The 

custody officers with both their local knowledge and their access to other data 

systems retain their discretion to override the model's prediction if necessary and 

given appropriate justification.  

Overall, however, there has been little rigorous assessment of SPJ. Douglas 

et al. (2005) found that it was equally as effective as the predictive approach when 

assessing the risk of violence among criminal offenders, but others have had less 

success. For example, the Domestic Abuse, Stalking and Honour-based Violence 

Risk Identification, Assessment and Management Model (DASH), is used by the 

majority of police forces when working with victims of domestic abuse. DASH uses 
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SJP, by producing a risk grading (standard, medium or high), but leaving officers 

discretion to raise the risk, if it appears higher than the score suggests. In one of the 

few critical assessments of its effectiveness, Almond & et al. (2017) found it was a 

poor predictor of future victimisation. One possible explanation is that as SJP still 

allows the practitioner considerable discretion when interpreting the answers to the 

questions, it is therefore still vulnerable to some of the same criticisms as 

professional judgement. 

To a limited extent, missing person research already uses SJP. Bonny et al. 

(2016) found that several personal factors could successfully predict if an adult 

would go missing. For example, if an individual was known to social services, had 

mental health issues, took drugs, and had suicidal ideations, they would be a high 

risk of becoming a missing person. These findings were the first step in developing a 

standardised checklist, which could be used by practitioners to prioritise missing 

adults. Building on this, Hutchings et al. (2019) explored data collected on missing 

children by Gwent Police, looking at thirty factors, ranging from demographics to 

family background and medical history. The study identified five significant risks 

common to repeat missing children. These were; being in care, substance misuse, 

suspected sexual exploitation, known to youth offending services and a history of 

abuse and neglect. Researchers proposed providing the police with a checklist, and 

if a child had three or more of the factors, they would be a high risk of going missing 

repeatedly. 

In conclusion, SPJ recognises that good practice is evidenced-based, yet at 

the same time recognises the existing knowledge can be incomplete, and imperfect 

for making decisions about individual cases. SPJ is flexible and supports and guides 
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professional judgement rather than replacing it and given the complexity of missing 

children, makes it the most suitable approach for this study.  

Current Research 

Where this study departs from the previous research on repeat missing 

children, is by focusing attention on a practical solution. Although past research 

identifies risk factors for running away (see Bonny et al., 2016; Hutchings et al., 

2019), studies have not provided usable results that will benefit either the police or 

missing person investigation, and this may be down to studies being researcher 

rather than practitioner-led. For example, although an operational police officer may 

be aware that a cared for child is at risk of going missing (Lees, 2011), there is no 

formal way to quantify the risk and use it as a base for decision making. For the 

present study, the real-world application is crucial and to achieve this, the research 

uses Pragmatic Psychology.  

Pragmatic Psychology is goal-focused and problem-driven. Rather than 

identifying a theory which can then be applied, for a pragmatist, the application 

comes first (Fishman, 1999). The pragmatic framework has three main principles, 

and these are; focusing on practical problems and solutions; taking into account 

what the practitioner wants and ensuring the results are relevant to their needs; and 

finally, ensuring methods are rigorous and scientific.  

By using a pragmatic approach, the findings must first be useful within the 

policing environment. For example, although Bonny et al. (2016) identify factors that 

make children more likely to go missing, their results do not form a risk assessment. 

Instead, this study intends to give officers the ability to make a timely risk 

assessment when they locate a missing child. 
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Secondly, the findings must be useable and take the operational context of 

missing persons into consideration. For example, Hutchings et al. (2019), use 

detailed family history as a risk factor, but officers would not have access to this 

information during routine policing. As a result, the risk factors in this study must be 

immediately available through the usual police practice. Officers do not have ready 

access to data from other local agencies, and therefore this will not be included.  

Finally, the results must be scientific. The police must be transparent and 

accountable in decision making. As such, any pragmatic recommendations 

emanating from this research need to be scientific. Pragmatic Psychology assists by 

ensuring the enquiries are structured and systematic. 

In summary, responding to missing children is a leading source of demand 

and cost to the police. The proposed study will first establish the prevalence of 

repeat missing incidents in children and then identify a set of risk factors associated 

with repeat missing behaviour. The final aim is to develop these factors into a 

statistical model to identify those individuals most at risk of going missing repeatedly. 

The present study will build on the work Hutchings et al. (2019), by using a larger 

sample size of children, and also by ensuring the findings are useful to practitioners.  
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CHAPTER 3: METHODOLOGY 

By taking a pragmatic approach (Fishman, 1999), the study sought to; (1) 

investigate the prevalence of repeat disappearances by children; (2) identify risk 

factors increasing the likelihood of a child going missing repeatedly; and (3) develop 

an easy-to-deploy statistical model to identify those children most at risk of going 

missing repeatedly.  

The study used logistic regression to analyse a dataset of pre-existing missing 

persons (N=909), comparing the attributes of two groups: children who run away 

more than once (n=389); and those who are “one-off” runaways (n=518). The 

chapter outlines the research strategy, introducing Pragmatic Psychology as the 

theoretical stance. The design, sample, data collection, data analysis and ethical 

considerations are also described.  

Design 

Researchers should select a methodology consistent with their goals (Lincoln 

& Guba, 1985). As the objective was to solve a real-world policing problem (missing 

child risk assessment), a pragmatic approach was appropriate. Pragmatism deals 

with useful knowledge that helps solve practical problems (Rorty, 1999). As solutions 

are the goal, the approach does not advocate any specific strategy, but instead 

encourages researchers to consider “what works” best to solve the practical 

problem. The study employed a quantitative approach, using secondary data, as 

access was granted to a large police dataset of missing children cases.  

Sample / Data 

The sample comprised of all missing child reports to Dorset Police in one year 

(1st July 2018 – 30th June 2019). After exclusions (discussed below), this left 909 
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individual children who were involved in 3213 separate missing incidents. The 

following parameters were set. 

1. Geographical Location. Previous research has found significant regional 

differences in missing children (NCA, 2017). As the study was concerned with 

making predictions about children who go missing in Dorset, only children 

reported missing to Dorset Police were included. 

2. Operational Definitions. The study used policing definitions to ensure the 

findings were practical and relevant to the police. A missing person was 

defined as; “anyone whose whereabouts is unknown whatever the 

circumstances of the disappearance. They will be considered missing until 

located and their well-being or otherwise established” (Association of Chief 

Police Officers [ACPO], 2010, p. 8). A child was defined as; “anyone who has 

not yet reached their 18th birthday” (Children’s Act, 1989, para. 16). 

3. Sample Frame. The sample was limited to the most recent data available 

(30th June 2018 - 1st July 2019). Although purposive sampling can be prone 

to bias, it was necessary to; 

• account for seasonal variations - more children go missing in the 

school holidays, making it imperative to include a full calendar year, 

and  

• ensure the data was up to date - statistics suggest changes in missing 

behaviour over time (NCA, 2017). 

4. Exclusion Criteria. The purpose was to examine runaway behaviour. The 

research, therefore, excluded sixty children who were reported missing for 

other reasons (abduction, lost, human trafficking). In addition, Dorset Police 

also only hold background information for children in Dorset. Consequently, it 
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was necessary to remove thirty-five cases involving children who lived 

elsewhere. 

5. Dependent (Response) Variable. The dependent variable was the number of 

times each child went missing during the 12 months of the study (30th June 

2018 - 1st July 2019). The outcome was coded as either; single missing 

episode (low risk) or repeat missing episodes (high risk). One consideration 

was to divide the outcome into multiple levels, for example, low, medium and 

high risk. Operationally, however, risk increases substantially every time a 

child runs away, with repeat disappearances often indicating underlying 

vulnerabilities and being linked to various forms of exploitation and abuse 

(Sidebottom et al., 2019). Setting the threshold as a simple binary outcome 

was, therefore, the most appropriate measure.  

6. Independent Variables. Ten variables were measured for each child (nine 

categorical, one continuous). Table 1 contains the full list, including their 

operational definitions.  

Table 1 

Description of Variables Included in the Analysis 

Variable Measurement Description 
 

No. times 
missing 
 

Categorical  
Low/High 

Number of times the child has been 
reported missing in the 12th month 

period. Low = 1, high =>1 
 

Age Continuous 
 

Age on the first missing episode in the 
12-months. 

 
Gender 
 

Categorical  
M / F 

 

Gender of missing child. 

Adverse 
Childhood 
Experience 
(ACE) 

Categorical  
Yes /No 

 
 

Adverse Childhood Experiences (ACEs) 
are traumatic experiences before the 

age of 18. 
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Table 1 (continued) 
 

 

Variable Measurement Description 
 

History of 
drug misuse 
 

Categorical  
Yes / No 

 
 

A reasonable belief that the child has 
used an illegal drug at any point in their 

life. 

Violent 
history 

Categorical 
Yes / No 

 

Describes whether the child is known to 
have previously been a perpetrator of 

violence. 
 

Previous 
arrest 
history 
 

Categorical 
Yes /No 

 

Whether the child has been arrested for 
any offence before going missing. 

Self-harm 
 

Categorical 
Yes /No 

Intentional harm including, cutting 
or burning skin, punching or hitting, 
poisoning with tablets or liquids, or 

similar. 
 

Mental 
health 

Categorical 
Yes / No 

 

A diagnosed mental health disorder. 

Family 
status 
(cared for 
child) 

Categorical 
Yes / No 

 

Includes local authority, voluntary and 
independent sector residential care 
homes and foster care placements.  

 

Procedure  

The data came from missing person reports held by Dorset Police. Each 

missing child has a digital record including  

• current family circumstances, 

• background and medical history, 

• circumstances of their disappearance, 

• risks such as physical or mental illness, or dangerous associations and 

• details of the investigation. 
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Officers collect the information from multiple sources (friends, family, 

professionals) and manually enter it into the record. Although there are no statistics 

for errors in this kind of reporting method, all reports are checked by a supervisor, 

increasing their reliability. 

1. Data Collection. Information from the missing person reports was extracted 

on the 19th July 2019 and transferred into a Microsoft Excel spreadsheet. The 

download contained three of the variables (number of times missing, age and 

gender). To obtain the remaining data, the researcher manually accessed 

each child’s Dorset Police person record, which contains details of all police 

interactions, including arrests, stop checks, victimisation and intelligence.  

2. Identification of Variables. The variables were selected based on previous 

studies. Five other experienced professionals knowledgeable in missing 

children, were then given the variables and asked to comment, in line with 

pragmatic psychology which advocates the use of applied experience in 

conjunction with academic rigor in research design. There was a consensus 

that the listed factors could be predictors of repeat missing behaviour. Also, 

the data was deemed ‘authentic’ as it was extracted directly from police 

records. Alison et al. (2001) argue police records are the best way to examine 

police phenomenon, as the information reflects reality.  

3. Recording and Coding. Individual records were opened and scrutinised for 

evidence of the variables. To ensure reliability and consistency (Bryman, 

2008) a specially designed data collection tool and codebook were utilised 

throughout (Appendix A). A binary classification was used, coding the 

presence of the behaviour as one and the absence as zero. The codebook 
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provided explicit instructions, and categories were designed to ensure they 

were mutually exclusive.  

4. Missing Data. An important aspect of handling data is devising a strategy for 

missing information (Bryman, 2008). In five cases, information was missing 

and unobtainable. Where multiple scores are missing for a person, Bryman 

and Cramer (2005) recommend omitting the case as it is likely there are 

problems in the way the information was collected. Therefore, due to the small 

number, these cases were removed from the dataset. 

Data Analysis 

This study aimed to examine the extent to which children go missing and 

predict a dichotomous outcome (high risk vs low risk of going missing again). The 

data analysis occurred in four stages. 

Stage 1 - Investigating the Prevalence of Repeat Missing Episodes. 

Descriptive statistics were used to examine the patterns and prevalence of repeat 

missing episodes. 

Stage 2 - Identifying Risk Factors for Repeatedly Running Away. The 

study used regression analysis (see stage 3) to predict whether a child would go 

missing repeatedly. To avoid overfitting the model (identifying spurious relationships), 

or underfitting (failing to capture the underlying structure of the data), each variable 

was compared against the high-risk group. Chi-Square tests were used for 

categorical variables and a t-test for Independent Samples for the continuous 

variable (age). Any risk factor predicting the high-risk group with p < 0.2, was 

included in the regression model (stage 3). The advantage of using a higher 

significance level (p <0.2 instead of p < 0.05) is that essential variables are less likely 
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to be missed (Kirkwood & Sterne, 2003). All variables met the p <0.2 level of 

significance. 

Stage 3 – Testing the Assumptions & Developing a Statistical Model. 

Binary logistic regression (BLR) was used to predict the likelihood of a child 

repeatedly going missing. BLR assesses the predictive ability of a set of independent 

variables (predictors) on a categorical dependent variable (outcome), in this case, 

either high risk vs low risk of going missing. Pragmatically it is not really necessary 

for police to predict the number of times a child may go missing (and this is 

unavailable due to the constraints of this dataset being limited to a year), but merely 

whether or not they are likely to be a repeat missing person, in order to target them 

for potential interventions. Discriminant function analysis (DFA) was a possible 

alternative test. DFA is also used for categorical group prediction but differs in that it 

assumes multivariate normality, making it unsuitable for the binary predictor 

variables in this study (Rice, 1994). 

Other areas of criminal justice research advocate the use of BLR to predict 

outcomes, setting the precedence for this method. For example, in a similar study, 

Hutchings et al. (2019), used BLR to predict the likelihood of a child going missing. 

Similarly, Davies et al. (1998) used BLR to estimate the likelihood of a rape offender 

possessing particular criminal convictions and Cole & Brown (2013) used BLR to 

predict characteristics (age, previous convictions) of murder offenders.  

Logistic regression has several key assumptions (Bewick et al., 2005), the 

first being that the predictor variables are not highly correlated. To check for 

multicollinearity, each variable was compared, using either Pearson's r (continuous 

vs nominal), or Chi-square and the phi coefficient (nominal vs nominal). 
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All variables were entered simultaneously into the model (enter method) as 

none of the variables was deemed more important than others (hierarchal, 

sequential). The research also wanted to investigate all of the variables rather than 

adding them in or taking out based upon statistical rationale (stepwise, forward, 

backward).  

Having fit the model, variables that did not show significance at the 5% level 

were eliminated, on the basis that they were not contributing to the model. Following 

the elimination of non-significant variables, the logistic regression was re-run, and 

the result was the final model. 

Stage 4 - Testing the Model. Verifying the predictive ability of a model is a 

critical step, and it should perform equally well for new data, as it did in the 

development stage. One method of doing this is internal validation, randomly splitting 

the data set into two parts: one to develop the model and another to validate its 

performance. With this split-sample approach, the researcher measures 

performance on similar, but independent data. As there was a large sample of data, 

this was used. The data was randomly into two parts (50:50), the first sample was 

used to develop the model, and the second to validate its performance. 

Ethical  

Due to the extremely sensitive nature of the data, all data was robustly 

anonymised at source, by removing all direct identifiers such as names, police 

reference numbers and postcodes. All indirect identifiers that could potentially link 

with other publicly available information were additionally removed. All relevant data 

sharing permissions and vetting procedures were authorised and agreed by Dorset 

Police, and ethical approval was gained from Bournemouth University Ethics 

(Appendix B).  
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CHAPTER 4: RESULTS 

Stage 1 - Investigating the Prevalence of Repeat Disappearances 

Descriptive statistics were used to describe the main features of the sample. 

In total, 909 children were included, with no missing data.  

Demographic Variables 

The majority of children were aged over 12 years (87.4%), with the mean age 

of 14.01 years and a standard deviation of 2.17. Figure 1 shows this distribution of 

missing children by age and gender. 

 

Figure 1. Number of Missing Children by Age and Gender. 

 

Although males account for slightly more disappearances at all ages, except 

17 years, overall gender differences within the sample were not significant (males 

56%; female 44%). This is contrary to previous literature which found more females 
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go missing between the ages of 12-17 years. However, previous studies are based 

on much larger samples, which may explain the variation in results. 

Behavioural Variables 

Table 2 displays the frequency of behavioural variables. There is a clear trend 

towards difficulties at home, with most missing children having suffered an Adverse 

Child Experience (ACE) (64.4%) and over 1/5 (21.5%) were in care of the local 

authority (compared to only 1% of the National average – DoE, 2019). Risky 

behaviours were present in nearly a third of the sample, and 12.0% of the sample 

had self-harmed, highlighting the risks faced by these children whilst missing.  

Table 2 

 Frequency of Behavioural Variables Within the Sample (N = 909). 

Variable 
 

n % 

   
Family Factors 

 
Adverse Childhood Experience (ACE) 

 
 

585 

 
 

64.4 
 

Risk Taking Behaviour (by child) 
 

Drug Misuse 
 

Suspected victim of criminal exploitation 
 

History of violent behaviour 
 

Previous arrest 
 

Self-harm 
 

 
 

268 
 

269 
 

253 
 

155 
 

109 
 

 
 

29.5 
 

29.6 
 
27.8 
 
17 

 
12 

 
Service Involvement 

 
In care 

 

 
 

195 
 

 
 

21.5 
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Frequency of Repeat Missing Episodes  

Table 3 breaks down the extent of repeat disappearances. For the 12-months, 

there was a total of 3213 missing person episodes, relating to 909 unique children. 

The disparity between individuals and incidents reveals repeat disappearances. Most 

children, 57.2% (n = 518) went missing only once (categorised as low risk of 

becoming a repeat missing), and 42.8% (n = 389) went missing more than once 

(categorised as high risk of being a repeat missing).  

Table 3 

Extent of Repeat Disappearances by Children in the Sample 

No. of 
Disappearances 

Number (%) of children  
recorded as missing 

 

Number (%) of missing 
child episodes 

 
1 518 (57.2) 518 (16.1) 
2 150 (16.5) 300 (9.3) 
3 70 (7.7) 210 (6.5) 
4 27 (3.0) 108 (3.4) 
5 25 (25.0) 125 (3.9) 
6 
7 
8 
9 
10 or more 
Total 

16 (16.0) 
10 (1.1) 
9 (1.0) 
9 (1.0) 

75 (8.3) 
909 

96 (3.0) 
70 (2.2) 
72 (2.2) 
81 (2.5) 

1633 (51.0) 
3213 (100) 

 

 

Table 3 shows that although single missing episode children (n = 518) 

represented 57.2% of all individuals in the sample, they accounted for only 16.1% of 

all missing child episodes. Compared to the 389 children who went missing more 

than once, accounting for 83.9% of the total episodes (2755 episodes). The table 

also shows that the distribution of disappearances is highly skewed, with the small 

minority of children who went missing ten or more times (n = 75) making up just 

8.3% of the sample, but collectively accounting for 1633 missing episodes - 51% of 

the total disappearances. This small cohort (the ‘power few’) who go missing a 
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disproportionate number of times are significant outliers, suggesting that they may 

form a distinct subset, with unique characteristics and suffering distinctive risks. 

Stage 2 – Testing the Assumptions.  

Correlation analyses were conducted using Pearson's r for the association 

between the continuous and nominal variables and phi coefficient and chi-square 

calculations for nominal variables and dichotomous variables (see Table 4). 

Table 4 

Pearson and Phi Correlations of the Variables. 

 Variable 
 

1 2 3 4 5 6 7 8 

1. Ageª 
 

        

2. Gender 
 

.094**        

3. ACE 
 

.064 -.007       

4. Drug misuse 
 

.240** .121** .340**      

5. CE 
 

.206** -.086* .367** .659**     

6. Violence 
 

.169** .224** .360** .535** .415**    

7. Previous 
arrest 
 

.213** .140* .269** .525** .459** .451**   

8. Self-harm 
 

.107** -.147* .128** .014 .057 .118** .032  

9. Family status .261** -.080 .322** .350** .377** .315** .371** .088 

Note. Abbreviation: CE, criminal exploitation. ACE, adverse childhood experience. 

ªAge: Pearson’s r. 

*p < .05; **p < .001 

 

For Pearson’s r, Cohen (1988) suggests the following guidelines for 

estimating the relationship’s magnitude, defined by r: 0 to 0.2 very weak; 0.2 to 0.4 

weak; 0.4 to 0.6 moderate; 0.6 to 0.8 strong. Based on this, for age, all correlations 
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ranged from very weak to weak, the strongest being between age and family status; 

r = .26, p < .001. As multicollinearity was minimal, age was retained in the analyses. 

The remaining variables were compared with one another using chi-square 

calculations and the phi coefficient. Previous research recommends the following 

criteria for estimating the magnitude or strength of the phi coefficient: 0 to 0.3 for a 

small effect; 0.3 to 0.5 for a medium effect; and 0.5 or higher for a large effect (Allen, 

2017).  

The majority of variables showed only a "small" or "medium" association, 

meaning minimal multicollinearity. Drug misuse was the anomaly however, showing 

a strong relationship with criminal exploitation (r = .66, p < .001), violence (r = .54, p 

< .001), and previous arrest (r = .53, p < .001). Although there is no agreed standard 

for excluding in multicollinearity (instead it is dependent on the purpose of the 

analysis), these correlations indicate significant multicollinearity and therefore, 

potential difficulties when interpreting the logistic regression model. A possible 

solution was to remove drug misuse from the analysis but doing so risked the loss of 

valuable information. It was important, therefore, to consider the variable in more 

detail, before making a decision.  

Considering the four variables (drug misuse, criminal exploitation, violence 

and previous arrest), there is an obvious overlap in concepts, and therefore the 

variables may be measuring the same information. For example, perpetrators often 

lure children into criminally exploitive situations by using drugs and alcohol 

(Barnardo’s, 2011). Similarly, drug possession is a common reason why a child is 

arrested (Shalev, 2010), and there is also a well-established link between substance 

misuse and an individual’s risk of becoming a perpetrator or victim of violence 
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(Babor, 2010). Due to this overlap in concepts and a lack of supporting theory to 

explain why drug misuse may lead to running away, the variable was removed. 

Regression analysis has six other assumptions. 

1. One dichotomous outcome variable, here labelled as a single missing episode 

(low risk) or repeat missing episodes (high risk).  

2. Independent variables are continuous (age) or nominal (all other variables).  

3. Variables in the study are independent (exclusive and exhaustive).  

4. A large enough sample size. The recommended number of cases is 10 per 

predictor variable – i.e., 9x10 = minimum 90 cases (Peduzzi, 1996). With 909 

cases, the study met this assumption. 

The remaining assumptions relate to how the data fits the logistic regression. 

They were tested in stage 4 when the model was built, but for simplicity are 

summarised here. 

5. There should be a linear relationship between any continuous independent 

variable and the logit transformation of the dependent variable. Age is the only 

continuous variable, and it was tested using the Box-Tidwell procedure (Box & 

Tidwell, 1962), demonstrating that it did not violate this assumption (see 

Appendix C).  

6. There should be no outliers as these reduce the accuracy of the logistic 

regression. An analysis of standard residuals (z scores) was carried out on 

the data to identify any outliers. Field (2015) stipulates the following 

guidelines; only 5% should lie outside 1.96; only 1% should lie outside 2.58; 

scores with an absolute value greater than 3.29 are cause for concern as in 

an average sample a value this high is unlikely to occur. The analysis 

revealed only nine cases (1.8%) with scores outside of 1.96, satisfying the 1st 
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requirement. Eight cases (1.8%) were however outside of 2.58, and 6 cases 

had values higher than 3.29, suggesting there may be too many outliers in the 

data set, and consequently this assumption was not met.  

There are several strategies for dealing with outliers. However, crucially, they may 

not always produce a damaging effect on the regression equation and therefore 

should not be automatically removed (Hawawini et al., 2003). The first method is to 

examine each case in more detail (Field, 2015), checking for errors or explanations 

for the extreme values. On doing so, six cases were incorrectly coded. The errors 

appear to have been due to human error when inputting the data and were 

corrected. A further sample of 10% was checked, but no other errors were found. 

Appendix D provides full details of the cases and the changes made.  

The remaining three outliers (see Appendix D) appeared legitimate 

observations. In order to determine the extent to which they influenced the 

regression equation, two regression models were compared, the first including the 

outliers and the second without (Hecht, 1991) (Appendix D). Removing the outliers 

had a minimal statistical impact. There was no change in the statistical significance 

of the overall model fit, and the change in overall prediction accuracy was only 0.6%. 

Furthermore, there were only three outliers (0.2% of the sample), and the highest 

was 3.486 - only fractionally over the upper boundary of 3.29 (Field, 2015). Based on 

this, these outliers were retained. As such all assumptions were either met or dealt 

with accordingly. 

Stage 3 – Identify Risk Factors Associated with Going Missing Repeatedly 

At the start of stage 3, the sample was split randomly into two equal parts; 

one development sample to create the model and another validation sample to 
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measure its performance (see stage 5). The resulting development sample included 

453 children.  

In order to identify the risk factors which may add to the predictive model, 

separate statistical tests were undertaken to check for associations between each 

factor and the high-risk group. Chi-square tests were used for the categorical 

variables and an independent samples t-test for age which is a continuous variable. 

Table 5 summarises the results.  

Table 5 
 
Risk Factors for Children Being Reported Missing. 
 
Variable N (Total 

= 453) 
Children 
reported 
missing 
once % 

Children 
reported 
missing 
more 
than 

once % 

Chi2 
value 

(df = 1) 

p- 
value 
(two 

tailed) 

OR 
 [95% CI] 

History of 
criminal 
exploitation 
 

143 2.9 28.7 181.440 <.001 33.056 
[17.638, 61.949] 

History of 
violence 
 

128 5.3 23.0 97.038 <.001 10.037 
[6.069, 16.600] 

 
ACE 
 

301 25.4 41.1 107.441 <.001 13.748 
[7.792, 24.256] 

 
Self-harm 
 

53 4.4 7.3 7.587 .006 2.255 
[1.250, 4.068] 

 
Previous 
arrest 
history 
 

84 1.1 17.4 102.085 <.001 31.600 
[12.476, 80.042] 

Family 
status – in 
care 

104 2.2 20.58 114.571 <.001 20.976 
[10.518, 41.833] 

Mental 
health 
 
 

35 3.1 4.6 3.645 .064 1.964 
[0.972, 3.969] 
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Table 5 (continued) 
 

     

Variable N (Total = 
453) 

Children 
reported 
missing 
once % 

Children 
reported 
missing 

more than 
once % 

Chi2 value 
(df = 1) 

p- 
value 
(two 

tailed) 

OR 
 [95% 

CI] 

 

Gender  
 Female 

211 24.5 22.1 1.255 .263 .809 
[.558, 
1.173] 

 
Age* 

 
453 M = 13.66, 

SD = 2.40 
M = 14.53, 
SD = 1.70 

 

t (453) =-
4.324 

<.001  

Note: Chi–square test or independent samples t-test as appropriate for comparisons. 

*Independent samples t-test. M and SD represent mean and standard deviation, 

respectively.  

 

Except for gender and mental health, all variables significantly influenced the 

dependent variable. Children with a history of criminal exploitation, an ACE, a history 

of violence, self-harm, previous arrest history, and living in care, were all significantly 

more likely to go missing repeatedly. Concerning age, an independent-samples t-test 

found that children were significantly older in the high-risk group compared to the 

low-risk groups (t (453) = -4.23, p <.001), suggesting that older children are more 

likely to go missing repeatedly.  

Practical application is an essential component of this research, and 

therefore, odds ratios were calculated, to examine the impact of each factor. For 

example, Table 5 shows the odds of being a repeat missing is 33 times greater if the 

child has been subject to criminal exploitation. The more impactive the factor, the 

more useful it is likely to be to a practitioner. Previous research recommends the 

following criteria for estimating the effect size of odds ratios: small (<1.5), medium 

(1.5-5), or large effect (>5) (Chen et al., 2010). Based on this, history of exploitation, 
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violence, arrest and family status all had a large effect. Self-harm and mental health 

had a medium effect on whether a child went repeatedly missing. 

Univariate and bivariate statistics can be useful for practitioners to make basic 

predictions around the likelihood of a child going missing repeatedly. However, such 

approaches are more prone to practitioners’ biases and neglect the different additive 

effects the risk factors may have in combination. Therefore, we proceed to the next 

stage of data analysis using multivariate statistics. 

Stage 4 - Developing a Statistical Model 

Binary logistic regression (BLR) was used to predict the probability of a child 

repeatedly going missing using the 9 risk predictors (with p < 0.2) identified in stage 

3. In BLR, the baseline model gives the best prediction when no other values are 

known. Overall, the majority of children (57.2%) went missing just once, and 

therefore this is the “best guess” and is likely to be correct 57.2% of the time. 

By entering the nine predictors, the resulting enhanced model was a 

significant improvement from the baseline model (χ2 (9) = 340.381, p <.001), and 

was able to correctly classify 90.4% of the children who went missing once and 

79.7% of those who went missing repeatedly. The overall success rate therefore 

increased from 57.2% to 85.7%. The model explained 70.7% (Nagelkerke R2) of the 

variance in missing outcome. The Hosmer and Lemeshow test result suggested it 

was a good fit to the data as it was not significant (p =.0.065). Table 6 summarises 

the logistic regression results.  
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Table 6 

Logistic Regression for High-Risk Children. 

Variable B Wald 𝑥! p 
 

OR [95% CI] 

History of criminal 
exploitation 
 

2.937 57.520 <.001 18.868 [40.311, 8.832] 

History of violence 
 

0.800 3.958 .047 2.225 [1.012, 4.891] 

ACE 
 

1.940 3.958 <.001 3.176 [3.177, 15.234] 

Self-harm 
 

0.259 0.283 .594 1.296 [.499. 3.360] 

Previous arrest 
history 
 

1.514 6.744 .009 4.545 [1.450, 14.252] 

Family status  
 

2.386 28.903 <.001 10.875 [4.556, 25.959] 

Mental health 
 

0.626 1.195 .274 1.869 [.609, 5.738] 

Gender  
  

-0.136 0.174 .677 .873 [.461, 1.653] 

Age 
 

0.047 0.415 .519 1.049 [.908, 1.212] 

 

Employing a p < .05 criterion of statistical significance, criminal exploitation, 

violence, ACE, family status and previous arrest history, had significant partial 

effects. Self-harm, mental health, age and gender were not significant.  

In order to find the best fitting and most parsimonious model, we tested 2 

models against the baseline model. Model 1 included all nine variables in the dataset 

regardless of their statistical significance (approach suggested by Hosmer et al., 

2013). Whereas model 2 only used the five risk factors with significant associations. 

As Table 7 shows, model 2 only slightly reduced the accuracy when compared to the 

full model. More specifically, the predictions for low-risk children remained the same, 

and the accuracy for high-risk children reduced by only 1.5%.  
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Table 7  

Comparison of Percentage Improvements in Predictions from Logistic Regression 

Analysis. 

Model 
 

% Correct prediction 
 

Overall 

Low risk High risk 
Base Rate 

 
100 0 57.2 

Model 1 (9 variables*) 
 

90.4 79.7 85.7 

Model 2 (5 variables**) 
 

90.4 78.2 85 

Note: * Criminal exploitation, violence, ACE, self-harm, previous arrest history, 

family status, mental health, gender and age. ** Criminal exploitation, violence, ACE, 

previous arrest history and family status. 

 

The full model only improves overall prediction by 0.7%. Furthermore, 

although age and gender are readily available, data concerning self-harm and 

mental health are subjective and more difficult and time-consuming to obtain. Often 

the information comes from witnesses, or medical records, meaning it can be 

missing or unknown. Therefore, the additional time spent waiting for and collecting 

this information does not justify the improvement in the model. As a result, the four 

non-significant factors were removed.  

The final model consisted of five predictors: history of criminal exploitation, 

violence, ACE, previous arrest history, and family status. A test of this model (2) 

versus the base rate model was statistically significant (χ2 (5) = 337.067, p < .001). 

The model was able to correctly classify 78.2% of high-risk children and 90.4% low 

risk children, for an overall success rate of 85.0%. The result is a considerable 

improvement from best guessing alone, where the prediction is likely to be correct 

just 57.2% of the time.  
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Stage 5 - Testing the Model 

As an attempt to validate the model established in stage 4, we adopted Picard 

and Berk’s (1990) method, re-running the model using the other half of the sample 

(n=456). When using this split-sample approach, one method to obtain a reliable 

measure of the model's predictive ability is to compare the accuracy in each sample 

(Austin & Steyerberg, 2017). If results between samples are considerably different, 

then the model is unlikely to predict new observations as well as initially indicated. 

The results obtained using the validation sample showed the model was still a 

significant improvement from the baseline model (χ2 (7) = 253.072, p <.001). Table 8 

compares the accuracy of the development and validation models. The overall 

accuracy was almost identical, falling just 1.9%. The prediction accuracy for low-risk 

children improved slightly, rising 0.3%, but there was a slight decrease in the 

accuracy for high-risk children, falling by 6%. Therefore, the model performed 

equally well on both samples of data, indicating the model is accurate, fits the data 

well and would transfer to other similar children not used in the model development.  

Table 8  

Comparison of Percentage Improvements in Predictions from Logistic Regression 

Analysis (Development vs Validation). 

Model 
 

% Correct prediction 
 

 
 

Overall Low risk High risk 
Base Rate 

 
100 0 57.2 

Development 
 
 

90.4 78.2 85 

Validation 
 
 

Difference in 
Predictions 

 

90.7 
 
 

0.3% 

72.2 
 
 

6% 

83.1 
 
 

1.9% 
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Stage 6 – Power Few Subgroup 

Table 3 identifies a small subgroup of children who go missing 10 or more 

times and collectively account for 51% of the total disappearances. This subgroup 

are significant outliers, suggesting they could suffer a unique set of risks. A further 

binary logistic regression was carried out to determine whether specific predictors 

can predict higher recidivism in going missing.  The outcome was categorised as 

either high risk (2 missing episodes, n = 151) or power few (10+ missing episodes, n 

= 75). 

By entering the original nine predictors, the resulting model was a significant 

improvement from the baseline model (χ2 (9) = 68.215, p <.001), and was able to 

correctly classify 88.1% of the children who went missing once, but only 58.7% of 

those who went missing more than 10 times. The model was now only able to 

explain 36.2% (Nagelkerke R²) of the variance in missing outcome (compared to 

70.6% for the original model – stage 4). The Hosmer and Lemeshow test result 

suggested it was a good fit for the data as it was not significant (p =.0.602). Table 9 

summarises the logistic regression results.  Employing a p < .05 criterion of statistical 

significance, only previous arrest history and family status now had a significant 

effect. These results indicate the power few, are a distinct subgroup, facing different 

risks than the lower recidivism missing children. 
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Table 9 

Logistic Regression for Power Few Children. 

Variable B Wald 𝑥! p 
 

OR [95% CI] 

History of criminal 
exploitation 
 

0.237 .362 .547 1.268 [.585, 2.747] 

ACE 
 

1.277 2.592 .107 3.586 [.758, 16.970] 

History of violence 
 

0.534 1.769 .184 1.706 [.776, 3.749] 

Self-harm 
 

-0.160 0.094 .759 1.296 [.307. 2.367] 

Previous arrest 
history 
 

1.454 13.809 <.001 4.280 [1.988, 9.216] 

Family status  
 

0.640 3.145 .046 1.897 [4.556, 25.959] 

Mental health 
 

0.261 0.147 .701 1.298 [.342, 4.925] 

Gender  
  

-0.754 3.459 .063 .470 [.212, 1.041] 

Age 
 

-0.179 2.638 .104 .836 [.674, 1.038] 

 

Stage 7 – Practical Application 

The final goal of the research was to provide the police with a useful and 

reliable forecasting tool (the logistic regression model), to predict the likelihood of a 

child going missing repeatedly as used by Davies et al (1998). In a similar study, 

Hutchings et al. (2019), used BLR to identify risk factors for going missing repeatedly 

and then used them as a simple summation checklist. The more risk factors a child 

scored, the more vulnerable they were. The current study looked to improve on the 

accuracy of this method, by using the log-odds from the logistic regression model, to 

produce a probability that the child would go missing again.  
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The statistical model is: 

• The log (odds the child will repeatedly go missing) = sum of the scores of the 

predictor variables in the model. 

• Probability the child will repeatedly go missing = exponential (sum of scores) / 

1 + exponential (sum of scores) 

Mathematically it is:   

• Log( 𝑜𝑑𝑑𝑠) = 	𝑏𝜊 + 𝑏"𝑋" +	𝑏!𝑋! 

• 𝑃	(𝑌 = 1) = 	 #$%(")

&"'#$%(")(
 

 

Table 10 illustrates the final five variables which contribute to whether a child will 

repeatedly go missing (history of criminal exploitation, history of violence, ACE, 

previous arrest and family status) and their respective log odds.  

Table 10 

Best Fitting Logistic Regression Model for High-Risk Children 

 
Variable B p 

 
OR [95% CI] 

History of 
criminal 
exploitation 
 

2.988 <.001 19.850 [9.381, 42.004] 

History of 
violence 
 

0.822 .034 2.275 [1.063, 4.866] 

Adverse 
childhood 
experience 
 

1.936 <.001 6.932 [3.204, 14.998] 

Previous arrest 
history 
 

1.598 .005 4.944 [1.603, 15.244] 

Family status  
 

2.362 <.001 10.610 [4.526, 24.871} 

Constant 
 

-3.319 <.001 .036 
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The following example explains how the formula works. For a child with no 

history of criminal exploitation (CE = 0) and none of the other behaviours, the logistic 

regression equation will be equal to the intercept (𝑏𝜊) of the model (-3.319); 

 

𝐿𝑜𝑔(𝑜𝑑𝑑𝑠) = 	𝛽) +	𝛽"	𝜒 = 	−3.319 + 2.988𝑥0	(𝐶𝐸) 

 

To find the probability for children with no history of CE going repeatedly missing.  

Log odds:   −3.319 + 2.988	𝑋	0 = 	−3.319 

Odds:     𝑒+,.,".'!..//()) = 	0.036 

Probability:   2334
"'2334

=	 ).),5
".),5

= 0.035 

 

Hence for a child who has not been a victim of CE, they are only 0.035 times 

as likely to go repeatedly missing as they are to go missing only once, or there is a 

3.5% probability that a child who has no history of CE will go on to be a repeat 

missing child. 

 

However, if the child has been criminally exploited (CE = 1); 

𝐿𝑜𝑔(𝑜𝑑𝑑𝑠) = 	𝛽) +	𝛽"	𝜒 = 	−3.319 + 2.988𝑥1	(𝐶𝐸) 

 

Log odds:   −3.319 + 2.988	𝑋	1 = 	−0.331 

Odds:     𝑒+,.,".'!..//(") = 	0.718 

Probability:   2334
"'2334

=	 ).6"/
".6"/

= 0.417 
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They are now 0.417 times as likely to be a repeat missing child, or there is a 42% 

chance they will go missing repeatedly. 

Table 11 illustrates how this formula could be used to estimate the likelihood 

that two further hypothetical children will go on to be missing repeatedly, based on 

their characteristics and circumstances. The key variables and their respective 

scores are taken from Table 9. 

Table 11 

Examples of Score Function Calculations to Estimate the Likelihood of a Child 

Repeatedly Going Missing. 

 Child A Child B 

Predictor 
variable 

 

Behaviour 
displayed? 

Score Behaviour 
displayed? 

Score 

Constant 
 

✔ 
 

-3.319 ✔ 
 

-3.319 

Criminal 
Exploitation 

 

✔ 
 

2.988 ✔ 
 

2.988 

History of 
Violence 

 

✔ 
 

0.822 ✔ 
 

0.822 

ACE 
 

X - ✔ 
 

1.936 
 

 
Previous 
Arrest 

 

X - 
 

✔ 
 

1.598 

Family 
status 

 

X - X 
 

 

Total (log 
odds of 
being 
repeat 
missing) 

 

 0.491  4.025 

Probability 
child will 
repeatedly 
go missing 
(𝑒𝑥𝑝($)	/1 + 
𝐸𝑥𝑝($)) 

 0.620  0.982 

Percentage 
 

 62.0%  98.2% 
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To summarise the rest of the table, child A who has been criminally exploited 

and has a history of violence, has an estimated 62% chance of repeatedly going 

missing and child B, who displayed four of the key behaviours has an estimated 

98.2% chance of going missing repeatedly. 
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CHAPTER 4: DISCUSSION 

Our analyses revealed that repeat disappearances were frequent and that 

several factors (demographic, social and environmental), were associated with an 

increased likelihood of going missing repeatedly. An improved understanding of 

these influences will help the police quickly and accurately identify high-risk children 

that require additional care and support, and also help develop more effective 

strategies to stop them from going missing in the future. 

Risk Factors Associated with Going Missing Repeatedly 

Just as accurate forecasts of crime hotspots are valuable for preventing 

crime, a better understanding of the correlates of repeat disappearances will allow 

the police and partner agencies to target preventative resources to those individuals 

most at risk of going missing again. Results from our analyses confirmed that repeat 

missing children exhibited a significantly higher number of risk factors than the single 

episode missing group. These risk factors were; being in care, suffering ACEs and 

criminal exploitation, being arrested, having a history of violence, suffering from 

mental health conditions, having a history of self-harm or substance misuse and 

being older. The next section examines each of the factors in more detail. 

Criminal Exploitation (CE) 

Being subject to criminal exploitation was the strongest predictor of the high-

risk group, with victims of exploitation being thirty-three times more likely to be high-

risk. The finding is consistent with previous research showing missing children are at 

serious risk of being targeted for involvement in gangs, trafficking, criminalisation, 

sexual exploitation and violence (Sturrock & Holmes, 2015). 

Criminal exploitation takes a variety of different forms and can be a cause or 

consequence of going missing. Unfortunately, because of the study design and data 
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availability, the type of exploitation was not recorded, and the direction of the effect 

could not be ascertained. Offenders may lure children away from home to become 

involved in criminality, for example, drug dealing or shoplifting (The Children's 

Society, 2019). Conversely, going missing can push a child towards exploitation by 

exposing them to unsafe and risky situations (Plass, 2007). Perpetrators may also 

specifically target locations that missing children tend to frequent (Children's Society, 

2019). Future research could explore this further, by interviewing missing children 

who have been victims of exploitation, to understand how it influenced their decision 

to run away.  

The findings have two practical implications. Firstly, due to under-reporting, 

little is known about CE (Children's Society, 2019), and the response from statutory 

agencies is mainly reactive; most children coming to attention when exploitation is 

already present in their lives. Going missing could therefore be an early warning sign 

of exploitation. By establishing a link in this study, caregivers and professionals can 

now be vigilant, providing the opportunity for early intervention and support. 

Secondly, the current police risk assessment for a missing child has been in use 

since 2003 (APPG, 2019), before child criminal exploitation became a significant 

risk. This research recommends that the assessment should be updated to prompt 

officers to consider whether a child may be a victim of exploitation.  

Children in Care are More Likely to Go Missing Repeatedly 

Children in care were twenty times more likely to go missing repeatedly. Our 

finding supports previous research (Hutchings et al., 2019; Biehal et al., 2003; Rees, 

2011), and recent national statistics (NCA, 2019). To date, there is little empirical 

research, but possible explanations include; children in care are easier targets for 
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exploitation (APPG, 2019); or they want more freedom (Finkelstein et al., 2004); or 

they run away to see family and friends (Kerr & Finlay, 2006).  

It is unclear if this is causation or merely correlation. Many children entering 

care are from dysfunctional families, or are victims of exploitation, and therefore, 

may have already started to go missing (Children’s Commissioner, 2019). Cared for 

children are also more likely to be recorded missing due to vigilant reporting by staff 

(CEOP, 2011). Nonetheless, children in care are particularly vulnerable, and these 

findings provide a powerful incentive to improve professional practice.  

Firstly, early interventions such as educational work, counselling and support 

mechanisms could be beneficial, as may enhancing staff awareness of warning 

signs and recognising who may be at risk. Secondly, children are increasingly placed 

out of area (Foster, 2020) - a long way from family and friends, increasing the risk of 

them going missing (APPG, 2019). This social isolation also means such children 

are easy targets for exploitation by criminal gangs or sexual predators. The problem 

has led to the Office of the Children’s Commissioner calling for an urgent 

Government review of the care system, and an immediate plan to reduce this 

practice (Children's Commissioner, 2019). 

Adverse Childhood Experience (ACE) 

Children who had suffered an ACE were thirteen times more likely to go 

missing regularly. Although no existing research has explicitly looked at this 

relationship, the finding intuitively makes sense. It supports the finding by Hutchings 

et al., 2019, which found children who went missing frequently, were twice as likely 

to have experienced abuse and neglect at some point in their lives.  

Children potentially run away to escape family problems such as violence and 

abuse (Kiepal et al., 2012). Therefore, effective care for persistently missing children 
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must incorporate family support, additional counselling services for the child and 

parenting interventions, especially following a family breakdown or changes in family 

structure. Mediation services may be particularly useful in engaging parents and 

children in discussions that can support the child in managing negative feelings 

associated with such changes (Hutchings et al., 2019). It is also beneficial for 

responding police officers to be aware of the potential of hidden harm in the family 

home, to better support the missing child when they are located, who for very valid 

reason may not want to return home. 

Practically, however, due to the breadth of possible adverse experiences, they 

are a challenging risk factor to manage. Without detailed knowledge of the child and 

family, it may be difficult for a responding police officer to determine the presence or 

nature of the ACE. As a result, it would be useful for future research to examine the 

type of ACE (e.g. domestic violence, divorce, or parental drug misuse) in more 

depth. 

Children Who Have Been Arrested 

Repeat missing children were more likely to have been arrested, consistent 

with other research showing higher offending rates in missing children. For example, 

Sowerby and Thomas (2017) found that offending rates were 31 times higher for 

those who went missing repeatedly. Other illegal activities, such as drugs and 

prostitution, are also associated with going missing (Tarlings & Burrows, 2004).  

Again, it is unclear whether the offending occurs before or after the child goes 

missing. Having already runaway, missing children may commit a crime in order to 

survive. For instance, shoplifting and theft arrests are frequent for young runaways 

as ‘survival strategies’ because they have no other means of supporting themselves 

(Shalev-Greene, 2011). Alternatively, missing children who have committed a crime 
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may run away to evade the police (Sowerby & Thomas, 2016). Sturrock and Homes 

(2007) found that gangs often force children to go missing to commit crimes such as 

drug trafficking and violence.  

Although more research is needed to understand the relationship, the results 

suggest the criminal justice system, for example, the Youth Offending Service, could 

be crucial to intervention and prevention efforts. The findings also have implications 

for police policy. Police custody facilities are designed to detain adults, offering little 

emotional support for children, and there are concerns that time in this environment 

could be harmful. In 2017, following a series of legal challenges against the 

detention of children in police cells, the Government released national guidance 

making it clear that police custody was inappropriate and should only be used for 

short periods when no alternative was available (Home Office, 2017). These findings 

provide further evidence of the negative impact of arresting a child. 

History of Violence  

Focusing specifically on the types of offending, repeat missing children were 

twice as likely to have been perpetrators of violence, echoing previous research. For 

example, Shalve-Greene (2011), examined police records for children reported 

missing more than three times in one year and found 82% were involved in crime 

and were arrested on at least one occasion, with assaults being one of the most 

common offences.  

The relationship may be indicative of the lifestyle and emotional states of 

missing children, and the fact they are often exposed to situations which are 

dangerous. Practically, these findings not only help inform the risk assessment for 

missing children, they also indicate the need to focus more on the underlying drivers 

associated with a child’s repeat absences, for example through counselling or 
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education. Merely returning a child home, will do little to address the underlying 

causes behind going missing. 

One limitation to consider, however, is that as the missing person cases are 

from a police database, this may introduce a sampling bias. The police will only know 

about reported crimes, and therefore, the actual rates of criminality and violence in 

missing children is likely to be even higher.  

Age of the Child  

The bivariate analysis showed that the mean age of repeat missing children 

(14.5 years) was significantly higher than the single episode missing children (13.7 

years). Other studies have found similar results. For example, using data from a 

different UK police force, Hutchings et al. (2019), found that children over 12 years 

were significantly more likely to go repeatedly missing, than those under 12. Some 

research suggests these differences could indicate that older children experience 

more complex life problems and going missing may be a coping mechanism (Baker 

et al., 2003). There are, however, potential confounding variables. For example, 

older children are less supervised and have more opportunity to run away (Social 

Exclusion Unit, 2000) and are also more likely to be exposed to substance misuse 

and peer initiation of risk-taking behaviours (Hutchings et al., 2019). 

History of Substance Misuse 

There is some support for substance misuse being a risk factor for repeatedly 

going missing. The results of the univariate analysis show that there is a strong 

relationship between substance misuse and regular disappearances. Existing 

literature also supports this, with drug and alcohol issues being well-documented as 

linked to repeat missing behaviour (James et al., 2008). However, in our study, 

substance misuse showed a strong correlation with several other factors, including 
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criminal exploitation, violence, and previous arrest, and it was, therefore, removed 

from the final prediction model. In a similar study, Hutchings et al. (2019) found drug 

misuse was a predictor of repeat missing behaviour in children, but their study did 

not check for multicollinearity between variables, which may explain why they 

retained the variable in their analysis.  

More research is needed to explore the impact of this variable. Within police 

records, the definition of substance misuse is very general, covering a range of 

behaviours from binge drinking, to glue sniffing, up to taking class A drugs. More in-

depth research, breaking the behaviour into distinct categories (substance misuse, to 

occasional use, to dependency), would help understand the impact of substance 

misuse and may also address multicollinearity issues. Based on these initial findings, 

however, drug and alcohol treatment may be a way to reduce repeat missing 

behaviour 

Gender is Not a Significant Risk Predictor for Repeatedly Going Missing  

Contrary to our hypothesis and the most current UK statistics (NCA, 2019), 

gender did not contribute to the predictive model, with no significant difference 

between the number of times males and females went missing. The previously 

identified gender difference was based on overall missing persons statistics, rather 

than specifically looking at repeat missing episodes. Therefore, it appears whilst 

overall females may go missing more, when it comes to repeatedly going missing, 

gender is not a factor. Based on these findings, there is no compelling case for 

gender to be included in the screening of missing children, and no requirement for 

interventions to be tailored based on gender. 
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Mental Health or Self-harm 

Contrary to our hypothesis, neither mental health issues nor self-harm were 

significant predictors of repeat missing children, despite other research finding both 

to be substantial issues. For example, Stevenson and Thomas (2018) found those 

suffering mental illness were two and a half times more likely to go missing 

repeatedly. Similarly, Sowerby and Thomas (2017), found an overrepresentation of 

mental health issues in missing persons. For self-harm, although there has been less 

research, similar to going missing, it has been recognised as a coping mechanism, 

to escape problems and to cope with anxiety and emotional stress (Kiepal et al., 

2012).  

Potential biases within the sample, could, however, explain the inconsistency. 

Firstly, the current mental health data came from police records and not health 

records. The police have little training in recognising mental illness and often 

categorise someone as suffering from a mental health problem based on the opinion 

of a family member, or the person’s self-diagnosis. Secondly, as self-harm can 

include such a wide range of behaviours from binge drinking, and self-neglect, to 

poisoning, and cutting, it may be too restrictive to categorise it into just a “yes or no” 

response. Finally, the impact of both mental health and self-harm could also be 

dependent upon many other factors, such as whether the child is taking medication 

or receiving treatment. As a result, rates for mental health and self-harm in the 

sample are likely to be underestimated. More research is needed to explore these 

risks in greater detail. Further questioning of missing children, upon their return, 

might reveal new insights.  
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Summary  

Except for gender, self-harm and mental health, all predictor variables were 

associated with being high risk of repeatedly going missing. These findings could be 

used by practitioners to make basic predictions around the likelihood of a child going 

missing repeatedly. For example, if police officers knew no other information about a 

child other than they were in local authority care, it would be sensible to predict they 

were high risk of repeatedly going missing. There are, however, limitations to simple 

statistics, and they need to be interpreted with caution. Firstly, practitioners may 

"cherry-pick" the main findings, and report only the results which confirm their 

personal views on the child. For example, focusing on the child's history of 

exploitation (high risk). Secondly, risk factors may have different additive effects 

when presented in combination. For example, a child who has been arrested and is 

in care, maybe even more likely to go missing repeatedly. To avoid these limitations, 

we use multivariate analysis to refine these simplistic predictions.  

The Prevalence of Repeat Disappearances by Children 

Repeat missing children were a significant problem in the sample, with the 

vast majority of missing incidents being repeat episodes (84%). Even more striking, 

while most children (n = 518; 57.2%) went missing just once, 75 children (8.3%) went 

missing ten or more times, accounting for half (51%) of all missing occurrences for 

the year. These results support previous research (Babuta & Sidebottom, 2018; 

Sidebottom et al., 2019) and suggest just as a few recidivist offenders commit most 

crime, missing incidents are concentrated on a few particular children. Sherman 

(2007) describes this as the “power few”, the small percentage within a distribution, 

suffering the most amount of harm. In this study, further analysis suggests this group 

are distinct from other repeat missing children.  When the same logistic regression 
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was applied, it was unable to accurately predict membership of this higher recidivism 

group, therefore suggesting that these children may suffer different or additional 

risks.  Future research could seek to identify the specific predictors that can predict 

higher recidivism in going missing.   

Recognising the extent of repeat missing behaviour has significant 

implications for the police. Firstly, in other areas of policing such as domestic 

violence, focusing prevention efforts on the riskiest targets (people, places or 

locations) has been found to yield the most significant results (Groves et al. 2012). 

Therefore, having the ability to quickly and accurately identify high-risk children, and 

provide them with care and support, could produce the greatest benefits - preventing 

future missing episodes, reducing harm and driving down demand on police 

resources. 

Targeting repeat missing children also has economic advantages. In this 

study, by concentrating prevention efforts on the 75 most frequently missing children, 

missing person reports for the year could half from 3213 to 1580. With an average 

cost of £2415.80 per missing episode (Shaleve-Greene & Pakes, 2013), this is an 

estimated saving of over £3.6 million. The estimate is conservative and does not 

include the costs imposed on other partner agencies, for example, local authorities. 

In summary, this study provides compelling evidence that the minority of 

children create the majority of missing incidents. Sherman (2007) argues by focusing 

on and targeting resources towards the power few, harm will reduce faster. 

Therefore, targeting this vulnerable group will bring about maximum benefit, through 

superior safeguarding and substantial savings.  

The power few approach does, however, raise ethical questions. While 

Sherman (2007) maintains that focusing efforts on the most vulnerable is both 
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morally and financially the right thing to do, critics argue it is unfair to ignore some in 

favour of others (Gladwell, 2006). From an operational policing perspective, it is, 

therefore, crucial to remember that while research can enhance decision making, 

there is still the need to respond to all missing children based on their unique 

circumstances. 

Identifying Those Individuals Most at Risk of Going Missing Repeatedly 

The final objective focuses on practical application and using the salient 

variables to develop a risk assessment for operational police officers. By entering 

just five variables (ACE, criminal exploitation, being arrested, violence and family 

status) into a binary logistic regression model, it was possible to accurately predict 

which children were most likely to go missing repeatedly. Some variables (age, 

gender, mental health, self-harm) only slightly improved the model’s accuracy. As 

such, the practical task of collecting the data would not be a cost-effective use of 

police time, so they were removed. Successful pragmatic research solves a practical 

problem (Fishman, 1999). Therefore, the final model must be both useable (accurate 

and reliable), and useful (have a positive impact) within the policing environment. 

Accuracy and Reliability 

The final model accurately predicts future missing episodes in over three-

quarters of cases; compared to the base rate predictions, which were no better than 

chance. A principle of pragmatic psychology is to ensure results are relevant to the 

needs of the practitioner (Fishman, 1999). So, while these findings support using 

predictive variables to identify high-risk children, practical considerations include the 

cost of collecting the additional information and the consequences of forecasting 

errors. Although collecting the additional information can take extra time for a police 
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officer, the model enhances predictions by over 20% and therefore seems to be 

‘cost-effective’ to perform practically.  

In terms of the consequences of errors. In this instance, there were two kinds; 

incorrectly predicting children to be low risk who are actually high risk (false 

negatives); and predicting high risk for a child that was not (false positives). For 

missing children, false negatives are substantially more problematic, as failing to 

identify and support a vulnerable child, could have far graver consequences than 

supporting a child who is not at risk.  

By examining the results in more detail, just over one fifth (21.8%) of those 

who went missing more than once were incorrectly categorised as low risk. The high 

number of errors emphasises the challenge of predicting missing behaviour in 

children. Consequently, it would be risky to rely solely on this model when risk 

assessing a missing child. Instead, the present study suggests using the model as a 

form of structured professional judgement, where rather than deciding for the officer, 

the model supports and supplements the officer’s expert knowledge, particularly in a 

situation where the officer may have information over and above the five risk factors 

used within the model. 

Impact Within the Policing Environment 

The model could improve existing police practices in several ways. Firstly, it 

enhances the current risk assessment for missing children. All missing children 

receive a return interview, to explore the reasons why they went missing and the 

police and social care then use their professional experience to decide how 

vulnerable the child is, and what support is required to prevent them running away 

again (Department of Education, 2014). The new model proposes an evidence-

based alternative. By using the proposed framework, professionals will be able to 
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quickly and reliably identify high-risk children, even before they go missing, allowing 

prevention strategies to be put in place immediately. For example, police could 

monitor and target high-risk children with a more intensive intervention, such as a 

specially trained officer, or a multi-agency response. For low-risk children, an 

alternative, more risk-appropriate and less resource-intensive pathway could be 

found, for example, making use of an existing support network, such as a child’s 

school. Not only will this preventative approach improve safeguarding, but it would 

allow the police to use their limited resource in the most effective way possible. 

Secondly, the model identifies the critical risk factors for going missing, which will 

assist with developing prevention and intervention strategies. Now, rather than being 

satisfied, a child is safe when they return home, professionals can specifically search 

for these problematical factors. If risk factors are present, appropriate strategies can 

be put in place to address them. This is particularly important as repeat missing 

incidences are often due to a lack of support or intervention in resolving the reasons 

why the child went missing (Hutchings et al., 2019).  
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CHAPTER 5: CONCLUSIONS & IMPLICATIONS - THEORY & PRACTICE 

Results show that using background and lifestyle information makes it 

possible to predict the likelihood of a child going missing repeatedly. Although there 

are currently no theoretical models to explain this connection, the findings suggest 

that general strain theory may be suitable. The results from the study show 

repeatedly going missing is closely associated with negative emotions such as fear 

(criminal exploitation), anger (history of violence) and hostility (ACE). Agnew's (1999) 

general strain theory (GST) proposes that such emotions create pressure for 

corrective action, one of which could be avoidance, in this case, running away. 

The uniqueness of this research, however, is the pragmatic focus and hence 

practical application. Although academic interest in missing children is increasing, so 

far it has failed to influence police policy significantly. Researchers frequently neglect 

to consult the police, and consequently, findings have little relevance to a frontline 

officer. For example, Sowerby and Thomas (2017) discovered frequently missing 

teenagers often display suicidal behaviour but did not provide a risk assessment to 

assist operational officers. In contrast, by using a Pragmatic Psychology framework, 

and focusing on practical application, operational police officers could quickly and 

easily adopt the findings. The final chapter outlines the practical recommendations 

from the research. The strengths and limitations are then discussed, as well as ideas 

for future study. 

Practical Recommendations 

Recommendation One: Prioritise Prevention  

The police regularly approach missing children reactively, focusing on finding 

the child, and when they return, this is often seen as the end (Hedges & Shalev-

Green, 2016). As it is now evident a sizeable proportion of missing incidents are 
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repeated, this study proposes instead of concentrating on individual cases in 

isolation, it is crucial to take a holistic view and consider why children go missing and 

how to prevent reoccurrences. Taking a proactive approach and allocating preventive 

resources to those children most likely to go missing again could prevent excessive 

demand on police resources. 

Recommendation Two: Frontline Officers Should Adopt the Five Variable 

Statistical Model as a Revised Method of Risk Assessment  

The statistical model could be developed into a mobile phone application 

(app) for use by operational police officers, providing a reliable and convenient risk 

assessment to inform their investigative decision making. Officers would apply the 

model as a form of structured professional judgement to enhance their decision 

making. While some could argue the current results are already well known, for 

example, it is well-established children in care go missing more frequently; the model 

provides empirical support. It has also elicited some findings contrary to 

expectations. For example, suffering an ACE has a crucial impact on whether a child 

will repeatedly go missing, but often these experiences go undetected as 

professionals are unlikely to ask (Pearce et al., 2019). 

The findings could also improve the initial risk assessment for missing 

children. The current risk assessment used when a person is first reported missing, 

has been in existence since 2003. The risk factors within it have evolved over many 

years and are primarily based on the professional experience of practitioners. The 

results from this study provide an evidence base for additional risk factors such as 

child criminal exploitation. 
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Recommendation Three: Prioritise Repeat Missing Children 

The frequency of going missing is often falsely interpreted by police officers 

as decreasing the level of risk (Newiss, 1999). Repeat missing children can be 

frustrating and time-consuming. The false sense of reduced risk is based on a notion 

they will return because they always do, or the stereotype that children who run 

away frequently are “streetwise” and can look after themselves. For example, Harris 

& Green (2016) interviewed fifty constables who regularly dealt with reports of repeat 

missing children and found negativity and frustration at the process. Such biased 

thinking could lead to officers failing to properly comprehend the risk.  For example, 

drawing on interview data from nine UK police forces, Newiss (1999, p. 7) observes 

how, “the temptation for the police to view the report of a missing person as simply 

an administrative exercise would appear to be significantly increased when 

responding to repeat runaways”. The findings from this study dispel these myths and 

demonstrate repeat missing children take more significant risks and engage in more 

risky situations than children who go missing just once. Practically, the police could 

incorporate the results into missing person training to counteract negative attitudes, 

help police officers and staff recognise biases in their thinking and improve their 

decision making and risk assessment for missing children.  

Recommendation Four: Intervention Requires a Multi-agency Approach. 

By uncovering multiple factors (individual, familial and social) associated with 

repeat missing behaviour, the research highlights both the complexity of going 

missing and demonstrates many of the causes are beyond the scope of the police. 

Consequently, the complete response to missing children needs improving. Instead 

of relying on the police, and a one size fits all response to supporting a missing child, 

the problem requires a range of partners including health and social services. For 
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example, given the close association between ACEs and going missing, family 

support and parenting interventions should be included. 

Strengths and Limitations 

Strengths 

By using secondary data, the study had access to a large sample containing 

detailed information on over 900 children and their families – all cases reported to 

Dorset within a year. Gathering this first-hand would be impossible, both in terms of 

time and access, as participants would be unlikely to provide such sensitive 

information to a researcher. Also, secondary data collection avoids many access and 

ethical issues such as gaining access to and potentially re-traumatising the child.  

Limitations  

Using secondary data also brings a number of limitations, firstly, on data 

content and accuracy. Missing person records are for policing purposes, and 

consequently, information that may be useful to a researcher, for example, school 

attendance, may be missing. Also, the researcher is not involved in the initial 

recording of data, hence the reliability and accuracy of the data cannot be 

determined. Mental health data is particularly problematic, as there are no clear 

operational definitions, and recording is therefore reliant on the subjective 

interpretation of individual police officers who have little mental health training. For 

the present study, there was some mitigation as the police record all missing person 

reports in a standardised manner, and each one is quality controlled by a supervisor. 

However, as an alternative, future studies could use data from multiple sources, such 

as mental health services or school records. 

The second limitation is regarding missing data. Children face risks which 

they do not disclose to the police. They may hide behaviours through fear, or 
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concern about the potential consequences (Home Office, 2015). Many of the risk 

factors, such as childhood abuse, are also underreported (Lalor & McElvaney, 2010) 

and, the information the police do have, typically comes from family and friends, and 

is therefore subject to social desirability bias (Canter & Alison, 2003). Consequently, 

the number of risk factors is likely to be an underestimate. Rather than relying solely 

on police records which may result in a considerable loss of information, future 

research could interview missing children to uncover further risk factors and provide 

a much richer picture of the child’s life and circumstances. 

The third limitation is sampling issues. The present study examined missing 

behaviour for a12 month period, categorising those children missing once as low risk 

and those missing more than once, high risk. However, this sample could be 

unrepresentative of a child's overall missing behaviour, leading to inaccurate 

predictions. For example, a child graded as low risk may have been missing one day 

before or after this window. Also, sampling does not take into account how long the 

child was missing for. To limit these biases, the study used one year of data, as this 

was sufficiently broad to capture as much of the child's missing behaviour as 

possible and it was the same as that used by Hutchings et al. (2019), making the 

results directly comparable. To provide a more accurate picture however, future 

research could use a wider time frame, for example three years of data, or adopt a 

retrospective or prospective design where children are followed over an extended or 

set time period (e.g., for a year after they have first been reported missing).  

Future Directions 

Study Design  

By adopting a cross-sectional design, it has not possible to attribute causation 

(Barends et al., 2015). For example, it is not clear if being in care is a cause or a 
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consequence of going missing. Future research could use a cohort design. By 

selecting a group who do not have the outcome of interest (going missing), relevant 

variables could be measured, and the group observed over time to see if they 

develop the outcome (i.e., go missing). By identifying factors that exist before the 

child goes missing, this design distinguishes between cause and effect (Mann, 

2003). Cohort designs can, however, be expensive and time-consuming. A cost-

effective alternative could be to interview missing children to explore why they ran 

away. There is already a statutory requirement that all missing children are subject of 

a return interview, usually by a social worker, and this could be an ideal opportunity 

to address the knowledge gap. 

Validating the Model 

The study used a split-sample to validate the model (internal validation). 

Although convenient as it does not require additional data, internal validation does 

not predict how the model will perform on an entirely new sample, and consequently 

if it would work for children outside of Dorset. Similarly, statistics suggest missing 

behaviour and risk factors may change over time (NCA, 2017), and hence the 

sample and prediction model could quickly become outdated. This research is 

therefore an introduction and future research should focus on external validation, 

which involves testing the model in other locations, over different periods of time.  

Regrouping Risk Factors  

The police hold a variety of other information not included in this analysis. As 

it appears that going missing is multi-causal, future analysis could incorporate some 

additional risk factors, such as the age the child first went missing. Some of the risk 

factors cover a board spectrum of behaviours, and therefore, splitting the variable 

into more specific categories may be of interest. For example, for self-harm, the case 
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files show many different descriptors such as, “self-harms”, “scratches herself” or 

“cutting”. Certain types of self-harm could have a more significant impact, and 

therefore, additional research drilling down further may improve the accuracy of the 

prediction model. On the other hand, some risk factors maybe combined, because 

some risk factors could be dependent upon other variables, such as the age of the 

child. For example, older children have greater freedom, and therefore may be more 

vulnerable to child criminal exploitation. Future research considering other risk 

factors in combination may be worthwhile. 

Protective Factors  

The focus has been on exploring the risk factors for running away, but few 

studies have considered protective factors. Some factors may reduce or prevent 

vulnerability (Rogers, 2000), by either reducing the effect of a risk factor or exerting 

an independent influence on the outcome. For example, research literature suggests 

that a positive family relationship and engagement at school could potentially act as 

protective factors (Oriade, 2015; Rees, 2011) against the effect of criminal 

exploitation. Future research may benefit from further exploration of these potential 

protective factors and further in-depth consideration of why those who ran away only 

once, desisted from future episodes. 

Final Comments 

The study aimed to investigate the problem of repeat missing children. The 

findings will make a significant contribution, especially towards improving the 

professional practice of the police and other agencies who deal with this group daily. 

As well as improving the care and support provided to some of the most vulnerable 

children, the practical implications of this research will also help reduce the demand 

they impose on already limited police resources.  
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APPENDIX A 

COPY OF DATA COLLECTION CODEBOOK 

Variable Name Coding Description 
 

No. times missing 
 

1 = Low 
1< = High 

Number of times the child has been 
reported missing in the 12th month 

period 
Age (years) Continuous 

 
Age on the first missing episode in the 

12-months 
 

Gender 
 

F = 0  
M = 1 

 

Gender of missing child 

Adverse 
Childhood 
Experience 

No = 0 
Yes = 1 

 
 

Adverse Childhood Experiences (ACEs) 
are “traumatic experiences before the 
age of 18 and remembered throughout 

adulthood.” 
History of drug 
misuse 
 

No = 0 
Yes = 1 

 
 
 

A reasonable belief that the child has 
used an illegal drug at any point in their 

life.  

History of criminal 
exploitation. 

No = 0 
Yes = 1 

 
 

Research has used the definition of 
child criminal exploitation (CE) used in 

current APP (police) guidance 

   
Violent history No = 0 

Yes = 1 
 

Describes whether the child is known to 
have previously been a perpetrator of 

violence. 
Previous arrest 
history 
 

No = 0 
Yes = 1 

 

Whether the child has been arrested for 
any offence before going missing. 

Self-harm 
 

No = 0 
Yes = 1 

 

Self-harm is defined using the NHS 
working definition - intentionally harm 

including, cutting or burning skin, 
punching or hitting, poisoning with 

tablets or liquids, or similar 
 

Mental health No = 0 
Yes = 1 

 

A diagnosed mental health disorder 

Family status No = 0 
Yes = 1 

 

Care includes local authority, voluntary 
and independent sector residential care 

homes and foster care placements. 
Foster care can be a relative, friend or 
another person who the child knows. 
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Instructions: 

Open each child’s police record and interrogate the following areas for evidence of 

the variables: 

Location Within Police Records 
 

 Previous 
missing 
records 

Arrest 
records 

Intelligence 
logs 

Stop 
search 
record 

Other linked 
occurrences 

ACE 
 

     

Drug 
Misuse 
 

     

CE 
 

     

Violence 
 

     

Self-Harm 
 

     

Family 
Status 
 

     

Previous 
arrest 
 

     

Mental 
Health 
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APPENDIX B 

ETHICAL APPROVAL 
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APPENDIX C 

BOX TIDWELL PROCEDURE 

The assumption of linearity in a logistic regression requires that there is a linear 

relationship between any continuous independent variable (age) and the logit 

transformation of the dependent variable (Field, 2015).  

The Box-Tidwell (1962) was used to test linearity. This adds an interaction 

term between the continuous independent variables and their natural logs to the 

regression equation (Jaccard, 2001). The Binary Logistic procedure in SPSS 

Statistics was used to test this assumption. If the interaction terms are statistically 

significant, the original continuous independent variable has failed the assumption of 

linearity (Field, 2013). The age interaction had a significance value of .482, greater 

than 0.05, indicating that the assumption of linearity of the logit had been met. 
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APPENDIX D 

OUTLIERS 

There were nine standardised residuals, with values ranging from 4.023 to -5.448 

(see table 12). After closer examination, cases 135, 233, 516, 749 and 813 were 

found to have been assigned to the incorrect outcome group. These errors were 

corrected. For case 87, the variable criminal exploitation had been coded as NO, 

when in fact there was evidence of criminal exploitation. Again, this error was 

corrected. Following these corrections, there were three standardised residuals 

ranging from -2.606 to 3.486. After examination, these were legitimate scores.  

Table 12 

Standardised Residuals for Logistic Regression Models 

Case Observed 
Group 

Predicted 
Group 

Standardised Residual 
(z score) 

 
87 High Low 3.960e 

112 Low High -2.606 
118 Low High -2.460 
135 High Low 4.023e 

183 High Low 3.486 
233 High Low 4.023e 
516 Low High -5.251 e 
749 Low High -5.448 e 
813 High Low 4.023 e 

Note. e Outlier caused by an error in data coding. Corrected and removed 

from the analysis.  

 

Before deciding whether to keep the outliers in the model, it was first 

necessary to examine their impact. Two models were compared. Model 1 included 

all cases in the dataset, including the three outliers (approach suggested by Field., 

2013). Model 2 was re-run, excluding the three outlying cases. As table 13 shows, 

model 2 only slightly increased the accuracy when compared to the full model 
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(model 1). There was also no change in the statistical significance of the overall 

model fit based on χ2. The outliers were therefore retained in the dataset. 

Table 13  

Comparison of Percentage Improvements in predictions from Logistic Regression 

Analysis. 

% Correct predictions 
 

Low risk High risk Overall 

 
Model 1 (including outliers) 

 

 
90.4 

 
78.2 

 
85 

Model 2 (excluding outliers) 
 

91.2 78.6 85.6 

    
Note: Model 1 included the outliers. For model 2, the outliers were removed. 

 

 

 


