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Abstract
Island populations may have a higher extinction risk due to reduced genetic diversity and need to be managed effectively 
in order to reduce the risk of biodiversity loss. The Eurasian red squirrels (Sciurus vulgaris) in the south of England only 
survive on three islands (the Isle of Wight, Brownsea and Furzey islands), with the Isle of Wight harbouring the largest 
population in the region. Fourteen microsatellites were used to determine the genetic structure of red squirrel populations 
on the Isle of Wight, as well as their relatedness to other populations of the species. Our results demonstrated that squirrels 
on these islands were less genetically diverse than those in Continental mainland populations, as would be expected. It also 
confirmed previous results from mitochondrial DNA which indicated that the squirrels on the Isle of Wight were relatively 
closely related to Brownsea island squirrels in the south of England. Importantly, our findings showed that genetic mixing 
between squirrels in the east and west of the Isle of Wight was very limited. Given the potential deleterious effects of small 
population size on genetic health, landscape management to encourage dispersal of squirrels between these populations 
should be a priority.
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Introduction

Island populations are often characterised by small popula-
tion size, strong genetic differentiation and high genetic drift 
(Nei et al. 1975; Frankham 1997). Such populations may 
have higher extinction risks because of their low genetic 
diversity, due to founder effect and bottleneck events, which 
can cause inbreeding depression and limit their adaptive 
potential (Reed and Frankham 2003; Frankham 2005). As 
the Eurasian red squirrel (Sciurus vulgaris) in the south of 
the UK has been confined to islands and increasingly iso-
lated woodland fragments, for around half a century (Lloyd 
1983), these genetic factors are of particular concern (Har-
douin et al. 2019).

The decline of the Eurasian red squirrel in the UK, fol-
lowing the introduction of its invasive congener, the Eastern 
grey squirrel Sciurus carolinensis, is well documented (e.g. 
Shorten 1953; Lloyd 1983; Kenward and Holm 1989; Gur-
nell and Pepper 1993; Gurnell et al. 2004) and the need to 
conserve remaining populations of the native species has 
been amplified by the establishment of S. carolinensis in 
parts of continental Europe (Bertolino et al. 2008, 2014). 
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In the UK, the remaining strongholds for the native squir-
rel are found in large isolated woodlands in the north of 
England and southern Scotland, as well as still extensive, 
contiguous areas in northern Scotland. In the south of the 
country, the only remaining populations survive in parts of 
Wales (Ogden et al. 2005) and on three islands off the south 
coast of England (Brownsea and Furzey islands and the Isle 
of Wight—Rushton et al 1999; Hardouin et al 2019). Mito-
chondrial (mt) DNA analyses have revealed that red squirrels 
on the three islands have relatively low genetic diversity, 
appear more closely related to other British squirrels than 
to red squirrels from elsewhere in Europe, and tantalisingly, 
appeared to have private haplotypes indicating the potential 
presence of distinct genetic lineages on the islands (Har-
douin et al. 2019).

With an estimated 3300 squirrels, the Isle of Wight 
(38,016 ha with over 3600 ha of woodland), harbours by 
far the largest population of red squirrels in the south of the 
country (Pope and Grogan 2003) with much smaller popu-
lations remaining on Brownsea and Furzey islands (Thain 
and Hodder 2015). As the islands are relatively safe from 
invasion by S. carolinensis, there is considerable justification 
for ensuring effective conservation management (including 
genetic diversity) of the red squirrel in these island strong-
holds. This arboreal specialist has maintained its presence 
on the Isle of Wight despite severe fragmentation of the 
woodland, especially in the south of the island (Rushton 
et al. 1999).

As habitat fragmentation has long been recognised as 
one of the main factors leading to biodiversity loss (e.g. 
Fahrig 2003), effective management requires understand-
ing the impacts of habitat loss and fragmentation on species 
of conservation concern (Mortelliti et al. 2011). Studies of 
populations of red squirrels in fragmented landscapes have 
shown that woodland patch size, distance to other woodlands 
and dispersal corridors are all important to their distribution 
(Van Apeldorn et al. 1994), and that habitat quality strongly 
affects female space use (Verbeylen et al. 2009). It has also 
been recognised that fragmentation of woodlands affects 
the genetic population structure of red squirrels in Germany 
(Wiegand and Schröpfer 1997) and Belgium (Wauters et al. 
1994). So, a lack of mixing between isolated populations 
might be expected to deleteriously affect the squirrels on 
the island and the ability of squirrels to disperse between 
patches is therefore crucial.

In common with most terrestrial mammals, dispersal of 
tree squirrels tends to occur by movement of juveniles from 
their natal ranges (Bosch and Lurz 2012) with distances of 
under 1 km typically recorded for red squirrels (e.g. Waut-
ers et al. 2010), although much longer distances have been 
observed in low density forest habitats (Hämäläinen et al. 
2019). In the highly modified landscape of the Isle of Wight, 
with only 12% of the island being afforested (Watts et al. 

2016), such dispersal may be constrained. Past modelling 
of the persistence of squirrel populations on the island has 
emphasised the need for large and interconnected woods 
with management to enhance landscape features for disper-
sal and local population persistence (Rushton et al. 1999).

Hämäläinen et al. (2019) suggested that while movement 
patterns of dispersing red squirrels may be strongly influ-
enced by landscape structure, they speculated that there may 
be little impact on gene flow in the forest landscape of Fin-
land. In fragmented landscapes, this is likely to be true up 
to certain thresholds of habitat loss as postulated by Andren 
(1994) and provided that landscape features do not introduce 
impenetrable barriers (Trizio et al. 2005).

Building on previous research (Hardouin et al. 2019), this 
study therefore focuses on the following aims in order to 
inform both local and regional conservation strategies for 
this charismatic rodent: (i) to characterise the genetic struc-
ture and diversity of the red squirrel population on the Isle 
of Wight in order to determine whether there is evidence that 
the fragmented woodlands impede gene flow, (ii) to deter-
mine whether microsatellite analyses support conclusions 
from mtDNA on the relatedness of the island squirrels to 
other island and mainland populations.

Materials and methods

Samples

The sampling scheme used to obtain DNA for Brownsea red 
squirrels is described in Hardouin et al. (2019). Arran red 
squirrel tissue samples were collected opportunistically from 
road kills. Ear tissue samples from the Isle of Wight were 
collected between 2013 and 2018 as part of the Wight Squir-
rel Project monitoring program (see Simpson et al. 2013a for 
sampling scheme). The general public from all around the 
island were encouraged to report red squirrel deaths and the 
carcasses were sampled for the DNA extraction. Samples 
from Germany originate from wildlife rescue centres and 
zoological gardens in Bavaria and Baden-Wuerttemberg, 
southern Germany (Fig. 1).

Microsatellite genotyping

Microsatellites described in Todd et al. 2000 and Hale et al. 
2001a were tested and 161 red squirrel samples were suc-
cessfully genotyped for 15 markers. The 5’ end of the for-
ward primers was labelled with either HEX or FAM dyes. 
All reactions were carried out in 13 µl volumes using 10 ng 
of DNA template. Primer pairs were mixed in 7 pools and 
reactions were performed using the QIAGEN multiplex PCR 
kit. PCR conditions were as follow: 94 °C for 5 min, then 35 
cycles of denaturation (94 °C for 30 s), annealing (for 30 s 
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at 52 °C or to 54 °C depending on primer pool), and then 
amplification (72 °C for 1 min), followed by a final elonga-
tion at 72 °C for 10 min.

Microsatellite analysis

Calculation of the observed and expected heterozygosity, 
and the average number of alleles per locus was performed 
with GENETIX (Belkhir et al. 2004) for each population. 
The Hardy–Weinberg equilibrium and Fst were tested using 
Arlequin (Excoffier and Lischer 2010). Allelic richness was 
calculated using the PopGenReport (Adamack and Gru-
ber 2014). Fis was investigated using diveRsity and 1000 
bootstraps were used to infer the 95% confidence intervals 
(Keenan et al. 2013). Then discriminant analysis of princi-
pal components (DAPC) (Jombart et al. 2010) was used to 
assess the population structure using the complete dataset. 
DAPC and Monnonier’s analysis were performed in R using 
the ADEGENET package (Jombart et al. 2008). DAPC is 
a multivariate analysis which inferred the probability of 
individual membership in each different group. The pro-
gram covered a range of possible clusters from 1 to 10. The 
interaction number used was 1,000,000,000. 30 principal 

components, explaining 92.4% of the total variance, were 
retained as predictors for discriminant analysis.

In addition, we performed a structure analysis on the 
entire dataset using STRU CTU RE software (Pritchard 
et al. 2000) with a burn-in period of 250,000 simulations 
followed by a run length of 750,000 Markov chain Monte 
Carlo (MCMC) simulations and ten iterations for each K 
(number of clusters) with the admixture model. The results 
were analysed using STRU CTU RE HARVESTER (Earl and 
vonHoldt 2012) and the K was chosen using a combina-
tion of Evanno’s criteria (Evanno et al. 2005) and inves-
tigating run convergence using CLUMPP (Jakobsson and 
Rosenberg 2007). Results were summarized using CLUMPP 
(Jakobsson and Rosenberg 2007) and drawn using Distruct 
(Rosenberg 2004). K from 1 to 10 was tested for the entire 
dataset (6 populations and 161 individuals). The data set 
was further spit in two: the Isle of Wight for which K = 1 to 
K = 7 were tested and the rest of the populations (Brownsea, 
Arran, Baden-Wuerttemberg and Bavaria) for which K = 1 
to K = 10 were tested. Isolation by distance (IBD) for the 
Isle of Wight was investigated using Mantel test provided 
in the Adegenet package (Jombart et al. 2008). The potential 
for bottlenecks on the Isle of Wight was investigated using 

Fig. 1  Map of the study area with sampling locations in the UK and Germany
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BOTTLENECK (Piry et al. 1999). Effective population size 
(Ne) was estimated for the population on the Isle of Wight 
using NeEstimator V2.1 (Do et al. 2014). IBD, bottleneck 
and Ne were not calculated for the other populations as sam-
ple sizes were insufficient.

Spatial distribution and land cover

In order to determine whether the sample of squirrel car-
casses from the Isle of Wight might be biased towards where 
people live and are hence more likely to be found, we deter-
mined the broad habitat for sample locations. The habitat 
categories from the Centre for Ecology and Hydrology Land 
Cover Map 2015 (2017) were merged to five broad classes: 
(1). Arable and horticulture 26.2%, (2). Grasslands (consist-
ing of all sub-types of grasslands) 46.5%, (3). Woodland 
(broadleaf and coniferous woodland) 12.1%, (4). Urban and 
suburban 2.1% and (5). Other (merging all remaining cat-
egories, predominantly coastal littoral, saltwater and salt-
marsh) 13.1% of the total area. Subsequently, the study area 
was divided into 48 equally sized rectangles (10  km2) and 
the percentage of all land cover categories and the number of 
squirrel carcasses retrieved in this study was calculated for 
each rectangle. Spearman rho and Kendall tau was used to 
establish correlation between land cover types and squirrel 
numbers. Multiple buffer ring analysis was also employed 
to investigate the relationship between the location of squir-
rel carcasses and the distance from settlements on the Isle 
of Wight (Office for National Statistics, 2011 Census data, 
ons.gov.uk). A series of buffers at 500 m, 1000 m, 1500 m, 
2000 m, 2500 m, 3000 m and 3500 m were created around 
21 areas with the highest population density. All spatial 
analyses used ArcMap 10.1.

Results

Genetic diversity

Out of the 15 microsatellites, one was found not under 
Hardy–Weinberg equilibrium and it was therefore excluded 

from the analysis. Samples with less than 70% of micros-
atellites successfully amplified were also excluded; there-
fore, the final dataset was composed of 161 individuals. As 
expected, mean allelic richness was found to be higher in 
Continental mainland populations (4.34 for Baden-Wuert-
temberg, 4.37 for Bavaria) when compared to the islands 
(2.22 for Isle of Arran, 2.28 for Brownsea Island and 2.69 
for the Isle of Wight—Table 1). Fis were calculated for 
all of our populations (Table 1), and no deficit or excess 
of heterozygotes was found apart from the Isle of Wight 
(Fis = 0.132, 0.08; 0.18 95% CI). However, these positive Fis 
values are likely to be related to the two distinct genetic clus-
ters that were found on this island (i.e., a Wahlund effect).

Population structure

The lowest Bayesian information criterion (BIC) value 
(194.86) was found for K = 7 in the DAPC analysis. The 
first 30 PCs of principal component analysis (PCA) explain-
ing 92.4% of the total variance were kept. The first two axes 
represent respectively 48% and 26% of the variance (Fig. 2). 
Axis 1 explained the variation between Arran and the rest of 
the populations. The South German and the UK populations 
are separated on axis 2. The Isle of Wight and Brownsea 
Island group together and Bavaria and Baden-Wuerttemberg 
also form a group of two (Fig. 2).

The population structure of the dataset was further inves-
tigated using STRU CTU RE (Pritchard et al. 2000). K = 2 
was selected as the best model for the entire dataset and 
in this model the Isle of Wight was found to be genetically 
distinct from the rest of the populations (Fig. 3a).

When population structure on the Isle of Wight was 
investigated separately this indicated that the island popula-
tion is separated into two different clusters (Fig. 3b). The 
Evanno’s method suggests that K = 3 is the appropriate K 
(Fig. 3b) however, increasing the number of K only divides 
one of the clusters (Fig. 3b), therefore K = 2 was chosen as 
the best K to explain the data. The island appears to harbour 
two genetically different populations, one located in the west 
and the other on the east of the island (Fig. 4).

Table 1  Population genetic parameters for the 14 microsatellite loci used in this study: N number of samples, Hexp: expected heterozygosity, 
Hobs: observed homozygosity, SD: standard deviation, Ao: average number of allele per locus, CI: confidence intervals

Country Population N Hexp SD Hobs SD Ao Mean allelic 
richness

Fis 95% CI

Lower Upper

UK Isle of Arran 11 0.43 0.15 0.40 0.20 2.29 2.22 0.054 − 0.16 0.22
Brownsea Island 11 0.36 0.21 0.35 0.25 2.50 2.28 0.029 − 0.16 0.19
Isle of Wight 117 0.40 0.24 0.35 0.22 3.79 2.69 0.132 0.08 0.18

Germany Baden-Wuerttemberg 8 0.65 0.18 0.69 0.23 5.00 4.34 − 0.073 − 0.20 0.01
Bavaria 14 0.66 0.14 0.68 0.24 5.36 4.37 − 0.026 − 0.11 0.05
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The genetic structure of the four remaining populations 
was further tested and even though the best K was found to 
be K = 2 using the Evanno method, further inspection of the 
results using CLUMPP reveals that K = 2, K = 3 and K = 4 
did not converge. K = 5 was found to converge and to give 
the best fit to the data (Fig. 3c). In this analysis, Brownsea 
and Arran islands displayed genetic signatures that were dis-
tinct from each other, and the two South German populations 
clustered together (Fig. 3c). The German population struc-
ture was investigated further using structure and again it was 
not possible to differentiate them (supplementary material 
1A). A 3D factorial was also generated, axis 1 was found to 
explain 100% of the variation and differentiate both popula-
tions (supplementary material 1B).

Pairwise Fst between all those populations was calcu-
lated and was found to be between 0.18 and 0.45 with a 
significant p-value except between the two German popu-
lations (Fst = 0.01, p = 0.23—Table 2). A Mantel test was 
performed for the Isle of Wight and the geographical and 
genetic matrices were found to be positively correlated 
(0.372, p = 0.0001). There were insufficient numbers of sam-
ples to conduct this test for the remaining sites.

Genetic boundaries on the Isle of Wight were investigated 
further using Monnonier’s algorithm (Fig. 5) which identi-
fies the centre of the island, as well as small proportion of 
the coast, as forming a genetic barrier (Fig. 5).

Bottleneck and effective population size on the Isle 
of Wight

Ne and the probability of a recent bottleneck was investi-
gated on both parts of the Isle of Wight. No sign of a bottle-
neck was found on the island under the SMM (Step Mutation 
Model) using a Wilcoxon test (p = 0.83 and p = 0.90 for the 
west and the east of the island respectively). Ne was found 
to be 40.3 for the western part of the Isle of Wight and 73.7 
for the eastern part of the island using the linkage disequi-
librium method with a frequency threshold of 0.05. Fis was 
calculated for both populations on the Isle of Wight. Fis 
was found to be 0.061 (− 0.031; 0.151, 95% CI) and 0.067 
(0.013; 0.122, 95% CI) for the west and the east population 
respectively revealing a signature of inbreeding in the East-
ern population on the Isle of Wight.

Testing the sampling validity for S. vulgaris 
on the Isle of Wight

Red squirrels obtained from the Isle of Wight for this study 
were sampled by the general public and so we tested the 
spatial distribution of the samples to determine whether 
any bias toward location of samples in, or close to, settle-
ments might have affected our data. Multiple buffer ring 
analysis indicated that the highest concentrations of red 

Fig. 2  Representation of the 
variation of 14 microsatellites 
on the first two axes of a dis-
criminant analysis of principal 
components (DAPC). The per-
centage of the total eigenvalue 
explained by axis 1 is 48% and 
for axis 2, 26%. IoW, Isle of 
Wight
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squirrels sampled on the Isle of Wight were in close prox-
imity to human settlements (Fig. 6). 40% of all red squirrel 
sightings were recorded within 500 m of the outer perim-
eter of the settlements, while only 21% are recorded at a 
distance of 2000 m, or more, from the outer perimeter of 
the settlements. The association between red squirrels and 

land cover was also tested, and no association was found 
between red squirrel data locations and urban land cover 
class. The only significant correlation between land cover 
type and red squirrel carcass locations was with woodland 
(Spearman’s Rho = 0.34, p < 0.05, Kendall Tau = 0.27, 
p < 0.05).

Fig. 3  Structure results for 
S. vulgaris populations. a 
Structure results for the entire 
dataset. As K = 2 was found 
to the best K, the dataset was 
further split into two: the Isle 
of Wight (b) and the rest of the 
populations (c)
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Discussion

Our results indicated a clear fragmentation of the red 
squirrel populations on the Isle of Wight. This reinforces 
previous conclusions from spatially explicit population 
dynamics modelling (Rushton et al. 1999) that landscape 
management to provide dispersal corridors and to inter-
connect woodlands is critical for the long term future of 
the species on the island.

We also found relatively low genetic diversity for the island 
in comparison to continental squirrels. However, no genetic 
bottleneck was detected on the Isle of Wight. It is worth noting 
that low genetic diversity has also been reported for other red 
squirrel populations in the UK when they are compared to con-
tinental populations using Major Histocompatibility Complex 
(MHC) class II (Ballingal et al. 2016) and when using mtDNA 
(Baratt et al. 1999; Hale et al. 2004; Ogden et al. 2005). Our 
results also supported previous findings from mtDNA, indi-
cating that the Isle of Wight population is genetically close 

Fig. 4  Geographical location of the two different genetic populations on the Isle of Wight found with the STRU CTU RE analysis. Each pie chart 
represents an individual squirrel with the percentage of each of the two genetic populations defined using the STRU CTU RE analysis

Table 2  Pairwise Fst values 
for 14 microsatellites for red 
squirrel populations from 
the British islands and south 
German populations

 Significant p values are highlighted in bold

Isle of Wight Brownsea Island Isle of Arran Baden-
Wuerttem-
berg

Bavaria

Isle of Wight –
Brownsea Island 0.35 –
Isle of Arran 0.45 0.31 –
Baden-Wuerttemberg 0.33 0.20 0.21 –
Bavaria 0.28 0.18 0.23 0.01 –
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Fig. 5  Genetic boundaries 
inferred using Monnonier’s 
algorithm. The thick black line 
represents the barrier to gene 
flow

Fig. 6  Human population density on the Isle of Wight. Black dots represent the geographical location of the squirrel carcasses used in this study
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to the Brownsea Island population, which probably reflects a 
common origin, and that those island populations share unique 
haplotypes when compared to a European dataset (Hardouin 
et al. 2019).

Population structure and connectivity on the Isle 
of Wight

As S. vulgaris is an arboreal specialist, with a preference 
for closed canopy (Gurnell et al. 2002; Samaras and Youla-
tos 2010), it is unsurprising that fragmentation of woodland 
habitats has been shown to affect the genetic diversity of red 
squirrels (Wauters et al. 1994; Hale et al. 2001b; Trizio et al. 
2005; Simpson et al. 2013b; Rézouki et al. 2014; O’Meara 
et al. 2018). Our findings suggest that this impediment to 
gene flow may also be true for squirrels on the Isle of Wight. 
Our assessment of the distribution of the red squirrel sam-
ples did indicate that they tended to be found relatively close 
to human settlement. This result is expected as the squirrels 
have been collected with the help of the general public for 
the Wight Squirrel Project monitoring program (Simpson 
et al. 2013a) and this influenced sample locations. Relatively 
few samples were collected from the centre of the island 
where human density is low (Fig. 5) and this could repre-
sent a potential sampling error. Nevertheless, the East/West 
population structure that we found seems likely to be associ-
ated with the pattern of woodland cover on the island. Most 
of the larger patches of woodland, which are most likely to 
harbour larger populations of squirrels (Van Apeldoorn et al. 
1994) are situated to the East and West, with only small, 
isolated woodlands in the centre (Rushton et al. 1999, Fig. 5) 
which was found to reprensent a barrier to gene flow. It may 
be pertinent that the landscape on the island has been highly 
modified since early history and, that there is thought to be 
more woodland on the island now than there has been for 
hundreds of years (IWBP 2009).

The regeneration of woodland on the island in recent dec-
ades, such as by the Forestry Commission funded JIGSAW 
project (Quine and Watts 2007), should provide opportuni-
ties for creatively managing the landscape connectivity for 
the red squirrel and other woodland specialists. Although it 
is important to note that the benefits of landscape connectiv-
ity cannot necessarily be assumed for all woodland special-
ists (Watts et al. 2016). Rushton et al. (1999) recommended 
maintaining large woodlands, which can act as population 
sources, and ensuring the presence of habitat corridors, such 
as hedgerows, in order to conserve the red squirrels on the 
Isle of Wight. Since then, the importance of habitat corridors 
in the restoration of genetic mixing for red squirrels has been 
demonstrated (Hale et al. 2001b; Trizio et al. 2005).

Although, the importance of corridors for red squirrels 
is clear, the design of functional corridors is affected by 

muliple considerations: patch size and quality, matrix com-
position and barriers to dispersal. So, it will be important to 
understand the dispersal behaviour of the Isle of Wight red 
squirrels in order to understand the mechanisms underlying 
the population structure and to develop any measures that 
may be effective in enhancing genetic mixing. As the wood-
lands of the Isle of Wight are dominated by mixed wood-
lands providing a range of tree seed crops (Rushton et al. 
1999), breeding dispersal would be expected to be relatively 
rare as this is generally a phenomenon of habitats with unre-
liable food sources (Lurz et al. 1997). Gene flow between 
woodland patches would most likely occur through disper-
sal of adult males in search of mates and young squirrels 
dispersing from their natal ranges (reviewed in Bosch and 
Lurz 2012). Given the wide range of dispersal distances that 
have been recorded for this species in fragmented landscapes 
(e.g. Wauters et al. 2010, Bosch and Lurz 2012, Hämäläinen 
et al. 2019), further work will be needed to determine the 
functionality of apparent landscape corridors, the potential 
for natal dispersal in the Isle of Wight, and how this might 
be enhanced. The permeability of the matrix and presence 
of barriers will also be important factors (Trizio et al. 2005). 
Although roads appeared not to be a barrier for the dispersal 
of red squirrels in an urban environment (Fey et al. 2016) 
other studies have shown that road crossing can be a major 
cause of mortality (Simpson et al. 2013a on the Isle of 
Wight, LaRose et al. 2010 in Scotland). Given that the ten-
dency for red squirrels to cross roads appears to be life stage 
and state specific (Fey et al. 2016), there might be potential 
to manage particular crossing points when juvenile disper-
sal is at its most prevalent. Appropriate bridges to connect 
woodlands fragmented by roads can also benefit other wild-
life, such as the hazel dormouse Muscardinus avellanarius 
(White and Hughes 2019).

Another possible barrier to gene flow on the Isle of Wight 
could be the Medina river in the north of the island (Fig. 6). 
Even though red squirrels are able to swim (Kenward and 
Hodder 1998, Bosch and Lurz 2012), it would be likely to 
decrease gene flow. For example, in Ireland the river Shan-
non has been found to act as a barrier for the migration of 
grey squirrels even if some individuals were occasionaly 
able to swim across (Carey et al. 2007). However, the river 
Medina is only 17 km long, therefore, its impact is likely to 
be limited.

Phylogeographic structure

Red squirrels in Europe have been found to lack phylogeo-
graphical structure when using mitochondrial DNA (Bar-
rat et al. 1999; Grill et al. 2009; Hardouin et al. 2019). In 
contrast, microsatellite techniques used here demonstrated a 
clear population structure despite using a modest number of 
markers. We showed that the population of Brownsea Island 
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and Isle of Wight are genetically closer to one another than 
to the Isle of Arran population (Scotland), whereas the two 
mainland populations from southern Germany were geneti-
cally similar to each other. This result suggests that nuclear 
markers might help us to understand the evolutionary history 
of the species. Such a lack of genetic structure in mtDNA 
when compared to nuclear markers is not uncommon and 
has been found in several species such as the red fox (Vulpes 
vulpes) for example (Teacher et al. 2011; Statham et al. 
2018; McDevitt et al. 2020).

Allelic richness in our samples was found to be higher in 
mainland populations when compared to islands, which is 
expected (Nei et al. 1975). In small populations, there is a 
risk that alleles associated with better fitness might behave 
neutrally if genetic drift is stronger than natural selection 
(Wright 1931; Bouzat 2010). The protection of island pop-
ulations is often a conservation priority due their unique 
genetic make-up, however, it can also lead to the risk of 
conserving an inbred population in order to conserve genetic 
uniqueness (Weeks et al. 2016). However, recent studies 
have demonstrated that adaptive differentation can act on 
islands even where strong drift occurs (Funk et al. 2016; 
Prentice et al. 2017). Therefore, understanding the role of 
genetic drift and natural selection in red squirrels on the 
Isle of Wight would be a critical step in order to infer if the 
loss of genetic diversity is a threat to the population and to 
develop an effective conservation strategy.

Conservation of the Isle of Wight and Brownsea 
squirrel populations

Previous work, using mtDNA, has shown that the last 
remaining red squirrel populations in the south of the 
England form two separate Evolutionary Significant Units 
(ESUs): (i) Isle of Wight and (ii) Brownsea/ Furzey com-
bined as squirrels have been found to move between Brown-
sea and Furzey islands (Thain and Hodder 2015). Popula-
tions were also found to be genetically unique compared to 
54 European populations using mtDNA markers (Hardouin 
et al. 2019). Here, our results supported those findings as 
we also found a high genetic divergence for those islands. 
Fst between Brownsea and the Isle of Wight was found to be 
0.35 with p < 0.05 (Table 2). Nevertheless, they seem to be 
closely related to each other when compared to Isle of Arran 
and southern German populations (Fig. 2).

As genetic diversity on the Isle of Wight and Brownsea 
Island was found to be low using both mtDNA techniques 
(Hardouin et al. 2019) and microsatellites (this study), there 
could be concerns for the long term future of the popula-
tion. No signs of inbreeding were found on Brownsea Island 
with our small dataset, however some sign of inbreeding was 
found in the Eastern population of red squirrels on the Isle 
of Wight. However, Ne on the Isle of Wight was only 40.3 

in the west and 73.7 in the east. As Ne > 1000 is the value 
currently accepted as the minimum threshold to maintain 
adequate adaptive potential (Willi et al. 2006) the genetic 
health of the population requires ongoing monitoring. In 
terms of national strategy, it would be of particular interest 
to investigate the genetic structure of the British population 
further to identify possible rescue sources in case they are 
ever needed for these remnant populations of squirrels in the 
South of the UK. Ogden et al. (2005) employed this strategy 
by including donor squirrels from other areas to maximise 
genetic heterogeneity for conservation of red squirrels in 
Wales.

If genetic rescue by translocation of squirrels between 
Brownsea and the Isle of Wight was contemplated, this 
would require consideration of many risks including: out-
breeding depression, loss of local adaptation, replacemenent 
of recipient genetic background and pathogen transmission 
(Week et al. 2011). The geographical and genetic similar-
ity between the Isle of Wight and Brownsea populations 
would probably mean a very low risk of outbreeding depres-
sion, loss of local adaptation and replacement of genetic 
background. The main issue is likely to be the potential for 
pathogen transmission, for instance, Mycobacterium leprae 
causing leprosy is present on Brownsea Island and M. lepro-
matosis on the Isle of Wight (Avanzi et al. 2016).
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