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Abstract 

Iris recognition is a hot research field in the 
biometrics, and it plays an important role in 
automatic recognition. Given sufficient training 
data, some deep learning-based approaches 
have achieved good performance on iris 
recognition. However, when the training data 
are limited, the overfitting may occur. To 
address this issue, in this paper, we proposed a 
few-shot learning approach for iris recognition, 
based on model-agnostic meta-learning 
(MAML). To our best knowledge, we are the 
first to apply few-shot learning for iris 
recognition. Our experiments on the benchmark 
datasets have demonstrated that the proposed 
approach can achieve higher performance than 
the original MAML, and it is competitive to 
deep learning-based approaches.  
Keywords: iris recognition, few-shot learning, 

meta learning, L2 regularization 

 

1.Introduction 

Biometric systems are constantly evolving, and 
are expected to be used in automated systems to 
effectively identify or authenticate a person's 
identity without requiring the user to carry or 
remember anything, which is different from 
traditional methods such as passwords and IDs 
[1]. In this regard, iris recognition has been used 
in many key applications, such as restricted area 
access control, database access, national ID 
cards and financial services, and is considered to 
be one of the most reliable and accurate 
biometric features [2]. Several studies [3][4][5] 
have shown that iris features have many 
advantages over other biological features (such 
as face, fingerprint), which makes it widely 
recognized in biometric systems with high 
reliability and accuracy.  

With the development of advanced computing 
hardware and the availability of big data, deep 
learning technologies have been applied to 
many areas, including iris recognition. In 2016, 
Gangwar and Joshi developed a deep learning 
architecture called DeepIrisNet [ 6 ] for iris 
recognition based on images obtained from 
different devices. Their experiments on the ND-
IRIS-0405 and ND-CrossSensor-Iris-2013 
datasets showed that the proposed network 
achieves better performance than the 
benchmarks. Zhao et al. proposed a deep 
learning method for iris recognition based on the 
capsule network architecture [7]. Wang et al. [8] 
proposed a cross-spectral iris recognition based 
on CNN and supervised discrete hashing. 
Compared with other iris recognition methods, 
the proposed method can not only achieve better 
performance than other considered CNN 
architectures, but also can significantly reduce 
the template size. Liu et al. [9] proposed two iris 
segmentation models based on hierarchical 
convolutional neural networks (HCNNs) and 
multi-scale full convolutional networks 
(MFCNs), for noisy iris images acquired at-a-
distance and on-the-move. Both models 
automatically locate iris pixels without 
handcrafted features or rules, and they are end-
to-end models which require no further pre- and 
post-processing and outperform other state-of-
the-art methods. 
 
When a sufficient amount of labeled data is 
available, the iris recognition approaches based 
on deep learning are able to achieve good 
performance. However, given a limited number 
of training samples, these methods may result in 
over-fitting.  
 
To tackle the over-fitting problem, in recent 
years, the research on few-shot learning, i.e. 
learning for the problem of insufficient sample 
size, has attracted widespread attention [10]. In 
the context of iris recognition, though the 
overall sample size of datasets is considerable, 



the specific iris images of each person are 
generally only about 20, which is relatively 
small compared to other types of datasets. Some 
deep learning-based methods [ 11 ] rotate the 
original iris images by various angles to expand 
the sample size. However, this approach does 
not increase the diversity between each sample 
and consequently has limited effects on 
preventing the over-fitting issue. 
 
Inspired by the advantages of few-shot learning 
on addressing the issue caused by small samples, 
in this paper, we proposed a few-shot learning 
approach, based on the model-agnostic meta-
learning method (MAML) [12]. We name the 
proposed approach as improved MAML, or 
iMAML. To adapt MAML for iris recognition, 
we have introduced L2 regularization on the 
basis of the original cross-entropy loss function, 
and increased the number of convolutional 
layers of the original network structure of 
MAML. To our best knowledge, we are the first 
to implore the few-shot learning for iris 
recognition. Our experiments on the benchmark 
datasets show that iMAML performs better than 
MAML and achieves competitive performance 
when compared with deep-learning based 
approaches. 
 
The rest of this paper is organized as follows. 
The second section introduces the related work 
of iris recognition and few-shot learning. The 
third section introduces the preliminary 
knowledge of MAML. Section 4 introduces the 
improved algorithm proposed and provides the 
corresponding pseudo code. The experimental 
setup and results are reported in the fifth section, 
followed by the conclusions and future work. 
 

2 Related work 

A complete iris recognition system consists of 
several steps, including iris image acquisition, 
iris image quality evaluation, iris image 
preprocessing, iris feature extraction and 
recognition. In this section, we review 
traditional iris recognition approaches and deep-
learning based ones.   

2.1 Traditional approaches 

The traditional iris recognition algorithm is 
mainly based on the theory of Daugman et al 

[13]. It uses Gabor filter to extract the feature of 
iris image texture and the iris feature extraction 
is completed by designing filter parameters, 
filter window size, filter direction and filter 
wavelength size. A series of feature coding work 
is carried out on the extracted iris features, and 
the feature code is edited for each type of iris 
image, and then the iris feature coding is 
compared with the coding in the iris registry. 
The matching algorithm of Haming distance and 
Euclidean distance is used for comparison. In 
1997, Boles et al. [ 14 ] proposed an iris 
recognition algorithm based on wavelet zero-
crossing detection. This method uses the idea of 
wavelet zero-crossing to extract features from 
the iris, which improves the efficiency of feature 
extraction. In 2001, [15 ] proposed a feature 
expression method based on two-dimensional 
wavelet transform for the problem of high iris 
feature dimension, which effectively reduced 
the dimension and improved the classification 
and recognition effect. In 2002, Tan et al. [16] 
proposed a personal recognition method based 
on iris recognition, which uses a row of circular 
symmetric filters to extract local iris features to 
form a fixed-length feature vector. At the same 
time, in order to improve the iris matching 
performance, constraints are imposed on the 
nearest feature line. In 2010, Mayank Vatsa et 
al. [17] used quality scores to select the two 
channels of color iris images and used redundant 
discrete wavelet transform to fuse them at the 
image level, before combing the fused image 
with the remaining channels at the scoring level. 

2.2 Deep-learning based approaches 

The iris recognition algorithm based on deep 
learning integrates iris feature extraction and iris 
matching, and performs iris feature extraction 
and iris matching through each layer of the 
network. On the premise of improving the 
recognition accuracy, it also improves the 
model's noise robustness and generalization 
ability. In 2016, Shervin Minaee et al. [18] used 
deep convolutional networks to extract features 
of iris images, and then used SVM as a classifier 
for iris recognition. In the same year, Abhishek 
Gangwar and Akanksha Joshi et al. proposed 
two CNN architectures, DeepIrisNet-A and 
DeepIrisNet-B for iris recognition. In 2017, 
Zhang et al. [19] proposed an iris recognition 
method based on a convolutional neural 
network, which consists of three convolutional 



layers, three pooling layers, and two fully 
connected layers. The cross-entropy loss 
function is used to calculate the loss of the 
prediction result. In order to reduce the impact 
of overfitting, the Dropout method [ 20 ] is 
introduced into the network. In 2018, Wang et 
al. [21] used CNN to extract the depth feature 
vector of the normalized iris texture image as the 
underlying feature to classify the iris. Despite 
the good performance achieved by the above-
mentioned approaches, they require big sample 
size to training their network models. Few-shot 
learning has been proposed to address the issue 
caused by small sample size, but it is not applied 
to iris recognition yet. 
 
3. MAML 

MAML [12] is a model-independent meta-
learning algorithm that can be used for various 
learning problems and models based on gradient 
descent. Unlike the previous meta-learning 
method that requires learning an update function 
or learning rule, MAML neither increases the 
number of model parameters nor sets any 
restrictions on the structure of the model. 
MAML can easily interact with fully connected 
networks, convolutional networks, and 
recurrent networks, and so on. 
 
The training of MAML algorithm takes task as 
the training unit, and the corresponding dataset 
is divided into training set, verification set and 
test set. The whole algorithm is divided into 
meta-training phase and meta-testing phase. In 
the meta-training phase, select the tasks from the 
given distributed 𝒯!~𝑝(𝒯) , where each task 
contains K categories, and each category 
contains N samples. Meta-learning tries to 
obtain a good generalized model by training all 
tasks, which can quickly adapt to new tasks. In 
the meta-training phase, first use the training set 
to obtain the loss value ℒ𝒯!(𝑓#) of the original 
model parameter 𝜃	on 𝒯!, and then use gradient 
descent to obtain 𝜃!. 
                         

								𝜃" = 𝜃 − 𝛼	∇#	ℒ𝒯!(𝑓#)																			(1)  
 
Where 𝛼 is the meta-training learning rate used 
in the inner loop. Then test set 𝐷$%&$  is then 
used to verify on the expected parameter 𝜃! , 
thus obtaining a new loss, meta loss ℒ𝒯!(𝑓#!). 
The loss value here can only be regarded as a 

part of meta loss, and the cumulative sum of 
ℒ𝒯!(𝑓#!)  is calculated after the entire internal 
loop is the final meta loss. Calculate the gradient 
of the total loss and do stochastic gradient 
descent to update the original parameter values 
of the model as: 
 

										𝜃 = 𝜃	 − 𝛽	∇# 	- ℒ	𝒯!.𝑓#!/𝒯!~'(𝒯)
																	(2) 

Where 𝛽 is the learning rate used in the outer 
loop. 
 

4. Our approach-improved MAML 

The MAML network architecture was originally 
derived from the embedded function network 
architecture used by Vinyals et al [22]. This 
network architecture has the standard 
configuration of convolutional neural network 
commonly used in image classification tasks, as 
shown in Figure 1.  
 

 
Figure 1. MAML network model 

With the network model above, MAML can be 
directly applied for iris recognition, as 
demonstrated in the Experiment section. 
However, to generalize the model, improve the 
performance of the model in multi-task training 
and further alleviate overfitting, we improve 
MAML in the following two aspects:  
 
1. As shown in Figure 1, the network model of 

MAML used for image classification 
contains four layers of convolutional neural 
networks. Through experiments, we have 
found that the following structure with 
addition of two more convolution modules 
provides the best performance on iris 
recognition. The composition of the two 
newly added modules is same as the 
composition of the previous modules, 
except that the maximum pooling process is 
not performed. 
 



 

 
Figure 2. Network structure of the improved MAML 

 

2. To reduce the over-fitting problem in the 
training process and improve the 
generalization of MAML to adapt to new 
tasks, we have introduced regularization 
constraints in the loss function, and added 
L2 regularization on the basis of the original 
cross-entropy loss, as shown in (3)，where 
𝜔 is the parameter for regularization. 
 

𝐿*!(𝑓#) = - 𝑦(+)𝑙𝑜𝑔𝑓#.𝑥(+)/ + .1 + 𝑦(+)/
,(#),.(#)~*!

𝑙𝑜𝑔(1

− 𝑓#(𝑥(+))) +
𝜆
2𝑛																									(3) 

 

The model is represented by a parametrized 
function 	𝑓#  with parameters 𝜃 . When 
adapting to a new task	𝒯! , 𝜃 will become 𝜃!' 
accordingly, by taking into account the added 
L2 regularization constraint. A single gradient 
update calculation is as follows, where	𝛼	is the 
learning rate: 
 

								𝜃"/ = 𝜃 − 𝛼	∇# ;ℒ𝒯!(𝑓#) + 𝜆-𝜃+0
1

+23

<																	(4)  

The model parameters are trained by optimizing 
for the performance of 𝑓#4  with respect to 𝜃 
across tasks sampled from	𝑝(𝒯), so the meta-
objective can be expressed as: 

	∇# - ;ℒ𝒯! >𝑓#!%? + 𝜆-𝜃/+
0

1

+23

<
𝒯!~'(𝒯)

#
															5"1 													(5) 

The meta-optimization is performed over the 
model parameters 𝜃, whereas the objective is 
computed using the updated model parameters 
𝜃' . By using stochastic gradient descent, the 
meta-optimization is performed through 
tasks	𝒯!~𝑝(𝒯). Therefore, the model parameters 
𝜃 are adjusted as follows: 

									𝜃 = 𝜃 − 𝛽∇# - ;ℒ𝒯! + 	𝜆-𝜃/+
0

1

+23

<
𝒯!~'(𝒯)

											(6) 

where 𝛽  represents the meta learning rate. 
Combing (6) with (4) gives us 

𝜃 = 𝜃 − 𝛽	∇&	 ' (ℒ𝒯! (𝑓& − 𝛼∇&ℒ𝒯!(𝑓&) + 𝜆'𝜃)*
+

),-

0
𝒯!~	/(𝒯)

+ 𝜆'𝜃0)
*

+

),-

0																																				 (7) 

The corresponding algorithm is outlined in 
Algorithm 1: 
 

Algorithm 1 Our improved MAML 

 
Require: Distribution of tasks 𝑝(𝒯), the learning rate 𝛼 and 𝛽 
1.Initialize	𝜃	randomly 
2.While not done do 
3.    Sample tasks		𝒯1	according to 𝑝(𝒯) 
4.    for all tasks 𝒯1 do 
5.       Draw K samples from 𝒯1: 𝒟234 = {𝑥()), 𝑦())} 
6.       Calculate		∇&(ℒ𝒯!(𝑓&) + λ∑𝜃

*) with respect to K 
examples 

7.       Compute adapted parameters with gradient descent：
𝜃10 = 𝜃 − 𝛼∇&(ℒ𝒯!(𝑓&) + λ∑ 𝜃

*) 
8.       Sample datapoints from	𝒯1	and	get	𝒟156 = {𝑥()), 𝑦())} 

for the meta-update 
9.    end for 
10.  		𝜃 = 𝜃 − 𝛽∇& ∑ Cℒ𝒯!C𝑓& − 𝛼∇&ℒ𝒯!(𝑓&) + λ∑ 𝜃

*D +𝒯𝑖~	𝑝8𝒯9
𝜆 ∑𝜃0)

*D 
11.end while 
 

 

5.Experiments and results 

In this section, we firstly introduce the datasets 
used in the experiments and the parameters 
settings, and then conduct training and testing 
on the MAML, iMAML and deep learning 
methods for comparison. 

5.1 Datasets and Parameter Settings 

The iris datasets used in our experiment come 
from the free and open database CASIA-V4.0 of 
the Institute of Automation of the Chinese 
Academy of Sciences and the public iris image 
database JLU-V1.0 of Jilin University. For the 
CASIA-V4.0 dataset, two subsets of CASIA-
Iris-Interval and CASIA-Iris-Lamp are used, 
with 200 sets selected respectively as the two 
datasets used in the experiments. Among them, 
the number of iris samples in each group of the 



dataset made by Interval is 5, with a total of 
1000 samples; the number of iris samples in 
each group of the dataset made by lamp is 20, 
with a total of 4000 samples. For JLU-V1.0, 193 
groups were selected for the experiment, and 
each group contained 20 iris samples, totaling 
3860 samples. The iris samples contained in 
each group of the above dataset belong to the 
same person, that is, each group of samples 
belongs to the same category. 
 
The iris images need to be preprocessed. Firstly, 
the images are positioned, and then the iris 
images with a rectangular shape are obtained 
after normalization. We use the Osiris v4.1 [23] 
system to locate and segment the iris region. In 
order to retrieve the iris contour, the Viterbi 
algorithm [24] is applied to the gradient map of 
the image processed by anisotropic smoothing. 
The Viterbi algorithm has two resolutions: one 
is high resolution, which can find accurate 
contours; and the other is low resolution, which 
retrieves rough contours that can further 
improve the accuracy of the normalized circle. 
Here Osiris v4.1 uses the second one. After the 
segmentation is completed, as shown in Figure 
3(c), the pupil and iris circle are drawn in green, 
and the non-iris pixels indicated by the mask are 
colored in red. The image in Figure 3(b) is only 
useful for viewing the results and not for further 
processing. 
 

 
(a) original image (b) binary mask image (c) 

segmented image 
Figure 3. Iris preprocessing for segmentation  
 
After detecting the iris boundary, positioning 
and segmenting it, the iris is normalized by the 
Daugman’s rubber-sheet model [25]. The iris 
normalization process mainly eliminates the 
problem of size inconsistency caused by the 
stretching of the iris area due to pupil dilation 
under different lighting conditions. Figure 4 
shows the normalized image of the iris image. 

 
Figure 4: (a) CASIA iris image before 

normalization, (b) JLU iris image 
before normalization, (c) CASIA iris 
image after normalization, (d) JLU iris 
image after normalization. 

 

After the iris image is normalized, the iris 
texture area changes from a ring to a rectangular 
area. Due to the preprocessing of the iris, the iris 
image will be affected by unfavorable factors 
such as acquisition light and positioning errors. 
Therefore, the sharpness of the normalized 
image is not very high, and the normalized 
image needs to be enhanced to increase the 
contrast of the image. We apply histogram 
equalization processing to enhance the contrast 
of iris image. The processed iris image sample 
is shown in Figure 5. 

 
Figure 5:(a) CASIA iris image before histogram 

equalization, (b) CASIA Iris image 
after histogram equalization, (c) JLU 
iris image before histogram 
equalization, (d) JLU Iris image after 
histogram equalization. 



5.2 Evaluation Metric 

To measure and evaluate the performance of 
iMAML and the methods used for comparison, 
we use the most common neural network 
evaluation indicator, i.e., the accuracy rate. The 
accuracy rate represents the ratio of the correct 
number of predicted samples to the total number 
of samples. 

5.3 Comparison of MAML and iMAML 

During the experiment, the samples in each 
dataset are divided into three parts: training 
group, verification group and test group. The 
CASIA-Iris-Interval and CASIA-Iris-Lamp 
datasets have 128 groups for training, 32 groups 
for verification and 40 groups for testing. The 
number of groups used for training in the JLU-
V1.0 dataset is 127, the number of groups used 
for verification is 30, and the number of groups 
used for testing is 36. Each dataset has a 
corresponding category label, which is stored in 
a csv file. The CASIA-Iris-Interval dataset is 
only used for 5-way 1-shot experiments due to 
the small size of the data, and the remaining 
datasets are used for 5-way 1-shot and 5-way 5-
shot experiments. The 5-way 1-shot means that 
each task in the meta-training stage randomly 
selects 5 categories of iris samples, and each 
category selects 1 labeled sample. The 5-way 5-
shot means that each task in the meta-training 
phase randomly selects 5 categories of iris 
samples, and each category selects 5 labeled 
samples. The preprocessed iris image is 
uniformly processed into a square picture with a 
size of 84×84. Choosing this resolution is the 
result of trying various sizes, details of the 
experiment are in section 5.5.2. 
 
Both MAML and iMAML use the above three 
datasets for training. In the training phase, the 
number of iterations is uniformly set to 20,000 
steps, and the verification is performed every 
500 steps, and the meta_batch_size is uniformly 
set to 2, that is, one iteration contains two tasks. 
The specific parameter settings of the MAML 
and enhanced MAML training phase 
experiments are shown in the corresponding 
table 1- 4: 
 

Table 1 MAML 5-way 1-shot experiment 

parameter settings 

Parameter Value 

update learning rate 1.0x10-2 

number of updates 5 

number of classes 5 

update batch size 1 

meta-batch size 2 

meta learning rate 1.0x10-3 

optimizer Adam 

 

Table 2 MAML 5-way 5-shot experiment 

parameter settings 

Parameter Value 

update learning rate 1.0x10-2 

number of updates 5 

number of classes 5 

update batch size 5 

meta-batch size 2 

meta learning rate 1.0x10-3 

optimizer Adam 

 

Table 3 iMAML 5-way 1-shot experiment 

parameter settings 

Parameter Value 

update learning rate 0.01 

number of updates 5 

number of classes 5 

update batch size 1 

meta-batch size 2 

meta learning rate 1.0x10-3 

optimizer Adam 

l2 weight 0.089 

 



Table 4 iMAML 5-way 5-shot experiment 

parameter settings 

Parameter Value 

update learning rate 0.09 

number of updates 5 

Number of classes 5 

update batch size 5 

meta-batch size 2 

meta learning rate 1.0x10-3 

optimizer Adam 

l2 weight 0.089 

 

Table 5 shows the results of 5-way 1-shot and 5-
way 5-shot on the CASIA-Iris-Interval, CASIA-
Iris-Lamp and JLU-V1.0 dataset for MAML and 
iMAML. It can be seen that, overall, the 
experimental results of the iMAML on the three 
datasets are better, compared with MAML. 
Particularly, for the 5-way 1-shot experiment of 
CASIA-Iris-Interval, the accuracy of iMAML is 
5.39% higher than that of MAML. On the 

CASIA-Iris-Lamp dataset, in the 5-way 1-shot 
experiment, iMAML has an accuracy increase 
of 3.39%, compared with MAML. Since in the 
5-way 5-shot experiment, each task selects 5 
samples for training, the number of training 
samples for each type is considerably higher 
than the number of samples 1 for each type of 5- 
way 1-shot training. Therefore, overall, for both 
iMAML and MAML, the recognition accuracy 
of 5-way 5-shot in each group of experiments is 
higher than that of 5-way 1-shot. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 The recognition rate of MAML and iMAML on each dataset 

Few-shot learning method DataSet Feature extractor 1-shot 5-shot 

MAML CASIA-Iris-Interval 4 Conv 93.7% - 

iMAML CASIA-Iris-Interval 6 Conv 99.09% - 

MAML CASIA-Iris-Lamp 4 Conv 94.4% 98.2% 

iMAML CASIA-Iris-Lamp 6 Conv 97.79% 98.9% 

MAML JLU-V1.0 4 Conv 99.59% 99.84% 

iMAML JLU-V1.0 6 Conv 99.73% 99.295% 



 

(a) on CASIA-Iris-Interval dataset 

 

(b) on CASIA-Iris-Interval dataset 

  

 

(c) on CASIA-Iris-Lamp dataset 

     

         (d) on CASIA-Iris-Lamp dataset 

 

 (e) on CASIA-Iris-Lamp dataset 

 

 

 (f) on CASIA-Iris-Lamp dataset 



 

(g) on JLU-V1.0 dataset 

 

(h) on JLU-V1.0 dataset 

 

(i) on JLU-V1.0 dataset 

                                       

(j) on JLU-V1.0 dataset 

 

Figure 7. Training accuracy and loss of MAMl and iMAML for different datasets 

 
As shown in Figure 7 above, we can see that 
iMAML has a more stable training accuracy and 
a greater fluctuation range than MAML, and it 
reaches the highest point more quickly. And 
iMAML has lower training loss than MAML as 
a whole, and it converges faster. This proves the 
effectiveness of our iMAML method. 

5.4 Comparison of iMAML and Deep Learning 

Based Methods for Iris Recognition 

In this section, we compare iMAML and a few 
representative deep network models that are 
trained and tested on small sample iris datasets. 
 

First, we preprocess the iris images using the 
same approach as in the section 5.2. During the 
training, the models extract features of iris 
images and use the Softmax layer to classify iris. 
We use the same datasets as that in section 5.2. 
Each group in the dataset is divided into training 
set, validation set and test set. Each group of 
CASIA-Iris-Interval dataset selects 3 training 
samples, one verification sample and one test 
sample. The number of training samples for 
each group of CASIA-Iris-Lamp and JLU-V1.0 
dataset is 12 and we set both the verification 
sample and the test sample as 4. With these 
datasets, we use TensorFlow to train, verify and 
test the models for iris recognition. 
 



The training process uses cross entropy as the 
loss function, and uses the stochastic gradient 
descent to update network parameters. The main 
parameters of the training phase are shown in 
Table 6. The image sizes used for VGG16, 
Inception-V3, ResNet-50, Efficientnet-b0, 
Mobilenet-Small, Mobilenet-Large, 
DeepirisNet-A and DeepirisNet-B, are 
uniformly processed as 224×224,299×299, 
224×224, 224×224, 224×224, 128×128 and 
128x128, respectively. The accuracy of 
recognition is given in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Deep learning network parameter 

settings 

Parameter Value 

batch-size 4 

learning-rate 0.01 

step 20000 

learning rate-reduce-

patience 

10 

 
As can be seen in Table 5 and 7, the accuracy of 
iMAML is 99.09%, and the accuracy of MAML 
is 93.07%, both of which are higher than the 
84.5% of the highest recognition accuracy 
achieved by DeepirisNet-B. For CASIA-Iris-
Lamp, the accuracy of iMAML is 98.9%, and 
the accuracy rate of MAML is 98.2%, both are 
higher than the 96.87% of the highest 
recognition accuracy achieved by Inception-V3. 
And for JLU-V1.0, the accuracy achieved by 
iMAML is 99.95%, and the accuracy achieved 
by MAML is 9.84%. Both are higher than the 
highest accuracy rate of 98.12% achieved by 
DenseNet. Obviously, iMAML proposed in this 
paper and MAML have considerable advantages 
in iris recognition when small samples are 
available for training

 

Table 7 The recognition accuracy of each deep learning model 

Deep Learning model DataSet Accuracy 

VGG16 CASIA-Iris-Interval 68% 

VGG16 CASIA-Iris-lamp 86% 

VGG16 JLU-V1.0 87.5% 

Inception-V3 CASIA-Iris-Interval 75.5% 

Inception-V3 CASIA-Iris-lamp 96.87% 

Inception-V3 JLU-V1.0 96.87% 

ResNet-50 CASIA-Iris-Interval 80% 

ResNet-50 CASIA-Iris-lamp 94.87% 

ResNet-50 JLU-V1.0 95.5% 

DenseNet CASIA-Iris-Interval 80.5% 



5.5 Analysis of Parameters 

5.5.1 Network Structure 

We replaced the original MAML’s network 
with a simple convolutional network ResNet 
network and Inception network, conducted 
experiments on the CASIA-Iris-Lamp dataset, 
and compared their performance with iMAML. 
Our experimental results below show that 
iMAML (with two convolutional layers)  
achieved the best result, as displayed in Table 8. 
The reason is that the MAML training strategy 
will lead to complex calculations. Only shallow, 
uncomplicated neural networks can be used as 
base-learners. Complex networks like ResNet 
and Inception are easy to overfit during training. 

5.5.2 Iris Image Size 

We evaluated the influence of various input Iris 
image sizes on the recognition accuracy， by 
carrying experiments on the CASIA-Iris-
Interval dataset. It can be seen from the results 
that the size 84x84 gives the best result, and the 
accuracy decreases with the increase of the size. 
This could be due to the discriminative iris 
features under this size are better obtained. 
 
 
 
 
 
 

 

 

 

DenseNet CASIA-Iris-lamp 96.37% 

DenseNet JLU-V1.0 98.12% 

EfficientNetB0 CASIA-Iris-Interval 78.5% 

EfficientNetB0 CASIA-Iris-lamp 93.75% 

EfficientNetB0 JLU-V1.0 96.87% 

MobileNetV3-Small CASIA-Iris-Interval 71% 

MobileNetV3-Small CASIA-Iris-lamp 93.75% 

MobileNetV3-Small JLU-V1.0 98% 

MobileNetv3-Large CASIA-Iris-Interval 66.5% 

MobileNetv3-Large CASIA-Iris-lamp 94.5% 

MobileNetv3-Large JLU-V1.0 97.75% 

DeepIrisNet-A CASIA-Iris-Interval 73% 

DeepIrisNet-A CASIA-Iris-lamp 95.87% 

DeepIrisNet-A JLU-V1.0 97.75% 

DeepIrisNet-B CASIA-Iris-Interval 84.5% 

DeepIrisNet-B CASIA-Iris-lamp 96.75% 

DeepIrisNet-B JLU-V1.0 97.5% 



Table 8 The recognition accuracy of various network structures 

 

Table 9 the Influence of Input Size on Recognition Rate (Accuracy(%))

 

Table 10 Image Rotation Analysis 

Rotation Angle (degree) -8 -6 -4 -2 0 +2 +4 +6 +8 

DeepIrisNet-A 67% 69% 72.5% 71.5% 73.5% 73.5% 71.5% 69.5% 68% 

iMAML 1-shot 98.69% 98.49% 98.89% 98.99% 99.26% 98.97% 98.83% 98.89% 98.10% 

5.6 Invariance to Rotation 

When a person’s iris was captured, the head of 
the person may not be aligning with the 
collecting device, which may cause iris rotation 
problems. DeepIrisNet shows excellent 
invariance to this change, but in the case of 
sufficient samples provided for tranining. To 
study the influence of the iris image’s rotation 
to our method’s recognition accuracy, we used 
the CASIA-Iris-Interval dataset and trained it 
with non-rotating images. During the testing 
process, the test images were rotated in the 
range of -8 degree to +8 degree with a step size 
of 2 degree. DeepirisNet-A is selected to 
perform the same steps, but with small sample 
size. As seen in Table 10, our iMAML achieved 

much better results against the rotation of iris 
images. 
 
6 Conclusion 

In this paper, we study the iris recognition 
problem with limited training data. Based on 
MAML algorithm in meta-learning, we 
introduce L2 regularization on the basis of the 
original cross entropy loss function of MAML 
to improve the generation of the approach and 
avoid the overfitting. At the same time, in order 
to further improve the ability of embedded 
network to extract features, we have improved 
the original network structure of MAML with 
the addition of two convolution modules. 

Few-shot learning method DataSet 1-shot Accuracy 5-shot Accuracy 

MAML(Conv6) CASIA-Iris-Lamp 97.79% 98.9% 

MAML(Conv9) CASIA-Iris-Lamp 86.96% 97.4% 

MAML(Conv12) CASIA-Iris-Lamp 82.19% 95.98% 

MAML(ResNet6) CASIA-Iris-Lamp 84.99% 88.89% 

MAML(ResNet9) CASIA-Iris-Lamp 88.89% 96.87% 

MAML(ResNet12) CASIA-Iris-Lamp 91.3% 97.2% 

MAML(Inceotion6) CASIA-Iris-Lamp 91.03% 97.6% 

MAML(Inceotion9) CASIA-Iris-Lamp 86% 96.28% 

MAML(Inceotion12) CASIA-Iris-Lamp 88.89% 96.8% 

Input size 60×60 84×84 100×100 128×128 140×140 

iMAML 1-shot  96.63% 99.26% 99.06% 95.46% 94.96% 



Experimental results show that the proposed 
method can effectively improve the accuracy of 
recognition and has considerable advantages 
compared with deep learning methods. In the 
future work, we will further explore the 
application of other small sample learning 
methods in the field of iris recognition. 
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