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Spatial Modulation of Indoor VLC Systems
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Abstract

In order to reduce the complexity of the light-emitting diodes (LEDs) selection procedure in

generalized spatial modulation (GSM) assisted indoor visible light communication (VLC) system,

a support vector machine (SVM) aided low complexity and high efficiency machine learning LEDs

selection algorithm is proposed for the considered GSM-VLC system. By modeling the LEDs

selection problem in indoor GSM-VLC system as a multi-classification task, an optimization problem

is constructed by utilizing kernel SVM. After the optimal parameters are obtained from the training

stage, an LEDs selection procedure can be accomplished efficiently by SVM aided learning system

for any given user’s channel state information. Simulation results and complexity analysis show

that, compared with traditional LEDs selection algorithms, the proposed SVM aided LED selection

algorithm can achieve an ideal bit error ratio (BER) performance while having considerable lower

complexity for the considered GSM-VLC system.

Index Terms

LEDs Selection, Visible Light Communication (VLC), Generalized Spatial Modulation (GSM),

Support Vector Machine (SVM).

I. INTRODUCTION

With the accelerated deployment of 5th generation mobile networks (5G) system and

the formal launch of the 6th generation mobile networks (6G) technology, the spectrum

resources of traditional wireless communication have gradually been unable to meet human

needs, so it is urgent to develop new spectrum to fundamentally solve the contradiction

between the demand for super-capacity communication and the spectrum crisis. Visible light

communications (VLC) has become an effective supplement to the radio frequency (RF)

based wireless communication system by virtue of its rich free spectrum resources, excellent

anti-electromagnetic interference capability and relatively high network security [1]–[4]. In

F. Zhang, F. Wang and T. Zuo are with the School of Information Engineering, Zhengzhou University, Zhengzhou, 450001,

Henan, China. F. Wang is the Corresponding author. (E-mail: iefswang@zzu.edu.cn)

J. Zhang is with Department of Computing & Informatics, Bournemouth University, Poole, BH12 5BB, U.K. (E-mail:

jzhang3@bournemouth.ac.uk).



2

particular, as a promising small cell technology, indoor VLC technology can be connected

to existing wireless networks and will probably become an important part of future wireless

communication [5], [6].
In terms of physical layer transmission, multi-input multi-output (MIMO) transmission is

able to deeply mine wireless resources in spatial dimensions, thus significantly improving the

system spectral efficiency, which has become one of the current research hot spots in academia

and industry fields. Meanwhile, for indoor VLC system, the MIMO configuration provides

physical alignment of light-emitting diodes (LEDs) to mobile user and the lighting function

is implemented simultaneously. Therefore, the potential research of theory and experiments

of VLC have recently turned to MIMO-VLC system [3].
However, in practical applications of MIMO-VLC, as the number of LEDs equipped

at the transmitter ends increasing, the cost and complexity of the system also increase

continuously. Moreover, the system will be seriously affected by inter-channel interference

(ICI), inter-antenna synchronization (IAS) and other problems, and its overall performance

will degrade. As one of successful multiple antenna schemes for wireless communication

systems, generalized spatial modulation (GSM) has been extensively studied in the context

of VLC, which can effectively solve the above mentioned limitations of MIMO-VLC system

due to its less cost, fewer links and lower complexity [7], [8]. In practice, due to the spatial size

of a typical application room and the limited luminous flux of a single LED, multiple LEDs

are usually adopted for obtaining adequate illumination. If one to several LEDs are activated

to transmit information signals among these LEDs, these spatially distributed LEDs can be

viewed as the spatial constellation points naturally and conveying information. Therefore, the

GSM is very suitable for VLC systems, and in this case, the LEDs are utilized not only for

lighting, but also for data transmission. When GSM technology is utilized in the considered

indoor VLC system, in order to provide ideal transmission performance, we should try to

find the optimal LEDs combination to activate and transmit information during modulation

process firstly. To provide ideal transmission performance of the considered indoor GSM-

VLC system, for quasi-static scenarios, such as indoor industrial internet of things, meeting

room and so on, the second main issue that should be addressed is how to select the optimal

LEDs combination quickly. Under this condition, a valuable low complexity LEDs selection

algorithm might necessitate to enhance the performance of the considered indoor GSM-VLC

system.
Since common GSM-VLC system needs to select the LEDs combination to activate and

transmit information during modulation process [9], how to quickly select the optimal LEDs

combination online is one of the key problems to be solved. Antenna selection technology has

been widely studied and applied in traditional RF aided communication system. Specifically,

antenna selection problem in spatial modulation (SM) system was considered in [10] and

the Euclidean distance antenna selection (EDAS) algorithm was proposed, while the high
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complexity of EDAS algorithm limits its application. Subsequently, in order to solve the

problem of high complexity of EDAS algorithm, researchers proposed a variety of schemes to

reduce the complexity of EDAS algorithm [11], [12]. However, the improved EDAS schemes

in [11] and [12] are still unable to get rid of the traversal feature in the algorithms radically,

and as a result the actual effect is not greatly improved. To tackle this, some scholars built

a smart antenna selection scheme by using machine learning approach, which can better

overcome the redundant calculation problems existed in traditional EDAS algorithms. Among

them, a machine learning aided antenna selection technology was proposed in [13] for the first

time, by mapping antenna selection task as a multi-classification problem, the corresponding

system was constructed based on K-nearest neighbor (KNN) and support vector machine

(SVM) algorithms, respectively. Following this, an antenna selection technology based on

machine learning was proposed in [14] to improve the physical layer security of the considered

system. Additionally, by optimizing the antenna selection method of sample features, an

improved approach was proposed in [15] by utilizing machine learning technology.

However, methods proposed in [13]–[15] only considered traditional RF based communi-

cation system. In study on LEDs selection in indoor VLC system, an LEDs selection algorithm

based on maximum minimum singular value was proposed in [16] by utilizing channel state

information (CSI) of the transmitter to select the optimal LEDs combination at each brightness

level. Furthermore, an LEDs selection algorithm was presented in [17] to minimize system

mean square error (MMSE), which effectively improved the communication performance

of visible light multi-user multi-input single output system under different brightness. In

order to effectively solve the problem of limited number of transmitters in the generalized

LED index modulation system, Tran et al. proposed an LEDs selection algorithm, which can

effectively improve the performance of the original considered system [18]. However, in all

LEDs selection algorithms proposed in [16]–[18] of indoor VLC system, problems of large

computational load and high complexity still exist. Up to now, to the best of our knowledge,

there are no machine learning aided LEDs selection algorithm in the literature for indoor

GSM-VLC systems, which inspired this treatise.

Motivated by the aforementioned issues, in this paper, aided by SVM, we propose a low

complexity LEDs selection algorithm of indoor GSM-VLC system. The contributions of this

paper can be summarized as follows:

• According to the line of sight (LOS) channel characteristics of indoor GSM-VLC system,

the training set is constructed by channel matrices generated by randomly generating

user locations. Following this, the maximum minimum Euclidean distance is selected as

the key performance index (KPI) of the learning system to construct the label vector of

the training samples.

• For the considered indoor GSM-VLC system, the LEDs selection problem is equivalent
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to the multi-classification machine learning task, and the optimization problem of LEDs

selection is then constructed by using dual theory. Then, given users’ given CSI, the

online LEDs selection is realized by the trained system.

• Computer simulations and complexity analysis show that, compared with traditional

LEDs selection algorithms, the algorithm proposed in this paper can realize online LEDs

selection while keeping the performance with low bit error ratio (BER), which shows

the effectiveness of the proposed algorithm.

The rest of this paper are organized as follows: The detailed mathematical model of

signal and VLC channel model in GSM-VLC system are described in Section II. In Section

III, the SVM aided LEDs selection scheme and algorithm are presented in detail; The

performance results and related discussions are provided in section IV. Finally, we provide

our concluding remarks in Section V.

II. GSM-VLC SYSTEM AND SIGNALS MODELLING

In this paper, we consider a GSM aided VLC system utilizing intensity modulation and

direct detection (IM/DD), where the information is transmitted from a transmitter assisted

by LEDs to a randomly distributed user. In the communication system, the transmitter is

equipped with Nt down-facing LEDs installed on the ceiling in the service room, which are

used to communicate with receiver, who has Nr photo-detectors (PDs) fixed in up-facing.

For simplicity, all the LEDs and PDs are assumed to have the same parameters in this paper,

although this is not necessary. Moreover, it is further assumed that the transmitter can get

the location information of the receiver [19], which determines the CSI of receiver together

with some other parameters that can be determined easily.
Therefore, the VLC system represents a typical MIMO-VLC Gaussian channel model,

and the LEDs and the PDs are equipped in a room of size L̃ × W̃ × H̃ (m3) [9], [20], as

depicted in Fig. 1. The LEDs are placed at a height of 0.4 m below the ceiling and the

PDs are located on a table of height 0.85 m. The observed signal by the PDs of randomly

distributed user is expressed as:

y = Hx + w (1)

where H ∈ RNr×Nt
+ represents the MIMO channel gains between transmitter and receiver link.

The transmitted information-bearing signal vector sent by transmitter x = [x1, x2, · · · , xNt ]
T ∈

RNt , as in (1), is assumed to be a signal vector superimposed on an identical direct current

(DC) bias IDC ∈ R+ for the purpose to adjust the illumination level of LEDs [21]. In order

to avoiding clipping distortion, preserving battery, and also for the sake of safety, the total

current IDC,i + xi for the ith LED is restricted within the range of [(1− α̃)IDC, (1 + α̃)IDC],

where α̃ ∈ [0, 1] is termed as the modulation index [21], [22]. As a result, the information-

bearing signal xi has to satisfy the peak amplitude constraint of |xi| ≤ A, ∀i with A =
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Fig. 1: An indoor GSM-VLC system contains a transmitter with 4 LEDs, one user and the

receiver is equipped with 4 PDs.

α̃IDC ∈ R+. Additionally, in (1), w ∼ N (0Nr , σ
2INr) is zero-mean additive white Gaussian

noise (AWGN), received at PDs of the receiver.

A. The VLC channel Model

In indoor VLC, with a generalized Lambertian emission pattern, the path gain Gij

between the ith LED and the jth PD of receiver can be expressed as [23]:

Gij =


1

2πd2ij sin2(ΨFoV)
(L+ 1)APDβ

2 cosL(φ) cosψij, if 0 ≤ |ψij| ≤ ΨFoV,

0, if |ψij| > ΨFoV

(2)

where L = − ln(2)/ ln
(
cos(Φ1/2)

)
is the index of Lambertian emission with half irradiance

at Φ1/2, which is measured from the optical axis of the LED, dij is the LoS distance between

the ith LED and the jth PD, φ is the angle of irradiance of LED, ψij is the angle of incidence

of the ith LED and jth PD optical link, which is measured from the axis normal to the receiver

surface. Also, for receiver, β is the refractive index of the optical concentrator and APD is

the PD area. Finally, ΨFoV is the receiver’s field-of-view (FoV) semi-angle. The geometric

model of LoS transmission is demonstrated in Fig. 2.

As a whole, the VLC channel gain between the ith LED and the jth PD of receiver can

be expressed as:

hij = TRηGij, i = 1, 2, · · · , Nt, j = 1, 2, · · · , Nr (3)
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Fig. 2: Illustration of Geometric description parameters for VLC LoS path gain in the

Lambertian model.

where T is the gain of a transimpedance amplifier, R is the responsivity of the PD and η is

the current-to-light conversion efficiency of the LEDs, respectively.

Note that, from Eq. (2), we can readily conclude that the VLC channel gain hij depend

on the specific position of the transmitter LEDs and the receiver PDs. If an LED is not in a

receiver’s FoV, the channel gain of the link will be zero [21].

Additionally, for indoor VLC, the received light signals by the PDs of receiver are a

summation of the LoS component and multiple non-LoS (NLoS) ones due to walls reflection

of the service room. However, the total received optical power conveyed by the LoS link is

more than 95% at the receiver [24]. Moreover, even the strongest NLoS component is still

at least 7 dB lower than the strongest LoS one [24]. Consequently, when considering that

the transmit LEDs are installed on the ceiling of the service area and face down-forwards,

the channel model in Eq. (2) can neglect the NLoS components, but consider only the LoS

component for carrying out tractable analysis.

B. Signal Model

Let us assume that the transmitter is formed by Ñ LEDs in the considered service

area. For proposed GSM-VLC system, we assume that Nt (Nt ≤ Ñ ) LEDs are utilized for

implementation of the GSM modulation among the Ñ LEDs. During one specific symbol

duration, among the selected Nt transmit LEDs, nt LEDs are activated to transmit a specific

information symbol, while the rest (Ñ − nt) LEDs are only used for illumination. Hence,

there are in total M ′ =
(
Nt

nt

)
possible combinations, among which 2ml are used transmitting

ml bits per symbol, and ml = blog2

(
Nt

nt

)
c, where b·c denotes the floor operation.
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Furthermore, the length of the remaining bits per symbol is ms = log2(|M|), where |M|
is the order of the IM pulse amplitude modulation (PAM) constellation and is assumed to

be the power of 2, and we further assume that S = {sm}|M|m=1, where sm = 2Im
|M|+1

for m =

1, 2, · · · , |M|, I is the mean optical intensity emitted. Therefore, the number of binary bits

per GSM symbol is nGSM = ml + ntms = blog2M
′c+ nt log2(|M|). Specifically, we assume

that an independent and identically distributed random bit sequence {· · · , b1, b2, · · · , br, · · · }
puts into the GSM mapper, where the bit sequence is divided into blocks of nGSM bits that are

mapped into the GSM symbols x,x ∈ X , and X is the
(
Nt

nt

)
|M| = M ′|M| GSM symbols set.

Aided by x, special LEDs is selected to transmit a symbol with particular optical intensity

chosen from the set of S. Consequently, the selected LEDs will transmit the signal with a

special intensity sm,m = 1, 2, · · · , |M| equiprobable at this particular time instant and all

other LEDs remain silent just for lighting. The modulation process of GSM-VLC is shown

in Fig.3.
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Fig. 3: Illustration of GSM-VLC system with configuration Nt = 4, nt = 2, Nr = 4,M = 2

Hence, the transmitted GSM-VLC signal vector x can be expressed as follows:

x = [0 · · · 0 si1 0 · · · 0 si2 0 · · · 0 sint
0 · · · 0]T, (4)

where ni ∈ {1, 2, · · · , Nt}, i = 1, 2, · · · , nt, represents the index of the ntth activated LED,

si1 , si2 , · · · , sint
∈ S . Accordingly, the received signals y ∈ RNr could be simplified from

(1) as:

y = [hi1 · · ·hint
][si1 · · · sint

]T + w =

int∑
ı=i1

hısı + w = Hιs + w (5)

where Hι = [hi1 hi2 · · · hint
] represents the submatrix of H with nt columns, which are

determined by the index of the ntth activated LEDs, and s = [si1 si2 · · · sint
]T denotes the

transmit symbol vector corresponding to the LEDs ι = {i1, i2, · · · , int}.
Note that, the above-described GSM-VLC system is reduced to the SM-VLC system,

when nt = 1. Therefore, the SM-VLC scheme is a special case of our GSM-VLC, and hence,
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all the following analysis and results can be straightforwardly applied to the SM-VLC by

letting nt = 1.

III. SVM AIDED LEDS SELECTION SCHEME FOR GSM-VLC SYSTEM

In this section, we commence to detail the proposed LEDs selection scheme for the

considered GSM-VLC system, by exploiting one of the popular machine learning approach,

namely, SVM. For a practical GSM-VLC system, the transmitter is always equipped with

multiple LEDs. Aided by this premise, the LEDs selection can be modelled as a multiple

classification problem. Specifically, according to the characteristic of the LoS channel, the

feature matrix can be designed by the user position obeying uniform distribution. Then,

we propose KPI based on minimum Euclidean distance maximization approach. Following

this, the optimization problem for LEDs selection is constructed and it is demonstrated that

this optimization problem can be solved by its convex dual problem. By utilizing the optimal

solutions of the proposed optimization problem, a off-line learning system can be constructed

with training samples. Finally, the trained learning system can be employed to carry out online

LEDs selection efficiently.

A. Euclidean Distance Aided LEDs Selection

At the time of writing, most of the traditional antenna/LEDs selection treatises considered

EDAS approach [10]. In a little more detail, we assume that nt LEDs are selected from Nt

transmit LEDs for delivering information, and I represents the set of all possible selected

LEDs combinations, where |I| = M ′ =
(
Nt

nt

)
is the number of LEDs combinations. The

objective function of the EDAS can be written as:

ED = arg max
∈I

{
min

x̃1 6=x̃2∈X̃
‖H(x̃1 − x̃2)‖2

2

}
(6)

where H ∈ RNr×nt
+ is the submatrix with nt columns given by  and selected from the

channel matrix H, nt is the number of selected active antennas from Nt transmitting LEDs.

X̃ represents the set of all possible transmit information-bearing signal vectors, and the

element of it has the form x̃ = [x̃i1 x̃i2 · · · x̃int
]T. Generally, EDAS scheme can obtain ideal

BER performance for antenna/LEDs selection in MIMO systems. However, the fundamental

exhaustive search nature and high dimensional signal space render its very high computational

complexity. Though some related algorithms have been optimized to reduce the complexity

of EDAS [11], [12], there still exist some redundant computations for the highly correlated

channel matrices of some time slots, which may lead to repetitive computations. In order to

solve the redundant calculation problem of LEDs selection in GSM-VLC systems, an efficient

LEDs selection shceme based on SVM will be constructed to solve this high computational

complexity problem.
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B. Principle of Kernel SVM

As a popular machine learning approach, the fundamental purpose of SVM is to make

classification from a labeled training sample data set. Assume that we have a sample data

set denoted as D = {(up, vp), p = 1, · · · , P} and P = P+ + P−, where up ∈ Rn are feature

vectors, vp ∈ {+1,−1} are the labels, P+ and P− represent the numbers belonging to labels

+1 and −1, respectively. If the labeled training sample data forms two disjoint convex hull

in Rn, by the strong separation theorem, there exist a hyperplane to segment these samples

[26], the hyperplane can be represented as:

H(u) = wTu + % = 0, (7)

where w is the normal vector which determines the direction of the hyperplane and % controls

the distance of the hyperplane to the origin. By this classification function, any sample u

with H(u) > 0 will belong to Class 1 and those with H(u) < 0 will be recognized as Class

2.

In order to maximize the distance between the hyperplane and the training samples that

are closest to the considered hyperplane, the parameters w and % can be readjusted to make

some points lie on either hyperplane {u | wTu+% = −1} or {u | wTu+% = +1} and these

sample points are termed as the support vectors. Consequently, the distance between these

two parallel hyperplane is termed as margin and equals 2
‖w‖22

, where ‖ · ‖ is used to denote

the Euclidean norm. Then, the classification problem is turned to an optimization problem.

As a result, we would like to find the separating hyperplane with the maximum margin.

Accordingly, by introducing the sign variables vp and simple operation, the optimization

problem can be expressed as:

min
w,%

1

2
‖w‖2

2

s.t. vp(w
Tup + %) ≥ 1, p = 1, · · · , P

(8)

Optimization problem in Eq. (8) is a convex quadratic programming problem, it could be

resolved by existing software package. Actually, problem in Eq. (8) can also be solved by its

dual problem more efficiently by lagrangian multiplier method, the corresponding generalized

Lagrangian function of optimization problem Eq. (8) can be written as:

L(w, %,α) =
1

2
‖w‖2

2 −
P∑
p=1

αp[(w
Tup + %)− 1] (9)

where α = [α1, · · · , αP ]T ∈ RP
+ is the associated Lagrange multiplier vector or termed as

dual variable vector. Due to the Karush-Kuhn-Tucker conditions for differentiable convex
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problem, we can arrive at the dual problem of the optimization problem Eq. (8) as:

max
α

P∑
p=1

αp −
1

2

P∑
p=1

P∑
q=1

vpvqαpαqu
T
puq

s.t.
P∑
p=1

vpαp = 0,

αp ≥ 0, p = 1, · · · , P

(10)

Suppose the optimal solution of the primal and dual optimization problem in Eq. (8)

and Eq. (10) are denoted as w?, %?,α?, respectively. Then, the parameter w? and %? can be

represented by α? respectively as:

w? =
P∑
p=1

α?pvpup (11)

%? =
1

|V|
∑
n∈V

[
vn −w?Tun

]
(12)

where V is the index set of all support vectors and |V| denotes the cardinality of set V .

Hence, for any new coming data u, the decision of classification can be obtained by:

sign
[
w?Tu + %?

]
= sign

(
P∑
p=1

α?pvpu
T
pu + %?

)
(13)

Nevertheless, for general classification problem, the training data samples cannot be

separate by a hyperplane. In this case, the kernel SVM is proposed by using a nonlinear

classification function G(u) = wTζ(u) + %, where ζ(u) : Ω 7→ H is a nonlinear feature

mapping function from sample vector space Ω to a Hilbert space H termed as the feature

space [29],similarly with Eq. (8), we have the following convex quadratic programming

problem:

min
w,%

1

2
‖w‖2

2

s.t. vp(w
Tζ(up) + %) ≥ 1, p = 1, · · · , P

(14)

Then the dual problem of Eq. (14) can be expressed as:

max
α

P∑
p=1

αp −
1

2

P∑
p=1

P∑
q=1

vpvqαpαq(ζ(up))
Tζ(uq)

s.t.
P∑
p=1

vpαp = 0,

αp ≥ 0, p = 1, · · · , P

(15)
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By defining the kernel function κ(a,b) = (ζ(a))Tζ(b), Eq. (15) can be expressed as:

max
α

P∑
p=1

αp −
1

2

P∑
p=1

P∑
q=1

vpvqαpαqκ(up,uq)

s.t.
P∑
p=1

vpαp = 0,

αp ≥ 0, p = 1, · · · , P

(16)

For real Euclidean space, the kernel function κ(·, ·) can be chosen arbitrarily by the

guarantee of Mercer’s condition [27]. In this way, we can solve this linear classifying problem

in higher-dimensions, which is equal to handling the nonlinear problem in the original

dimension space. In this paper, we use the radial Gaussian kernel which is commonly adopted

in SVM classification, which is defined as:

κ(a1, a2) = exp
(
− ‖a1 − a2‖2

2

2σ2

)
(17)

Suppose the optimal solution of the primal and dual optimization problem in Eq. (14)

and Eq. (15) are denoted as w?, %?,α?, respectively. Then, the parameter w? and %? can be

represented by α? respectively as:

w? =
P∑
p=1

α?pvpζ(up) (18)

%? =
1

|V|
∑
n∈V

[
vn −w?Tζ(un)

]
(19)

where V and |V| are defined as in (12). Hence, for any new coming data ũ, the decision of

classification can be obtained by Eq. (13).

C. SVM Aided LEDs Selection Scheme for GSM-VLC Systems

In order to select the optimal LEDs combination efficiently in the considered GSM-

VLC system, a SVM procedure is considered in this paper, which is capable of acquiring

the optimal LEDs subset from the trained classification model by SVM algorithm online.

With enough LoS channel matrices of the considered system, a five stage LEDs selection

strategy is proposed, which are termed as: 1) Generating training data set; 2) Designing

KPI; 3) Labeling samples; 4) Constructing learning system; 5) Selecting the optimal LEDs

combination. The detailed procedures are shown as follows.

1) Generating training data set: Generally, the training data set is the input of the considered

SVM aided learning system. In our GSM-VLC system, the Nr × Nt dimensional LoS

channel matrices H are utilized as training samples. For the nature of VLC system, its

entries hij are real-valued, where hij is the (i, j)-th element of channel matrix H. Hence,

the channel matrix H need to be manipulated in order to obtain a real-valued feature vector
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d̃. Following this, the obtained feature vector will be normalized to avoid significant bias

in the training process [15]. Assume that we have K LoS channel matrices H by randomly

generating users’ position, then performing the following steps to obtain desired feature

matrix D.

step 1 Generating the real-valued feature vector d̃k ∈ R1×N , which is the vectorization

form of channel matrix Hk, which is defined as: d̃k = vec(Hk) = (hk,11, hk,21, · · · , hk,Nr1, hk,21, hk,22, · · · , hk,NrNt) ∈
R1×(Nr×Nt) from the channel matrix Hk, k = 1, · · · , K.

step 2 Repeating step 1 until all feature vectors d̃k are generated from channel matrix

Hk, k = 1, · · · , K.

step 3 Forming a training data set {d̃k, k = 1, · · · , K}, then constructing training data

matrix D̃ = [d̃1, · · · , d̃K ]T ∈ RK×N .

step 4 Normalizing the matrix D̃ and generating a normalized feature matrix D, where

the (i, j)-th element of D is expressed as:

dij =
d̃ij − Ei{d̃ij}

maxi{d̃ij} −mini{d̃ij}
(20)

2) Designing KPI: The KPI is usually designed to label training samples, it can be defined by

various metrics according to the considered problems in communication system, such as

the norm of an effective LoS channel, the effective received signal-to-noise ratio (SNR),

received signal power, BER, and so on. In this paper, as done in many antenna selection

approaches [10]–[12], we utilize Eq. (6) as the KPI.

3) Labeling samples: Suppose that the set of labels and antenna combination are denoted

by L and I, respectively. According to the previous analysis on multiple classification

and LEDs selection, a one-to-one mapping exists between the label set and the antenna

combination set. It may be readily seen from Eq. (6) that the LEDs combination with

less channel correlation will be more likely to be chosen for better performance of the

considered system. Hence, we commence to design LEDs combinations set I with less

channel correlation. However, if all the channel gains are uncorrelated or the correlations

among channels are unknown, the LEDs combinations set I needs to be constructed with

all possible LEDs combinations. A mapping table between ` and ik is depicted in Tab. I,

where ` ∈ L, ik ∈ I and (Nt, nt) = (5, 2). The above labeling process can be summarized

as the following steps:

step 5 For the kth channel matrix sample Hk, calculating the KPI corresponding to each

combination ik and expressing it with a particular label ` ∈ L.

step 6 Find the LEDs combination ik with best KPI and its corresponding label `∗, then

establish the label vector c ∈ RK×1 with its kth element ck as `∗.

step 7 Repeat the above steps until the corresponding labels of all samples Hk, k =

1, 2, · · · , K, are obtained.
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TABLE I: An example mapping between labels and LEDs combinations with configuration

(Nt, nt) = (5, 2)

.

lable LEDs combinations
` = 1 i1=[1, 2]

` = 2 i2=[1, 3]

` = 3 i3=[1, 4]

` = 4 i4=[1, 5]

` = 5 i5=[2, 3]

` = 6 i6=[2, 4]

` = 7 i7=[2, 5]

` = 8 i8=[3, 4]

` = 9 i9=[3, 5]

` = 10 i10=[4, 5]

4) Constructing learning system: With the obtained feature matrix D and its correspond-

ing label vector c by above steps, a learning system for multiple classifications can

be constructed to select LEDs combination of the considered GSM-VLC system. For

convenience, let dk: denotes the kth row of the feature matrix D. The detailed procedure

is as follows:

step 8 Suppose that D` is a sub-training feature matrix, the rows of D` is composed by

dk: with ck = ` for all k ∈ {1, · · · , K}. Following this operation, another sub-

training feature matrix D¯̀ can be obtained, which is a complementary matrix of

D` by eliminating the row vectors of D` from D. Thus, an SVM can be performed

to classify these two sub-training feature matrices D` and D¯̀.

step 9 Generating a binary label vector b` = [b`1, · · · , b`K ]T, with its entries b`,k are

defined as

b`,k =

{
1, ck = `

0, else
(21)

step 10 One-vs-rest (`-vs-¯̀) binary label classification method: As stated before, for

general classification problem, the training feature samples are generally unsep-

arate by a single hyperplane linearly. In order to commence this problem, the

kernel SVM is proposed by using kernel function κ(·, ·), following with Eq. (22),

aided by slack variables and KKT conditions, the following convex quadratic
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programming problem are derived

max
α

K∑
k=1

αk −
1

2

K∑
k=1

K∑
k̃=1

b`kb`k̃αkαk̃κ(dk,dk̃)

s.t.
K∑
k=1

b`kαk = 0,

αk ≥ 0, k = 1, · · · , K

(22)

where α ∈ RP
+ is the dual variable vector. κ(dk,dk̃) is a kernel function of

feature vectors dk and dk̃, which is utilized to map unseparate linearly feature

samples from lower dimensional to higher dimensional. There are several popular

kernel function in practice as disscussed in [28]. The Gaussian radial basis kernel

function is employed in this paper, which is defined as:

κ(dk,dk̃) = exp
(
− ‖dk − dk̃‖2

2

2σ2

)
(23)

Aided by some famous convex optimization toolbox, convex quadratic program-

ming problem Eq. (22) can be resolved efficiently, and the optimal solution is

denoted as α?
` = [α?`1, · · · , α?`M ]T. Upon involving this optimal solution α?

` , the

parameter w?
` and %?` can be represented by α?

` respectively as:

w?
` =

K∑
k=1

α?`kb`kζ(dk) (24)

%?` =
1

|V|
∑
n∈V

[
b`n −w?T

` ζ(dn)
]

=
1

|V|
∑
n∈V

[
b`n −

K∑
k=1

α?`kb`kζ(dk)
Tζ(dn)

]
=

1

|V|
∑
n∈V

[
b`n −

K∑
k=1

α?`kb`kκ(dk,dn)
]

(25)

where V and |V| are defined as in (12).

step 11 Repeat step 10 for all ` ∈ {1, · · · , |L|}
5) Selecting the optimal LEDs combination: Once we get all α?

` , ` ∈ {1, · · · , |L|}, a LEDs

selection learning system may be built according to previous detailed steps. Hence, for

any new coming channel matrix, it is manipulated into a real-valued feature vector d and

provided to the learning system. Then, the decision of SVM classification can be obtained

as:

sign
[
w?T
` d + %?`

]
= sign

(
K∑
k=1

α?`kb`kκ(dk,d) + %?`

)
(26)

And consequently, the final result is the label of the prediction class, which corresponds

the selected LEDs combination.
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IV. SIMULATION RESULTS

In this section, to demonstrate the efficiency of the proposed SVM-aided LEDs selection

strategy of the considered GSM-VLC system, we provide numerical results for an indoor

environment having the dimensions of [5 × 5 × 3] m3, represented by a three-dimensional

(3D) Cartesian coordinate system [OX , OY , OZ ] with the origin being in one corner of the

room. The following six system configuration schemes are considered respectively: (1) Nt =

4, Nr = 4, nt = 1,M = 4; (2) Nt = 5, Nr = 4, nt = 1,M = 4; (3) Nt = 8, Nr = 4, nt =

1,M = 4; (4) Nt = 4, Nr = 4, nt = 2,M = 4; (5) Nt = 5, Nr = 4, nt = 2,M = 4; (6)

Nt = 8, Nr = 4, nt = 2,M = 4. Again, the transmit LEDs are assumed to be perpendicular

to the ceiling and down-facing to the floor. Similarly, the receivers are located on the desks

at the height of 0.85 m from the floor, which are assumed to be perpendicular to the desk

and facing the ceiling. Unless otherwise specified, we assume that the LED layout is shown

in Fig. 4 and the coordinate values are listed in Tab II. The detection method adopted in this

paper is maximum likelihood detection [9].

5 6

781 2

3 4

1 2

3 4

1

2

3 4 5

Fig. 4: Indoor LED plane layout, in which the blue solid circle is the location of the LEDs,

(a) Position distribution of 4 LEDs at the transmitter; (b) Position distribution of 5 LEDs at

the transmitter; (c) Position distribution of 8 LEDs at the transmitter.

The half-illuminance semi-angle Φ1/2 of LED is set to be 60◦, which is a typical value for

commercially-available high-brightness LEDs. Receiver has a 75◦ FoV (semi-angle), the area

of each PD is APD = 1.0 cm2 and the responsivity is R = 100 µA/mW/cm2. For convenience,

all the parameters involved in our simulations are summarized in Table III. Furthermore, in

order to ensure the prediction accuracy, 4× 104 CSIs are generated from uniform distributed

user’s locations, these CISs are utilized as the training set to train the SVM classifier, and the

resulting classification accuracy is more than 95%. After the training process is completed,

a prediction model can be constructed, and the required activated LEDs are selected online

for any new input feature vector by the prediction model.
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TABLE II: The coordinates distribution of LEDs with different number as 4, 5 and 8.

4 LEDs 8 LEDs

1 (1.25, 1.25, 3.0) m LED (OX , OY , OZ)

2 (3.75, 1.25, 3.0) m 1 (1.25, 1.25, 3.0) m

3 (1.25, 3.75, 3.0) m 2 (1.25, 2.50, 3.0) m

4 (3.75, 3.75, 3.0) m 3 (1.25, 3.75, 3.0) m

5 LEDs 4 (2.50, 3.75, 3.0) m

1 (1.25, 1.25, 3.0) m 5 (3.75, 3.75, 3.0) m

2 (3.75, 1.25, 3.0) m 6 (3.75, 2.50, 3.0) m

3 (1.25, 3.75, 3.0) m 7 (3.75, 1.25, 3.0) m

4 (3.75, 3.75, 3.0) m 8 (2.50, 1.25, 3.0) m

5 (2.50, 2.50, 3.0) m

TABLE III: System parameters in the considered indoor GSM-VLC system.

Simulation setup parameters

Room size (L̃× W̃ × H̃) 5× 5× 3 m3

Number of LEDs 4, 5, 8

LEDs height 3 m

Receivers height 0.85 m

Transmitter parameters

Semi-angle at half power (Φ1/2) 60◦

Gain of an optical filter (T ) 1.0

current-to-light conversion efficiency (η) 813.6 µW/mA

Modulation index (α̃) 0.1

Receivers parameters

Refractive index (β) 1.5

Physical area of a PD (APD) 1.0 cm2

Receiver FoV semi-angle (ΨFoV) 75◦

PD responsivity (R) 100 µA/mW

A. Algorithm Performance

In this subsection, in order to prove the efficiency of the proposed LEDs selection

algorithm in considered GSM-VLC system with other state-of-the-art LEDs selection al-

gorithms, which include EDAS algorithm, capacity optimized antenna selection (COAS)

algorithm proposed in [11], [12] and LEDs random selection algorithm, two simulation cases

are presented, the first one is to consider SM-VLC system, i.e. nt = 1. Another case is

the GSM-VLC system with nt ≥ 2. Specifically, for SM-VLC system with nt = 1, Fig.5,

Fig.6, Fig.7 show the comparison of the proposed SVM-based LEDs selection algorithm and
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the other mentioned three LEDs selection algorithms, wherein three system configurations

are considered: Nt = 4, Nr = 4, nt = 1,M = 4; Nt = 5, Nr = 4, nt = 1,M = 4 and

Nt = 8, Nr = 4, nt = 1,M = 4. The LEDs location distribution is shown in Fig.4.

As can been seen from Fig.5 with Nt = 4, Nr = 4, nt = 1,M = 4, when SNR is less

than 30 dB, the BER performance curve of SVM aided LEDs selection algorithm nearly

coincides with that of EDAS selection algorithm, and it is superior to the LEDs random

selection algorithm and COAS algorithm. When SNR is more than 30 dB, compared with

EDAS algorithm, the SVM aided LEDs selection algorithm has a performance loss less than

1 dB when BER is 10−5. This is because by using the SVM aided learning system for

LEDs selection, the prediction has an error less than 2%. Furthermore, from Fig. 6, Fig.7

we can observe that with the increase of Nt, compared with the LEDs random selection and

COAS algorithms, the performance advantage of SVM and EDAS algorithm is obvious. In

addition, the performance difference between SVM and EDAS algorithm increases to nearly

2 dB when BER is 10−5 because of the prediction accuracy declining slightly and within

5%. However, by utilizing the SVM aided LEDs selection algorithm, there is no need for

a large number of redundant calculations in the actual LED selection process, which makes

the computational complexity much lower than that of EDAS algorithm. Although COAS

algorithm can also reduce the complexity of EDAS algorithm, its BER performance is not

as good as the SVM aided LEDs selection algorithm. The LEDs random selection algorithm

has the lowest computational complexity, but its BER performance is poor, which makes it

cannot be adopted in practical applications. Therefore, considering the performance of all

presented algorithms comprehensively, the SVM aided LEDs selection algorithm is superior

to EDAS, COAS and LEDs random selection algorithms. It should be noted that, from Fig.

5, Fig. 6 and Fig.7, we can conclude that the spatial position arrangement of LEDs can affect

the performance of the considered GSM-VLC system, but it is out of the topic of this paper

and we will not discuss it extensively.

Then, in order to further verify the performance of the proposed SVM aided LEDs

selection algorithm for indoor GSM-VLC system, three system configurations are established

as Nt = 4, Nr = 4, nt = 2,M = 4; Nt = 5, Nr = 4, nt = 2,M = 4 and Nt = 8, Nr = 4, nt =

2,M = 4. Based on these system configurations, Fig. 8, Fig. 9 and Fig.10 demonstrate the

comparisons of the proposed SVM aided LEDs selection algorithm and three other LEDs

selection algorithms: EDAS, COAS and LEDs random selection algorithm. The LEDs location

distribution is shown in Fig. 4. As can be seen from Fig. 8, when SNR is less than 44 dB,

the BER performance curve of SVM aided LEDs selection algorithm coincides with that of

EDAS selection algorithm, and they are superior to the LEDs random selection algorithm

and COAS algorithm. When SNR is more than 48 dB, compared with EDAS algorithm,

SVM aided LEDs selection algorithm has a performance loss of less than 1 dB when BER is
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Fig. 5: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in SM-VLC system with system

configuration as Nt = 4, Nr = 4, nt = 1, |M| = 4.

Fig. 6: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in SM-VLC system with system

configuration as Nt = 5, Nr = 4, nt = 1, |M| = 4.

10−5. Additionally, as depicted in Fig. 9 and Fig.10 for other two system configurations with

more LEDs, when BER is 10−5, the performance difference can also be limited within 1.5

dB. Hence, for the GSM-VLC systems considering the BER performance and computational

complexity, based on the above results, we can conclude that the SVM aided LEDs selection
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Fig. 7: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in SM-VLC system with system

configuration as Nt = 8, Nr = 4, nt = 1, |M| = 4.

algorithm is superior to conventional EDAS, COAS and LEDs random selection algorithms.

Fig. 8: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in GSM-VLC system with system

configuration as Nt = 4, Nr = 4, nt = 2, |M| = 4.
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Fig. 9: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in GSM-VLC system with system

configuration as Nt = 5, Nr = 4, nt = 2, |M| = 4.

Fig. 10: Comparisons of BER performance for the proposed SVM aided LEDs selection

algorithm and other three LEDs selection algorithms in GSM-VLC system with system

configuration as Nt = 8, Nr = 4, nt = 2, |M| = 4.

B. Evaluation and comparison of complexity

In this subsection, we will compare the computational complexity of the proposed SVM

aided LEDs selection with conventional LED selection algorithms EDAS, COAS and LEDs

random selection algorithm. The complexity of the EDAS algorithm is obtained as follows. At
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first, the operation of taking 2 from nt|M| requires a complexity of O(n2
t |M|2). After the sub-

channel matrix HI is multiplied, a vector is obtained with dimensional Nr×1, the Euclidean

distance is calculated and the complexity is Nr. Then, performing heapsort on |I|, the

complexity is |I| log |I|. Hence, the complexity of EDAS approach isO(n2
tNr|I||M|2 log |I|).

For COAS algorithm, the complexity of calculating the Euclidean distance of each column

in the channel matrix is Nt × Nr, and then perform heapsort on the Nt column vectors.

Hence, the complexity is O(N2
t Nr logNt). Finally, for the proposed SVM algorithm, the

only operation is to normalize the channel matrix, hence, the complexity is O(NtNr).
The complexities of different LEDs algorithms are presented and compared in Tab.

IV. It can be observed in Tab. IV that the complexity of the proposed SVM aided LEDs

selection algorithm is polynomial on Nt, which is lower than that of the conventional EDAS

and COAS algorithms, especially when the number of LEDs Nt and its combinations I
are very large. It should be noted that the computational complexity of the proposed SVM

aided LEDs selection algorithm is defined as the online prediction computational complexity,

the time consuming of the offline training process is not considered in complexity analysis

of our proposed LEDs selection algorithm. This consideration lies that the proposed LEDs

selection approach can be normally utilized before system parameters are modified once the

model are trained by the offline training procedure. Hence, as other SVM aided antenna

selection algorithms in [13], [15], for online prediction applications, only online prediction

computational complexity is considered in our analysis.

TABLE IV: Computation complexity comparison of different LEDs selection algorithms.

Algorithms Complexity
EDAS algorithm [10] O(n2

tNr|I||M|2 log |I|)
COAS algorithm [12] O(N2

t Nr logNt)

Proposed SVM aided algorithm O(NtNr)

LEDs random selection algorithm O(1)

In Fig. 11, Fig. 12 and Fig. 13, the number of executions versus Nt and Nr are depicted

of EDAS [10], COAS [12] and proposed SVD aided LEDs selection algorithms with system

configuration nt = 2, |M| = 4, respectively. It can be observed that the number of executions

of the proposed SVM aided LEDs selection algorithm is much lower than EDAS and COAS

algorithms. Meanwhile, with the increasing of the number of Nt and Nr, the computational

complexity increments of conventional EDAS and COAS algorithms are more remarkable

than SVM aided LEDs selection algorithm. Additionally, even though random LEDs selection

algorithm has the lowest complexity as presented in Tab. IV, this is achieved at the cost of a

serious degraded BER performance as demonstrated in figures of the last subsection, which

makes it unapplicable in practice.
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Based on the above simulation results in this subsection, despite the proposed SVM

aided LEDs selection algorithm and conventional optimal EDAS algorithm have very similar

BER performance, the proposed SVM aided algorithm can efficiently eliminate redundant

computation during the LEDs selection procedure, thus can greatly improve the system

efficiency and achieve online LEDs selection task.

Fig. 11: Number of executions of EDAS versus Nt and Nr with configuration

nt = 2,|M| = 4, T(N)=O(n2
tNr|I||M|2 log |I|))

Fig. 12: Number of executions of COAS versus Nt and Nr with configuration

nt = 2,|M| = 4, T(N)=O(N2
t Nr logNt)
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Fig. 13: Number of executions of SVM versus Nt and Nr with configuration

nt = 2,|M| = 4, T(N)=O(NtNr)

V. CONCLUSION

Aiming at the characteristics of LoS channel of indoor GSM-VLC system, this paper

proposes a low complexity and high efficiency LEDs selection algorithm based on SVM

of indoor GSM-VLC system, which is obtained by equivalent modeling the LEDs selection

problem as a multiple classification machine learning task. Firstly, the training sample set is

constructed and the feature matrix is obtained by randomly generating independent identically

Uniform distributed user positions, and the minimum Euclidean distance is taken as the

KPI of the training system to derive the label vector of the training samples. Then the

kernel SVM is utilized to establish the optimization problem of LEDs selection, and the dual

quadratic convex programming problem of the original one is obtained through dual theory,

so as to obtain the optimal classification parameters of SVM efficiently. Finally, the online

antenna selection for any given user channel information is realized by the learned optimal

classification parameters. Through computer simulation and complexity analysis, compared

with traditional LEDs selection algorithms, the algorithm proposed in this paper can realize

online LEDs selection while maintain ideal BER performance, which shows the effectiveness

of the proposed SVM aided algorithm.
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