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Abstract
We present a novel but simple physics-based method to interactively manipulate surface shapes of 3D models with C1

continuity in real time. A fourth-order partial differential equation involving a sculpting force originating from elastic bending
of thin plates is proposed to define physics-based deformations and achieve C1 continuity at the boundary of deformation
regions. In order to obtain real-time physics-based surface manipulation, we construct a mapping relationship between
a deformation region in a 3D coordinate space and a unit circle on a 2D parametric plane, formulate corresponding C1

continuous boundary conditions for the unit circle, and obtain a simple analytical solution to describe the physics-based
deformation in the unit circle caused by a sculpting force. After that, the obtained physics-based deformation is mapped back
to the 3D coordinate space, and added to the original surface to create a new surface shape with C1 continuity at the boundary
of the deformation region. We also develop an interactive user interface as a plug-in of the 3D modelling software package
Maya to achieve real-time surface manipulation. The effectiveness, easiness, real-time performance, and better realism of our
proposed method is demonstrated by testing surface deformations on several 3D models and comparing with other methods
and ground-truth deformations.

Keywords Surface manipulation · Physics-based deformations · Partial differential equation · User interface · Mapping

1 Introduction

Surface manipulation, also known as surface or mesh edit-
ing, is the fundamental research topic in geometricmodelling
and computer-aided design. It is to manipulate and change
the global or local surface shapes of 3Dmodels by usingman-
ual deformation operations such as extending, extruding and
twisting. Depending on whether physics of the model defor-
mation is introduced or not, surface manipulation is roughly
divided into two categories: purely geometric and physics-
based [1]. Purely geometric surface manipulation achieves
shape deformations by manually changing the positions of
mesh vertices or control points, while physics-based surface
manipulation generates different surface shapes by exerting
virtual forces, torques or other physical quantities to deform
the surfaces.
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At an early stage, the commonly used purely geomet-
ric deformation method is to directly move mesh vertices
of polygonal models or control points of NURBS models
[2]. In order to improve the efficiency and capability of
surface manipulation, free-from deformation (FFD) meth-
ods were developed, which embed an object within a 3D
lattice and simulate the deformations by moving lattice con-
trol points [3,4]. Another widely used surface manipulation
method is Laplacian coordinates [5,6], which describes the
relation of each vertex to its local neighbourhood and modi-
fies the derivatives of the surface to find the best-fit positions
of vertices by solving a system involving theLaplacian. Since
purely geometric surface manipulation methods do not fol-
low any underlying physical laws, the quality of deformed
shapes depends on the personal skills and perceptions of
users, and different users may create somewhat different
shapes for the same model. This issue may be resolved by
introducing the underlying physics governing the deforma-
tion of deformable materials, and it also has a potential to
create more realistic looking objects. A popular physics-
based surfacemanipulationmethod is physics-basedNURBS
[7–9], which allows users to manipulate the surface shapes
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Fig. 1 Surfacemanipulationusing the proposedmethod.aSingle defor-
mation on a teapot model, b Multiple deformations on a surface. (Red
curves indicate the deformation regions)

of a model through not only adjusting control points and
setting weights but also applying simulated forces and local
and global shape constraints. However, physics-based meth-
ods usually involve heavy numerical calculations and slow
responding time of real-time operations.

In this paper, we investigate real-time and physics-based
surface manipulation and propose a novel but simple and
efficient physics-based method to interactively manipulate
surface shapes of 3Dmodels in real time. As shown in Fig. 1,
ourmethod can deal with local deformations with an arbitrar-
ily complicated boundary shape andC1 continuity.We firstly
select a deformation region on a surface in a 3D coordinate
space, and map the boundary of the deformation region to
a unit circle on a 2D parametric plane. Then, we define the
circle as a thin elastic plate and simulate bending deforma-
tion of this plate by applying a sculpting force. To obtain the
deformation, we derive an approximate analytical solution of
a fourth-order partial differential equation (PDE) subjected
to the sculpting force and the boundary conditions of the
circle for x , y and z components. We apply a length-based
method to determine the corresponding relationship between
the vertices within the boundary of the deformation region
and those within the circle. After obtaining the deformation
of the unit circle, the coordinate values of all vertices within
the deformation region are renewed to create a new surface
shape according to the deformed values of corresponding
points on the parametric plane.

Our method has five advantages. First, our method is
physics-based and a surface is deformed by following under-
lying physical laws which make the created shapes more
realistic, as shown in Fig. 12. Second, since the deformed
shape is restricted by the boundary shape of a deforma-
tion region, a good method should create the deformation
which keeps the features of the boundary shape. As shown

in Fig. 11, the deformation created by our proposed method
well keeps the features of the boundary shapes. Third, our
method is more intuitive because we directly operate the ver-
tices of a target region that need to be deformed. Fourth, our
method has a low computational cost since we develop an
approximate analytical solution of physics-based deforma-
tions rather than a computationally extensive finite element
solution. Fifth, our method always maintains C1 continuity
at the boundary of a deformation region since the continuities
of the position function and first derivatives with respect to
the parametric variables u and v are satisfied as discussed
in Sect. 3.3. The main contributions of our work are listed
below:

– A novel and efficient physics-based surfacemanipulation
method with C1 continuity, which defines physics-based
deformationswith a fourth-order PDE involving a sculpt-
ing force to achieve physics-based deformation and C1

continuity.
– A mapping method, which maps a deformation region
from a 3D space to a 2D parametric plane to simplify
the resolution of the PDE originating from the bending
deformation of a thin elastic plate.

– An interactive user interface of our proposed surface
manipulation method, which has been integrated into the
software package Maya as a plug-in and can be used
to achieve physics-based surface manipulation in defor-
mation regions with an arbitrarily complicated boundary
shape in real time.

The remaining parts of this paper are organized as follows.
The related works on purely geometric and physics-based
surface manipulation methods and PDE-based modelling
methods are briefly reviewed in Sect. 2. The mathematical
model and solution of our proposed method are described in
Sect. 3. The user interface is developed in Sect. 4 and some
experiment results of our method and several comparisons
with other methods are presented in Sect. 5, and finally the
conclusion is drawn in Sect. 6.

2 Related work

The work presented in this paper is related to purely geo-
metric and physics-based surface manipulation methods and
PDE-based modelling methods. In this section, we briefly
review the most related work in these three fields.

2.1 Purely geometric surfacemanipulation

There is rich literature on the topic of purely geometric sur-
face manipulation. Here, we briefly introduce some studies
which have mature practical applications.
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One of the most representative purely geometric surface
manipulation methods is FFD, the idea of which is first intro-
duced by Barr [10] and then further developed by Sederberg
and Parry [3]. This method embeds an object in a lattice and
achieves the deformations of the object by deforming the lat-
tice. By using the initial lattice points to define an arbitrary
trivariate Bézier volume, and allowing the combination of
many lattices to form arbitrarily shaped spaces, Coquillart [4]
introduced extended free-form deformations. In order to pro-
vide a better control of the deformation and a more intuitive
interface, Hsu [11] proposed a direct manipulation method
of FFD. Based on FFD technique, several space deforma-
tion models such as rational FFD [12], NURBS-based FFD
[13], volume-preserving FFD [14], T-spline FFD [15] and
Proxy-driven FFD [16] have been developed. Although FFD
is very popular and supported in many 3D modelling soft-
ware packages such as 3DS Max and Maya, it has several
drawbacks. For example, in order to achieve small and local
deformation, the lattice grids need to be subdivided so that
one lattice point can control the target deformation region
without impact other regions. However, the subdivision will
result in crowded or even messy lattice grids which not only
block the view of the deformed shape but also cause incon-
venience for interactive manipulation [16]. In addition, the
FFD method is difficult to achieve exact shape deformation
because the deformed shape does not follow the lattice points
exactly, so that it is unclear which lattice points should be
moved and how transformation will affect the deformation
of the model [1].

The Laplacian coordinate is another successful surface
deformation technique and a variant of [6]. It has been
integrated into the software Blender. The potential of the
Laplacian coordinate for local mesh morphing and deforma-
tion is introduced by Alexa [17]. By solving a linear least
squares system, Lipman et al. [5] reconstructed the surface
from discrete Laplacians of the mesh functions and spatial
boundary conditions. In order to make Laplacian coordi-
nates invariant to rotation and isotropic scaling, Sorkine et
al. [6] proposed a Laplacian surface editing method which
implicitly transforms the differential coordinates. Based on
the idea of the Laplacian coordinate, Zhou et al. [18] used
the volumetric graph Laplacian to solve the problem of large
deformations. Since the Laplacian method needs to define
anchor vertices first and then move some of them to achieve
the deformation of non-anchor vertices, it is not intuitive and
convenient to deform complex shapes, e. g., multiple defor-
mations within a surface, as shown in Fig. 1b.

Unlike FFD and Laplacian methods that deform the sur-
face by adding extra lattice points or anchors, the DeltaMush
method [19] is to directly manipulate the polygonal meshes
by moving mesh vertices. Its basic idea is to smooth the
deformed shapes of the polygonal meshes. Delta Mush is

also regarded as a surface deformation method and widely
applied in 3D software packages such as Maya and Houdini.

As mentioned in last section, purely geometric surface
manipulation methods do not consider any underlying phys-
ical laws so that the quality and aesthetics of deformed shapes
mainly depend on the users’ perception and skills.

2.2 Physics-based surfacemanipulation

Physics-based methods are to deform surface shapes by
incorporating physical characteristics such as forces, torques
and strain energies. They have been widely embraced by
the computer graphics community [20]. Terzopoulos et al.
[21,22] introduced dynamic differential equations for flexi-
ble materials such as rubber, cloth and paper by employing
elasticity theory. After that, they extended their work from
elasticity to viscoelasticity, plasticity and fracture [23]. By
minimizing an energy function with user controlled geo-
metric constraints and loads, Celniker and Gossard [24]
developed a curve and surface finite element method for free-
form shape design. Güdükbay and Özgüç [25] described a
physically based modelling system based on a primal formu-
lation and ahybrid formulation derived fromelasticity theory.
By using the theory of plate bending in elasticity, You et al.
[26] developed a mathematical model of physically based
elastic deformations. Considering non-homogeneous mate-
rial properties and conducting finite element simulations of
deformable objects in local frames, McDonnell and Qin [27]
presented a modelling technique for physically based defor-
mation.

Involving physics laws in traditional control point-based
deformation methods is also a popular research topic. Ter-
zopoulos and Qin [9] developed a dynamic NURBS to
deal with mass distributions, internal deformation energies,
and other physical quantities of the shape manipulation of
NURBS. After that, they further investigated the surfaces
with symmetries and topological variability and developed a
dynamicNURBS swung surface [7]. By enhancing the power
of triangular spline models and using Lagrangianmechanics,
Qin and Terzopoulos [8] developed the dynamic triangular
NURBS and manipulated the surfaces defined over arbitrary
and nonrectangular domains through the finite element solu-
tion of its mathematical model. Applying sculpting forces on
a surface and formulating and minimizing the energy func-
tional of the surface, Vassilev [28] proposed a method to
manipulate deformable B-spline surfaces.

Since physics-based methods are difficult to find analyti-
cal solutions, numerical methods such as the finite element
method, are commonly used to resolve the mathematical
models in the above studies. Therefore, physics-based meth-
ods usually require a high computational cost and long
computing time, which do not meet the demand of real-time
surface manipulation.
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2.3 PDE-basedmodelling

PDEs have been widely used to describe various physical
phenomena, and the shape deformations using PDEs can be
regarded as physics-based technique [29]. PDE-based mod-
elling is to describe surfaces by resolving a PDE subjected
to a set of suitably defined boundary conditions, and it is a
powerful technique to create and manipulate 3D models. It
was first introduced by Bloor and Wilson [30]. They pro-
posed a fourth-order PDE with a shape control parameter to
create different surface shapes. After that, this fourth-order
PDE was adopted to deal with a number of modelling prob-
lems such as interactive surface designs in real time [31],
local surface shape controls [32] and dynamical manipula-
tion of PDE surfaces [33]. In order to incorporate dynamic
effects into a fourth-order PDE, You and Zhang [34] pre-
sented deformable moving surfaces, and they developed a
sixth-order PDE with four shape control parameters which
provides more degrees of freedom to manipulate surface
shapes [35]. The methods of solving PDEs mainly include
numerical and analytical ones. Since it is difficult to find
analytical solutions of PDEs with high orders or complex
boundary conditions, analytical solutions can only be used
to solve simple surface modelling problems [36,37]. Com-
plex surface modelling usually applies numerical methods
such as the finite element method [38] and the finite differ-
ence method [39,40]. However, numerical methods involve
expensive computing cost and are less ideal in real-timemod-
elling applications.

In this paper, by introducing the PDE of plate bending
deformation for manipulating surface shapes, we develop
an approximate analytical solution for physics-based surface
deformations with a low computational cost.

3 Ourmethod

3.1 Theory of plate bending

The deformations of a surface can be simulated through those
of elastic bending of a thin plate. When subjected to a lat-
eral load q, the bending deformation of the plate in the xy
plane can be describedwith the following fourth-order partial
differential equation [41]

D∇4w = q (1)

where w is the deflection of the plate in the z direction, and
the symbol ∇4 is a biharmonic differential operator defined
by the following equation

∇4w = ∂4w

∂x4
+ 2

∂4w

∂x2∂ y2
+ ∂4w

∂ y4
(2)

and the symbol D is called the bending rigidity which is
defined by

D = Eh3

12(1 − μ2)
(3)

In Eq. (3), E and μ are Young’s modulus and Poisson’s ratio
of the plate, respectively,which are twomaterial properties of
the plate and reflect the capacity of the plate against bending
deformations. The parameter h is the thickness of the plate.

Besides the applied load, material properties and geomet-
ric parameters of the plate, and the boundary constraints of
the plate also affect its bending deformations. In surface
modelling applications, usually, positional and tangential
continuities are required. Therefore, in this paper, we will
only consider the boundary constraints which maintain such
continuities.

Assuming that the boundary of the plate is indicated by
∂�, the fixed support boundary constraints in the plate bend-
ing can be written as

w = 0,
∂w

∂x
= 0,

∂w

∂ y
= 0 on ∂� (4)

Solving Eq. (1) subjected to boundary constraints (4), the
bending deflection w for each point (x, y) within the plate is
determined by resolving the function of the geometric posi-
tion (x, y), i.e. w = f (x, y).

3.2 Mathematical model

Based on the theory of plate bending, we can develop our
mathematical model of the surface deformation. The two
variables x , y and the deflection w in Eq. (1) form a three-
dimensional space. When using a parametric representation
to describe a three-dimensional surface, two parametric vari-
ables u and v and each component of the coordinate variables
x , y and z also form a three-dimensional space. If we define
the relationship between each component of coordinate vari-
ables x , y and z and the parametric variables u and v with the
same function as that of the plate bending, we can determine
the deformations of a parametric surface through Eqs. (1–4).

Using the variable ξ to stand for each of x , y and z, the
equations governing surface deformations become

Dξ∇4ξ = qξ (ξ = x, y, z) (5)

where the load qξ is called the sculpting force, and

∇4ξ = ∂4ξ

∂u4
+ 2

∂4ξ

∂u2∂v2
+ ∂4ξ

∂v4
(6)

123



Real-time surface manipulation... 2745

Fig. 2 Boundary of a deformation region. a the xyz geometric coor-
dinate system. b the uv parametric coordinate system. (Point C is the
centroid of the deformation region)

Accordingly, boundary constraints (4) are changed into

ξ = 0,
∂ξ

∂u
= 0,

∂ξ

∂v
= 0 on ∂� (7)

From boundary constraints (7), we know both the dis-
placements and the rotations of the deformed surface relative
to the undeformed surface at the boundary are zero. There-
fore, the deformed surface obtained from Eqs. (6) and
(7) keeps both positional and tangential continuities at the
boundary ∂�. We call the continuity defined by Eq. (7) C1

continuity which is more stringent than positional and tan-
gential continuities on the boundary ∂�. In the following
subsection, we will discuss how to solve Eq. (5) subjected to
boundary constraints (7).

3.3 Solution

It is known from the theory of plate bending that the analytical
solution of Eq. (1) subjected to the constraints of an elliptic
boundary is obtainable. Since parametric variables u and v

are often defined within 0 and 1, i.e. 0 ≤ u ≤ 1 and 0 ≤ v ≤
1, in the mathematical representation of parametric surfaces,
we take the boundary defined by parametric variables u and
v to be a unit circle, i.e.

u2 + v2 − 1 = 0 (8)

It should be pointed out that although the boundary defined
by parametric variables u and v is a circle, the corresponding
boundary in the coordinate system defined by the coordinate
variables x , y and z canbe avery complicated shape including
triangles, rectangles and three-dimensional curves, etc., as
shown in Fig. 2.

For the deformationwhich has both positional and tangen-
tial continuity at boundary (8), we assume that the function
relationships between each component of coordinate vari-

ables x , y and z and parametric variables u and v are

ξ = mξ (u
2 + v2 − 1)2 (ξ = x, y, z) (9)

where mξ is an unknown constant.
On the boundary u2 + v2 −1 = 0, the deformation disap-

pears, i.e. ξ = mξ (u2 + v2 − 1)2 = 0. Therefore, the first of
Eq. (7) is satisfied and the positional continuity is guaranteed.
In addition, we have

∂ξ

∂u
= 4mξu(u2 + v2 − 1) = 0

∂ξ

∂v
= 4mξ v(u2 + v2 − 1) = 0

(10)

Equation (10) indicates that the last two of Eq. (7) are also
met and the tangential continuity is achieved on boundary
u2 + v2 − 1 = 0.

Substituting Eq. (9) into (5) and solving for the unknown
constant mξ , we obtain

mξ = qξ

64Dξ

(11)

Introducing Eq. (11) back into Eq. (9), the deformation of
the surface within boundary u2 + v2 − 1 = 0 is found to be

ξ = qξ

64Dξ

(u2 + v2 − 1)2 (12)

Equation (12) indicates that after applying a sculpting
force qξ in the region within the boundary u2 + v2 − 1 = 0,
the deformation in the region can be determined analytically.

4 Interaction design

In this section, we develop a user interface based on our pro-
posed surface manipulation method so that users can directly
apply our method to interactively manipulate surface shapes.
The core algorithm of the user interface, i.e. the deforma-
tion algorithm, is introduced in Sect. 3, and the remaining
algorithms behind the user interface include the projective
transformation, boundary extraction and mapping relation-
ship.

In order to use Eq. (12) to create surface deformations, we
must map a deformation region on a 3D surface defined by
coordinate variables x , y and z to a circle in a 2D coordinate
systemdefined by parametric variables u and v. However, it is
difficult to directly find themapping relationship between the
two spaces. Instead, we adopt three steps to achieve this goal.
We first project all vertices within the deformation region to
a local 2D plane, and then we extract the boundary curve of
the projective deformation region. Finally, we apply a length-
based method on the boundary curve to find the mapping
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Fig. 3 Projective transformation
of the deformation region. a the
global xyz coordinate system. b
the local x ′y′z′ coordinate
system

relationship between the projective deformation region and
the parametric plane. The details are described in the follow-
ing subsections.

4.1 Projective transformation

When users select the deformation region on the surface of
a 3D model, we assume that the equation of users’ view
plane is ax + by + cz + d = 0, as shown in Fig. 3a.
For each vertex p = [px py pz]T within the deformation
region, we define that its projective vertex on the view plane
is p̄1 = [ p̄x p̄y p̄z]T which can be obtained through follow-
ing projective transformation:

p̄1 = −apx + bpx + cpz + d

a2 + b2 + c2
n + p (13)

where n = [a b c]T is the normal vector of the view plane.
The projective vertex p̄1 is located in the global xyz coor-

dinate system, we transform this coordinate system to a local
x ′y′z′ coordinate system by using a translation matrix [T]
and a rotation matrix [R], as shown in Fig. 3b. We define that
the origin of the local coordinate is ō = [ōx ōy ōz]T and its
unit vectors along x ′, y′ and z′ axes are vx = [vxx vxy vxz]T ,
vy = [vyx vyy vyz]T and vz = [vzx vzy vzz]T , respectively.
The transformation equation can be written as

p̄′ = p̄2 [T] [R] (14)

where p̄′ = [ p̄′
x p̄′

y p̄′
z 1] and p̄2 = [ p̄x p̄y p̄z 1], and

[T] =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−ōx −ōy −ōz 1

⎤
⎥⎥⎦ , [R] =

⎡
⎢⎢⎣

vxx vyx vzx 0
vxy vyy vzy 0
vxz vyz vzz 0
0 0 0 1

⎤
⎥⎥⎦

Since all transformed vertices are on the x ′y′ plane, we
obtain the final projective vertex p̄′ = [ p̄′

x p̄′
y] within the

deformation region by removing the z′ component.

4.2 Boundary extraction

In order to define themapping relationship between boundary
curve on the x ′y′ plane and the circle on the 2D paramet-
ric plane, the key step is to extract the boundary curve of
the deformation region. We adopt the alpha shape (α-shape)
method to extract the boundary curve, which is to generate
the convex hull of a finite set of points [42]. The boundary
extraction process is shown in Fig. 4. Given a set P of ver-
tices p̄′

i (i = 1, 2, ..., N ) from the projective deformation
region, we first construct the Voronoi diagram as a set of cells
(Fig. 4a), which is defined by

Vi =
{
p ∈ R

2| ∥∥p − p̄′
i

∥∥ ≤
∥∥∥p − p̄′

j

∥∥∥ , ∀ j �= i
}

(15)

where Vi is the locus of the p closer to p̄′
i than any other

vertices.
Since the Delaunay triangulation is the dual shape of

the Voronoi diagram, we can obtain the Delaunay triangu-
lation by connecting all the vertices in P that share common
Voronoi faces, as shown in Fig. 4b. Then, by giving the
parameter α = dPα0 where dP is the distance between two
closest vertices in P and α0 is the threshold value, if the
length of any edge of a triangle is larger than 2α, this triangle
is removed. After that, we construct the circles of radius α

containing two end vertices of edges of the rest triangles. If a
circle contains no vertices from P in its interior, this edge is
regarded as a valid boundary edge. Finally, all valid boundary
edges form the boundary curve, as shown in Fig. 4c.
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Fig. 4 Extraction of boundary
curve. a Voronoi diagram for a
set of vertices. b Delaunay
triangulation. c The boundary
curve of α-shape

4.3 Mapping relationship

The mapping, in computer graphics, is the key to achieve
the parametrization [43]. Commonly used mapping meth-
ods include minimizing angle distortions (the conformal
mapping) and area distortions (the equiareal mapping) [44].
However, in this paper, our goal is to make the surface
deformation in the 3D space as similar as possible to the
deformation in the 2D parametric space as well as keep the
original shape information, rather than reducing the angle or
area distortions. In order to achieve this goal, the one-to-one
mapping between the projective vertices on the x ′y′ plane and
the parametric points on the parametric plane is necessary and
the elastic deformation value of each parametric point needs
to be exactly exerted on the corresponding original vertices.
Through the one-to-onemapping, the physic-based deforma-
tion in the parametric space can be accurately and smoothly
reconstructed in the 3D space.

In the parametric space, after generating physic-based
deformation within the circle, the deformed shape becomes
bigger when moving from the circle to the centre, as shown
in Fig 8. For reconstructing the deformation in the 3D space,
the distance from the point to the centre of the circle on the
parametric plane should be consistent with the distance from
the projective vertex to the centroid on the x ′y′ plane. The
radial mapping [44] has the similar idea which makes points
onlymove along radial lines from the centre of the disc. How-
ever, this method can only deal with the mapping between a
square and a disc, and we have not found any other effective
mapping method which can achieve our goal. Here, we pro-
pose a simple and effective length-based mapping method to
achieve our goal.

The deformation region on the x ′y′ plane has N vertices.
As shown in Fig. 5a, we define that the vertices on the bound-
ary curve are Ai (i = 1, 2, ... M) and the rest vertices within
the boundary curve are Bj ( j = 1, 2, ..., N − M). The cen-
troid of the deformation region is C , and the point Dj is the
intersecting point between the line Ai Ai+1 and the extended
line of CBj .

The corresponding points Ãi , B̃ j , C̃ and D̃ j of Ai , Bj , C
and Dj on uv plane are shown in Fig. 5b. All the points on
the boundary curves can be mapped to the unit circle with

Fig. 5 Mapping relationship. a The x ′y′ plane. b The uv plane

the method below. Here, we take the point D̃ j as an example
to discuss how to determine its position on the unit circle.

The total arc length of the boundary curve is Lsum =
L A1A2 + ... + L Ai Ai+1 + ... + L AM A1 . The arc length
from the starting point A1 to the point Dj is L A1Dj =
L A1A2 + L A2A3 + ... + L Ai D j . The perimeter of the unit
circle is Lcircle = 2π . And the arc length from the start-
ing point Ã1 to the point D̃ j is assumed to be L Ã1 D̃ j

.
Since L A1Dj /Lsum should be equal to L Ã1 D̃ j

/(2π), we have
L Ã1 D̃ j

= 2πL A1Dj /Lsum .

Having determined the position of the point D̃ j on the
circle, we can calculate its parametric values uD̃ j

and vD̃ j
.

The parametric values of the point C̃ are uC̃ = 0 and vC̃ = 0.
The coordinate values x ′

Dj
and y′

Dj
of the point Dj on the

boundary curve is determined by the intersection between the
line Ai Ai+1 and the extended line of CBj . The coordinate
values x ′

C and y′
C of the pointC and the coordinate values x ′

Bj

and y′
Bj

of the point Bj are known. Assuming the parametric

values of the point B̃ j are u B̃ j
and vB̃ j

, we have (u B̃ j
−

uC̃ )/(uD̃ j
− uC̃ ) = (x ′

Bj
− x ′

C )/(x ′
Dj

− x ′
C ) and (vB̃ j

−
vC̃ )/(vD̃ j

− vC̃ ) = (y′
Bj

− y′
C )/(y′

Dj
− y′

C ), which give

u B̃ j
= uD̃ j

x ′
Bj

− x ′
C

x ′
Dj

− x ′
C

vB̃ j
= vD̃ j

y′
Bj

− y′
C

y′
Dj

− y′
C

(16)
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Fig. 6 User interface

Substituting Eq. (16) into (12), we can calculate the defor-
mation values of the original vertex of Bj in the global xyz
coordinate system, and finally obtain a new surface shape
after solving all vertices within the boundary curve.

4.4 User interface

By integrating the above algorithms, we develop a user inter-
face as a plug-in of the popular 3Dmodelling softwareMaya,
as shown in Fig. 6. Users can select their desired deforma-
tion regions on the surface of a 3D model and generate new
shapes using the interface in Maya.

Since directly inputting the value of the sculpting force to
manipulate surface shapes is not intuitive for users, we apply
a cursor (a visual cube) to achieve deformations, as shown
in Fig. 7. In order to control the deformation direction, we
only need to control themoving direction of the cursor. There
are two ways to control the cursor. First, we can move the
cursor by using the move tool in Maya. Once the move tool
is activated, the cursor can be directly dragged on the current
view plane of the user. Second, we can input moving values
in x , y and z directions on the attributes editor of the cursor
in Maya. In Fig. 6, there are three input parameters for the
cursor on the interface, i.e. cursor size, cursor distance and
sensitivity. Cursor size is to control the size of the cursor and
avoid that the cursor is much larger or smaller than the target
object. Cursor distance is a parameter to change the initial
positionof the cursor and sensitivity is a scale factor to control
the magnitude of the sculpting force. The sculpting force in
Eq. (12) can be obtained by qξ = sdξ (ξ = x, y, z) where
dξ is the moving vector of the cursor and s is the sensitivity.
Figure 8 illustrates the influence of the moving direction and
sensitivity of the cursor on the surface shape.

Except the three input parameters, we also provide two
options, i.e. mouse direction and real-time, on the user

interface. (1) Mouse Direction: its function is to make the
deformation direction the same as the moving direction of
the cursor. If it is turned off, the deformation direction is
the normal of the selected region. (2) Real-time: since the
user’s view cannot be moved or rotated during moving the
cursor, sometimes users have difficulties to estimate whether
the cursor arrives at the desired position. Thus, we provide
the option of real time to turn off the real-time function so
that the shape cannot be deformed in real time unless clicking
the Run Deformation button.

As shown in Fig. 7, the surface manipulation process
through the user interface has six steps. (1) Users select the
deformation region by using the lasso tool to draw freeform
curves around target vertices. (2) The selected vertices are
activated with yellow colour. (3) After inputting three param-
eters of the cursor, users click the Confirm Vertices button
and generate the cursor. (4) Users can move the cursor to any
position and the deformation will follow the moving direc-
tion if the option of Mouse Direction is ticked. Otherwise,
the deformation direction is in the normal direction. (5) If
the option of real time is ticked, the surface shape is auto-
matically deformed in the fourth step once the cursor moves.
Otherwise, users need to click the RunDeformation button to
deform the surface shape. (6) After obtaining the final new
surface shape or in any previous steps, users can click the
Clear Cache button to stop this manipulation process.

5 Results and comparison

In the user interface, the basic parameters of Eq. (3) are
taken to be: the material properties E = 106 and v = 0.5
according to the material rubber, and the geometric thick-
ness h = 0.1. The threshold value α0 is set to 0.86 because
this value is applicable for accurately extracting the bound-
ary curve of different deformation regions by trial and error.
We test the user interface on four basic 3D models in Maya,
i.e. the polygon sphere, cube, cylinder and cone, with dif-
ferent deformation regions, as shown in Fig. 9. We obtain
different deformations on each model by moving the cursor
with different directions and positions to generate various
shapes. These results indicate that our method is effective
and convenient to create various surface shapes.

The meshes of above basic 3D models are smooth and
uniformly distributed. In order to further test our method,
we use scanned 3D models such as Stanford Bunny, Dragon
and Nefertiti as our deformation objects. These scanned 3D
models are frequently used as test models in the computer
graphics community and have non-uniformly distributed ver-
tices. Figure 10 shows the test results. They indicate that our
method is also suitable to manipulate the surface shape of
scanned 3D models.
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Fig. 7 Surface manipulation
process of the user interface

Fig. 8 Influence of the moving
direction and sensitivity of the
cursor on the surface shape. a
The deformation region and the
initial position of the cursor. b, c
The deformed shapes with the
same sensitivity and different
moving directions (the red
dotted arrow) of the cursor (the
red dotted square is the initial
position of the cursor). d–f The
deformed shapes with the same
moving direction and different
sensitivities of the cursor. (The
sensitivities are 40, 70 and 110
in d, e and f, respectively)

In order to demonstrate the effectiveness of our method,
we compare our method with commonly used deformation
methods, i.e. Delta Mush [19] and Laplacian Deformer [6].
Two examples of deforming the shapes of the square and the
pentagram along the normal direction are given in Fig. 11.
The first and third rows present deformed shapes and the sec-
ond and fourth rows are contourmaps of the deformed shapes
in the first and third rows, respectively. As shown in Fig. 11,
the deformed shape using our method is strictly constrained
by the boundary shape compared with other methods. For
example, the shapes of the contour lineswith different heights
of the square using our method stay the same as the bound-

ary, while contour lines using Delta Mush and Laplacian
Deformer gradually become a circle. Therefore, compared
with DeltaMush and Laplacian Deformer, our method is bet-
ter at creating the surface shapewhichwell keeps the features
of the boundary shape.

Since ourmethod is physics-based, it can createmore real-
istic shapes compared with purely geometric methods. The
finite element analysis (FEA) is the most accurate and pop-
ular numerical method widely applied in scientific research
and engineering calculations. In particular, it has beenwidely
used to accurately predict elastic and inelastic deformations
of various objects and structures in engineering fields. There-
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Fig. 9 Test results of four basic
3D models with different
deformation regions surrounded
by red curves

Fig. 10 Test results of three
scanned 3D models with
different deformation regions
surrounded by red curves

fore, we apply FEA to obtain deformed shapes as ground
truth and compared them with our method, Delta Mush and
Laplacian Deformer in Fig. 12. The left and right columns
in the figure present the side view of deformed shapes of
a triangle and a rectangle, respectively. The results indicate
that the deformed shapes using our method is the closest to
the ground truth ones and thus most realistic among the three
deformation methods used to obtain the deformed shapes

shown in the figure. In addition, in order to manipulate the
shape as similar as possible to the ground truth, Delta Mush
needs to try different values of two parameters, i.e. the num-
ber of smoothing iterations and step lengths, which cause
extra time, and Laplacian Deformer needs to find appropri-
ate anchor vertices because different anchor vertices may
lead to different shapes. In contrast, our method can directly

123



Real-time surface manipulation... 2751

Fig. 11 Comparison between
different deformation methods.
a Our method. b Delta Mush
[19]. c Laplacian Deformer [6].
(The first and third rows are
deformed shapes, and the
second and fourth rows are
contour maps)

Fig. 12 Realism comparison of
deformed shapes in the side
view. a Ground truth. b Our
method. c Delta Mush [19]. d
Laplacian Deformer [6]. (The
left and right columns are
deformed shapes of a triangle
and a rectangle, respectively)

create realistic deformed shapes once the deformation region
is selected.

6 Conclusion

In this paper, we have obtained a simple approximate ana-
lytical solution of the PDE defining the underlying physics
of surface deformations, presented a physics-based defor-
mation method, and used it to develop a user interface as a
plug-in of the 3D modelling software Maya to interactively
manipulate surface shapes of 3D models with C1 continu-

ity in real time. We have demonstrated the validity of our
method by testing different surface deformations on several
3D models. Compared with purely geometric methods, our
method is stricter to constrain the deformed shape according
to boundary shapes and can generate more realistic shapes.

Our method also has limitations. First, since the method
needs to project the surface from a 3D space to a 2Dplane, we
can only manipulate the surfaces without overlapping parts.
Simple overlapping parts within the deformation region can
be avoided through changing the user view before confirming
vertices. Second, our method cannot address the deforma-
tion region if its centroid is located outside of its boundaries.
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One way to solve this limitation is to divide the deformation
region into several sub-regions and then construct the map-
ping relationship of each sub-region independently, which
requires further investigation.
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