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Abstract—Traffic forecasting plays a crucial role in Intelligent
Transportation Systems (ITSs), which is proposed to provide
traffic status in advance for road users to avoid traffic congestion
or other traffic incidents and for authorities to optimise the
strategies of traffic management. In this paper, we develop a novel
deep learning framework, based on the Sequence-to-Sequence ar-
chitecture with an embedded module, for long-term traffic speed
forecasting with missing data and providing high forecasting
accuracy. The embedded module uses Graph Convolution Neural
Network for the local spatial dependency analysis by conducting
convolutional operation on the k − hop neighbourhood matrix,
while utilises Transformer for the global spatial dependency
analysis by implementing the attention mechanism that assigns
individual weights to neighbour detectors for contributing to
the targeted detector. The sequence-to-sequence architecture is
built to analyse temporal dependencies of the spatially-fused time
series from the embedded module. To evaluate the proposed
model against existing well-known ones, the real traffic speed
dataset with missing data and frequent traffic incidents is used to
train and test the models. The experimental results indicate that
our proposed framework achieves the most accuracy forecasting,
even obtaining more than 80% accuracy for forecasting two hours
in advance.

Index Terms—long-term, intelligent transportation system,
deep learning, large-scale road networks

I. INTRODUCTION

W ITH the sharp growth of population and vehicles, trans-
portation infrastructures are facing huge challenges,

such as serious traffic congestion, increasing number of inci-
dents and severe delay in actual travel time. These challenges
bring many problems to cities like air pollution and waste of
energy. To overcome the challenges and resolve these prob-
lems, the concept of Intelligent Transportation Systems (ITSs)
[1] has been proposed. It aims to offer innovative services
relating to different modes of transport and traffic management
based on the most advanced technologies and enable road
users to be better informed and safer during travelling [2]. As
an important element of ITSs, traffic forecasting is to forecast
traffic status for the future based on historical traffic data and
then provide it for road users to improve traffic efficiency.

Many works in traffic forecasting have been reported in the
literature, including studies on traffic flow, speed and travel
time, since the earliest work, that used the well-known Auto-
Regressive Moving Average (ARMA) model to forecast traffic
volume and occupancy, was published in late 1970s [3]. For

example, some variants of ARMA like Auto-Regressive Inte-
grated Moving Average (ARIMA) [4] and Seasonal ARIMA
(SARIMA) [5] were proposed for improving the capability
of traffic forecasting. ARMA and its variants are statistic
models and usually used for time series forecasting with
linear relationship. However, [6] pointed that a non-linear
relationship exists in traffic data, and ARMA and its variants
are unable to completely analyse the non-linear relationship of
traffic data. Owning to the wide popularity of machine learning
technologies, machine learning models with non-linear kernels
or activation functions have been used for analysing non-linear
relationships of traffic data and achieved better performance
compared to ARMA and its variants. For example, Support
Vector Regression with RBF kernel (SVR) was used for traffic
flow forecasting [7] while an enhanced K-Nearest Neighbor
(K-NN) algorithm was also used for traffic flow forecasting
[8].

With the availability of new sensor technologies and ad-
vanced big data analysis technologies, mass data with more
features is available for traffic forecasting. Therefore, deep
learning models that are capable of analysing big data with
high dimensions have been used for traffic forecasting, instead
of machine learning models that are too shallow for dealing
with high dimensional data. In 2014, Huang et al. [9] designed
a deep learning model for traffic forecasting which uses a net-
work with Deep Belief Network (DBN) model at the bottom
for unsupervised pre-training and a Multi-Task Layer (MTL) at
the top for unsupervised forecasting. In the same year, Lv et al.
[10] built a Stacked AutoEncoder model (SAE) to learn traffic
flow features and trained it in a greedy layerwise fashion.
Zhang [11] developed a Convolutional Neural Network (CNN)
for learning traffic data as images and then used a fully-
connected layer for final forecasting. The advantage of this
model is that spatial dependencies can be extracted through
the kernels of CNN with non-linear activation functions and its
kernel size decides the area coverage of the traffic data image.
However, these models are unable to analyse the temporal
dependencies of traffic data. Therefore, the Recurrent Neural
Network (RNN) and its variants (Long-Short Term Memory,
LSTM, and Gated Recurrent Unit, GRU) [12] , that take the
advantage of analysing long-term dependencies, have been
combined with CNN for traffic forecasting. Wu et al. [13] used
a 1D CNN and two LSTMs to build a hybrid deep learning
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model named CLTFP while Liu et al. [14] combined CNN
with LSTM to generate a Conv-LSTM model for traffic flow
forecasting.

The aforementioned models consider road networks as
regular grids and traffic data having regular Euclidean struc-
ture. However, road networks are inherently irregular and
traffic data should instead be treated as non-Euclidean data
[15]. Therefore, to overcome this limitation, Graph Convo-
lution Network (GCN) that can more efficiently analyse non-
Euclidean structured data has been introduced into solving the
traffic forecasting problem on large-scale traffic networks. It
conducts convolutional operations on non-Euclidean data for
obtaining the relationships of traffic data in space domain.
For example, [16] built the STGCN model consisting of two
spatial-temporal convolutional blocks (named ST-Conv blocks)
and a fully-connected layer for traffic forecasting on road
network-wide. [17] proposed the TGC-LSTM model that uses
GCN to capture the spatial dependencies on the road network-
wide and utilises LSTM to extract temporal dependencies
while Tang [18] jointed the attention mechanism into GCN
and then developed a GAGCN model to forecast traffic flow.

Based on the most recent literature, in this paper, a novel
deep learning framework is to be developed to resolve the
long-term traffic forecasting problem, aiming to provide more
accurate forecasting on large-scale road networks. The pro-
posed framework takes the advantages of Graph Convolution
Network and Transformer on the different spatial dependency
analysis and the Sequence-to-Sequence architecture on the
temporal dependency analysis, which is denoted as GCNT-
Seq2Seq. The traffic forecasting problem will firstly be de-
scribed in Section II and details of the proposed model will
be explained in Section III. The proposed model will be
evaluated against other existing forecasting models based on
real world traffic dataset in Section IV. Finally, this work will
be concluded in Section V.

II. PROBLEM FORMULATION

The traffic forecasting problem in this paper is defined
on a large-scale road network with N detectors. Therefore,
the road graph used in the proposed model has N nodes
and is represented as G = (V, E) where V is the set of
nodes with |V| = N . E is the set of edges representing
physical connectivity between detectors. Generally, G can be
represented by A ∈ RN×N , the N ×N symmetric adjacency
matrix, with its element Ai,j = 1 if there exists a link between
node i and j and 0 otherwise. Considering that the future traffic
states of a detector are influenced by its own historical states,
the road graph, G, is represented by Ã = (A+ IN ) ∈ RN×N

where IN is the N ×N identity matrix. Ã only describes the
connectivity of neighbors one hop away from each node (i.e.,
1− hop neighborhood). Due to considering that traffic speed
propagates downstream while traffic congestion propagates
upstream and the dataset used in this work includes traffic
congestion, we introduce the notion of k− hop neighborhood
to represent the set of nodes that are reachable within k hops

from the targeted node and define the k − hop neighborhood
matrix as Ãk ∈ RN×N .

The traffic data from the road network with N detectors
is described as xt = {x1t , x2t , . . . , xit, . . . , xN−1t , xNt };xt ∈
RN , (i = 1, 2, 3, . . . , N), and xit denotes the traffic data
measured at detector i at tth time step. Typically, a time step
can represent 5, 15, 30, 45 and 60 minutes [19]. In this paper,
the dataset used for evaluating the proposed model considers
5 minutes as a time step. Then X ∈ RT×N (cf. Eq. (1)) repre-
sents traffic data collected from N detectors in the network for
T previous time steps. Conversely, the traffic data for the future
is written as X ′ = {xt+1, xt+2, . . . , xt+T ′} ∈ RT ′×N where
T ′ is the forecasting horizon. Generally, traffic forecasting
problems can be categorized into short- (T ′ < 30 minutes)
and long-term (T ′ ≥ 30 minutes). Since we aim to solve
the long-term traffic forecasting problem on large-scale road
network, this paper covers timescales T ′ = {6, 12, 18, 24}
corresponding to {30, 60, 90, 120} minutes.

X = {xt−T+1, xt−T+2, . . . , xt−1, xt};
X ∈ RT×N , T = 1, 2, 3, . . .

(1)

Based on traffic data and the road graph described above,
the traffic forecasting problem for the proposed approach in
this paper can be formulated as Eq. (2).

X̃ ′ = F
(
X;G(V, E , Ãk)

)
(2)

where the objective is to learn the mapping function F(.) and
compute the traffic data in the next T ′ time steps based on
the historical traffic data in T previous time steps and the
road graph G. For fitting the training phase, both input X
and targeted X ′ need to be formatted to X ∈ RB×T×N and
X ′ ∈ RB×T ′×N where B is the batch size.

III. A NOVEL PROPOSED FRAMEWORK

Fig. 1 presents the framework of the proposed deep learning
model, named GCNT-Seq2Seq, that is designed to comprehen-
sively analyse the spatial and temporal dependencies of traffic
data. GCNT-Seq2Seq is developed under the sequence-to-
sequence architecture consisting of an encoder and a decoder
for the long-term dependency analysis. The encoder is used
to learn the historical information and encodes it to a context
vector. The decoder is utilised to decode the context vector
to the final forecasting. The modules of the sequence-to-
sequence architecture is built based on graph convolution
neural networks and the transformer for analysing spatial
dependencies from original traffic data and the road graph
data. The following content will explain the GCNT-Seq2Seq
model on the spatial dependency analysis and the temporal
dependency analysis in detail, respectively.

GCNT as the embedded module of the sequence-to-
sequence architecture is used to analyse the spatial dependen-
cies. Fig. 2 displays the GCNT module that consists of Lg

graph convolutional neural (GCN) layers and Ls transformer
layers in parallel. Considering the lg

th GCN layer at the



Fig. 1: The framework of GCNT-Seq2Seq.

tth time step as an example, the convolution operation is
conducted on the k−hop neighbourhood matrix Ãk joined to
the output of the (lg − 1)

th GCN layer for obtaining spatial
features using Eq. (3). Due to Ãk describing connections
of detectors in the k − hop neighbourhood, obtained spatial
features from the GCN layers can be considered as local spatial
features.

GCN lg ;t = ReLU
(
(Wlg ;t ∗ Ãk)GCN (lg−1);t

)
+GCN (lg−1);t

(3)

where GCN (lg−1);t ∈ RB×N is the output of the (lg − 1)
th

GCN layer and is treated as the input of the lgth GCN layer.
GCN lg ;t ∈ RB×N is the output of the lgth GCN layer and the
input of the 1st GCN layer is xt ∈ RB×N . Wlg;t ∈ RN×N is
the weight matrix of Ãk and ReLU is the activation function
of GCN layers.

Meanwhile, transformer layers analyse spatial dependencies
from the other aspect by the attention mechanism to assign
individual weights to neighbours of the targeted detector so
as to contribute to the targeted detector. Each transformer
layer consists of three fully-connected layers, an attention
layer and a linear layer. Considering the lsth transformer layer
at the tth time step as an example, three fully-connected
layers are used to generate the multi-head inputs of queries
Qls;t ∈ RB×(H×dq)×N , keys Kls;t ∈ RB×(H×dk)×N and
values Vls;t ∈ RB×(H×dv)×N by Eq. (4), in which H is the
number of multi-heads and dq , dk and dv are the number
of embedded features for Qls;t, Kls;t and Vls;t, respectively.
The spatial weight matrix is generated by multiplying the
transposition of Kls;t by Qls;t and then utilised to obtain
spatial features using Eq. (5). Due to the spatial weight matrix

Fig. 2: The module of GCNT

Qls;tKls;t
ᵀ

√
dk

∈ RB×H×N×N enabling all other detectors to have
individual weights for the targeted detector, spatial features
obtained here are considered as global spatial features.

Qls;t =W q
ls;t
S(ls−1);t

ᵀ

Kls;t =W k
ls;tS(ls−1);t

ᵀ

Vls;t =W v
ls;tS(ls−1);t

ᵀ (4)

Sls;t = ReLU

(
W s

ls;t

(
softmax(

Qls;tKls;t
ᵀ

√
dk

)Vls;t

)
+ bsls;t

)
+S(ls−1);t

(5)

where S(ls−1);t
ᵀ ∈ RB×N is the transposition of the output

of the (ls − 1)
th transformer layer as the input of the ls

th

transformer layer. Sls is the output of the lsth transformer layer
and the input of the 1st transformer layer is xt. W

q
ls;t

, W k
ls;t

and W v
ls;t

are weight matrices of queries, keys and values,
respectively. W s

ls;t
is the weight matrix of the linear layer and

bsls;t is the related bias. ReLU is an activation function.
Finally, the output of the last GCN layer, GCNLg ;t, and the

output of the last transformer layer, SLs;t, are concatenated,
and then pass a linear layer to generate local-global spatial
features GCNTLgs;t using Eq. (6). In addition, the residual
connection network [20] is used in each GCN and transformer
layer to ensure the stable training and also supplement the
important information hidden in negative values that are ne-
glected by the ReLU activation function.

GCNTLgs;t =WLgs;tconcat(GCNLg ;t, SLs;t) + bLgs;t (6)

where WLgs;t and bLgs;t are the weight matrix and the bias,
respectively.

Seq2Seq consists of LSTMs as the encoder and the decoder,
which is used to embed our GCNT module for extracting
and delivering temporal features from spatially-fused features.
Taking the tth time step as an example, the encoder takes



the GCNTLgs;t as the input and encodes the spatially-fused
features using Eq. (7).

ft = σg(wf ·GCNTLgs;t + uf · ht−1 + bf )

it = σg(wi ·GCNTLgs;t + ui · ht−1 + bi)

ot = σg(wo ·GCNTLgs;t + uo · ht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(wc ·GCNTLgs;t + uc · ht−1 + bc)

ht = ot ◦ σh × (ct)
(7)

where wf , wi, wo and wc are the weights of the forget gate
ft, the input gate it, the output gate ot and the cell state
ct respectively while bf , bi, bo and bc are the corresponding
biases for each gate and the cell state. Furthermore, uf , ui, uo
and uc are the weights of the last hidden state ht−1. σg denotes
a sigmoid function (= 1

1+e−x ) in three gates and the operator ◦
denotes Hadamard product. σc and σh are hyperbolic tangent
function (tanh(x)) for the cell state and the final output. ht is
considered as the output of the encoder and carries historical
information. In the decoder, the output of the encoder ht is
treated as the initialised hidden state and GCNTLgs;t is still
considered as the input. The output of the decoder is the final
forecasting.

IV. EXPERIMENTS

A. Data Description

Dataset used for evaluating the proposed model and compar-
ing our model against well-known existing models is collected
from the real-world road network, named METR-LA [21].
Fig. 3 displays the locations of loop detectors in METR-LA.
It includes 207 detectors and covers 4 months of traffic speed
data from 1st of March to 30th of June in 2012. A time
step is 5 minutes and the number of observed traffic data
points is 7,094,304 (= 34272 × 207). This dataset misses
some data points so that it brings more challenges. To evaluate
and valid the robustness of the proposed model, discontinuous
missing data points are replaced by the mean of the last and
next traffic data and continuous missing data points are set as
zeros to simulate traffic incidents such as traffic accidents and
congestion. In addition, an undirected road graph with edge
weights is used to construct the neighbourhood matrix. The
pairwise road distances between detectors are first computed
and then a thresholded Gaussian Kernel in [22] is utilised to
build the weighted matrix.

B. Performance Metrics

To measure the results, three types of metrics named
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE) and Root-Mean Square Error (RMSE) in the literature
[14][17] are used and computed as Eq. (8), Eq. (9) and
Eq. (10).

MAE =
1

N × T ′
·

N∑
i=1

T ′∑
t=1

|xit − x̃it| (8)

Fig. 3: Locations of loop detectors in METR-LA

MAPE =
1

N × T ′
·

N∑
i=1

T ′∑
t=1

|xit − x̃it|
xit

× 100% (9)

RMSE =

[
1

N × T ′
·

N∑
i=1

T ′∑
t=1

(xit − x̃it)2
] 1

2

(10)

where MAE presents the average absolute difference between
the forecasted and real traffic speed. It is used to measure
absolute forecasting error. MAPE is the relative difference
between the forecasted and real traffic speed and is utilised
to measure relative forecasting error. RMSE is the standard
deviation of the residuals where residual is the difference
between forecasted and real traffic speed.

C. Parameter Settings

To optimise the GCNT-Seq2Seq model and obtain high
forecasting accuracy, there are several hybrid-parameters that
need to be tuned including historical time steps T , targeted
time steps T ′, the number of multi-heads H , the number
of embedded features {dq, dk, dv}, the learning rate r, batch
size B and the number of epochs. Based on the well-known
existing works, the historical time steps T , targeted time steps
T ′, the number of multi-heads H , the number of embedded
features {dq, dk, dv}, and batch size B are set as 12, 24, 8,
{8, 8, 8} and 32, respectively. For the learning rate setting,
generally, a too small learning rate will make a training
algorithm converge slowly while a too large learning rate will
make the algorithm diverge. Therefore, finding an optimal
learning rate is very important to improve the performance
of the algorithm. However, the experimental method to find
the best learning rate is time-consuming. In our work, the
method named Cyclical Learning Rates (CLR) in [23] is used
to optimise the learning rate as 1.02e−03. In addition, stop
early strategy is used to optimise the number of epochs and
avoid the problem of over-fitting. It means the training process
will be stopped when the training loss continues to decrease
in 10 epochs while the validation loss increases. Finally, we
follow the convention and use 70% of the dataset for training,
10% for validation and 20% for testing.



(a) (b)
Fig. 4: (Color Online) Real (black color) and forecasted (other colors) traffic speed (miles/h) in a day with 288

(= 1days∗24hours∗60minutes
5minutes ) time intervals from all models on METR-LA with a time interval = 5 minutes. The x-axis

represents the time and the y-axis is traffic speed (miles/hour). The forecasting horizons are 30 minutes in (a) and 120
minutes in (b), respectively. The red lines in (a) and (b) represent forecasted traffic speed from our GCNT-Seq2Seq

TABLE I: Experimental results from all models on METR-LA

Model METR-LA

Name MAE(T’=6/12/18/24) MAPE(T’=6/12/18/24) RMSE(T’=6/12/18/24)

ANN 5.0232 / 6.7519 / 8.1165 / 9.1839 13.12% / 18.20% / 21.68% / 24.42% 9.8455 / 11.8983 / 13.1064 / 13.8129
LSTM 5.2023 / 6.6489 / 7.6383 / 8.2251 12.74% / 16.44% / 18.68% / 21.21% 9.4332 / 11.1926 / 12.2611 / 12.8663
GRU 5.0715 / 6.2108 / 7.0753 / 7.7387 12.67% / 15.64% / 18.17% / 20.03% 9.1238 / 10.6058 / 11.7414 / 12.4671

CNN-FC 6.4447 / 8.0232 / 8.4805 / 9.4339 14.77% / 18.40% / 19.91% / 21.88% 9.7793 / 11.5983 / 12.0401 / 13.0291
CNN-LSTM 5.2192 / 6.4425 / 7.5352 / 8.3240 12.70% / 16.03% / 18.79% / 20.96% 9.3857 / 10.9365 / 12.1356 / 12.8291
TGC-LSTM 5.2822 / 6.6194 / 7.6074 / 8.2736 12.62% / 15.99% / 18.64% / 20.54% 9.5018 / 11.1085 / 12.1906 / 12.8627

GCNT-Seq2Seq 4.9956 / 6.1774 / 6.9358 / 7.5813 12.10% / 15.38% / 17.44% / 19.41% 9.2731 / 10.8090 / 11.6876 / 12.3108

Fig. 5: The forecasting accuracy (100%-MAPE) from all
comparison models.

D. Results and Discussion
To evaluate the proposed model, six baselines are used for

comparison experiments, including 1) one linear feature-based
model, ANN [24]; 2) two temporal feature-based models,
LSTM [25] and GRU [26]; 3) one spatial feature-based model,
CNN-FC [27]; 4) two spatial and temporal feature-based
models, CNN-LSTM [14] and TGC-LSTM [17].

Fig. 4 presents the real (black color) and forecasted (other

colors) traffic speed data in a day from the GCNT-Seq2Seq
model and other six baselines. Fig. 4 (a) and (b) consider 30
minutes and 120 minutes as forecasting horizons, respectively.
Overall, GCNT-SeqSeq can efficiently forecast the trend of
traffic speed changes, even for longer forecasting horizons.
Besides, GCNT-Seq2Seq also capture the sudden changes
caused by mission data or traffic incidents.

TABLE I presents experimental results from all competition
models for different forecasting horizons. T ′ = {6, 12, 18, 24}
are responding to consider {30, 60, 90, 120} minutes as fore-
casting horizons. It is observed clearly that the proposed
model, GCNT-Seq2Seq, achieves the best performance among
all competition models. Its MAEs, MAPEs and RMSEs for
all forecasting horizons are almost the lowest. It means the
forecasting accuracy of GCNT-Seq2Seq is the highest, which
can be also observed in Fig. 5 that displays the forecasting
accuracy (100%-MAPE) of all models. From Fig. 5, the dif-
ferences of forecasting accuracy between GCNT-Seq2Seq and
other models become more obvious over longer forecasting
horizons. It means the superiority of our model is more
obvious for longer forecasting horizons. Even for 120 minutes
as forecasting horizon, the forecasting accuracy of GCNT-
Seq2Seq is still more than 80% and it is also the only one
model achieving over 80% accuracy among all comparison



models.
From TABLE I, the linear feature-based model, ANN, that

relies on the linear relationship of traffic speed data in time do-
main for forecasting almost obtains the worst results excluding
30 minutes as the forecasting horizon where the spatial feature-
based model, CNN-FC, is the worst one. The probable reason
is that linear relationships for longer forecasting horizons
are not obvious while the spatial dependencies among road
network become more important. Therefore, CNN-FC model
that mainly focuses on spatial feature extraction by the convo-
lution kernels performs better than ANN for longer forecasting
horizons. Between two temporal feature-based models, LSTM
and GRU, GRU always outperforms LSTM for all different
forecasting horizons. This conclusion was confirmed in [12]
by numerous experiments. Both CNN-LSTM and TGC-LSTM
achieve similar results, because they are able to analyse both
spatial and temporal features for final forecasting.

V. CONCLUSION

In this paper, the problem of forecasting long-term traffic on
large-scale road network is addressed and a novel deep learn-
ing framework, named GCNT-Seq2Seq, is developed based
on the most advanced technologies. The proposed framework
takes the advantages of Graph Convolution Network (GCN)
and Transformer on the different spatial dependency analysis
and the advantage of the Sequence-to-Sequence (Seq2Seq)
architecture on the temporal dependency analysis. GCN is used
to extract the local spatial features by operating convolution
on the k − hop neighbourhood matrix and Transformer is
utilised to capture the global spatial features by assigning
individual weights to neighbours of the targeted detector so
as to contribute to the targeted detector. The concatenation
of local and global spatial features is embedded into the
Seq2Seq architecture for temporal feature extraction and final
forecasting. The proposed framework is compared to the
existing well-known models using the real world dataset with
missing data and frequent traffic incidents. Among all the
models being compared, our proposed model shows the best
performance and can even achieve more than 80% accuracy
for forecasting two hours traffic status in advance.
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