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Abstract—Recent research on edge computing (EC) has pro-
posed federated or collaborative learning technique, where ma-
chine learning models are shared among participating edge de-
ployments, thereby benefiting from all available datasets without
exchanging them. In addition, EC systems are currently exploit-
ing attaching portable edge devices on drones for data processing
close to the sources, to achieve high performance, fast response
times and real-time insights. Existing research lack the potential
to federate edge resources and manage corresponding service
entities running across multiple drones, thus resulting to sub-
optimal performance. Therefore, we introduce AerialEdge, a fed-
erated learning-based orchestration framework for a federated
aerial EC system. We propose a federated multi-output linear
regression models to estimate multi-task resource requirements
and execution time, to select the closest drone deployment having
congruent resource availability and flight time to execute ready
tasks at any given time. For better utilization of resources, we
propose a variant bin-packing optimization approach through
gang-scheduling of multi-dependent containerized tasks that co-
schedules and co-locates tasks tightly on nodes to fully utilize
available resources. Extensive experiments on real-world data-
trace from Alibaba cluster trace with information on task
dependencies show the effectiveness, fast executions, and resource
efficiency of our approach.

Index Terms—Edge computing, dependency-aware, federated
learning, edge federation, execution time, resource efficiency

I. INTRODUCTION

Emerging technologies, such as connected and autonomous
vehicles (CAVs), healthcare IoT systems, real-time augmented
reality, smart cities, Industry 4.0, etc, rely on edge comput-
ing resources, to offload their computational intensive tasks,
improve response times and achieve real-time insights. To
this end, Cloud Computing providers, such as Amazon Web
Services (AWS), Microsoft Azure, Alibaba Cloud, Google
Cloud, Dell Technologies Cloud, IBM Cloud, etc., have re-
cently introduced various portable edge devices and begun
offering cloud computing services directly on these edge
devices. Examples of these portable edge devices include,
AWS Snowcone1 (with 8TB, 2vCPU and 4GiB of resources),
HIVECELL2 (with 500GB 6vCPU 8GiB of resources), etc.
Each weighs about 2.1∼ 3 kg, and capable of accelerated
artificial intelligent (AI) inferencing.

1https://aws.amazon.com/snowcone/
2https://hivecell.com/hardware/

Consequently, edge computing (EC) systems are recently
exploiting attaching these portable edge devices on low al-
titude platform (LAP) unmanned aerial vehicles (UAVs) or
drones as aerial deployments, to execute complex resource-
hungry use cases. A state-of-the-art drone technology, called
Drone-in-a-box3, is most suitable for aerial EC deployment.
A drone-in-a-box system can be deployed autonomously from
a box that serves as a landing pad and charging base. After
executing all its tasks, it returns to its box. However, a typical
drone has a limited flight time due to power factor, which can
lead to loss of job if it is not taking into consideration [1]. The
critical issue is how to optimize both the drones’ flight time
and application execution on the attached edge device(s) in a
timely manner, without jeopardizing application performance.

Most recently, research on EC has proposed a machine
learning (ML) technique that trains an algorithm across mul-
tiple edge deployments holding local data samples, without
exchanging them [2], [3]. This is called Federated or Col-
laborative Learning. Models learned in such way promise of
greatly improving usability by powering more functionalities
and intelligent applications [4]. However, efficient orchestra-
tion of complex dependencies among tasks in such individ-
ual deployments is challenging due to constrained resource
capabilities, vendor lock-in, availability factors, etc. Existing
research on edge federated/collaborative learning, i.e., [2], [3]
do not consider the ability of keeping edge resources running
across different edge deployments in a single pool, such that
these resources can be holistically managed and controlled
from a single federated plane, vendor lock-in situations can
be eliminated, and applications can be deployed dynamically
across the resources. Note that edge FL technique produces
and shares a single global inference model among participating
edge through a remote/central server, while the merging of
resources among participating edge, such that these resources
are holistically managed and controlled from a single federated
plane is refereed to as Edge Federation (EF). EF minimizes
latency by serving users from the edge deployment that is the
closest to them [5].

Nevertheless, to execute complex applications (i.e., multi-
dependent tasks, where each task has diverse resource request)
pose several challenges: (i) Given a federated clusters running

3https://en.wikipedia.org/wiki/Drone in a Box



across multiple drones, to automatically decide where a job or
multi-task should be deployed is a challenging task. Previous
works [6], [7] assume that each server can only execute one
task or job at any time and schedules each task individually,
which could result to higher communication overhead. (ii) The
default schedulers deploy tasks randomly on nodes (virtual
machines) that have sufficient resource availability without
considering dependent tasks, which results in longer execution
time, resource wastage through underutilized nodes, and a re-
duction in the number of tasks that can be executed, given the
available resources. In addition, it does not pack tasks tightly
on available resources in order to achieve high utilization.

This motivates our research to address these limitations
and to extend the state-of-the-arts by proposing AerialEdge,
which considers jointly task dependencies, heterogeneous re-
source demands, and flight times for drones in a federated
autonomous aerial EC-enabled learning system. Specifically,
we propose a federated multi-output linear regression models
to estimate multi-task resource requirements and execution
time, and a multi-task dispatching policy called Closest to
select the closest drone deployment having congruent resource
availability and flight time to execute ready tasks at a given
time and to autonomously deploy the selected drone to the
needed location. We also propose a variant bin-packing op-
timization through gang-scheduling of multi-dependent tasks
that co-schedules and co-locates multi-tasks tightly on nodes
to fully utilize available resources. We show that the proposed
AerialEdge can minimize the actual completion time of tasks
using minimum resources, such that the actual completion
time is much less than the drones’ flight time. In summary,
to achieve our AerialEdge implementation, we address the
following critical areas:

• Federated aerial edge state service: to stream all changes
in the drones and the attached edge devices across the
federated deployments, and to enable us to query the state
of drones, in terms of flight time availability, and resource
availability, so that informed decisions can be made on
multi-task orchestration and co-location.

• Dynamic optimization strategy: to efficiently manage
tasks across the federated edge resources or clusters, and
to enable us to co-locate multi-tasks for fully utilizing
available resources [8]–[10].

• Extensive experimentation and comparison: to evaluate
AerialEdge on the real-world Alibaba Cluster data trace,
and to compare it with existing deployment approaches.

II. PRELIMINARIES AND OUR MOTIVATION

In the light of the prior research, we first present some
preliminaries and related work, and discuss our motivation.

A. Edge Federated Learning

The main goal of edge FL is to collaboratively learn a
model from data stored across distributed deployments D =
D1, ...,DN , where each dataset Di = {(xi, yi)}

n
i=1 contain a
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Fig. 1: (a) The architecture of edge federated learning system,
(b) The architecture of a merged edge-enabled federated
learning system.

D-dimensional tensor4 of data feature xi ∈ R1×d, and C-
dimensional tensor data label yi ∈ R1×c. A conventional
method is to aggregate the datasets in one server or datacenter,
i.e., D = D1 ∪ ... ∪ DN and utilize it to train a model θS.
In edge FL, the participating members/deployments indepen-
dently train their models θLi , based on their local dataset, ,
as shown in Fig. 1(a). Then at time t ≥ 0, the participating
deployments send their models to the remote/central server,
i.e.,

∑N
i=1 θLi

, where the global update θG is computed by
aggregating all the deployments models:

θtG =

N∑
i=1

θLi , (1)

In return, the global model is distributed to the participants,
where they use it to update their current models. Let the
updated local models be θtL1

, θtL2
, ..., θtLN

, therefore the update
at the ith deployment can be expressed as Θt

Li
= θtLi

− θLi
.

At time t+ 1, the updates from each participant is sent back
to the central server, i.e.,

∑N
i=1 ΘLi

, where a global update is
computed:

θt+1
G = θtG +

N∑
i=1

ΘLi
. (2)

For dataset Di at deployment i, the learning problem is to
minimize the loss function:

f(Θ∗L) = arg min
ΘL∈Rd×c

1

2n

n∑
i=1

‖xiΘL − yi‖22 +
λ

2
‖ΘL‖2F , (3)

where λ and ‖ · ‖F denote the regularization parameter and
Frobenius norm respectively. Equation (3) is commonly solved
using gradient-descent techniques, where the model is updated
sequentially until convergence, i.e., Θt+1

L = Θt
L−η( gn+λΘt

L),
where η denotes the learning rate, g = 1

nXT (XΘr
L − Y)

denotes the gradient of the loss function, X = [xT1 , ..., x
T
n ]
T

4In ML, a tensor is a multidimensional array and is a generalization of
matrices and vectors.
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Fig. 2: DAG of a video processing job.

and Y = [yT1 , ..., y
T
n ]
T denote the feature set and label set

respectively.
Although FL promises to produce a high-quality global

model, however there is no resource coordination among the
participants.

B. Merged Edge-Enable Federated Learning

This research focuses on Job orchestration in
merged/federated edge computing enabled learning system,
as shown in Fig 1(b). In the merged edge-enabled FL
approach, participating deployments can potentially merge
their resources, such that all the resources running across
different edge deployments can be holistically managed and
controlled, and applications can be deployed dynamically
across the resources. In a merged edge clusters setup, the
Federation Control Plane (FCP) is deployed on one of the
clusters which serves as the host cluster. Participating
clusters or members can be added or removed from the FCP.
We assume that datasets D across distributed deployments
share the same feature and label space, i.e.,

xi = xj , yi = yj , ∀Di,Dj , i 6= j. (4)

First, we propose a merged edge-enabled FL system, whereby
the participating deployments can collaboratively learn a
shared global model through the host cluster, thereby
eliminating the need for a central server (i.e., the host
cluster serves as the models aggregator). Secondly, we
propose the use of this model, i.e., a multi-output linear
regression model, to estimate multi-task resource requirement
and execution time, for the selection of the closest deployment
within the federation having congruent resource availability
and flight time to execute ready tasks at any given time.

C. Task Dependency-Awareness

Dependency-awareness is critical for achieving efficient
multi-task orchestration, i.e., dispatching and co-location.
Most of the batch workloads of Alibaba cluster trace5 for
example are directed acyclic graphs (DAGs), and only some
of them are independent. The average Alibaba cluster trace
job has a dependency depth of 10. A job is typically consisted
of several tasks whose dependencies are expressed by DAG.
Clearly, if a task A is depending on task B, then task A
cannot start until all the instances of task B are completed.
For example, the DAG of a video processing job is shown in
Fig. 2. The Job consists of 12 tasks. Knowledge about task

5https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace-2018.md

characteristics, such as resource demands and dependencies,
is necessary to pack or co-locate tasks effectively in a node or
cluster, ultimately to minimize the response times and improve
resource utilization [8], [9], [11]. Hence a key objective is
to reduce the execution time of such tasks and to improve
resource utilization by considering the inter-task dependency
and resource demands.

D. Our Motivation

To illustrate the advantage of AerialEdge, we show a
motivating example using Fig. 2. It shows each task of a
video processing job, with its actual execution time Eexi

and resource demand (CPU and memory 〈c,m〉). Our aim
is to deploy the job on a node with requisite available
resources, such that dependent tasks can communicate faster,
compared to other deployments across different nodes. Here,
we assume that the node has the requisite available resources
to accommodate all the tasks, i.e., 〈8, 5〉. We illustrate the
scheduling approach AerialEdge and its execution time to-
gether with three other state-of-the-art approaches, namely,
Spear [11], Graphene [12] and Tetris [10], as well as the
random approach. Our AerialEdge achieves the lowest ex-
ecution time of

∑n
i=1Eexi

/n (n is the number of tasks),
due to the following reasons: (i) our approach utilizes gang
scheduling [13], which co-schedules all the tasks at a time,
and (ii) our packing strategy explores the available nodes
to find the best one which has requisite available resources
(CPU and memory) to execute all the tasks by packing or
co-locating them tightly on the node. By contrast, Spear and
Tetris deploy the same tasks individually or in parts, resulting
in execution times of

∑n
y=1Eexy

+
∑m
z=1

∑k
i=1Eexiz

/k and∑m
z=1

∑n
i=1Eexiz/n, respectively. In particular, Spear picks

tasks along the critical path (CP) in the DAG. The CP of a
task is the longest path from the task to the output. As an
example, given a job with 100 DAGs, Spear deploys about
15% of the tasks at a time. Tetris on the other hand does
not consider the task dependencies. It deploys at least 50%
of any given tasks at a time and focuses on packing tasks
on nodes to achieve high resource utilization. Graphene, a
state-of-the-art dependency-aware scheduler, considers both
task dependencies and resource packing. It first co-schedules
some tasks identified as troublesome tasks and then places the
rest of the tasks afterwards, resulting in an execution time
of
∑n
x=1Eexx +

∑m
z=1

∑k
i=1Eexiz/k. The random approach

deploys a task randomly to any available node, and assumes
a node can only execute a task at a time, resulting in an
execution time of

∑n
i=1Eexi

. Generally, delay in scheduling
dependent tasks directly impacts job completion time, and
utilizing gang scheduling is beneficial for overall performance.

III. PROPOSED AERIALEDGE

In this section, we detail our proposed AerialEdge for
achieving high resource utilization and minimizing the exe-
cution times of applications deployed in federated aerial edge
resources. Our system model is depicted in Fig. 3.
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Resource request 
estimation;

Dhc,mi
edgei

Dhc,mi
edgei EDGEEDGE

Fig. 3: Orchestration overview of AerialEdge.

A. System Model

Federated learning takes advantage of historical data across
participating deployments to produce a high-level model. As
multi-dependent containerized applications are admitted into
the system, their resource requirements and execution time are
estimated using linear regression model, in this case a multi-
output linear regression model. The model is run on the multi-
task features F, such as type of tasks ε, dependency depth γ,
data size δ, to estimate the values, i.e.,

Θ(F) = [{T̃ 〈c,m〉}
γ

i=1, {Ẽex}
γ

i=1], (5)

where T̃ 〈c,m〉 is the estimated resource requirements (in terms
of CPU and memory) and Ẽex is the estimated execution
time, and then to deploy it to the closest edge with congruent
resource availability and flight time. To build this predictor
Θ, we train a ML model based on Keras6 with historical data
from previously executed tasks/jobs. Keras is a library which
wraps TensorFlow7 complexity into simple and user-friendly
API. The advantage of using containers to host applications
at the edge is that these applications can be executed within
its estimated resource requirement 〈δ, c,m〉, where δ denotes
the size of data, c denotes CPU requirement and m denotes
memory requirement, in any edge deployment regardless of
the resource type, configuration or vendor/provider.

Therefore, given a federated aerial edge deployment EDGE,
where each individual edge deployment Dedgei is a cluster
of container-instances (i.e., edge device(s) with virtualized
container-optimized nodes) with total resource capacity or
availability D〈δ,c,m〉edgei

, our aim is to deploy ready applications,
C, to the closest drone deployment with minimum flight time
f li from its box to the location l, having sufficient flight time
fi and resource capacity or availability to execute the tasks,
such that the tasks are executed concurrently, namely,

C⇒ Dedgei? , (6)

where

Dedgei?=arg min
Dedgei

∈EDGE

{
f li : f li <fi, D

〈δ,c,m〉
edgei

sufficient
}
. (7)

6https://keras.io/
7https://www.tensorflow.org/

Existing works on UAV or drone-based task offloading and
execution in EC systems [14], [15] do not consider drones’
flight time and assume a drone can fly for unlimited amount of
time, which can lead to loss of job due to drones’ limited flight
time [1]. Therefore, given a federated edge deployment EDGE
and a set C of inter-dependent containerized applications,
where each application T ∈ C serves as a task with its esti-
mated resource demand and execution time denoted as T̃ 〈c,m〉

and Ẽex respectively, our goal is to use the estimated values
for all the tasks to select an edge having congruent resource
availability and flight time, such that we can intelligently
schedule the tasks to minimize the actual execution time as
well as to achieve high resource utilization efficiency.

For a task T , let Es and Ec denote its actual starting and
completion times, respectively. Therefore, the actual execution
time of T is:

Eex = Ec − Es. (8)

AerialEdge utilizes the gang scheduling [13] strategy to co-
schedule all ready applications at a time. Hence the aggregate
execution time of a multi (n)-task C is given as

∑n
i=1

Eexi

n .
The federated edge system EDGE consists of all N partici-
pating individual edge deployments Dedgei , 1 ≤ i ≤ N , i.e.,

EDGE =
∑N

i=1
Dedgei . (9)

Given a cluster of container-instances or nodes I in each
deployment Dedgei , let I〈c,m〉i denote each node’s resource
capacity or availability. For the purpose of simplicity, we will
focus on the CPU and memory requirements/capacity of all
tasks and resources. That is, the storage is sufficient for the
size of data input δ, and hence the requirement 〈δ, c,m〉 is

TABLE I: Common Notations
Notation Description
EDGE Federated edge deployments
T Individual application or task
〈δ, c,m〉 Storage, CPU and memory resources
C A set of containerized applications
T̃ 〈c,m〉 Task resource requirements estimation
Dedgei Individual edge deployment or cluster
Dedgei?

Closest edge deployment or cluster
Ii Container-instance or node in a cluster
I
〈c,m〉
i Resource capacity or availability of a node
D

〈c,m〉
edgei

Resource capacity/availability in an edge

D
〈c,m〉
edgeiU

Resources used for execution

D
〈c,m〉
edgeiARU Actual resources usage of jobs

Es, Ec Application/task start, completion time
Eex Application or task execution time
Ẽex Application or task execution time estimation
fi Drones’ flight time
f li Drones’ flight time from its box to location
ρ
〈c,m〉
C Cluster resource utilization
ρ
〈c〉
C , ρ〈m〉

C Cluster CPU, memory resource utilization
εJ The type of job
γJ Dependency depth of a job
F Set of multi-task features
J , J A Job, A set of Jobs
u, U A User, A set of Users



simplified as 〈c,m〉. The estimated resource demands and ex-
ecution time of k containerized applications to be orchestrated,∑k
i=1 T̃i

〈c,m〉
and

∑k
i=1 Ẽexi , the update state of the EDGE

clusters, i.e., the resources availability D
〈c,m〉
edgei

, and drones’
flight time fi are important information needed in order to
make informed decision on where to deploy ready applications
C at time t. Our strategy chooses the closest edge having requi-
site capacity and fight time. In real scenario where multi-users
u ∈ U offload multi-tasks with multi-dependency at t, these
applications are deployed as a multi-Job J, where each Job J is
a collection of each user’s multi-tasks, with collective resource
demand estimation denoted as

∑k
i=1T̃i

〈c,m〉
= T̃ 〈c,m〉′, and the

aggregate execution time estimation as
∑k
i=1Ẽexi

= Ẽex′. We
can deploy all users’ Jobs with dependency on the same cluster
by jointly considering

∑
J∈J T̃

〈c,m〉′, D
〈c,m〉
edgei

,
∑
J∈J Ẽex′ and

fi. Therefore, the aggregate of the actual execution time of a
multi-job J is given as:∑

J∈J

k∑
i=1

Eexi

k
= Eex′, (10)

and we can deploy a multi-job to the closest edge, such that:

J⇒ Dedgei? . (11)

The resource utilization of the cluster for multi-job deployment
is thus

ρ
〈c,m〉
C =

∑
J∈J T̃

〈c,m〉′

D
〈c,m〉
edgei

. (12)

B. Problem Formulation

The basic notations adopted are described in Table II.
AerialEdge includes an intelligent scheduling, which packs
tasks tightly on nodes to fully utilize available resources at
edge clusters, while considering task dependencies.

Our objectives are to maximize the cluster resource uti-
lization, ρ〈c,m〉C of (12), and to minimize the overall actual
execution time of tasks, Eex′ of (10), subject to certain
constraints.

Constraints: First, the collective resource demand or request
estimation of a multi-job J or multi-task at any given time t
cannot exceed the collective resource capacity or available in
the cluster: ∑

J∈J
T̃ 〈c,m〉′ ≤ D〈c,m〉edgei

, ∀〈c,m〉. (13)

Second, the aggregate execution time estimation of a multi-
job J or multi-task at any given time t cannot exceed the flight
time availability of any selected drone:∑

J∈J
Ẽex′ ≤ fi, ∀Dedgei ∈ EDGE. (14)

Third, unused or inactive container-instance or node Ii ∈
Dedgei in the cluster would be shut down. All the nodes are
in one of the two states: Active and Inactive. An Active node
is a node that is ready to accept jobs or has at least a job
being started, executing or completing. An Inactive node is a
node that is not ready to accept jobs and not having at least a

job that is being started, executing or completing. These two
states can be expressed as follows:

∀c,m β (Ii) =

{
1, Active if Ji ∈ [Es, Ec, Eex],
0, Inactive if Ji /∈ [Es, Ec, Eex],

(15)

where the indicator β (Ii) = 1 indicates that the node Ii is
ready to accept new jobs, and at least a job Ji is being
started, executing or completing, i.e., Ji ∈ [Es,Ec, Eex], on
Ii; otherwise β (Ii)=0.

Optimization formulation: Hence, maximizing utilization of
a cluster depends on application orchestration:

Maximize ρ
〈c,m〉
C =

∑
J∈J T̃

〈c,m〉′

D
〈c,m〉
edgei

, (16)

subject to J⇒ Dedgei? , ∃, (17)∑
J∈J

Ẽex′ ≤ fi, ∀Dedgei
∈EDGE, ∃, (18)

β (Ii)∈ {0, 1}, ∃, (19)∑
J∈J

T̃ 〈c,m〉′ ≤ D〈c,m〉edgei
, ∀〈c,m〉. (20)

On the other hand, the overall actual execution time can be
minimized depending on orchestration:

Minimize
∑
J∈J

k∑
i=1

Eexi

k
= Eex′, (21)

subject to J⇒ Dedgei? , ∀〈c,m〉. (22)

C. Algorithm

Our AerialEdge solution consists of three components: the
resource requirement and execution time estimations, dispatch-
ing, and packing. The values for multi-job required by the
dispatcher are first estimated. Our dispatching strategy is based
on the orchestration of ready tasks to the closest cluster
or drone deployment with the minimum flight time f li to
arrive at location l, and having requisite available resources to
accommodate the tasks, while our packing strategy involves
packing these tasks tightly on nodes or container-instances
to fully utilize the available resources. Below we detail the
procedures of the execution time estimation, dispatching, and
co-location or packing.

Resource requirement and execution time estimation: When
the set of tasks C are ready to be deployed, the first step is
to estimate the collective resource requirement T̃ 〈c,m〉′ and
execution time Ẽex′. We have trained a ML regression model
with historical data for this prediction task. The input to the
prediction model is the set of multi-task features F, such as
type of tasks ε, dependency depth γ, and data size δ, and
the output is the resource requirement and execution time
estimation. Algorithm 1 describes the estimations for multi-
job. Once the estimation values are extracted, they are used in
the dispatching stage.

Dispatching: Our policy is to dispatch a set of tasks to the
closest edge Dedgei? with the congruent resource capacity or
availability and flight time availability for any selected drone,
i.e., T 〈c,m〉′ ∼= D

〈c,m〉
edgei?

and Ẽex′ ∼= fi? , respectively. Our



Algorithm 1 AerialEdge: Resource and Execution Time Esti-
mation
Input: Multi-Job J released at time t in location l, set of
features F
Output: Resource requirement T̃ 〈c,m〉′ and Execution time
estimation Ẽex′ of a multi-job

1: for Ji ∈ J do
2: Type of Job of Ji = εJi
3: Data size of Ji = δJi
4: Dependency depth of Ji = γJi
5: for Ti ∈ Ji do
6: MLR

(
F
)
Ti

= T̃
〈c,m〉
Ti

7: MLE
(
F
)
Ti

= ẼexTi

8: end for
9: T̃

〈c,m〉′
Ji

= T̃
〈c,m〉′
Ji

+ T̃
〈c,m〉
Ti

10: ẼexJi
′ = ẼexJi

′+ ẼexTi

11: end for

Algorithm 2 AerialEdge: Dispatching Policy
Input: Multi-Job J released at time t within location l,
federated edge-drone deployments Dedgei ∈EDGE in location
l and available flight time fi of drones
Output: Closest drone with congruent flight time and resource
availability, such that J⇒ Dedgei?

1: for Dedgei ∈ EDGE do
2: if

∑
J∈J T̃

〈c,m〉′ ∼= D
〈c,m〉
edgei

and
∑
J∈J Ẽex′ ∼= fi then

3: if Dedgei? = arg min
Dedgei

∈EDGE

(
f li
)

then

4: J⇒ Dedgei?

5: else
6: Dispatch J to next closest edge
7: end if
8: end if
9: end for

strategy utilizes the closest heuristic to minimize the overall
response time. This is based on the orchestration of ready tasks
to the closest deployment or cluster having requisite available
resources to execute the tasks. Closest is a widely adopted
heuristic or principle in distributed systems, since mobile
devices often need to communicate only with the closest or
nearest edge-clouds. Most of the works on edge-clouds, e.g.,
[8], [9], [16], adopt the closest principle as the task offloading
policy.

Algorithm 2 describes the dispatching procedure in 3 steps.
First, it captures the collective resource demand of ready multi-
task/job and location of users, and updates the state of EDGE
resources. Second, it selects the closest edge having congruent
resources (line 3). Lastly, it dispatches the multi-task/job to the
selected cluster (line 4). If the closest edge does not have the
required resources, the selection procedure is repeated until the
next closest edge having congruent resources is found, and the
multi-task/job is dispatched to the next closest edge (line 6).

Packing: At the edge cluster, we develop a new packing
algorithm which uses the cluster resource capacity or availabil-

ity and multi-job estimated resource requirement information
to provide better packing, such that more efficient resource
utilization is achieved in the federated system. Specifically, the
gang scheduling is adopted to co-schedule all the multi-jobs
at a time, while the variable-sized multi-capacity bin-packing
(VSMCBP) algorithm [17] places the jobs on nodes by co-
locating jobs tightly on each node. As multi-jobs arrive at
the cluster Dedge? , the VSMCB algorithm scans the list of the
jobs, and maps these jobs to nodes. The key difference between
the VSMCBP and other bin-packing algorithms, such as first
fit bin packing (FFBP) [18], is the criteria used to select which
jobs should be co-located to fully utilize any given node(s).
The FFBP algorithm requires the next job to be packed on the
current node, and if this cannot be done, a new node is used.
The VSMCBP algorithm on the other hand scans the given list
of jobs and maps jobs randomly to nodes in full utilization.

Multi-job J is a collection of several jobs J ∈ J. These
jobs are packed tightly on nodes, so that fewer nodes are used
in full utilization and all the jobs are executed concurrently.
Hence our packing strategy is to solve the problem:

Minimize
∑

Ii∈Dedge?

Ii, (23)

subject to J⇒ Dedge? , (24)∑
J∈J

Γ [J, Ii] · T̃ 〈c,m〉′ ≤ I〈c,m〉i , ∀c,m, (25)

Γ [J, Ii]=

{
1, if J ⇒ Ii,
0, otherwise, ∀Ii ∈ Dedge?.

(26)

The constraint (25) indicates that the total estimated resource
requirements of co-located jobs cannot exceed the node re-
source capacity or availability, while the condition (26) means
that if job J is deployed on the node Ii, the indicator returns
a value of 1; otherwise, 0 is returned. This is to ensure that
each job is placed in exactly one node. The powerful Google
OR-Tools8, which provides an interface to several mixed-
integer programming (MIP) solvers, i.e., coin-or branch and
cut (CBC)9, is employed to solve this VSMCBP problem for
multi-job packing.

Algorithm 3 describes the packing strategy which packs
tasks tightly on nodes, such that for any given tasks/jobs,
fewer nodes are used for execution. It takes the estimated
resource demand of multi-task/job and resource availability
of container-instances or nodes as input, then scans through
the multi-task/job to select jobs having congruent resources
matching the active node in full utilization. This process is
repeated until all jobs are scheduled on nodes.

IV. PERFORMANCE EVALUATION

We evaluate our AerialEdge on real-time Alibaba cluster
data traces, and compare its performance with three existing
state-of-the-arts, and the Random approach.

8https://developers.google.com/optimization
9https://projects.coin-or.org/Cbc



TABLE II: Federated-Edge Resource Capacities
Deployments Attached Edge Devices Total Weight CPU Capacity Mem Capacity
Drone 1 AWS Snowcone + Acer aiSage + Huawei AR502H 3.5kg 12 Cores 8 GiB
Drone 2 Lenovo ThinkSystem SE350 + Dell 3000s 5.75kg 18 Cores 258 GiB
Drone 3 HPE Edgeline EL300 + HIVECELL(x2) 7.6kg 16 Cores 24 GiB
Drone 4 INTELLIEDGE G700 + Azure Stack Edge mini + Dell 5000s 9.6kg 26 Cores 72 GiB
Drone 5 Azure Stack Edge mini(x2) + INTELLIEDGE G700 11.8kg 40 Cores 112 GiB
Drone 6 Azure Stack Edge mini(x4) + HIVECELL(x2) 15.4kg 76 Cores 208 GiB

Algorithm 3 AerialEdge: Multi-job packing
Input: Multi-Job J dispatched to closest edge cluster Dedge? ,
resource capacity or availability I〈c,m〉i of all nodes Ii∈Dedge?

Output: Multi-Job co-location through packing, such that
fewer container-instances or nodes are used in full utilization,
i.e., Minimize

∑
Ii∈Dedge?

Ii

1: for Ii ∈ Dedge? do
2: if β (Ii)= 1 then
3: I

〈c,m〉
i = 〈c,m〉, i.e., resource availability

4: for J ∈ J do
5: if Γ [J, Ii] = 1 then
6: J ⇒ Ii
7: I

〈c,m〉
i = I

〈c,m〉
i + T̃ 〈c,m〉′

8: end if
9: end for

10: if I〈c,m〉i ≥ 〈c,m〉 then
11: i = i+ 1
12: end if
13: end if
14: end for

A. Setup

Computing Resources: We use 6 distributed and federated
aerial edge deployments (autonomous drones), as summarized
in Table II. The computing resources are made up of heteroge-
neous container-optimized nodes (container-instances). These
drones have various resource capacities (up to 76 CPU cores
and 208 GiB of memory) and weight (up to 15kg). We assume
the selected drone has congruent flight time availability.

Applications: To evaluate our framework, we employ use-
cases of real-world CPU and memory intensive data-trace from
Alibaba, which records the activities of both long running
containers (for Alibaba’s e-commerce business) and batch
jobs across an 8-day period. The data trace contains about
14,295,731 tasks (with about 12,207,703 dependencies) and
4,201,014 jobs, among which we randomly choose 46 jobs
with total of 198 tasks (including dependencies) for our
experiments.

B. Heuristics and Baselines

In our experiments, we assume that all tasks are of high
priority. Our strategy utilizes the closest heuristic to minimize
the overall response time. This is based on the orchestration
of ready tasks to the closest drone deployment or cluster
(i.e., with the smallest flight time to the needed location)
having requisite flight time and available resources to execute
the tasks. Closest is a widely adopted heuristic or principle
in distributed systems, since mobile devices often need to

communicate only with the closest or nearest edge-clouds.
Most of the works on edge-clouds, e.g., [8], [9], [16], adopt
the closest principle as the task offloading policy.

In comparison of our AerialEdge with the state-of-the-art
dependency-aware task orchestration and packing strategies,
therefore, we fix the dispatching policy to that of AerialEdge,
i.e., the closest heuristic. We compare our scheduling strat-
egy with the following state-of-the-art benchmarks, and the
Random approach.

1) Graphene [12] is a state-of-the-art approach for
dependency-aware task orchestration problems. First, it
co-schedules some tasks identified as troublesome tasks.
Then the remaining tasks are divided into parent, child
and sibling subsets, which are placed afterward to ensure
compactness and to respect dependencies. It deploys
about 40% of a given DAG at a time.

2) Tetris [10] is an existing state-of-the-art approach for
task packing problems, although it does not consider the
task dependencies. It deploys at least 50% of any given
tasks at a time and primarily focuses on packing tasks
on nodes mainly to achieve high resource utilization.
For every task, it computes a packing score pScoret,
as a dot product between the task resource requirements
vector and the node’s resource availability vector.

3) Spear [11] is a dependency-aware task scheduler, which
applies Monte Carlo Tree Search (MCTS) with deep
reinforcement learning. It utilizes the Critical Path (CP)
to pick tasks along the CP in the DAG. Spear deploys
about 15% of the tasks at a time.

4) Random approach deploys a task randomly to any
available node, and assumes a node can only execute
a task at a time.

C. Deployment Results and Performance Comparison

Our investigation focuses on CPU and memory us-
age/utilization, task deployment, scheduling and execution
times. The multi-job execution information across the feder-
ated aerial edge deployments are listed in Table III. The results
obtained by AerialEdge, Graphene, Tetris, Spear and Random
are compared.

1) Actual Resource Usage and Resource Utilization: We
first introduce a performance metric by defining the actual
resources usage of jobs D〈c,m〉edgeiARU

as the ratio of the resources
used for execution D〈c,m〉edgeiU

over the edge’s resource capacity
or availability D〈c,m〉edgei

:

D
〈c,m〉
edgeiARU

=
D
〈c,m〉
edgeiU

D
〈c,m〉
edgei

. (27)



TABLE III: Multi-Task Execution in Federated Aerial Edge

Dedgei J C γJ T̃ 〈c,m〉 Ẽex

Drone 1 1 17 17 〈8.5, 3.5〉 384.9
Drone 2 3 24 (1, 17] 〈14.5, 5.77〉 456.23
Drone 3 5 16 (1, 10] 〈13.75, 4.94〉 506.75
Drone 4 8 26 (1, 10] 〈21.45, 7.74〉 609.9
Drone 5 13 38 (1, 8] 〈34, 12.92〉 387.83
Drone 6 16 77 (1. 16] 〈64.05, 27.57〉 1261.65

Another metric is the resources utilization ρ〈c,m〉C given in (12).
Similarly, ρ〈c,m〉C includes the CPU utilization ρ

〈c〉
C and the

memory utilization ρ〈m〉C , which are defined respectively by

ρ
〈c〉
C =

∑
J∈J T

〈c〉′

D
〈c〉
edgeiU

, (28)

ρ
〈m〉
C =

∑
J∈J T

〈m〉′

D
〈m〉
edgeiU

, (29)

where
∑
J∈J T

〈c〉′ and
∑
J∈J T

〈m〉′ are the total collective
CPU and memory demands, respectively.

Fig. 4 compare the resource usage of AerialEdge with the
three baseline schemes, and the Random approach. It can be
seen that AerialEdge and Tetris use the fewest resources in the
clusters, better than Graphene, Spear and Random, while Spear
and Random consume the highest resources in the clusters.
The CPU and memory resource utilization comparisons are
shown in Figs. 5 and 6, respectively. Again, AerialEdge
and Tetris are superior than Graphene, Spear and Random,
achieving the highest resource utilization, while Spear and
Random achieve the lowest resource utilization. We now exam
the individual clusters in detail. Fig. 7 shows the percentage
of tasks deployed on each drone.

In Drone-1 edge-cluster, we deploy 1 job with a total of
17 tasks, where the job has a task dependency depth of 17.
AerialEdge first optimizes the deployment by co-locating as
many jobs in a node as possible, to fully utilize the available
resources in the node. Utilizing the gang scheduling strategy,
AerialEdge co-schedules all the 17 tasks at a time. These tasks
are tightly packed on nodes using the VSMCBP algorithm,
which use 75% of the resources. Using the same configuration
for the baseline schemes, Graphene and Tetris also use 75%
of the resources while Spear use 92%. The Random approach
utilize all resources in the cluster. Importantly, AerialEdge
gain faster scheduling and execution times compared to the
three baseline schemes and the Random approach, mainly due
to the following reasons: (i) AerialEdge utilizes the Gang
Scheduling strategy, which co-schedules all the tasks at a
time, and (ii) its Packing Strategy explores the available nodes
to find the best nodes which have requisite available resources
to execute all the tasks by packing them tightly on each node.
Figs. 8 and 9 compare the actual scheduling and execution
times respectively, of AerialEdge with the baseline schemes,
and the Random approach. We observed that AerialEdge
achieves faster scheduling and execution up to 42 times and 15
times respectively, compared with the state-of-the-art schemes.
Compared with the Random approach, AerialEdge achieves
faster scheduling and execution times of 393 times and 77
times, respectively.

Drone-2 cluster is a memory intensive cluster. Here, 3
jobs with a total of 24 tasks are deployed, where each job
has a task dependency in the range of (1, 17]. We optimize
the deployment to ensure that resources are fully utilized.
AerialEdge consume 11% fewer resources than Graphene
Spear and Random approach, and 2% fewer resources than
Tetris. AerialEdge and Tetris also gain 10% higher CPU
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utilization over Graphene, Spear and Random, respectively, as
well as 1% higher memory utilization than Graphene, Spear
and Random, respectively. More significantly, AerialEdge is
1.1, 2, 2.7 and 31 times faster in the scheduling time than
Tetris, Graphene, Spear and Random, respectively, while it is
2, 4, 5 and 24 times faster in the execution time over these
state-of-the-art schemes and Random approach, respectively.
It is worth recapping that in the case of Random, the results
of actual resource usage, resource utilization, scheduling and
execution times are for 38% of the tasks that it is able to
deploy on Drone-2.
Drone-3 has a total load of 7.6kg, and it is made up of

1 HPE Edgeline EL300 and 2 HIVECELL edge devices,
with total resource capacity of 16 Cores and 24 GiB. In this
cluster, we deploy 5 jobs, with total 16 tasks, where each job
has a task dependency range (1, 10]. AerialEdge and Tetris
reduce resource usage by 12% compared with Graphene, Spear
and Random. AerialEdge and Tetris achieve 12% and 3%
higher CPU and memory utilization, respectively, compared
to Graphene, Spear and Random. In terms of both scheduling
and execution times, AerialEdge is about 4.5 and 2.2 times
faster than Tetris. It is 6.7 times and 3.4 times faster than
Graphene as well as 13 times and 5.5 times faster than
Spear, in the scheduling and execution times, respectively. Not
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surprisingly, Random has the worst scheduling and execution
time performance.
Drone-4 cluster is a high capacity cluster. Here, 8 jobs

with total of 26 tasks are deployed, where each job has a
dependency depth range (1, 10]. It can be seen that AerialEdge
and Tetris consume 7% fewer resources than Graphene and
Spear. AerialEdge and Tetris also achieve 9% higher CPU
utilization as well as 1% higher memory utilization, over
Graphene and Spear, respectively. Random can only deploy
50% of the tasks. By contrast, AerialEdge, Tetris, Graphene
and Spear all deploy 100% of the tasks. In terms of scheduling
time, AerialEdge is approximately 2 times, 3.2 times , 5.3
times, and 41.3 times faster than Tetris, Graphene, Spear and
Random, respectively. In terms of execution time, AerialEdge
is about 2 times, 4 times, 6 times and 26 times faster than
Tetris, Graphene, Spear and Random, respectively. Again Ran-
dom has the worst scheduling and execution time performance.
Drone-5 and Drone-6 are the largest clusters in terms of

resource and load capacity. We deploy 13 and 36 jobs in these
two clusters, respectively. The total number of tasks deployed
in Drone-5 cluster is 38, while total of 77 tasks are deployed
in Drone-6 cluster. The task dependency depth of each job
is in the range of (1, 16]. In these two clusters, AerialEdge
use up to 13% less resources compared with the baselines and
the Random approach. Specifically, Spear and Random used
up all available resources, with some nodes running under-
utilization. AerialEdge and Tetris achieve the highest resource
utilization and deploy 100% of the tasks in both clusters.
Random approach could only deploy 53% and 49% of all tasks
in Drone-5 and Drone-6, respectively. We observed that
AerialEdge achieves faster scheduling and execution of up to
42 times and 15 times than the baseline schemes in Drone-5
and Drone-6, and faster scheduling and execution of up to
393 times and 77 times than the Random approach in both
clusters.

2) Task Scheduling and Execution Times: The task schedul-
ing time, which is the time it takes to place multi-jobs/tasks
on the nodes in a cluster, is an important performance metric
to assess the federated edge clusters. Another even more
important performance metric is the aggregate job actual
execution time Eex′ defined in (10). Figs. 8 and 9 compare
the scheduling times and execution times, respectively, attained
by the four schemes. It can be seen that the scheduling times
are typically very small, and the execution times by contrast
are significantly larger. Across the federated edge clusters,
AerialEdge consistently achieves the fastest scheduling and
execution times, compared to the three benchmark strategies,
and the Random approach.

The significant advantage of AerialEdge in terms of aggre-
gate job execution time can be explained as follows. It deploys
sets of multi-jobs/tasks as a unit through the gang scheduling
strategy. These applications are deployed and executed con-
currently. By contrast, the benchmark approaches deploy the
given DAGs individually and in parts, resulting in longer time
to schedule and execute the overall tasks.

V. CONCLUSIONS

This paper has presented a dependency-aware multi-task
orchestration in a federated aerial edge computing-enabled
learning system, called AerialEdge, to improve resource effi-
ciency and enhance performance. We have utilized a resource-
specific dispatching strategy that selects the closest drone suit-
able for given job(s), and a bin packing optimization strategy
that co-locates tasks tightly on nodes to fully utilize available
resources. Our approach involves multi-task resource require-
ments and execution time estimations, federated aerial edge
clusters update state service, gang scheduling and co-location
on container-optimized. We have compared our approach with
the state-of-the-art dependency-aware task orchestration and
task packing baseline strategies. AerialEdge achieves both the
highest cluster resource utilization and the minimum execution
time for multi-tasks/jobs compared to the baseline strategies.
We observe that AerialEdge consumes up to 25% fewer
resource and achieves up to 23% high cluster utilization, while
leading to up to 393 times faster scheduling time and up to
77 times faster execution time.
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