
Received 12 June 2021; accepted 4 July 2021. Date of publication 7 July 2021;
date of current version 11 August 2021. The review of this article was arranged by Editor Di Yuan.

Digital Object Identifier 10.1109/OJVT.2021.3095467

Twin-Component Near-Pareto Routing
Optimization for AANETs in the North-Atlantic

Region Relying on Real Flight Statistics
JINGJING CUI 1 (Member, IEEE), HALIL YETGIN 2 (Member, IEEE), DONG LIU 3 (Member, IEEE),

JIANKANG ZHANG 4 (Senior Member, IEEE), SOON XIN NG 1 (Senior Member, IEEE),
AND LAJOS HANZO 1 (Fellow, IEEE)

1 Electronics and Computer Science Department, University of Southampton, SO17 1BJ Southampton, U.K.
2 Electrical and Electronics Engineering Department, Bitlis Eren University, Bitlis 13000, Turkey

3 School of Electronics and Information Engineering, University of Southampton, SO17 1BJ Southampton, U.K.
4 Department of Computing and Informatics, Bournemouth University - Talbot Campus, BH12 5BB Poole, Dorset, U.K.

CORRESPONDING AUTHOR: LAJOS HANZO (e-mail: lh@ecs.soton.ac.uk).

This work was supported through Projects EP/P034284/1 and EP/P003990/1 (COALESCE), in part by Engineering and Physical Sciences Research Council
projects, in part by the European Research Council’s Advanced Fellow Grant QuantCom under Grant 789028, and in part by the Slovenian Research Agency under

Grant P2-0016.
This article has supplementary downloadable material available at https://doi.org/10.1109/OJVT.2021.3095467, provided by the authors.

ABSTRACT Integrated ground-air-space (IGAS) networks intrinsically amalgamate terrestrial and non-
terrestrial communication techniques in support of universal connectivity across the globe. Multi-hop routing
over the IGAS networks has the potential to provide long-distance highly directional connections in the sky.
For meeting the latency and reliability requirements of in-flight connectivity, we formulate a multi-objective
multi-hop routing problem in aeronautical ad hoc networks (AANETs) for concurrently optimizing multiple
end-to-end performance metrics in terms of the total delay and the throughput. In contrast to single-objective
optimization problems that may have a unique optimal solution, the problem formulated is a multi-objective
combinatorial optimization problem (MOCOP), which generally has a set of trade-off solutions, called the
Pareto optimal set. Due to the discrete structure of the MOCOP formulated, finding the Pareto optimal set
becomes excessively complex for large-scale networks. Therefore, we employ a multi-objective evolutionary
algorithm (MOEA), namely the classic NSGA-II for generating an approximation of the Pareto optimal set.
Explicitly, with the intrinsic parallelism of MOEAs, the MOEA employed starts with a set of candidate
solutions for creating and reproducing new solutions via genetic operators. Finally, we evaluate the MOCOP
formulated for different networks generated both from simulated data as well as from real historical flight
data. Our simulation results demonstrate that the utilized MOEA has the potential of finding the Pareto
optimal solutions for small-scale networks, while also finding a set of high-performance nondominated
solutions for large-scale networks.

INDEX TERMS Aeronautical ad hoc networks (AANETs), in-flight connectivity, multi-objective combina-
torial optimization problem (MOCOP), multi-objective evolutionary algorithm (MOEA).

I. INTRODUCTION
In support of ubiquitous connectivity, non-terrestrial and ter-
restrial convergence has already been initiated by the third
Generation Partnership Project (3GPP) [1] for improving
the availability and reliability of next-generation wireless
networks (NGWNs). Therefore, it is expected to provide

seamless connectivity between the home, the airport terminal
and the aircraft cabin in NGWNs. In contrast to enhancing a
single one of the key performance metrics, most use cases of
NGWNs are expected to find all optimal operating points in
terms of latency, throughput, energy consumption and so on.
For instance, in dense urban areas the networks are expected
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to support high speed, low latency as well as massive con-
nectivity, while the latency and the reliability become more
critical in smart factories. Given the limited spectrum and en-
ergy supply, these performance metrics are usually in conflict
with each other, hence striking a trade-off by simultaneously
optimizing multiple criteria relying multi-objective optimiza-
tions offers a way forward. Therefore, the goal of the paper
is to provide connectivity during flights above the clouds by
concurrently optimizing multiple performance metrics.

In this context, aircraft rely on satellite to aircraft com-
munication (S2AC), direct aircraft to ground communication
(DA2GC) and air to air communication (A2AC). Explicitly,
geostationary earth orbit (GEO) satellites are capable of sup-
porting longer-lasting connections than DA2GC and A2AC
as a benefit of their near-global coverage, but they suffer
from an excessive propagation delay. In particular, the links
between the ground and the satellite are subject to approxi-
mately 120 ms one-way propagation delay, which constitutes
a challenge when aiming for interactive communications. For-
tunately, the medium and low earth orbit (MEO/LEO) satel-
lites are significantly closer to the earth, hence they have
substantially lower propagation latency than GEO satellites.
More specifically, the LEO satellites at 300 km altitude are
capable of offering the lowest latency of any of the satellite
orbits at a propagation delay of 1 ms. However, the LEO
satellites can only offer limited coverage, hence imposing
different technical challenges than those of GEO satellites.
Compared to S2AC, DA2GC has the potential of providing
limited-delay transmission as well as low-cost deployment,
but suffers from limited coverage [1]. As a result, aeronau-
tical ad hoc networks integrating S2AC, DA2GC and A2AC
provide a promising solution for supporting high-speed and
moderate-delay in-flight connectivity by relying on multi-hop
communication techniques [2], [3]. In particular, the integra-
tion of A2AC and DA2GC has the promise of conveying long-
distance data packets from the ground base station (BS) to the
destination aircraft by avoiding S2AC links, whilst maintain-
ing reliable high-speed connections. Another potential benefit
of AANETs relying on A2AC with DA2GC is that AANETs
are capable of reducing the latency as well as the spiralling
communication cost of satellite communications.

Considering the characteristics of AANETs, communica-
tion between the source and destination nodes that are usually
far apart relies on cooperative multi-hop transmission. The
goal of multi-hop routing is to select a subset of intermediate
nodes to construct a multi-hop path spanning from the source
node (SN) to the destination node (DN). Regarding the multi-
hop routing problem of AANETs, most of the research contri-
butions focused on finding the optimal route in terms of a sin-
gle performance metric. Specifically, in [4], a geographic load
sharing based forwarding and handover strategy was proposed
for airborne mesh networks relying on multi-server queueing
models. As a further development, a genetic algorithm based
joint routing and scheduling technique was proposed for min-
imizing the weighted hop count. In [5], the characteristics of
heterogeneous airborne networks relying on military radios

were interpreted and their field tests concerning their interac-
tion with mobile ad hoc network (MANET) protocols were
reported on. Inspired by the accurate geographic information
available for aircraft, a trajectory density based routing algo-
rithm was developed for maximizing the successful packet
delivery probability in [6]. In practice, routing schemes are
often designed for improving the overall system performance
in terms of multiple quality of service (QoS) parameters. A
position-aware secure routing technque was proposed in [7]
with the objective of enhancing the security of drone-assisted
wireless mesh networks, whilst a path discovery approach
was invoked in [8] by incorporating multiple path parame-
ters. In [9], an powerful greedy routing strategy relying on
probabilistic neighbour selection was conceived for a context-
aware MANET. Regarding dynamic MANETs, some stochas-
tic techniques such as Q-learning based cognitive routing [10]
and online routing [11] were proposed for finding the best
transmission path.

Again, most of the existing routing designs rely on a single
objective or on artificially reducing the number of conflict-
ing goals into a single objective. However, the relationship
amongst objectives is usually rather complex and also relies
the solution space available. Let us consider the simple exam-
ple of choosing a routing path spanning from a SN to a DN. If
we have two solutions available, namely a path having a delay
of 200 ms and a throughput of 2 Mbps, plus a path with 400 ms
and 20 Mbps, the decision maker might prefer the path with
400 ms and 20 Mbps for the sake of providing more reliable
services. On the other hand, if the choice is between a path
with 150 ms and 50 Mbps as well as a path with 100 ms and
45 Mbps, the second path may be preferred for its lower-delay
and moderate-throughput services. In general, it is quite a
challenge to combine different objectives into a single objec-
tive function before the solution space is known. Similarly, it
is also hard to specify the constraints imposed on the objec-
tives before the solution space is known, since the resultant
feasible region may become empty, hence making the opti-
mization problem impossible to solve. In constrast to optimiz-
ing a single objective, multi-objective optimization problems
(MOOPs) are capable of characterizing distinct performance
metrics of a system, which may be independent of and/or
conflicting with each other [12]. In contrast to single-objective
optimization problems that may have a unique optimal solu-
tion, MOOPs often have a set of solutions representing the
trade-offs among these objectives, and thus MOOPs provide
new opportunities for defining problems. However, due to the
uncertainty concerning the solution space and the objective
space, generating the Pareto optimal set of MOOPs is com-
putationally expensive and often it is even impracticable. As
a consequence, bio-inspired stochastic search methods such
as multi-objective evolutionary algorithms (MOEAs) [13],
multi-objective tabu search [14] and multi-objective simulated
annealing [15] etc, have been developed for approaching the
optimal trade-offs. In particular, MOEAs possess several fea-
tures that are desirable for MOOPs and make them preferable
to other optimization methods.
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TABLE I Comparison of Routing Optimization Approaches

Specifically, the main characteristics of MOEAs include:
1) the intrinsic parallelism, which lends MOEAs the potential
of capturing multiple Pareto optimal solutions in a single
simulation run; and 2) exploiting synergies among the so-
lutions during evolution, which potentially allows MOEAs
to converge to the Pareto optimal solutions. Since MOEAs
operate on a set of candidate solutions, the so-called elitism
strategy was introduced for ensuring that the hitherto best
solution always survives for the next generation. In [16], a fast
and elitist nondominated sorting genetic algorithm (NSGA-II)
was proposed for handling MOOPs, which employed a fast
nondominated approach for ordering the solutions found in
each generation. In contrast to the continuous MOOPs of [16],
the multi-objective routing problem considered in this pa-
per is a multi-objective combinatorial optimization problem
(MOCOP) that involves a number of discrete variables. The
application of MOEAs in wireless networks has been investi-
gated in [17], [18] for striking a trade-off between the delay,
the energy consumption as well as the bit error rate (BER).
However, these algorithms are only suitable for employment
in networks having a small number of nodes. Against this
background, in this paper, we employ a MOEA, namely the
classic NSGA-II, that solves the multi-objective multi-hop
routing problem of AANETs, which is eminently simulate
for large-scale networks. The main contributions of the paper
are summarized as follows, which are boldly and explicitly
contrasted to the state-of-the art in Table I.

1) We concurrently minimize the total delay and maximize
the throughput of routing paths in in-flight connectivity
at the same time. As the two objectives are usually in
conflict in AANETs, there exists a number of Pareto
optimal solutions since no single solution is optimal
simultaneously for each objectives. Furthermore, for the
multi-objective routing problem formulated, counting
the number of solutions is #P-complete [21]. In addi-
tion to the potentially excessive solution space, another
challenge of the MOCOP formulated is the uncertainty
concerning the number of Pareto optimal solutions. To
address these challenges, we employ the MOEA for
approximating the set of the Pareto optimal solutions.

2) We present a novel technique for generating and
reproducing new solutions to our multi-objective
routing problem via genetic operators during its evo-
lution. Specifically, a variable-length chromosome en-
coding approach is conceived, where a routing path is
represented uniquely and unambiguously by a sequence
of node indices (IDs). Then, a common-node based

crossover approach and a chromosome-wise mutation
approach are exploited for producing new solutions by
exploiting the interaction and cooperation among the
solutions, where the knowledge of network topology is
exploited for avoiding the generation of infeasible paths.

3) We develop a multi-objective routing solution based on
NSGA-II. First, a set of solutions is generated randomly
and the solutions are encoded into variable-length chro-
mosomes for performing crossovers and mutation. With
the solutions at hand, the new solutions of the next
generation are selected by sorting them into a number
of sets based on their dominance in the objective space
and then the crowding distances are calculated within
each set. Then, the best solutions associated with higher
ranks and lower density are selected for generating a
diverse set of solutions and for guaranteeing closer con-
vergence to the true Pareto optimal solutions.

4) We evaluate the multi-objective routing problem formu-
lated in different networks that are generated both by
artificial simulated data and by real flight data collected
from the North-Atlantic region. Specifically, a pair of
metrics are introduced for assessing the quality of the
trade-off solutions found by the MOEA employed. Then
an extensive simulation study is provided for character-
izing the networks having different sizes. Explicitly, the
number of possible solutions spans from a small num-
ber to an extremely large number in the real historical
flight data set. The results demonstrate that the MOEA
is capable of obtaining a set of beneficial solutions of
the multi-objective routing problem formulated in terms
of their spread and their convergence to the optimal
trade-off solutions.

A. BASIC CONCEPTS AND ORGANIZATION
In this paper, a directed graph (or digraph) is defined as a
graph that is made up of a set of vertices connected by edges,
where the edges have a direction associated with them. A
complete digraph is a digraph in which every pair of distinct
vertices is connected by a pair of unique edges (one in each
direction). A simple path is a path that contains no repeated
vertices. Inspired by biological evolution, in MOEAs, any
solution candidate is termed as an individual and all possible
solutions are referred to as individuals. The set of possible
solutions is called the population. To be more precise, the
population in MOEA is a multiset, which may contain mul-
tiple copies of the same individual. Note that an individual is
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TABLE II Table of Parameters

generally not a decision vector, but rather encodes it based on
an appropriate representation. Thus an individual is also called
a chromosome in MOEAs. The mating pool is formed by can-
didate solutions that are used for creating our next-generation
population. Solutions that are included in the mating pool
are referred to as parents. Every two parents selected from
the mating pool will generate two offspring (children). In
MOOPs, the set of optimal solutions in the decision space
is referred to as Pareto (optimal) set and its image in the
objective space is called Pareto (optimal) front. Moreover, the
key notations used in the paper are given in Table II.

The rest of this article is organized as follows. Section II
presents the system model, followed by MOOP modelling and
the basic concepts of MOOPs in Section III. Section IV is
devoted to the MOEA employed in terms of genetic operators
and its implementation procedure for solving the MOOP con-
sidered. The size of solution space and performance metrics of
assessing the MOEA are introduced in Section V. Section VI
offers our simulation results and discussions, followed by our
conclusions in Section VII.

II. SYSTEM MODEL
We consider an AANET comprised of the ground layer and
the aerial layer, where the aircraft want to connect to a cer-
tain ground BSs either via direct communication or multi-hop
communication techniques. In particular, the aircraft can build
communication links with other aircraft and ground BSs via
A2AC and DA2GC techniques, respectively, in order to im-
prove the onboard Internet experience of aircraft passengers.
Denote the nodes in the system encompassing aircraft and
ground BSs as a set of nodes with N = {1, 2, . . . , N}, where
each node n ∈ N uniquely corresponds to a specific entity in
the system. Moreover, the network is operated in half-duplex
mode and in an interference-free scenario such as in [4]–[6].
To guarantee that the signal received at the destination node
has a sufficiently high reliability, the tele-traffic emanating
from the source on the ground is expected to pass through the
links with adequate quality, but it may encounter increased
delay by passing through several relaying nodes. Therefore,
there are trade-offs between the reliability and the delay.

III. MOOP MODELLING
In Section III-A, we will formulate the objective functions
(OFs) in terms of the end-to-end delay as well as the end-to-
end throughput of in-flight connectivity. Then in Section III-B,

we present the definition of our multi-objective routing prob-
lem, followed by the related concepts of Pareto optimality.

A. FORMULATION OF OFS
Let ei, j and R denote the link spanning from node i to node
j and a route from the SN s to the DN d . Let xi, j be a
binary indicator of the link (i, j) in a route R, where xi, j = 1
if the link ei, j exits in R, otherwise xi, j = 0. Hence for any
routing path, there is a unique indicator matrix X = (xi, j ) ∈
BN×N with B = {0, 1} and the feasible set of all legitimate
routes spanning from the source to the destination is X =
{X | x subjects to (1)}, where (1) is given by

∑
j �=i
j∈N

xi, j −
∑
j �=i
j∈N

x j,i =

⎧⎪⎨
⎪⎩

1, if i = s,

−1, if i = d,

0, otherwise,
(1a)

∑
j �=i, j∈N

xi, j

{
≤ 1, if i �= d,

= 0, if i = d,
(1b)

xi, j ∈ {0, 1}, ∀i, j ∈ N, i �= j, (1c)

where (1a) and (1b) ensure that the solution found for the
problem formulated does indeed represent a legitimate path
from the SN on the ground to the DN in the air. More specif-
ically, (1a) represents that the ground BS acting as the SN
and the target aircraft as the DN have a single outgoing link
and a single incoming link, respectively, while the number of
incoming and outgoing links for the other intermediate nodes
(i.e., aircraft, ships or satellites in the system considered) are
the same in a legitimate route. Furthermore, (1b) represents
that all aircraft except for the target aircraft have at most one
outgoing link in a legitimate route.

We assume that the channel between a pair of nodes is sym-
metric and the channel between the transmitter and receiver
nodes is perfectly known. Since aircraft typically fly 10 km
above the ground level, they benefit from negligible scatterers
and shadowing effects. Hence, we assume that communica-
tion links in the AANET networks considered have a line of
sight (LoS) propagation model [2], [22]. As a result, the data
rate in the link ei, j can be expressed as

Ci, j = B log2

(
1 + Pi · Gt

i · Gr
j · Hi, j

σ 2

)
,

= B log2

(
1 + Pi · Gt

i · Gr
jλ

α

(4π )ασ 2dα
i, j

)
, (2)

where λ = c
fc

is the wavelength, c = 3 × 108 m/s and fc is the
carrier frequency, while B is the bandwidth allocated to the
link. Furthermore, Gt

i and Gr
j are the transmit and the receive

antenna gain, respectively. Finally, di, j is the distance between
aircraft i and aircraft j, α is the path loss exponent and σ 2

denotes the noise power.
According to the stability condition of queuing theory, the

end-to-end throughput is bounded by the specific hop having
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FIGURE 1. An example of illustrating two conflicting objectives in terms of
the throughput and the delay of an AANET.

the lowest throughput [23]. Therefore, the throughput of a
route from the source to the destination is

C(X) = min
xi, j∈X

xi, jCi, j . (3)

The total delay Dtot is defined as the sum of the propagation
delay, relaying delay and file-transfer delay of Dpr , Dtr and
Ddf , respectively. Therefore, the delay from node i to node j
can be expressed as

Di, j =
{

Dtr
i, j + Dpr

i, j, if j is the destination node,

Dtr
i, j + Dpr

i, j + Ddf , otherwise,
(4)

where Dtr
i, j = L

Ci, j
denotes the file-transfer delay for a file size

of L from node i to node j, Dpr
i, j = di, j

c denotes the propagation
delay of link ei, j , and Ddf denotes the decode-and-forward
(DF) relaying delay over link ei, j . It should be pointed out
that the DF relaying delay depends on decoding and encoding
techniques as well as the hardware performance, etc, which
would alter the DF relaying time. In this paper, the DF relay-
ing delay is assumed to be 20 ms for simplicity. Correspond-
ingly, the total delay for a route R is given by

D(X) =
∑

xi, j∈X

xi, jDi, j . (5)

Note that the throughput and the delay of a routing path usu-
ally cannot reach their individual best value simultaneously.
To elaborate a little further, Fig. 1 provides a concrete example
for illustrating that the delay and the throughput constitutes
a pair of conflicting objectives. Specifically, there are four
nodes in the network considered in Fig. 1, where the source
node n0 wants to send a message to the destination node n3,
where n1 and n2 are the intermediate nodes between n0 and
n3. There are two optional routes from n0 to n3: R1 : n0 → n3

and R2 : n0 → n1 → n2 → n3. In our manuscript, the total
delay is defined as the sum of the propagation delay, relaying
delay and file-transfer delay. Since the relaying detection and
retransmission delay are taken into account, a route will have
a much longer delay when it contains intermediate nodes. This
is because each relay will add a certain extra delay, depending
on whether amplifying-forward or decode-forward relaying is
used. As for the throughput, it is determined by that of the
lowest-throughput link of a complete route. Let us consider
a concrete example, where d0,1 = d1,2 = d2,3 = 300 km and

d0,3 = 700 km for the simplicity of calculations. Correspond-
ingly, the throughput and the delay of the two routes R1 and
R2 can be obtained based on equations of (3) and (5) in the
manuscript, respectively. Based on the parameter setups used
in the manuscript, we can obtain the the delay and the through-
put on each edge given in Fig. 1, where the units of the delay
and the throughput are ms and km, respectively. We can see
that the delay and the throughput over route R1 of our example
are 60 ms and 35 Mbps, respectively, while route R2 has the
delay of 15 ms and the throughput of 16 Mbps. This indicates
that the delay and the throughput are a pair of conflicting
objectives, hence generally they cannot simultaneously reach
their best value. Furthermore, note that the relationship be-
tween the delay and the throughput relies the topology of the
AANET to be constructed. When the the solution space is un-
known, it is quite a challenge to combine different objectives
into a single objective function or to specify the constraints
imposed on the objectives, since the resultant feasible region
may become empty. Therefore, we formulate the optimization
of the delay and the throughput as a MOOP.

B. PROBLEM MODEL
To provide low-delay and high-reliability in-flight connec-
tions, we construct the MOOP of minimizing the total delay
while maximizing the throughput of the selected route, which
can be formulated as follows:

min D(X) and max C(X)

s.t. X ∈ X. (6)

Note that Problem (6) is a MOCOP, where X denotes the
matrix of decision variables, while X represents the decision
space. It is challenging to solve Problem (6) due to the com-
binatorial nature of D(X) and C(X), especially for a non-
monotonic C(X).

For solving Problem (6), we transform it into the standard
MOCOP having a minimization-type objective as follows:

min f (X) = [ f1(X), f2(X)]

s.t. X ∈ X, f (X) ∈ Y. (7)

where f1(X) = D(X) and f2(X) = −C(X), while f (X) de-
notes the vector of OFs. Furthermore, the values of OFs are
stated in an objective vector, which constitutes the objective
space Y, i.e., f (X) ∈ Y for any X ∈ X. In contrast to single-
objective optimization problems, there exist multiple optimal
objective vectors representing different trade-offs between the
objectives. In particular, there is no single globally optimal
solution, and it is often necessary to determine a set of points
that all fit a predetermined definition for an optimum. There-
fore, we introduce a few fundamental concepts in terms of
optimality used in MOOPs.

Definition 1: Pareto dominance: Let X1, X2 ∈ X be a pair
distinct feasible solutions of Problem (6), X1 dominates X2,
also denoted as X1 ≺ X2, if and only if

1) fi(X1) ≤ fi(X2) for any i ∈ {1, 2}, and
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2) there is at least one OF value satisfying the strict
inequality, i.e. at least for one component fi(X1) <

fi(X2), i ∈ {1, 2} is true.
Accordingly, we can say that the objective f (X1) dominates

f (X2), denoted as f (X1) ≺ f (X2), if X1 dominates X2.
Therefore, we have X1 ≺ X2 ⇔ f (X1) ≺ f (X2). Note that

there may exist several optimal solutions in the decision space
having the same objective vector, corresponding to a single
optimum in the objective space.

Definition 2: Pareto optimal: A solution, X∗ is Pareto op-
timal, if and only if there doesn’t exist another point, X ∈ X,
such that f (X) ≺ f (X∗)

That is a solution is said to be Pareto optimal if it is not
dominated by any other solution in the decision space. The set
of Pareto optimal solutions in the decision space X is termed
as the Pareto optimal set X∗ with X∗ ∈ X, while the corre-
sponding objective vectors in the objective space constitute
the Pareto front Y∗ = {f (X∗), ∀X∗ ∈ X∗} ∈ Y.

Remark 1: Note that Problem (6) has the same Pareto opti-
mal set as Problem (7), while the Pareto front of Problem (6)
is Y∗ = [ f1(X∗),− f2(X∗)].

Due to the discrete structure of Problem (7), it is not suffi-
cient to determine the set of all Pareto solutions (or nondomi-
nated vectors in objective space) by aggregating the objectives
through weighted sums, because usually there exist Pareto
solutions, which are not optimal for any weighted sum of
the objectives [12]. In fact, generating the Pareto set is often
computationally expensive and may even be infeasible since
the complexity prevents exact methods from being applicable.
For this reason, we employed NSGA-II based on stochastic
search strategies for approximating the Pareto optimal set.

IV. PROPOSED SOLUTIONS
To mimic biological evolution, a MOEA generally includes
the evolutionary operators of crossover, mutation and selec-
tion [24]. In particular, the crossover and mutation operators
aim for generating new solutions within the search space by
altering the existing ones. Specifically, crossover operator re-
combines the genetic information of two parents for gener-
ating new offspring and the mutation operator modifies indi-
viduals by transforming a part according to a given mutation
rate.

A. PATH ENCODING
How to encode a path in the graph is key for developing a
MOEA to Problem (6). From (1), we can see that each path in-
cludes N2 binary variables, hence the length of a chromosome
is extremely high when using binary encoding. On the other
hand, in contrast to the permutation encoding methods used
for the 01 knapsack problem and the travelling salesman prob-
lem (TSP) [25], the lengths of routing paths in our problem
vary. Hence we opt for directly encoding the chromosomes
based on node IDs [26], [27], which results in variable-length
chromosomes.

Explicitly, the node-ID based path representation uses a
sequence of integers for representing a chromosome, where

FIGURE 2. An example of a routing path and its chromosome.

each gene represents the index of a node which a routing path
passes through. As a result, each locus of the chromosome
denotes the hop index of a node in a path. Note that in all
chromosomes, the first and the last genes are reserved for the
source node and the destination, respectively. Furthermore,
the length of the chromosome is variable, but the maximum
length of a chromosome is N . Explicitly, the number of the
nodes in the longest path spanning from the source node to
the destination is no more than N . Having said that, we can
see that any routing path of Problem (6) can be encoded by a
chromosome according to the topology of the network. More
specifically, considering a specific chromosome, the first gene
is the SN, and the second gene is randomly selected from
the nodes that are directly connected with the SN. Then the
node chosen is removed from the routing table to prevent the
node from being repeatedly selected, so that having loops in
the routing path can be avoided. Fig. 2 illustrates a simple
network as well as the chromosome of a routing path. Fig. 2(b)
illustrates the representation of a chromosome that encodes a
routing path from s to d via nodes n1 · · · nk . Note that each
node in the chromosome denotes a gene and there are (l + 1)
genes in total.

B. POPULATION INITIALIZATION
Defining the population initialization of MOEAs requires that
of the initial population size and the specific procedure of
initializing the population. Since the population size relates
to the nature of the problem, a very large population will slow
down the algorithm, while a smaller population might result
in a local solution. As a result, deciding a adequate population
size is crucial for approaching the true Pareto front. How-
ever, due to the problem-dependent and metaheuristic natures
of MOEA [28], determining the best population for general
MOOPs is challenging and unattainable. For this reason, in
this paper the population is initialized by several hundreds of
possible solutions [16], [25], [29].

VOLUME 2, 2021 351



CUI ET AL.: TWIN-COMPONENT NEAR-PARETO ROUTING OPTIMIZATION FOR AANETs IN THE NORTH-ATLANTIC REGION

Furthermore, there are two popular ways of generating the
initial population [24]: heuristic initialization and random ini-
tialization. Although the heuristic initialization may help the
MOEA to find solutions faster, it may just explore a small part
of the solution space and never find globally optimal solutions
because of the lack of diversity in the population. Therefore,
we opt for the random initialization approach that are used
in most literature such as [16], [25]. It should be noted that
the randomly initial population only contains a set of possible
legitimate paths, but exclude the infeasible paths.1

C. GENETIC OPERATORS
The task of genetic operators is to create new populations
from the existing solutions, where crossover operation is used
for generating offspring. Then the new offspring are mutated
with a small probability, which helps avoid getting trapping
in local optima. Due to the variable-length nature of the
chromosomes, specific crossover and mutation techniques are
required.

1) CROSSOVER
The crossover operations are used for generating new off-
spring from the current population in order to find better
ones. In the crossover procedure of the multi-objective routing
problem, two chosen chromosomes (parents) exchange their
partial routes to generate new offspring. In particular, the
resultant offspring must represent one of the routes from the
source node to the destination node, otherwise it is a lethal
gene (infeasible route). In contrast to the conventional on-site
crossover and to the binary crossover [16], in this paper we
adopt the common node based crossover method [27], where
the pair of chromosomes selected for the crossover opera-
tion must have at least one common gene (node), except for
the source and destination nodes, but they can be located at
different locus. Furthermore, the crossing point will be se-
lected randomly if there are multiple common genes between
two chromosomes. Note that due to the sparsity of adequate-
quality links in AANETs, the uniform crossover using a mask
is likely to produce illegal routing paths. For instance, some
airplanes in the routing path generated are not connected in the
AANET or some airplanes will be considered more than once.
To avoid these issues, we adopted the common node based
crossover method in our work, which guarantees that any path
generated by the crossover corresponds to a legitimate route
in the AANET. More sophisticated design strategies can be
developed for further enhancing the attainable performance of
the networks considered, but this is beyond the scope of this
manuscript.

Fig. 3 highlights the crossover procedure, where a pair
of chromosomes, Parent 1 and Parent 2, are selected, which
contains the pair of common nodes n1 and n3. Therefore, there
are two pairs of possible crossing points (2,1) and (3,2), which
are also called potential crossing sites in MOEAs. Then, one

1In this paper, there are two types of infeasible paths: the paths that include
at least one link that is nonexistent in the network and the paths with loops.

FIGURE 3. An example of the crossover procedure for a pair of routes.

pair of the crossing sites is randomly selected such as (2,1)
to generate a pair of new chromosomes, namely Child 1
and Child 2. It is possible that loops are generated during
crossover, which violates the constraints of (1a). Although
such chromosomes (routes with loops) will be gradually re-
moved from the population, a repair approach is applied in this
paper, which is capable of removing all loops in a route. The
detailed implementation of the crossover procedure is given
in Algorithm 1. The newly created offspring Q can then be
mutated, as discussed in the following section.
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FIGURE 4. An example of the mutation procedure for a route.

2) MUTATION
The offspring created by crossover are mutated by modifying
small parts of the individual with a mutation probability pm.
In this paper, mutation alters one or more gene values in a
chromosome except for the source and the destination nodes,
thus a routing path may change entirely from the previous
path. Explicitly, the mutation procedure first randomly selects
a mutation point from the locus of [1, l − 1] for a chromosome
to be mutated. As a result, the chromosome is divided into
two portions at the mutation point, where the former partial-
path right before the mutation point (excluding the mutation
node) will be passed on to the next generation. Then the latter
portion (including the mutation node) will be replaced by an
alternative partial-path, which is randomly generated between
the mutation node to the destination node according to the
network topology information. Note that due to the random
effects in the genetic operators, some individuals in the mating
pool may not be affected by the variation and simply represent
a copy of a previously generated solution.

More specifically, Fig. 4 illustrates an example of the muta-
tion procedure, where the chromosome selected to be mutated
contains four possible mutation points {1, 2, 3, 4}. Then one
of the possible mutation point is picked randomly, such as
point 2, which corresponds to node n1. From the network
topology information of Fig. 2(a), we can find that there are
three possible candidates {n3, n5, n6} of n1 to be mutated,
where one of them will be selected randomly such as n5. The
above procedures are then repeated until the destination node
is picked. The implementation procedure of mutation is given
in Algorithm 2.

3) NAIVE GENETIC OPERATIONS
In the naive genetic operators, the offspring are mutated ran-
domly without exploiting any specific network-related con-
straints. Explicitly, in the naive genetic operators, the node
selected to be mutated will be randomly changed to an ar-
bitrary node. As a result, infeasible chromosomes may be
generated, for which no routing path exist in the network
and these chromosomes can be gradually removed with the
aid of natural evolution. Note however that these infeasible
paths may in fact generate more feasible routing paths than the
specific genetic operators advocated. On the other hand, these
infeasible paths may continue to produce infeasible paths via

the genetic operators, at the expense of evaluating a reduced
number of feasible routing paths. The performance of the
MOEA using naive genetic operations will be detailed in the
results of Section VI.

D. SELECTION
The goal of selection is to pick out the good solutions from the
entire population in order to create the offspring of the next
generation. Additionally, maintaining a beneficial solution-
diversity in the population during selection is also critical to
the success of MOEAs, so that they converge to the Pareto
optimal front. To this end, various selection methods have
been developed [25] by incorporating different concepts such
as elitism and niche, which are independent of the fitness
assignment method used in conventional GAs. In this paper,
we employ the fast elitist nondominated sorting approach
of [16] for locating a series of nondominated fronts based on
the domination count. The corresponding MOEA is termed
as NSGA-II. Explicitly, for a chromosome c, the domination
count nc is defined as the number of points that dominates
the point f (c) in the objective space with c ∈ C. Explicitly, the
domination count of the points in the first nondominated front
F1 is zero, i.e. nc = 0 for f (c) ∈ F1. Then we have nc = i − 1
for any point f (c), c ∈ C that belongs to the i-th nondominated
front Fi. Upon assuming that the maximum of the domination
count in C is M, there are M + 1 sorted fronts in total. The
procedure of the nondominated sorting approach in NSGA-II
is illustrated in Algorithm A.1 of Appendix B, where the size
of the vector is n is |C| = 2P.

The selection process is based on the sorted front set F ob-
tained from Algorithm A.1. To get a beneficial uniform spread
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of the Pareto front, the crowding distance is used for quantify-
ing the density of points surrounding a particular point of f (c),
c ∈ C. For a point f (c) in the front Fi, the crowding distance
can be expressed as

Dcd =
2∑

m=1

| fm(c′′) − fm(c′)|
f max
m − f min

m
, (8)

where f (c′′) and f (c′) are the points that are closest to the point
f (c) at Fi from either side of f (c), respectively. Furthermore,
f max
m and f min

m are the maximum and minimum values of
the objective function fm(·). Therefore, the crowding distance
Dcd of point f (c) can be viewed as the average side length of
the rectangle with the two opposite corner points of f (c′′) and
f (c′). The procedure of selection is stated in Algorithm A.2
of Appendix B, where Dcd is the crowding distance set of all
points at the front Fi. From Algorithm A.2, we can see that the
first front has the top priority to be chosen for later evolution.
The crowding distance based selection is required for Fi only
when the cumulative population from F0 to Fi is larger than
the population size P. Note that as discussed in [16], the
computational complexity of Algorithm A.2 is dominated by
that of the nondominated sorting, that is O(GP2).

E. THE PROCEDURE OF THE MOEA EMPLOYED

The procedure is summarized in Algorithm 3, which de-
termines a nondominated front F∗ based on the network
topology information. It commences by generating an initial
population P0 having P chromosomes and then the crossover
and mutation operators are applied to P0 for producing P
offspring Q0. At t-th generation, all chromosomes both in Pt

and Qt would be evaluated in terms of both OFs, and thus each

element in Ct has two records: the solution and its OF values.
Afterwards, Ct is partitioned into a sequence of subsets/fronts
based on their ranks. For constructing the new front from
Ct , the elitist and density inspired selection procedure is per-
formed, which selects P best solutions for storing in P, so as to
create the next-generation population. When the stopping cri-
terion is satisfied, that is the maximum number of generations
has been considered, the best nondominated front obtained
would be output. Furthermore, the goal of the comparison in
line 9 - line 11 is to obtain the best spread of the front from
the union chromosomes of the last two generations. Note that
for the sake of improving the search efficiency, Algorithm 3
confines its search within the valid solution space by avoiding
the introduction of infeasible solutions into the population
based on the generic operators discussed in Algorithm 1 and
Algorithm 2. Since the complexity of both the initialization
and the genetic operators have the order of O(P), hence the
overall complexity of Algorithm 3 is dominated by the fast
nondominated sorting of [16], that is O(GP2).

V. SOLUTION SPACE AND PERFORMANCE METRICS
In this section, we first present the network characteristics
from the perspective of complex networks. Along with these
characteristics, the approximations of the solution space size
are provided. Finally, the performance measures of assessing
the solution of MOOPs are discussed.

A. NETWORK CHARACTERISTICS
The AANET can be defined as a weighted digraph G = (N, E)
of order N , composed of N = |N| nodes and E = |E| edges.
As aircraft fly from one airport to another, the distances
amongst aircraft gradually change, which results in a dynam-
ically evolving network versus time. We characterize the net-
works considered in terms of their average degree and network
density.

Explicitly, the node degree is given by the number of edges
connected to it. In an AANET, the node degree denotes the
number of aircraft connected to a specific aircraft and thus
reflects its accessibility. The average degree 〈k〉 of G is the
average number of edges per node in the graph, which is given
by

〈k〉 = E

N
, (9)

The network density ρ of G is defined as the actual number
of edges E divided by the total number of possible edges in
G having N nodes. Hence it quantifies how many edges are in
a set E compared to the maximum possible number of edges
among all vertices in that set, which is given by

ρ = E

N (N − 1)
, (10)

where N (N − 1) is the total number of possible edges of G.
If the number of edges obeys E << N (N − 1), it is referred
to as a sparse network. Naturally, having a higher density for
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a network implies having a higher complexity of finding the
best routing path.

B. SIZE OF THE SOLUTION SPACE
In this section, we study the size of the solution space, which
indicates whether it is possible to find the true Pareto front
by exhaustive search. In a graph G, a path without repeated
nodes is termed as a simple path. Hence the valid routing path
in our problem are thereby simple paths emanating from s to
d . However, determining the number of simple paths leading
from s to d is challenging, since the problem of counting the
number of simple paths between s and d in a graph is #P-
complete [21]. More explicitly, this means that counting the
number of simple paths between s and d in AANETs is at
least as hard as an NP-complete problem. It is known that for
a complete digraph, the formula of the total number of simple
paths between s and d can be expressed as

K =
N−2∑
k=0

(N − 2)!

k!
. (11)

Note that we have
∑N−2

k=0
1
k! = e when N → ∞. Therefore,

(11) can be approximated as follows:

K ≈ (N − 2)!e. (12)

Note that using a modified depth-first search to generate the
paths, a single path can be found in O(N + E ) time at most
but no efficient algorithm exists for counting the number of
such paths for general graphs [30]. As a result, we present the
approximations of the number K in general graphs. We first
introduce the method proposed in [31] to roughly estimate the
size of the solution space, which is given by

K =
N−2∑
k=0

(N − 2)!

k!
ρN−1+δ(N,ρ) ≈ (N − 2)!eρN−1, (13)

where δ(N, ρ) is a function of N and d . In particular, in
the second equation, we used the fact that δ(N, ρ) → 0 as
N → ∞. Note that the approximation of (13) becomes not
accurate when ρ ≤ 0.1. Therefore, we present another esti-
mation as follows. Since G has E edges, it is equivalent a
complete digraph with N ′ vertices with N ′(N ′ − 1) = E . By

computation, we have N ′ = � 1+√
1+4E
2 �. As a consequence,

the number of simple paths between s and d is (N ′ − 2)!e.

C. PERFORMANCE METRICS IN MOOP
In contrast to single-objective optimizations, there are three
goals in multi-objective optimization [16], [25]: 1) A good
distribution of the points at the obtained front is desirable.
Generally, we expect that the points uniformly distributed at
the front obtained. 2) The distance of the resultant front to
the Pareto optimal front should be minimized, which relies on
a certain distance metric. 3) The extent of the resultant front
should be maximized. That is for each objective, a wide range
of values should be covered by the front obtained. Note that
this paper aims to illustrate the performance of the MOEA

with the designed genetic operators and the naive genetic
operators in the multi-objective routing problem formulated
in small-scale AANETs. Therefore, the C-measure2 of [25] is
adopted, which can reflects the convergence of the obtained
solutions. The definition of C-measure of [25] is given as
follows.

Definition 3: C-measure : Let Y1,Y2 ∈ Y be two sets of ob-
jective vectors. The C function maps the ordered pair (Y1,Y2)
to the interval [0, 1]:

C(Y1,Y2) = |{y2 ∈ Y2 | ∃ y1 ∈ Y1 : y1 � y2}|
|Y2| . (14)

Here C(Y1,Y2) = 1 entails that all points in Y2 are weakly
dominated by Y1, while C(Y1,Y2) = 0 represents that none of
the points in Y2 are weakly dominated by Y1. In our problem,
the Pareto front is constructed by a finite number of discrete
points in the objective space. Therefore, the C-measure can
be transformed into a simpler form, when the Pareto front is
known.

Proposition 1: Pareto front acquisition fraction (γ ): Let
FPF denote the complete Pareto front set. Given an ap-
proximated Pareto front set F̃∗

obtained by Algorithm 3,
C(F̃∗

,FPF ) can be expressed as

γ = C(F̃∗
,FPF ) = |F̃∗ ∩ FPF |

|FPF | , (15)

where F̃∗ denotes the set of points at the front obtained by the
MOEA employed and FPF represents the set of points at the
true Pareto front.

Proof: See Appendix B. �
The values of γ indicate the coverage extent of the obtained

nondominated front to the Pareto optimal front. In parlance, γ
is the fraction of the Pareto optimal front that is covered by
nondominated front obtained. In addition, due to the stochas-
tic nature of the genetic operators, multiple runs are usu-
ally performed for mitigating the randomness of the solution.
Therefore, the notion of the success probability is introduced
for characterizing the nondominated front obtained.

Definition 4: Pareto front acquisition success rate (δ) is
defined as the number of the event where the nondominated
front obtained F̃∗

is indeed the true Pareto front FPF divided
by the total number of events, which can be expressed as

δ =
∑R

r=1 1F̃∗=FPF (r)

R
, (16)

where R is the total number of events.

VI. RESULTS AND DISCUSSIONS
In this section, we evaluate the solutions obtained by computer
simulations relying both on simulated data and on our real
flight data. Specifically, we first study the performance of a

2More comprehensive performance metrics like HV and IGD+ [32] associ-
ated with more sophisticated multi-objective optimization algorithms will be
designed for the challenging multi-objective routing problem of AANETs in
our future research.
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FIGURE 5. Comparisons of different solutions in a specific network.

series of small-scale networks, where the true Pareto front is
available by the exhaustive search. Then, in Section VI-B we
test our algorithms using three large datasets collected from
real flights. It is worth pointing out that due to the stochastic
nature of MOEAs, confidence intervals may be involved for
characterizing the average performance of the MOEAs in the
specific context of AANETs.

A. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
solutions based on computer simulations. The nondominated
front obtained by Algorithm 3 is compared to the true Pareto
optimal front obtained by exhaustive search, when the solu-
tion space is not very large. Moreover, we also considered
a naive approach termed Naive approach, where the naive
genetic operations discussed in Section IV-C4 are adopted.
For visualization, the boundary of the objective space is also
plotted. In all simulations, the mutation rate is 0.7, the popu-
lation size is 20 and the maximum number of generations is
100, unless specified otherwise. Note that the mutation rate in
the paper refers to the chromosome-wise mutation rate. The
values of communication parameters are L = 200Kbit, while
the system operates at the mm-Wave frequency of fc = 31
GHz and the noise power is σ 2 = −132 dBm [22]. The other
parameters used in our simulations are the same as those
in [2]. Specifically, the transmit powers of the ground BS
and of the aircraft are 45 dBm and 30 dBm, respectively.
Furthermore, we have Gt

i = Gr
i = 25dB for the ground BS

and the aircraft along with B = 200MHz and φ0 = 0dB. The
heights of the ground BS, the aircraft as well as the satellite
are 50 m and 10.7 km, respectively.

We consider an aircraft flying from London Heathrow
(LHR) to John F. Kennedy (JFK) international airport
as shown in Fig. 5, in the region having the latitude
range of lat ∈ [51.47◦, 55.75◦] and the longitude range of
lon ∈ [−20.78◦,−0.46◦]. The ground BS is at (lon, lat ) =
(−0.46◦, 55.75◦) and the target aircraft is located at
(lon, lat ) = (−20.78◦, 51.47◦). Consequently, the flight dis-
tance between the ground BS to the target aircraft is around
1416 km, hence they cannot communicate directly over the

horizon. There are Ni = 10 intermediate aircraft that are ran-
domly generated in the region of loni ∈ (−20.78◦,−0.46◦)
and lati ∈ (51.47◦, 55.75◦). The height of the ground BS is
50 m and the aircraft altitude is 10.7 km, respectively. In the
example of Fig. 5 termed Network-1, we have 12 nodes and 76
edges. Furthermore, the total number of possible paths from s
to d is K = 56514, which can be computed by conventional
enumerating.

Fig. 5(b) shows the Pareto front found by different algo-
rithms as well as all the possible individuals. We can see from
Fig. 5(b) that the individuals are distributed in strips since the
throughput is not a monotonically increasing function of the
routing path length, which remains constant for different route
length and delays. For instance, we assume that the link n8 →
n2 has the minimum rate C0 of all links in the network. Then
we have the two routing paths s → n8 → n2 → d and s →
n1 → n6 → n8 → n2 → d , which have the same throughput
but different delays. Furthermore, we also plot the minimum
delay and maximum throughput of the network attained by
single-objective optimization, respectively. Here the crossing
point O at the top corner of Fig. 5(b) denotes the conceptual
optimum that is actually unachievable in most networks in
practice. For convenience, the points of the fronts attained
by different approaches are connected by dashed lines. We
observe that the Pareto front contains five points numbered as
{1, . . . , 5} in Fig. 5(b), which are found by exhaustive search
for comparison. Explicitly, given an AANET constructed, all
possible solutions can be generated by efficient path-finding
methods, such as the family of depth-first search based al-
gorithms [30]. Then, comparisons of Pareto dominance be-
tween a specific solution and all the other solutions in the
solution space can be carried out exhaustively for the sake of
checking whether the specific solution is Pareto optimal. For
instance, given a solution c of the entire solution space C, if c
is nondominated by any c′ ∈ C−c with C−c being the set that
excludes c, then the nondominated solution c is Pareto optimal
and the point in the objective space associated with c is on
the true Pareto front. As a result, the true Pareto front can be
obtained by repeating the comparisons until all solutions are
checked. Each point at the Pareto front represents a certain
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FIGURE 6. Results on different networks.

trade-off between the delay and the throughput. Explicitly, the
network has the minimum delay at point 1, but suffers from
the lowest throughput, while the network at point 5 has highest
throughput but also the maximum delay. The points at the
orange solid line are the OF values computed by using single-
objective optimization. Moreover, we observe from Fig. 5(b)
that the proposed approach finds the complete Pareto front,
while the naive approach finds four points at the nondomi-
nated front obtained, but only two of them are at the Pareto
front. This is because infeasible paths might be searched in
the naive approach while the proposed approach is capa-
ble of controlling its search within the valid solution space.
Note that the nondominated fronts found by the proposed
approach and the naive approach are based on the same initial
population.

Fig. 6 illustrates two further small-scale networks generated
by randomly adding further nodes into Network-1 of Fig. 5(a),
which are called Network-2 and Network-3, respectively. By
computation, we can obtain that Network-2 of Fig. 6(a) con-
tains 13 nodes, 94 edges and 561 070 possible simple paths
from s to d , whilst Network-3 of Fig. 6(c) contains 14 nodes,
118 edges and 8 724 558 simple paths. We can see that the
solution spaces of Network-2 and Network-3 in Fig. 6 are
much greater than that of Network-1 in Fig. 5(a). For avoiding
obfuscating details, the individuals are not shown in Fig. 6(b)

and Fig. 6(d). Furthermore, in these networks 500 generations
are used for increasing the probability of finding the Pareto
front. Observe from Fig. 6(b) and Fig. 6(d) that the proposed
approach outperforms the naive approach in both networks.
Furthermore, from Fig. 6(b), we can find that there are two
close points at the Pareto front, which may limit the success
rate of the proposed approach, because the goal of the non-
dorminaed sorting is to pursue a uniformly spread over the
Pareto optimal front [16].

Fig. 7 investigates the performance of the average fraction
γ̄ as well as the success rate δ of Network-1 characterized in
5(a) over 100 runs, where the initial population is generated
randomly for each run and the same initial populations are
used for both the proposed approach and the naive approach.
Three different pairs of population sizes and generations
(P, G) = (20500), (40200) and (100 100) are considered, all
having 10 000 function evaluations in total. Note that γ̄ is
the average of γ calculated over 100 runs, representing the
average Pareto front acquisition fraction for the nondominated
front obtained. Naturally, the larger of γ̄ the higher fraction of
the Pareto front is obtained. The first two figures of Fig. 7,
i.e. Fig. 7(a) and Fig. 7(b), characterizing the proposed ap-
proach using different population sizes convergence to the
Pareto front (i.e. γ̄ = 1 and δ = 1) upon increasing gener-
ations. Fig. 7(c) and Fig. 7(d) investigate the impact of the
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FIGURE 7. Performance of different approaches for Network-1 with the population size P = {20, 40100}.

algorithmic complexity on the performance of the resultant
front, where the search ratio τ is defined as the number of
the function evaluations divided by the total number of pos-
sible solutions. Thus, we can see that the maximum of the
search ratio τmax approaches 18%. It should be noted that
the number of function evaluations over distinct individuals
might be smaller than the number of solutions it evaluated,
since some repeated solutions may be generated by the genetic
operators. Observe from Fig. 7(c) and Fig. 7(d), that γ̄ and δ

converge to one when τ approaches 8%, which indicates that
the proposed approach has the potential of locating all optimal
solutions of the Pareto front, if the search ratio is high enough.
Finally, we also can observe from Fig. 7(c) that given a value
of γ̄ , the proposed approach is capable of finding more points
on the Pareto front than the naive approach using the same
initial population. This is because that the proposed approach
exploits the search by avoiding the introduction of infeasible
solutions into the population.

Fig. 8 illustrates the γ̄ and δ vs. the number of popula-
tions relationship in Network-2 and Network-3 of Fig. 6 using
(P, G) = (100500). This scenario has an increased complexity
due to the larger solution space. Thus, 50,000 functions evalu-
ations are performed in total. Note that both γ̄ and δ represent

a ratio belonging to [0, 1], hence they can share the same
y-axis. From Fig. 8, we can see that the success rate of the
proposed approach reaches about 60% and 50% in terms of
finding the Pareto front in Network-2 and Network-3, respec-
tively. Furthermore, comparing the curves of γ̄ to the curves
of δ both in Fig. 7 and in Fig. 8, we can see that the evolution
of γ̄ is smoother than that of δ. This is because γ̄ represents
the number of points that are found at the Pareto front, while
δ concerns the final results. For instance, in Fig. 8(a), the suc-
cess rate of the proposed approach does not increase beyond
40 generations, while the values of γ̄ increase gradually until
100 generations. This means that more points that are on the
Pareto front are found by the proposed approach during the
iterations from 40 generations to 100 generations. Moreover,
we can see from Fig. 8 that the performance of Network-3
is better than that of Network-2. This trend is observed for
several reasons, such as the stochastic nature of the genetic
operators as well as the number and the distribution of the
points at the Pareto front etc. Finally, by jointly observing the
results of Fig. 7 and Fig. 8, we can infer that the proposed
approach requires less generations than the naive approach for
attaining a specific target performance. Explicitly, it implies a
lower complexity.
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FIGURE 8. Results of Network-2 and Network-3, respectively, where P = 100.

FIGURE 9. Network characteristics in the Data-1, Data-2 and Data-3.

B. FLIGHT DATA BASED RESULTS
In this subsection, we evaluate the performance of the pro-
posed approach relying on real historical flight data. Explic-
itly, we use three datasets, termed as Data-1, Data-2 and
Data-3, respectively, which contain historical flight data of
the five busiest TransAtlantic airlines in the North-Atlantic
region, i.e., Delta Airline, United Airline, American Airline,
British Airways and Lufthansa. Specifically, these datasets
contain the historical flight information of the area recorded
at sampling intervals of 10 s, where each entry of the flight
contains the following information: timestamp, longitude, lat-
itude, altitude and speed. The entries of Data-1 and Data-2
were collected from 00:00 on 24 Dec. 2017 to 00:00 on 26
Dec.2017, thus there are 17 281 entries for each flight. Data-1
having 57 flights only contains the TransAtlantic flights be-
tween LHR Airport and JFK Airport, while Data-2 having
381 flights contains all TransAtlantic flights of the five busiest
TransAtlantic airlines. Moreover, the entries of Data-3 were
collected from 00:00 on 29 Jun. 2018 to 00:00 on 30 Jun.
2018, which is the busiest day of the year having the most
flights. Specifically, Data-3 contains 649 flights and 8641 en-
tries for each flight.

Fig. 9 illustrates some of the associated network topological
characteristics versus the flight distance in Data-1, Data-2 and

Data-3, respectively. Observe from Fig. 9(a), that the number
of both the nodes and edges of the networks in Data-3 is
about twice as higher as those in Data-2, while the networks
in Data-1 have the least number of nodes and edges. We can
also find that in Data-1, the target flight is unable to connect
to the SN on the ground when the flight distance is higher
than 1912 km, since there is no path connecting them. Further-
more, Fig. 9(b) shows the average degree of the networks over
different flight distances, which reflects the average grade of
connectivity for a network. A larger average degree indicates
a higher probability of having more paths between two nodes.
Fig. 9(c) shows the density of networks in different datasets,
which reflects the connection rate of the networks at differ-
ent time instants. Observe from Fig. 9(c), that the networks
generated during the flight of the target plane are relatively
sparse, especially for Data-2 and Data-3, where the maximum
network density is below 0.15. From these characteristic in-
formation in Fig. 9, we can see that these networks become
complex and non-trivial since patterns of connection between
their nodes are neither purely regular nor purely random.
Consequently, the full solution space becomes excessively
large, hence it is computationally impractical to find the true
Pareto front for these networks. Therefore, we use a popula-
tion size 100 and 500 generations for generating a series of
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FIGURE 10. The network’s topology and its throughput vs. delay solutions at Sample-1 of Figure 9 in Data-2 and Data-3.

nondominated solutions to approach the Pareto front. More-
over, since the true Pareto front is unknown due to the exces-
sive number of solutions, for limiting the objective space, the
points associated with the minimum delay and the maximum
throughput are computed, which are obtained by optimizing
the single-objective function D(X) and C(X), respectively.
Specifically, the optimum of D(X) can be readily obtained
by means of the conventional shortest path algorithm such
as Dijkstra’s algorithm. By contrast, as C(X) is a max-min
function, hence the single-objective optimization problem of
C(X) becomes a maximum-capacity path problem [33], which
can be solved by the branch and bound algorithm. Therefore,
the boundary of the objective space is also plotted in the
figures.

Fig. 10 illustrates the topology of the network and the non-
dominated front obtained using different approaches, where
the network features can be found from Fig. 9 marked by
Sample-1. Fig. 10(a) and (c) show that the network of Data-2
at Sample-1 contains 141 nodes and 1976 edges, while the
network of Data-3 contains 296 nodes and 8274 edges. This

indicates that the number of aircraft at the busiest days is al-
most twice the number of that on the quietest days. Fig. 10(b)
and Fig. 10(d) illustrate the nondominated front obtained for
each dataset, where the points acquired by the single-objective
optimization are marked by green stars. We can observe that
the optimum single-component C(X) may be dominated by
the point obtained by the proposed two-component approach.
This is because the path having the maximum throughput may
suffer from a high delay, since some paths probably share
the same maximum throughput in the AANET due to the
non-monotonic nature of C(X). Furthermore, in Fig. 10(b) and
(d) the nondominated front of each approach is constituted
by a union set of the results collected over 10 runs, where
the dominated points are removed from the union set. Finally,
we can see from Fig. 10(b) and (d) that the fronts found by
the proposed approach in the both networks exhibits a better
performance than that of the naive approach.

Fig. 11 illustrates the nondominated front obtained for the
different datasets at Sample-2 of Fig. 9, where Data-1 is also
involved, since the source BS on the ground is now able to
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FIGURE 11. The network’s topology and its throughput vs. delay solutions at Sample-2 of Figure 9 in Data-1, Data-2 and Data-3.
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communicate to the target aircraft via the AANET. Specifi-
cally, Fig. 11(b)–(f) illustrate the front obtained for the three
datasets at Sample-2, while Fig. 11(a)–(e) illustrate the cor-
responding network topology. Furthermore, the same simula-
tion configurations are used as in Fig. 10. We can see from
Fig. 11(b) that the optima of D(X) and C(X) are overlapped
in the network of Data-1, while both the naive approach and
the proposed approach converged to the global optimum. Ob-
serve from Fig. 11(d), that the points obtained by the single-
objective optimization are almost covered by the nondomi-
nated front obtained by the proposed approach. Furthermore,
the proposed approach also outperforms the naive approach in
terms of the nondominated front obtained. Finally, we can ob-
serve from Fig. 11(f) that the point O is also achievable in the
network of Data-3, which is found by the proposed approach.
This indicates that the proposed approach has the potential of
locating the global optimum provided that it is feasible. More-
over, observe from Fig. 11(b) and Fig. 11(f), that there exist
an optimal routing path that having the minimum delay and
the maximum throughput simultaneously, which indicates that
the relationship of D(X) and C(X) depends on the network’s
topology due to the substantial non-trivial topological features
of these complex networks.

VII. CONCLUSION
In this paper, we have designed a multi-objective routing so-
lution for enhancing multiple performance metrics of in-flight
connectivity in terms of the total delay and the throughput.
Therefore, the MOCOP formulated concurrently deals with
two discrete, non-continuous problems, which results in a
number of Pareto optimal solutions. As a consequence, ob-
taining the Pareto set imposes an excessive computational
complexity and it is often infeasible, especially for networks
having numerous possible paths. We employed the NSGA-II
for generating an approximation of the Pareto optimal set of
the MOCOP formulated. Our simulation results revealed that
a set of beneficial trade-off solutions can be obtained for pro-
viding a flexible selection of in-flight connections by solving
the multi-objective routing problem formulated in terms of the
delay and the throughput both for the simulated data and for
our historical flight data. A promising extension of this work
is to conceived a multi-task learning algorithm by exploiting
the parallel nature of the NSGA-II for generating a better
approximation of the Pareto set. Adopting more sophisticated
performance metrics such as HV and IGD+, are capable of
reflecting more comprehensive aspects of the solutions ob-
tained for MOOPs, which constitutes another promising fu-
ture research direction. Moreover, for expediting the search
process of generating the Pareto set, quantum inspired algo-
rithms having inherent parallelism also constitute a promising
future research direction.

APPENDIX A: PROCEDURES OF NONDOMINATED
SORTING AND SELECTION
Fast nondominated sorting and selection constitute a pair of
pivotal operators in NSGA-II [16], which are designed by
Algorithm A.1 and Algorithm A.2, respectively.
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APPENDIX B: PROOF OF PROPOSITION 1
Let FPF = Y2 and F̃∗ = Y1, respectively. From Definition 3,
we have

C(F̃∗
,FPF ) = |{y2 ∈ FPF | ∃ y1 ∈ F̃∗

: y1 � y2}|
|FPF | . (B.1)

As FPF is the Pareto front, any point y1 ∈ F̃∗
weakly dom-

inates the point y2 ∈ FPF if and only if we have y1 = y2.
Therefore, the nominator of C(F̃∗

,FPF ) becomes the number
of all points that belong to both the sets FPF and F̃∗

. This
corresponds to the number of points in the intersection of
FPF and F̃∗

, i.e. |F̃∗ ∩ FPF |. Correspondingly, (B.1) can be
equivalently expressed as

C(F̃∗
,FPF ) = |F̃∗ ∩ FPF |

|FPF | . (B.2)
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