CP 2021 The 7th International Conference on Crack Paths

online and on-demand September 21-24, 2021

THIS INFORMATION WILL BE USED TO SET UP THE CONFERENCE PROGRAM

THEMATIC SYMPOSIUM SELECTION

(a description of each TS is provided in the website: *cp2021.crackpaths.org*)

TS1	Notch fatigue strength in the presence of intrinsic defectiveness and/or	
	complex multiaxial loading	
TS2	Damaged nanocomposites and nanostructures with cracks and	
	discontinuities using local and nonlocal models	
TS3	Crack Path in VHCF regime	\boxtimes
TS4	Crack path simulation using numerical discrete approaches	
TS5	Propagation and significance of cracks in railway components	
TS6	Fatigue and fracture of additively manufactured materials and structures	
TS7	Mixed-mode fatigue and fracture problems: experimental tests and theoretical predictions	
TS8	Crack path in AM components using X-ray tomography	
TS9	Fatigue crack growth and orientation criteria: considerations about crack front direction, shape and plastic phenomena	
TS10	Damage, homogenisation and crack problems in elastic media	
TS11	Fretting fatigue cracks: experimental and modelling techniques	
TS12	Meso-scale modelling of short-crack propagation in fretting fatigue: theoretical analysis and experimental validation	
TS13	Crack path analysis and prediction in materials and structures	
TS14	Crack path in innovative eco-materials	
TS15	Fracture of anisotropic materials under uniaxial and multiaxial loading	
	NO THEMATIC SYMPOSIUM	

Crack path and fracture surface analysis in VHCF under biaxial loadings

Pedro R. Da Costa¹, Ricardo Pereira², Luís Reis^{1,2}, Diogo Montalvão³, Manuel Freitas⁴

¹Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001 Lisboa, Portugal

²IDMEC, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001 Lisboa, Portugal

³Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, UK

⁴Atlântica, Escola Universitária, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal

Very High Cycle Fatigue Ultrasonic Cruciform Fatigue crack

Abstract Ultrasonic fatigue machines and associated investigations are continuously growing in publisher countries and laboratories. They allow researchers to study fatigue in a time and energy reliable manner, fatigue strength and fracture mechanics between 10E06 to 10E09 cycles, the established Very High Cycle Fatigue (VHCF) regime. Almost all published research to date was conducted under uniaxial tension-compression, pure torsion or bending fatigue ultrasonic testing conditions. Just as conventional fatigue testing methods, ultrasonic devices started with basic uniaxial tests [1]. The interest in biaxial ultrasonic methods for VHCF has begun to evolve from the increasing available knowledge surrounding uniaxial fatigue in VHCF. Tension-Torsion biaxial ultrasonic fatigue tests were first reached by adapting the tension-compression ultrasonic setup [2]. The present work focuses on crack path and fracture surface analysis of different specimens, that failed under different biaxial loading conditions. Observation and analysis of crack initiation and propagation of tested biaxial tension-torsion and cruciform specimens in ultrasonic frequencies was carried out. All evaluated specimens were machined and specially designed to function with ultrasonic fatigue machines resonance concept [2, 3]. Three different biaxial crack paths were achieved, in-phase tension-torsion and tension-tension, and out-of-phase tension-compression. Crack path and crack surface morphologies were analyzed by microscope and scanning electron microscope. Obtained results were compared with published conventional biaxial fatigue tested specimens.

REFERENCES

[1] C. Bathias, "Piezoelectric fatigue testing machines and devices," Int. J. Fatigue, vol. 28, no. 11, pp. 1438–1445, 2006, 10.1016/j.ijfatigue.2005.09.020.

[2] P. Costa, M. Vieira, L. Reis, A. Ribeiro, and M. de Freitas, "New specimen and horn design for combined tension and torsion ultrasonic fatigue testing in the very high cycle fatigue regime," Int. J. Fatigue, vol. 103, pp. 248–257, 2017, 10.1016/j.ijfatigue.2017.05.022.

[3] D. Montalvão and A. Wren, "Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines," Heliyon, vol. 3, no. 11, p. e00466, 2017, 10.1016/j.heliyon.2017.e00466.