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Abstract 

This paper presents a method for registration of unstructured point clouds. We firstly derive 

intrinsic shape context descriptors for 3D data organization. To replace the Fast-Marching 

method, a vertex-oriented triangle propagation method is applied to calculate the ‘angle’ and 

‘radius’ in descriptor charting, so that the matching accuracy at the twisting and folding area 

is significantly improved. Then, a 3D cylindrical shape descriptor is proposed for registration 

of unstructured point clouds. The chosen points are projected into the cylindrical coordinate 

system to construct the descriptors. The projection parameters are respectively determined by 

the distances from the chosen points to the reference normal vector, and the distances from 

the chosen points to the reference tangent plane and the projection angle. Furthermore, 

Fourier transform is adopted to deal with orientation ambiguity in descriptor matching. 

Practical experiments demonstrate a satisfactory result in point cloud registration and notable 

improvement on standard benchmarks. 

1. Introduction 

Point cloud registration is a fundamental task in computer graphics and machine vision. Two 

kinds of three-dimensional (3D) point cloud data can be obtained directly by sensing devices. 

On one hand, there are structured-light based sensors such as the Microsoft Kinect which 

generate a structured point-cloud, sampled on a regular grid [1], and on the other hand, there 

are many time-of-flight (TOF) sensors such as the MESA 4500 TOF camera which yields an 

unstructured point-cloud [2]. These point clouds can be used in 3D reconstruction [3], object 

detection and recognition [4]. In these application cases, point clouds from different objects 

or views need to be aligned by a process which is often referred to registration. Registration 

algorithms are able to calculate the transformation that optimally maps two point-clouds each 

other. 

In the wide range of registration algorithms, feature-based methods have gained popularity 

and good performance in many settings, including object recognition and 3D reconstruction. 

The choice for one of these algorithms generally depends on several important characteristics 

such as accuracy, computational complexity, and convergence rate, each of which depends on 

the application of interest. Moreover, the characteristics of most registration algorithms 

heavily depend on the data used, and most feature-based approaches are considered for 

structured point-cloud such as 3D meshes and curved surfaces. Classical works include the 

integral volume descriptors [5, 6],  multiscale local features [7] and spin images [4], just to 

mention a few of many. Spin images as a general shape representation can be used for object 

recognition in complicated real scenes. However, the two distances used for generating spin 

images lack of angular distribution information, such shape representation is difficult to meet 

high accuracy registration.  

Over the past years, features designed for rigid registration like spin images have been 

extended to non-rigid deformations. Some of the classical rigid descriptors are extended to 

the non-rigid case by replacing the Euclidean metric with its geodesic counterpart [8, 9]. 

Moreover, there are isometry invariant features. The heat kernel signature (HKS) [10] which 

is based on heat diffusion at a point. Based on the fundamental solutions of the heat equation, 



a scale-invariant version of HKS was developed [11]. In recent years, variants of HKS have 

been proposed. The wave heat kernel signature (WHKS) is proposed as a solution to the 

excessive sensitivity of the HKS to low-frequency information in [12] which uses a quantum 

mechanical approach to capture multiscale details. By using volumetric distance, HKS was 

extended to volumetric data [13]. An another emerging method which use HKS as field 

function to generate an intrinsic shape context (ISC) descriptor approach to curved surfaces 

[14].  

Early works about 3D shape context descriptors were explored in [15, 16], but the descriptors 

were affected by surface deformation because the descriptors were not intrinsic. Another 

work which explored the exploitation of intrinsic geometry was [17], but there the authors 

trivially deal with radial variation, by averaging over orientations. The descriptors proposed 

in [14] can retain and exploit the information contained in the radial variation around a point, 

however because of the huge curvature change at some particular positions on the surface, the 

information contained in the radial variation around a point will be ambiguous.  

Feature based descriptors have so far achieved a more modest success in the analysis of 

surfaces, especially for surfaces represented by unstructured point clouds. Surfaces lack a 

global system of coordinates and can be associated with only a local vector structure. Such a 

system of coordinates holds only locally. Trying to use it globally like done in spin images 

makes the descriptor sensitive to shape deformations. Based on the experimental analysis of 

Spin-image method and ISC descriptor, we integrate Spin-image with shape context into 

cylindrical coordinate system to generate a 3D cylindrical shape descriptor. 

The contribution of this paper has three aspects. First, a VTP-ISC descriptor is proposed to 

represent the shape of mesh more accurate especially at the twisting and folding positions on 

the mesh, the matching accuracy is obviously improved. Second, we propose 3D cylindrical 

shape descriptors for unstructured point cloud registration. These 3D descriptors are not only 

based on the distance distribution but also the angle distribution of the points which are 

allowed to contribute to the descriptors, compare to 2D descriptors, richer surface 

information is included. Finally, we experimentally demonstrate that the proposed VTP-ISC 

descriptor and 3D cylindrical shape descriptor show notable performance in point cloud 

matching. 

2. VTP-ISC descriptor 

ISC descriptor is an extension of original shape context to surfaces [14]. The authors chart the 

surface by shooting geodesic outwards from the point being analysed, where ‘angle’ is treated 

as tantamount to geodesic shooting direction, and ‘radius’ as geodesic distance. 

In the process of outward ray shooting, the propagation of the directions outwards from the 1-

ring is done using the standard unfolding procedure. However, the propagation of direction 

will intersect at the twisting and folding positions on the mesh. On the premise that all the 

parameters of the descriptor are determined, the propagation direction of the vertex at right 

armpit is intersected obviously as shown in Fig 1a. It makes the vertices which contribute to 

the descriptors are ambiguously assigned to the angular bins. 
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(a)                                                                (b)  

Figure 1 propagation direction intersects at the twisting and folding areas on the mesh 

Ambiguous assignments cause errors in constructing descriptors, then, defective descriptors 

lead mesh mismatch. As is demonstrated in Fig 2, according to the outward ray shooting 

method [14], V is a vertex on a mesh. The red lines are the central propagation directions of 

the angular bins. Numbers mark different angular bins. The vertices will be assigned to 

angular bins based on the angle value between the central line of the angular bins and the 

path to V on the propagation triangles. For example,  will be assigned to bin 1 or bin 2 

(Fig. 2c). However, with the deformation of the mesh or the increasement of the radius of the 

descriptors, the propagation directions intersect.  will be assigned to bin 1 or bin 2 or bin 4 

(Fig. 2d). The unreasonable ambiguous assignment will cause vertices mismatching. 
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Figure 2 Propagation of direction outwards from 1-ring using the unfolding procedure. The triangles 

unfolded along the propagation directions (thick red lines, bottom) are in colour (bottom). The 

vertices assignment is determined by the angle between the propagation direction and the path of the 
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vertices on the propagation triangles (dashed black lines, bottom). (c)  will be assigned to bin 1 or 

bin 2; (d)   will be assigned to bin 1 or bin 2 or bin 4. 

There are still two drawbacks exposed in this surface charting approach. First, the geodesic 

distance calculated by fast marching method (FMM) will be incorrect, when there are skinny 

triangles on the calculation path. Second, the propagation of direction will intersect at some 

twisting and folding areas on the mesh. These two disadvantages affect the two parameters 

that generate the shape context descriptors respectively. 

Based on the above two defects, we derive the surface charting method in descriptor 

generation process. For exact geodesic distance calculation, we use vertex-oriented triangle 

propagation (VTP) [18] to calculate the exact shortest paths from the chosen vertices to the 

central vertex being analysed. The shortest geodesic distance and angle of the chosen vertices 

can be uniquely determined. Hence, the shape context descriptors can be charted. About the 

other procedure, we follow the description in Bronstein’s work [14]. 

3. 3D cylindrical descriptor 

3.1 Cylindrical shape descriptor 

In our representation, each point in the 3D point cloud is associated with a 3D cylindrical 

descriptor which encodes global properties of the surface by using the object center 

coordinate. The correspondences between two point-clouds can be established by matching 

the cylindrical descriptors. Figure 3 shows the cylinder descriptor and 3D histograms of 

descriptors statistics for three points on a human model.  

 

Figure 3. 3D cylinder descriptors of three points on a mesh of the human model. 

A 3D cylinder descriptor is created for a point in the point-cloud as follows. A 3D 

accumulator indexed by ,  and  is created. The coordinates ( , , ) are computed for a 

point in the point-cloud that is within the support of the descriptor. The box indexed by ( , , 

) in the accumulator is then incremented. The resulting accumulator can be thought of as a 
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descriptor. Dark areas in the descriptor correspond to boxes that contain many projected 

points. 3D cylinder descriptors are constructed for every point for point cloud registration. To 

compare the 3D descriptors, the linear correlation coefficient can be used. The descriptor 

similarity can be measured by using the correlation coefficient between two 3D descriptors. 

3.2 Descriptor generation parameters 

There are three parameters need to be determined based on the model. Support area size R is 

the radius of sphere area which is centered on the analysed point. Points within the R range 

around the analysed point are allowed to create descriptor. By setting the support area size, 

the amount of global information in a descriptor can be controlled. For a fixed descriptor 

resolution, decreasing support area size will decrease the descriptiveness of a cylinder 

descriptor because the amount of global shape included in the descriptor will be reduced. 

However, decreasing cylinder descriptor will also reduce the chances of clutter corrupting a 

descriptor. Figure 4 shows cylinder descriptor for a single point on the human model as the 

support area size is increased. This figure shows that as support area size decreases, the 

descriptiveness of the descriptors decreases. 

                                                 

                                          

                                                                           

(a)                                               (b)                                          (c) 

Figure 4 The effect of support area size on 3D cylinder descriptor. As support area size increases, the 

descriptiveness of the descriptors decreases. By varying the support area size, cylinder descriptors can 

vary smoothly from global to local representations. 

Descriptors for all points in the model are created for a particular support area size. Each 

descriptor is compared to all of the other descriptors from model, and the Euclidean distances 

between the point and the points corresponding to the best matching descriptors are computed. 

After repeating this matching for all descriptors on the model, the median Euclidean distance 

(match distance) is computed. By repeating this procedure for multiple support area size 
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using the human model, Figure 5 is created. Match distance is a single statistic that describes 

the correctness of constructing the cylinder descriptor, the lower the match distance, the more 

correct the matches. 

 

Figure 5 Effect of cylinder descriptor generation parameters support area size on match distance. 

According to the geometry, the descriptor in this paper is divided into small boxes according 

to number on the cylindrical coordinate axis.  (the bin number of ),  (the bin number 

of ) and  (the bin number of ). Although the descriptor can have any number 

of ,  and , for simplicity, we generally make the number equals to . This results in 

the descriptor whose box size can be described by one parameter. We define  which is the 

number of ,  and  to be the descriptor resolution. Descriptors generated for the 

human model using different descriptor resolutions are shown in Figure 6. In this example, 

the descriptor, with resolution , generated for a descriptor is not very descriptive of the 

global shape of the model. The descriptor with resolution  does not have enough 

averaging to eliminate the effect of surface sampling. The descriptor with resolution  

has the proper balance between encoding global shape and averaging of point positions. 

                          

                                                                                                            

Figure 6 The effect of descriptor resolution on cylinder descriptor appearance. Three cylindrical 

descriptors of increasing descriptor resolution for a point on the human model are shown. Setting the 

descriptor resolution to 10 creates descriptive cylinder descriptors while averaging during point 

accumulation to eliminate the effect of individual vertex positions. 

In cylinder descriptors generation for point clouds, an appropriate descriptor resolution needs 

to be determined. Figure 7 shows the effect of descriptor resolution on match distance. 



 

Figure 7 Effect of cylinder descriptor generation parameters descriptor resolution on match distance. 

Unlike spin-image method, cylinder descriptors are used for unstructured point cloud. Each 

point in the cloud only contains the 3D position and an nondirectional normal vector. Support 

angle defined in the spin-image method is useless for point cloud without mesh structure. To 

limit the effect of self-occlusion and clutter during the descriptor matching. We define a 

division plane to segment the points in the support area (colour points in Figure 8). This 

division plane passes through the barycentre of the points in support area and normal to the 

normal vector of the point being analysed. The points in the support area are segmented into 

two parts (points in red which are allowed to contribute the descriptor and points in blue 

which are abandoned). In addition, we define the direction from the point being analysed to 

the barycentre as  and randomly pick a normal direction of the point being analysed . If 

, 

 is defined as positive direction, otherwise,  is defined as negative direction. Then, the 

distance from the division plane to the barycentre along the positive normal direction of the 

point being analysed is . As is shown in Figure 8, the descriptor generated for three different 

positions of the division plane.  

              

                               

                                                                      

Figure 8 The effect of division plane on cylinder descriptor appearance. As the division plane moves 

in the negative direction, the number of points contributing to the descriptor decreases.  
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The division plane is used to reduce the number of the points on the opposite side of the 

model that contribute to the cylinder descriptor. This plane decreases the effect of occlusion 

on descriptor matching and also has the effect of decreasing the descriptiveness of descriptors. 

Figure 9 shows the effect of division plane on cylinder descriptor match distance. The graph 

shows that as the division plane moves in the negative direction, the match distance increases 

because the cylinder descriptors are becoming less descriptive. However, a small  is 

necessary for robustness to clutter and occlusion.  

 

Figure 9 Effect of cylinder descriptor generation parameters division plane position on match distance. 

3.3 Cylindrical descriptor matching 

Since our descriptor is intrinsic, it cannot rely on a global system of coordinates and 

constructs a local cylindrical coordinate system around each point. This introduces rotation 

ambiguity: the zero-degree coordinate axis of cylindrical coordinate system picks randomly 

when generating the descriptor, resulting in our cylindrical descriptor to be defined up to 

some unknown phase . Hence, we opt for using the Fourier transform modulus 

(FTM) technique to achieve rotation invariance. We observe that transforming the descriptor 

in the Fourier domain with regard to the angular coordinate ,  

 

 

Taking the absolute value, we have , eliminating the 

effects of orientation ambiguity without relying on orientation selection. After rotation 

disambiguity, cylinder descriptors from similar points of two different objects will be linearly 

related because the number of points that fall in corresponding boxes will be similar. Hence, 

we use the normalized linear correlation coefficient to compare linearly related descriptors. 

Given two cylindrical descriptors U and V with N boxes each, the linear correlation 

coefficient R (U, V) is  
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R is between -1 (anti-correlated) and 1 (completely correlated), and it measures the 

normalized error using the distance between the data and the best least squares fit line to the 

data. When R is high, the descriptors are similar; and when R is low the descriptors are not 

similar. The correlation coefficient imposes an ordering on point correspondences, so good 

and bad correspondences can be differentiated. 

4. Experiment 

This paper apply the derived VTP-ISC descriptor and 3D cylindrical descriptor, and evaluate 

the performance on FAUST dataset [19]. The dataset contains 300 scans of 10 people shapes 

are represented as triangular meshes with about 5000 vertices. Figure 10 compares the VTP-

ISC descriptor with original ISC descriptor [14] which demonstrated better performance on 

this dataset especially at sampled points. As can be read from the graphs, the VTP-ISC 

descriptor (purple) compares favorably in terms of cumulative error distribution and average 

error. For the construction of the descriptors, radius is set to 𝑅 = 10; 5 linearly spaced radial 

bins and 16 angular bins are used. Both kinds of descriptors are created based on HKS. 

   

Figure 10 Cumulative and average errors achieved on the FAUST dataset [19] by the VTP-ISC 

descriptor and compared to the original ISC descriptor [14]. 

Figure 11a visualizes the sampled positions on first pair of models which are model No.10 

and model No.59. These sampled points are almost at the twisting and folding positions on 

the mesh. The numerical symbols on the model correspond to the red points in Figure 11b 

which with errors more than 1centimeter. 
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(a)                                                                             (b) 

Figure 11 Matching errors contrast of the sampled points at the twisting and folding positions on 

No.10 and model No.59. 



Figure 11b shows the matching errors contrast of 52 unsymmetrical sampled points. 

Compared to using original ISC descriptor (blue line), using the VTP-ISC descriptor (yellow 

line) leads smaller matching error especially at the severely distorted positions (red points). 

As is shown in Table 1, the VTP-ISC descriptor can effectively reduce the matching error at 

the twisting and folding positions on the mesh. 

Table 1 Model No.10-Model No.59 Match Experiment 

 Average error 

(5000 points) 

Average error 

(52 points) 

Original Descriptor 0.1808 0.7050 

VTP-ISC Descriptor 0.1632 0.3532 

 

Figure 12 compares our 3D cylinder descriptor with the methods of ISC descriptor [14] and 

Spin-image [4] which demonstrated state of the art results on FAUST dataset. For ISC 

descriptor and Spin-image, we use the models with triangular mesh and vertices to perform 

matching experiments. However, for the proposed descriptor, we only use the vertices. 

Following Bronstein’s method [14], in the construction of ISC descriptors, radius is set to 𝑅 = 

10; 5 linearly spaced radial bins and 16 angular bins are used, the descriptors are also created 

based on HKS. In the construction of Spin-image, bin size is set to 1; image width is set to 10 

and support angle is set to 60 degrees. According to Section 3.2, here descriptor parameters 

are set to these values: support area = 10; Descriptor resolution = 10; The division plane at 

the position +2. As can be found from the graphs, the result by this paper (blue) has better 

performance in terms of cumulative error distribution and average error. 

    

Figure 10 Results of the proposed descriptor, spin image, ISC descriptor and VTP-ISC descriptor on 

the FAUST shape matching benchmark. 

Conclusion 

Summary. We have developed a VTP-ISC descriptor which significantly reduces the 

matching error at the twisting and folding positions on the mesh. Moreover, the proposed 3D 

cylindrical descriptor demonstrates state of the art results for unstructured point-cloud 

registration.  

Limitations. In the process of descriptor construction, the parameters calculated from one 

model are not optimal for all models. Therefore, using one set of parameters to create 

descriptors for all models cannot always achieve optimal matching results. Besides, the 

division plane is a rough segmentation for choosing points which are allowed to contribute to 

the descriptors.  



Future work. We intend to pursue is applying the proposed descriptor for 3D vision tracking 

especially for unstructured point cloud which obtained by TOF cameras directly. Another 

work which we intend to pursue is adopting the descriptor as a feature of deep learning, e.g. 

for training the deep neural network [20] that combines with other features such as RGB and 

depth to perform 3D point cloud tracking.  
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