
Perceptual Adversarial
Networks With A Feature
Pyramid for Image

Translation

This work investigates the image-to-image

translations problems, where the input image is

translated into its synthetic form with the original

structure and semantics preserved. Widely used

methods compute the pixel-wise MSE loss, which are

often inadequate for high-frequency content and tend

to produce overly smooth results. Concurrent works

that leverage recent advances in conditional

generative adversarial networks (cGANs) are

proposed to enable a universal approach to diverse

image translation tasks that traditionally require specific loss functions. Despite the

impressive results, most of these approaches are notoriously unstable to train and tend

to induce blurs. In this paper, we decompose the image into a set of images by a

feature pyramid and elaborate separate loss components for images of specific band-

pass. The overall perceptual adversarial loss is able to capture not only the semantic

features but also the appearance.

Many classical image processing tasks can be framed as image-to-image translation problems,
where an input image would be mapped to a synthetic counterpart.1 Examples include cross-
domain image generation, image colorization, image de-nosing, image inpainting, image
semantic segmentation, image super-resolution and texture transfer, etc. Such image-to-image
translation is useful in generating synthetic images for many downstream tasks. For instance, the
translated images can be used for supplementing the missing data or producing considerable
sizes of data for regression or classification tasks.
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The surge of interest in convolutional neural networks has exerted significant impact on image
translation tasks. Subsequently training a convolutional neural network or its variant is a
prominent approach for image processing. However, the loss functions used by these methods
are all based on pixel-wise construction errors between the predicted image and the ground-truth,
which are notoriously inadequate for high-level representations and will tend to yield blurry
reconstructions.2 This is because the minimization of pixel-wise loss encourages the averaging of
all plausible locations rather than preserves the precise location of details in the features.

GANs have been recently proposed as a novel approach to train a generative model,3 providing
an appealing alternative to image generation without resorting to detailed goals. We give a brief
review of the closely related work of this paper by focusing on two areas: effective optimization
objectives and efficient network architectures. Zhu et al 4 and Isola et al 5 move beyond specific
image translation tasks by developing a cGAN-based common framework 6 for various image-
to-image translation tasks. Taigman et al 7 extend to the unsupervised version, mapping images
from source domain to target domain instead of specific input and output images. Unfortunately,
GANs are notoriously unstable to train in practice. Recent papers have shown that GAN-based
methods that integrate the perceptual loss, which are based on difference in high-level feature
space, is able to yield pleasing synthetic images and also help stabling training. 8,9 For tasks that
allow for nearly optimal solutions, like texture transfer,9 desirable outputs can be attained by
matching the perceptual features. However, minimizing the perceptual distance alone is not able
to tackle more complicated problems like extreme super-resolution 2 and also tends to induce
high-frequency artifacts.

Another intriguing line of related work consists of assembled GANs architectures. CycleGAN,4
DualGAN 10 and DiscoGAN 11 slove the unpaired image translation by enforcing a cyclic loss
between the source domain and the target domain, which might compete more with the
adversarial losses especially in the paired image translation tasks. In contrast, CoGAN 12 does
not rely on the invertibility of the bi-directional mapping, instead it learns the joint distribution
by a weight-sharing assumption. One major criticism has been its poor universality since the
joint representation across domains is task-specific. Wang et al 13 and Chen et al 14 exploit the
coarse-to-fine generator. Inspired by their successes, we propose a new successive refinements
scheme.

Our work resembles in spirit what Wang et al 13 have done in terms of the multi-resolution
pipeline, but technically is very different. With respect to the discriminators, rather than training
the critics to differentiate the synthesized images and the real ones in the image space, we utilize
the discriminators to minimize the discrepancy in dual-track feature space at multiple scales. As
for the generators, downsides of Wang et al 13 are large memory for concatenating input into the
generator and the inapplicability to scenes that inaccessible to the manually annotated labels for
each individual object.

In this paper, a cGAN-based framework is developed for the image-to-image translation that
would traditionally require tailored loss function with expert knowledge. We introduce a feature
pyramid to separate the high-frequency and low-frequency feature maps thus effectively alleviate
either the problem of high-frequency artifacts or over smooth in image translation. Besides, in
order to capture the perceptually important information, deep hierarchical discrepancy is
incorporated into the adversarial training. We also conduct an ablation study regarding the
optimizing objectives and the essentiality of the integrated feature pyramid. Comparisons against
baselines on several image translation tasks have been performed and the method proposed is
demonstrated to be effective.

METHODS
The goal of image translation is to learn a mapping from images in domain X to those in Y given
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image translation, where each yj is matched with xi accordingly. As can been illustrated in Figure
1, the input image is translated into its counterpart that with the characteristics of the target
domain and then decomposed into two sets of images by feature pyramid structures. High-
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frequency versions of the input image and the output image are learned for semantics
comparison. On the other hands, low-frequency residual images are used for spatial resolution to
ensure the global coordination. Besides, feature matching in pixel-wise space as well as
perceptual distance are adopted to provide gradients that alleviate the unstable training problem
of GANs to some extent.

Figure 1: Schematic diagram of the proposed algorithm with illustrative images.

Our ultimate aim is to translate for a given image its corresponding counterpart with high
perceptual quality. To achieve this, we train a generator G by solving:

  ˆ argmin ,
G

G
G i ii

G X Y
   L (1)

where θG is the parameters of the generator G and the summation denotes the weighted
combination of several loss functions that depict distinct characteristics of natural images.

We utilize a feature pyramid structure 15 to obtain image representations that of different band-
pass. Specifically, a image I of size w × h is downsampled to a new one with the size of w/2 ×
h/2 by the operator d(.) and get blurred. Keep downsampling we get a pyramid P(I)=[p0(I),
p1(I),…,pk(I)] that consist of a set of images with various scales, i.e. p2(I)=d(d(I)) with the size of
w/4 × h/4. Each level of the high-frequency pyramid H(I)==[h0(I), h1(I),…,hk(I)] is defined by
the residual image between forwarding adjacent level in the pyramid P(I). Note that the level
with smaller scale should be upsampled to ensure the element-wise subtracting. Formally, the k-
th high-frequency residual image of pyramid is:

 1k k kh p u p   (2)

where u(.) is an upsampling operator that doubles the image scale. Constructed by first
downsampling and then upsampling, u(pk+1) acts as a low-frequency version of the image.

Then we elaborate separate loss for different feature pyramid images to capture characteristics of
both semantics and appearance. GANs 3,6 provide a novel approach to learn a prior. Specifically,
A GAN contains two components: a generator to generate realistic fooling images and a
discriminator to distinguish the fake from the real image. GANs are just right for general image-
to-image translation tasks as they would reject the undesirable outputs no matter what the
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specific application is. GANs are satisfying solutions for a wide range of image translation tasks
since they can learn a loss that adapts to the data. Formally, the adversarial loss can be written as:

     ~ ( ) ~ ( )log log 1
data zGAN x p x z p zD x D G z       E EL (3)

where x is the observed image and z is the random noise vector that mapped to the output image
by the generator G. In practice, both the discriminator D and the generator G are iteratively
optimized by stochastic gradient decent (SGD).

Previous works have shown that performance can be improved by modifying the generator G or
the discriminator D. To be more specific, when the up-scaling generator in the naive GAN 3 is
replaced by a network architecture that akin to an autoencoder, the input image x is mapped to a
latent representation and then produces a fake image G (x) that being expected to have the same
distribution with that of the target image y: 5,16

     _ ~ ( ) ~ ( )log log 1
data dataGAN AE y p y x p xD y D G x       E EL (4)

However, randomness is necessary if deterministic results are expected to avoid. Therefore,
dropout is used as noise to produce stochasticity at several layers of the generator G. When it
comes to the discriminator, previous works 5,6 have found it beneficial to simultaneously use the
input image as the condition variable of discriminator D:

     , ~ ( , ) ~ ( )log , log 1 ,
data datacGAN x y p x y x p xD x y D x G x       E EL (5)

Since impressed outputs are always globally consistent with the input image and share the details
of appearance with the target images. Therefore we propose to utilize the levels in separate
feature pyramid of real image x in the source domain and y in the target domain. To be more
specific, we adversarially train the generator G and discriminator D on high-frequency feature
maps of the output image G(x) that constructed by a pyramid network to match the semantic
characteristics with the input x. We utilize the multi-scale discriminators 13 to tackle pyramid
levels that of different sizes. Formally the adversarial loss on high-frequency images can be
written as:

           , ~ ( , ) ~ ( )log , log 1 ,
cGAN data data

high
x y p x y k k k x p x k k kk

D P x h y D P x h G x          E EL

(6)

where Pk(x) is the downsampled image that of 1/k scale of the input x and hk is the k-th level in
the high-frequency feature pyramid. Dk denotes the corresponding discriminator with respect to
the image scale. Note that though different Dks operate at distinct image scale, they have
identical network architecture.

On the other hand, we train on smooth images that spaced by an octave to capture the global
information such as the color and contents coordination of the target y:

       ~ ( ) ~ ( )log log 1
cGAN data data

low
y p y k k x p x k kk

D P y D P G x          E EL

(7)

As demonstrated in the report by Mahendran and Vedaldi,17 minimizing the difference in the
feature space instead of the image space tends to generate outputs that are undistinguished from
the targets. This can be attributed to the ability of deeper layers to represent much complex
features than from pixel space. Inspired by Johnson et al 1 and Gatys et al 8, we introduce a
perceptual loss that defined as the Euclidean distance of l-th ReLU activation layers of the
perceptual network ϕ:
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   L (8)

where Cl, Hl andWl are filter amount, height and weight respectively, and the weighting
parameter βl describes the contribution of layer l to the sum of perceptual loss. The perceptual
discrepancy provides considerable gradients for the generator to be optimized thus encourages
the perceptual similarity between the translated image and the reality, rather than just forcing
them to be exactly the same in pixel values. The perceptual network ϕ might be the pre-trained
deep neural networks such as VGG19, a part of the discriminator or the generator network.2 Our
method uses all the ReLU activation layers of the conditional discriminator network D since
preliminary experiments show that the higher layers of our discriminator network are sufficient
to provide perceptual representations at an insignificant degradation of visually performance
when compared to deeper networks such as VGG19.

However, using perceptual loss alone generally induces high-frequency artifacts.17Thus mixing
the perceptual loss with other losses is essential to guide the image generation. Despite blurry
outputs, the traditional loss like 1 or 2 distance has been demonstrated to be beneficial
when combined with the adversarial loss. 2,13 This is because the pixel loss could provide
gradients that alleviate the unstable training problem of GANs to some extent. In this paper, 1
distance is used for the pixel-wise loss to encourage less blur than 2 loss:

 , ~ ( , ) 1datapix x y p x y G x y   EL (9)

Finally, the full objective of the perceptual adversarial loss we aim to optimize is:

 1 2 3 4
ˆ argmin

cGAN cGAN
G

high low
G perceptual pix

       L L L L (10)

Usually there is no perfect solution that simultaneously achieves the minimum of each loss
component. However, since the total loss we optimize is a linear combination of each separate
loss function, we can tune the coefficients of them to balance between high-frequency and low-
frequency feature learning, as well as place the emphasis on pixel-wise or perceptual similarity.
We test for different coefficient combinations in the preliminary experiments to make our model
equip with comprehensive capacity on image-to-image transformation tasks. In this paper, we set
α1=1, α2=5, α3=1, and α4=100 respectively.

EXPERIMENTS
We perform an ablation study regarding to the optimizing objectives and the integrated feature
pyramid to empirically demonstrate that the proposed method is an effective approach to achieve
substantial performance boost. To further assess the proposed approach, we apply it to several
image-to-image translation tasks and compare it with baseline models.

Implementation Details
Network architectures in this paper adopt the ones in pix2pix.5 Besides, a perceptual network ϕ is
employed to measures the discrepancy between the generated image and the real ones using the
perceptual similarity metric. In our work the perceptual network ϕ shares the same architecture
with the discriminator D. As for the discriminator, 70×70 patch-level discriminator is used on
purpose of fewer parameters. We apply instance normalization for generators. When it comes to
the details of the feature pyramid, preliminary experiments show that three levels for each are
enough to yield satisfactory results. Slight improvement by deepening the feature pyramid could
not compensate for the computation overhead since the multi-scale discriminators are required to
judge the representations at all the levels. Nearest neighbor interpolation and the bicubic
interpolation are adopted for downsampling and upsampling respectively.
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Networks are trained from scratch with weights initialized from a Gaussian distribution N (0,
0.022). Alternate SGD and Adam solver with a momentum term of 0.5 and a learning rate of 2 ×
10-4 are applied to D and G. Training epochs vary with the dataset size of different tasks. For all
the implementations, Tensorflow and cuDNN have been employed on a NVIDIA 1080 Ti GPU.

Ablation Study
The significance of each loss component of the overall perceptual adversarial loss is need to be
validated by comparing the unconditional version against those conditioned, as well as the partial
model against the full model regarding the feature pyramid.

Figure 2 shows the qualitative performance of these variations on the widely used benchmark
dataset Cityscapes.18When the conditioning of Equation 6 is removed (see Figure 2(a)), the
generator produces nearly the same transformed image regardless of different inputs. When the
discriminator is conditioned on the input, output varies with the input image rather than just
being constant as they are constrained to be matched (see Figure 2(c)-(e)). In other words, mode
collapse can be alleviated by conditioning effectively. But still discrepancy between the results
of depending on single pyramid and targets can be observed. We found obvious distortion of the
zebra crossing in Figure 2(c) and over smoothness in Figure 2(d). Our conjecture is that some
divergences exist such as the appearance between the output of the generator and the conditional
image, the former being photograph whereas the latter being semantic labels. Then attempt has
also been made to leverage both the high-frequency and low-frequency pyramids, which we find
really effective at yielding realistic synthesis. Besides, since the discriminator also acts as the
perceptual network in our approach, the perceptual discrepancy between the output of generator
and the input image brings extra gradients to the generator to be optimized.

(a) (b) (c) (d) (e) (f)

Figure 2: Visually evaluation depending on whether or not to employ the conditioning and what kind
of maps in feature pyramid to leverage for Cityscapes labels→photo translation task. From left to
right: (a) input; (b) without conditioning; (c) without Equation 7; (d) without Equation 6; (e)
completed model; and (f) target.

To further validate the proposed method, the FCN score, 5 which measures the interpretability of
the translated output, is used for the quantitative evaluation on the task of semantic labels→
cityscape photo. The intuition is that the FCN-8s, which is an off-the-shelf image segmentation
approach, is more likely to accurately detect the semantic label if the translated image that fed to
the FCN-8s is more realistic. Standard metrics for semantic segmentation are adopted.

Quantitative results that shown in Table 1 are consistent with those of the visual assessment in
Figure 2. First, outperformance over the variation that without conditional adversarial loss is
easy to be observed, since what the unconditional adversarial loss exactly penalizes is the
unreality rather than the mismatching between the input and the output. When feature pyramids
are utilized, different degree refinements are shown.
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Table 1: FCN scores for different configurations with respect to the conditioning and feature
pyramid, evaluated on the Cityscapes labels→photo translation task.

Loss Per-pixel acc. Per-class acc. Class IOU

without conditional
adversarial loss 0.42 0.10 0.07

without adversarial
loss on low-
frequency feature
maps

0.71 0.25 0.18

without adversarial
loss on high-
frequency feature
maps

0.45 0.15 0.11

completed model 0.74 0.26 0.19

We compare the performance of different variants with respect to the integration of the feature
pyramids into the GAN framework. Evaluations have been conducted on the single image super-
resolution task after being trained on the public dataset mscoco. 19 Widespread quantitative
metrics such as Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are
calculated since ground-true is available. Table 2 clearly reveals the outperformance of the
completed model with all the metrics. To be more intuitive, visual performance are shown in
Figure 3 while more results are given in the supplementary. Using the low-frequency feature
pyramid alone produces even blurrier results than the traditional bicubic interpolation. Even
though the multi-scale discriminators supply gradients to the generator, there is no steering for
the generator to produce details when high-frequency information is filtered out by the low-
frequency feature pyramid. In contrast, when only the high-frequency pyramid is utilized, the
results are shown to be obviously sharper than training with its counterpart alone. Nevertheless,
it sometimes results in sharpening artifacts since high-frequencies are undesirably intensified at
the edges. Results yielded by the full integration are impressive even at a high magnification, as
shown in Figure 3. Complementation between these two feature pyramids effectively enables the
reduction of artifacts as well as the increase of realistic textures.

Table 2: Quantitative comparison of the ablation study with respect to the integration of different
feature pyramids on x 4 super-resolution.

without high-
frequency pyramid

without low-
frequency pyramid

Completed model

PSNR 20.34 dB 19.82 dB 23.85 dB

SSIM 0.8279 0.8097 0.8563

Indeed, our results are sometimes outperformed by some other approaches, such as the state-of-
the-art super-resolution approach DRRN, 20 as shown in the supplementary. However, what we
strive for is a better solution for general image-to-image translation tasks than the previous
works rather than a best model for specific tasks. To further assess the dual-track pyramids, we
perform another ablation study on the image inpainting task in the next section, in the purpose of
comparing the best feature pyramid scheme against some state-of-the-art methods.
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(a) (b) (c) (d)

Figure 3: Examples of the ablation study with respect to the integration of different feature pyramids
on the single image super-resolution task. From left to right: (a) reference HR image; (b) without
high-frequency pyramid; (c) without low-frequency pyramid; and (d) completed model.

Comparisons against baselines
Recent state-of-the-art approaches that related to our methods are chose to be the baselines,
including Pix2pix,5 CE16 and CNN. The CNN here is referred to the model that sets the
perceptual feature loss and the two adversarial losses of our model to be zero; thus it is
equivalent to a traditional CNN. For fair comparisons, this paper implements objectives of all the
baselines with the same networks architecture and training details with us on each task unless
specified otherwise.

The proposed approach is evaluated on the image inpainting task with holes too large to employ
local non-semantic approaches. The purposes of this experiment are two. First, contrastive
studies are conducted to learn the effect of our method. Second, we compare against several
configurations of our approach that with different pyramids to choose the effective features.
Experiment is conducted with data from the CelebA. More than 200k images are trained on the
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aligned faces training set for 5 epochs. The training process is fast and converges in 10 hours,
and the testing on 50k images only takes several minutes on a 1080 Ti GPU.

As shown in Figure 4, the results of CE 16 and pix2pix 5 are obviously inferior to ours as CE 16

predicts blurred central regions while the pix2pix 5 introduces unsatisfying artifacts. Then we
proceed to validate the proposed coupled pyramid by comparisons against the alternative
configurations, in particular, employing only a single low-frequency feature pyramid or its high-
frequency counterpart. Figure 4 shows that the filled regions of (d) are lack of fine details. On
the other hand, (e) tends to produce images with color distortion and checkerboard artifacts.
Reasonable explanation might be that, even though the low-frequency feature matching is able to
capture the overall appearance of the blank region, it tends to induce the averaging of potential
location of details thus leads to over-smoothed images. On the other hand, heavy emphasis on
high-frequency feature along with adversarial loss is responsible for obvious artifacts. Our
completed model, which integrates the perceptual discrepancy into a cGAN model that with
coupled feature pyramids, not only effectively sharpens the prediction but facilitates the hyper
parameters tuning since adversarial network is unstable and sensitive to coefficient tuning in our
preliminary experiment.

(a) (b) (c) (d) (e) (f)

Figure 4: Different models and several variants of our method for image inpainting. From left to
right: (a) input; (b) Context-Encoder; 16 (c) pix2pix; 5 (d) ours model with a single low-frequency
feature pyramid; (e) ours model with a single high-frequency feature pyramid; and (f) our completed
model.

Then the proposed approach is evaluated on the tasks of Cityscapes labels→photo. Figure 5
shows several examples on the Cityscapes dataset.18 While pix2pix 5 is able to produce much
shaper results than those of CNN by means of introducing the conditional adversarial loss,
artifacts can be easily observed. Even though CRN 14 produces less artifacts than pix2pix 5, in
fact the transformed images of CRN 14 include hallucinated objects, such as the triple-wheel
bicycle, as can been seen in the zoomed region. On the whole, none of the baselines above is
competitive with our approach. Thus it is suggested that the perceptual adversarial loss and the
separated feature pyramids are both essential to our superior performance. For better comparison,
zoomed versions of certain regions-of-interest are shown below the outputs.
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(a) (b) (c) (d) (e) (f)

Figure 5: Examples of different approaches to mapping Cityscapes labels to photo. From left to
right: (a) input; (b) CNN; (c) pix2pix;5 (d) CRN;14 (e) ours; and (f) target.

CONCLUSION AND FUTURE WORK
This work develops a perceptual cGAN-based framework with feature pyramids for image-to-
image translation. Feature maps with different frequency are separated to depress the emphasized
on the sharpness, thus to alleviate the high-frequency artifacts. Benefits of traditional pixel-wise
reconstruction loss and the perceptual loss are combined to capture both the appearance and
spatial structure. Ablation experiments demonstrate that our loss function is superior to those
without feature pyramids or perceptual loss and can become an effective tool for diverse image
translation tasks. Compelling results of our model show that neither the features nor the priors
need to be hand-engineered by our proposed method. Even though our results are outperformed
by some task-specific approaches in some cases, we show great generality on a variety of tasks
as well as the improvement on previous universal frameworks. Examples are shown in the
supplementary.

Nevertheless, many issues still need to be further explored. When translating the cityscape
photos into semantic labels using unpaired training data, the proposed approach sometimes
rearranges the labels for trees and buildings. Ambiguity might be alleviated by leveraging a tiny
fraction of annotated data or weakly supervised labeling for better prior. Second, while the
proposed algorithm often succeeds in one-to-one mappings, extensive applications require
multimodal outputs and variation technics seems to be a feasible solution to produce diverse
results. Third, artifacts tend to be obvious when building up the images from lower resolution to
a higher one, which is one of the typical issues of GANs. Since the deconvolution operation
usually induces uneven overlaps on two axes of the images, creating checkerboard-like artifacts
is hard to completely avoid. An alternative way to upsample is desired to resist the high-
frequency features from being intensified. In addition, a better architecture of the perceptual
feature extractor, such as the introspective neural networks or the cascading convolutional neural
networks, to further improve the feature learning will be part of the future work.
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(The following images are best viewed and compared zoomed in.)

(a) (b) (c) (d) (e) (f)

Figure 6: Examples of image colorization by our method. Input ((a) and (d)); our results ((b) and (e));
and the reference images ((c) and (f)).
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(a) (b) (c) (d)

Figure 7: Results of 4X super-resolution. From left to right: reference HR image, reconstruction
results with corresponding to Bicubic, our method and the state-of-the-art approach DRRN. 20
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(a) (b) (c) (d)

Figure 8: Examples of our method for image inpainting. From left to right: (a) input; (b) Context-
Encoder; 16 (c) pix2pix; 5 and (d) ours.
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(a) (b) (c) (d) (e) (f)

Figure 9: Examples of image de-raining or de-snowing by our method. Input ((a) and (d)); our
results ((b) and (e)); and the reference images ((c) and (f)).
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