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Abstract 17 

Context 18 

Historical maps of land use/land cover (LULC) enable detection of landscape changes, and 19 

help to assess drivers and potential future trajectories. However, historical maps are often 20 

limited in their spatial and temporal coverage. There is a need to develop and test methods to 21 

improve re-construction of historical landscape change.  22 

Objectives 23 

To implement a modelling method to accurately identify key land use changes over a rural 24 

landscape at multiple time points. 25 

Methods  26 

We used existing LULC maps at two time points for 1930 and 2015, along with a habitat 27 

time-series dataset, to construct two new, modelled LULC maps for Dorset in 1950 and 1980 28 

to produce a four-step time-series. We used the Integrated Valuation of Ecosystem Services 29 

and Tradeoffs (InVEST) Scenario Generator tool to model new LULC maps. 30 

Results 31 

The modelled 1950 and 1980 LULC maps were cross-validated against habitat survey data 32 

and demonstrated a high level of accuracy (87% and 84%, respectively) and low levels of 33 

model uncertainty. The LULC time-series revealed the timing of LULC changes in detail, 34 

with the greatest losses in neutral and calcareous grassland having occurred by 1950, the 35 

period when arable land expanded the most, whilst the expansion in agriculturally-improved 36 

grassland was greatest over the period 1950-1980. 37 

Conclusions 38 

We show that the modelling approach is a viable methodology for re-constructing historical 39 

landscapes. The time-series output can be useful for assessing patterns and changes in the 40 

landscape, such as fragmentation and ecosystem service delivery, which is important for 41 

informing future land management and conservation strategies.  42 
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1. Introduction 88 

 89 

Land use/land cover (LULC) change is one of the main drivers of terrestrial biodiversity loss 90 

and altered ecosystem functions and services across the globe (Bateman et al., 2013; 91 

Tittensor et al., 2014). Anthropogenic LULC change is continuing to increase in extent and 92 

intensity (Marques et al., 2019) and is forecast to remain a major driver influencing terrestrial 93 

ecosystems in the future (Sala et al., 2000). Major changes in LULC include agricultural 94 

expansion and intensification, urbanisation, industrialisation, deforestation of natural forest 95 

and forest planting for timber, undertaken to meet the demands of an increasing population 96 

worldwide (Newbold et al., 2015; Song et al., 2018). While most studies focus on recent 97 

changes in land use, it is important to set current changes in a historical context (Cousins et 98 

al., 2015; Fescenko and Wohlgemuth, 2017). Some studies have examined such changes 99 

across networks of sample sites with known history (e.g. Redhead et al., 2014). However 100 

because this is restricted to specific locations, broader and complex patterns occurring across 101 

landscapes cannot be assessed. Re-constructing historical landscape maps allows LULC 102 

change to be examined across large areas, which is important for assessing the degree and 103 

type of changes and their spatial distribution. Such analyses can help inform land 104 

management decisions and support the implementation of future conservation measures, for 105 

example by identifying which areas are at greatest risk of future change. 106 

 107 

LULC maps can be produced using a variety of sources, including field survey data, aerial 108 

photography and satellite imagery. Satellite images have become increasingly important for 109 

obtaining land cover data and are often used to monitor LULC change. Such data can also be 110 

used to support the development of LULC models, which aim to detect drivers of historical 111 

change and/or predict future changes (Veldkamp and Lambin, 2001). There are a wide 112 

variety of approaches used to model LULC change (Lu et al., 2004; Noszczyk, 2019). LULC 113 

models require the identification of the most important changes, such as urban expansion, 114 

agricultural intensification, or protection of natural areas, along with geographical predictors 115 

for where specific changes are most likely to occur. This may include soil type, topography, 116 

the previous LULC and other landscape features such as watercourses or infrastructure. As 117 

the importance of and demand for understanding LULC change has increased, a number of 118 

modelling software programmes have been developed (Fuchs et al., 2013; Sharp et al., 2016). 119 

These tools all employ a similar principle, whereby statistical analysis is used to identify 120 

patterns between the current distribution of LULC and environmental covariates.  121 

 122 

Owing to data availability and time constraints, many LULC change studies are only able to 123 

re-construct one historical landscape. Comparisons in LULC are therefore often performed 124 

between two snapshots in time (Cousins et al., 2015; Hooftman and Bullock, 2012; Reis, 125 

2008), which provides little information on the dynamics of change during the intervening 126 

period. More detailed information on trajectories of LULC change can help land managers 127 

and conservationists address more specific problems, which would otherwise be difficult to 128 

solve with only two time points. For example, determining where certain habitats occurred in 129 

the past and at what time period they were lost can be useful for locating areas where 130 

ecological restoration could take place or where habitats could be reconnected (Willems, 131 
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2001). Similarly, variation in biodiversity among apparently similar habitats can be explained 132 

by their different land use histories, which can inform conservation management choices 133 

(Fescenko and Wohlgemuth, 2017).  134 

 135 

Our study area is the county of Dorset, a predominantly rural landscape in southern England, 136 

which has undergone dramatic land use change, mostly through agricultural intensification, 137 

over the twentieth century (Hooftman and Bullock, 2012), in common with many regions 138 

across Europe. Dorset is an ideal area to examine LULC change, as there is a wealth of 139 

environmental datasets for this county, including an extensive botanical survey conducted by 140 

Good (1937). Good’s dataset has provided valuable insights into patterns of change in 141 

heathland, calcareous grassland and woodland (Diaz et al., 2013; Keith et al., 2009; Newton 142 

et al., 2012) and more recently it has enabled the generation of a habitat time-series dataset 143 

across Dorset (Ridding et al., 2020). Ridding et al. (2020) determined the habitat type of over 144 

3700 locations that were derived from the original Good survey sites, using contemporary 145 

field survey data and spatial datasets, for the years 1930, 1950, 1980, 1990 and 2015. 146 

Hooftman and Bullock (2012) created a land use map for Dorset in the 1930s and compared 147 

this with the UK Land Cover Map of 2000. They found that 97% of semi-natural grasslands 148 

were converted into agriculturally-improved grassland or arable land, as well as a large areas 149 

of heathlands and rough grassland. Although the study quantified broad LULC change over 150 

time, it was not possible to assess more accurately when these key LULC changes occurred. 151 

We aimed to improve on this by producing a time-series of maps spanning the past ca. 80 152 

years in Dorset. 153 

 154 

We used a modelling tool and detailed habitat data from Ridding et al. (2020) to inform the 155 

model, to generate LULC maps for Dorset in 1950 and 1980. These could then be used to 156 

analyse LULC change alongside the existing 1930s land cover map generated by Hooftman 157 

and Bullock (2012) and the CEH Land Cover Map 2015 (Rowland et al., 2017a). The aim of 158 

our study was to:  159 

(i) Assess the accuracy of the modelling method; 160 

(ii) Identify the timing of key LULC changes between 1930 and 2015;  161 

(iii) Determine the uncertainty associated with the methodology. 162 

 163 

2. Method 164 

 165 

2.1. Study Area 166 

 167 

Dorset, southern England, is currently ca. 2653 km2 in area, including the urban areas of 168 

Bournemouth, Poole and Christchurch that were added in 1974. Prior to that Dorset was ca. 169 

2500km2 in area (Hooftman and Bullock, 2012). The population more than doubled between 170 

1930 and 2017, from ca. 198,000 to ca. 424, 670 excluding the urban centres of Bournemouth 171 

and Poole (Office for National Statistics, 2017). Like many regions in Western Europe, 172 

Dorset underwent considerable land use change during the 20th and early 21st centuries, 173 

through agricultural intensification, afforestation and urbanisation, which led to significant 174 
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losses of semi-natural habitats and fragmentation of remaining areas (Hooftman and Bullock, 175 

2012; Webb, 1990).  176 

 177 

2.2. InVEST Scenario Generator 178 

 179 

To create LULC maps of Dorset in 1950 and 1980, we used the Integrated Valuation of 180 

Ecosystem Services and Tradeoffs (InVEST) Rule Based Scenario Generator tool (Sharp et 181 

al., 2016) (subsequently “InVEST”). The years 1950 and 1980 were selected based on the 182 

availability of detailed habitat data from Ridding et al. (2020), which was required to inform 183 

the model. InVEST uses a range of inputs as predictor variables to model land cover change 184 

using multi-criteria evaluation methods and overlay analysis (Sharp et al., 2016). Although 185 

the model is relatively simple compared to other approaches (Liping et al., 2018; Verburg et 186 

al., 2002), it is ideal for modelling LULC change over large areas because it is 187 

computationally efficient. The simplicity of the model also makes it easy for the user to 188 

incorporate known drivers and constraints, compared to methods such as cellular automata 189 

and neural networks (Sharp et al., 2016). 190 

 191 

InVEST determines the suitability of individual grid cells for LULC change based on the 192 

following inputs; a baseline raster LULC map, a transition matrix table and other optional 193 

data including land suitability factors, constraints and override layers (Fig. 1). The transition 194 

matrix table provides the quantity of change per LULC, and the likelihood of a particular 195 

LULC converting to another LULC. Within this table, LULC types are prioritised using a 196 

value between 1 and 9; thus when multiple objectives compete for a single cell, the one with 197 

the highest priority wins. A proximity value within the same table controls the assumption 198 

that pixels close to a LULC type are more likely to be converted to that cover type if they are 199 

suitable. The land suitability factors are physical and environmental variables that are likely 200 

to affect the suitability of land for a given LULC type and thus where in the landscape 201 

changes are likely to occur. The factors are given a factor weight between the value of 0 and 202 

1, which determines the weight given to the factors vs. the transition matrix (Fig. 1). For 203 

example, a weight of 0.3 means that 30% of the final suitability is contributed by the factors, 204 

whilst the remaining 70% is attributed to the transition matrix (Sharp et al., 2016). The 205 

constraint input within InVEST prevents particular areas of the baseline landscape from 206 

changing where there are known factors that limit the likelihood of change. The override 207 

function, changes the LULC type of individual grid cells based on the users input, which 208 

occurs after the model has run. The following sections describe the data utilised for each 209 

model input.  210 

 211 

2.3.Baseline LULC maps 212 

 213 

The 1930 adapted Dudley Stamp Map produced by Hooftman and Bullock (2012) was used 214 

as the baseline LULC map for the creation of the 1950 Dorset map. The Dudley Stamp Map 215 

was created from the 1930s Land Utilisation Survey of Britain, where volunteers mapped 216 

LULC on six-inch to the mile Ordnance Survey (OS) maps (Stamp, 1931). This baseline map 217 

is based on the historic county boundary which we used for the entire map time-series to 218 
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ensure consistency. The 1930 map did not clearly distinguish broadleaved from coniferous 219 

woodland. To address this issue we used Good’s survey of 7575 vegetation stands (Good, 220 

1937) to identify areas of coniferous woodland, which is likely to have been planted in this 221 

part of the country. The Good stands did not give complete coverage over Dorset, so all 222 

remaining patches of woodland which were not surveyed by Good were assumed to be 223 

broadleaved. This is likely to be an underestimate of coniferous woodland in Dorset; however 224 

records suggest that the coverage of coniferous woodland in southern England during this 225 

time was limited (Best and Coppock, 1962).  226 

 227 

For the creation of the 1980 Dorset map, we used the CEH Land Cover Map 2015 228 

(LCM2015) (Rowland et al., 2017a) as the baseline. The LCM2015 is a parcel-based land 229 

cover map for the UK created by classifying satellite data into 21 land classes that are based 230 

on the broad habitats defined by Jackson (2000). This method was preferred over using the 231 

generated 1950 map, since the LCM2015 is already a validated product, and this avoided 232 

using two sequential interpolations to create the 1980 map and the likely propagation of 233 

errors. We trialled the alternative approach in preliminary analyses but this gave less accurate 234 

results (see Online Resource 1). No acid grassland was identified in the LCM2015 in Dorset, 235 

even though this habitat was known to be present at this time (Ridding et al., 2020). This is 236 

because small areas of semi-natural habitat are often not detected in the LCM2015, which has 237 

a minimum mappable unit of 0.5 ha and is poor at detecting linear features, such as remnant 238 

strips of semi-natural grassland (Ridding et al., 2015). To address this and improve the 239 

accuracy of the baseline map, we replaced areas that were misclassified in the LCM2015 with 240 

acid grassland from Natural England’s Priority Habitats’ Inventory (Natural England, 2015) 241 

using ESRI ArcGIS v10.4 (© ESRI, Redlands, CA).  242 

 243 

The baseline maps and consequently the generated LULC time-series contained 12 244 

aggregated land classes: “broadleaved woodland”, “coniferous woodland”, “arable”, 245 

“calcareous grassland”, “acid grassland”, “neutral grassland”, “improved grassland”, “fen, 246 

marsh, swamp”, “heathland”, “coastal”, “water”, “urban” and “other”. The other category 247 

includes inland rock, which was only mapped for 1980, since this LULC type only occurred 248 

in the LCM2015 and not in the adapted Dudley Stamp map for 1930 (Hooftman and Bullock, 249 

2012). The baseline maps were converted to 100 m resolution rasters, using a maximum area 250 

cell assignment in ArcGIS, and thus this resolution was also used to create the 1950 and 1980 251 

map. The selected resolution, which has been used in other LULC studies (Moulds et al., 252 

2018), was a compromise between capturing detailed LULC change, whilst maintaining a 253 

scale at which influential factors, such as soil and slope are likely to impact the InVEST 254 

predictions. At finer scales complex factors such as land ownership would likely become 255 

important and could not be captured by modelled factors in InVEST. Redhead et al. (2018) 256 

found that running the InVEST nutrient model at resolutions finer than 100 m showed only 257 

small gains in accuracy compared with the extra running time and large file sizes.  258 

 259 

2.4.Transition matrix 260 

 261 
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To determine the amount of LULC change between 1930 and 1950, and between 2015 and 262 

1980, and the likely transitions between different land covers, we utilised data from a survey 263 

time-series dataset where habitat type has been assessed at over 3700 sites across Dorset in 264 

1930, 1950, 1980 and 2015 (see Ridding et al., 2020). Subsequently, we refer to this database 265 

as the “habitat time-series”. The quantity of LULC change between both 1930 to 1950, and 266 

2015 to 1980 was determined by calculating the percentage change in each LULC type, using 267 

the habitat time-series. A transition matrix of LULC change based on counts of changes 268 

across the habitat time-series sites was also generated for both time periods, which was 269 

subsequently adjusted on a scale of 0-10 to meet the input requirements for InVEST (see 270 

Online Resource 2 & 3). Where a particular LULC was not present in the original baseline 271 

data, for example improved grassland in 1930, an area change rather than a percentage 272 

change was required by InVEST. To calculate this we used the number of improved 273 

grassland sites in 1950 from the habitat time-series dataset, as a percentage of the total sites 274 

multiplied by the area of Dorset.  275 

 276 

Priority values were required for LULCs which increased between 1930 and 1950; arable, 277 

coniferous woodland and urban. Priority values rank the LULC type, thus when multiple 278 

objectives compete for a single cell, the LULC with the highest priority wins. The literature 279 

reveals that there were considerable increases in arable and improved grassland during this 280 

period in Britain, and specifically in Dorset (Fuller, 1987; Hooftman and Bullock, 2012), 281 

suggesting that the transitions to these LULCs should be high priority in InVEST, thus we 282 

assigned scores of 8 and 7, respectively. During this time the planting of coniferous 283 

woodlands also increased rapidly (Best and Coppock, 1962), however farming was a higher 284 

priority in the British lowlands after the Second World War compared with conifer planting; 285 

thus we assigned a priority score of 5 to this LULC type.  286 

 287 

For the 1980 map, the priority values were based on change in the opposite direction (2015 to 288 

1980), thus the number of semi-natural habitats (neutral grassland, calcareous grassland, 289 

heathland, fen, marsh, swamp habitats) increased, as well as arable and coastal LULCs. The 290 

amount of arable land decreases between 1980 and 2015 (Ridding et al., 2020) due to 291 

technological advances improving productivity of existing arable land, hence from 2015 to 292 

1980 arable land actually increases. Using the habitat time-series dataset from Ridding et al. 293 

(2020), we determined that increasing the number of semi-natural habitats was a greater 294 

priority than arable and coastal which only increased by a small percentage during the same 295 

period Ridding et al. (2020). Values of 9 and 7, were therefore assigned to semi-natural 296 

habitats and arable/coastal respectively. We used 1000 m as the proximity value (where cells 297 

close to a LULC type within this distance are more likely to be converted to that cover type if 298 

suitable) for the increasing habitats for both the 1950 and 1980 map, as any finer scales are 299 

likely to be influenced by more complex factors such as accessibility and land ownership as 300 

suggested by Redhead et al. (2020). 301 

 302 

2.5.Modelled factors 303 

  304 
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We examined a range of physical and environmental suitability factors for the generation of 305 

both the 1950 and 1980 maps which is a requirement for InVEST, including slope, elevation, 306 

rainfall, temperature, soil and Agricultural Land Classification (AGL) (see Table 1). These 307 

factors were selected based on similar studies in the literature (Fuchs et al., 2013; Verburg 308 

and Overmars, 2009) and the availability of data for the whole of Dorset across multiple time 309 

periods where applicable (e.g. rainfall, temperature).  310 

 311 

To determine which factors influenced the suitability of the increasing LULC types, we 312 

performed logistic regression using sites from the habitat time-series dataset (Ridding et al., 313 

2020) that had remained versus sites which had undergone change for the 1950 and 1980 314 

map. The sample size for habitat time-series sites converting to “urban” between 1930 and 315 

1950 was too small to assess (n=20) (noting the historical Dorset boundary excludes the large 316 

urban areas), and the same was true for coastal sites (n=17) between 2015 and 1980. 317 

Elevation was strongly correlated with average temperature and rainfall (Pearson’s r > 0.6 or 318 

< -0.6), so this was excluded from all models. Logistic regression analyses were performed in 319 

R v.3.4.2 (R Core Team, 2019).  320 

 321 

To determine the most suitable factor weight (factors vs transition matrix, see Fig. 1) we 322 

examined three different weights; 0.3, 0.5, 0.7 and evaluated these using the habitat time-323 

series (see section on validation). A weight of 0.5 was selected to understand how equal 324 

weighting would perform, whilst 0.3 and 0.7 were arbitrarily selected using the example in 325 

Sharp et al. (2016), to represent and test the differences between a high or low weighting for 326 

factors versus transition matrix.  327 

 328 

2.6.Constraints and override  329 

 330 

In England the basic type of statutory protection is the designation as a Site of Special 331 

Scientific Interest (SSSI), which are areas of land selected for ‘special interest by reason of 332 

any of its flora, fauna, or geological or physiographical features’ (JNCC, 2015). Although the 333 

first SSSIs were not designated until the 1950s (DEFRA, 2009), Ridding et al. (2020) found 334 

sites which were classified as protected in the habitat time-series were more likely to remain 335 

as their original habitat. For this reason we used the extent of SSSI as a constraints layer. To 336 

improve the predicted output further, we also evaluated which 100 m cells had remained 337 

consistent between 1930 and 1990 for the 1950 map and 2015 and 1950 for the 1980 map. 338 

The partial Land Cover Map 1990 covered 83% of Dorset and was created using the same 339 

methodology used to make the LCM2015 (Rowland et al., 2017b). We assumed that where 340 

the LULC within the 100 m cell matched, in 1930 and 1990 for example, the LULC would 341 

have stayed the same in 1950, thus these matching cells were also used as a constraint layer, 342 

to prevent LULC change occurring in those locations.  343 

 344 

For the generation of the 1980 map we also used the override layer in InVEST (Fig. 1). For 345 

this we examined which 100 m cells were consistent in both the generated 1950 map and the 346 

revised LCM1990 map (Rowland et al., 2017b), and presumed that this remained the same in 347 
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1980. This data was used as an override rather than a constraint, since the LULC type within 348 

particular cells may have differed between 1990 and 2015. 349 

  350 

2.7.Accuracy 351 

 352 

To assess the accuracy of the 1950 and 1980 Dorset maps produced using InVEST, we 353 

created ten cross-validation datasets from the habitat time-series dataset. In each of the 10 354 

datasets, 75% of the habitat time-series sites were randomly selected for the training dataset, 355 

whilst the remaining 25% were used as a test dataset. Since some of the habitat time-series 356 

data did not completely match the baseline 1930 and 2015 map (see Ridding et al., 2020), we 357 

ensured that the test dataset only contained habitat time-series sites where the LULC in the 358 

habitat sites matched the corresponding baseline map, to ensure a fair comparison in the 359 

following interpolated map. Each of the ten training datasets were used to determine the 360 

percentage change for each LULC type and the significant factors which influenced change, 361 

as described above. For each of the ten cross-validation datasets for 1950 and 1980, InVEST 362 

was run in Python 2.7.0 one hundred times to account for the random selection of cells for 363 

change when all suitability factors and transition likelihoods were equal. A final output for 364 

each of the ten cross-validation datasets, was created using the modal LULC type for each 365 

cell. Where cells had equal counts of two LULC types no modal LULC was identified, thus 366 

these cells remain as “No data”. This occurrence was infrequent, occurring in a mean of just 367 

0.5% of cells per model run (see Table 2). During the process of combining the one hundred 368 

rasters using the modal LULC for each cell, if a LULC type did not demonstrate change due 369 

to the large number of possible cells where the conversion could occur, meaning none of the 370 

changes were evident in the final modal map, we used the cross-validation dataset with the 371 

greatest accuracy and the most accurate run within this set to determine where the LULC 372 

change should take place.   373 

 374 

To validate the output for each of the ten datasets, we compared the LULC from the 1950 and 375 

1980 map outputs with the LULC assigned in the corresponding year in the habitat time-376 

series (Ridding et al., 2020) using the test datasets (i.e. the remaining 25%). Accuracy was 377 

calculated as the percentage of habitat time-series sites which were consistent between the 378 

LULC type in Ridding et al. (2020) and the 1950/1980 LULC output from InVEST. In order 379 

to determine the Cohen’s Kappa Index, which measures the inter-rate agreement between two 380 

datasets (McHugh, 2012), a single LULC type per site is required, so for sites containing 381 

multiple LULC types we assigned the LULC from the 1950/1980 InVEST output which had 382 

the largest coverage in area within the habitat site. 383 

 384 

To produce the final 1950 and 1980 map output, we determined the modal LULC across the 385 

ten map outputs produced from the cross-validation datasets. For individual cells with no 386 

modal LULC type, we assigned the LULC to the cross-validation dataset output which 387 

performed the best, determined using the highest percentage agreement and Kappa Index 388 

values. The final 1950 and 1980 map output was validated and averaged across the ten test 389 

datasets.  390 

 391 
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2.8.Uncertainty 392 

 393 

To map uncertainty associated with the model runs in InVEST, we calculated how many of 394 

the one hundred output rasters matched the final modal LULC for each cell, for each of the 395 

ten cross-validation datasets, following Redhead et al. (2020). An average certainty value for 396 

the whole study area was generated, excluding cells which were included as a constraint or 397 

override layer. This is because these cells were not allowed to change in InVEST, thus the 398 

one hundred output rasters would always match the final modal output, therefore biasing the 399 

overall certainty score. To map and determine uncertainty for the final 1950 and 1980 map 400 

output, we averaged across the ten datasets.  401 

 402 

3. Results  403 

 404 

3.1.Accuracy 405 

 406 

The created 1950 and 1980 LULC maps (Fig. 2) showed a strong correspondence with the 407 

LULC from the habitat time-series dataset across all of the ten cross-validation model runs 408 

and also the final map output for each time point, as indicated by the accuracy values in Table 409 

2. There were also high levels of agreement between the map output and validation dataset, 410 

evidenced by the Kappa Index (Table 2), where values between 0.80 and 0.9 indicate a strong 411 

level of agreement (McHugh, 2012). The lowest Kappa Index recorded overall (0.77), still 412 

suggests a good level of agreement between the two datasets. The accuracy and agreement 413 

was slightly higher for the final 1950 output compared with that for 1980.  414 

 415 

Error matrices were also generated for each time point; 1950 and 1980 (Table 3). Many 416 

LULC types showed good agreement between the generated map output and the habitat time-417 

series in 1950, including “coastal”, “fen, marsh and swamp” and “broadleaved woodland”. 418 

However there was some confusion between semi-natural grasslands and arable/improved 419 

grassland. There was also confusion between improved grassland and arable, where more 420 

improved grassland sites were classified as arable in the generated 1950 LULC map. Similar 421 

patterns were shown in the error matrices for 1980, with LULC types such as “coastal”, 422 

“heathland”, “fen, marsh and swamp” and “broadleaved woodland”, being fairly consistent 423 

between the two datasets. The classification of calcareous grassland was better for 1980, 424 

however there was still confusion between neutral grassland, arable and improved grassland.  425 

 426 

3.2.Timing of LULC change between 1930 and 2015 427 

 428 

The landscape underwent significant changes between 1930 and 2015 (Fig. 2). In 1930 the 429 

landscape was dominated by semi-natural grasslands (ca. 155, 008 ha) compared with 2015 430 

when Dorset was dominated by improved grassland and arable land (ca. 200, 547 ha) (Table 431 

4). Arable land expanded the greatest by 1950 in a region running south-west to north-east in 432 

Dorset (Fig. 2). This area and time period also coincided with the greatest loss of calcareous 433 

grassland (-25,096 ha). The loss of neutral grassland which occupied much of the north and 434 

western area was also higher by 1950 (-57,413 ha). The largest increase in improved 435 
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grassland however, occurred between 1950 and 1980. Acid grassland and heathland are 436 

located in the south-east of the region, but reduced dramatically in area by 2015, with the 437 

greatest change occurring by 1980. This was largely due to expansion of coniferous 438 

woodland and urbanisation, as well as improved grassland.  439 

 440 

3.3.Modelled Factors 441 

 442 

A range of physical and environmental variables were found to have a significant influence 443 

on the suitability for LULC change between 1930 and 1950, and 2015 and 1980 (Table 5). 444 

Many of the variables, including slope, soil texture and soil fertility were consistently 445 

significant across all of the ten cross validation datasets, suggesting they were good 446 

predictors of where particular LULC should occur (Table 5). Some variables, including soil 447 

texture and fertility, showed no variation for certain LULC types, meaning certain values 448 

were strongly associated with particular LULC types. For instance, heathland was 449 

consistently found on acidic sandy soils. Consequently models could not converge, which 450 

provided a strong justification to include these variables as modelled factors in InVEST. 451 

 452 

To determine the best factor weight for the modelled factors against the transition matrix for 453 

InVEST (Fig. 1), we ran InVEST one hundred times for the first cross-validation dataset 454 

using three different weightings (0.3, 0.5 and 0.7) and compared the output LULC map with 455 

LULC from the habitat time-series. We determined that a factor weight of 0.5 produced the 456 

most accurate results and the highest Kappa Index score (Accuracy: 88%, Kappa Index: 457 

0.84), compared with 0.3 (87%, 0.82) and 0.7 (79%, 0.71), thus this factor weight was used 458 

for remaining cross-validation datasets for the 1950 and 1980 output. A factor weight of 0.5 459 

ensures an equal contribution from influential factors and the transition matrix.  460 

 461 

3.4.Uncertainty  462 

 463 

There was greater certainty across the 1980 cross-validation datasets and the final map output 464 

compared with 1950 (Table 2). However, datasets from both time periods demonstrated high 465 

levels of certainty associated with the InVEST model. In each of the certainty maps (Fig. 2), 466 

there were particular regions of uncertainty across Dorset, which overlapped to some degree 467 

in both time periods. Much of the uncertainty in the 1950 output was concentrated around the 468 

south and east of Dorset. There was some overlap in the southern region in the 1980 output, 469 

but this appeared to extend further north. Very few cells across all of the cross-validation 470 

datasets for 1950 and 1980 contained “No data” suggesting there were only a small number 471 

of cells where no modal LULC was identified (Table 2).  472 

 473 

4. Discussion 474 

 475 

4.1.Accuracy 476 

 477 

The modelling method employed in this study demonstrated high levels of accuracy, with 478 

both the 1950 and 1980 LULC maps showing a strong correspondence with the habitat time-479 
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series dataset. Although this may be expected given that the rule transitions are based on that 480 

dataset, a number of other parameters were determined for InVEST, which were clearly 481 

effective in this study. This shows that with just a limited sample of habitat sites, this 482 

modelling method can predict and determine historical changes across a landscape.  483 

 484 

A significant proportion of the mismatch between the map outputs and the habitat time-series 485 

occurred between arable and improved grassland. However, some confusion between these 486 

intensive agricultural LULC types might  be expected, particularly when modelling from 487 

2015 to 1980, since agricultural systems in the UK often have grass and clover leys 488 

incorporated into arable rotations to manage weed problems or to increase soil fertility 489 

(AHDB, 2018) so the two classes are not necessarily mutually exclusive. This confusion 490 

could also be due to a number of social, economic and political issues that we could not 491 

model, including changes in pricing and profitability of crops vs. livestock (Zayed, 2016). 492 

There was also some confusion between some of the semi-natural grasslands and arable, 493 

particularly for the 1950 map output (Table 2), which is consistent with other historical land 494 

cover modelling (e.g. Fuchs et al., 2013). This highlights the difficulty in predicting such 495 

change and is likely to arise because other small scale factors which cannot be captured by 496 

InVEST, will also be influencing change, such as land ownership.  497 

 498 

Despite the strong correspondence between map outputs and the habitat time-series, some 499 

LULC types which are known to have undergone considerable change between 1930 and 500 

1950, changed by very little or not at all e.g. acid grassland (Table 4). Little heathland was 501 

converted in the 1950 map output, but it is known that this habitat experienced dramatic 502 

declines across Dorset over that time period (Moore, 1962; Webb and Haskins, 1980). This is 503 

likely to be due to the fact that large areas of heathland were lost to coniferous woodland 504 

during this period, which InVEST struggled to predict. This is because the area of coniferous 505 

woodland in 1930 was very small to begin with and the modelled factors only assisted in 506 

narrowing down the location of change to sandy acidic soils, which corresponded in general 507 

to the occurrence of heathland in Dorset, rather than narrowing down to specific 100m cells 508 

within heathland areas. Fen, marsh and swamp and acid grassland were other LULC types 509 

which reduced by very little, if at all. This may be because these LULC types were competing 510 

with change from other LULC types such as calcareous and neutral grassland, which 511 

underwent significant conversion to improved grassland and arable and were a higher priority 512 

for change (Online Resource 4). This reflects one of the weaknesses of the InVEST tool, 513 

which currently models LULC change based on the percentage change of increasing LULC 514 

types only and not those which have shrunk.  515 

 516 

Other issues arose due to differences with the baseline maps that were used to model the 1950 517 

and 1980 outputs. For instance, the LULC type, “other”, in this study referred to inland rock, 518 

which was classified in the 2015 map (Rowland et al., 2017a) and hence the generated 1980 519 

output, but was absent from the 1930 and 1950 maps. There were also differences in how 520 

water was mapped, with rivers included in the 1930 baseline map, but not in 2015. The same 521 

was true for woodlands, with different classes for the baseline maps, which may explain why 522 

broadleaved woodland did not follow the trends identified in other studies (Hooftman and 523 
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Bullock, 2012; Ridding et al., 2020). Furthermore, the definitions of LULC types varied 524 

slightly between the start and end maps for fen, marsh and swamp and coastal. For example, 525 

coastal in the 1930s map referred to sand dunes/littoral sediment, whilst in the 2015 map this 526 

included categories such as littoral rock, littoral sediment, supra-littoral rock and supra-527 

littoral sediment.  528 

 529 

4.2.Timing of LULC changes between 1930 and 2015 530 

 531 

The modelling method employed in this study has enabled us to identify the timing and 532 

spatial patterns of key LULC changes over ca. 85 year period. Overall, we found that 87% of 533 

semi-natural habitat was lost in Dorset, with the greatest losses occurring in neutral (99%) 534 

and calcareous (97%) grasslands. These results are consistent with other studies in Dorset 535 

(Hooftman and Bullock, 2012) and across England and Wales (Fuller, 1987; Ridding et al., 536 

2015). By creating the time-series of LULC maps, we were able to determine that the greatest 537 

loss of calcareous and neutral grassland occurred in the period 1930-1950. This corresponds 538 

to the time where arable land increased most across Dorset, which is consistent with the 539 

period of agriculture intensification across Europe (Best and Coppock, 1962; Stoate et al., 540 

2001). The time-series also enhanced findings from Ridding et al. (2020) by revealing where 541 

the changes occurred spatially; largely to the west of the county and along the fertile band of 542 

chalk soil running south-west to north-east. The largest increase in improved grassland 543 

occurred between 1950 and 1980. Arable land, however decreased after the 1950s. This most 544 

likely reflects the shift in farming, whereby fewer fields were required for conversion after 545 

advances in mechanisation and chemical applications led to great increases in yield (Stoate et 546 

al., 2001). There were also a number of economic and political factors, including falls in 547 

prices for agricultural products. Since a number of land covers, for example heathland, did 548 

not change by much between 1930 and 1950 using our modelling methodology, it was 549 

difficult to identify a more exact time period of loss, however the generation of the 1980 550 

LULC map revealed that by this point there had already been a considerable loss of 551 

heathland.  552 

 553 

4.3.Uncertainty 554 

 555 

This study found low levels of uncertainty associated with the methodology, with an average 556 

of over 90% of the hundred runs matching with the final 1950 and 1980 map outputs. This 557 

means we have confidence in the modelled placement of the majority of LULC types, 558 

suggesting the modelled factors and transition tables were useful in narrowing down 559 

appropriate locations for certain LULC types to occur. This highlights the importance of 560 

having comprehensive data which can be used to inform InVEST, as the habitat time-series 561 

dataset (Ridding et al., 2020) did in our study. There was slightly greater certainty for the 562 

1980 map compared with the 1950 map, which may reflect that more significant modelled 563 

factors were identified for changes from 2015 to 1980 compared with 1930 to 1950, giving 564 

InVEST more information and thus confidence in the placement of increasing LULC types.  565 

 566 
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There were particular areas in Dorset that demonstrated higher levels of uncertainty, which 567 

were generally found around the southern and eastern areas of the region. There were areas of 568 

overlap along the southern coast towards the east on both the 1950 and 1980 maps. For 1950 569 

this resulted in large amounts of arable land being predicted in these areas. It is likely that 570 

these areas were suitable for arable, including being flatter, having high soil fertility and a 571 

lower average temperature (significant modelled factors) and InVEST struggled to decide the 572 

exact 100 m x 100 m cells in which to position arable, so when the final modal map was 573 

created numerous arable cells were generated.  574 

 575 

5. Conclusion  576 

 577 

This study has shown that it is possible to generate a time-series of historical landscapes 578 

using a modelling method which involved the use of InVEST and detailed habitat time-series 579 

data to inform the model. To our knowledge this is the first time InVEST has been used 580 

reconstruct historical landscapes, rather than predict future scenarios (Gibson and Quinn, 581 

2017; Sharma et al., 2018). We have shown that the method produced accurate outputs, but 582 

highlight the importance of obtaining appropriate data to inform the model. The creation of 583 

this LULC time-series allowed spatial and temporal changes in LULC to be identified over 584 

multiple time periods. This builds on Hooftman and Bullock (2012) by revealing more 585 

accurately the timing of change for certain LULC types, for instance the greatest losses in 586 

neutral and calcareous grassland occurred in 1950, the period when arable land expanded the 587 

most. We also determined a high level of certainty in using the modelling method employed 588 

in this study. This is important to assess, but is often overlooked in other LULC prediction 589 

studies (Sharma et al., 2018). Although the generated maps are not suitable for performing 590 

fine-scale analysis, particularly where high levels of uncertainty were detected, they are 591 

however useful for looking at more general patterns at the landscape scale, including habitat 592 

fragmentation and changes in ecosystem service delivery. This can be useful for 593 

environmental managers and landscape planners for informing future land management 594 

plans, as well as conservation strategies such as restoration. The modelling methodology can 595 

be used to create historical landscapes in any situation, providing there is sufficient data to 596 

inform the InVEST model.  597 

 598 

This study however, has also highlighted some of limitations of reconstructing historical 599 

LULC maps, even when a region has abundant data, as in this study. This is particularly 600 

relevant for LULC types which cover a small area or those which have little information on 601 

environmental or physical factors which inform where a LULC type should occur. Increasing 602 

the availability of relevant data would improve such mapping approaches. This has also been 603 

identified in other studies (Liping et al., 2018; Sharma et al., 2018). For instance, increasing 604 

the availability of temporal datasets would be very beneficial for historical mapping, since 605 

most data are often static in time, such as accessibility and distance to roads. Furthermore, the 606 

indirect factors which are often very influential on LULC change, including political or 607 

economic drivers, such as the market for agricultural goods or the introduction of a new 608 

policies, are currently not incorporated due to model limitations. The incorporation of such 609 
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factors into modelling programs such as InVEST and the associated effect on accuracy is 610 

required.  611 

 612 

 613 

 614 
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Table 1 A summary of variables used to model LULC change in Dorset between 1930 and 1950, and 2015 and 

1980, with their source, scale/resolution and description 

 

Variable Source Scale Description 

Elevation Digital Elevation Model 

(Intermap Technologies, 

2007) 

5m Average elevation per 100 m grid square 

Slope Digital Elevation Model 

(Intermap Technologies, 

2007) 

5m Average slope per 100 m grid square 

Average temperature CEH-CHESS (Robinson et 

al., 2017) 

1km Average temperature between 1930 and 1950 

(and 1980 and 2015) 

Temperature change CEH-CHESS (Robinson et 

al., 2017) 

1km Slope of temperature change between 1930 and 

1950 (and 1980 and 2015) 

Average rainfall CEH-GEAR (Tanguy et al., 

2016) 

1km Average rainfall between 1930 and 1950 (and 

1980 and 2015) 

Rainfall change CEH-GEAR (Tanguy et al., 

2016) 

1km Slope of rainfall change between 1930 and 1950 

(and 1980 and 2015) 

Soil Texture National Soilscape Map 

(Cranfield University, 

2004) 

1:250,000 Five classes of soil texture; clayey, loamy, sandy, 

peaty, 0 

Soil Fertility National Soilscape Map 

(Cranfield University, 

2004) 

1:250,000 Seven classes of soil fertility, ranging from very 

low to high. 

Soil Drainage National Soilscape Map 

(Cranfield University, 

2004) 

1:250,000 Six classes of drainage, ranging from freely 

draining to impeded draining 

Agricultural Land 

Classification (AGL) 

(Natural England, 2012) 1:250,000 Five classes which represent the quality of 

farmland, ranging from excellent to very poor  
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Table 2 Accuracy, Kappa Index and certainty scores for each of the ten cross-validation datasets for the creation 

of the 1950 and 1980 LULC map for Dorset 

 

Year Cross-validation 

dataset 

Accuracy (%) Kappa Index Average 

certainty 

% of No Data 

1950 1 88 0.84 89.83 0.19 

 2 86 0.81 91.19 0.75 

 3 88 0.83 90.41 1 

 4 86 0.81 90.38 0.57 

 5 88 0.83 89.83 2.03 

 6 84 0.79 90.59 0.77 

 7 88 0.84 90.73 0.93 

 8 86 0.81 90.68 0.61 

 9 89 0.85 90.31 0.77 

 10 89 0.85 90.37 1.53 

 Final 87 0.82 90.30 0 

1980 1 83 0.77 94.33 0.17 

 2 86 0.82 95.32 0.17 

 3 83 0.78 96.42 0.17 

 4 85 0.80 94.39 0.17 

 5 87 0.82 94.34 0.17 

 6 86 0.81 94.40 0.17 

 7 82 0.77 95.69 0.17 

 8 82 0.77 97.23 0.17 

 9 86 0.81 95.00 0.17 

 10 84 0.79 95.30 0.17 

 Final 84 0.78 95.24 0 
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Table 3 Error matrices for (a) the final 1950 LULC map compared with the corresponding LULC from the 

habitat time-series (Ridding et al., 2020) and (b) the final 1980 LULC map compared with the corresponding 

LULC from the habitat time-series. 

 

(a) 

  Generated 1950 LULC map 
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s Coastal 16 0 0 0 0 0 0 0 0 0 0 0 

Arable 0 139 0 1 10 4 6 4 0 0 2 0 

Fen, marsh, swamp 0 0 20 0 0 1 0 0 0 0 0 0 

Acid grassland 0 0 0 6 0 0 0 0 0 0 0 0 

Calcareous grassland 0 40 0 0 355 1 0 0 0 0 0 0 

Improved grassland 0 53 0 5 13 22 28 11 1 0 4 0 

Neutral grassland 0 41 0 0 0 2 146 0 0 0 0 0 

Heathland 0 0 0 0 0 0 0 170 0 0 3 0 

Urban 0 0 0 0 2 0 1 0 2 0 3 0 

Water 0 0 0 0 0 0 0 0 0 19 0 0 

Broadleaved woodland 0 5 0 0 4 0 2 0 0 0 1022 3 

Coniferous woodland 0 1 0 0 2 0 0 30 0 0 3 6 

The diagonal elements (bold) represent number of correctly classified sites 

 

(b) 

  Generated 1980 LULC map 
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Coastal 38 2 1 0 1 1 0 0 0 0 0 0 0 

Arable 0 361 0 0 1 79 0 0 0 0 0 4 1 

Fen, marsh, swamp 1 3 21 1 0 38 0 4 1 2 0 24 6 

Acid grassland 0 1 0 2 0 4 0 1 0 0 0 0 0 

Calcareous grassland 1 8 0 0 80 39 0 0 0 2 0 3 1 

Improved grassland 0 53 0 1 4 522 1 1 0 0 0 3 0 

Neutral grassland 2 8 0 0 0 42 5 1 0 0 0 4 0 

Heathland 0 2 0 1 0 4 0 118 0 3 0 1 5 

Other 0 0 0 0 0 0 0 0 0 0 0 0 0 

Urban 0 0 0 0 0 1 0 0 0 10 0 0 0 

Water 0 0 0 0 0 2 0 0 0 0 6 0 1 

Broadleaved 

woodland 

0 16 1 0 2 24 0 0 0 0 0 892 0 

Coniferous woodland 0 0 0 0 1 3 0 0 0 0 0 1 76 
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The diagonal elements (bold) represent number of correctly classified sites 
Table 4 Area (ha) of each LULC type in Dorset between 1930 and 2015.  

 

LULC 1930 1950 1980 2015 

Water 1720 1762 651 665 

Arable 44807 112443 86305 80426 

Neutral grassland 101994 44202 946 672 

Calcareous grassland 49022 23225 4331 1522 

Acid grassland 4458 4458 412 422 

Fen, marsh, swamp 478 476 489 605 

Improved grassland 0 16104 111435 120121 

Heathland 13912 13908 6091 5737 

Coastal 460 460 1329 1222 

Urban 14147 14288 14264 14396 

Broadleaved woodland 20229 19132 16414 15822 

Coniferous woodland 45 855 7477 8420 

Other 0 0 703 814 
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Table 5 Factors, their direction of change indicated by arrows (↑ = increase, ↓= decrease) and significance (*p <  

0.05, **p < 0.01, ***p < 0 .001), included in each of the ten-cross validation sites for (a) increasing the area of 

coniferous woodland, improved grassland and arable in 1950 compared to 1930, and (b) increasing the area of 

arable, neutral grassland, calcareous grassland, heathland, coastal and FMS (fen, marsh, swamp) habitats for 

1980 compared to 2015. # indicates model could not converge with these variables present, due to a large 

number of sites being allocated within the same category (these variables were thus included for use in 

InVEST). 

 

(a) 1950 from 1930 

 

Habitat Factors 1 2 3 4 5 6 7 8 9 10 

Coniferous  Rainfall change ↓** ↓** ↓** ↓*** ↓*** ↓** ↓*** ↓** ↓** ↓*** 

Coniferous  Temperature change ↑** ↑** ↑**   ↑** ↑** ↑**   

Coniferous  Soil fertility # *** # ***  # # #   

Coniferous  Soil texture # *** #   # # #   

Coniferous  Soil drainage # *** #   # # #   

Improved  Temperature change       ↑*    

Improved Slope ↓** ↓*** ↓*** ↓** ↓*** ↓** ↓** ↓** ↓** ↓** 

Arable Slope ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** 

Arable Soil fertility ** ** ** ** ** ** ** ** ** ** 

Arable Average temperature ↓*** ↓* ↓* ↓*** ↓** ↓** ↓** ↓*** ↓** ↓** 

 

 

(b) 1980 from 2015 

 

Habitat Factors 1 2 3 4 5 6 7 8 9 10 

Neutral  Soil drainage #   #       

Neutral  Temperature change ↓*   ↓**  ↓*   ↓*  

Neutral  AGL   #      #  

Neutral  Rainfall change    ↑*       

Neutral  Soil fertility        #   

Neutral  Soil texture        #  # 

Calcareous  Temp change ↓*  ↓* ↓**  ↓* ↓* ↓* ↓* ↓** 

Calcareous  Slope ↑** ↑*   ↑*   ↑*  ↑** 

Calcareous AGL   #  # #   #  

Calcareous  Rainfall change    ↑*       

Calcareous  Soil fertility           

FMS Slope ↓*        ↓* ↓* 

FMS Soil texture ** ** ** ** ** ** ** ** ** ** 
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FMS Soil fertility ** ** ** *** ** **  ** ** ** 

FMS Soil drainage # # #  #   #  # 

FMS Temperature change ↓*** ↓*** ↓** ↓* ↓** ↓*** ↓*** ↓** ↓** ↓*** 

FMS Average temperature ↑* ↑*** ↑*** ↑*** ↑* ↑**  ↑** ↑* ↑* 

FMS Average rainfall ↑** ↑** ↑** ↑*** ↑** ↑** ↑** ↑* ↑** ↑** 

Arable Slope ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** ↓*** 

Arable Temperature change ↓** ↓*  ↓*    ↓* ↓* ↓* 

Arable Soil fertility   *  *    * ** 

Arable AGL    *  *     

Arable Average temperature          ↓*  

Heathland Soil drainage # # # # # # # #  # 

Heathland Slope ↓* ↓* ↓*  ↓*  ↓* ↓* ↓* ↓** 

Heathland Soil fertility # # # # # # # # # # 

Heathland Soil texture # # # # # # # # # # 
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Fig. 1 Schematic showing the methodology used to create the 1950 and 1980 LULC maps of Dorset (adapted 

from Sharp et al. (2016)) 
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Fig. 2 LULC maps of Dorset indicating the 11 LULC types in 1930 (Hooftman and Bullock, 2012), 1950, 1980 

and 2015 (Rowland et al., 2017a) 
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Fig. 3 Certainty maps of Dorset for 1950 and 1980, where light areas show good agreement between the 

hundred runs and the final modal map, whilst areas in black show greater uncertainty
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Online Resources 

 

Online Resource 1 Justification of methodology for 1980 LULC map 

 

To generate the 1980 LULC map for Dorset, we also modelled landscape change using the 

generated 1950 map as the baseline, rather than the Land Cover Map 2015 (LCM2015) 

(Rowland et al., 2017a). The same methodology of using the habitat time-series from Ridding 

et al. (2020) was employed to quantify the LULC change and generate the transition matrix, 

except this time we evaluated the change between 1950 and 1980, rather than 2015 to 1980. 

The LULCs which increased between 1950 and 1980 were consistent with the changes 

between 1930 and 1950, which included arable, improved grassland, coniferous woodland 

and urban. The same environmental factors (Table 1) were analysed using a logistic 

regression for the increasing LULCs, as described in the main text.  

 

The resulting map output can be seen in Fig. S1a, alongside the 1980 map output produced 

using the LCM2015. The key difference between the 1980 output maps is the large difference 

in arable land that has been predicted from the two different baseline maps. To determine 

which map is likely to be the most accurate we used an alternative data source to validate the 

area of arable across Dorset in the 1980s. For this we used the Agriculture Census data which 

revealed the area of “total crops” in 1981 in 2km x 2km grid squares (data obtained from 

http://edina.ac.uk/agcensus/, accessed 24/10/18). We calculated the area of arable in both of 

the 1980 maps using the same 2km x 2km grid squares. To determine which of the 1980 

maps matched the Agricultural Census best, we compared histograms and examined the 

association between each map with the Agricultural Census data using Spearman’s Rank 

Correlation. The histogram of the area of arable from the 1980 map created from LCM2015 

(1980 from 2015) matches more closely with the Agricultural Census data compared with the 

1980 map created from the 1950 (1980 from 1950) (Fig. S1b). The 1980 from 1950 

histogram shows a more even frequency spread across the different areas, whilst the 1980 

from 2015 shows a large proportion of 2km x 2km grid squares have smaller areas of arable, 

as in the Agriculture Census dataset. This is further confirmed by the stronger association 

detected between the 1980 from 2015 data and the Agricultural Census data (Rs = 0.66), 

compared with the 1980 from 1950 (Rs = 0.58) (Fig. S1c).  
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Fig. S1a Dorset LULC maps for 1980 created from a.) the Land Cover Map 2015 (Rowland et al., 2017a) and 

b.) the modelled 1950 map  

 

 
 

Fig. S1b Histograms showing the area of arable in Dorset in a.) 1981 from the Agricultural Census, b.) 1980 

created from the Land Cover Map 2015 (Rowland et al., 2017a) and c.) 1980 created from the modelled 1950 

map  

 

 

 
Fig. S1b Scatterplots showing the relationships between total crop in the Agricultural Census and arable in 1980 

created from a.) the Land Cover Map 2015 (Rowland et al., 2017a) and b.) the modelled 1950 map  

a.) b.) c.) 

a.) b.) 
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Online Resource 2 Transition matrix required for the InVEST Scenario Generator Tool (Sharp et al., 2016). This example is for the first cross-validation dataset for the 

creation of the 1950 map.  

 

Id Name W
at

er
 

A
ra

b
le

 

N
eu

tr
al

 

C
al

ca
re

o
u
s 

A
ci

d
 

F
en

, 
m

ar
sh

, 
sw

am
p
 

Im
p
ro

v
ed

 

H
ea

th
la

n
d

 

C
o
as

ta
l 

U
rb

an
 

B
ro

ad
le

av
ed

 

C
o
n
if

er
o
u
s 

Percent 
Change 

Area 
Change Priority Proximity 

1 Water 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 Arable 0 0 0 0 0 0 0 0 0 0 0 0 122 0 8 1000 
3 Neutral grassland 0 9 0 0 0 0 9 0 0 4 4 0 0 0 0 0 

4 Calcareous grassland 0 9 0 0 0 0 9 0 0 4 4 6 0 0 0 0 

5 Acid grassland 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 

6 Fen, marsh, swamp 0 9 0 0 0 0 8 0 0 4 8 4 0 0 0 0 
7 Improved grassland 0 0 0 0 0 0 0 0 0 0 0 0 0 15100 7 0 

8 Heathland 0 5 0 0 0 0 8 0 0 4 4 8 0 0 0 0 

9 Coastal 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 
10 Urban 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

11 Broadleaved woodland 0 6 0 0 0 0 7 0 0 0 0 6 0 0 0 0 

12 Coniferous woodland 0 0 0 0 0 0 0 0 0 0 0 0 1275 0 5 1000 
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Online Resource 3 Transition matrix required for the InVEST Scenario Generator Tool (Sharp et al., 2016). This example is for the first cross-validation dataset for the 

creation of the 1980 map 

 

Id Name W
at

er
 

A
ra

b
le

 

N
eu

tr
al

 

C
al

ca
re

o
u
s 

A
ci

d
 

F
en

, 
m

ar
sh

, 
sw

am
p
 

Im
p
ro

v
ed

 

H
ea

th
la

n
d

 

C
o
as

ta
l 

U
rb

an
 

B
ro

ad
le

av
ed

 

C
o
n
if

er
o
u
s 

O
th

er
 

Percent 
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Change Priority Proximity 

1 Water 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 Arable 0 0 7 8 0 0 7 0 0 0 0 0 0 5 0 7 1000 

3 Neutral grassland 0 0 0 0 0 0 0 0 0 0 0 0 0 375 0 9 1000 
4 Calcareous grassland 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 9 1000 

5 Acid grassland 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 Fen, marsh, swamp 0 0 0 0 0 0 0 6 6 0 0 0 0 62 0 9 1000 
7 Improved grassland 0 9 8 9 0 8 0 0 5 0 0 0 0 0 0 0 0 

8 Heathland 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 9 1000 

9 Coastal 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 7 1000 
10 Urban 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 

11 Broadleaved woodland 0 0 7 7 0 9 0 7 0 0 0 0 0 0 0 0 0 

12 Coniferous woodland 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 1000 

13 Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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