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Technological innovations in the collection and analysis of 

three-dimensional footwear impression evidence 

Hannah Jane Larsen 

Abstract 

The development of digital 3D trace recovery in the fields of geology and archaeology has 

highlighted transferable methods that could be used for the recovery of 3D footwear 

impressions under the umbrella of forensic science. This project uses a portfolio of 

experiments and case studies to explore the veracity and application of SfM Photogrammetry 

(i.e., DigTrace) within forensic footwear. This portfolio-based research includes published 

papers integrated into conventional chapters. A method of comparing the accuracy and 

precision of different measurement methods is developed and introduced and gives a 

comparative view of multiple recovery techniques. A range of simulated crime scene and 

laboratory-controlled experiments have been conducted to compare different recovery 

methods such as casting, photography and SfM photogrammetry. These have been compared 

for accuracy, practicality and effectiveness. In addition, a range of common and lesser 

common footwear bearing substrates have been compared using SfM as well as other 

methods. One of the key findings shows that DigTrace SfM photogrammetry software reliably 

produces accurate forensic results, regardless of the camera used for initial photography and 

in a multitude of environments. This includes but is not limited to, soil, sand, snow, and other 

less obvious substrates such as food items, household items and in particular carpet. The 

thesis also shows that SfM photogrammetry provides a superior solution in the recovery of 

‘difficult to cast’ footwear impressions. This finding allows for 3D recovery of impressions that 

would otherwise have only been photographed in 2D. More generally this project shows that 

3D recovery is preferential to 2D and aids in the identification of individual characteristics and 

subsequent positive analysis. Overall, the thesis concludes that SfM photogrammetry is a 

viable and accurate solution for the recovery of 3D footwear impressions both as an alternative 

and replacement to 2D photography and conventional 3D casting. SfM 3D recovery provides 

increased visualisation of footwear evidence and individualising marks. Digital evidence 

obtained in this way integrates with the increasingly sophisticated search algorithms being 

used within the UK’s National Footwear Database and allows rapid file sharing, retrieval and 

evidence sharing. Moreover, the technique has significant cost saving in terms of time, 

equipment and resources. It is the author’s opinion, having consulted a wide audience of 

footwear examiners and crime scene employees, that this technique should, and can be, 

adopted quickly by forces in the UK and USA and disseminated for use. 

   



4 
 

Table of Contents  

 

Chapter one: Introduction ............................................................................................ 15 

1.1 Aims and objectives ....................................................................................... 16 

1.2 Structure of thesis ......................................................................................... 17 

1.3 The research landscape and rationale ............................................................ 17 

1.3.1 Elements of forensic footwear ....................................................................... 20 

1.3.2 Footwear evidence in the third dimension .................................................... 28 

1.3.3 Knowledge transfer of 3D recovery ............................................................... 31 

1.3.4 Justification for the research ......................................................................... 36 

 Chapter two: Methodology .......................................................................................... 44 

2.1 Methodological approaches ........................................................................... 44 

2.1.1 The way forward ............................................................................................ 48 

2.2 Methods ....................................................................................................... 49 

2.2.1 SfM photogrammetry .................................................................................... 49 

2.2.2 Materials ........................................................................................................ 55 

 Chapter three: SfM photogrammetry and footwear ..................................................... 63 

3.1 Unpublished Technical Note 3.1: Accuracy and precision for 3D footwear 

recovery methods: A practitioners’ guide .................................................................. 66 

3.2 Unpublished Technical Note 3.2: SfM photogrammetry software review ........ 80 

3.3 Research Paper 3.3: Technological innovations in the recovery and analysis of 

3D forensic footwear evidence: application of structure from motion ........................ 87 

3.4 Research Paper 3.4: Empirical evaluation of the reliability of photogrammetry 

software, in the recovery of 3D footwear impressions ............................................. 121 

3.5 Research Paper 3.5: Recovery via SfM photogrammetry of latent footprint 

impressions in carpet .............................................................................................. 139 

3.6 Research Paper 3.6: Recovering of 3D footwear impressions from sandy 

substrates: technical note on the contribution of SfM photogrammetry .................. 158 

3.7 Unpublished Technical Note 3.7: Use of contrast spray in the recovery via SfM 

photogrammetry of snow impressions. ................................................................... 173 

3.8 Chapter conclusion ...................................................................................... 180 

 Chapter four: Traditional methods of recovery and the inclusion of a digital approach 185 

4.1 Research Paper 4.1: Investigation into the repeatability and precision of casting 

3D impressions ....................................................................................................... 187 

4.2 Research Paper 4.2: Recovery of 3D footwear impressions using a range of 

different techniques ............................................................................................... 198 

4.3 Chapter conclusion ...................................................................................... 216 



5 
 

 Chapter five: Discussion............................................................................................. 218 

 Chapter six: Conclusion ............................................................................................. 237 

6.1 Research questions answered ...................................................................... 238 

6.2 Limitations and areas of further research ..................................................... 241 

 References ................................................................................................................ 243 

Appendix I: Crime scene example 1............................................................................. 262 

 Appendix II: Crime scene example 2 ........................................................................... 270 

 Appendix III: Crime scene example 3 .......................................................................... 274 

 



6 
 

List of Figures 

Figure 1. Footwear feature examples 

Figure 2. Footwear features over time 

Figure 3. Pattern descriptor examples 

Figure 4. Research timeline of 3D footwear 

Figure 5. Research timeline of ichnology 

Figure 6. Footwear evidence outcomes 

Figure 7. Illustration of Hausdorff Distances 

Figure 8. Everspry scanner and example outputs 

Figure 9. Inkless shoeprint kit and example outputs 

Figure 10. Bubber and exampled use 

Figure 11. Footwear prints in study (Paper 3.1) 

Figure 12. Graph results of known point measurements (Paper 3.1) 

Figure 13. Graph Results of length measurements (Paper 3.1) 

Figure 14. Cloud comparison output of compared software (Paper 3.2) 

Figure 15. SfM photogrammetry workflow (Paper 3.3) 

Figure 16. Point cloud example and surfacing examples (Paper 3.3) 

Figure 17. LegoTM accuracy illustration (Paper 3.3) 

Figure 18. Conceptual precision model (Paper 3.3) 

Figure 19. Quality assurance example (Paper 3.3) 

Figure 20. SfM output examples, sand and soil (Paper 3.3) 

Figure 21. Statistical comparison of two shoes (Paper 3.3) 

Figure 22. Sand impression outputs (Paper 3.3) 

Figure 23. Snow impression outputs (Paper 3.3) 

Figure 24. Author’s photo procedure for use with DigTrace (Paper 3.4) 

Figure 25. Cloud comparison heat maps (Paper 3.4) 

Figure 26. Mud comparison histogram (Paper 3.4) 

Figure 27. Cloud comparisons of camera type (Paper 3.4) 

Figure 28. Footwear traces in carpet (Paper 3.5) 



7 
 

Figure 29. Comparison of aged carpet traces (Paper 3.5) 

Figure 30. Recovery of carpet traces (Paper 3.5) 

Figure 31. Recognition of RACs in carpet traces (Paper 3.5) 

Figure 32. Simulated crime scene in carpet (Paper 3.5) 

Figure 33. SfM derived 3D models of barefoot prints in carpet (Paper 3.5) 

Figure 34. Landmark placement on SfM recovered carpet traces (Paper 3.5) 

Figure 35. Co-registration of barefoot tracks (Paper 3.5) 

Figure 36. Dry sandy environment examples (Paper 3.6) 

Figure 37. Photography and SfM outputs, loose soil (Paper 3.6) 

Figure 38. Loose soil impression photographs (Paper 3.6) 

Figure 39. SfM outputs from loose soil impressions (Paper 3.6) 

Figure 40. Cast outputs from loose soil impressions (Paper 3.6) 

Figure 41. Example outputs from a sandy stone impression (Paper 3.6) 

Figure 42. Sand recovery examples (Paper 3.6) 

Figure 43. Sand recovery examples (3.6) 

Figure 44. Illustration of actual vs relative depth in shoe sole (Paper 3.6) 

Figure 45. Contrast spray comparison outputs (Paper 3.7) 

Figure 46. Quality assurance model output (Paper 3.7) 

Figure 47. Casting precision tests (Paper 4.1) 

Figure 48. Prominent RAC in 20 repeat casts (Paper 4.1) 

Figure 49. Artificial damage illustrations on test shoes (Paper 4.2) 

Figure 50. Study alignment example (Paper 4.2) 

Figure 51. Descriptor grid illustration (Paper 4.2) 

Figure 52. Recovery type comparisons (Paper 4.2) 

Figure 53. RAC visualisation using different recovery methods (Paper 4.2) 

Figure 54. Accuracy factors in photogrammetry  



8 
 

List of appendix figures 

  

Figure 1. Crime scene example 1, evidence items 1-3 

Figure 2. Crime scene example 1, evidence items 4-7 

Figure 3. Crime scene example 1, evidence items 8-11 

Figure 4. Crime scene example 1, evidence items 12-14 

Figure 5. Crime scene example 1, evidence items 15-16 

Figure 6. Crime scene example 2, evidence items 4-8 

Figure 7. Crime scene example 2, evidence items 9-13 

Figure 8. Crime scene example 3, evidence items 2-3 

Figure 9. Crime scene example 3, evidence item 1 

  



9 
 

List of Tables 

Table 1. Research questions explored within this thesis 

Table 2. NFRC pattern descriptors as used in the United Kingdom 

Table 3. Advent of 3D technology in vertebrate ichnology 

Table 4. Global footprint discoveries 

Table 5. Case examples of 3D impressions in snow 

Table 6. Case examples of 3D impressions in soil 

Table 7. Case examples of 3D impressions 

Table 8. Forensic journal statistics 

Table 9. Delauney and Poisson surface reconstruction timings 

Table 10. Merits and limitations of test impression mediums 

Table 11. Contents of chapter three 

Table 12. Operator and environment details (Paper 3.1) 

Table 13. Error rates produced in precision method (Paper 3.1) 

Table 14. Results from software comparison (Paper 3.2) 

Table 15. Summary of photogrammetry software options (Paper 3.3) 

Table 16. Accuracy testing using DuploTM (Paper 3.3) 

Table 17. Error rates for 3D recovery (Paper 3.3) 

Table 18. SfM measurements from two impressions (Paper 3.3) 

Table 19. Summary of recovery method merits (Paper 3.3) 

Table 20. Cloud to cloud comparison data – Sand (Paper 3.4) 

Table 21. Cloud to cloud comparison data – Snow (Paper 3.4) 

Table 22. Cloud to cloud comparison data – Soil (Paper 3.4) 

Table 23. Cloud to cloud comparison data – Camera (Paper 3.4) 

Table 24. Foot length measurements (Paper 3.5) 

Table 25. Chapter three contributions 

Table 26. Contents of chapter four  

Table 27. Casting comparison data (Paper 4.1) 

Table 28. Casting measurement data (Paper 4.1) 

Table 29. Casting and Laser scanning error scores (Paper 4.1) 

Table 30. Properties of dental plaster used for casting (Paper 4.2) 



10 
 

Table 31. Pattern descriptor codes (Paper 4.2) 

Table 32. Feature counts in visibility study (Paper 4.2) 

Table 33. Statistical data for class characteristic visualisation (Paper 4.2) 

Table 34. RAC visualisation scores (Paper 4.2) 

Table 35. Chapter four contributions 

Table 36. Quality scores of each environment tested with SfM 

Table 37. Reviewer comments  

  



11 
 

List of appendix tables 

 

Table 1. Crime scene 1, evidence items 

Table 2. Crime scene 2, evidence items 

Table 3. Crime scene 3, evidence items 

  



12 
 

 List of abbreviations 

 

3D Three Dimensional 

RAC Randomly Acquired Characteristic 

UK United Kingdom 

SfM Structure from Motion 

NERC Natural Environment Research Council 

BU Bournemouth University 

2D Two Dimensional 

NFD National Footwear Database 

NFRC National Footwear Reference Collection 

PCAST President’s Council of Advisors on Science and Technology 

NRC National Research Council 

NIST National Institute of Standards and Technology 

SE Standard Error 

SD Standard Deviation 

ICP Iterative Closest Point 

RMS Root Mean Squared 

NPIA National Policing Improvement Agency 

ISO International Organisation for Standardisation 

NS Not significant 

dSLR Digital Single Lens Reflex 

CSI Crime Scene Investigator 

 

  



13 
 

Acknowledgements 

Thanks must first of all go to my supervisory team, Professor Matthew Bennett 

and Professor Marcin Budka, for their encouragement and guidance over the 

last three years. Their expertise and commitment have been invaluable and 

have expanded the project, and my own goals within, greatly. With special 

thanks to Matthew Bennett and Sally Reynolds for levels of support going 

above and beyond.  

 

I would also like to thank all those who have gone out of their way to encourage 

this project and welcome this research into the forensic community. To David 

Kanaris, for hosting me in the Alaskan State Crime Lab and for the personal 

communications which have positively steered this research. To DSI Julie 

Henderson, for providing contacts, information and support throughout. To all 

colleagues at West Yorkshire Police and Scientific Services for allowing me 

an insight into the world in which this research is based on. Understanding the 

challenges faced at all levels of the evidential chain could not have been 

achieved without the honesty and respect shown to me during my visit. To all 

colleagues at Bedfordshire Police for providing invaluable feedback on the 

project and assisting wherever possible with the positive progression of digital 

recovery. To Scott Neville and Alun Mackrill from Bluestar Software for all 

advice, assistance and contributions and to colleagues at Foster and Freeman 

for generously lending me resources to assist in my research. 

 

A big thankyou to Dr Ashleigh Wiseman and Dr Matteo Belvedere for reading 

and providing priceless comments on papers heading for submission. For 

personal communications helping with this research and for all offers of 

assistance with analysis quandaries. Your generosity throughout has been 

greatly appreciated.  

 

A huge thankyou to my family and friends, for being the constant pillars of 

stability and support they always are. With special thanks to Carol Larsen for 

proof reading in what can only be described as an impossible last minute time 

frame and to Michelle Feider, who has lived every second of this experience 

with me, your support has meant the world.  

 

And finally, immeasurable thanks go to my fiancé, Andrew Wood. For 

encouraging, sustaining, inspiring and most of all, tolerating me through my 

biggest challenge yet. Your unwavering support cannot be put into words and 

for that, I am truly grateful.  

  



14 
 

Authors Declaration 

This thesis compromises only the authors own original work unless specified 

in the text with due acknowledgments. For each research piece with multiple 

authors, a breakdown of each individual’s contribution can be found 

underneath the respective title.   



15 
 

Chapter one: Introduction 

 

A revolution in the digital collection of vertebrate fossilized tracks has led to 

research growth in ichnology1. Digital recovery is now a standard practice with 

accompanying validation efforts and extensive academic and practitioner-

based research (e.g., Remondino et al. 2010; Belvedere et al. 2018; Bennett 

and Budka 2018; Falkingham et al. 2018). The transition from physical casting 

of impressions, through to digital scanning, and on to more user and cost-

friendly photogrammetry has been adopted in many scientific communities 

(e.g., Charbonnier et al. 2013). This transition shows the potential future for 

other communities to adopt in the same way, but with the additional benefit of 

having a large amount of scientific research already in place. It is therefore 

proposed in this thesis that the forensic footwear community could benefit in 

this way and undertake a similar trajectory of change. The use and operational 

adoption of Structure from Motion (SfM) photogrammetry in the recovery of 

three-dimensional (3D)2 footwear impressions is therefore proposed.  

 

Digital 3D data within forensic science is currently a luxury (Gamage et al. 

2013; Crabbe et al. 2014; Raneri 2018; Carew and Errickson 2020) afforded 

to those with large budgets and ample time and therefore restricted to 

important or so-called capital cases. The advent of affordable and digital 3D 

methods is increasingly a viable option for worldwide implementation. How we 

apply and deploy these methods for the greatest impact within the field of 

footwear is explored in this thesis. Navigating such an under-researched and 

yet valuable discipline has led to the exciting possibility of revolutionary scale 

change. 

 

 
1 Ichnology is the study of trace fossils usually divided into vertebrate and invertebrate traces. 
2 Three dimensional impressions are sometimes referred to as plastic traces (Bodziak 2017) 
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1.1 Aims and objectives 

The overarching aim of this research is to provide a scientific foundation for 

the application of SfM photogrammetry in recovering 3D footwear impressions. 

This includes exploring the benefits, limitations, and implications of the use of 

this method in both an academic and a forensic operational setting. Secondary 

to this is the aim of simply demonstrating the potential contribution that SfM 

could make to the forensic community.  

There are several component questions which feed into this broad aim as set 

out in Table 1. 

 Research Question Chapter 

1 Is the use of SfM photogrammetry as a 3D footwear impression recovery 
tool scientifically valid? This is defined using the President’s Council of 
Advisors on Science and Technology (PCAST) report (2016) which 
discusses the key points of foundational validity to include reliability, 
reproducibility, repeatability, accuracy, and consistency.  

3 

2 Is the use of SfM photogrammetry scientifically valid in the range of 
environments in which 3D footwear evidence is typically found in a country 
such as the United Kingdom (UK)? 

3 

3 What are the practical advantages of SfM photogrammetry when measured 
against current methods and practice? 

3,4 

4 Do the outputs of SfM photogrammetry produce superior visualisation of 
impression features when assessed next to examples of current methods? 

3,4 

5 What is the measure of repeatability for currently used footwear recovery 
methods, specifically casting? 

4 

6 How do each of the elements of footwear analysis, class, wear and 
individual behave over the course of a shoe’s existence? 

All 

7 How can areas of 3D footwear recovery that are often overlooked, have 
their value increased through the use of SfM?  

All 

8 Can the introduction of digital recovery also introduce statistical reporting 
that satisfies both traditionalist approaches and Bayesian approaches?  

All 

Table 1. Research questions explored within this thesis. 
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1.2 Structure of thesis  

This thesis is split into five core chapters and follows an integrated thesis 

format in accordance with Bournemouth University (BU) regulations. It 

therefore contains completed research papers throughout which have either 

been published, submitted, or prepared for submission. Each paper is placed 

in the thesis at the logical point but to save repetition, a single master reference 

list is provided, and all figures have been re-numbered sequentially to avoid 

confusion. The thesis also includes short unpublished technical notes that 

address key questions with less emphasis on producing finished papers 

although this may be possible in the future. 

 

Chapter One contains an introduction to the discipline, the research territory 

of the field and provides a rationale for the research. This is followed by a 

chapter of integrated methods, focusing primarily on methods that fall outside 

specific papers (note that some methods are repeated in the individual 

papers). Chapter Three addresses the scientific validation of SfM 

photogrammetry when applied to the recovery of 3D footwear impressions and 

consists of four research papers plus three unpublished technical notes. 

These papers primarily use the software DigTrace3. Chapter Four assesses 

SfM photogrammetry in comparison to traditional methods and includes two 

further research papers. The thesis concludes with a final chapter of 

discussion and conclusions drawing out the main themes of the research and 

recommendations for further study. 

 

1.3 The research landscape and rationale 

The current landscape of forensic footwear related research lacks volume, in 

comparison to other forensic disciplines. For example, a Google Scholar 

search on the topic ‘Forensic Footwear’ produces 8,710 articles4. ‘Forensic 

 
3 (www.digtrace.co.uk) 
4 According to Khabsa and Giles, (2014), when Google Scholar search parameters are set at ‘any 
date’, 80-90% of all articles published in English are returned.  
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Fingerprint’ sees a return of 91,800, while ‘Forensic DNA’ 374,000. Other 

search engines such as Science Direct were utilised to search for literature 

alongside existing literature citation lists. A broad range of search terms were 

used as the terminology within footwear evidence is not consistent. The 

modest amount of research reflects a range of things including current use 

and perhaps inertia on the part of practitioners. Conversations with UK 

practitioners indicate an ongoing decline in the use of all types of footwear 

evidence5. The discipline is caught between those that stress the importance 

of expert opinion (e.g., Bodziak 1999; Bodziak 2012; Bodziak 2017) and those 

that seek to supplement this with automated database search algorithms (e.g., 

De Chazal et al. 2005; Pavlou and Allinson 2006; Pavlou and Allinson 2009; 

PCAST 2016; Wang et al. 2019; Park and Carriquiry 2020). Innovation around 

recovery compared to other types of evidence has been neglected. One 

consequence is that footwear evidence relies on expert opinion, and there is 

perhaps less focus on analytical techniques which could support these 

traditional opinions. This has at times cast footwear evidence in a poor light 

and several high-profile reports in the last two decades (NRC 2009; PCAST 

2016; Science and Technology Select Committee 2019) have all but 

demanded that the discipline move away from an over reliance on subjectivity. 

They have called for an increase in peer reviewed research to supply clarity 

on many of the opinion-based protocols alongside a request for objective 

automation where at all possible. To summarise, these reports broadly 

express concern about the lack of scientific research to underpin forensic 

footwear. This has driven research into pattern matching and automation of 

feature identification. However, it has not led to significant growth in research 

into the errors and technology associated with the recovery of footprints. One 

could suggest that the discipline has leapt towards artificial intelligence and 

machine learning (i.e., automated pattern matching) without considering some 

of the more basic opportunities for improvement. The rationale for the current 

research begins here. By contributing research at this level, it is hoped that the 

 
5 Alaska Scientific Crime Detection Laboratory visiting Chief, David Kanaris. 
CSI Training, West Yorkshire Police, visiting Iain Wilson. 
West Yorkshire Police CSI shadowing 2 shifts with different CSIs.  
West Yorkshire Police Identification Bureau visiting Expert Ryan Harris and colleagues. 
Bedfordshire Police Scientific Services visiting Expert Sean Doyle and colleagues. 
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impact will filter upwards into the realms of analysis, intelligence led policing, 

better quality evidence to present at court, and increased confidence in 

evidence accuracy. 

 

Leaders of the footwear field have a large part to play in teaching, establishing 

the norms of practice and in the progression of the discipline. William Bodziak, 

well known for his part as an expert witness in the OJ Simpson trial, has 

dedicated a lifetime to footwear evidence and is responsible for a large part of 

the existing research. The latest edition of his book (Bodziak 2017) covers a 

variety of aspects of footwear evidence including the recovery of 3D 

impressions. It does, however, only reference casting and photography as 

relevant methods for 3D recovery despite the widespread use of alternatives 

in other fields such as vertebrate ichnology. The result is that the audience is 

presented with the assumption that options for recovering 3D footwear 

impressions are limited. The use of digital 3D recovery, via laser scanning 

(Bennett et al. 2009), multiview stereo (Andalo et al. 2011), or SfM 

photogrammetry (Bennett and Budka 2018) are all methods that have been 

highlighted as having potential for 3D footwear recovery but are not discussed 

in Bodziak’s (2017) book. One of the aims of this thesis is to correct this 

omission. 

 

This thesis therefore aims to fill the gap in current literature regarding digital 

recovery of 3D footwear impressions. This has been achieved with a portfolio 

of work attesting to the validity, benefits, and limitations of SfM 

photogrammetry and its subsequent potential to modernising the recovery of 

footwear evidence. Following in the footsteps of the ichnology community, who 

have steadily moved away from dated techniques to utilise the technology of 

SfM photogrammetry (Bennett and Budka 2018), this work examines if a 

similar trajectory can occur in forensic science.  

 

There is a long history of the use of SfM as reviewed by Smith et al. (2016) 

and it has been widely applied to a range of geological (ichnological), 

geomorphological and archaeological problems. Specific examples of such 

widespread use include 3D documentation of historical burial sites (Badillo et 
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al 2020), the monitoring of shore platform erosion (Swirad et al 2019) and the 

monitoring of greenhouse gas emissions from forests using drone data 

(Mlambo et al 2017).  However, there is currently little research documenting 

the use of SfM photogrammetry for the recovery of crime scene evidence. It 

has been concluded in the National Research Council (2009) report, also by 

Tuttle et al. (2008) and one stemming originally from the Daubert (1993) Ruling 

that any new technique or approach requires a body of peer-reviewed 

literature focused on its application and reliability before it can be accepted as 

a standard in jurisprudence. Before we can develop this further, we need to 

understand some of the basic principles of footwear analysis and determine 

what we know of them in a 3D context.  

 

1.3.1 Elements of forensic footwear  

 

The main elements involved in footwear analysis, and therefore critical for 

evidence recovery, consist of three broad categories of characteristics 

(Bodziak et al. 2012; Figure 1; Figure 2). 

Class characteristics: Features associated with the design and production 

of a shoe (i.e., physical size, design, sole pattern). 

Individual characteristics formed as a result of manufacture: Certain 

processes and materials create characteristics such as air bubbles (Music and 

Bodziak 1988) may produce a feature that is individual to either a set number 

of shoes, or even a singular shoe.  

Individual characteristics: which reflect the life history of the shoe once it is 

purchased and worn. These can be further broken down by the source of the 

feature, such as a feature created through general wear, or through specific 

damage. Damage related features are often referred to as randomly acquired 

characteristics or RACs. 
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Figure 1. A. Brand New, unworn Nike Air Max 90 showing all patterns and 
features produced in manufacture, known as class characteristics. B. 
Unbranded Worn shoe with similar characteristics to a Nike Air Max 90, red 
square highlighting an area showing wear characteristics. C. Unbranded Worn 
shoe with similar characteristics to an Air Mac 90, red square highlighting a 
damage feature, this would be described as an individual, or RAC. Nike Air 
Max 90 and unbranded equivalent used for illustration as most common 
footwear type found in crime scenes in the UK (as of May 2018).  
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Figure 2. A visual timeline of features of footwear on the same size 9 men’s 
unbranded trainer worn for a period of 3 months. Note the wear features 
appearing rapidly and large RACs appearing towards the end of the series.  

 
These are the details that, if successfully obtained through recovery, can alter 

the impact of the evidence on a case because they link a pair of shoes to a 

trace at a scene and therefore potentially the owner/wearer to that scene. A 

successful recovery technique should retain all the features available in the 

original trace whether it be a two-dimensional (2D) mark or a 3D impression. 

The idea that recovery techniques might destroy evidence is not unheard of in 

the discipline of footwear. The NRC (2009 p. 146) note 

 

 “The quality of impression evidence left at the scene cannot be 
controlled, but failures in the initial scene work used to collect, 
preserve, and possibly enhance the evidence will degrade the 
quality of the evidence eventually used for comparative 
analysis.” 

 

The concept of non-destructive recovery methods is therefore critical. 
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The initial stage of analysis is the identification of class characteristics in order 

to identify the make and model of a shoe, along with any peculiarities 

associated with the manufacture of that outsole (Bodziak 2017). Class 

characteristics are the features of a shoe created when the shoe is made. 

These include the size, shape, style, and pattern of the tread that occurs as a 

direct result of the shoe manufacture (Cassidy 1980). The variability included 

in the manufacturing process is vast, and there are only a small number of 

studies that highlight the manufacture process and how this affects the 

examination of footwear impression evidence (Jay and Grub 1985; Bodziak 

1986; Keijzer 1990; Kainuma 2005; Nisida and Suemoto 2008; Bodziak 2017). 

These studies tend to focus on singular types of shoes, for example athletic, 

and a singular manufacturing process or feature such as the presence of air 

bubbles. The value of research in this area may, however, be limited due to 

the ever-evolving methods and variability in the manufacturing process. Class 

characteristics are a crucial part of the analysis but their value as a single 

source of identification is not always clear cut (Gross et al. 2013). NRC (2009 

p.147) states “class characteristics are not sufficient to conclude that any one 

particular shoe or tire made the impression”. None of the current studies on 

class characteristics, the last of which was 2013 (Gross et al. 2013), dedicate 

research to the discussion or investigation into class characteristics at the 

recovery stage. Equally, no studies are available that discuss class 

characteristics in relation to 3D impressions; an example of an insightful 

investigation would be a comparison of the 2D and 3D recovery focusing on 

the subsequent quality and accuracy of the class characteristics. 

 

Within the UK a National Footwear Database (NFD) and a National Footwear 

Reference Collection (NFRC) are used operationally by most UK Police 

Forces. It is the role of the footwear examiner to input class and individual 

characteristic data into these systems for either intelligence or evidential 

purposes. These systems work using an agreed coding system that identifies 

class characteristics (Figure 3; Table 2). This coding system has been used 

within this thesis with the permission of NFD creators Bluestar Software Ltd. 

Whether using coded footwear or direct pattern matching, automated search 

algorithms lie at the heart of such databases. There is a lot of research in this 
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field and some of the key papers include De Chazal (2005), Zhang et al. 

(2005), Pavlou and Allinson (2009) and Tang et al. (2010), although these 

examples and all other research into pattern matching use only 2D input data. 

The results of these studies are often discussed in terms of percentage 

success and one could argue that a human would still be required to check 

the results and the process may never be completely automated. This is one 

of the largest areas of research within footwear evidence with a consistent flow 

of work over the past two decades (NIST 2017). Once again, as is often the 

case with footwear evidence, the research is rarely translated into practice, 

although this is slowly changing (e.g., Henderson and Armitage 2018).  

 

Figure 3. Examples of pattern descriptors as used in the United Kingdom 
NFRC 
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Code Name Description 

D01  Bar A bar of any type such as straight, angled, curved, including chevrons 

D01-01  Wavy A bar element with more than one directional change 

D01-02  Curved 

Wavy 

Any bar shape or continuous bar element that deviates from a 

straight line with a single rounded directional change however small 

the angle of the curved section 

D02  Circular Includes circle, semi-circle, oval, semi-oval, concentric circles, target, 

tear-drop, stud, crescent 

D02-01  Target Any concentric circle arrangement whether the centre-most circle is 

hollow or solid 

D03  3 Sided All types of triangle including those with one rounded side such as a 

pie-segment 

D04  4 Sided Square, rectangle, oblong, parallelogram, rhombus, diamond, 

arrowhead 

D05 5 Sided Usually a regular shaped pentagon, but includes all five-sided 

shapes 

D06 6 Sided Usually a regular shaped hexagon, but includes all six-sided shapes 

D07 Complex This includes shapes such as a star, arrow, waisted bar, heart and 

cross, and any other shape with more than six sides, such as an 

octagon 

D08 Zigzag A broken or continuous line that changes direction repeatedly with 

abrupt right and left turns 

D09 Text Any alpha-numeric characters. May overlap with D10 

D10 Logo A brand or trademark incorporating a device such as a symbol, 

badge, emblem, or picture. May overlap with D09 

D11 Lattice A regular, interlocking and/repeated pattern, also called a network, 

web or trellis, includes patterns known as brickwork, herring-bone, 

honeycomb, chicken wire 

D12 Textured This includes pre-dominant stippling, crepe or random patterns 

added by the manufacturer as part of their design. 

D13 Hollow A pattern that has the appearance of a hollow shape, such as a 

doughnut or frame 

D14 Plain A plain surface with no patterns or texture 

Table 2. Pattern Descriptors used in the United Kingdom NFRC. 
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Beyond class characteristics is the assessment of wear on the outsole of a 

shoe and the correlation of any wear characteristics in a print or impression. 

Wear characteristics can be described in several ways; general wear and tear 

or as the gradual erosion of the shoes outsole material that occurs during 

contact with the substrate (Bodziak et al. 2012). Wear characteristics may also 

be affected by an individual’s gait. Forensic gait analysis is now relatively 

common, that is the identification of a suspect by their gait (e.g., Birch et al. 

2015; Macoveciuc et al. 2019; van Mastrigt et al. 2018; Seckiner et al. 2019). 

Kennedy et al. (2005) of the Royal Canadian Mounted Police suggested a high 

level of individualisation in the shape and size of human feet. If gait and foot 

shape/size are individualising it is not surprising that plantar pressure should 

also be distinctive, a point demonstrated by Pataky et al. (2012). Differences 

in limb dimensions, arm and torso movement during gait, as well as small-

scale variation in foot size/shape are responsible for these pressure 

differences, which in turn could lead to variations in the amount and location 

of wear on the outsole of a shoe (Bennett and Budka 2018). The individuality 

of wear is, however, a relatively under-researched area, although beyond the 

scope of this thesis. An obvious aid to such research would be the ability to 

quantify the degree of wear at a specific location on an outsole, such as on 

the heel. The use of digital 3D recovery provides depth data that would help 

with this research while also aiding practitioners in comparative analysis. 

 

The variability involved in wear makes it an ideal research area in which 

practitioners would benefit from large databases of wear examples. As with all 

other features used during analysis, determining their use and uniqueness is 

important in evaluating evidence, but perhaps more fundamental is to 

determine the best way to recover that evidence to gain the most from it. 

Research on wear characteristics is largely centred on analysis or formation 

(LeMay 2013). Whilst this is relevant and necessary there is once again no 

research investigating the effect recovery has on wear characteristic analysis 

or more specifically research relating to wear characteristics recovered from 

2D compared with 3D impressions. A need for research in this area is 

heightened due to the issue of time elapsing between when a print or 

impression is made and when a shoe of interest is seized during an 
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investigation. This gap in time leaves room for potential changes in wear and 

a huge number of variables will determine the extent of this wear. A question 

beyond the scope of this research remains, as to if a shoe can be successfully 

matched with a crime scene trace when it no longer shows the same degree 

of wear.  

 

Identifying individual or RACs is the final step in analysis for a footwear 

examiner. Often referred to as individualising characteristics, it is these 

features that determine how unique the outsole of a shoe is and therefore, how 

confidently an examiner can be in confirming a particular shoe made a 

particular trace or impression. A review of footwear literature indicates there is 

more research dedicated to this type of feature than others. However, despite 

research efforts to support the scientific validity of RAC analysis, a 2016 US 

report (PCAST 2016) stated that there were, at that time, no appropriate 

studies supporting the foundational validity of specific identifying marks being 

used to associate a shoe mark with a shoe.  

 

The NRC report (2009) also commented on the lack of consensus regarding 

how many RACs it takes to make a positive identification, suggesting that the 

discipline is open to bias in experience-based judgements. Despite 

researchers having responded with several quantitative empirical studies 

(e.g., Petraco et al. 2010; Yekutieli et al. 2012; Wang et al. 2019; Wiesner et 

al. 2020), this particular point has not been fully resolved. Over a decade since 

the NRC (2009) report was published, footwear examiners around the world 

still have not used a standardised process for what appears to be one of the 

largest concerns from a government perspective.  

 

The formation and acquisition of RACs has been studied by Toso and Girod 

(1997) while others have undertaken longitudinal studies (Sheets et al. 2013), 

and there is also extensive work exploring the unique nature of the marks and 

the chance association of their occurrence (Wilson 2012; Yekutieli 2012). It is 

of note that there is little insight available into how RACs exist within 3D 

impressions. A search of eight randomly selected peer reviewed articles on 

RACs were examined for the type of input data used. The eight articles were 
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taken from NISTs (2017) list of foundational studies of which there are 27 

relating to the reliability and examination of wear and RACs. All eight (Stone 

2006; Adair et al. 2007; Petraco et al. 2010; Hamburg and Banks 2010; Wilson 

2012; Sheets et al. 2013; Speir et al. 2016; Richetelli et al. 2017) relied upon 

2D data, such as those acquired by a flatbed scanner, digitalised gel prints or 

scanning of prints on paper. Similar research efforts using 3D data would be 

very insightful as it is plausible, due to the data acquired in the third dimension, 

especially the depth, that RACs may be easier to identify, measure, or 

critically, to compare. However, whilst the recovery method for the collection 

of such data remains as lengthy and costly as it is, it seems unlikely that this 

avenue will be explored for quantitative research.  

 

A further element of RACs that has been explored, where little other work 

currently exists, is the examination of test impressions and their relationship 

with RACs. Shor et al. (2018) delivers a compelling argument for the variation 

that can exist in repeated test impressions, going on to describe this as an 

area in need of statistical analysis to fully understand. Further testing of the 

same nature would no doubt be beneficial for 3D test impressions.  

 

Upon analysing footwear evidence, the absence of RACs may simply be due 

to poor recovery, especially in the under researched areas of 3D traces. It is 

likely that some characteristics simply were not recovered due to the recovery 

medium, the recovery technique, or beyond that, to the transport and storage 

of the recovered item. Therefore, the introduction of a new technique, one that 

may increase the ability to recover characteristics, is one that deserves an 

equal amount of research attention.  

 

1.3.2 Footwear evidence in the third dimension 

 

Research into footwear evidence which solely focuses on 3D recovery or 

analysis is scarce. That said, we are now beginning to see the transition from 

century old techniques into research that aligns with the technology available 

(Figure 4). As with many disciplines, the research that has been undertaken is 
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divided into two halves. One half looks to improve the existing method whilst 

the other half tries to introduce new methods. It is noteworthy that one of the 

highest cited papers amongst footwear impression research (48 citations 

compared to 0-25 for most6) is an investigation of recovery in the three 

dimensions of snow impressions (Buck et al. 2007), a study introducing high 

resolution optical surface scanning. This study showcases the advantages of 

using digital capture but lacks the practical assessment of viability in respect 

to cost and operational deployment. Studies of casting, the traditional method 

of recovery for a 3D impression, include work investigating the use of fixatives 

to increase quality of recovered 3D impressions (Battiest et al. 2016; Sabolich 

2018). There is, overall, a notable lack of research relating to casting and 

nothing on potential errors, tests of accuracy or any attempts to produce large 

datasets to study (Battiest et al. 2016). Curiously, the casting of tool mark 

impression evidence has studies of a more analytical nature. For example, 

Wang (2016) evaluates two casting materials for the use of tool mark evidence 

focusing on the dimensional accuracies of the results as well as sharpness, 

ease of use and overall quality. His research (Wang 2016), using tool mark 

experts to assess cast data also considers storage issues and application 

methods, this kind of study would fit well into the gap that currently exists in 

footwear casting research. 

 
6 Results obtained via Publish or Perish in November 2020 - https://harzing.com/resources/publish-
or-perish 
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Figure 4. A timeline showing the trajectory of 3D footwear evidence research. 
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1.3.3 Knowledge transfer of 3D recovery 

 

Digital 3D recovery methods are rapidly replacing more traditional techniques 

in many disciplines. One technique that has come to light, as an effective tool 

for the recovery of impression data, is close-up SfM photogrammetry7. There 

is a large body of research on photogrammetry techniques in the recovery of 

fossilised footprints demonstrating that it provides a reliable, low-cost solution 

with results equivalent to optical laser scanning (Westoby et al. 2012; Bennett 

et al. 2013; Falkingham et al. 2018; Bennett and Budka 2018; Bennett et al. 

2020; Altamura et al. 2020). This research supports the notion that 

photogrammetric methods are inexpensive and can be used effectively by 

individuals who do not necessarily have to be experts (Bryan and Chandler 

2008; McCarthy 2014). Key advantages such as the use of the method in 

remote areas (Westoby et al. 2012) all encourage photogrammetry to be used 

across a huge range of disciplines. As a result of the successful use of 

photogrammetry techniques to recover modern and fossil ichnological data, a 

bespoke programme was created by staff at Bournemouth University (BU) with 

Natural Environment Research Council (NERC) funding for recording and 

analysing 3D footwear impressions such as those left at crime scenes. It has 

been used throughout this thesis, although not exclusively, to illustrate the 

method of SfM photogrammetry when applied to the recovery of 3D forensic 

footwear data.  

 

Digital recovery of fossilised tracks and more so the development of advanced 

analytical and statistical tools using that data, has increased community 

awareness of vertebrate traces and this is reflected in a huge increase in 

publications of fossil tracksites. Graphic representation of publications in this 

field (Figure 5) illustrates the frequency in which research in this area has 

increased since the 3D digital revolution. This is shown alongside forensic 

footwear research highlighting a similar increase but with significantly less 

volume. The quiet revolution in fossil track research has proceeded via the 

 
7 SfM is used in many fields for large scale visualisation of terrain, buildings, or monuments: this 
contrasts with small-scale, or close-up SfM where the extent of a model is measured in a few 
centimetres rather than tens of metres.  



 

32 
 

provision of digital recovery tools, to the need for analytical/statistical tools for 

hypothesis testing based on that digital data, to an enhanced and growing 

community wide awareness of the value of such evidence in reconstructing 

the past. Forensic footwear can benefit from a similar trajectory especially 

since it is widely acknowledged as one of the most ubiquitous types of trace 

evidence left at a scene (Baiker-Sørensen et al. 2020). This is a progression 

that, if translated to forensic footwear, could have a huge benefit for 

intelligence-based policing. Beyond the standard comparison procedure which 

looks to confirm a shoe made a particular mark, behavioural analysis could 

lead investigators to a new understanding of the events, based on direction of 

movement, gait analysis, and beyond.  

 

 

Figure 5. Timeline of increasing research in the field of ichnology separated 
by discipline. Cumulative frequency equals total peer reviewed research 
articles. Data sourced based on Google Search enabled via the software 
Publish and Perish, 20208. 

 

 

 
8 https://harzing.com/resources/publish-or-perish 
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The translation of techniques from one discipline to another is of obvious 

benefit. We can also see beyond that into interesting parallels between 

disciplines. Fossil footprints, both animal and human, have previously been 

overlooked at international archaeological sites by teams prioritising the 

recovery of bones and stone tools. An example of which can be found at an 

Ethiopian site described by Altamura et al. (2018). Here potential footprint 

bearing surfaces were destroyed by past excavations focused on bones and 

stone tools. Recent test pits in adjacent areas have shown how destroyed 

surfaces contain hominin and other animal footprints giving important 

behavioural information. This has occurred in much the same way we see 

footwear evidence overlooked for the ‘gold standard’ evidence types such as 

DNA or fingerprints (Baiker-Sørensen et al. 2020). Additionally, the concept of 

footprints being overprinted to the point of lost data strikes a similarity between 

footwear impressions being overprinted by police officers and emergency 

responders, to the point of lost evidence. Bennett et al. (2016) used digital 

techniques to recover lost/hidden tracks from the famous Laetoli footprint site.  

 

The advent of 3D technology within ichnology has progressed the discipline of 

vertebrate tracking from a descriptive to quantitative science. Forensic 

footwear recovery and analysis are potentially a whole 5-10 years behind in 

comparison. The below timeline (Table 3) illustrates, with key research, the 

progression of methodologies, equipment, and analysis techniques over the 

years. A shift from descriptive analysis to more analytical approaches such as 

Geometric Morphometrics (GMM) has taken place in the lead up to the 

research detailed below. Table 4 details the occurrence of footprint impression 

data globally that the advent of 3D digital technology has assisted in the 

recovery of. 
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Year Research Titles Progression Notes 

2006 New interpretation of Laetoli footprints 
using an experimental 
approach and procrustes analysis: 
preliminary results. (Berge et al. 2006) 

Berge et al. (2006) pioneered 
the application of geometric 
morphometrics (GMM) to the 
analysis of human tracks 

2006 The application of Light detection and 
Radar (LIDAR) imaging Vertebrate 
Ichnology and Geoconservation (Bates 
2006) 
 

Use of LIDAR 

2009 Integrated Lidar & Photogrammetric 
documentation of the Red Gulch 
Dinosaur Tracksite (Bates et al. 2009) 
 

LIDAR and Photogrammetry 
utilised for dinosaur tracks 

2009 Early hominin foot morphology is 
based on 1.5-million-year-old footprints 
from Ileret. (Bennett et al. 2009) 

GMM (Geometric 
Morphometrics) approach 
adopted from Berge et al. 
(2006) and refined 
 

2011 Human-like external function of the 
foot, and fully upright gait, confirmed 
in the 3.66-million-year-old Laetoli 
hominin footprints by topographic 
statistics, experimental 
footprint-formation and computer 
simulation. (Crompton et al. 2012) 
 

Statistical com- 
parison increasingly 
commonplace 

2014 Human footprints: fossilised 
locomotion? (Bennett and Morse 2014) 
 

Methods of digital data 
capture explored 

2018 Digital technology for forensic footwear 
analysis and Vertebrate Ichnology. 
(Bennett and Budka 2018) 

Use of photogrammetry being 
translated across disciplines 

Table 3. The advent of 3D technology and the revolution of vertebrate 
ichnology.  
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Year Discovery 

2016 Masao et al. (2016) additional footprints at the 3.66-million-year-old footprint site 
at Laetoli in northern Tanzania first reported in 1979 by Leakey and Hey (Leakey 
and Hay 1979). A late Pleistocene site on the shores of Lake Natron was reported 
with hundreds of visible tracks (Balashova et al. 2016; Liutkus-Pierce et al. 2016). 
 

2017 Gierlinski et al. (2017) describe fossil footprints dating to 5.7 Ma from Crete. Citton 
et al. (2017) provide an analysis of human footprints from the Grotto della Basura 
in Italy.  
 

2018 In 2018 the publication of children’s footprints in association with butchered hippo 
carcasses was reported from Ethiopia (Altamura et al. 2018). Human tracks in 
association with giant ground sloth in North America where described by Bustos 
et al. (2018). Footprints preserved in peat have been found on the Pacific Coast 
of Canada were described by McLaren et al. (2018). A new footprint site in South 
Africa is reported by Helm et al. (2018) and there has been a significant number 
of additional publications on this site. Belvedere et al. (2018) report on the 
importance of using average tracks from trackways in the analysis of human and 
other footprints. Urban et al. (2018) show how geophysics (magnetometry) can 
be used to image buried footprints.  
 

2019 Duveau et al. (2019) reported coastal footprints of Neanderthals from Le Rozel in 

Normandy.  In a succession of papers Helm et al. (2019a,b,c,d) continued to 

report footprint discoveries in South Africa. Further details on the Basura Cave 

footprints were published by Romano et al. (2019). Urban et al. (2019) 

demonstrate how GPR can be used to image buried footprints.  

2020 Helm et al. (2020a,b) published more details on the South African footprint 

discovery. Stewart et al. (2020) reported footprints in the Arabian Peninsula. 

Bennett et al. (2020) reported the longest human trackway in the world from White 

Sands, New Mexico. Wiseman et al. (2020b) provided a definitive assessment of 

the Happisburgh footprints in the UK. Hatala et al. (2020) reported further analysis 

of the Engare Sero footprint from Tanzania. Altamura et al. (2020) reported further 

footprints from Ethiopia in the Middle Awash Valley.  

Table 4. A selection of major footprint discoveries in the last four years 

showing the growing number of discoveries due to increased awareness and 

availability of not only 3D recovery tools, but also associated analytical tools. 

(Bennett and Budka 2018)  
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1.3.4 Justification for the research 

 

There is an argument, not documented well in the literature, but touched upon 

by Bodziak (2017), that footwear evidence is often not aggressively searched 

for. Baiker-Sørensen et al. (2020) going as far as to say that despite its 

frequent occurrence, shoe marks are often neglected. This is often to do with 

an assumption that first responders will have destroyed or overtrodden any 

perpetrators print or impressions. Books such as D Hilderbrand’s, Footwear, 

the Missed Evidence (2013) give further weight to the argument that, 

generally, footwear evidence is undervalued or misunderstood. This has been 

attributed to a handful of reasons but notably there is a lack of training in the 

collection and preservation of this evidence type. This gives us reason to 

assume that 3D evidence is even less likely to be searched for than 2D, as its 

recovery presents more of a challenge. Tables 5, 6 and 7 compile cases, 

described in the media, personally communicated from relevant members of 

the forensic community, or within scientific literature, that illustrate the 

existence of 3D footwear impressions and its weight in specific cases. The 

contents of tables 5-7 have been gathered through personal communications 

and in-depth literature and media searches. Multiple search terms in search 

engines such as google scholar and science direct were used. Thorough 

searches were undertaken to locate the most relevant cases/articles within 

archived newspapers databases and court records. Included in Tables 5, 6 

and 7 are the expected mediums footwear impressions are found in such as 

mud and snow, but also the unexpected, from dog faeces to food items. The 

message being, if you look hard enough, they might exist in places no one 

thought to look, and potentially yielding valuable intelligence and evidential 

material. Some may have sat there for hours, days or months, but the potential 

information and insights stored in them, depending on the environment and 

external factors, remain. 

 

Substrate Example Source 

Snow Snow - David Kanaris Pers Communication 

 Snow footprints – burglaries: UK - https://www.ibtimes.com/8-robbers-
arrested-after-leaving-snowy-footprints-behind-two-different-uk-crimes-
1158787 

Online Media 

https://www.ibtimes.com/8-robbers-arrested-after-leaving-snowy-footprints-behind-two-different-uk-crimes-1158787
https://www.ibtimes.com/8-robbers-arrested-after-leaving-snowy-footprints-behind-two-different-uk-crimes-1158787
https://www.ibtimes.com/8-robbers-arrested-after-leaving-snowy-footprints-behind-two-different-uk-crimes-1158787
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 Footprints in snow: Massachussetts - 
https://www.bostonglobe.com/metro/2014/01/22/woman-faces-charges-
after-police-track-her-footprints-through-
snow/JVUb0vDvHZsig1kxGC522O/story.html 

Online Media 

 HADLEY v. GROOSE- Snow footprints Case search 

 GUILMETTE v. HOWES – Snow footprints Case search 

 Shoe and tire impressions in snow: photography and casting Peer reviewed article 

 3D documentation of footwear impressions and tyre tracks in snow with 
high resolution optical surface scanning 

Peer reviewed article 

 Casting of 3-dimensional footwear prints in snow with foam blocks. Peer reviewed article 

 Adair T (2009) Capturing Snow Impressions Peer reviewed article 

 The Dry-Casting Method: A Reintroduction to a Simple Method for 
Casting Snow Impressions 

Peer reviewed article 

 https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-
lead-police-to-burglary-suspect/vi-BBoxBXD 

Online Media 

 https://www.ajc.com/news/snowy-footprints-lead-cops-burglary-suspect-
atlanta/rT84TjHmdjtGONhifkqkkN/ 

Online Media 

 https://www.breakingnews.ie/world/police-use-footprints-in-snow-to-
catch-burglary-suspect-618021.html 

Online Media 

 https://patch.com/wisconsin/waukesha/footprints-snow-led-waukesha-
police-car-burglars-report 
https://www.independent.co.uk/news/uk/crime/thieves-arrested-snow-
footprints-weather-latest-a8233786.html 

Online Media 

 https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-
lead-police-to-burglary-suspect/vi-BBoxBXD 

Online Media 

 https://keprtv.com/news/local/fresh-snow-footprints-in-pasco-lead-
officers-to-burglary-suspect 

Online Media 

 https://www.edp24.co.uk/news/crime/beast-of-the-east-helps-norfolk-
police-catch-two-burglars-1-5419118 

Online Media 

 https://www.derbytelegraph.co.uk/news/derby-news/dean-neal-burglary-
chaddesden-snow-1579410 

Online Media 

 http://newstalkkgvo.com/footprints-in-snow-help-missoula-police-nab-
marijuana-burglary-suspect/ 

Online Media 

 https://www.kivitv.com/news/footprints-lead-officers-to-boise-burglary-
suspect 

Online Media 

 https://kobi5.com/news/crime-news/footprints-snow-lead-police-
burglary-suspect-72391/ 

Online Media 

 https://www.nbcchicago.com/news/local/footprints-in-snow-lead-cops-K-
9-to-teen-burglary-suspect-in-montgomery-473198863.html 

Online Media 

 http://www.fox32chicago.com/news/crime/footprints-in-snow-lead-
police-to-beecher-burglary-suspects 

Online Media 

 

 

https://www.coventrytelegraph.net/news/coventry-news/police-arrest-
coventry-burglary-suspects-3029507 

Online Media 

 (Cassidy 1980) Book 

Table 5. A selection of cases in which footwear evidence has featured in 

snow, surfaced via a Google search. 

https://www.bostonglobe.com/metro/2014/01/22/woman-faces-charges-after-police-track-her-footprints-through-snow/JVUb0vDvHZsig1kxGC522O/story.html
https://www.bostonglobe.com/metro/2014/01/22/woman-faces-charges-after-police-track-her-footprints-through-snow/JVUb0vDvHZsig1kxGC522O/story.html
https://www.bostonglobe.com/metro/2014/01/22/woman-faces-charges-after-police-track-her-footprints-through-snow/JVUb0vDvHZsig1kxGC522O/story.html
https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-lead-police-to-burglary-suspect/vi-BBoxBXD
https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-lead-police-to-burglary-suspect/vi-BBoxBXD
https://www.ajc.com/news/snowy-footprints-lead-cops-burglary-suspect-atlanta/rT84TjHmdjtGONhifkqkkN/
https://www.ajc.com/news/snowy-footprints-lead-cops-burglary-suspect-atlanta/rT84TjHmdjtGONhifkqkkN/
https://www.breakingnews.ie/world/police-use-footprints-in-snow-to-catch-burglary-suspect-618021.html
https://www.breakingnews.ie/world/police-use-footprints-in-snow-to-catch-burglary-suspect-618021.html
https://patch.com/wisconsin/waukesha/footprints-snow-led-waukesha-police-car-burglars-report
https://patch.com/wisconsin/waukesha/footprints-snow-led-waukesha-police-car-burglars-report
https://www.independent.co.uk/news/uk/crime/thieves-arrested-snow-footprints-weather-latest-a8233786.html
https://www.independent.co.uk/news/uk/crime/thieves-arrested-snow-footprints-weather-latest-a8233786.html
https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-lead-police-to-burglary-suspect/vi-BBoxBXD
https://www.msn.com/en-gb/sport/premier-league/footprints-in-snow-lead-police-to-burglary-suspect/vi-BBoxBXD
https://keprtv.com/news/local/fresh-snow-footprints-in-pasco-lead-officers-to-burglary-suspect
https://keprtv.com/news/local/fresh-snow-footprints-in-pasco-lead-officers-to-burglary-suspect
https://www.edp24.co.uk/news/crime/beast-of-the-east-helps-norfolk-police-catch-two-burglars-1-5419118
https://www.edp24.co.uk/news/crime/beast-of-the-east-helps-norfolk-police-catch-two-burglars-1-5419118
https://www.derbytelegraph.co.uk/news/derby-news/dean-neal-burglary-chaddesden-snow-1579410
https://www.derbytelegraph.co.uk/news/derby-news/dean-neal-burglary-chaddesden-snow-1579410
http://newstalkkgvo.com/footprints-in-snow-help-missoula-police-nab-marijuana-burglary-suspect/
http://newstalkkgvo.com/footprints-in-snow-help-missoula-police-nab-marijuana-burglary-suspect/
https://www.kivitv.com/news/footprints-lead-officers-to-boise-burglary-suspect
https://www.kivitv.com/news/footprints-lead-officers-to-boise-burglary-suspect
https://kobi5.com/news/crime-news/footprints-snow-lead-police-burglary-suspect-72391/
https://kobi5.com/news/crime-news/footprints-snow-lead-police-burglary-suspect-72391/
https://www.nbcchicago.com/news/local/footprints-in-snow-lead-cops-K-9-to-teen-burglary-suspect-in-montgomery-473198863.html
https://www.nbcchicago.com/news/local/footprints-in-snow-lead-cops-K-9-to-teen-burglary-suspect-in-montgomery-473198863.html
http://www.fox32chicago.com/news/crime/footprints-in-snow-lead-police-to-beecher-burglary-suspects
http://www.fox32chicago.com/news/crime/footprints-in-snow-lead-police-to-beecher-burglary-suspects
https://www.coventrytelegraph.net/news/coventry-news/police-arrest-coventry-burglary-suspects-3029507
https://www.coventrytelegraph.net/news/coventry-news/police-arrest-coventry-burglary-suspects-3029507


 

38 
 

 

Table 6. A selection of cases in which footwear evidence has featured in 

soil/mud, surfaced via a Google search. 

 

 

 

 

 

 

Substrate Example Source 

Soil/Mud Muddy imprint left by a Flip Flop: Atlanta 
https://www.ajc.com/news/crime--law/man-gets-life-after-police-connect-shell-
casing-footprint-murder/c5EoOMlOKxhJuua1c3IG5K/ 

Online 
Media 

Muddy footprint with body – shoes identified in crime scene video but never seized 
:Massachusetts 
https://edition.cnn.com/2015/02/20/us/hernandez-evidence-shoes/index.html 

Online 
Media 

Muddy shoe print: 
https://herald-review.com/news/local/muddy-shoe-print-leads-to-arrest-in-
marijuana-case/article_19eca024-4ccd-53d9-b9ca-e2cf108aaf70.html 

Online 
Media 

Tire + Shoe article. Casting in dirt. - 
http://www.crimescenejournal.com/content.php?id=0006 

Online 
Media 

UNITED STATES v. DURAN OROZCO – Mud Footprints Case 
search 

Preservation and analysis of three-dimensional footwear evidence in soils: the 
application of optical laser scanning. In Criminal and Environmental Soil Forensics 

Peer 
reviewed 
article 

http://www.wfmz.com/news/lehigh-valley/authorities-allege-muddy-footprints-tie-
suspect-to-burglary/803264312# 

Online 
Media 

https://bangordailynews.com/2011/07/19/news/piscataquis/footprints-lead-to-
brownville-burglary-suspect/ 

Online 
Media 

https://www.sthelensstar.co.uk/news/15797933.burglars-left-muddy-footprints-on-
babys-cot-during-burglary-at-nursery/ 

Online 
Media 

(Cassidy 1980) Book 

https://www.ajc.com/news/crime--law/man-gets-life-after-police-connect-shell-casing-footprint-murder/c5EoOMlOKxhJuua1c3IG5K/
https://www.ajc.com/news/crime--law/man-gets-life-after-police-connect-shell-casing-footprint-murder/c5EoOMlOKxhJuua1c3IG5K/
https://edition.cnn.com/2015/02/20/us/hernandez-evidence-shoes/index.html
https://herald-review.com/news/local/muddy-shoe-print-leads-to-arrest-in-marijuana-case/article_19eca024-4ccd-53d9-b9ca-e2cf108aaf70.html
https://herald-review.com/news/local/muddy-shoe-print-leads-to-arrest-in-marijuana-case/article_19eca024-4ccd-53d9-b9ca-e2cf108aaf70.html
http://www.crimescenejournal.com/content.php?id=0006
http://www.wfmz.com/news/lehigh-valley/authorities-allege-muddy-footprints-tie-suspect-to-burglary/803264312
http://www.wfmz.com/news/lehigh-valley/authorities-allege-muddy-footprints-tie-suspect-to-burglary/803264312
https://bangordailynews.com/2011/07/19/news/piscataquis/footprints-lead-to-brownville-burglary-suspect/
https://bangordailynews.com/2011/07/19/news/piscataquis/footprints-lead-to-brownville-burglary-suspect/
https://www.sthelensstar.co.uk/news/15797933.burglars-left-muddy-footprints-on-babys-cot-during-burglary-at-nursery/
https://www.sthelensstar.co.uk/news/15797933.burglars-left-muddy-footprints-on-babys-cot-during-burglary-at-nursery/
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Substrate Example Source 

Sand The Ability of Footwear to Produce Impressions of Good Detail in Sandy Soil 
Substrates 

Peer reviewed article 

Experimentally generated footprints in sand: Analysis and consequences for 
the interpretation of fossil and forensic footprints. 

Peer reviewed article 

(Cassidy 1980) Book 

Sand – David Kanaris. Pers Comm 

A Comparison of Hydrophobic Barriers for Casting Footwear Impressions in 
Water-Soluble Food Products 

Peer reviewed article 

 A Comparison of Various Fixatives for Casting Footwear Impressions in Sand 

at Crime Scenes 

Peer reviewed article 

Food Items https://www.irishtimes.com/news/offbeat/burglar-steps-in-flour-footprints-lead-
police-to-his-front-door-1.2562145 

Online Media 

https://www.itv.com/news/westcountry/2016-03-04/burglar-jailed-after-leaving-
trail-of-footprints-to-own-door/ 

Online Media 

Flour (Cassidy 1980) Book 

Sugar (Cassidy 1980) Book 

Birthday Cake – Roger Blackmore Pers Comm 

Shoeprints in Turmeric – CSI West Yorkshire Police Pers Comm 

Shoeprints in Ice Cream - CSI West Yorkshire Police Pers Comm 

Shoeprints in curry powder - CSI West Yorkshire Police Pers Comm 

Other Shoeprint found on forehead: Salford - 
https://www.dailymail.co.uk/news/article-1130469/CSI-Salford-How-footprint-
embedded-mans-head-helping-police-track-attacker.html 

Online Media 

Shoeprint found on forehead: Las Vegas - 
https://lasvegassun.com/news/2010/feb/01/forehead-shoeprint-leads-felons-
arrest-office-buil/ 

Online Media 

Dog poo shoeprint: used DNA to link - http://www.petsville.ie/how-your-pets-
can-help-solve-crimes 

Online Media 

Unsolved Case with outdoor footprint evidence - 
https://www.express.co.uk/news/uk/82066/Plea-for-help-in-1979-murder-case 

Online Media 

Bathroom Mat Shoeprints - 
https://www.vanityfair.com/news/2007/05/strangler200705 

Online Media 

STATE v. CAMPBELL – Admissibility of footwear identification evidence Online Media 

https://www.manchestereveningnews.co.uk/news/greater-manchester-
news/swinton-vape-shop-burglars-police-15550706 - (Police not interested in 
footprint story) 

Online Media 

https://www.heraldnet.com/news/burglary-suspect-given-away-by-oily-
footprints/ - OIL Footprints 

Online Media 

https://www.yorkpress.co.uk/news/10097216.trail-of-footprints-led-to-young-
burglars/ - no medium described 

Online Media 

Dust (Cassidy 1980) Book 

Fire Extinguisher Propellant (Cassidy 1980) Book 

Safe Insulation - (Bodziak 2000) Book 

https://www.irishtimes.com/news/offbeat/burglar-steps-in-flour-footprints-lead-police-to-his-front-door-1.2562145
https://www.irishtimes.com/news/offbeat/burglar-steps-in-flour-footprints-lead-police-to-his-front-door-1.2562145
https://www.itv.com/news/westcountry/2016-03-04/burglar-jailed-after-leaving-trail-of-footprints-to-own-door/
https://www.itv.com/news/westcountry/2016-03-04/burglar-jailed-after-leaving-trail-of-footprints-to-own-door/
https://www.dailymail.co.uk/news/article-1130469/CSI-Salford-How-footprint-embedded-mans-head-helping-police-track-attacker.html
https://www.dailymail.co.uk/news/article-1130469/CSI-Salford-How-footprint-embedded-mans-head-helping-police-track-attacker.html
https://lasvegassun.com/news/2010/feb/01/forehead-shoeprint-leads-felons-arrest-office-buil/
https://lasvegassun.com/news/2010/feb/01/forehead-shoeprint-leads-felons-arrest-office-buil/
http://www.petsville.ie/how-your-pets-can-help-solve-crimes
http://www.petsville.ie/how-your-pets-can-help-solve-crimes
https://www.express.co.uk/news/uk/82066/Plea-for-help-in-1979-murder-case
https://www.vanityfair.com/news/2007/05/strangler200705
https://www.manchestereveningnews.co.uk/news/greater-manchester-news/swinton-vape-shop-burglars-police-15550706
https://www.manchestereveningnews.co.uk/news/greater-manchester-news/swinton-vape-shop-burglars-police-15550706
https://www.heraldnet.com/news/burglary-suspect-given-away-by-oily-footprints/
https://www.heraldnet.com/news/burglary-suspect-given-away-by-oily-footprints/
https://www.yorkpress.co.uk/news/10097216.trail-of-footprints-led-to-young-burglars/
https://www.yorkpress.co.uk/news/10097216.trail-of-footprints-led-to-young-burglars/
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Table 7. Substrates which featured in real cases surfaced via a Google 

search or by personal discussion with footprint experts during secondments 

and during meetings.  

 

The value of evidence is often determined by perception alone. Figure 6 

examines the value, categorised by both evidential and intelligence. If every 

expert in a specific field attended a crime scene, every evidence type would 

be prioritised. As this is rarely the case, the decision making of evidence value 

and prioritisation is often placed upon the attending crime scene examiners. 

They decide if something is of evidential or intelligence value and collect it 

accordingly. Research on professional judgment and decision making allows 

an insight into the difficulties faced by crime scene examiners. Ill-defined and 

competing goals, conditions of uncertainty and time pressured decision 

making are but a few of the challenges faced (Martindale et al. 2017). Every 

crime scene is different and a level of improvisation in how the scene is 

approached is required by examiners. Martindale et al. (2017) discusses in his 

research the cognitive element of improvising at a scene and note for a less 

experienced examiner a temptation to go for a ‘quick fix’ catch up, potentially 

compromising the scene. The ‘quick fix’ frame of mind is attributed to the time 

pressure faced. A particularly relevant point raised is the temptation to bypass 

certain aspects to get to aspects that would yield quicker results. This is 

increasingly relevant to the recovery of 3D footwear impressions as time 

pressures are ever increasing (Unison 2015) and this is simply due to the 

recovery of impressions via casting remaining labour intensive and time 

consuming. An examiner may see an impression and choose not to recover it. 

Or they may not look for the impressions in as much detail as they would a 

‘higher value’ piece of evidence such as fingerprints or DNA (Baiker-Sørensen 

et al. 2020).  

 

Carpet – Roger Blackmore Pers Comm 

Footprints in washing powder – CSI West Yorkshire Police Pers Comm 

Footprints in Fire extinguisher propellant – CSI West Yorkshire Police Pers Comm 

Dog muck – David Kanaris. Pers Comm 

Carpet – David Kanaris. Pers Comm 
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Decades have passed with an air of confusion over the value of collecting 3D 

data from a footwear impression (Bodziak 2017). Would a photograph be 

enough? Are there details a photograph could not pick up that a casting 

method could? Cassidy (1980) describes a time where evidence collectors 

would opt for a photograph in order to avoid looking incompetent if their cast 

were to be unsuccessful. Appropriate training is needed for casting, but it is 

unlikely the training will equip the trainee with the experience needed to 

undertake a cast in all conditions they may come across. A cast that works 

well in one environment may have been a result of the appropriate ratio of 

components, but that same ratio of components may not work in a different 

environment. This kind of method is therefore likely to be bumped into quick 

and easy photography. A non-invasive digital method has therefore been a 

logical step forward for several years.  

 

The trajectory of 3D research in other disciplines shows what is possible by 

first improving recovery which then leads to demands for better analytical tools 

and ultimately wider awareness. There are many forensic journals in the 

community, many of which offer a broad spectrum of forensic disciplines. 

There are no individual journals specifically dedicated to footwear evidence 

research, but most can be found in the Journal of Forensic Identification. This 

journal includes disciplines such as fingerprints, DNA, and footwear. Between 

2018-2019 however, the percentage of total articles dedicated to footwear 

research was 2.56%, compared to 0.51% for the Journal of Forensic Science 

and 0.74% from Forensic Science International (Table 8). The footwear 

research taking place, specifically in reaction to the NRCs (2009) call for 

automation of pattern matching, relies heavily upon large data sets. It is this 

lack of data which has been attributed to the lack of research and development 

(Pavlou and Allinson 2009). Unfortunately, not enough data sets are available 

to practitioners with which to increase the quality of their work and confidence 

in their analysis. Many research efforts are attempted by practitioners around 

the United Kingdom as a side to their day-to-day roles of footwear examination 

as encountered on a visit to West Yorkshire Police Identification Bureau. This 

research is possible due to access to data but restricted due to resources. This 
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thesis therefore aims to provide support for practitioners in the way of data and 

validation methods.  

2018-2019 
Footwear Articles 
% of total  

Fingerprint Articles % 
of total 

Forensic Science International 0.74% 3.27% 

Journal of Forensic Science 0.51% 4.96% 

Journal of Forensic Identification 2.56% 58.97% 

Average (Mean) 1.27% 22.40% 

Table 8. Statistics from 2018 to 2019 from three journals all covering a 
spectrum of disciplines within forensic science. Three journals were chosen to 
incorporate different journal sizes. Research papers and technical notes with 
mention of either footwear or fingerprints within the title were selected for these 
statistics.  
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Figure 6 - What can we determine? An illustration of evidential and intelligence contribution from a footwear impression. If we 
were to find an impression at the scene of a crime it is important to know what we can obtain from it. This illustrates the two 
avenues of data potentially obtainable.
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Chapter two: Methodology 

 

2.1 Methodological approaches 

The admission of expert evidence and opinions in legal proceedings, 

especially in the USA, has a long history of being contested. One response to 

this was the guidelines issued by the US Supreme Court in light of the Daubert 

v. Merrell Dow Pharmaceuticals, Inc. (1993) case which stated that new 

techniques and expert opinions need to: (1) have established methods; (2) 

have a known or potential error rate; (3) have widespread acceptance by the 

relevant scientific community; (4) have been subject to peer review; and (5) be 

testable and have been tested through scientific method. While subsequently 

modified to allow greater ‘space’ in proceedings for the forensic expert the 

essential point holds here (Grivas and Komar 2008). The (2009) National 

Research Council’s report on forensic practice in the USA emphasised the 

critical importance of known error rates and again called for greater scientific 

support for the opinion of the so-called expert. 

 

Introducing a new technique or type of evidence without this scientific 

foundation can set back the contribution it can make. The development of the 

discipline of Forensic Podiatry (Edmond and Cunliffe 2016) and in particular, 

issues around forensic gait analysis illustrates the issue well. Forensic gait 

analysis has in the past been described as having a ’weak scientific and 

evidence base’ and the admissibility of such evidence has been questioned 

more than once (Edmond and Cunliffe 2016). For example, gait analysis, 

although successfully used in trials in other countries, came into question in 

Canada in 2008 (R v Aitken 2008). It was argued in an appeal that the gait 

evidence used to convict ‘lacked the requisite level of reliability’. The appeal 

was dismissed (Nirenberg et al. 2018) and the alleged continues to serve life 

in prison, however, further criticisms of the scientific base for gait analysis 

followed, including Otway v Regina in the UK in (2011). From the turn of the 

century and specifically from 2010 onwards the damage caused by this ‘shaky 

start’ has been steadily repaired by a succession of papers underpinning the 
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method (e.g., Reel et al. 2010; Birch et al. 2020a; Mukhra et al. 2020). These 

have brought gait analysis in line with the ideals of the Daubert standards, 

allowing it to become a more routine and widely accepted line of evidence 

(Birch et al. 2020b). The lesson here is that introducing a technique into 

practice without a firm scientific foundation can be a problem and it is a lesson 

that has been heeded closely in this thesis.  

 

If we take SfM photogrammetry to be a new forensic technique despite its 

widespread use in other disciplines (e.g., Bakker and Lane 2017; Brandolini 

and Patrucco 2019; Al Khalil 2020; Bennett et al. 2020) and its considerable 

heritage as an analogue based technique extending back to the early 20th 

Century (Albertz and Wiedemann 1995) then these principles apply. One of 

the aims of this thesis is to provide knowledge of error rates, limitations of 

application and a body of peer reviewed literature that can support the use of 

SfM photogrammetry for the recovery of footwear evidence. This can be 

approached in a number of different ways: 

 

Global or national methods competition: One solution is to have different 

experts (or forensic labs) each with their own methods, essentially compete in 

drawing out inferences from a series of posed cases. This has value where 

the new techniques can be tested on a standard and identical data set. This 

method has the advantage of engaging practitioners directly with a series of 

field trials. It is similar to a handful of studies the oldest of which dates to 1996 

(e.g., Majamaa and Ytti 1996; Shor and Wiesner 1999; Hammer et al. 2013; 

Speir et al. 2020), in which a range of footwear examiners, often with different 

levels of experience, were shown the same impressions and asked to draw 

conclusions from them. The emphasis was more on comparing levels of 

experience than the use of different techniques and did not embrace evidence 

recovery. Using an approach similar to this would aid the dissemination of the 

technique (and adoption one assumes if successful) but limitations lie in the 

unpredictability of the users and the lack of control over how testing involving 

recovery would be undertaken. It is easy to share traces that have been 

recovered to compare interpretations, but it is difficult to share crime scenes 

and ask experts to recover evidence.  
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Laboratory controlled experiments: Another approach would be to conduct 

a series of laboratory-controlled experiments leading to more theoretical peer 

reviewed papers thereby leaving more practical question of operational 

feasibility to practitioners should they see the value in a change of approach. 

The issue here is that the experiments can often seem unrealistic and 

distanced from the realities of practice. The results of this approach can act as 

a baseline, but in general does not favour adoption.  

Operational and laboratory experiments: The key difference here is that at 

least some of the experiments should consider issues associated with 

operational practice. The challenge is to create scenarios and settings that a 

practitioner might recognise as real. The use of real crime scenes is not in 

most cases a practical option due to the risks of compromising casework. The 

next best thing is to gain experience of ‘real’ scenes via secondments and 

placements. These visits5 provided insight into the operational setting in which 

a new method had to fit into and also allowed realistic scenes to be ‘created’ 

from discussion of common occurrences with practitioners. This included 

getting an understanding of the computational power, digital filing systems and 

chain of custody processes that are currently used. An overarching theme was 

the tendency of each department, from crime scene examiner, to expert 

analyst, to the forensic regulator to find challenges with one another based on 

evidence collection quality, record keeping, and feedback loops. 

None of these methods are mutually exclusive and all are associated with 

potential pitfalls. In this thesis a combination of operational and laboratory 

experiments has been conducted and it is expected in the future that some 

form of method competition could be setup. In fact, this has been suggested 

by reviewers of some of the papers included in this thesis, although mainly on 

the rather prejudiced assumption that traditional methods are best, and 

practitioners do not need to change. One of the footwear experts spoken to 

whom shall remain anonymous stated that:  

“there is often a reluctance to switch to different methods if the 
current technique is well established and ‘part of the furniture’”. 
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Getting practitioners to engage with objective method competitions is likely to 

be difficult. Also doing so before all the basic operational problems and levels 

of accuracy and precision have been determined may simply increase the 

reluctance to accept the new technique. A switch in method comes with an 

implicit assumption that what they have been doing, often for years, has not 

been good enough with the intendent risk of judicial appeals. 

 

Much of the existing scientific underpinning for SfM photogrammetry currently 

sits in other research communities, namely that associated with the study of 

fossil vertebrate tracks (Bennett and Budka 2018). Whilst it is of great benefit 

that this work exists, the knowledge transfer required is to be sensitively 

undertaken.  

 

Increasing the quality of forensic science has, and will go on to, require many 

interdisciplinary connections such as the one we are faced with in the 

acceptance of digital recovery techniques. An example of another community 

who can greatly contribute to forensic science but has faced challenges in 

doing so, is in the field of biometrics. Meuwly and Veldhuis (2012) describe the 

difficulties of collaboration between the forensic sciences and biometrics as 

the less than successful sharing of methods between the two communities. 

Illustrating this is their paper simply entitled ‘From two communities to one 

discipline’. The requirement of articles of this nature (Meuwly and Veldhuis 

2012), pulling communities together, illustrate the process which is often 

required. Interestingly, and as noted by Meuwly and Veldhuis (2012), the lack 

of analytical models describing features of footwear marks, limits the 

possibilities of forensic biometrics pattern recognition systems being created. 

This point simply illustrates that the lack of a bridge between communities halts 

important research. In this instance, a bridge between forensic science, SfM 

photogrammetry communities such as geology and palaeontology and 

biometrics communities, is required to collaborate if further advancements can 

be made for use in forensic science.  
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2.1.1 The way forward 

 

In keeping with the aim of the thesis and the methodological approach outlined 

above, a series of experimental trials were undertaken. Ethical approval was 

obtained for all trials and all participants were provided with information sheets 

prior to giving informed consent. All participants were informed of the nature 

of the data collection and storage, advised that all data was anonymous and 

informed that they could terminate their participation in the trial at any stage. 

As one would expect, method descriptions are embedded in each paper, 

however despite the risk of repetition this chapter pulls together some of the 

common methods. In part this also covers work that sits outside specific 

papers but also as a general review of methods which might be of interest to 

practitioners reading this thesis. 

 

The methods used in this thesis are a combination of lab-based and field-

based experiments. This is to replicate the environments used in evidence 

collection, test impression environments and analysis. Following guidance 

from the PCAST report (2016), to establish foundational validity a method is 

required to have been tested under conditions appropriate to its intended use. 

Academic research and police procedures are not intrinsically linked. Previous 

research utilising unpractical scanners with limited portability and high costs 

has been proposed as viable recovery tools despite the obvious limitations. 

For this reason, throughout this thesis, many footwear impressions were 

recovered, be it via SfM photogrammetry, photography, or casting, in 

woodlands, rural areas, nature reserves, gardens and inside typical UK 

homes.  

 

SfM has been used for this research to demonstrate the application of digital 

recovery. Whilst the methods and experiments are all focused on SfM, many 

of the topics discussed or data analysed could have been obtained or applied 

to the use of other digital recovery methods (e.g., Optical Laser Scanning; 

Multi-view Stereo). The introduction of digital methods can be seen around 

2007 (Buck et al. 2007) within the context of recovery in snow. Seeing how 

other communities have worked through these more impractical digital 
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methods (in this case laser scanning), has allowed us to move straight to a 

more appropriate method (SfM photogrammetry). 

 

2.2 Methods 

2.2.1 SfM photogrammetry 

 

Broadly put, SfM photogrammetry can produce 3D structure from a series of 

overlapping images (Westoby et al. 2012). The mathematics behind its 

existence, namely coplanarity, collinearity and a self-calibrating bundle 

adjustment have been developed over years of photogrammetry use and 

research (Smith et al. 2016; Chandler and Buckley 2016). Involved in the 

process of SfM is the acquisition of a number of photos relative to an object or 

surface. Distinctive features are then ‘paired’ between each of the photos and 

after the application of mathematical models, produces an unscaled point 

cloud. The method differs from other types of photogrammetry in that there is 

no requirement to specify a network of targets of known 3D positions (Westoby 

et al. 2012). In SfM this process is automated and there is no doubt one of the 

reasons SfM has become so popular. The momentum of this method, across 

many scientific disciplines, has grown rapidly in recent years. A Google 

Scholar search of SfM Photogrammetry produces 14,800 results, 11,400 of 

which have been since 2016. SfM is widely considered to be a ‘rapid, highly 

flexible, low-cost, and contactless method to preserve and valorise valuable 

assets’ (Brandolini and Patrucco 2019, p2134) or as Scaioni et al. (2018, 

p1029) states it is ‘a flexible and powerful tool to provide 3D point clouds 

describing the surface of objects’. The recurrent words across this body of 

literature are flexible and low cost. 

 

We can break the practical application of SfM to footwear recovery down into 

a series of steps separated below into: (1) data collection, and (2) preparation 

and analysis of an SfM model.  
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Data Collection: During the early stages of this research a photographic 

procedure suitable for successful recovery of footwear via SfM 

photogrammetry using the OpenMVG engine was established through 

experimentation and was then subsequently used throughout to establish 

consistency between experiments. This protocol is specific to OpenMVG 

which is the SfM engine within the freeware DigTrace and may need to be 

altered for other SfM engines. It is based on the guidance provided in Bennett 

and Budka (2018). The author concluded that the following set of guidelines 

gives reliable and repeatable results for all substrates. 

One: Identify the impression boundaries, the use of oblique lighting may be of 

assistance at this stage for locating latent 3D impressions.  

Two: Place a scale of known dimensions, with visible graticules, next to the 

impression or set of impressions. 

Three: If using a digital single lens reflex (dSLR) camera, adjust the settings 

appropriately. They must not be changed during data collection and a fixed 

focal length and depth of field should be used. 

Four: Take 20-30 accurately focussed photos as shown in Figure 16A. Begin 

taking a photo from directly above the impression taking care to include a 

reasonable area around the impression and inclusive of the scale. Move on to 

photograph from the sides of the impression at multiple oblique angles. Move 

closer to the impression (do not zoom) and photograph quadrants of the 

impression from one angle, ensuring all photographs overlap. Change angle 

and photograph again in quadrants.  

Five: Upload the images to a computer and create a folder per 

impression/model. This should house all 20-30 photos for that impression or 

group of impressions. This should not include any blurry images or images of 

anything other than the impression 

Six: Upload the folder to either the cloud-based version of DigTrace or the 

local version and begin model building.  
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Preparation and analysis of an SfM Model: Once an SfM model has been 

built, several output files are available to the user. The variety of files will be 

suitable for different pieces of software. Specifically, to bespoke software 

DigTrace, an output folder is created housing these files. To open the model 

for viewing in DigTrace, this output folder will need to be selected. There are 

several essential steps from this point that need to be undertaken to create an 

output that is user friendly (Steps 1-3). Following this a selection of options for 

analysis or visualisation purposes (Steps 4-5). Good practice for the chain of 

custody can be implemented at each of the stages below. Appropriate file 

naming and file save locations are as straightforward as any other digital files. 

Key to this is the availability of the raw unaltered model, to all those that 

encounter the evidence along the chain.  

One: Auto Rotation: DigTrace has an integrated feature to correct the 

orthogonal plane of the model. This is simply the press of a button. This 

calculates the principal plane though the point cloud and rotates all points to 

that plane. In order to achieve a correctly scaled model, this step is crucial.  

Two: Scaling: To achieve real dimensions, a user is required to input 

measurements of two points on the scale within a model. This is a key point of 

quality checking accuracy. This can then be checked at any point during model 

analysis. 

Three: Cropping: It is often good practice to crop a model to remove 

unnecessary points. This can be achieved on either the x,y or z plane. This 

may be particularly useful if the area in which the impression is found is 

surrounded by long or overhanging vegetation. Removal of excessive depth 

points will increase the sensitivity of the depth scale and may allow for 

increased visualisation of features. 

Four: Surfacing: A variety of experiments within this research have utilised 

surfaced point clouds in order to aid in visualisation of an impression. The 

process of surfacing involves inferring the topology of the surface, accurately 

fitting noisy data and filling holes reasonably (Kazhdan et al. 2006). There are 

numerous ways of surfacing point clouds, all with merits and limitations that 

need to be considered in order to achieve the best outcome for the individual 
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model. Multiple freeware options house these surfacing options. Meshlab9 and 

CloudCompare10 were selected for use due to clear and logical user 

interfaces. Two common algorithms available in both Meshlab and 

CloudCompare were used throughout this research. The Delaunay 

triangulation, which creates a triangle mesh interpolating all or most of the 

points in the cloud (Kazhdan et al. 2006) and the Screened Poisson Surface 

Reconstruction method. Broadly speaking, all surfacing methods can be 

divided into two groups; a group that approximates points by an implicit 

function, this is the category in which the Poisson surface method falls, and a 

group that connects the points to form a surface mesh, also called interpolation 

methods. This is the category that the Delauney triangulation method falls 

within (Boltcheva and Levy 2016). 

 

The Delauney triangulation method is operationalised in the freeware 

CloudCompare to achieve a surfaced look with minimal computational power. 

The surfacing takes a matter of seconds and quickly gives a smooth and 

accurate surface to an impression. Its implementation has been specifically 

tuned for 2.5D objects, that is surface textures and impressions. High 

resolution screen captures of surfaced models have been used in multiple 

figures to illustrate the power of digital 3D recovery tools in creating a like for 

like representation of the original impression. This differs from DigTrace which 

relies on colour-depth renders (Bennett and Budka 2018). 

 

The Poisson Surface Reconstruction requires additional computational time 

over the Delauney method to process (Table 9). There are many settings 

which can be altered that will in turn increase or decrease the time taken for 

the process to complete. For each use of surfacing within this thesis, the 

method of choice was determined based on whichever gave a better 

representation of the ground truth, including textural variations and 

smoothness.  

 
9 Meshlab: (https://www.meshlab.net/) full description of software can be found in Table 15 part of 
Paper 3.3. 
10 CloudCompare: (http://www.danielgm.net/cc/) full description of software can be found in Table 
15 part of Paper 3.3. 
 

https://www.meshlab.net/
http://www.danielgm.net/cc/
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The initial output of an SfM photogrammetry model consists of a raw point 

cloud made up of hundreds or thousands of points. This can, upon initial 

visualisation, appear to be a smooth surface. If you were to zoom into this 

output eventually you would see many holes in between these points. The 

process of surfacing effectively fills these points so that if you were to zoom in 

on the surfaced models, there would be no holes. There is, therefore, an 

argument that the filling of these holes takes the impression away from the 

ground truth in which it began, meaning the submission of a surfaced model 

for evidence can be a questionable idea. It was a constant consideration 

throughout this research that the use of surfacing can be misleading. It has 

therefore been signposted, wherever possible, so that any reader is aware 

they should always refer back to the source point cloud. 

 

Model Type Model 

Time Taken 
(seconds) - 
Delauney 2.5D 
(XY Plane) 

Time Taken (seconds)- 
Poisson Surface 
Reconstruction (Octree 
Depth 10) 

Dust 1 11.7 39.3 

Mud 2 8.4 47.5 

Sand 3 12.3 44.6 

Snow 4 5.3 31.7 

Carpet 5 8.9 42.7 

Blood on Carpet 6 9.7 38.1 

Soil 7 7.6 46.5 

Soil 8 7.2 54.3 

Soil 9 8.8 48 

Soil 10 7.1 45.1 

 

Average 
(Mean) 8.7 43.8 

  SE 0.7 1.8 

Table 9. Timings acquired through repeated use of Delauney and Poisson 
surfacing methods. Various models of various point cloud sizes were used for 
these tests.  
 

Five: Comparison of Raw or Surfaced Point Clouds: There are a variety of 

methods available to compare 3D surfaces (Girardeau-Montaut et al. 2005) 

and the method used throughout this thesis draws on the mathematics of Felix 

Hausdorff. Hausdorff Distances as they have become known, provide a 
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method for comparing meshed or rendered surfaces based on the distance 

between neighbouring points. This method was chosen due to the higher 

precision it offers over other methods (Girardeau-Montaut et al. 2005; 

Charbonnier et al. 2013; Figure 7). Using this method, we can measure the 

degree of similarity between any two-point clouds. Here we use the freeware 

CloudCompare to compute cloud to cloud distances which utilise a partial 

version of Hausdorff Distance calculation  

 

Figure 7. Hausdorff Distance for two-point sets A and B. (a) The point sets. (b) 
Computation of the Euclidean distance from each element of the point set A 
to each point of B. (c) Computation of the Euclidean distance from each 
element of the point set B to each point of A. (d) Maximum distances between 
sets. (e) Hausdorff Distance between set A and B (after: Charbonnier et al. 
2013) 

 

Step One: Two different point clouds are imported into CloudCompare and 

aligned both in the x-y and z planes. A rough alignment was first undertaken 
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using a system of matching points and with a minimum of 10 points being used 

in each case evenly distributed across the whole surface (i.e., including toe 

area, mid-area, and heel area of model). This is simply a matter of matching 

identifiable landmark features on both point clouds. A fine alignment using an 

iterative closest point (ICP) algorithm was then applied. This matches each 

point in the source cloud to the closest point in the reference cloud and brings 

them together in alignment.  

Step Two: Approximate cloud to cloud distances were then measured (Mesh 

to Mesh comparisons can also be achieved if a point cloud has been surfaced). 

This computes the distances between adjacent points on the two clouds using 

a ‘nearest neighbour’ method. The first output is an option which reduces the 

maximum distance between the points reducing computational drain and since 

the distances are low, the maximum distance is selected, and the process runs 

again. The results are shown in a scalar colour field and the standard deviation 

and means of the distances reported. 

2.2.2 Materials 

 

Details of all materials are discussed in each relevant paper. Detailed below 

are the material considerations considered upon undertaking this research.  

Shoe choice 

For a large part of this research, trainers were used to create impressions for 

modelling. This choice was based on a general understanding that trainers are 

a keen choice of shoe for ‘typical’ criminals. Informal figures in national 

newspapers and online blogs report of the 20,000 shoe prints on record in 

2010, 90% came from trainers (Clements 2007). They also report on the top 

ten shoes worn by suspects which are all trainers.  

 

For specific experiments it was, however, useful to know the shoe that was 

number one on this list at the time the experiment began. Providing data on 

the nature of wear of this particular shoe would be arming practitioners with as 

much detail as possible to aid their analysis. It therefore made logical sense 
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to choose the shoes they see most frequently. Information from the National 

Footwear Database11 as of 2018 showed the most frequent shoe to be a Nike 

Air 90. Multiple pairs of this make and model were subsequently purchased 

for this research. 

 

Test impression medium (Two Dimensional) 

Inkless shoeprint kits12 (Figure 9) and an Everspry Shoeprint Scanner13 

(Figure 8) were used for any element of this research that required a 2D record 

of a shoe sole. Typically known as ‘BigFoot’, the inkless shoeprint kit (or 

variants thereof) has been used in multiple studies (e.g., Kennedy 2005; Reel 

et al. 2010; Reel et al. 2012). The process requires a shoe to have an inkless 

dye applied (by walking or placing over an inkpad) and the shoe then either 

placed (for static) or walked (for dynamic) over a piece of chemically treated 

paper. The Everspry Scanner is linked to a computer and requires someone 

wearing shoes to walk over a pane of glass with a camera underneath. The 

output is a digital file that shows any part of the shoe sole that met the scanner. 

Standard practice for 2D test impressions in a laboratory setting would be the 

use of powder to create either a static or dynamic (or both) impressions onto 

acetate. This would then be sealed, and the output could easily be overlayed 

onto a questioned print to aid in the analysis process. This comparison aspect 

was not required for this research and inkless pads or the Everspry scanner 

were therefore used due to their overall practicality. 

 
11 Details provided by Julie Henderson, Detective Superintendent, Bedfordshire Police 07/12/2018 
12 https://www.csiequipment.com/shoeprint-inkless-kit_p31581.aspx 
13 http://www.everspry.com/en/products/products_03.htm 
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Figure 8. EverSpry Footwear Scanner13 and example outputs. A. Scanner. 
B. Example of how a user walks over the plate. C, D and E. Example outputs 
with a variety of trainers.   
 
 

 

Figure 9. Inkless shoeprint kit12 and example outputs. A. Components of kit 
include inkless pad and chemically treated paper. B. Example output of a 
barefoot impression. C. Example output of a converse shoe. D. Example 
output of a Vans shoe. Note the difference in colours is a result of the age 
and moisture levels of the kit.  
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Test impression medium (3D) 

Test impressions are an important part of the examination of footwear 

evidence (Shor et al. 2018). They are made from a suspect’s shoe in a 

laboratory and are used in comparison with crime scene materials. The test 

impressions need to have been prepared in the same way as exhibited at the 

scene, which includes many variables, in order to make a reliable and robust 

comparison (Farrugia et al. 2012). Limited research has been undertaken 

investigating the ability to replicate these variables, but studies have shown 

that factors such as pressure can be replicated with a test rig to better match 

the pressure exerted at the scene (Farrugia et al. 2012). Shor et al. (2018) has 

also offered a compelling study that shows an apparent variability in test 

impressions that may mislead a comparison. Despite the limited research into 

test impressions, they remain a critical part of the process.  

The production of 3D test impressions can create more challenges than 2D 

where materials and contaminants are often easier to replicate in a laboratory. 

The current method of obtaining a 3D test impression is BioFoamTM14, a 

product that enables the examiner to push a suspect’s shoe into a foam 

surface and leave a 3D impression in which to compare to a cast collected at 

a scene. This has obvious limitations as impressions in different substrates will 

have inherent variations.  

BubberTM15 (Figure 10) is a children’s modelling compound akin to the many 

of the kinetic sand varieties currently available in the market-place. LeMay, 

(2010) compared it with one of the leading 3D test impression materials 

BioFoamTM. LeMay (2010) concluded that BubberTM revealed finer detail than 

BioFoamTM and had a host of practical advantages over it. BubberTM, unlike 

commercial or home baked playdough, does not dry out. It was therefore used 

throughout this research as a test impression medium. A further advantage of 

using BubberTM is the ability to mix different colours together, thereby 

improving the quality of the SfM models produced. Preliminary studies 

undertaken by the author show a marbled finish, produced by mixing different 

 
14 https://www.csiequipment.com/bio-foam_p31486.aspx 
15 https://www.amazon.co.uk/BUBBER-Unique-Modelling-Compound-Bucket/dp/B0029XML3U 
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colour of BubberTM gave better SfM results when compared to a single colour 

or to BioFoamTM. Table 10 provides a comparison of the two products based 

on experience gained in this research.  

 

 BubberTM BioFoamTM 

Advantages Reusable therefore reduced costs  

 

Easy to cast 

 Easy to Store Easy to use, no physical 

requirement other than an open 

box. 

 Easy to cast   

 Easy to produce digital models via 

photogrammetry 

 

 

 Large surface areas can create a 

good environment for obtaining 

dynamic impressions 

 

 

Disadvantages Physical requirement to mix 

colours (if producing 

photogrammetry model) 

 

One time use only increases the 

associated costs. 

 Physical requirement to roll out 

new sheets for each use 

Requires large storage spaces 

  Doesn’t lend itself to some 

methods of digital modelling due to 

low textural variation and a 

container that obstructs camera 

angles. 

  Not Recyclable 

  Rigid containers provide limited 

room for undertaking dynamic 

impressions 

Table 10. Advantages and disadvantage of BubberTM compared to BiofoamTM 
as a test medium for 3D footprints, based on experience gained in this 
research.  
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Figure 10. A range of examples of impressions created using BubberTM A. 

Photograph of shoe impression in BubberTM B. 3D model of shoe impression 

in BubberTM C. DigTrace colour render, viewed in orthogonal plane, of shoe 

impression in BubberTM D. BubberTM packaging. E. Photograph of key 

impression in BubberTM F. DigTrace colour render, viewed in orthogonal 

plane, of key impression in BubberTM G. Photograph of a tool H. Photograph 

of section of tool I. Photograph of Tool impression in BubberTM J. DigTrace 

colour render, viewed in orthogonal plane, of tool impression in BubberTM 
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Considerations of gait  

A volunteer may change their behaviour and performance consciously or 

unconsciously during a test (e.g., Yantz and McCaffrey 2005) when observed. If 

you ask an individual to leave a test impression, or to place a foot on a target 

while walking, there is a good chance that they will become self-conscious and 

modify their stride or gait. It was a phenomenon observed by the author while 

supervising undergraduate forensic data collection exercises. For this reason, 

many impressions were made by the author or a limited pool of volunteers to 

(1) minimise the ‘stage-fright’ effect, and (2) to reduce the number of gait types 

(and associated variance) within the study. In addition, extensive use was 

made of ‘unknown’ traces left by passers-by. While vital data on walking 

speed, sex, weight and age of a trace are unknown such traces can be 

considered ‘natural’ traces. They were accessed by making use of muddy 

paths, the edges of grass verges and other similar impression-bearing 

surfaces of opportunity. This allowed a large data set of natural impressions 

to be built up showing a range of behaviours and shoe types.  

 

Wherever possible dynamic footwear impressions were used in the 

experiments reported in this thesis, because they are most likely to represent 

the traces left at crime scenes by suspects travelling to or from a scene. 

Barefoot literature tells us that differences in basic foot dimensions have been 

noted depending on whether a trace is placed (static) or left during normal 

walking (dynamic: Reel et al. 2012; Mukhra et al. 2020). This has been 

assumed to be reflected in shod impressions throughout this project and due 

care has been taken when obtaining impression data. Barefoot impressions 

were not initially considered relevant to the project which focused mainly on 

3D traces in Europe and the Americas where people are for the most part 

habitually shod. However, in light of the discovery of latent 3D carpet traces 

barefoot impressions were considered (Paper 3.5).  

 

Casting 

Casts of all footwear impressions in this thesis were made using current and 

advised methods as set out in the UK National Policing Improvement Agency 
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(NPIA) Footwear Marks Recovery Manual (2007) with small modifications in 

alignment with the casting material manufacturer’s instructions. Precisely 1kg 

of dental plaster was measured (material properties can be found in Table 30) 

and stored in large Ziploc bags. This amount was always more than enough 

to cover every impression sufficiently. Each bag per footwear impression was 

used with precisely 600ml of water poured into the bags and mixed by hand 

for a minimum of three minutes. Once the consistency of the dental stone was 

lump free and resembled thick cream, a corner of the bag was cut and the 

mixture poured slowly onto the impression surface, starting outside of the 

impression and working in so as to not disrupt any of the impression during 

the first pour impact. Where necessary a metal or card dam was used to hold 

the plaster in place. The dental stone was then left in the impression for a 

minimum of 45 minutes. The cast was then removed and placed in trays and 

any adhering substrate removed with a soft dry brush. All casts were then left 

to air dry for a minimum of 72 hours on drying racks allowing air to flow around 

all of the cast. The cast then underwent further cleaning under a tap, again 

with a soft brush. 
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Chapter three: SfM photogrammetry and footwear 

 

Having established in the previous chapter a methodological approach and an 

outline of the key methods, this chapter aims to examine SfM photogrammetry 

as a recovery tool for 3D footwear impressions through a series of empirical 

studies (Table 11). The methodology focuses on both operationally relevant 

scenarios as well as laboratory experiments with the aim of establishing the 

following: (1) overall reliability, accuracy and precision of SfM photogrammetry 

with specific application to footwear recovery; and (2) SfM reliability specific to 

different types of environments in which 3D footwear is commonly recovered. 

The aim is not just to show the basic functions of SfM recovery but to introduce 

the reader to some of the more challenging aspects of footwear recovery and 

the potential contribution that SfM can make to these challenges.  

 Paper Title Research Questions 

Addressed 

3.1 (Unpublished Technical Note): Accuracy and 

Precision – A practitioners’ guide 

1,2 

3.2 (Unpublished Technical Note): SfM Photogrammetry 

Software Review 

1 

3.3 Technological Innovations in the recovery and 

analysis of 3D forensic footwear evidence: 

application of SfM 

1,2,3 

3.4 Empirical evaluation of the reliability of 

photogrammetry software, in the recovery of 3D 

footwear impressions 

1,2 

3.5 Recovery via SfM photogrammetry of latent footprint 

impressions in carpet 

2,7,8 

3.6 Recovering of 3D footwear impressions from sandy 

substrates: technical note on the contribution of SfM 

photogrammetry 

2,7 

3.7 (Unpublished Technical Note): Use of contrast spray 

in the recovery via SfM photogrammetry of snow 

impressions. 

1,2 

Table 11. Contents of chapter three addressing specific research questions 

(Table 1). 
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The first two entries in this Chapter are short technical notes which currently 

remain unpublished. Paper 3.1 details a method for determining the precision 

and accuracy of SfM, and for that matter any forensic method. This method 

appears in several different papers within this thesis, but is included here with 

a complete and currently unpublished set of results (i.e., parts are included in 

various papers but not all the data is published).  

 

Paper 3.2 addresses the suitability of photogrammetry freeware DigTrace, in 

the context of a forensic application. This bespoke software has been 

specifically designed for the use of recovering and analysing fossil footprints 

and footwear traces (Bennett and Budka 2018). It is, however, not a 

commercial product and it was therefore deemed appropriate that a brief 

comparison against alternative software, including the current industry-

standard, was appropriate.  

 

Paper 3.3 explores the practical application of SfM methods via several small-

scale experiments, which are intended to help guide future practitioners. This 

paper follows an instructional theme and as one document, provides the 

forensic community with reference work for future forensic photogrammetry.  

 

Paper 3.4 delivers an assessment of repeatability and reproducibility of 

aspects of SfM photogrammetry in a forensic context. This paper uses a point 

cloud comparison technique to assess variability in multiple models taken from 

one impression in several environments. The paper goes on to provide an 

assessment of reproducibility when making a model of one impression using 

multiple cameras.  

 

Papers 3.5 and 3.6 examine the recovery of 3D footwear in substrates 

traditionally considered to be challenging, namely carpet and sandy 

substrates. The work on carpets (Paper 3.5) also touches on the recovery of 

barefoot impressions common at indoor crime scenes. Paper 3.6 presents SfM 

as a method, either applied on its own or in conjunction with a current method 

that can be easily utilised for a very common substrate in the UK. An 



 

65 
 

impression found in an area of loose sand/grit does not lend itself well to 

traditional casting rendering successful recovery most likely limited to 2D. A 

digital method in this instance shows great promise.  

 

This chapter is concluded with a short unpublished technical note (Paper 3.7) 

on an aspect of the use of SfM photogrammetry when recovering snow 

impressions. Snow has been highlighted throughout as the most challenging 

of mediums. An assessment of one method aimed at increasing the quality of 

digital evidence is therefore included. 
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3.1 Unpublished Technical Note 3.1: Accuracy and precision 
for 3D footwear recovery methods: A practitioners’ guide 

 

Status: Unpublished technical note. Elements of this data and approach are issued in 

Papers 3.3 and 4.1, but not a complete set of results.  

Contributions: The approach was conceived by Bennett and Larsen during supervisory 

discussions and operationalised by a MatlabTM script written by Budka which was 

tested/developed iteratively by Larsen. The analysis and writing-up was completed by 

Larsen.  

 

Abstract  

The development, at least in the UK, of various accreditations of forensic 

methods (Wilson-Wilde 2018) set out the need for clear procedures by 

which accuracy and precision of any method can be established. This 

technical note proposes a procedure applicable to any footwear recovery 

method, including SfM photogrammetry. It can be implemented by any 

practitioner irrespective of their own practice, protocols or equipment. The 

method proposed uses basic sampling theory to determine precision rates 

for one-time capture. Predicted error scores show high levels of precision 

across 2D and 3D footwear recovery techniques including SfM 

photogrammetry and laser scanning, 2D photography and digital callipers. 

The comparison of these scores gives insight into the suitability of recovery 

techniques across the footwear discipline. 

 

Introduction and background 
 

The need for research and better reporting of accuracy and precision of 

forensic techniques was clearly laid out in the US National Research Council’s 

2009 report (NRC 2009). It is an expectation that has been in place since the 

origin of the Daubert Rulings in (1993) which emphasised the need for a 

scientific foundation for any forensic method. The NRC (2009) report was 

critical of pattern matching disciplines showing reliance on expert testimony, 

including footwear.  

Similar expectations, namely to increase statistical analysis, fell on several 

disciplines, one of which was forensic podiatry. This particular discipline has 

seen responses such as those by Reel et al. (2010) who provide a discussion 

and protocol for determining reliability analysis in barefoot prints 
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measurements. This contribution can be mirrored in forensic footwear. The 

method utilised to determine reliability by Reel et al. (2010) is the interclass 

correlation coefficient (ICC). This method is recommended in medical 

research to assess reliability in particular of inter-operator variance (Bobak et 

al. 2018). It effectively involves using multiple regression analysis of results 

obtained by different methods and/or operators to determine variance and or 

reliability. In theory an ICC method could have been used here but 

experimentation with this approach showed little sensitivity and the results are 

difficult to translate into a specific value for both accuracy and precision. We 

also wanted a method that could be easily used by any practitioner without 

knowledge of or access to relevant statistical packages.  

 

The approach developed (script available upon request) allows precision rates 

to be determined for different recovery methods that yield dimensional 

measurements. There is extensive literature on accuracy and precision 

(PCAST 2016) but no specific guidelines or standard methods for the recovery 

of trace evidence. Determining levels of precision is a particular challenge for 

forensic recovery where a trace is often only recovered once, either because 

of time or more commonly because recovery leads to the destruction of that 

evidence (Bodziak 2017). In the laboratory precision would normally be 

determined by repeating a measurement multiple times to obtain a mean, 

median and error margins around both. You cannot do this when lifting 2D 

trace with a gel-lift or casting a 3D track/s because the process is destructive. 

 

In our context accuracy (A) can be defined as the absolute departure in terms 

of size, shape, and texture of a recovered trace from the original. It has a range 

of component parts, such as those described in Napolitano and Glisic (2018). 

For the context of trace recovery, the following descriptive equation is 

proposed here: 

 

A = (Eq, P, S, O, E, T)  

Where Eq represents the equipment used, P the specific protocol used, S the 

materials or software, O the operator, E those factors specific to a given 



 

68 
 

environment or type of trace and finally T for time on the basis that the more 

time one has the less likely errors will be made. In terms of precision (P), we 

can define it as the reproducibility of a given recovery. Equipment, protocol, 

and the environment should all in theory be constant, such that we have:  

P = (O, T)prob  

Where prob represents random chance, the probability that the operator (O) 

does something slightly different, and the time (T) taken may vary. The 

important point is that no one value of accuracy or precision for a technique 

exists, only one specific to an operator, their equipment/process, operational 

set-up and to the environment. Therefore, a method needs to reflect this.  

 

The components of accuracy in relation to the application of SfM 

photogrammetry impression recovery are therefore the camera used to take 

the photographs and the accompanying scale (equipment); the adherence to 

the photography protocol (protocol); the SfM software that creates the models 

(materials or software); the crime scene examiner or individual taking the 

photographs (operator); the surface the footwear impression was made in 

such as mud or sand (environment) and the speed in which the operator 

follows the process, potentially effecting the overall quality.  

 

The precision can be further visualised in the form of a crime scene examiner 

undertaking the process of recovering the same impression a number of times. 

The camera, photo procedure and surface the impression is made in, all 

remain the same. The precision of the results, as the equation states is 

therefore determinable by the probability of the crime scene examiner doing 

something different, including the time spent on the recovery.  

 

Method 

 

In order to approach the difficulties in determining precision for one-time 

capture techniques, a method was developed based on simple sampling 

theory (Murthy 1967). The error around a mean or median value should in 
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theory decline with increasing sample size, a sample of N=2 should have 

greater associated error than one associated with N=20. As the sample size 

increases the decrease in error should cease and stabilise at a level equivalent 

to the potential accuracy of the technique. This will approximate some form of 

exponential curve as shown in Figure 18. If we know the shape of this curve 

then we can use it to forecast the errors associated with N=1, that is a level of 

precision for one-time recovery. We can also use the stable line obtained post 

N=20+ to establish a limit to the accuracy that can be achieved. 

 

This procedure involves replicating a series of measurements between 30 and 

50 times. In most cases minimum error values are obtained after 15 to 20 

repetitions. In terms of footwear traces recovery can be obtained via: 2D 

photography, a 3D SfM model, or by casting. Direct measurement of the trace 

is also possible but limited to length and width so was not included. To aid this 

initially, and to provide an absolute standard, a series of footwear impressions 

were made in a shallow tray filled with concrete. Subsequently, natural tracks 

were selected in different environments for the same purpose and used as test 

impressions (Figure 11). Landmarks were pre-placed on the concrete tracks 

(‘known points’) using an indelible marker in or in the case of natural 

impressions identifiable points were located and annotated on a photograph 

of the impression taken in the field. Measurements were made both parallel 

and transverse to the long axis of the footwear impression using the ‘known 

points’ and in addition overall length and width measurements were made. 

  

In the case of 2D photography the concrete track, or identified trace, was 

photographed using a tripod from above. Between each of the 50 photographs 

the tripod was moved and reset. Photographs were scaled in Adobe 

PhotoshopTM according to standard forensic practice (Reis 2007), and 

measurements made between the landmarks placed. The maximum length 

and width of the trace was also measured. This process was repeated for each 

of the 50 photographs. In the case of the SfM model a concrete track (as seen 

in Figure 18) was placed outdoor in good light. A total of 30 photographs were 

collected using the standard protocol for SfM recovery (Figure 24). Between 
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each set of photographs a break shot was taken and the operator stood up 

and walked away from the cast. This process was repeated 50 times, giving a 

total of 1,500 photographs. The photographs belonging to each model were 

then uploaded to DigTrace and the 3D models built. Having built all 50 models 

each was scaled, autorotated and digital measurements taken between the 

known points and for the overall length and width of the track (Bennett and 

Budka 2018). In some of the natural environments the number of 

models/repetitions was reduced to 30 to avoid any changes in the impression 

over time due to natural conditions, such as melting snow. The concrete test 

impressions were also scanned 50 times using a Next Engine optical laser 

scanner16. Note the scans are pre-scaled by the scanner.  

 

 
16 www.nextengine.com 
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Figure 11. Shoeprints used in this study. A Barefoot concrete track. B Plaster 
case made from a latex mould of an outsole. C Concrete boot print 252 mm 
long. D Natural impression of a Wellington (Rubber) boot, note the overprinted 
dog track at the distal end. E Shoeprint in sand. F Vertical view of a 3D point 
cloud of a muddy impression of a boot and bicycle tracks. G Snow impression 
in damp thawing snow. H Boot impression in fresh snow. 
 

Applying this method to casting was more challenging due to the destructive 

nature of the process. A latex casting medium was placed in a shallow tray 

and a shoe placed in it, once dry the mould was removed from the shoe to 

create a footwear impression that could be cast with dental stone multiple 

times. Using a consistent and standard procedure 50 dental stone casts were 

taken from the mould being careful to avoid damage when releasing the 

mould. The sides and base of the mould was supported within a rigid tray to 
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avoid any lateral flex in the mould. The mould was inspected for damage after 

each cast and none was observed. Methods obtaining 2D records were also 

included. An Everspry 300 DPI Footwear Scanner (Figure 8) was connected 

to a laptop and a volunteer walked dynamically over the scanners plate 50 

individual times. Care was taken to ensure the walking style was consistent 

with the user stepping onto the scanner, onto the plate with their right foot and 

off again in one swift motion. Adobe PhotoshopTM was used to carry out the 

measurements from the images supplied by the scanner. An inkless shoeprint 

kit (Figure 9), as used in many studies for the collection of data and in custody 

suites across the country to collect impressions from known subjects had 50 

repeat prints taken. The volunteer was required to step onto a pad which 

coated the bottom of the shoes in an inkless dye. Care was taken to ensure 

each print had a similar level of coating. The volunteer then walked across a 

piece of chemically treated paper. Once again, care was taken to ensure the 

walking style was natural and dynamic. The user would walk a number of steps 

before and after stepping onto the paper in line with the midgait method of data 

collection, a traditional method of collecting foot pressure data (Orlin and 

McPoil 2000). If any prints were smudged or not fully contained by the page, 

they were discarded and repeated. The prints were then measured directly 

from the paper using Digital Callipers (Yosoo 300mm; ±0.03mm stated 

accuracy). For each experiment five repeat measurements of a given length 

were taken and averaged (mean).  

 

The analytical procedure employed to process this data consists of the 

following steps, which were performed using a MATLAB script17 (Further 

explanation of this process can be found in Paper 3.3). 

One: Generate K = 100 bootstrap samples (with replacement) for each value 

of N in the range between 2 and 50 

Two: Calculate the Standard Error (SE) for each bootstrap sample and each 

value of N (scatter plot in Figure 18B) 

 
17 https://github.com/bosmart?tab=repositories. 
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Three: Derive the mean and standard deviation from SE values for each value 

of N 

 

Four: Fit polynomial curves to the means and 95% confidence interval (CI) 

boundaries of the normal distributions calculated in Step 3 above (the CI 

values were clipped at 0 prior to curve fitting, see the solid and dashed lines 

in Figure 18B) 

Five: Estimate the SE and its CI’s for N=1 by extrapolating the curves obtained 

in Step 4 above. 

 

Separate to the topic of precision and the application of the above method, are 

simple efforts in confirming technique accuracy. Whilst this is still a challenge 

for some methods, this can be easily addressed when specifically looking at 

SfM photogrammetry. Quick and simple accuracy tests can be undertaken as 

per the method below. 

 

A simple method for determining accuracy in the context of SfM 

photogrammetry involves placing an object of known size into a digital 3D 

model. This is a critical step in any model creation (as discussed in paper 3.3). 

This is achieved when a scale, such as a ruler is placed next to a footwear 

impression. The entire model is then scaled to the measurements as seen on 

the ruler and measurements can then be provided for any part of the model. A 

notable advantage of photogrammetry in this context is the placement of the 

scale. Generic crime scene quality photography requires a scale to be properly 

placed on the same plane as the impression. For most 3D impressions this 

often means placing the scale on multiple planes and taking multiple images 

(NPIA 2007). This is not a requirement needed for SfM photogrammetry 

(Bennett and Budka 2018), ground truth measurements can be applied to the 

whole model through simply placing the scale next to the impression so that it 

is fully captured in the model.  
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A benefit of the scaling feature within DigTrace is the ability to repeatedly test 

the accuracy of any part of the model in respect to the ground truth of the 

scale. This can be done at any point throughout the analysis process to 

confirm the accuracy of the model as it changes hands during the evidential 

process. A further accuracy test and one not required for every model is to test 

the accuracy of the third plane (z). To do this we can use a known object that 

has three dimensions. A LegoTM or DuploTM brick is well suited for this purpose 

due to their straight edges and consistent measurements. As illustrated in 

Paper 3.3, creating an impression with a DuploTM brick into a medium such as 

BubberTM (LeMay 2010) allows distances to be scaled and accuracy confirmed 

in the third dimension. 

 

Results 

The results of the precision model show 3D subjects have the highest 

predicted error scores when using the casting technique and SfM 

photogrammetry in a particular type of mud environment (Table 13). The 

overall results for SfM photogrammetry are encouragingly small and the errors 

associated with higher rates are generally around model quality. For one 

particular mud model (Mud-1), the levels of moisture in the environment has 

affected the error score, the model was of an impression made in wet mud not 

long after a spout of rain. The reflective nature of any water pools in the 

impression reduces the number of points in a cloud, reducing its overall quality. 

This in turn makes measurements slightly harder to obtain and the resulting 

higher error rates are seen.  

 

Higher levels of error are predicted for multiple 2D recovery techniques. The 

slight change in methodology for these techniques allows an insight into their 

repeatability. Both the Everspry Shoeprint Scanner and the Inkless Shoeprint 

Kit had 50 separate prints obtained, whilst other methods used the same input 

to create 50 repetitions. This data was obtained to highlight the variance 

expected when either of these apparatus’ are used in a custody suite to collect 

known impressions, which is an area of footwear evidence that is not 

stringently tested for scientific validation.  
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  Operator Environment 

2D Inkless 
Shoeprint Kit 

 Operator 1 Lab - Controlled 

 Everspry Scanner  Operator 1 Lab - Controlled 
 Photography  Operator 1 Lab - Controlled 
 Digital Callipers  Operator 1 Lab - Controlled 
3D Next Engine  Operator 1 Lab - Controlled 
 Casting  Operator 1 + 2 Lab - Controlled 
 DigTrace Orange sand Operator 1 Lab - Controlled 
  White sand Operator 1, 2 + 

3 
White Sands, New 
Mexico 

  Mud-1 Operator 1 UK 
  Mud-2   
  Mud-3   
  Snow-1 Operator 1 + 2 Italy 
  Snow-2  UK 
  Concrete [Op-

1] 
Operator 1 Lab - Controlled 

  Concrete [Op-
2] 

Operator 2 Lab - Controlled 

Table 12. Details of operator and environment for each surface environment 

and method used in this study.
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 Recovery 
Technique/Environment 

Mean 
Length 
Error 
 (mm) 

95% 
Maximum 
Length 
Error 
(mm) 

Mean 
Width Error 
(mm) 

95% 
Maximum 
Width Error 
(mm) 

Mean 
Known 
Point Error 
(mm) 

95% Maximum 
Known Point 
Error (mm) 

2D 

Inkless Shoeprint Kit 2.8410 7.0672 0.3435 0.9157 0.1072 0.2679 

Everspry Scan 10.9407 28.4717 0.7830 2.0146 0.1332 0.3491 

Photography 0.8015 2.1277 0.4023 2.0189 0.8015 2.1277 

Digital Callipers 0.3195 0.8137 0.2520 0.6407 0.3195 0.8137 

3D 

Next Engine 3D scan 0.7747 2.1341 0.4241 1.1608 0.3537 0.8923 

Casting 1.8059 5.9585 0.7370 1.9431 0.5135 1.3951 

DigTrace - Orange sand 0.4593 1.1983 0.2566 0.6817 0.3515 0.9279 

DigTrace - White sand 2.2770 6.0106 2.5975 6.6504 0.5800 1.7019 

DigTrace - Mud 1 6.4445 17.9214 0.4031 1.0969 0.2859 0.7470 

DigTrace - Mud 2 0.5013 1.3063 0.2333 0.6275   

DigTrace - Mud (Partial) 0.4002 1.0549 0.3217 0.8198 0.2431 0.6410 

DigTrace - Snow 1 1.3779 3.6936 0.7942 3.2018 0.3689 0.9521 

DigTrace - Snow 2 1.1387 2.9061 0.6726 1.7653   

DigTrace - Concrete [Op-1] 0.3222 0.8215 0.1718 0.4489 0.3222 0.8215 

DigTrace - Concrete [Op-2] 0.3868  1.0071  0.307 0.8804 0.3868 1.0071 

Table 13. Error rates for length, width and distance between known points for a single operator across a range of surface 
environments. Note the results of a next Engine are provided for comparison.
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Figure 12. Graph outputs of precision method. A selection of examples using 

known point measurements.   
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Figure 13. Graph outputs of precision method. A selection of examples using 

length measurements.   
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Discussion and conclusion 

The key aim of this technical note was to demonstrate a measurement 

approach that can be used for all methods of digital recovery, and beyond this 

to other methods if appropriate, such as those used in custody suites for 

obtaining 2D known impressions. This method of producing error rates, like 

other reliability testing approaches such as ICC, can be repeated for every 

instance in which a new variable has been introduced. If a new user is 

performing the method, an impression is found in an uncommon environment, 

or the advent of a new piece of software or technique is introduced, the same 

method for determining error scores can be used, ensuring consistency in 

validation testing.  

 

The results highlight that one mud environment (Figure 11) may differ in rates 

of predicted error than another mud environment, thus showing how the 

variation in environment consistencies, textures and weather conditions can 

all affect the recovery of a footwear impression. Such is the nature of work 

outdoors; it is important that practitioners are aware of the potential risks here. 

Blanket universal precision values attached to equipment or a method show 

no sensitivity to this idea and can therefore be misleading. An approach such 

as this described reports a value that can accompany each piece of separate 

evidence, with enough similarity to the original evidence as possible (i.e., who 

collected it, where it was collected and so on) meaning transparent levels of 

reporting error rates.  

 

The introduction of digital recovery of impressions (e.g., SfM photogrammetry, 

laser scanning) is therefore not simply based around practical or quality 

advantages, but also the increased ability to perform validation studies such 

as this. Whilst an indication of the precision of casting can be ascertained here 

(further described in Paper 4.1), there is limited further testing that can be done 

to provide predicted error rates of casts in different environments. These 

limitations are perhaps more pertinent than that of the error scores 

themselves. 
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3.2 Unpublished Technical Note 3.2: SfM photogrammetry 
software review 

 

Status: Unpublished technical note.  

Contributions: The experiment was conceived by Larsen. Agisoft Photoscan models 

were built from photographs taken by Larsen by Dr Matteo Belvedere (Florence 

University) an expert in Agisoft Photoscan. The analysis and writing-up was completed 

by Larsen. 

 

Abstract  

Digital reconstruction and visualisation of surfaces is now a staple in many 

scientific communities. As such, there is a proliferation of photogrammetry 

software now available, both commercially and as freeware. To introduce 

digital recovery via photogrammetry into the forensic community requires 

some consistency in the approach and this is relevant in the choosing of the 

software available. It has therefore been proposed that a bespoke forensic 

footwear software package is a suitable way forward. To validate this 

software for use, it is necessary to compare against the industry standards. 

This is completed via the comparison of 4 models, (1) sand (2) snow (3) soil 

and (4) dust. All four models were built in both DigTrace (bespoke forensic 

package) and leading commercial package Agisoft Photoscan. A holistic 

comparison was made based on multiple factors. Results show that the 

overall quality of DigTrace models are to an acceptable standard for 

purpose and whilst the use of Agisoft would increase model quality, the 

practicality of the commercial software renders its use, in a mass sense, 

unattainable. That said, the use of high-quality commercial software would 

still be an option should an investigation require it, for example, a high-

profile case where the value of the 3D footwear evidence is particularly high.  

 

Introduction 
 

Different types of photogrammetry software are abundant, as a quick Google 

search illustrates18. The increasing use of recreational drones is one reason 

for this with users demanding access to ortho-mosaics and digital elevation 

models. Drone Market Report (2020)19 suggests the global drone market will 

 
18 For example, this site lists the top 20 freeware solutions: https://all3dp.com/1/best-
photogrammetry-software/ 
19 https://www.globenewswire.com/news-release/2020/07/22/2066029/0/en/The-Drone-Market-
Report-2020-2025.html 
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grow from $22.5 billion in 2020 to over $42.8 billion in 2025 with the fastest 

area being software development. There is a tradition within SfM 

photogrammetry specifically of freeware being developed by private 

individuals20. Many of these solutions, however, lack intuitive user interfaces 

as is illustrated by OpenMVG21 which is used as the SfM engine within 

DigTrace (Bennett and Budka 2018). The freeware solutions are historically 

better than many of the commercial alternatives. Table 15 part of Paper 3.3 

lists out some of the available software. Some software caters for specific 

types of photogrammetry such as aerial, drone mapping, or close range. The 

type of file output is often software specific and influenced by one’s choice of 

pricing/licensing options. The photogrammetry blog written by Dr Falkingham22 

compares different software giving concise and informative feedback to the 

large choice on offer. Many of the available options are simply scripts which a 

user would have to find or purchase an interface to run. Choosing an option 

therefore relies on a user’s experience and knowledge, the options available 

to them may then be limited to those which have a fully functioning user 

interface as part of the package.  

 

Forensic providers will naturally gravitate toward commercial solutions, as 

illustrated by the use of Adobe PhotoshopTM in most forensic cases (Reis 

2007). Currently the most successful, judged by academic use, are Agisoft 

Photoscan and Reality Capture. These are the current leaders in the industry 

and produce high quality photogrammetry models with good documentation 

and intuitive user interfaces. Agisoft Photoscan, for example, allows a user to 

set a quality, which will dictate the computational input, the time in which the 

model can be built and the final file size of the model. They also offer 

automated scaling and a range of additional features. They are complex 

pieces of software that require professional training to be proficient.  

 

Building a SfM model is only part of the solution, however, since once a model 

has been created it must be analysed and manipulated. This usually involves 

 
20 Multiple entries at https://peterfalkingham.com/blog/ 
21 https://github.com/openMVG/openMVG 
22 https://peterfalkingham.com/tag/photogrammetry/ 
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a second piece of 3D visualisation software such as Geomagic or one of the 

other commercial solutions, although there is good freeware available (e.g., 

Meshlab or CloudCompare (Table 15)). The tools within commercial SfM 

engines and 3D visualisation software cater for all users and are not specific 

to forensic practice.  

 

DigTrace was developed as freeware based on the OpenMVG SfM engine 

and has a series of specific tools that cater in a bespoke way for the analysis 

of 3D footprints and footwear impressions (Bennett and Budka 2018). It is 

marketed directly to the forensic community as well as to vertebrate 

Ichnologists more generally. It is the software that is used for the most part of 

this thesis. However, it is appropriate to compare this SfM engine with other 

commercial solutions to help practitioners make informed choices. The core 

question is, “is the SfM engine valid?” The aim of this technical note is to 

examine this question.  

 

Method and Results 

A comparison of Agisoft Photoscan and DigTrace was undertaken, with each 

programme being used to create an identical 3D model using the same set of 

input photographs. The comparative analysis was undertaken using the 

freeware CloudCompare which has algorithms that allow the comparison of 

two models, point cloud to point cloud. Detailed instructions of this process 

and the algorithms used can be found in Section 2.2.1  

 

The results show a high level of similarity (Table 14; Figure 14). The largest 

differences can be seen in the Z (depth) plane of the models, the side walls of 

deep depressions such as those in sand. Agisoft Photoscan has a more 

comprehensive point cloud coverage in these areas where DigTrace has less. 

The other noticeable difference is in the soil impression where the DigTrace 

model has a small hole on the outskirts of the impression. This hole is not 

apparent in the Agisoft model. As per Table 14, the number of points present 

in the DigTrace Models contain around 30% of the points present in the Agisoft 

models. This results in significantly quicker model returns and smaller file 
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sizes. Whilst less points may sound like a bad thing, a preliminary assessment 

has shown that a model can be reduced in point size by up to 80% before any 

visual differences begin to occur. The reduction or decimation of points cannot, 

however, all be in the same small area as this will result in a hole. Further 

work, lying just outside the scope of this project, could look to assess the level 

at which a model can be decimated but remains a quality high enough for a 

forensic investigation.  
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Compare Total Points to 
Total 
Points RMS 

Mean 
Difference Std Dev 

Max 
distance Notes 

Dust 
DigTrace 776114 

Loose sandy 
stone Agisoft 2464850 0.644819 0.30865 0.144138 1.90727 

Good coverage throughout, no 
large gaps resulting in max 
distance low 

Soil 
DigTrace 605176 Mud Agisoft 1867804 0.814948 0.287068 0.247665 6.79586 

Hole in DigTrace model 
creating larger max distance, 
not in impression, on outskirts 
as per Figure 14 

Sand 
DigTrace 1143854 Sand Agisoft 3395973 0.765747 0.185514 0.175499 3.38356 

Good coverage throughout, no 
holes, highest level of 
difference found on the sides of 
deeper pattern tread 

Table 14. Data obtained from comparison between freeware DigTrace with commercial software Agisoft Photoscan. Including 
cloud to cloud comparison statistics, point cloud totals and descriptive differences.  
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Figure 14. Cloud Comparisons between Agisoft output and DigTrace output 
A. Software Comparison using an impression in a dusty sand/soil. B. Software 
comparison using an impression in soil. C. Software comparison between an 
impression in sand. 
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Discussion 

It is the opinion of the author, based on a visual assessment of all pairs of 

models, that the differences in the software are negligible when considering 

the practicality of continued use of Agisoft. This includes a large cost for the 

software, the storage required for large model sizes, and the time taken to run 

each model. It is expected that some experts, judges, or jurors would simply 

expect the best quality software to be used on all occasions. They should be 

reassured that it is not the practicality that is forcing the use of ‘lower quality’ 

software, but it is simply unnecessary in most circumstances. This is 

evidenced in the large body of high-profile scientific literature which uses 

software such as DigTrace (Altamura et al 2020; Bennett et al. 2020). The key 

takeaways from this small study are: (1) The analytical tools available for 

digital 3D models are of great potential for the method, regardless of software 

used. Practitioners can quality assure models and provide clear and 

understandable assurances to the courts in the name of scientific validity. The 

second takeaway (2) is that if a poor-quality model is put forward for evidence, 

having been created and analysed in lower quality software, the potential 

remains for the model to be re-run in higher quality software. The input 

photographs will be safely stored alike any other evidence type.  
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3.3 Research Paper 3.3: Technological innovations in the 
recovery and analysis of 3D forensic footwear evidence: 
application of structure from motion  

 

Status: Manuscript accepted by Science and Justice on 06th March 2021 subject to 

minor revisions.  

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett and Budka.  

 

Abstract 

The recovery of 3D footwear impressions at crime scenes can be a 

challenge but can also yield important investigative data. Traditional 

methods involve casting 3D impressions, but these methods have 

limitations: the trace is usually destroyed during capture; the process can 

be time consuming, with a risk of failure; and the resultant cast is bulky and 

therefore difficult to share and store. The use of SfM photogrammetry has 

been used widely to capture fossil footprints in the geological record and 

while there is a small body of work advocating its use in forensic practice 

the full potential of this technique has yet to be realised in an operational 

context. The availability of affordable software is one limiting factor and here 

we report the availability of a bespoke freeware for SfM recovery and 

subsequent analysis of for footwear evidence (DigTrace). Our aim here is 

not to provide a rigorous comparison of SfM methods to other recovery 

methods, but more to illustrate the potential while also documenting the 

typical workflows and potential errors associated with an SfM based 

approach. By doing so we hope to encourage further research, 

experimentation and ultimately adoption by practitioners. 

 

 
 

 

 

 

 

 

 

 



 3.3 Research Paper 3.3: Technological innovations in the recovery 
and analysis of 3D forensic footwear evidence: application of 
structure from motion 
 

See: 

Larsen, H., Budka, M. and Bennett, M. R., 2021. Technological innovation in the recovery and 

analysis of 3D forensic footwear evidence: Structure from motion (SfM) photogrammetry.  Science 

and Justice. (In Press). 

https://eprints.bournemouth.ac.uk/35616/  

https://eprints.bournemouth.ac.uk/35616/
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3.4 Research Paper 3.4: Empirical evaluation of the 
reliability of photogrammetry software, in the recovery of 3D 
footwear impressions 

 

Status: Published 14th May 2020. Larsen, H.J. and Bennett, M.R., 2020. Empirical 

Evaluation of the Reliability of Photogrammetry Software in the Recovery of Three‐

Dimensional Footwear Impressions. Journal of Forensic Sciences. Volume 65 issue 5 

1722-1729. 

Open Access Link: https://onlinelibrary.wiley.com/doi/full/10.1111/1556-4029.14455 

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett. 

 

Abstract 

This paper examines the reliability of SfM photogrammetry as a tool in the 

capture of forensic footwear marks. This is applicable to photogrammetry 

freeware DigTrace but is equally relevant to other SfM solutions. SfM simply 

requires a digital camera, a scale bar, and a selection of oblique 

photographs of the trace in question taken at the scene. The output is a 

digital 3D point cloud of the surface and any plastic trace thereon. The first 

section of this paper examines the reliability of photogrammetry to capture 

the same data when repeatedly used on one impression, while the second 

part assesses the impact of varying cameras. Using cloud to cloud 

comparisons that measure the distance between two-point clouds we 

assess the variability between models. The results highlight how little 

variability is evident and therefore speak to the accuracy and consistency 

of such techniques in the capture of 3D traces. Using this method 3D 

footwear impressions can, in many substrates, be collected with a 

repeatability of 97% with any variation between models less than ~0.5mm.  

 

 

 

 

 

 

 

 

         



 3.4 Research Paper 3.4: Empirical evaluation of the reliability of 
photogrammetry software, in the recovery of 3D footwear 
impressions  
 

See: 

Larsen, H. J. and Bennett, M. R., 2020. Empirical Evaluation of the Reliability of Photogrammetry 

Software in the Recovery of Three-Dimensional Footwear Impressions. Journal of Forensic Sciences, 

65 (5), 1722-1729. 

https://eprints.bournemouth.ac.uk/34012/  

https://eprints.bournemouth.ac.uk/34012/
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3.5 Research Paper 3.5: Recovery via SfM photogrammetry 
of latent footprint impressions in carpet  

 

Status: Manuscript accepted by Journal of Forensic Sciences on 17th March 2021. 

Scheduled to appear in July 2021 issue. 

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett and Budka. 

 

Abstract 

Impression evidence retained in carpet is usually recovered, if at all, in two 

dimensions via a vertical photograph. Here we show that recovery is also 

possible via SfM photogrammetry and this gives excellent results that allow 

digital measurements both in the x-y plane and by depth (z axis). This study 

focuses on recovery from polypropylene carpets which are widespread due 

to their resistance to wear and low cost. We show how traces can be 

recovered using both SfM photogrammetry and conventional photography 

with illumination provided via a crime scene light source. Experiments 

shows that traces are retained for considerable time periods if left 

undisturbed, in excess of four weeks, but are quickly lost in under 8 hours 

by subsequent footfall. A simple simulation shows how the movement of an 

individual can be determined from carpet traces and the value of 3D 

recovery is illustrated via a set of experiments conducted with barefoot 

traces. We draw attention to the fact that 3D models allow a more statistical-

based approach to be taken to match bare footprints at crime scenes. SfM 

photogrammetry is shown to provide a useful compliment to existing 

techniques and therefore worthy of further experimentation and potentially 

operational use. 

 

 
 

 

 

 

 

 

 

 



3.5 Research Paper 3.5: Recovery via SfM photogrammetry of latent 
footprint impressions in carpet 
 

See: 

Larsen, H.J., Budka, M. and Bennett, M. R., 2021. Recovery via SfM photogrammetry of latent 

footprint impressions in carpet. Journal of Forensic Sciences. (In Press). 

https://eprints.bournemouth.ac.uk/35420/  

https://eprints.bournemouth.ac.uk/35420/
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3.6 Research Paper 3.6: Recovering of 3D footwear 
impressions from sandy substrates: technical note on the 
contribution of SfM photogrammetry 

 

Status: Awaiting decision post revisions at Journal of Forensic Identification. Original 

manuscript submitted 1st September 2020. 

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett. 

 

Abstract 

 

Three-dimensional footwear impressions are often left at crime scenes, 

particularly in areas of dry sandy substrates common on footpaths, in 

roadside gutters and on waste ground. Loose fine sandy substrates can 

preserve remarkable levels of detail that can allow for the comparison of 

characteristics from wear and use of the shoe, beyond the consideration of 

class characteristics. A Crime Scene Investigator has a range of options at 

their disposal for the recovery of such an impression from casting through 

to 2D photography. Here we illustrate the use of SfM photogrammetry in the 

recovery of these sometimes ‘difficult to cast’ impressions. Our aim here is 

not to evaluate such methods in detail but simply draw the attention of CSIs 

to this potential. We do this via a series of different scenarios which illustrate 

the potential of SfM photogrammetry to provide a superior recovery method 

for sandy substrates. Given further evaluation and future evaluation of SfM 

methods we argue that it provides a potential complimentary recovery 

technique expanding the range of options available for loose, dry 

substrates.  

 

 
 

 

 

 

 

 

 

 

 



3.6 Research Paper 3.6: Recovering of 3D footwear impressions 
from sandy substrates: technical note on the contribution of SfM 
photogrammetry 
 

See: 

Larsen, H. J. and Bennett, M., 2021. Recovering of 3D footwear impressions from sandy substrates: 

technical note on the contribution of SfM photogrammetry . Documentation. The Authors. 

(Unpublished). 

https://eprints.bournemouth.ac.uk/35684/  

https://eprints.bournemouth.ac.uk/35684/
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3.7 Unpublished Technical Note 3.7: Use of contrast spray 
in the recovery via SfM photogrammetry of snow 
impressions.  

 

Status: Unpublished technical note. 

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett and Budka. 

 

Abstract 

Effective recovery of 3D footwear impressions from snow covered areas 

has both huge potential and many challenges. Traditional recovery is either 

via casting, which is highly dependent on snow consistency, or via 2D 

photography with the associated challenge of established effective lighting. 

An alternative and complimentary recovery technique is to use SfM 

photogrammetry. This technical note explores the application of SfM in the 

recovery of footwear impressions left in snow identifying the challenges and 

potential. Use of a digital method has the additional benefit of allowing a 

range of digital analysis. This has been utilised in this example to provide a 

validation of the use of contrast or fixative sprays commonly used in the 

recovery of footwear impressions in snow. Using a comparison of point 

clouds generated through SfM photogrammetry, we have assessed the use 

of a contrast spray in its disturbance of an impression and whether it can 

increase the quality of digital outputs. 

 

Introduction 
 

Footwear impressions located on a snow- or ice-covered surface have both 

potential for data recovery and an associated risk with not harnessing that 

potential. Buck et al. (2006) and Bodziak (2017) discuss the data which can 

be obtained from snow impressions such as clues as to the approximate time 

of the crime, the number and direction of suspects, exit and entry points as 

well as information on the shoes themselves and potentially the wearer/owner. 

Buck et al. (2016) state that there is a good chance that impressions in snow 

retain fine details but that the difficulty has always been in collecting these 

details for identification purposes. The difficulty in collection has led to 

uncertainty in both the literature and in practice as to the true value of footwear 
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impressions in snow. A point made by Bodziak (1999) who describes how the 

difficulty of using certain collection methods impacts on how often they are 

used in practice and as an excuse for not using them technicians may claim 

there is little value in the type of impression.  

 

Casting is traditionally identified as the most appropriate way to collect 

impressions in snow (Buck et al. 2006; Battiest et al. 2016; Bodziak 2017; 

NPIA 2017). Casting, however, can provide many challenges especially, as 

noted by Hammer and Wolfe (2003) when there are multiple types of snow in 

existence that each need different treatment. Different casting materials are 

available for snow impressions such as gypsum, sulphur or dental stone. Each 

type of material has advantages and disadvantages but there is yet to be an 

ideal solution. The disadvantages of some of the different casting materials is 

their weight which is often enough to alter the impression from its original state 

(Bodziak 2017). Some dental stones and plaster involve exothermic reactions 

which also are problematic when dealing with snow. The NPIA (NPIA 2007) 

guidelines used in the UK currently advise that a snow print wax be used in 

certain circumstances to fix a snow impression. 

 

There is a huge variety of different types of snow as the old aphorism about 

Inuit having over a hundred words for snow implies. Working with potential 

variety makes simple manual-based instructions difficult and most of the 

learning is experiential. As a result successful snow casting is based on 

experience and exposure to such traces. Therefore, as with most footwear 

recovery the default is to use a vertical 2D photograph, although Petraco et al. 

(2016) advocates the use of foam blocks (BioFoamTM). 

 

Optical laser scanning has been proposed as an alternative way of collecting 

3D snow impressions and Buck et al. (2006) states that the technique is 

accurate as well as easy to use and mobile. It does however require an 

electrical current and investment in appropriate equipment. Refraction during 

scanning is also often a significant issue and not all scanners are suitable for 

capturing snow impressions (Bennett and Budka 2018). The application of SfM 

photogrammetry provides an alternative way of capturing a 3D snow 
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impression. This has been explored in Paper-1 and the problems and 

challenges associated with applying SfM in snow are discussed there. The 

specific focus of this technical note is the use of contrast sprays as part of the 

SfM recovery process. 

 

It is often necessary, depending on the type of snow an impression was made 

in, to assist in the visualisation of the impression details (Bodziak 2017). In 

environments where the snow is thick, reflective, with a bright light source and 

uniform in colour, additional contrast can improve the visualisation of both 

class and RAC characteristics. In Alaska the State Forensic Laboratory use a 

contrast spray when an impression is recovered by 2D photography. In the UK 

where the snow is usually much shallower and melts quickly to reveal patches 

of the subsurface it is unlikely to be necessary. The same technique however 

may have benefits for if an impression were to be recovered via SfM 

photogrammetry, but albeit in a different way. Increasing the textural variation 

within an impression may reduce the likelihood of holes, caused by uniformity.   

 

The use of contrast spray as part of the SfM recovery process was tested in 

the UK to determine two factors (1) is the use of any spray, contrast or setting, 

disturbing the impression in any quantifiable way and (2) is the use of a 

contrast spray increasing the quality of an SfM model. 

 

Method 

Bournemouth and the surrounding area had two snow/frost episodes during 

the research period. One in March 2018 and again in February 2019. On both 

occasions’ snow/frost impressions were collected. A brief secondment to the 

Alaskan State Forensic Laboratory in Anchorage hosted by David Kanaris, 

was also conducted to further understand the potential of SfM photogrammetry 

in a snow environment. The experiments reported here were however all 

based in the UK. 

 

A snow impression was created using a Nike trainer; the volunteer (weighing 

60kg) creating a dynamic impression by walking through an area of snow. A 
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scale was placed next to the impression and photographed for SfM 

photogrammetry using the standard collection protocol. The impression was 

then lightly dusted with a dark grey matte spray paint. SfM recovery was then 

repeated as before. Both models were built in DigTrace using its embedded 

OpenMVG SfM engine. They were then auto rectified, cropped and scaled 

within DigTrace. The models were then saved as PLY files and imported into 

CloudCompare where the digital comparison was undertaken. A comparison 

test was performed as detailed in section 2.2.1. 

 

Results 

The results show a mean distance between the two clouds at 0.509 mm and 

a standard deviation of 0.412 mm (Figure 45).  

Upon visual analysis of Model A (without spray) and Model B (with spray), the 

model having had spray applied was of higher overall quality, this is 

determined by the presence of fewer holes and increased visualisation of 

features. Figure 45 shows the comparison output displayed as a scalar field. 

Which shows little difference in the two models and highlighting little 

disturbance created by the spray. The more uniform the colour in Figure 45 

(blue = 0 to <3 mm) the closer the two clouds map are one to the other. If the 

spray had greatly disturbed elements of the substrate, this would be apparent 

in this comparison with increased red areas.  

An insight into the point cloud coverage was also produced using a quality 

assurance method as described in Paper 3. Column one (Figure 46) shows 

the point cloud coverage where an even colour shows a more even spread of 

points.  A more even coverage can be seen in the sprayed impression, most 

notably, in the outskirts of the impression. The left hand set of histograms 

(Figure 46) shows the point frequency throughout the model (grid interval 

0.5mm), with the sprayed impression resulting in a higher number of units with 

a higher point frequency than the non-sprayed impression. To put another 

way, in the sprayed version there are fewer areas of low-density point 

coverage.  
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Figure 45. Comparison output of one snow model with contrast spray and one 
without. Displayed in Scalar field. Scale in mm.  
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Figure 46. Quality Assurance Model output. Row A: Point Cloud distribution 
from a snow impression without contrast spray applied. Row B: Point Cloud 
distribution from a snow impression with contrast spray applied.  

 

Discussion/Conclusion 

To fully assess the extent to which a spray may alter a snow footwear 

impression, this study would need to be replicated multiple times. This is 

recognised as a limitation of the study. However, while limited in scope and 

data, this experiment suggests that the application of spray paint in this 

instance did not damage or alter the impression in a way that could 

compromise the analysis of the impression. Moreover the results also indicate 

that a contrast spray will improve the density of points within the SfM model 

and therefore the overall quality with which a snow footwear impression will 
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be recovered. This point requires more extensive testing before general advice 

with respect to the use of a contrast spray can be provided. It does however 

indicate that if a spray is used to enhance a 2D photograph it should not 

preclude the additional and complimentary capture via SfM Photogrammetry. 

The results are only applicable to one type of snow, in one type of environment 

and guidance should therefore be sought from the small library of other 

literature discussing this issue (Bodziak and Hammer 2006; Battiest et al. 

2016; Bodziak 2017; Sabolich 2018). This should be further explored before 

any operational use of SfM photogrammetry for snow recovery. A key 

advantage of SfM is the flexibility in when it can be deployed. Spraying and 

photographing a model after initial crime scene photography would not cause 

any undue disturbance before the primary evidence collection (2D 

photography) method was used. 
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3.8 Chapter conclusion 

This chapter provides a broad insight into the use of SfM photogrammetry for 

the recovery of 3D impressions evidence. To conclude the chapter, highlights 

have been created, in much a similar way as is now standard for published 

research articles. These are the key contributions of the chapter and those 

with the highest level of potential impact. Table 25 goes on to summarise the 

contributions of the chapter with regard to how specific papers address each 

of the research questions. 

Highlights: 
 
One: Protocol for determining precision set out that can be used by any 
practitioner. 

Two: A range of examples and cases studies are presented highlighting 
applicability to forensic context (Mock crime scene examples can be found in 
appendices I,II and III) 

Three: Future research agenda to aid application in practice is established. 

Four: SfM photogrammetry is a complimentary recovery method for 3D 
impressions in carpet 

Five: Undisturbed polypropylene carpet impressions can remain for over a 
month 

Six: Statistical approaches to analysis of barefoot impressions can 
compliment expert opinion
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Paper: Addressing research question(s): 

3.1 One: Is the use of SfM photogrammetry as a 3D footwear impression recovery tool scientifically valid? This is defined using the 

President’s Council of Advisors on Science and Technology (PCAST) report (2016) which discusses the key points of foundational 

validity to include reliability, reproducibility, repeatability, accuracy, and consistency. 

Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country  such as the United Kingdom (UK)? 

Elements of scientific validity of SfM recovery are easily obtainable as demonstrated in Paper 3.1. A set of standards are achieved via a model to 

determine precision and instructions for determining accuracy are laid out. This addresses questions of repeatability and reproducibility of which in 

general, are high, but can be lowered through the various elements that equate to accuracy and precision in this context. An important note here is 

that further analysis can be easily undertaken if requirements of a particular audience are not yet met. 

Paper 3.1 addresses the use of SfM across environments, the precision model allows for environment to sit, as it should, as an important element 

that can contribute to a methods precision and rate of error. The results of this study can drive future research into the methods which show the 

highest rates of potential error, such as snow or impressions in wet substrates. 

3.2 One: Is the use of SfM photogrammetry as a 3D footwear impression recovery tool scientifically valid? This is defined using the 

President’s Council of Advisors on Science and Technology (PCAST) report (2016) which discusses the key points of foundational 

validity to include reliability, reproducibility, repeatability, accuracy, and consistency. 

Paper 3.2 addresses the software used in this research and contributes to the answering of Research Question One. Whilst not addressing the 

scientific foundation of SfM photogrammetry directly, it addresses an element affecting accuracy of the method as laid out in the accuracy equation 

in Paper 3.1. 

A = (Eq, P, S, O, E, T)  

Where S = software. 

It is the authors opinion, through investigation in Paper 3.2, that SfM software DigTrace and by extension other similar freeware, can build models to 

an appropriate standard for forensic evidence; eliminating the need for expensive commercial software NS (not significant) thereby making it a 
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viable option for a budget conscious audience. Literature from other communities (e.g. ichnology, archaeology, palaeontology) support this 

recommendation 

3.3 One: Is the use of SfM photogrammetry as a 3D footwear impression recovery tool scientifically valid? This is defined using the 

President’s Council of Advisors on Science and Technology (PCAST) report (2016) which discusses the key points of foundational 

validity to include reliability, reproducibility, repeatability, accuracy, and consistency. 

Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country a such as the United Kingdom (UK)? 

Three: What are the practical advantages of SfM photogrammetry when measured against current methods and practice? 

Paper 3.3 is comprised of multiple elements contributing to the scientific foundation of SfM. With contextually relevant examples. Also addressed are 

the logistical advantages and disadvantages of SfM. Notable points are the minimal requirements of resources to engage in all stages of SfM. 

Recovery does not require masses of equipment, modern phones have sufficient cameras, and analysis options are wide using freeware. 

3.4 One: Is the use of SfM photogrammetry as a 3D footwear impression recovery tool scientifically valid? This is defined using the 

President’s Council of Advisors on Science and Technology (PCAST) report (2016) which discusses the key points of foundational 

validity to include reliability, reproducibility, repeatability, accuracy, and consistency. 

Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country a such as the United Kingdom (UK)? 

Paper 3.4 further addresses overall reliability of SfM in the recovery of 3D impressions in the substrates of snow, sand and soil. This secondary test 

of repeatability using cloud comparison methods shows the use of SfM to have high levels of repeatability in sand, slightest lower in soil, and lower 

again in snow. This paper also focuses on providing repeatability scores when impressions are recovered with different cameras, little to no disparity 

in models can be seen when comparing a high quality DLSR against an iPhone camera.  

3.5 Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country a such as the United Kingdom (UK)? 

Seven: How can areas of 3D footwear recovery that are often overlooked, have their value increased through the use of SfM? 
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Eight: Can the introduction of digital recovery also introduce statistical reporting that satisfies both traditionalist approaches and 

Bayesian approaches? 

Paper 3.5 reports results relevant to multiple research questions and is comprised of some of the most impactful aspects of this research. There is 

no literature available detailing a method that can successfully recover a carpet impression, digitally or otherwise in all three dimensions. This paper 

is therefore the first of its kind in allowing the forensic community to understand the value of carpet impressions and providing them a method in 

which they can recover them. Multiple personal communications have highlighted carpet as a medium 3D impressions are found, but it is clear that 

they are only ever recovered in 2D.  

Paper 3.5 also highlights methods in which statistical analysis can assist an expert examiner, it is hoped that examples of use such as this will 

inspire examiners to incorporate these methods in their reporting going forward.  

3.6 Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country a such as the United Kingdom (UK)? 

Seven: How can areas of 3D footwear recovery that are often overlooked, have their value increased through the use of SfM? 

Paper 3.6 specifically looks at the recovery of ‘difficult to cast’ impressions such as those in loose sand substrates. The complimentary use of SfM 

alongside traditional methods has the potential to have the most impact for these types of impressions.  

3.7 One: Is the use of SfM photogrammetry as a 3D footwear impression recovery tool scientifically valid? This is defined using the 

President’s Council of Advisors on Science and Technology (PCAST) report (2016) which discusses the key points of foundational 

validity to include reliability, reproducibility, repeatability, accuracy, and consistency. 

Two: Is the use of SfM photogrammetry scientifically valid in the range of environments in which 3D footwear evidence is typically found 

in a country a such as the United Kingdom (UK)? 

Paper 3.7 illustrates that caution should be taken when using SfM as a recovery method in snow. As part of addressing research questions 1 and 2, 

understanding the full extent of the methods limitations in snow is key and recommendations to improve the accuracy of recovery in snow have 

been made where possible.  

There is an element similar to casting here; you only realise a model has failed, or not picked up the required detail, when you return to the lab. In 

order to overcome this issue, traditional methods can be used in conjunction with SfM or multiple SfM models can be taken to increase chances of 
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obtaining a successful model. Transparent reporting of potential error in snow models and utilising all methods at an examiners disposal should 

allow for the use of SfM in this substrate, should there be gain to be had.  

Table 25. Research questions (Table 1) addressed in chapter three.
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Chapter four: Traditional methods of recovery and 

the inclusion of a digital approach 

 

The previous chapter established much of the scientific validity of SfM 

photogrammetry as a stand-alone technique. Making little comparisons to 

traditional methods, work in Chapter 3 focuses on the use of SfM in a relatively 

simple context.  

 Paper Title Research Questions 

Addressed 

4.1 Investigation into the repeatability and precision of 

casting 3D impressions 

5 

4.2 Recovery of 3D footwear impressions using a range 

of different techniques 

1,2,3,4 

Table 26. Contents of chapter four addressing specific research questions 
(Table 1) 

In this chapter, other recovery methods are considered as their relevance is 

unquestionable. It is recognised that in order for a new technique to replace 

another, operationally heavy comparisons need to be made, including the use 

of trained recovery experts undertaking data collection. As direct method 

replacement is not the intended aim of this research, comparative experiments 

are limited and are contextualised around showing benefits and limitations of 

multiple techniques alongside one another and highlighting how conjunctive 

use can strengthen each method. In the length of this research, the author has 

made in the region of 50-100 casts and a similar number of crime scene quality 

photographs have been produced and in doing so has developed a level of 

experience that, whilst not rivalling a professional examiner, has allowed for 

simple comparative exercises to be undertaken.  

 

The use of digital recovery over traditional methods also increases the use of 

digital analysis. Producing statistically based analysis is far simpler with a 

digital recovery method vs a physical cast or a 2D photograph. The 

introduction of these digital methods does, however, allow us to go back to 

dated methods such as casting and shine a light on the scientific validity that 
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is currently lacking. Chapter 4 (Table 26) begins with an example of this 

concept and applies techniques ordinarily associated with 3D digital data to 

physical casts (Paper 4.1).  

 

Following this and concluding Chapter 4 is Paper 4.2, this is the closest to a 

comparative exercise as will be seen in this thesis. A key feature that is 

highlighted throughout Chapter 3 is the increased visualisation options 

available with SfM photogrammetry and further examination of this was critical 

in achieving aim 4. Do the outputs of SfM photogrammetry produce superior 

visualisation of impression features when assessed next to examples of 

current methods? The use of casting and photography in this paper are 

considered on a ‘basic level’ therefore no extensive use of lighting was used 

to help aid the methods, which may have changed the results. There is little 

way of quantifying the levels a CSI will go to in enhancing the visualisation of 

features and no understanding of how consistently this is done throughout the 

country. The paper should therefore not be considered evidence for the 

replacement of one technique with another based on a better rate of 

visualisation.  

  



 

187 
 

4.1 Research Paper 4.1: Investigation into the repeatability 
and precision of casting 3D impressions  

 

Status: Intended submission 2021. 

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett and Budka. 

 

Abstract  

The procedure of casting of 3D footwear impressions found at crime scenes 

has been in place since the early 1900s. For many CSI’s casting is often 

considered to be the gold standard for recovery, despite little or no research 

to validate the method in terms of reliability, repeatability and accuracy. In 

the UK casting has fallen out of favour except in the most important cases 

due to the time it takes and improvements in conventional forensic 

photography. It is, however, still widely used in other countries. With the 

increasing availability of digital alternatives for 3D recovery such as the use 

of optical laser scanning or SfM photogrammetry it is perhaps timely to 

consider the potential errors around casting. Using a dataset of 20 casts all 

created from one flexible silicon mould, two separate assessments are used 

to examine the variability between each of the casts to determine an 

estimate of precision. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 



4.1 Research Paper 4.1: Investigation into the repeatability and 
precision of casting 3D impressions 
 

See: 

Larsen, H. J. and Bennett, M., 2021. Investigation into the repeatability and precision of casting 3D 

impressions. Documentation. The Authors. (Unpublished)  

https://eprints.bournemouth.ac.uk/35685/  

https://eprints.bournemouth.ac.uk/35685/
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4.2 Research Paper 4.2: Recovery of 3D footwear 
impressions using a range of different techniques 

 

Status: Accepted for publication in Journal of Forensic Sciences (JFS) on 16th 

December 2020. Appearing in May 2021 issue.  

Contributions: The paper and associated experiments were conceived by Larsen during 

supervisory meetings with Bennett and Budka. The data was collected and analysed 

by Larsen. The text was drafted by Larsen with editorial input from Bennett and Budka. 

 

Abstract 

3D footwear impressions are frequently found at, or in the vicinity of a crime 

scene, and may provide a valuable form of evidence or intelligence. This 

paper compares the traditional methods of casting and/or 2D photography 

with SfM photogrammetry. We focus both on the recovery of class 

characteristics (sole pattern) and RACs caused by damage. We examine 

how different recovery techniques influence visualisation of outsole features 

and discuss what effect this may have on evidential value. Five shoes and 

their associated 3D impressions made in both sand and soil were compared 

using a grid system and tread descriptors commonly used in the UK. We 

conclude that within the limitations of this study SfM photogrammetry allows 

superior levels of visualisation of both class and RACs, giving a better 

definition in detail in some instances. The use of SfM as a complimentary 

approach can therefore lead to a potential increase in evidential value. 

 

 
 

 

 

 

 

 

 

 

 

 

 



4.2 Research Paper 4.2: Recovery of 3D footwear impressions 
using a range of different techniques  
 

See: 

Larsen, H.J. and Bennett, M. R., 2021. Recovery of 3D footwear impressions using a range of 

different techniques. Journal of Forensic Sciences, 66 (3), 1056-1064. 

https://eprints.bournemouth.ac.uk/35035/  

https://eprints.bournemouth.ac.uk/35035/
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4.3 Chapter conclusion 

This chapter provides critical work required on current recovery methods as 

well as introducing SfM into the range of methods currently used. Highlights 

have been used here to isolate the key contributions of the chapter alongside 

Table 35, which further clarifies the relevance of this chapter to the research 

questions and aims.  

Highlights: 

One: SfM recovery compares favourably over other methods when visualising 
RACs. 

Two: Key advantages of SfM are the use of depth colour renders and 
comparison features within SfM software (examples of this in a crime scene 
context can be found in appendices I, II and III) 

Three: Digital recovery allows superior visualisation, digital file sharing and 
searching. 

Four: Casting repeatability shows high levels of precision 
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Paper: Addressing research question  

4.1 Five. What is the measure of repeatability for currently used footwear recovery methods, specifically casting? 

A measure of repeatability has been accomplished in Paper 4.1 and shows there to be a high level of precision in the method of 

casting. These results, whilst the first of their kind are, however, not without limitations due to the nature of the method. Measuring 

repeatability of a destructive method is invariably going to pose a challenge. There are numerous variables to consider when 

investigating the accuracy in repeated use of a recovery method. In this instance these include many subtle differences that may occur 

as a result of the weight of the casting material, the manner in which they have been prepared, the manner in which they have been 

applied to the impression and so on. Paper 4.1 highlights some variability in the recovery of RACs when one impression with a 

significant RAC was repeatably cast. Should this be as a result of the subtle variables at play is cause for further research.  

Casting has been accepted by the community as the most appropriate way to recover 3D impression evidence but on little scientific 

merit. The contribution of Paper 4.1 introduces the first attempt to provide this in a scientific manner and not based on examiner 

experiences/testimony. This contribution provides a portion of the necessary scientific foundation for casting, but a question remains as 

to whether casting can ever truly be, as determined by appropriate statistical testing, scientifically valid. 

4.2 Four. Do the outputs of SfM photogrammetry produce superior visualisation of impression features when assessed next to 

examples of current methods? 

Paper 4.2 addresses this question with respect to both class and RACs. Superior visualisation can be seen in some instances of SfM 

use and more than anything, this work provides a great basis for future research. The ease in which comparisons can be undertaken 

have been demonstrated, although the next step, if one is to replace an existing method with SfM, requires a more formal comparison 

undertaken by forensic professionals. For the purpose of this research and addressing the above question, SfM can provide superior 

visualisation and should, off the back of Paper 4.2 be confidently used as a complimentary technique.  

Table 35. Research questions (Table 1) addressed in chapter four.
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Chapter five: Discussion  

 

The data in this thesis broadly assesses the use of SfM photogrammetry for 

the specific application of the recovery of forensic footwear impressions. Three 

main themes have emerged during this research, that highlight the main areas 

of impact. The main theme is the clear viability of the method for its intended 

purpose. This leads to the question of whether the research equates to the 

scientific foundation required in order for the technique to be operationally 

deployable.  

The second theme is the positioning of the technique in amongst the current 

recovery methods and the assessment of how SfM photogrammetry could 

exist in an operational setting alongside more traditional practice. Finally, the 

third theme focuses around the potential trajectory of SfM photogrammetry, 

from its evolution elsewhere, to its potential use by the forensic community.  

Theme 1 – Viability of SfM Photogrammetry as a recovery tool for 3D 

footwear impressions. 

The central aim of this thesis was to establish a body of research to support 

the use of SfM photogrammetry in the recovery of 3D footwear impressions. 

The PCAST (2016) report proposes criteria and requirements against which 

the research can be measured. The report states (p47), ‘For a metrological34 

method to be scientifically valid and reliable, the procedures that comprise it 

must be shown, based on empirical studies, to be repeatable, reproducible, 

and accurate, at levels that have been measured and are appropriate to the 

intended application’. Using these broad criteria, we can discuss the degree 

to which the application of SfM to forensic footwear meets these criteria. 

 

Repeatability measures the degree to which a method will produce the same 

results time after time REFs?. Paper 3.1 and further discussed in Paper 3.3, 

sets out the potential sources of error associated with SfM footwear recovery. 

In this study 30-50 separate models were created via SfM photogrammetry of 

 
34 Metrology is the scientific study of measurement. 

https://en.wikipedia.org/wiki/Measurement
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the same footwear impression. This was completed for footwear impressions 

across a range of substrates and gives an idea of the technique’s overall 

precision (Table 13). Precision estimates were provided for individual 

environments in Paper 3.1 and we can average (mean) four of these (Sand, 

Mud1, Mud2, Concrete Control; Table 13) completed by one user, protocol 

and camera to give an overall estimate of the technique’s precision, namely 

±0.282mm. This high level of precision level is promising, and to some degree 

satisfies the requirement that the method should be repeatable. It is, however, 

slightly misleading because specific environmental conditions associated with 

a specific trace come into play. For example, the error rate for a standard mud 

impression may be quite low (Table 13), but if saturated and containing 

standing water the precision may fall quite dramatically. The method 

established in Paper 3.1 and further utilised in Papers 3.3 and 4.1, establishes 

a way for a practitioner to accredit their own application of the SfM method and 

in theory accompany each piece of evidence ‘outside the norm’ with a specific 

precision estimate. Further work on repeatability can be seen in Paper 3.4 

showing, using point cloud comparisons, the differences in individual models 

of the same impression. As can be expected, higher repeatability is found in 

some environments over others. In sand and mud a mean distance between 

points in any 2 clouds is ~±0.2mm with a standard error of ~±0.01mm, snow 

shows higher differences of ±0.5mm. All likely variability between repeated 

use of SfM by one user is very low. It is significantly harder to produce these 

types of experiments for traditional methods such as casting meaning little 

comparative work can be done to provide evidence that one method’s 

repeatability is superior to another. 

 

Reproducibility refers to multiple users obtaining the same results. It also 

seems equally relevant to other singular changes in variables, such as 

obtaining the same results using different input sources (which is the camera 

used to obtain the photographs in this instance). The preliminary analysis 

undertaken suggests that variance caused by the operator is relatively small 

as indicated by the precision scores in Table 13 (Paper 3.1) and as further 

discussed in Paper 3.3. The photographs taken have to be extremely poor 

before this becomes a real issue. As long as the operator takes sufficient 
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photographs from different positions the technique is forgiving and good 

models will be built. A set of ten volunteer undergraduate forensic students 

were given basic guidance on the practice of photographing an impression for 

photogrammetry (training lasting around 60 mins). Identifiable user issues 

such as the size of the area needing to be photographed were quickly 

identified during this time and rectified with further guidance. Experience and 

practice as with any forensic technique is beneficial especially when dealing 

with more challenging substrates such as snow (Paper 3.7). Whilst the use of 

SfM does not completely eradicate the need for experienced examiners, and 

whilst a subjective claim, it is likely it will reduce the need. Additionally, it is 

much easier to gain experience with a technique that does not take much time 

or resources, with examiners being able to practice with no associated cost. 

Experience of this technique would be very quick to build should operational 

results show any large disparities in user variance.  

 

Further work is, however, needed in order to provide statistical confirmation of 

the inter-operator reliability and it would be logical to follow the methods set 

out by Reel et al. (2010) and widely followed in medical trials (e.g., Ukoumunne 

et al. 2002; Ukoumunne et al. 2003; Pellis et al. 2003; Bobak et al. 2018). 

Using ICC reliability testing, a value of the variance could be provided to the 

forensic community.  

 

The equipment used may also impact the reproducibility of recovery. Paper 

3.4 provides a first order estimate of the potential impact of different cameras 

(±0.193mm) in all three dimensions, the x, y and z planes. It is likely that a 

crime scene quality camera is always going to be available in the UK, but this 

is not always the case in other areas of the world. These restrictions should 

be more openly discussed in the literature and considered when assessing the 

scientific validity of recovery methods.  

 

Paper 3.3 addresses accuracy in SfM with respect to the four areas of error 

which have been attributed to the context of footwear recovery. In the context 

of large-scale architectural modelling using SfM, Napolitano and Glisic, (2018) 

illustrates some of the factors influencing accuracy (Figure 54).  



 

221 
 

 

 

  

Figure 54. (Napolitano and Glisic 2018) Factors impacting photogrammetry 
accuracy. Relevant to a large scale photogrammetry project.  
 

We can use this simple illustration to assess which areas of accuracy are most 

relevant to the application within forensic footwear and review if this research 

has satisfied those factors. Building factors do not need to be considered but 

this factor is equivalent to environmental factors. The accessibility of a trace 

for example, should it be covered by foliage or surrounded by a lot of 

overhanging vegetation, could impact an examiner’s ability to take photos 

equating to an accurate model. Lighting, whilst a relevant factor, can be 

mitigated well in respect to recovering a footwear impression. Adding an 

additional lighting source to visualise the outline and textures of an impression 

is a simple task and the equipment required for this is standard within a crime 

scene examiners' kit. One element of lighting that is of high importance is the 

appropriate camera settings ensuring the colour textures of the model are 

nicely brought forward. This will increase the overall quality of the consequent 

model. An example of how an unlit photo can reduce the textural variation of 

the photo can be seen in Paper 3.6 in Figure 38 and a further example of the 
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differences lighting can have on a model can be seen in Paper 3.4, Figure 27. 

Many of the factors already discussed under reproducibility are relevant here 

such as operator experience/training, equipment used. The software factor is 

largely alleviated in this instance as repeatability issues are often faced on 

large sites. The software utilised in this research has been subject to a 

comparison against leading commercial software and this can, to some 

degree, attest to levels of software accuracy (Paper 3.2). Similar 

methodologies have been used to understand accuracy and quality in SfM. 

Koutsoudis et al. (2013) performed a cloud to mesh comparison of a laser scan 

and an SfM photogrammetry model to determine an element of accuracy 

based on the ground truth of the laser scan. They determined that the number 

of input images used was crucial to the best reconstruction results and that 

feature richness of a surface also contributes to the accuracy of image-based 

reconstruction. Can you critique this paper further? 

 

Accuracy in photogrammetry is an active research field and it can be inferred 

from such a wide landscape of papers (e.g., Falkingham 2012; James and 

Robson 2012; Jalandoni et al. 2018) that the levels of accuracy are appropriate 

for scientific use relative to ‘gold standard’ methods such as laser scanning 

(Bennett et al. 2013; Charbonnier et al. 2013). Correct scaling of a model and 

the application of a calibration test can lead to model accuracy being easily 

determinable throughout a forensic investigation. As discussed in Paper 3.1 

and in further detail in Paper 3.3, determining levels of accuracy on an x, y and 

z plane are achievable with relative ease. The use of LegoTM bricks to 

‘calibrate’ accuracy for a given user, equipment and environment allows 

accuracy to be continually proven per piece of evidence if required.The ability 

to confirm accuracy at multiple stages of the evidential chain, by simply 

measuring the scale in the model to confirm real world dimensions, is a very 

useful feature. 

 

The application of determining accuracy and precision using the method in 

Paper 3.1, is particularly advantageous due to the methods ability to be applied 

to an individual practitioner, to determine their own levels of 

precision/reproducibility. Instead of providing a potentially misleading 
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universal value for the accuracy and precision of SfM in this context, a method 

with far greater sensitivity has been provided. Providing details of this method 

allows us to move away from universal statements of validity often used in a 

forensic context. This method is specific to a particular recovery and in line 

with an accredited approach.  

 

The importance of accreditation is of huge relevance to modern day forensic 

science and certainly not an aspect lost on those in the community. In 2007, 

the role of the forensic science regulator was introduced, to tackle the 

“irremediable problems with the quality of scientific evidence in the UK” 

(McCartney and Amoako 2017, p945). Over a decade later however, gaps in 

regulation and accreditation are still seen (McCartney and Amoako 2017) and 

regularly highlighted (NRC 2009; PCAST 2016; Tully 2020). These generally 

include statements regarding a lack of scientific validity of techniques and 

“widespread failures to disclose limitations and uncertainties in reports” 

(McCartney and Amoako 2017, p946). Such testaments show how highly 

transparent error rate projections similar to that presented in Paper 3.1, are 

absolutely needed, and remain crucial to the forward progression of forensic 

science.  

 

In choosing a methodology for this research, the notion of providing evidence 

of the methods competency in environments appropriate to the intended 

application was a fundamental requirement and can essentially be partitioned 

into two points. One point addresses the ultimate question of whether the 

levels of accuracy and precision that can be obtained by a typical user are fit 

for purpose. Specifically, are they able to visualise the features of a footwear 

impression. The second point addresses the logistical applicability of this 

method for operational use. Together these points can steer the research into 

alignment with aspects of operational practice.  

 

To understand if this method is accurate and precise enough to successfully 

recover footwear evidence requires us to return to the types of feature 

commonly found in footwear evidence, evidence of which can be seen in 

Paper 3.5 in the medium of carpet. Both class, wear and RACs are visualised 
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using SfM photogrammetry both on par and in some instances, superior to, 

the recovery via 2D photography plus the use of oblique lighting. The size of 

features varies in these examples and the smallest is a matter of millimetres. 

A further example is in Paper 4.2 which offers visualisation of both class and 

RACs in SfM models alongside the visualisation seen in casting and 2D 

photography. Whilst it is difficult to provide a definitive size of feature that SfM 

photogrammetry can consistently recover, due to such vast variables, it is in 

comparison with current methods that we can offer assurance that the 

technique is fit for purpose.  

 

Given the large number of substrates in which 3D impressions can be found, 

applying a simple quality score to each of the environments tested, further 

illustrates the methods ability to be fit for purpose (Table 36). 

 

On approaching this research multiple efforts were made to gain data from 

forensic services that could provide a list of environments in which 3D footwear 

impressions are commonly, and not so commonly found. Unfortunately, and 

interestingly, these are never documented digitally. A footwear analysis report 

from Bedfordshire police is the closest quantitative data obtained. Separated 

by ‘Surface Type’ as per Exhibit records, this report simply shows the number 

of casts submitted as evidence in a year. It shows in 2017 65 casts were 

submitted as exhibits, with 3 being attributed to soil/mud, 1 attributed to a door 

and the rest simply labelled under ‘cast’. This is the extent to which 3D 

footwear impression evidence is documented. There are, however, many 2D 

surfaces which are noted. Information regarding the medium the casts were 

made in, it seems, is being left in the crime scene examiners handwritten notes 

or an inference from accompanying photographs. It was therefore an effort of 

personal communication to ascertain frequent mediums in which to test SfM 

photogrammetry. Tables 5, 6 and 7 in Section 1.3.4 detail these 

communications and Table 36 shows the response from this research. A broad 

interpretation of this table shows how texture can play a large part in securing 

the highest quality SfM models. Sand and modelling compounds such as 

BubberTM exhibit very high-quality results due to the fine nature of their grains, 

providing identifiable pixels for the software to detect. It is also abundantly 
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clear that snow is particularly challenging. Further investigations into snow 

recovery (Paper 3.7) show quality issues can be mitigated to a degree but 

much further work is required to establish a way of consistently achieving high 

results. It should be noted here that the use of a digital method allows work to 

go ahead. Research into casting in snow dates back to as early as 1984 and 

can be seen as recently as 2016, it is a relatively, highly researched area due 

to the difficulties involved. We are, however, at a stage where it is likely to be 

as good as it is ever going to be without the introduction of a completely new 

casting material. That cannot be said about photogrammetry, which provides 

wide scope for improvement and is in a very active field of research doing just 

that. Regardless of community, if improvements are made in one discipline, 

those advancements can then be easily brought across to the forensic 

application of photogrammetry. For example, White Sands National park sees 

many of the same challenges as snow, such as uniformity of colour, texture 

and bright lights causing reflections.  

 

To address the second point of purely logistical applicability, we can look at 

where earlier research into digital recovery of 3D impressions has fallen. Many 

proposed digital 3D recovery techniques have required equipment requiring a 

power source, or a budget far outside that of UK police (e.g., Komar et al. 

2012; Gamage et al. 2013). A key part of providing the forensic community 

with an operationally deployable tool is the accompanying confidence that it 

will work in a variety of circumstances that are quite literally, in some cases, 

stumbled across. Meaning the practicality of the method is just as important 

as the ability to successfully recover impression features. The logistical 

properties of SfM photogrammetry can be found in Table 19 alongside those 

of current and proposed methods for 3D impression recovery.  

 

Having assessed the above criteria, the foundations of scientific validity are in 

place. Through a combination of established validity and validity testing 

specific to a forensic application, this is considered the minimum required for 

the technique to be operationally deployable. There is a lot of further research 

that can be undertaken to find new and innovative ways of analysing 3D point 

clouds to gain all there is to know from the data and the behavioural inferences 
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we can gain from footwear evidence. This is particularly relevant to intelligence 

led policing as well as increasing overall evidence value. If any aspect of the 

technique should fall to a standard that practitioners are not happy with, there 

should be confidence in the community that resolutions are possible. This 

research alone aims to provide some of that confidence illustrating the array 

of methods and statistical analysis available when incorporating digital 

recovery into a forensic realm.
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Specific Features of Recovery - Subject to SfM output quality and original impression 
quality 

Environment  

Overall quality score: 
Application of SfM to 
the recovery of 
footwear impressions 
in this substrate: User 
Opinion 

Visibility of 
Class 
Characteristics 

Visibility of 
Wear 
Characteristics 

Visibility of 
RACs 

Model 
Quality 

Model Quality: 
Consistency with 
repeated use 

Light Snow UK Medium High Low Medium  Medium Medium  

Heavy Snow Alaska Low Medium Low Medium Low Low 

Heavy Snow Italy Medium High Low Medium Medium Medium 

Frost UK High High Medium Medium High High 

Beach Sand (Dry) High High Medium High High High 

Beach Sand (Wet) High High High High High High 

Playground Sand (Dry High High Medium High High High 

Builders Sand (Dry) High High Medium High High High 

Builders Sand (Wet) High High High High High High 

Wet Soil (Clay)  Medium High Medium High Medium High 

Wet Soil (not clay) Medium Medium Medium Medium Medium Medium 

Clay Soil (Dry) High High High High High High 

Clay Soil (Wet) Medium High Medium Medium Medium Medium 

Stony Sand High High High High High High 
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Spilt food goods: Flour High High Low Medium High High 

Cardboard Low Low Low Low Low Low 

Paper Towel Low Low Loe Low Medium Medium 

Bread High High High High High High 

Polypropelene Carpet 
(Low Wear) Medium High Medium Medium High Medium 

Polypropelene Carpet 
(Medium Wear) Medium High Medium Medium High Medium 

Polypropelene Carpet 
(High Wear) Medium High Medium Medium High Medium 

Modelling Compound: 
BubberTM High High High High High High 

Salt Dough High High High High High High 

PlayDough High High High High High High 

Other 

3D Fingerprints High: Visualisation of ridge detail 

   
Tyre Tracks High  

     
Writing Analysis Medium: Depth analysis available       

* User opinion based on: Even and high point cloud coverage; Few holes in model; Colours and textures of original surface well translated 
in model.  

Table 36.  Quality scores assigned to all substrates recovered via SfM throughout this project.  Based on author opinion. 
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Theme 2 – Illustrating the value of SfM photogrammetry with respect to 

existing methods 

In order for a new technique to gain traction in forensic practice a degree of 

advocacy is potentially required. At an objective level this is about the 

comparative accuracy and potential of two different recovery techniques, but 

it also has an emotional element since changing traditional entrenched 

practice, even when the advantages are clear, can be difficult. Personal 

communications from members of the vertebrate ichnology community35 have 

attested to such issues in a similar context, with an older generation preferring 

to produce hand drawn sketches of tracks over the use of digital 3D recovery.  

 

The data presented in Table 13 and discussed in Papers 3.1 and 3.3 suggests 

that the accuracy of SfM based recovery is equivalent to if not slightly better 

than other techniques. Like any technique its accuracy varies with the 

environment in which it is deployed and by the practitioner’s competence.  

 

The reviewer reaction to some of the papers submitted provides insight into 

this challenge (Table 37). One of the issues raised is to challenge the degree 

to which there is a ‘level field’. Several traditional examiners believe they could 

have taken better crime scene photographs, which is undoubtedly true, and 

that if they had, the advantages of SfM would be negligible. Others have 

demanded community wide trials (Table 37). The issue as they see it is an 

either-or situation, rather than something more subtle and complimentary. SfM 

in conjunction with other techniques allows one to perform analyses that would 

not be possible. The key complimentary advantage is the ability of SfM to allow 

depth to be measured, theoretically possible from a cast but rarely done, 

especially in dealing with something as subtle as the degree of heel wear. 

Visualizing depth via different colour-depth renders is a clear advantage as 

illustrated in several of the papers (Paper 3.3; Figure 20; Figure 21; Paper 

3.6). 

 
35 Professor Matthew Bennett – Environmental and geographical sciences 
Dr Matteo Belvedere – Earth Sciences  
Dr Ashleigh Wiseman – Evolutionary Biomechanics  
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 Reviewer Comment Response/Evidence of? 

1 The paper should focus on SfM more than bashing casting and 
photography. 

An emotive comment highlighting just how strong attachment is to a technique. No 
un-evidenced claims or comments were made with respect to casting to elicit this 
response. It would appear the reviewer took any fair criticism of casting personally. 

2 The author seems insistent on criticizing casting. Absolutely anything 
can be cast and cast successfully, including soft fragile soles, wet 
muddy soils, all type of snow, and even indented writing from paper 

This is a strong claim, and to deem a cast successful is a subjective view. Several 
scientific papers address issues with casting (e.g., Buck et al. 2007; Sabolich 2018).  

3 Failures with casting are attributed to a lack of having the proper 
materials to cast with, and or a lack of training or experience. 

Whilst both valid points, it can be argued that there is more to casting failures than 
just lack of materials or training. Many of which are highlighted in published works 
(e.g., Buck et al. 2007; Sabolich 2018). 

4 Silicone was never a good method and is never used. Why even 
mention it? 

UK NPIA guidelines discuss silicone as a lesser-known casting material, but suggest 
its properties are appropriate nonetheless. The reviewer provides no scientific 
evidence to this claim. 

5 It is a constant battle to try and encourage the use of casting for 
police departments because they may have limited resources; but to 
see a paper like this to state the casting process will not work is mis-
informing the reader and inferring that casting is not a reliable 
recovery process. 

At no point in the manuscript was it suggested that casting would not work. Again, an 
emotive response to what was a fair representation of casting as agreed by the other 
reviewer to this manuscript. The reliability of casting is not a factor that has ever been 
scientifically explored and it is a fair point to highlight this lack of underpinning 
research which is all the manuscript did.  

6 The vast majority of identifications of impressions in 3D substrates 
are because a cast was made. 

This is a closed view and disputed by both the literature (Bodziak 2017) and the 
practitioners I spoke to.  

7 It would appear to me that the SfM method would precede casting, 
and therefore is not competing against casting. In the author’s own 
response, they said “our aim is not to compare, but to illustrate the 
potential”, thus I see no need in the abstract or paper to say anything 
at all negative about casting or that diminishes or discourages 
casting. 

Again this illustrates the strength of opinion that casting is prime despite the literature.  
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8 I don’t understand why this amount of ‘inaccurate’ rhetoric about 
casting is necessary to your paper. 

The objective assessment of casting is repeatedly referred to as inaccurate rhetoric. 
Yet there is no published paper to date that addresses issues of accuracy and 
precision with it.  

9 Those who are knowledgeable and experienced in making casts of a 
variety of three-dimensional impressions would not agree with your 
assessment. 

The author has made in the region of 50 -100 casts in the research timeframe (3 yrs), 
having been trained as part of an undergraduate degree by a former CSI. This is 
arguably many more than a CSI would complete in the same time frame, at least in 
the UK. 

10 If you want to say something like ‘casting might not always be 
convenient and/or the essential casting materials may not be 
available’ that is fine. 

This sentence skirts around some of the aspects of casting that should be brought to 
the literature 

11 Please note that although there have been one or two papers that 
advocated the use of fixatives, as a matter of practice and 
experience, and the consensus of examiners, fixatives are not 
recommended or used or necessary. Thus, I would simply eliminate 
this portion. Again, it is also really not ‘on topic’ for your paper. 

A further reference to the experience and consensus of examiners being enough to 
conclude a scientific foundation. There are several references attesting to work using 
fixatives (e.g., Battiest et al. 2016; Sabolich 2018). 

12 As someone who has been involved in research, some of the most 
important aspects of research of this type is to have an experienced 
and qualified forensic consultant as part of your research team so, in 
the end, you can actually make a valid comparison between existing 
recovery methods, such as properly taken forensic photographs and 
casts, with the actual results of your SfM method provides. 

The aim of this paper was not a competition between methods. This reviewer 
appears unable to accept that an introduction of a new technique should be anything 
other than a direct (and aggressive) competition against current methods. The aim of 
this paper was to highlight the potential of SfM, showing examples of how it may 
produce superior visualisation in some circumstances. 

13 The author needs a realization of the impracticality of a new 
technique on a police force that has to acquire this equipment and 
must be trained 

The reviewer is determined to misunderstand the issues. In response an estimate of 
the time taken to capture a 3D model via SfM was made and to take the pictures for a 
footprint takes about 70 seconds. No equipment is needed other than a crime scene 
camera. 

14 It appears that a great deal of photographs must be taken from many 
angles. One of your cited papers suggests around 20 images for 
each impression. I would ask the author if they have any 
understanding that this amount of time and photography seem far 
more problematic and unrealistic to expect from a crime scene tech 

A clear misunderstanding of the time in which an SfM model can be undertaken. This 
has been clarified to the reviewer. The time taken to prepare a cast, wait for it to set 
and package it up appropriately is not mentioned here. It is interesting that time is a 
concern, yet a concern that does not apply to casting.  
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than what is required to photographically document an impression 
using traditional methods. 

15 I cannot recommend this paper in its current form. When new 
techniques and equipment are proposed to complete methods that 
have been in place for decades, there should be a more symptomatic 
and un-biased approach to testing and promoting these techniques. 

The reference to a technique that has been in place for decades in other disciplines 
illustrates a problem. Given the criticism that the forensic footwear discipline has 
taken for relying on opinion-based evidence, one would think this attitude no longer 
has a place. Just because a technique has been used for a long period of time attests 
nothing to its reliability if such reliability has never been scientifically tested.  

16 I am highly supportive for research for new methods, but the author's 
research, in my opinion, does not provide any of what is needed to 
introduce a new technique and equipment to the forensic community 
for consideration or to prove it is an improvement over existing 
methods. 

An unfortunate view which, if accepted by the editorial team will halt research. Has 
this occurred for other attempts at introducing digital recovery methods? 

Table 37. Reviewer comments from the Journal of Forensic Identification in response to the submission of Paper 3.6 - Recovering of 
3D footwear impressions from sandy substrates: technical note on the contribution of SfM photogrammetry



 

233 
 

Table 19 in Paper 3.3 is a comprehensive guide to the benefits and limitations 

of techniques. Comparisons can be drawn, but the aim of the table is 

multifaceted. All methods will invariably have limitations, the perfect method 

rarely exists. To isolate the limitations of other methods and use these to steer 

research is a logical approach. In this instance the complimentary use of 

methods is a useful way of approaching the table data. Using one technique 

to strengthen another can be achieved, in much the same way an impression 

would be both photographed and cast. Pairing an existing method with SfM 

photogrammetry would be beneficial and plausible as:  

 

One: The addition of photogrammetry does not require any more equipment 

than a CSI already has. 

Two: The data obtained is not likely to be identical, SfM can in some 

circumstances provide superior visualisation as seen in paper 4.2 and will only 

equal or increase quality of evidence. 

Three: SfM photogrammetry is non-invasive. 

Four: The crime scene element of the method takes a matter of seconds, not 

rendering it impractical.  

 

Combinations of data, if practicable, should therefore be further explored by 

CSI’s to increase data quality as opposed to replacing one method with 

another. This may or may not take a natural course further down the line if it 

appears any method is becoming redundant. For example, combining 2D and 

3D (Photography and Photogrammetry/Laser Scan), or digital and non-digital 

(Cast and photogrammetry/laser scan) provides complimentary data. It may 

be assumed that this additional effort is not required, specifically with volume 

crime. It is there, however, that the addition could have the most impact when 

considering the increased options for intelligence gathering. Adding 3D data 

to footwear databases such as the NFD is a very real possibility and 

considerable gains may become apparent in due course when incorporating 

3D data into pattern-matching algorithms.  

 

Paper 4.2 is the closest to a technique comparison found in this research. It 

looks to understand how features are visualised in casting, 2D photography 
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and photogrammetry and the results can either be taken as singular academic 

research effort for each method or as a collective to see if one method 

succeeds where another doesn’t. Broadly they show that superior visualisation 

is seen when recovering with SfM, although there is scope for this to be an 

insignificant finding due to the limitations of the study and the vast array of 

variables that exist within impression evidence recovery. The finding is, 

however, particularly significant when considering accompanying comparative 

logistics of each method (Table 19). Although straightforward, these can be 

very difficult to portray to resistant practitioners, as seen in Table 37.  

 

Theme 3 – Presentation of data, suitability and potential of digital 

analysis reporting in footwear evidence 

One of the clear advantages of SfM methods is the ability to bring statistical 

methods to bear in the subsequent analysis of 3D models. This speaks to the 

ongoing debate and in some cases tension between the role of the expert 

examiner’s opinion and a bald and supposedly objective statistical statement.  

 

The goal of any form of forensic reporting is to use a method which does not 

over or understate the strength of the forensic evidence. The disciplines in 

which this is most relevant are those which have previously and currently, rely 

on expert opinion. As is often the case, there is a compromise required, it is 

not an either/or situation. Paper 3.5 demonstrates the use of statistical analysis 

in barefoot impressions in carpet which can be used to strengthen an expert’s 

opinion with digital comparison data rather than replace the expert altogether. 

Within vertebrate ichnology the provision of digital comparisons has removed 

the tendency for a single trace to be used to make a hypothesis as the logistical 

advantages of recovery come back into play. This can be equally applied to 

the idea of one impression being cast and used to provide forensic evidence 

as opposed to a whole set of impressions. Since the introduction of SfM 

methods in the ichnology community many users have gone from showcasing 

visually pleasing colour rendered models and believing that to be the extent of 

the methods' benefits, to providing valid digital comparisons. (personal 

communication, Professor M Bennett, November 2020). 
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Such uses of digital data in the forensic context therefore satisfy the 

requirements of a scientifically valid comparative technique that the discipline 

has been challenged to provide. Beyond simple comparative procedures such 

as this, is an appreciable library of literature driving the analyses of digital point 

clouds from qualitative descriptions, to quantitative. The goal of an article by 

Belvedere et al. (2018) was to provide a method of quantification of similarities 

of dinosaur tracks, investigating if thresholds can be drawn for comparison. 

Techniques such as this require little, if any, alterations in order to apply to 

footwear impressions, as the basis of the comparisons and aims of assessing 

morphological variability equally apply to this forensic context. The outputs of 

many digital point cloud analyses may be much easier to explain to a lay 

audience than a statistical Bayesian model due to less ambiguity of terms, and 

no introduction of estimated data.  

 

Attempts have been made to move footwear evidence into a discipline that 

reports its findings in a statistical manner, reporting rates of probability or 

likelihood ratios, broadly known as a Bayesian approach. Evett et al. (1998) 

attempted such a formalisation of interpretation, offering a potential 

framework. This approach encouraged examiners to assign numerical values 

to each aspect of the examination and include values such as the quantity of 

shoes sold and population of people in the area into a probability equation. A 

final numerical value would be provided to either provide strong or weak 

support for the proposition that the suspect was the offender. Over time, 

inconsistent approaches across countries and examiners can be seen 

(Bodziak 2012), with the UK an example of a country where some adaptions 

to a Bayesian model have been made and the US an example of a country 

who has largely remained consistent with a traditional footwear mark 

evaluation (Bodziak 2012). Whilst it is clear from reports such as the NRC 

(2009) that a move towards statistical reporting is inherently necessary, there 

remains to be seen an approach that satisfies both the world of footwear 

examiners and reporting bodies alike. The question is; therefore, can the 

introduction of digital recovery increase the quality of reporting for three-
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dimension impressions evidence, and satisfy both camps. Again, it is about 

providing a compliment to the role of an expert rather than replacing them.  

 

Research question eight of this thesis focuses on the idea that a technique 

that shifts a sub-section of a discipline into the use of digital data, could be an 

opportunity for a superior reporting style. There is a vast arena of tools, already 

in use in other communities, that can be brought across and applied here, 

many of which are evidence throughout this project in a forensic context. For 

example, the digital comparison of point clouds using cloud to cloud 

comparisons (Seen in papers 3.2, 3.3, 3.4, 3.5, 3.7, 4.1) and the compare 

function within bespoke photogrammetry software, DigTrace (Seen in paper 

3.3 and Appendix II: Figure 7). This function allows two or more traces to be 

superimposed over one another and the points between each cloud to be 

compared statistically, showing areas of statistical variance visually as in 

Figure 21, and therefore a great tool for explaining a comparison to a court. 

Figure 21 is an example of this as it is a comparison of impressions made by 

two identical shoes with different levels of wear. Standard deviation between 

the models has been calculated and a threshold was set so that only areas 

which show statistical variance at 95% are shown (Bennett and Budka 2018). 

This illustration of reporting styles may not suit all examiners and many may 

suggest they are not superior to current comparison techniques. The strength 

of digital data and subsequent reporting, like many other aspects of this 

research, may well be in their complimentary use and the strengthening of 

existing methods, not the replacement.  
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Chapter six: Conclusion 

 

To conclude this thesis, we can look at the foreword from the 2020 annual 

report by the forensic science regulator Dr Gillian Tully (Tully 2020). Many 

points raised in this message deeply resonate with the work completed in this 

project. Some key examples of areas of change required and areas of 

resistance are highlighted, just as have been experienced and illustrated 

within. The notions of transparent reporting, clear limits of knowledge and a 

mention of the scope that these concepts apply to are all in line with what is 

achieved within this project and what will hopefully provide a foundation for 

future work in this area. Tully’s (2020, p2) mention of innovation speaks to the 

core purpose of this research and places this research exactly where it is  

intended, as provisions of solutions and innovations that contribute to the way 

forward. 

“Whether it is data science, computer science, physics, chemistry, 
biology or another discipline, forensic science should be firmly rooted 
in good science. Courts should not have to judge whether this expert 
or that expert is ’better’, but rather there should be a clear explanation 
of the scientific basis and data from which conclusions are drawn, and 
any relevant limitations. All forensic science must be conducted by 
competent forensic scientists, according to scientifically valid methods 
and be transparently reported, making very clear the limits of 
knowledge and/or methodology. Implementation of quality standards 
is a means to this end, ensuring a systematic approach to scientific 
validity, competence and quality. It therefore remains my absolute 
priority to publish a standard for the development of evaluation 
opinions, to ensure that this systematic approach to quality covers all 
scientific activities from crime scene to court. 

Some practitioners and leaders understand quality. They may be (and 
indeed should be) challenging about the detail of how to adopt the 
standards and may rightly point out the need for additional resources. 
However, they seek to use the requirement to adhere to quality 
standards to innovate in terms of process and/or technology and, in 
doing so, they bring about positive change. Often, they are truly 
inspiring. Others misunderstand. They may grudgingly implement 
standards, but in a way that cripples their productivity and locks staff 
into rigid protocols, no matter what the case requires. Or they may 
devote much time and energy to avoiding compliance, arguing against 
change and sticking to “how we’ve always done it”. The problem is 
that technology has moved on. “How we used to take anti-
contamination precautions” is no longer fit for purpose in a world 
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where the sensitivity of DNA methods has increased by several orders 
of magnitude. “How we used to do digital forensics” is no longer fit for 
purpose in a world where data volume and complexity have ballooned, 
and a substantial subset of the data required is in the cloud. Throwing 
massive volumes of extracted data to investigators, who generally lack 
the tools and methods to interrogate the data effectively, just shifts a 
problem; a more integrated approach could be transformative. 

Leadership and innovation are critical, because trying to transpose 
quality standards onto ineffective processes without change only 
succeeds in adding inefficiency to ineffectiveness.” 

 

6.1 Research questions answered 

A degree of scientific foundation for the use of SfM photogrammetry as a 3D 

footwear impression recovery tool has been accomplished within this work. 

This has been determined through investigation into the method’s accuracy 

and precision as well as determining levels of repeatability and reproducibility. 

Cumulative results successfully address Research Question 1.  

 

A key advantage of SfM is the ability to determine error rates for individual 

environments, inclusive of the user, procedure and software errors that may 

occur. This level of transparency is rarely achievable nor utilised in relation to 

traditional recovery methods. The use of SfM in likely environments has been 

assessed and error rates can be seen to match those of industry standards. 

Higher errors can be seen in snow and wet substrates for which 

recommendations have been made to lessen the error rate disparity. These 

findings successfully address Research Question 2. 

The visualisation of impression features has been assessed for both current 

and proposed methods in a number of differing instances and in relation to a 

number of features. Superior visualisation with the use of SfM photogrammetry 

is a difficult term to guarantee but results show great promise. The results 

show that SfM can offer favourable results and highlight the potential in 

multiple environments, but any direct comparison should be evaluated in a 

contextualised trial undertaken by operationally competent examiners. As 

such, the answer to Research Question 3 is a subjective one. 



 

239 
 

The practical advantages of SfM are significant to this research in many ways. 

Aside from scientific validity, the practicality of the method is paramount to the 

use of the method in an operational setting. This research has aimed to 

provide objective scrutiny of the practicalities of all methods currently used to 

recover 3D impression evidence in order to provide context. In comparison 

with 3D casting, the practicalities of SfM can be split into, recovery 

advantages, analysis advantages and reporting advantages. These include, 

but are not limited to, a ~70 second on scene recovery time, no requirement 

for an electrical output and a completely non-destructive protocol. Analysis 

options are increased as outputs can be digitally compared and 3D printed. 

Reporting styles can be both simple and fit into a statistical model as is 

encouraged. Further practicalities include a digital output that is easy to be 

shared and stored. These simple and easily discoverable advantages can 

explain the trajectory of SfMs popularity in other communities. Specifically to 

footwear recovery, discoveries in this work show SfM can provide increased 

visualisation of both class and individual characteristics. This project has also 

highlighted that many of these practicalities mean impressions that are 

currently only recovered in 2D can be recovered in 3D, such as carpet. These 

results satisfy Research Question 4 and provide an exciting base for which 

the forensic community can build.   

 

The current determination of a scientific foundation for casting is weak and 

although experts are confident in the accuracy and precision the method 

produces, there are no studies available to evidence this. The experiments 

using casting throughout this project have highlighted the practicalities of this 

method, or their lack of, as well as an assessment of the reliability. Repeatably 

accurate results can be seen as a result of these experiments but a cloud of 

uncertainty has arisen over the repeatability to recover individual features 

accurately. These results answer, to a degree, Research Question 5. 

 

A dataset aimed at looking at the rate of acquisition of identifying footwear 

characteristics was unfortunately halted by the 2020 pandemic. The 

information gained, before the halt had to be called, provided the author with 

valuable experience. Predominantly, the experience of watching the behaviour 
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of features over time. I.e., how features can appear and disappear in patterns 

or at random, in higher rates on lower quality shoes and lower rates dependant 

on the substrates they contact and the frequency in which they are worn. 

Understanding these elements brings the authors knowledge of footwear 

closer to those seen in operational practitioners. Research Question 6 

therefore continues to be a great area to study with many quantitative 

opportunities for analysis available. 

 

Highlighting any additions, or reductions, in footwear evidence value through 

the use of a digital recovery method was the secondary main aim of this 

project. Once a scientific foundation had been laid, the aim shifted to the value 

and impact the method may have on a relatively under researched area of 

forensic science. Although it may be argued that anything can be successfully 

cast, the reality of the situation is that the unpractical protocol of recovering 

impressions this way limits the frequency in which it occurs. It is a fair 

assumption that many 3D footwear impressions are overlooked due to a 

reluctance to cast them. Equally, time pressures mean ten 3D impressions 

may be present at a scene and only one, potentially deemed the most 

‘valuable’ cast, leaving the unexplored potential of the other impressions to 2D 

photography or not being recovered at all. The value of footwear impression 

evidence needs to be considered on two planes to understand why the current 

recovery method is limiting value. These are the evidential-value and the 

intelligence-value. Recovering 10 impressions using a digital non-destructive 

method would take 10 x ~70 seconds and could provide a vast amount of 

intelligence that would otherwise be overlooked. The value can therefore be 

seen in (1) the practicalities of the method increasing frequency of type of 

evidence, (2) the nature of the method increasing the surface types able to be 

recovered in 3D and (3) the subsequent intelligence value of that evidence. 

The cumulative results of many of the papers in this project attest to the value 

of SfM and answer Research Question 7.  Appendices I,II and III further 

illustrate the value of SfM recovery in evidential and intelligence contexts, via 

the use of crime scene examples.  
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The nature of the reporting for all of the research papers included in this project 

is, intentionally, a combination of simplicity and ensuring scientific validity. The 

acceptance of the analysis style into peer-reviewed journals is an important 

milestone of the project. Highlighting to the forensic community, a different 

reporting style, that could be further explored for court use. Research 

Question 8 has been partially answered with this work, with huge scope for 

continued research. 

 

The significant findings from this project include the rather basic, but crucial, 

assurance that the accuracy of the method is both discoverable and on a level 

that falls in line with current methods. Any research into the digital recovery of 

3D footwear impressions at this stage would be both an original and significant 

contribution as it is such an unexplored area that has huge research potential. 

In order to make an impactful contribution, aims and objectives were set out 

to cover as many aspects as possible, whilst including enough depth to make 

them meaningful. There are no revolutionary results that will have immediate 

effect on the forensic science community, instead, a portion of the race run, 

and a baton handed to the community to elevate this research into 

revolutionary change that can be possible. 

 

6.2 Limitations and areas of further research 

The limitations of this project come from the tension between objective 

assessment and the need to advocate for a new technique. Trials and adoption 

by practitioners are part of the challenge. There is a level of uncertainty around 

what should be provided at this stage and an element if one excuses the 

aphorism of ‘chicken and egg’. Without user engagement one cannot test the 

technique, but without having tested the technique one struggles for 

engagement.  

 

With a large portion of this project completed by one individual, the levels of 

consistency achieved between experiments is high but this is also in turn a 

limitation. Valid comparisons between techniques are not an option without the 
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introduction of trained professionals to undertake data collection. Any 

comparisons therein are therefore provided with caveats that whilst examples 

of other techniques are included and comparisons have been made, their 

validity is limited because an expert on one of these other techniques may be 

able to push the limits of that technique. One is reminded by the reviewer 

comment in Table 37 ‘anything can be cast’. However, much of the work that 

includes methodologies, datasets and instructions can, at a later date, be 

repeated and enhanced with the use of operational experts in each area. The 

division between the academic approach and the operational norms is also a 

limitation of this work. It is likely scientific validity will need to be assessed 

further by the International Organisation for Standardisation (ISO), as is 

currently the standard recovery technique adhered to. It is hoped that this 

project will be the catalyst for this to be undertaken. 

 

Areas of further research can be broadly categorised into the general workflow 

of SfM evidence. 

 

Recovery  

- SfM recovery of impressions in snow, increasing consistency and 

quality of output 

- Comparative experiments of 3D recovery using different methods 

- Inclusion of further evidence types beyond footwear, including, tire 

marks, tool marks, 3D fingerprint impressions, writing analysis.  

Analysis 

- Investigations into both the value and enhancement of the 

comparative analysis available with digital data 

Reporting 

- Studies highlighting new and clear ways of reporting digital data 

comparisons. 
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Appendix I: Crime scene example 1 

Scenario: A female has reported the theft of her car in the early hours of the 

morning. The suspect has taken the vehicle from the driveway of the female’s 

residence but has not been seen by the female or any of her neighbours. 

CCTV shows the car speeding down a road adjacent to the victim’s house. 

Local police have discovered the vehicle in a car park nearby with items 

missing. The female had left a laptop and camera in the boot of the car and 

these are now missing along with a pair of designer sunglasses that were in 

the glovebox. The car has been dusted for fingerprints, but the suspect looks 

to have worn gloves as no prints were found that did not belong to the owner. 

There was a layer of snow/slush on the ground at the time the car was 

abandoned and footsteps can be seen around the vehicle. Footwear 

impressions have also been collected from outside of the house where the 

vehicle was taken from. Additional tracks can be seen around the vehicle 

belonging to the first police officer on scene and have been ruled out of 

analysis. CCTV of the car park shows a female leaving the car park but does 

not show from which car. She can be seen to be carrying a large holdall and 

is wearing what appear to be Nike Shoes as indicated by a visible Nike Logo 

on the side of the shoe. 

This potential suspect has been identified and been brought in by local police 

officers. She was not carrying the stolen items at the time of her arrest. Her 

shoes were seized at custody so that test impressions could be made. 
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Evidence presented 

Item Number Description 

1 Photograph of suspect shoe side (Figure 1A) 

2 Photograph of suspect shoe side (Figure 1B) 

3 Photograph of suspect shoe sole (Figure 1C) 

4 Photograph of scene, tracks highlighted (Figure 2A) 

5 Photograph of scene, tracks highlighted (Figure 2B) 

6 Photograph of scene, tracks highlighted (Figure 2C) 

7 Crime Scene Sketch (Figure 2D) 

8 DigTrace Colour Render of track A (Figure 3A) 

9 DigTrace Colour Render of track B (Figure 3B) 

10 DigTrace Colour Render of track C (Figure 3C) 

11 Surfaced Model of track A (Figure 3D) 

12 2D Static Test impression (Figure 4A) 

13 2D Dynamic Test impression (Figure 4B) 

14 
DigTrace Colour Render of dynamic impression of test shoe in BubberTM 
(Figure 4C) 

15 
DigTrace Standard Deviation Comparison of track B found near the vehicle in 
the car park and track D from the track found at the home where the vehicle 
was taken. (Figure 5A) 

16 
DigTrace 2 point Standard Deviation Comparison of track B found near the 
vehicle in the car park and track D from the track found at the home where 
the vehicle was taken. (Figure 5B) 

Table 1. Evidence items 1 – 18 for crime scene example 1 
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Figure 1. Evidence Items 1-3. A Vertical photograph of right side of suspect 
shoe. B Vertical photograph of left side of suspect shoe. C Vertical photograph 
of suspect shoe sole. 
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Figure 2. Evidence Items 4-7 A, B and C Photographs of impressions in situ, 
impressions highlighting in red. D Crime scene sketch of area impressions 
were located. Red showing one direction of movement and blue showing 
directional change. 
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Figure 3. Evidence Items 8 -11. A, B, C DigTrace colour renders of tracks a,b 
and c. Scaled, cropped and aligned to orthogonal view in DigTrace. D. 
Example of a surfaced (Delauney) 3D model using one of the tracks located.  
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Figure 4. Evidence Items 12-14. A 2D static test impression. B 2D dynamic 
test impression. C DigTrace Colour render (Scaled, cropped and aligned to 
orthogonal plane in DigTrace) of dynamic 3D test impression in BubberTM 
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Figure 5. Evidence Items 15-16. A The standard deviation between the two 
co-registered shoe prints track B and track D. B A version with a 2 standard 
deviation threshold applied showing areas (blue) that are statistically 
significant at 95%. 

 
Analysis: 

- Two-dimensional test impressions created to identify class and 

individual characteristics of suspects seized shoes. Both static and 

dynamic prints taken. No visible individual characteristics or 

appearance of general or individual wear.  

- Three-dimensional test impression using BubberTM taken to identify 

class and individual characteristics. No visible individual characteristics 

or appearance of general or individual wear.  

- Three-dimensional models created of three tracks from car park and 

one track from driveway. Scaled cropped and interpolated in DigTrace 

and colour depth renders produced. Measurements taken of 

impression.  

- One fully surfaced model created using Poisson mesh in MeshLab.  

- One comparison of two tracks undertaken. One track from the car park 

and 1 from the driveway. Standard deviation map accompanied by two 
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standard deviations showing statistically significant areas between 

tracks. 

Evidential Value: The evidential value of the evidence presented is limited 

but useful. Without any unique wear patterns or unique characteristics, we 

cannot determine a positive identification between the suspect’s seized shoe 

and impressions found at the scene. The DigTrace comparison shows a strong 

match between the tracks found at both scenes suggesting it was indeed the 

same pair of shoes making both of the tracks. This doesn’t, however, allow us 

to link the suspect to the shoes. The suspect's seized shoes appear to have a 

very minimal degree of wear suggesting they are fairly new or at least have 

not been worn much. As such it could be suggested that there are more than 

one pairs of shoes in circulation which could have made the same impression 

as found at the two scenes.  

Intelligence Value: Whilst the evidential value of the evidence is not strong, 

the evidence has intelligence value. These tracks have been input into a 

database to see if there are any matches with other crimes scene evidence. 

This could potentially lead to further charges as the suspect can be 

immediately questioned on other crimes if matches are found.  

Conclusion: The tracks found at both scenes appear to have been made by 

the suspect. It is, however, difficult to conclude a positive identification due to 

the lack of individuality on the shoe sole. 
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Appendix II: Crime scene example 2 

Scenario: An assault has taken place inside a house on a quiet cul de sac. 

The homeowner opened the door to whom she believed to be a charity 

collection volunteer who forcible entered the residence. The suspect is alleged 

to have attempted to assault the homeowner and fled upon hearing another 

resident come down the stairs. The police were quickly on the scene and were 

able to pick up the suspect a few roads away after receiving a brief description 

from the victim. A forensic team was asked to check the property and its 

surroundings for evidence and located several footwear impressions. 

Detectives investigating the incident are particularly keen to identify the size 

and brand of shoe. There have been several incidents of a similar description 

in neighbouring forces where footwear marks were also found. If the 

impressions are from the same size and make of shoe it will allow officers to 

start a line of questioning regarding the whereabouts of the suspect at the 

times those offences were committed.  

Evidence presented 

Item Number Description 

1 
DigTrace Colour Render of dynamic test impression in BubberTM 

(Figure 6A) 

2 Crime Scene Sketch (Figure 6B) 

3 Photograph of impression A in situ (Figure 6C) 

4 Photograph of impression B in situ (Figure 6D) 

5 Photograph of impression C in situ (Figure 6E) 

6 DigTrace Colour Render of track A (Figure 7A) 

7 DigTrace Colour Render of track B (Figure 7B) 

8 DigTrace Colour Render of track C (Figure 7C) 

9 DigTrace compare overlay track A-C (Figure 7D) 

10 DigTrace compare overlay track A-B (Figure 7E) 

Table 2. Evidence items 1- 10.  
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Figure 6. Evidence items 1-5. A. DigTrace Colour render (Scaled, cropped and 
aligned to orthogonal plane in DigTrace) of dynamic 3D test impression in 
BubberTM B. Crime scene sketch. C,D and E. Photographs of impressions in 
situ. 
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Figure 7. Evidence items 9-13 A,B,C. DigTrace Colour renders of three tracks 
recovered (Scaled, cropped and aligned to orthogonal plane in DigTrace). D. 
DigTrace compare overlay track A-C E. DigTrace compare overlay track A-B 
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Analysis.  

- A test impression was taken using the suspect’s shoe in BubberTM. A 

model was built of this impression using DigTrace. The shoe is a size 6 

and brand Vans. 

- All three impressions found were photographed and models built using 

DigTrace. A visual analysis shows they are all made from a shoe of 

likely the same size and the same brand. Compared images show how 

each impression links to another.  

Evidential Value 

- The evidential value of these impressions is limited for the following 

reasons: The shoes are very popular and the pattern left in the 

impression is by a sole owned by a large number of people. This means 

that positively matching the shoe and the impressions is less likely. 

Secondly, the shoe looks to be fairly new and not worn, there is no 

evidence of a huge amount of wear or any characteristics that would 

make a positive identification easier. The medium in which the 

impressions were left is made up of very fine grains of sand. Any minute 

detail of wear or RACS may not have been left due to this.  

Intelligence Value 

-  The intelligence value of these impressions is high as both size and 

brand have been easily identified. This information can now be run 

through the national footwear database and matched with similar 

impressions left at other scenes. 

Conclusion 

- The impressions left behind at this scene are indicative of those left by 

the suspect in custody. They have been made by a size 6 Vans shoe. 

This is the same size and brand of those worn by the suspect. The 

intelligence value of this information led to the charging of the suspect 

of three separate criminal offences. 
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Appendix III: Crime scene example 3 

Scenario: A convenience store has been broken into and vandalised during 

the night. Items have been left strewn around the floors of the aisles and the 

cash register broken into. Two suspects have been detained but there is little 

evidence linking them directly to the crime. They were seen running from the 

store and picked up by police nearby. Both suspects were wearing balaclavas 

and gloves. Shoeprints have been found in food items discarded around the 

shop.  

Evidence presented 

Item Number Description 

1 3D Model of shoeprint in slice of bread (Figure 9) 

2 Custody print of suspect A shoes seized (Figure 8 A, B) 

3 Custody print of suspect B shoes seized (Figure 8 C, D) 
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Figure 8. Evidence items 2-3 A,B,C,D. Custody prints obtained with an 
Everspry shoeprint scanner.  
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Figure 9. Evidence item 1 – 3D point cloud viewed in DigTrace of an 
impression in bread, recovered via SfM photogrammetry. 

 
Analysis: Both suspects have walked on a footwear scanner once they have 

reached the custody suite and the images are sent for comparison to the 3D 

model. The model has been created by the collection of 29 images taken by 

forensic officers at the scene. They have then been uploaded into DigTrace 

and the model has been scaled and cropped. 

Evidential Value: Low – No unique features can be determined from the 

impression to successfully identify the suspect’s shoe as the shoe that made 

this impression. The pattern is very common. 

Intelligence Value: High – Make and model easily determined from DigTrace 

model.  

Conclusion: In the opinion of the examiner the questioned footwear 

impression in bread could have been made by suspect B. It can be seen that 

the pattern in the bread closely correlates with that of the suspect B’s scanner 

prints. This is presented to the suspect in interview and he admits to the 

convenience store burglary. 
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