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As one of the key technologies in the fifth generation of mobile communications, massive multi-input multioutput (MIMO) can
improve system throughput and transmission reliability. However, if all antennas are used to transmit data, the same number of
radiofrequency chains is required, which not only increases the cost of system but also reduces the energy efficiency (EE). To solve
these problems, in this paper, we propose an EE optimization based on the particle swarm optimization (PSO) algorithm. First, we
consider the base station (BS) antennas and terminal users and analyze their impact on EE in the uplink and downlink of a single-
cell multiuser massive MIMO system. Second, a dynamic power consumption model is used under zero-forcing processing, and it
obtains the expression of EE that is used as the fitness function of the PSO algorithm under perfect and imperfect channel state
information (CSI) in single-cell scenarios and imperfect CSI in multicell scenarios. Finally, the optimal EE value is obtained by
updating the global optimal positions of the particles. The simulation results show that compared with the traditional iterative
algorithm and artificial bee colony algorithm, the proposed algorithm not only possesses the lowest complexity but also obtains
the highest optimal value of EE under the single-cell perfect CSI scenario. In the single-cell and multicell scenarios with
imperfect CSI, the proposed algorithm is capable of obtaining the same or slightly lower optimal EE value than that of the
traditional iterative algorithm, but the running time is at most only 1/12 of that imposed by the iterative algorithm.

1. Introduction

Accompanying the arrival of the fifth generation (5G) of
mobile communications, the wireless communication indus-
try is developing rapidly, and people’s demand for the speed
of wireless data and the amount of connective equipment is
growing at an explosive rate, resulting in increasingly serious
economic and environmental problems. In this context, both
academics and industry professionals are increasingly con-
cerned about how the energy efficiency (EE) of massive
multi-input multioutput (MIMO) systems can be improved
[1]. Massive MIMO, which is one of the key technologies of
5G mobile communications, was first proposed by Marzetta
in 2010. By installing hundreds of antennas at the base sta-
tion (BS), massive MIMO can serve multiple terminal users
by using the same time-frequency resource, which signifi-

cantly improves the system accessibility rate [2]. However,
if all antennas are used to transmit data, the same number
of radiofrequency (RF) chains are required, which not only
increases the cost of the system but also reduces the EE.
Therefore, to respond to the call for green and energy-
saving communications, it is urgent to improve the EE per-
formance of the massive MIMO system [3].

Aiming at solving the problem of EE reduction when
using all antennas to transfer information in a massive
MIMO system, many experts devote themselves to studying
the algorithm to improve the system EE [4–11]. Reference
[4] studies the factors affecting the EE of the massive MIMO
uplink systems, but it ignores the power consumption of the
circuit. On this basis, [5] establishes a power consumption
model in which the circuit power consumption is constant
to study the EE of massive MIMO systems and draws the
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conclusion that the system EE increases infinitely with an
increasing number of BS antennas. Through the analysis of
[4, 5], we can see that the existing power consumption
models fail to consider the circuit power consumption or
treat it as a constant, resulting in the inaccurate expression
of EE. In [6], a more realistic power consumption model is
considered that only analyzes the perfect channel state infor-
mation (CSI) scenarios and ignores the existence of imper-
fect CSI scenarios. Therefore, the establishment of a more
realistic power consumption model that is applied in both
perfect and imperfect CSI scenarios is crucial for studying
the EE performance of the system.

In recent years, a hot topic of study has been the influ-
ence of a single parameter on the system EE. Reference [7]
analyzes the influence of the number of BS antennas on the
system EE and proves that the EE of a massive MIMO sys-
tem in single-cell and multicell scenarios exhibits a trend of
increasing at first and then decreasing as the number of BS
antennas increases. Li et al. [8] derive the EE closing
expression of single-user massive MIMO systems based
on antenna selection technology and demonstrate that sys-
tem EE is a quasiconcave function about the number of BS
antennas. [9] considers the trade-off between performance
and computational complexity in massive MIMO system
and proposes two efficient transmit-antenna selection
schemes in practical systems. [10, 11] describe a secure
transmission strategy based on spatial sparsity to improve
the secrecy capacity of system in uplink and downlink,
respectively. [12] describes an antenna selection algorithm
that considers the terminal user’s CSI and finally obtains
the optimal EE value of the system by using the Wishart
distribution theorem. In the multiuser massive MIMO sys-
tem, Byung et al. [13] propose a random antenna selection
algorithm to select the antenna subset and demonstrate that
the system EE can be improved greatly when the number of
selected antennas is more than ten times the number of ter-
minal users. Differing from the above references, there are
also some works studying the impact of terminal users on
system EE. Considering the downlink of a massive MIMO
system, [14] shows that the system EE is a concave function
about the number of terminal users, and the optimal EE
value and corresponding number of terminal users can be
obtained by taking the derivative of the EE function. In
addition, [15] investigates a greedy exchange user selection
algorithm based on zero-forcing (ZF) precoding that
improves the system EE performance on the premise of
reducing complexity. Examining the uplink of a massive
MIMO system, [16] shows that the system EE can be
improved by appropriately shutting off certain special users
during the process of information transmission. [17] dem-
onstrates that when the number of terminal users is greater
than the number of the BS antennas, both higher through-
put and higher EE can be obtained by adopting an appro-
priate user scheduling scheme before precoding.

The above references regarding EE optimization algo-
rithms only consider the influence of a single parameter on
EE. However, the EE of the system is also affected by many
other parameters such as CSI, transmission power, and
transmission protocol. Therefore, it is necessary to compre-

hensively study the influence of multiple parameters on the
system EE. [18] explores a joint iterative optimization of
the number of BS antennas and the number of terminal
users to optimize the EE of multiuser massive MIMO down-
link systems. Simulation results show that each terminal user
needs approximately two transmitting antennas to achieve
the optimal value of EE when CSI is known by the transmit-
ter. Studying the uplink and downlink of massive MIMO
systems, [19] derives the expression for the system EE under
different processing schemes and finally performs joint
iterative optimization of the number of BS antennas and
the number of terminal users to obtain the optimal value
of EE. However, the iterative algorithm possesses a high
computational complexity, especially for a massive MIMO
system equipped with hundreds of antennas and terminal
users, so the implementation of the algorithm is more
time-consuming and inefficient. To reduce the algorithm
complexity, [20] proposes a step-by-step optimization
algorithm in which one parameter is fixed and another
parameter is optimized to improve the system EE.
Although the algorithm possesses low computation com-
plexity, it does not consider the relationship between the
two parameters and cannot optimize the two parameters
simultaneously.

The particle swarm optimization algorithm (PSO), first
proposed in 1995, is a random search algorithm based on
group cooperation that imitates the foraging behaviour of
birds [21]. This algorithm can optimize multiple parame-
ters simultaneously by means of individual interaction
and population information sharing, resulting in the quick
and efficient solving of multiparameter optimization prob-
lems. [22, 23] take the capacity of a MIMO system as the
objective function and use the PSO to select the receiver
antennas. The simulation results show that the PSO can
converge to the global optimal solution quickly and
achieve good performance. In the MIMO broadcast chan-
nel, [24] proposes a joint transmission and an algorithm
for the selection of receiver antennas based on the PSO,
which can select the antenna that yields the maximum
EE for the system in a short time. For a scenario with
the same number of RF links and transmitting antennas,
the PSO is used to select antennas to maximize the system
EE, and it can obtain better EE performance in situations
with low complexity [25]. Through the analysis of the
above works, we can see that the PSO not only exhibits
fast convergence and low computational complexity but
also achieves better system performance. However, the
PSO is currently used in the antenna selection technology
with only one parameter, which fails to obtain the optimal
EE. Based on this, we introduce the PSO for addressing EE
optimization problems in multiparameter massive MIMO
systems.

To review, prior works on the EE of massive MIMO sys-
tems have not yet simultaneously optimized the numbers of
BS antennas and terminal users for maximum EE under the
uplink and downlink of single-cell and multicell multiuser
massive MIMO systems with perfect and imperfect CSI.
Against this backdrop, our core innovations in this work
are as follows.
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(i) For the uplink and downlink of a single-cell (multi-
cell) multiuser massive MIMO system, we consider
the influence of the numbers of BS antennas and ter-
minal users on the system EE under perfect and
imperfect CSI. First, we comprehensively analyze
the influence of the numbers of BS antennas and ter-
minal users on the system EE. Second, considering
ZF processing, we propose a power consumption
model in which the circuit power varies dynamically
with the signal processing procedure under perfect
and imperfect CSI to obtain the expression for the
EE of the system. Third, the PSO algorithm, which
can obtain better EE performance more quickly by
optimizing two parameters simultaneously, is intro-
duced into solve the EE optimization problem for
massive MIMO systems

(ii) The PSO algorithm can optimize multiple parame-
ters simultaneously with low complexity, but it is
only used for antenna selection in the existing stud-
ies. Our proposed algorithm creatively incorporates
the PSO algorithm for addressing the EE optimiza-
tion problem in multiparameter massive MIMO sys-
tems. Using the expression for EE as the fitness
function, the global optimal EE value is obtained
by updating the velocities and locations of particles
with fitness values. Compared to the traditional iter-
ative algorithm [19] and the artificial bee colony
(ABC) algorithm [26], the computational time of
the algorithm presented in this paper is at least 10
times higher, which reduces the computational com-
plexity and improves the computational efficiency.
What is more, the proposed algorithm requires
fewer transmit antennas to achieve the optimal
energy efficiency, which reduces the complexity
and cost of system implementation

In this paper, bold italic uppercase symbols describe
matrices, e.g.,H, and bold italic uppercase symbols with sub-
scripts describe vectors, e.g., Hi. Constant variables are
denoted by uppercase symbols, e.g., H. The Hermitian trans-
pose and inversion operators are denoted by ð⋅ÞH and ð⋅Þ−1,
respectively. The expectation operator is denoted by Ef⋅g.
IM denotes the (M ×M) identity matrix, while 0M denotes
the (M ×M) zero matrix. CNð⋅Þ denotes a multivariate cir-
cularly symmetric complex Gaussian distribution [19].

The rest of this paper is organized as follows. In Section
2, the system model is given, and the expression of EE is
derived. In Section 3, the system EE optimization algorithm
based on the PSO is proposed. Section 4 shows the simula-
tion results. In Section 5, the conclusion is given.

2. System and Energy Efficiency Models

2.1. Single-Cell Scenarios

2.1.1. Perfect CSI. In this section, we focus on the uplink and
downlink of a single-cell multiuser massive MIMO system.
The BS of the system is equipped with M antennas to serve
K uniformly distributed terminal users. For analytic tracta-

bility, the time-division duplex (TDD) protocol, which is
shown in Figure 1, is used between the BS and the users
[7]. For the reciprocal of uplink and downlink channels in
the TDD protocol, the BS can evaluate the downlink trans-
mission state by employing an uplink pilot signal.

Observe from Figure 1 that K denotes the number of ter-
minal users, and τul and τdl denote the pilot multiplexing
factors of uplink and downlink, respectively. U = BCTC rep-
resents the number of symbols per coherent block. BC and
TC represent the coherence bandwidth and coherence time,
respectively.

We assume that the perfect CSI is obtainable at the BS
and that the transmission of the downlink channel is obtain-
able from the uplink pilot signal through the TDD protocol.
The propagation path loss is the main large-scale fading
between the BS and terminal users, in which the loss is
assumed to be same between a user and all BS antennas.
H = ½h1, h2,⋯hK� is used to represent the channel matrix
from the BS to the terminal users, where hK = ½hk,1, hk,2,⋯
hK,M� obeys the Rayleigh fading model hk ∼CNð0M, lðxkIMÞÞ,
where hk,n denotes the channel between the nth antenna at
the BS and the kth terminal user. The interference between ter-
minal users degrades the EE performance of the multiuser mas-
sive MIMO system, but this problem can be solved by using
precoding technology [27–30]. In the uplink of the multiuser
massive MIMO system, [29] uses ZF, minimum mean squared
error, and maximum ratio combing/transmission to optimize
the capacity of the system. The results show that the linear pre-
coding technique with low complexity can effectively reduce or
even eliminate the interference between terminal users in the
massive MIMO system. [30] derives that the ZF precoding
can eliminate the interference between terminal users to
improve the system EE. Based on this finding, we adopt ZF
detection and ZF precoding to process the uplink and downlink

of the system. G =HðHHHÞ‐1 = ½g1, g2,⋯gK� ∈ CM×K

describes the uplink detection matrix, and the downlink pre-

coding matrix is described as V =HðHHHÞ‐1 = ½v1, v2,⋯vK�
∈ CM×K .

EE (in units of bit/Joule) is defined as the total capacity
divided by the total power consumption [31]. In addition,

EE =
Ctotal
Ptotal

bit/J, ð1Þ

where Ctotal stands for the system total capacity and Ptotal
denotes the system total power consumption.

Coherence block: U

Uplink
𝜏ul K

Downlink
𝜏dl K

Uplink
transmission

Downlink
transmission

Figure 1: TDD protocol.
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For the uplink and downlink of a massive MIMO sys-
tem, the Ctotal term in (1) consists of two parts:

Ctotal = 〠
K

i=1
Ε Cul

i

n o
+ Ε Cdl

i

n o� �
, ð2Þ

where Cul
i and Cdl

i are the rates of the ith user in uplink and
downlink, respectively. For ZF processing, (2) can be rewrit-
ten as [19].

Ctotal = K 1 −
K τul + τdl
� �

U

 !
�C, ð3Þ

where �C [19] is the total gross rate, which is given by

�C = B log 1 + ρ M − Kð Þð Þ, ð4Þ

where B (with Hz units) in (4) is the bandwidth of the
system and ρ is a constant that is proportional to the sig-
nal-to-interference-and-noise ratio.

The total power consumption Ptotal in (1) consists three
parts:

Ptotal = Pul
TX + Pdl

TX + PCP, ð5Þ

where PCP is the power required for circuit and Pul
TX and Pdl

TX
are the average power of the power amplifier (PA) [19] in
the uplink and downlink, respectively. They are defined as

Pul
TX =

Bςul

φul ρσ
2SχK , ð6Þ

Pdl
TX =

Bςdl

φdl ρσ
2SχK , ð7Þ

where σ2 is the variance of the noise. ςul and ςdl stand for the
transmission fraction of the uplink and downlink, respec-
tively. φulð0 < φul ≤ 1Þ and φdlð0 < φdl ≤ 1Þ represent the PA
efficiency of the users and BS, respectively, and Sχ [32]
accounts for user distribution and the propagation environ-
ment. Sχ is defined as

Sχ =
di+2max − di+2min

�d 1 + i/2ð Þð Þ d2max − d2min
� � , ð8Þ

where iði ≥ 2Þ describes the path-loss exponent and �dð�d > 0Þ
is a constant. dmax and dmin are the maximum and minimum
radii of the user’s uniformly distributed circular region,
respectively.

Summing (6) and (7), we have that

PTX = Pul
TX + Pdl

TX =
Bρσ2Sχ

φ
K , ð9Þ

where φ = φulφdl/ðςulφdl + ςdlφulÞ.

For the multiuser massive MIMO system, ZF detection
and ZF precoding are used to process the uplink and down-
link of the system under perfect CSI, respectively. We can
conclude that the total system EE is

EE =
∑K

i=1 Ε Cul
i

� �
+ Ε Cdl

i

� �� �
Pul
TX + Pdl

TX + PCP
: ð10Þ

PCP in (10) is the circuit power consumption, which is
the total power consumed by all analog and digital signal
processing. Obviously, the circuit power changes dynami-
cally during the information transmission and can be influ-
enced by many factors. However, PCP is often ignored or
treated as a constant [4–6] in most previous works which
may lead to a certain degree of error in the results obtained.
To obtain the optimal system EE value by adjusting the
numbers of BS antennas and terminal users, we use a more
realistic power consumption model in which the circuit
power consumption changes dynamically with the signal
processing process. In addition,

PCP = PFIX + PCD + PSCE + PTC + PLDB + PZFP, ð11Þ

where PFIX is a constant that stands for the fixed power con-
sumed by site-cooling, baseband processors, analog and dig-
ital signaling, etc. [5]. PCD represents the power consumed
by the channel encoding and decoding processes and can
be quantified as

PCD = 〠
K

i=1
Ε Cul

i

n o
+ Ε Cdl

i

n o� �
PCOD + PDECð Þ  inWattsð Þ,

ð12Þ

where PCOD and PDEC are the power required for channel
coding and decoding, respectively.

Using the expressions in (2) and (3), we can arrive at

PCD = Ctotal PCOD + PDECð Þ

= �CK 1 −
K τul + τdl
� �

U

 !
PCOD + PDECð Þ  inWattsð Þ,

ð13Þ

PSCE in (11) stands for the power required for channel
estimation in both the uplink and downlink of the system,
and it can be quantified as [19]

PSCE =
2BMK2τul

ULM
+
4BK2τdl

ULK
  inWattsð Þ, ð14Þ

where LM and LK are the computational efficiencies of the BS
and terminal users, respectively.

PTC in (11) is the power consumed by transmitters and
receivers [31], which is given by

PTC =MPBS + PSYN + KPUE  inWattsð Þ, ð15Þ
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where PSYN is the power consumption of the local oscillator
and PBS is the power consumed by running circuit compo-
nents at the BS. PUE is the power required for running circuit
components at the terminal users.

PLDB in (11) denotes the power required for transferring
the data of the uplink and downlink from the BS to the core
network [33]. In addition,

PLDB = 〠
K

i=1
Ε Cul

i

n o
+ Ε Cdl

i

n o� �
PBT  inWattsð Þ, ð16Þ

where PBT describes the power required for backhaul traffic.
Using the expressions in (2) and (3), we can arrive at

PLDB = CtotalPBT = �CK 1 −
K τul + τdl
� �

U

 !
PBT  inWattsð Þ:

ð17Þ

PZFP in (11) is the power consumed by the ZF process
and can be calculated as [34]

PZFP =
2BMK
LM

1 −
K τul + τdl
� �

U

 !

+
BK

3ULM
K2 + 9MK + 3M
� �

  inWattsð Þ:
ð18Þ

Plugging (13)–(18) into (11) yields

PCP = PCOD + PDEC + PBTð Þ�CK +
2BMK
LM

� 	

� 1 −
K τul + τdl
� �

U

 !
+MPBS + KPUE + PFIX

+ PSYN +
BK

3ULM
K2 +MK 6τul + 9

� �
+ 3M

h i
+
4BK2τdl

ULK
:

ð19Þ

To simplify (19), we introduce some constant coefficients as
shown in Table 1. Therefore, we can rewrite (19) in the fol-
lowing form, which is shown in (20)

PCP = 〠
3

i=0
YiK

i +M〠
2

i=0
ZiK

i + XK 1 −
K τul + τdl
� �

U

 !
�C:

ð20Þ

2.1.2. Imperfect CSI. The EE expression for the massive
MIMO system is studied in the previous section in the
single-cell scenarios with perfect CSI. In this section, we
investigate the massive MIMO system EE in the case of
imperfect CSI in the single-cell scenarios. As described in
[19, 35, 36], if approximate ZF processing is used under
imperfect CSI, the average gross rate is given by

�C = B log 1 +
ρ M − Kð Þ

1 + 1/τul
� �

+ 1/ρKτul
� �

 !
, ð21Þ

where Kτul stands for the lengths of the orthogonal pilot
sequences in the uplink. Obviously, unlike in the expression
in (4), the average gross rate in (21) is more complicated due
to the imperfect CSI that causes inevitable interference
between terminal users.

2.2. Multicell Scenarios. In this section, a multicell massive
MIMO system consisting of J cells is studied. The center of
each cell is equipped withM antennas, and K terminal users
are uniformly distributed in the cell. In the multicell sce-
nario, CSI is obtainable by channel estimation with pilot
sequences at the BS. However, the number of pilot sequences
is limited due to the coherence time of the system. The reuse
of pilot sequences between multiple cells inevitably causes
pilot contamination (PC) [37, 38], which can affect the sys-
tem’s average achievable rate. As described in [19], we con-
sider some of the uncertainties of the channel to be noise,
and the power consumed by PA is as described in (9). If
ZF processing is used, the average gross rate is given in (22)

Table 1: The circuit power consumption settings.

Coefficients Value

X PCOD + PDEC + PBT

Y0 PFIX + PSYN

Y1 PUE

Y2 4Bτdl/ULK
Y3 B/3ULM
Z0 PBS

Z1 B 2U + 1ð Þ/ULM

Z2 B 3 − 2τdl
� �

/ULM

�C = B × log 1 +
1

IPC + 1 + IPC + 1/ρKτul
� �� �

1 + KIρð Þ/ρ M − Kð Þð Þ − K 1 + IPC2ð Þ/ M − Kð Þð Þ

 !
, ð22Þ
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where IPC =∑ℓ∈Qj\fjgI jℓ stands for the total power consumed

by PC, and IPC2 = ðIPCÞ2. I =∑J
l=1I jℓ is the relative interfer-

ence between all cells. I jℓ = ExℓkfℓjðxℓkÞ/ℓℓðxℓkÞg stands for
the average interference that exists between a terminal user
in cell ℓ and the BS in cell j.

Ef⋅g is the expectation operator. ℓjðxℓkÞ is the average
channel fading from the fixed location to the jth user.

3. Energy Efficiency Optimization Algorithm
Based on the PSO

It can be seen from the previous section that the massive
MIMO system EE is related to the numbers of BS antennas
(M) and terminal users (K). Therefore, the EE optimization
problem under different scenarios can be described as shown
in (23)

It can be seen from (23) that the expression of the system
EE is very complex regardless of whether the situation is a
single-cell or multicell scenarios with perfect or imperfect
CSI. In particular, the parameters M and K appear in both
the numerator and denominator of the EE expression. Con-
sequently, it is difficult to obtain the values of M and K that
optimize the EE of the system.

The optimal EE of the system can be obtained by an
exhaustive search algorithm, which requires many calcula-
tions. An iterative optimization algorithm was used to solve
this problem in [19]. However, this algorithm takes a long
time and greatly increases the complexity of the algorithm
implementation. Moreover, it cannot optimize two parame-
ters at the same time, leading to a result that may not be
close to the optimal value. To quickly obtain the optimal
EE with low complexity, the PSO algorithm is applied to
optimize the EE of the massive MIMO system by adjusting
the numbers of BS antennas and terminal users
simultaneously.

3.1. The PSO Algorithm. The PSO algorithm, first proposed
in 1995, was inspired by the simulation of the foraging pro-
cess of birds [21]. The core idea of the PSO is as follows: in
the PSO algorithm, each particle is a possible solution of the
optimization problem and it holds its own position and
speed information. The velocity vector of the ith particle in
the D-dimensional space is described as Vi = ðvi1, vi2,⋯⋯
, viDÞ and Xi = ðxi1, xi2,⋯⋯ , xiDÞ describes the ithparticle.
Then, the algorithm finds the local optimal location infor-
mation, while at the same time, the whole particle swarm
can also record global optimal location information. The
historical optimal value found by the particle itself is Pi = ð
pi1, pi2,⋯⋯ , piDÞ, and the best selection result from the
whole particle swarm can be described as Pg = ðpg1, pg2,⋯
⋯ , pgDÞ. Each particle in the particle swarm adjusts its
speed Vi and position Xi according to the current individual
extreme value Pi, found by the particle itself, and the current
global optimal solution Pg shared by the entire particle

swarm until the fitness function reaches its maximum value.
The speed and position update formulas are as follows [39]:

vid = ωvid + c1 ∗ rand ðÞ ∗ pid‐xidð Þ + c2 ∗ rand ðÞ ∗ pgd‐xid
� �

,

ð24Þ

xid = xid + vid, ð25Þ
where ωðω > 0Þ is the inertia weight and c1 and c2 are two
constants that stand for the individual learning factor and
social learning factor, respectively. rand ðÞ is a random func-
tion in the range ½0, 1�. xid and vid are a particle’s current
location and velocity. pid is the optimal value that particle i
has found so far, and pgd is the global optimal value found
by all particles. The first part of (24) is the “inertness” part,
which describes the effect of the previous velocity. The sec-
ond part is the “individual” part, which stands for the indi-
vidual particle’s experience. The third part is the “social”
part, which describes the communication and cooperation
between particles.

The PSO algorithm seeks the optimal solution through
the cooperation and sharing of information between individ-
uals in the particle swarm. The algorithm is very easy to
implement, with few adjusted parameters. Moreover, the
PSO algorithm can be applied to solve different practical
problems by abstracting the objective function without com-
plex mathematical calculations, and it can quickly acquire
the solution that is closest to the optimal value. Based on
this, the PSO algorithm is applied to obtain the optimal EE
of the massive MIMO system.

3.2. PSO Algorithm-Assisted Energy Efficiency Optimization.
In the PSO algorithm, which is applied to optimize the
EE of massive MIMO systems, the D-dimensional solution
space represents the number of adjustable parameters, that
is, the number of BS antennas (M) and the number of ter-
minal users (K). Therefore, we use ND stands for the
number of the optimization parameters. The position of

max
M∈Z,K∈Z
M≥K+1

EE =

KB 1 − K τul + τdl
� �

/U
� �� �

log 1 + ρ M − Kð Þð Þ
Bρσ2Sχ/φ
� �

K +∑3
i=0YiK

i +M∑2
i=0ZiK

i + XBK 1 − K τul + τdl
� �

/U
� �� �

log 1 + ρ M − Kð Þð Þ
, single‐cell perfect CSIð Þ,

KB 1 − K τul + τdl
� �

/U
� �� �

log 1 + ρ M − Kð Þð Þ/ 1 + 1/τul
� �

+ 1/ρKτul
� �� �� �� �

Bρσ2Sχ/φ
� �

K +∑3
i=0YiK

i +M∑2
i=0ZiK

i + XKB 1 − K τul + τdl
� �

/U
� �� �

log 1 + ρ M − Kð Þð Þ/ 1 + 1/τul
� �

+ 1/ρKτul
� �� �� �� � , single‐cell imperfect CSIð Þ,

KB 1 − K τul + τdl
� �

/U
� �� �

log 1 + 1/IPC + 1 + IPC + 1/Kρτul
� �� �

1 + KρIð Þ/ ρ M − Kð Þð Þð Þ − K 1 + IPC2ð Þð Þ/ M − Kð Þð Þ� �� �
Bρσ2Sχ/φ
� �

K +∑3
i=0YiK

i +M∑2
i=0ZiK

i + XKB 1 − K τul + τdl
� �

/U
� �� �

log 1 + 1/IPC + 1 + IPC + 1/Kρτul
� �� �

1 + KρIð Þ/ ρ M − Kð Þð Þð Þ − K 1 + IPC2ð Þð Þ/ M − Kð Þð Þ� �� � , multicell imperfect CSIð Þ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð23Þ
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the particle matches a possible solution to the optimiza-
tion problem ðMopt, KoptÞ. The fitness function for this
problem is described as in (23), and the value of EE rep-
resents the fitness value of the related solution. NP denotes
the number of particles.

The main steps of the PSO algorithm for the optimiza-
tion of EE are shown below:

The PSO algorithm is applied to optimize the massive
MIMO system EE, and the core of the algorithm is to find
the accurate fitness function, which is the mathematical
expression of the EE as described in (23). Then, like the
PSO algorithm, the EE optimization algorithm initializes
the particle swarm, updates the speeds and positions of the
particles, and updates the global optimal value according to
the fitness value until the termination criteria is met. As a
result, the optimal EE of the system and the corresponding
numbers of BS antennas (M) and terminal users (K) are
obtainable. Compared with the algorithm in [19], the algo-
rithm we propose in this paper not only possesses low com-

plexity and low time consumption but also obtains better EE
performance by simultaneously optimizing two (M and K)
parameters.

4. Simulation Results

In the previous section of this paper, a dynamic power con-
sumption model is applied to obtain the mathematical
expression for the EE of the massive MIMO system, which
is taken as the fitness function in the PSO algorithm. The
numbers of BS antennas (M) and terminal users (K) are
used as independent variables to optimize the EE with the
PSO algorithm.

The simulation results in this section are used to verify
the superiority of the proposed algorithm in optimizing the
EE of a massive MIMO system. We provide simulation
results with ZF processing under both perfect and imperfect
CSI in single-cell scenarios and under imperfect CSI in the

1. Initialize the boundaries of M and K and the parameters NP , ND, ω, c1, c2
2. for each particle i
3. Initialize the velocity Vi and position Xi, then set the individual optimal value Pi =Xi
4. end for
5. Select the largest of the individual optimal values as the global optimal value, that is, the global optimal value Pg =max fPig
6. for i = 1 to NP.
7. using (24), update the velocity of particle i.
8. if the velocity exceeds the velocity boundary then
9. pull it to the velocity boundary
10. end if
11. using (25), update the position of particle i.
12. if the position exceeds the position boundary then
13. pull it to the position boundary
14. end if
15. ifK >Mthen.
16. Update 5 more times at the original velocity.
17. end if
18. ifM > K is not found then
19. Reinitialize
20. end if
21. end for
22. Using the objective function given in (23), evaluate the new fitness value of each particle
23. for each particle ido
24. Update Pi and Pg.
25. iff itðXiÞ > f itðPgÞthen
26. Pi =Xi
27. end if
28. iff itðPiÞ > f itðPgÞthen
29. Pg = Pi
30. end if
31. if termination criterion is satisfied then
32. Output Pg
33. otherwise
34. Go to step 7.
35. end if
36. end for

Algorithm 1: Energy Efficiency Optimization.
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multicell scenarios. The main simulation parameters for the
EE expression are given in Table 2 [19].

The corresponding simulation parameters for the PSO
algorithm are given in Table 3 [22–25].

4.1. Single-Cell Scenarios. Under the single-cell multiuser
massive MIMO system, we study the influence of the num-
bers of BS antennas and terminal users on the system EE
under perfect and imperfect CSI. The simulation results
are shown as follows:

Figure 2 shows the achievable EE values of the massive
MIMO system based on the PSO algorithm and the corre-
sponding values of M and K in the single-cell scenarios with
perfect CSI. From Figure 2, we can see that the optimal EE
value is 3:074e + 07 bit/Joule, and the corresponding num-

bers of BS antennas and terminal users are M = 163 and K
= 104. In particular, the running time of the whole optimi-
zation algorithm is only 23.485 s. As shown in Table 4, under
the same conditions, [19] uses an iterative algorithm to
obtain the optimal EE value of 3:07e + 07 bit/Joule when
M = 165 and K = 104, and the running time of the algorithm
is 617.669 s. [26] uses the ABC algorithm to achieve the opti-
mal EE value of 3:0614e + 07 bit/Joule, and the correspond-
ing numbers of BS antennas and terminal users are M = 166
and K = 106. The running time of the algorithm is 163.032 s.
Compared with [19, 26], the EE value obtained by the algo-
rithm presented in this work is the best, the number of BS
antennas (M) is the smallest and the running time is the
shortest.

Figure 3 shows the achievable EE values of the massive
MIMO system based on the PSO algorithm and the corre-
sponding values of M and K in the single-cell scenarios with
imperfect CSI. [26] does not consider the single-cell scenar-
ios with imperfect CSI, but the scenario in [19] is the same as
the one considered in this section. Therefore, the simulation
results can only be compared with those in [19]. The optimal
value of the system EE under imperfect CSI is 2:588e + 07
bit/Joule, which is the same as in [19]. However, the number
of BS antennas (M) is 182 and the number of terminal users
(K) is 109, and the running time of the algorithm is 50.832 s,
while in [19], M = 185 and K = 110 and the running time is
642.018 s. As shown in Table 5, the algorithm proposed in
this study can use fewer BS antennas in a shorter amount
of time to achieve the same EE performance as in [19].

Comparing Figures 2 and 3, it is clear that the EE perfor-
mance of the massive MIMO system based on the PSO algo-
rithm in perfect CSI is similar to the result for imperfect CSI.
The difference is that the number of BS antennas with per-
fect CSI is larger than that with perfect CSI. Thus, under per-
fect CSI, fewer antennas at the BS can be used to obtain
better EE.

4.2. Multicell Scenarios. In the multicell massive MIMO sys-
tem, the multiplexing of pilot sequences between cells

Table 2: The parameter settings for the simulation.

Symbol Quantity Value

dmax Circular cell radius 250m

dmin Minimum distance 35m

B Bandwidth 20MHz

U Coherence block 1800

Bσ2 Noise power -96 dBm

τul, τdl Relative pilot lengths 1

ςul Fraction of uplink transmission 0.4

ςdl Fraction of downlink transmission 0.6

LK Computational efficiency at users 5 Gflops/W

LM Computational efficiency at BSs 12.8 Gflops/W

φdl PA efficiency at the BSs 0.39

φul PA efficiency at the users 0.3

PFIX Fixed power consumption 18W

PSYN Power consumed by local oscillator 2W

PUE Power required to run circuit at users 0.1W

PBS Power required to run circuit at BSs 1W

PCOD Power consumed by coding 0.1W/(Gbit/s)

PDEC Power consumed by decoding 0.8W/(Gbit/s)

PBT Power consumed by backhaul traffic 0.25W/(Gbit/s)

I Relative interference from all cells 1.5288

J The quantity of cells (multicell) 25

Table 3: The parameter settings for the simulation.

Symbol Quantity Value

ω Inertia weight 0.1

c1 Individual learning factor 0.5

c2 Social learning factor 0.5

NP The number of particles 30

ND The numbers of optimization parameters 2

mFES The number of algorithm resources 20000
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Figure 2: Energy efficiency vs. number of transmitting antennas
and terminal users with perfect CSI in single-cell scenarios.
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Table 4: Algorithm performance comparison results for single-cell scenarios with perfect CSI.

Algorithm Mopt Kopt Time EEopt

Iterative algorithm [19] 165 104 617.669 s 30.7 Mbit/joule

ABC algorithm [26] 166 106 163.032 s 30.614 Mbit/joule

PSO algorithm (this paper) 163 104 23.485 s 30.74 Mbit/joule
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Figure 3: Energy efficiency vs. number of transmitting antennas and terminal users with imperfect CSI in single-cell scenarios.

Table 5: Algorithm performance comparison results for single-cell scenarios with imperfect CSI.

Algorithm Mopt Kopt Time EEopt
Iterative algorithm [19] 185 110 642.018 s 25.88Mbit/joule

PSO algorithm (this paper) 182 109 50.832 s 25.88Mbit/joule
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Figure 4: Energy efficiency vs. number of transmitting antennas and terminal users with τðulÞ = 4 in multicell.
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inevitably results in PC, which affects the EE of the system.
As described in [17], the highest EE can be obtained by using
the largest pilot reuse factor (τðulÞ = 4). Therefore, we con-
sider τðulÞ = 4 in the multicell massive MIMO system. The
simulation result is shown in Figure 4, and the results of
the comparison with [19] are shown in Table 6.

Figure 4 shows the achievable EE values of the massive
MIMO system based on the PSO algorithm and the corre-
sponding values of M and K in the multicell scenarios with
imperfect CSI. From Figure 4, it is seen that the optimal
EE value is 7:562e + 06 bit/Joule with corresponding values
of M = 115 and K = 37, and the running time of this algo-
rithm is 50.449 s in this algorithm. In [19], the optimal EE,
the corresponding optimal M and K , and the running time
are 7.58Mbit/Joule, 123 and 40, and 667.859 s, respectively.
As shown in Table 6, compared with [19], although the EE
value obtained by this algorithm is slightly lower, we also
use fewer BS antennas. Most importantly, the running time
of the algorithm presented in this work is far less than that
of the iterative algorithm in [19].

5. Conclusions

In this paper, we proposed an algorithm based on PSO to
study how to select the numbers of BS antennas (M) and ter-
minal users (K) to maximize the EE in a single-cell massive
MIMO with perfect and imperfect CSI, and a multicell sce-
narios with imperfect CSI. The results reveal that the algo-
rithm presented in this paper possesses the lowest
complexity and the highest optimal EE value in a single-
cell scenario with perfect CSI when compared with the iter-
ative algorithm [19] and ABC algorithm [26]. In a single-cell
scenario with imperfect CSI, the proposed algorithm in this
paper can achieve the same optimal EE value as that
obtained by the iterative algorithm in [19], but the time used
by this algorithm is only one-twelfth of that required for the
iterative algorithm. In a multicell scenario with imperfect
CSI, the optimal value of the EE of the system achieved by
this algorithm is slightly lower than that obtained by the iter-
ative algorithm in [19], but the time consumed by this algo-
rithm is only one-thirteenth of that required for the iterative
algorithm.
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