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Abstract

Little is known of the properties of the sarsen stones (or silcretes) that comprise the main

architecture of Stonehenge. The only studies of rock struck from the monument date from

the 19th century, while 20th century investigations have focussed on excavated debris with-

out demonstrating a link to specific megaliths. Here, we present the first comprehensive

analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the cen-

trally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and

geochemical techniques to two cores drilled from the stone during conservation work in

1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-sup-

ported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium

grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In

addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydrox-

ides and other minerals are present. Cathodoluminescence analyses show that the quartz

cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by

~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides

line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen pre-

serves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geo-

chemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The

major and trace element chemistry is highly consistent within the stone, with the only magni-

tude variations being observed in Fe content. Non-quartz accessory minerals within the sil-

crete host sediments impart a trace element signature distinct from standard sedimentary

and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sedi-

ments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks
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incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been

identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge.

These results are therefore representative of the main stone type used to build what is argu-

ably the most important Late Neolithic monument in Europe.

1. Introduction

In 2015, Mr Robin Phillips from Bath (UK) contacted Historic England reporting that his

father, Mr Robert Phillips of Aventura (Florida, USA), owned a core extracted from one of the

large ‘sarsen stones’ at Stonehenge [sarsen is a vernacular term for the geochemical sediment

silcrete; see 1, 2]. The family had had the core in their possession for over 40 years and wanted

to repatriate it. A wooden case was sent to Florida for its return, and the core was handed over

to English Heritage (the current custodians of Stonehenge) in May 2018. Following publicity

surrounding the return of the core, part of a second core was discovered at Salisbury Museum

in July 2019. Archive research confirmed that both cores were extracted from Stone 58, one of

the large upright sarsen megaliths that form part of the centrally placed trilithon horseshoe at

the monument (Fig 1). These megaliths were erected during Stage 2 of the development of

Stonehenge at 2585–2400 cal BC [3, 4]. The cores from Stone 58 are scientifically and culturally

important in that they are the only known examples of sarsen stone that can be definitively

linked to a specific megalith at the monument. Recent work has also shown that Stone 58 is

representative geochemically of 50 of the 52 sarsens remaining at Stonehenge [5]. The cores

are, therefore, of international significance in providing a unique window into the physical

and chemical properties of the main stone type used in the construction of Stonehenge.

Little is known of the geology of the sarsen stones at Stonehenge. Historically, sarsens in the

UK have been divided into two classes, namely ‘hard’ and ‘saccharoid’ [on the basis of its

appearance resembling “that of a broken loaf-sugar”; 7] types—both are present at Stonehenge.

Fragments of both hard and saccharoid sarsen have been excavated during archaeological

investigations. The hard sarsen appears to be derived from hammerstones of various size bro-

ken in the process of shaping (or dressing) the stones on site during construction. Saccharoid

sarsen is used exclusively to form the uprights and lintel stones at the monument.

The first descriptions of the lithology of the Stonehenge sarsens date from the 19th century.

The earliest, likely made by James Sowerby from specimens of sarsen from the monument sent

to him by Sir Richard Colt Hoare [8], appears in the 1812 monograph The Ancient History of
South Wiltshire [9]. Here, the material is described as “a fine-grained species of siliceous sand-

stone” (Vol. 1, p.149). An 1877 essay by Nevil Maskelyne [10] is the first to include a thin-sec-

tion sketch of a sarsen, cut from stone struck from the monument; however, no further details

are given of the petrography of the sample. Similarly, despite providing rich details about other

rock types, the descriptions of 172 chips of stone excavated at Stonehenge published in 1884

by William Cunnington [11] contain no details of the nine sarsen fragments included in the

collection. Seemingly, the sarsens were considered less worthy of detailed description than the

exotic ‘bluestones’ [a colloquial term used to describe a range of igneous and sedimentary rock

types whose origins lie mainly in southwest Wales], the other component of the Stonehenge

architecture (Fig 1).

The first detailed research on sarsens at Stonehenge was by John Wesley Judd, who carried

out analyses of lithological variations in sarsen hammerstones excavated by William Gowland

in 1901 [8]. He described them (pp.109-110) as comprising silica-cemented coarse-grained to
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Fig 1. Plans of Stonehenge showing (A) the area of the monument enclosed by earthworks and (B) detail of the

stone circle. Sarsen stones are numbered following the system devised by W.M. Flinders Petrie in the late 19th century

[6].

https://doi.org/10.1371/journal.pone.0254760.g001
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very fine-grained well-rounded to angular quartz plus feldspars, mica and glauconite, with

chips of flint occasionally present (but see critique in section 5.2). The only other 20th century

study was by Hilary Howard, who used thin-section and heavy mineral analyses to characterise

sarsen fragments recovered during Mike Pitts’ 1979 and 1980 excavations [12–14]. Howard [in

12] identified that the majority of the excavated fragments (170 kg in total) were of saccharoid

sarsen, with smaller quantities (~8 kg) of hard sarsen. The saccharoid sarsen could be distin-

guished in thin-section from the hard variety by the size, shape and packing density of

cemented quartz grains and the nature of the silica cement. Quartz grains were generally larger

and more well-rounded in the saccharoid sarsen, with average grain sizes ranging from 0.2 to

0.5 mm in the 20 fragments analysed. Howard also suggested that there might be variability

within the sarsens at Stonehenge; three samples of saccharoid sarsen from a working floor

adjacent to the Heel Stone (Stone 96 in Fig 1) excavated by Pitts were found to be consistent in

terms of petrology but different from a sample of saccharoid sarsen from the fill in the ditch

surrounding the megalith. Heavy mineral analyses indicated that the excavated saccharoid sar-

sens differed from samples collected from sarsen boulders at nearby Piggledene, particularly in

the proportions of zircon, rutile, kyanite, staurolite, andalusite, tourmaline and garnet present

[see Table 3 in 12, and further discussion in section 5.2].

The aim of this paper is to document and provide a detailed characterisation of the cores

extracted from Stone 58, the first study of its kind for a sarsen megalith at Stonehenge. We do

this using a range of techniques (Table 1), selected to include both standard sedimentological

approaches and state-of-the-art mineralogical and geochemical methods. Both cores—referred

to hereafter as the ‘Phillips’ Core’ and ‘Salisbury Museum Core’—are first visually logged. A

suite of analyses is then applied to the Phillips’ Core: Portable X-ray fluorescence spectrometry

(pXRF) of the entire core; X-ray computed tomography (CT) imaging and XRF-scanning of a

segment of the core; optical petrography, μXRF, high resolution scanning electron microscopy

(SEM) with cathodoluminescence (CL) and energy-dispersive spectrometry (EDS), and auto-

mated SEM-EDS mineral analysis (QEMSCAN) of petrographic thin-sections; and whole-rock

inductively coupled plasma-mass spectrometry (ICP-MS), ICP-atomic emission spectrometry

(ICP-AES) and whole-rock isotope analyses of powdered samples. To avoid potential

Table 1. Analytical techniques applied to the Phillips’ Core and Salisbury Museum Core from Stone 58 at Stonehenge (see main text for details of abbreviations and

Fig 6 for details of sampling of the Phillips’ Core).

Analytical technique Analyst(s) Salisbury

Museum Core

Phillips’ Core

Whole

core

Section 2–3 of core

(before sampling)

3 × larger rock

fragments

2 × smaller rock

fragments

Polished thin-

section Set A

Polished thin-

section Set B

Rock description and

sedimentary logging

DJN, TJRC x x

X-ray CT imaging MD x

Optical petrography RAI, DJN, TS,

JSU

x x

QEMSCAN DP, MRP x

High-resolution SEM/

CL/EDS

TS, DJN,

TJRC, JMH,

NW

x

Portable XRF TJRC x

XRF core scanner MD x

Micro-XRF SGo x

ICP-MS and ICP-AES DJN, TJRC x

Whole-rock isotope

analyses

JAE x

https://doi.org/10.1371/journal.pone.0254760.t001
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confusion between automated and non-automated SEM-EDS mineral analyses, we refer to the

former by the trademarked name QEMSCAN (an abbreviation standing for quantitative evalu-

ation of minerals by scanning electron microscopy). Too few zircon grains of sufficiently large

size were identified in samples to permit statistically reliable zircon dating.

The paper unfolds by first detailing the history of the Phillips’ and Salisbury Museum cores.

We then review the results of each technique in turn before drawing the key findings together

in section 5. We adopt this approach so that each set of results can be evaluated in isolation

and—recognising that not all future investigations will have access to the same suite of tech-

niques—that subcomponents of the dataset can be easily compared in follow-on studies. We

recognise that some techniques offer better image, spatial, elemental or spectral resolution

than others, but by including all here we provide methodological insights that future studies

may want to pick up on when evaluating the relative merits of different approaches. In charac-

terising the cores from Stone 58 –situated in the context of wider investigations into the nature

and variability of sarsens at Stonehenge and elsewhere in the UK [e.g. 3, 5, 15–17]–we aim to

develop a full geological picture of the main stone type used to build what is arguably the most

important Late Neolithic monument in Europe.

2. History of the cores from Stone 58

The following account was compiled through research into Ministry of Works (MoW) archive

files, held by the National Archives (Kew, London) and at the Historic England Archives in

Swindon, UK, and via communication with the Phillips family.

2.1. Drilling of the cores in 1958

During a restoration programme at Stonehenge in 1958, three sarsen stones that had fallen in

1797 [uprights 57/58 and lintel 158, forming Trilithon 4 in the trilithon horseshoe; 3] were re-

erected. This was done with the express intention of making the monument more intelligible

to visitors, but also to protect supposed markings and carvings on Stone 57 that were thought

to be under threat by people climbing on the stone.

Site preparations began in February 1958. Fractures in Stone 58 had been noted in a report

by the Chief Architect T.A. Bailey, who had recommended that metal dowels be inserted once

the stone was erected. However, a press release dated 11 June 1958 from the MoW states that

Stone 58 “was checked for cracks by Harwell scientists using radioactive sodium. Their conclu-

sion was that surface fissures do not extend through the width of the massive slab, but very

great care will have to be taken in getting it upright” (MoW Registry File AA 71786/2R Part 1:

Note from Mr Bailey relating to the drilling of Stone 58).

On 12 June 1958, when the work of restoring the trilithon was nearing completion, the

Ancient Monuments Board visited Stonehenge to inspect the operations. According to a draft

of their annual report for that year:

“We noted that the known longitudinal fracture of Stone 58, one of the uprights of the trili-

thon, had proved, on being raised, to be more extensive than had been suspected and we

endorsed the Ministry’s proposal to reinforce the stone. This was done by drilling through

the stone and inserting metal bars tied by plates; the bars and plates were then hidden by

small plugs of stone cut from sarsen fragments found during excavations associated with

the main operation”

(MoW Registry File AA 71786/2R Part 2, 16. Ancient Monuments Board for England, First

Draft of Report for 1958).
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A note from Mr Bailey dated 15 August 1958 stated that the ‘very badly fractured’ Stone 58

needed to be drilled in three places with 1¼ inch (31.8 mm) diameter holes and tied together:

“The bolt heads and 3” [76.2 mm] diameter washer plates would be recessed 2½” [63.5

mm] into the surface on this stone and the holes plugged with 3½” [88.9 mm] diameter

stone discs which after a few years should be almost unnoticeable. I am now therefore going

ahead and will be drilling Stone 58 on Tuesday next. The work is being done by Messrs. L.

M. Van Moppes (Diamond Tools) Ltd. of Basingstoke and the Chief Inspector will be

present”

(MoW Registry File AA 71786/2R Part 2, 16, as above).

Three cores were drilled by Van Moppes on 20 August 1958 horizontally through the

upright stone to the specifications noted above (Fig 2). Plugs were placed in the countersunk

drill holes following the installation of the metal ties on 30 September 1958 (MoW Registry

File AA 71786/2R Part 2, 9. Note from Mr Bailey relating to costs of re-erection of trilithon).

Mr Robert Phillips, an employee of Van Moppes, recalled that he attended the site during the

operations and that the drill operator was a Mr R. Berridge (information from the Phillips fam-

ily by e-mail to Abigail Coppins, English Heritage Curator, 8 June 2018). The Van Moppes

company was given permission by the Ministry of Works to retain one of the cores, which was

entrusted to Mr Phillips.

2.2. Return of the Phillips’ Core to the UK

Van Moppes were clearly proud of their involvement in restoration work at Stonehenge, writ-

ing about it in an unpublished company report (“Diamonds in the Service of Industry”, LM

Van Moppes & Sons Ltd) and commissioning a watercolour of the works (Fig 3). Both the

painting and images in the report suggest that coring proceeded from the exterior-facing (i.e.

northwest-facing) surface of Stone 58. The Phillips’ Core hung in a protective Perspex tube in

Robert Phillips’ office in Basingstoke, together with the watercolour, until 1976 when he

retired, taking the core and painting with him (with permission of Van Moppes). These

accompanied him when he emigrated to the USA in 1977, and subsequently travelled with him

from Rochester (New York) to Chicago (Illinois), Ventura (California) and finally to Aventura

(Florida). Approaching 90 years of age, Robert was keen that this important artefact should be

returned to the UK. Following his son Robin’s contact with Historic England and English Her-

itage, arrangements were made for a Gander & White packing case to be delivered to Robert’s

home during a visit by Lewis Phillips in 2018. Lewis returned to the UK with the core on 2

May 2018, and it was delivered into the care of English Heritage on 31 May 2018 (Fig 4). The

Phillips’ Core is now archived in the English Heritage Collections Store at Temple Cloud near

Bath, UK (English Heritage accession numbers 88371912.1 to 88371912.6).

2.3. Documenting and subsampling the Phillips’ Core

All necessary permissions were obtained for the described study, which complied with all rele-

vant regulations. The Phillips’ Core from Stone 58 was inspected at the English Heritage Col-

lections Store, Temple Cloud, on 27 March 2019. The core had broken into six sections at

some point in its history, each with a diameter of 25 mm but ranging in length from ~7 cm to

~29 cm (Fig 5A). Each section had been labelled on its ends with a marker pen to indicate the

correct sequence of pieces. Refitting the sections showed that the core was complete, with the

presence of dead lichen at either end indicating that the core had penetrated the full thickness

of the sarsen upright. The refitted sarsen core measured 108 cm in length. Inspection of the
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Fig 2. Drilling work on Stone 58 at Stonehenge by Van Moppes Ltd in August 1958, with Mr Robert Phillips pictured left. Permission

was obtained from Mr Lewis Phillips for the image of his late father to appear in this picture and for him to be identified by name. This image

is reproduced under a CC BY 4.0 license, with permission from Lewis Phillips, original copyright (2020).

https://doi.org/10.1371/journal.pone.0254760.g002
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surfaces of the five fracture planes within the core revealed that three (marked by pale brown

staining; Fig 5A) had most likely followed lines of inherent weakness in the original sarsen.

The other two, unstained, fractures had occurred either during the process of core extraction

or later handling/transport.

Fig 3. Watercolour painting commissioned by Messrs. L.M. Van Moppes (Diamond Tools) Ltd., now in the

possession of the Phillips family, showing coring operations on Stone 58 of Stonehenge in 1958. This image is

reproduced under a CC BY 4.0 license, with permission from Lewis Phillips, original copyright (2018).

https://doi.org/10.1371/journal.pone.0254760.g003

Fig 4. Lewis (left) and Robin Phillips (right) at Stonehenge, handing over the ‘Phillips’ Core’ from Stone 58 to

Senior Property Curator, Stonehenge, Heather Sebire (pictured pointing at the position from which the core was

drilled. Permission was obtained from the individuals pictured to appear in this image and to be identified by name.

This image is reproduced under a CC BY 4.0 license, with permission from English Heritage, original copyright (2018).

https://doi.org/10.1371/journal.pone.0254760.g004
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Fig 5. Sedimentary logs of (A) the Phillips’ Core and (B) Salisbury Museum Core from Stone 58 at Stonehenge. Grain size and Munsell

colour are plotted with distance from the end of each core. Letter and numbers shown at the end of each section of the Phillips’ Core (i.e.

OUT to 10) are those written with marker pen on the original core (see text). Section 2–3 of the Phillips’ Core from 29–36 cm was subject to

further detailed petrographical, mineralogical and geochemical analyses.

https://doi.org/10.1371/journal.pone.0254760.g005
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With permission of Martin Allfrey, Senior Curator of Collections (West) at English Heri-

tage, section 2–3 of the core between 29 and 36 cm (English Heritage accession number

88371912.2) was subject to further analyses. To sample the section, the 67 mm-long piece

was first cut along its long axis at the University of Bristol on 13 May 2019 using a diamond

saw to form two semi-cylinders (Fig 6A), one of which was retained by English Heritage. The

remaining semi-cylinder was transported first to the British Geological Survey (Keyworth)

for CT imaging and geochemical scanning and then to the Open University (Milton

Keynes).

At the Open University, the semi-cylinder of sarsen was cut laterally into three equal-sized

subsamples using a diamond saw (Fig 6B). The curved uppermost part of each subsample was

sawn off and further subsampled (Fig 6C), with the three larger fragments sent to ALS Miner-

als (Seville, Spain) for major and trace element analysis and two of the three smaller fragments

to British Geological Survey for whole-rock isotope analysis (Fig 6D). One rectangular face of

each of the remaining three subsamples was lapped smooth and glued to a glass microscope

slide. The three mounted subsamples were cut again using a diamond saw, this time parallel to

the glass slide. The offcut sarsen slices were then lapped smooth and mounted onto a second

set of glass slides (Fig 6E).

The glass-mounted subsample fragments were processed at the Open University to

produce two parallel sets of three polished thin sections, each set covering the full rectangular

surface area of the original sarsen semi-cylinder. One set (SH1A, SH2A, SH3A) was used for

standard optical-microscopic petrography and the other (SH1B, SH2B, SH3B) primarily for

electron-microscopic analyses. Glass cover slips were not applied to either set of thin-sections.

Optical microscopy datasets were also obtained from the second set of sections at the Natural

History Museum. Further preparation of the entire sample set (Fig 6F) is described in sections

3 and 4.

2.4. Discovery and documentation of the Salisbury Museum Core

The return of the Phillips’ Core to the UK was announced in a press release via the English

Heritage website on 8 May 2019 [18]. This included a general request from Heather Sebire

(Senior Property Curator, Stonehenge): "The other two Stonehenge cores may still be out there

somewhere and if anyone has any information, we’d love to hear from them.” On 30 July 2019,

Martin Allfrey (English Heritage) received an email from Adrian Green, Director of Salisbury

Museum, stating that museum staff had discovered a small section of a second sarsen core dur-

ing detailed cataloguing of their Stonehenge collection. The core was found in a box marked

3x Stonehenge Stones from ‘Treasure Box’, alongside a fragment of ‘Altar Stone’ and a piece of

polished bluestone (a spotted dolerite) from the monument. The core had a retrospective

accession number (2010R.240) given in 2010 during an audit of collections, but how and when

it came to be at the museum was unknown (information given to DJN in an e-mail from

Adrian Green, 29 January 2020). The whereabouts of the rest of the Salisbury Museum Core,

and of the third core drilled from Stone 58, is similarly unknown.

The Salisbury Museum Core was inspected in the collection storeroom of the museum on

24 January 2020. The core consisted of a single cylindrical piece of sarsen (177 mm length, 25

mm diameter) with the label Stonehenge Sarsen– 1958 written along its long-axis. The cylinder

was clearly a section of a much longer original core—both ends exhibited fresh fractures, and,

unlike the Phillips’ Core, lichen was absent. It was not possible to ascertain the position of the

Salisbury Museum Core relative to the overall thickness of Stone 58, nor to establish the cor-

rect orientation of the fragment in relation to the Phillips’ Core. Permission was not given to

sub-sample.
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3. Petrography of the sarsen cores

The petrography of the two sarsen cores was assessed using five complementary approaches.

Standard rock description and sedimentary logging was carried out on both cores (prior to

subsampling in the case of the Phillips’ Core; see section 2.3). CT imaging was undertaken of

the 67 mm long semi-cylinder of sarsen cut from section 2–3 of the Phillips’ Core (Fig 6A).

Analysis of the polished thin-sections from section 2–3 of the core included: (i) standard petro-

graphic description (thin-section set A), (ii) quantitative analysis of sarsen mineralogy using

Fig 6. Schematic representation showing how the 67 mm long section 2–3 of the Phillips’ Core from Stone 58 at Stonehenge was

(A) cut (dashed lines) and prepared (B-E) in order to produce two sets of three polished thin sections, three samples for whole-rock

major and trace element analysis, and two samples for whole-rock isotopic analysis (F). See text for full description.

https://doi.org/10.1371/journal.pone.0254760.g006
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QEMSCAN, and (iii) SEM, CL and EDS analysis of host mineral grains and cements (thin-sec-

tion set B).

3.1. Rock description

3.1.1. Methodology. Description of the two sarsen cores from Stone 58 at Stonehenge fol-

lowed standard sedimentological procedures designed to provide a macroscale record of rock

properties. Each core was logged visually to identify changes in grain size, mineralogy and col-

our along its length. Grain size was estimated using a Geo Supplies Ltd grain size card. Miner-

alogy was determined visually using a ×20 hand lens. Colour variation was assessed using a

Munsell colour chart, having first moistened the rock surface with water.

3.1.2. Rock description results. The Phillips’ Core from Stone 58 is a well-indurated,

grain-supported, texturally mature and predominantly fine-grained (i.e. 0.125–0.250 mm

grain size range) silcrete—in geological terms it would be described as an orthoquartzite or

quartz arenite. The results of sedimentary logging are summarised in Fig 5A, with a high-reso-

lution image of section 2–3 of the core shown in Fig 7 to illustrate the typical rock properties.

The majority of the 108 cm core comprised structureless quartz-cemented fine-to-medium

grained sand, the exception being slightly coarser laminae of medium grained sand (0.25–0.50

mm range) from 12–22 cm and one thin lamina of medium-to-coarse (0.5–1.0 mm range)

grained sand from 58–60 cm. The mineralogy of the sand-sized grains within the core showed

little variability, being dominated by quartz. Minor opaque minerals were distributed through-

out the core. The main variability was in terms of colour. The majority of the core exhibited

wet Munsell colours ranging from white (10YR 8/1) to grey (10YR 6/1). There was, however,

variability in the degree of iron hydroxide staining present. The section of the core from 0–22

cm was very pale brown in colour with some mottling and banding, with the colour varying

between 10YR 7/4 and 10YR 8/2. As noted in section 2.3, other zones of very pale brown

(10YR 7/4) iron hydroxide staining were present adjacent to three of the five fracture surfaces

at around 36, 60 and 90 cm.

The Salisbury Museum Core (Fig 5B) exhibits very similar properties to the Phillips’ Core,

again being a well-indurated, structureless, grain-supported and texturally mature silcrete

comprising predominantly fine-to-medium grained quartz in a quartz cement. Minor, fine

sand-sized, dark-coloured minerals are also present along with minor pyrite. Again, the main

variability along the core was in terms of colour. The background colour of the Salisbury

Museum Core was slightly darker than the Phillips’ Core (light grey; 10YR 7/1). Where pres-

ent, mottles had a more intense chroma, ranging from yellowish brown (10YR 5/4) to brown-

ish yellow (10YR 6/6), with the most intense-coloured mottling evident between 8 and 11 cm

along the core. Fig 8 illustrates the typical rock properties.

3.2. X-ray computed tomography (CT) imaging

3.2.1. Methodology. X-ray computed tomography (CT) imaging was used to determine

the presence/absence of sedimentary structures within section 2–3 of the Phillips’ Core and to

assess the distribution of fractures and pore spaces. CT images were collected using a Geotek

Ltd MSCL-RXCT core scanner at the British Geological Survey, Keyworth, UK. CT data were

acquired as a stack of 2D radiographic images with a pixel resolution of approximately 30 μm.

The 2D images were reconstructed into a 3D volume using the Geotek Ltd Image Reconstruc-

tor software version 1.0.0.0, with corrections applied for beam-hardening and ring artefacts—

phenomena produced by the selective attenuation of lower energy photons as X-rays pass

through an object [19]–to improve the signal to noise ratio. The 3D image dataset was
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simulated and analysed using the digital rock and core analysis software PerGeos version

2019.4 from Thermo Scientific.

3.2.2. CT imaging results. Grey-scale CT images (B-C) are shown alongside an equivalent

optical image (A) in Fig 9. These illustrate the sample matrix and mineral constituents; the

Fig 7. Image of section 2–3 of the Phillips’ Core from Stone 58 at Stonehenge. The right-hand end of the core segment represents a natural fracture in the original

sarsen, with the thin band of iron hydroxide staining running diagonally from ~40 to ~50 mm mirroring the fracture surface. The left-hand end of the core represents

a break developed either during or after drilling. The grey diagonal band running from ~10 to ~0 mm is residual metal from the diamond saw blade smeared onto the

surface of the sarsen during cutting. This image is reproduced under a CC BY 4.0 license, with permission from British Geological Survey, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g007

Fig 8. The Salisbury Museum Core from Stone 58 at Stonehenge. This image is reproduced under a CC BY 4.0

license, with permission from David J. Nash, original copyright (2020).

https://doi.org/10.1371/journal.pone.0254760.g008
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porosity appears black. The CT scan confirms the results of the visual rock description (section

3.1.2), indicating that the sarsen in section 2–3 is homogenous, displaying no bedding, lamina-

tion, nor any other fabrics at the scale of imaging. The dispersed band of slightly coarser min-

erals running across the core from ~35 mm to ~40 mm may be a zone containing larger quartz

grains. An open fracture is observed at ~60 mm along the sample (Fig 9B and 9C). The thin

band of iron hydroxide staining running diagonally from ~40 to ~50 mm in image A is visible

as a thin zone of denser cementation in image B. The 3D image dataset was simulated (Fig 9D)

using the digital rock and core analysis software PerGeos. A 3D simulation of the sample can

be found in the S1 Movie. The full image dataset is archived at the Archaeology Data Service.

3.3. Optical petrography

3.3.1. Methodology. Optical microscopy was used to provide a qualitative assessment of

the petrography and mineralogy of Stone 58. Polished thin-sections SH1A, SH2A and SH3A

from the Phillips’ Core were investigated initially using a ×20 hand lens and Geo Supplies Ltd

grain size card. The petrography of each section was analysed under plane- and cross-polarised

transmitted light using a Carl-Zeiss Amplival pol u dual-purpose microscope (×6.3 and ×12.5

objectives with ×12.5 eye pieces giving overall magnifications of ×80 and ×155 respectively).

Each section was then investigated in reflected light using a Zeiss Universal reflected light

microscope (with ×4.5 air, ×16 oil and ×40 oil immersion lens). Mineral identification in trans-

mitted and reflected light was made following standard optical mineralogy texts [e.g. 20, 21]

and atlases [22], with petrographic descriptions also following standard protocols for sedimen-

tary rocks [23] and silcretes [1]. All mineral phases greater than 2 μm diameter were identified.

Note, however, that the fine-grained nature of the TiO2 phases present sometimes prevented

further discrimination. Where a TiO2 phase could be identified with certainty it is given a min-

eral name in section 3.3.2; where not, it is simply referred to as a ‘TiO2 mineral’. Polished thin-

sections SH1B, SH2B and SH3B were also analysed by automated polarised light microscopy

at the Natural History Museum, London, to produce whole-section mosaic images for archiv-

ing with the Archaeology Data Service. A ZEISS Axio Imager.M2m light microscope with

Fig 9. Optical (A) and Computed Tomography (B-C) images of section 2–3 of the Phillips’ Core from Stone 58 at

Stonehenge. Distance along the sample is measured relative to the fracture plane between sections 1 and 2 of the

Phillips’ Core (see Fig 5). Dark grey to black tones in the CT images indicate low density areas (e.g. pores, fractures),

while light grey to white tones indicate high density areas (e.g. mineral constituents). A 3D reconstruction of sample

(D) with full simulation is provided in the S1 Movie. These images are reproduced under a CC BY 4.0 license, with

permission from British Geological Survey, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g009

PLOS ONE Petrological and geochemical characterisation of the sarsen stones at Stonehenge

PLOS ONE | https://doi.org/10.1371/journal.pone.0254760 August 4, 2021 14 / 48

https://doi.org/10.1371/journal.pone.0254760.g009
https://doi.org/10.1371/journal.pone.0254760


motorised stage was used to obtain these images with a resolution of ~14,000×12,000 pixels

and a pixel size of ~2 μm.

3.3.2. Optical petrography results. Microscopic analyses of thin sections SH1A, SH2A

and SH3A demonstrate that the sarsen is a grain-supported, very well-sorted groundwater sil-

crete that displays no bedding or any other fabric. It comprises silica-cemented sub-rounded

to rounded, detrital quartz grains with a mean diameter of 187 μm (corresponding to fine

sand, consistent with rock descriptions; section 3.1.2) and minor proportions of other minerals

set in an optically-continuous syntaxial quartz overgrowth cement (see Fig 10). The silcrete is

very well cemented but with primary pore space present where voids are not completely

infilled with quartz overgrowth cement. We identify the sarsen as a groundwater silcrete (as

opposed to a pedogenic silcrete) based on its simple micromorphology, textural homogeneity

and lack of pedogenic features such as geopetal and colloform structures (see discriminating

criteria in [24]). The tabular morphology of most sarsen boulders at Stonehenge is also consis-

tent with this interpretation.

Host sediments. The quartz grains that make up most of the sarsen host sediment are mono-

crystalline with a restricted size range. Two populations of quartz are present. The overwhelm-

ing majority of quartz grains are clear and exhibit undulose extinction (i.e. different parts of

the quartz crystal go into extinction as the microscope stage is rotated under cross-polarised

light; Fig 10A and 10B). Most quartz grains are inclusion-free but rare grains enclose very fine-

grained carbonate or very small (10 μm diameter) euhedral zircon, pale-coloured TiO2 miner-

als, muscovite, biotite, tourmaline, 20 × 1 μm size graphite, 2–10 μm diameter hematite,

2–5 μm diameter magnetite and 40 × 5 μm size ilmenite. The most common inclusion is fine-

grained (2–20 μm diameter), unaltered, framboidal pyrite or single cubic crystals, within small

aggregates; some of the pyrite is altered to limonite. Untwinned feldspar may be present in sec-

tion SH1A, as two rectangular grains exhibiting slight alteration along their cleavage planes

were recognised. No alteration products of feldspar—specifically fine-grained mica or kaolin-

ite—were observed.

Minor rock clasts (80–200 μm diameter) are present in all three thin-sections. All clasts are

highly siliceous and comprise: (i) microquartz (most likely chert or flint, including one clast in

SH1A with spherulitic quartz); (ii) slightly coarser-grained polycrystalline quartz (likely a fine-

grained sandstone); and (iii) quartz with metamorphic textures (ribbon quartz). Clasts contain

1–5 μm long, pale-coloured TiO2 grains or very fine-grained (<1–2 μm long) hematite, as well

as rare, 5–15 μm diameter zircon and 20 μm diameter TiO2 phases. An example of rock clast

type (iii) is visible bottom centre right of Fig 10D.

Few detrital accessory (<0.1% area) minerals are present in the thin-sections. Of these, zir-

con is the most common and occurs as rare euhedral to rounded, 10–60 μm (but up to

200 × 60 μm), highly zoned grains. Smaller (10–30 μm) high-relief, high-birefringent minerals

that may be unzoned zircon are also present. Small zircons are commonly enclosed within sin-

gle quartz grains. Other accessory minerals include: (i) rare, up to 180 μm diameter, green or

green-brown, zoned, subhedral tourmaline (with one grain enclosing zircon); (ii) very rare,

20–60 μm diameter, hexagonal apatite; (iii) very rare, 20–50 μm diameter, euhedral spinel

(present in thin-sections from SH1A and SH2A only), most likely chrome-rich magnetite/spi-

nel or chromite (based on optical properties in reflected light and supported by QEMSCAN

and SEM-EDS analyses; see section 3.4.2); (iv) rare, 100–200 × 60 μm kyanite laths; and (v)

rare, 160 μm diameter, yellow staurolite, some grains enclosing very fine-grained graphite or

small quartz inclusions.

Titanium mineral phases. Detrital and authigenic titanium minerals are the most abundant

opaque phases within all three thin-sections. Detrital grains are rounded to sub-rounded and

more common than authigenic TiO2 phases. However, discrete, detrital rutile grains were not
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Fig 10. Optical images from polished thin-sections taken under plane- (A) and cross-polarised (B-E) light, illustrating the

petrography of section 2–3 of the Phillips’ Core from Stone 58 at Stonehenge. (A) Detail of thin-section SH1B showing the

typical sarsen fabric comprising quartz grains cemented by quartz overgrowths, with late-stage Fe-Ti minerals lining and/or

infilling some void spaces. (B) Overview of thin-section SH2B showing the pervasive nature and uniformity of syntaxial

optically-continuous quartz overgrowth cements. (C-E) Details of thin-sections SH1B (C), SH2B (D) and SH3B (E), showing

host quartz grains, some of which enclose accessory minerals; dust lines (arrowed) mark the margin between some quartz grains

and the quartz overgrowth cement in images C-E. These images are reproduced under a CC BY 4.0 license, with permission

from The Trustees of the Natural History Museum, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g010
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identified. Sparse, 40–200 μm diameter, rounded, poorly crystalline, fine-grained TiO2 pseu-

domorphs (after iron titanium oxide mineral grains) are present. These exhibit yellow to

orange internal reflections and some show signs of recrystallisation. Some grains are zoned—

with darker, less altered, cores lacking internal reflections set within TiO2 rims—or have

orange-red cores within paler rims and thin authigenic TiO2 mineral overgrowths. Most iron

titanium oxides are too altered to be identified but some with a cubic habit may be former

magnetite and those that are more tabular, former ilmenite. Very rare, altered ilmenite, 180–

200 μm in length, exhibits a ‘speckled’ appearance and a TiO2 rim or has altered to box-work

leucoxene; magnetite-ilmenite intergrowths have been altered to well- and poorly-crystalline

TiO2. Little authigenic TiO2 is present in the sections. Where it does occur, it is visible as

5–20 μm but up to 40 μm long, single crystals with white to pale yellow internal reflections, or

as thin rims on earlier TiO2 or quartz grains. The characteristics of titanium mineral phases

are discussed further in section 3.5.2, with examples visible in Fig 14.

Silica cements. The host sediment grains within all three thin-sections are cemented by per-

vasive authigenic, syntaxial quartz overgrowths (occupying >99% of the cement area) that

include euhedral terminations into void spaces. Some rounded quartz grains show a dust line

between the detrital grain and its overgrowth (e.g. Fig 10C–10E), but many do not. A number

of grains have cloudy or pale brown cores, probably fine-grained fluid inclusions rather than

opaque mineral inclusions, within their clear overgrowths and some are partially surrounded

by microquartz mosaics. Further details of these cements are provided in section 3.5.2 where

the results of cathodoluminescence analyses are presented.

Late-stage void linings and fills. Late-stage void-lining minerals are present in all three thin-

sections (e.g. Fig 10A). However, complete or almost complete void-fills mainly occur in thin-

sections SH2A and SH3A. In terms of mineralogy, limonite forms thin, locally botryoidal,

2–5 μm but up to 10 μm wide linings to angular void spaces, post-dating authigenic quartz

overgrowth cements. Some voids contain 20–60 μm diameter botryoidal limonite, which has

probably replaced precursor sulfide including framboidal pyrite. Elsewhere, limonite forms

40 × 5 μm size laths within void spaces. Limonite also encloses altered iron titanium oxides in

some voids but does not appear to be associated with their alteration. The relationship between

Fe- and Ti-minerals in voids is considered further in section 3.5.

3.4. Automated SEM-EDS mineralogy (QEMSCAN)

3.4.1. Methodology. The mineralogy of polished thin-sections SH1B, SH2B and SH3B

from the Phillips’ Core was analysed quantitatively via automated SEM-EDS using an FEI

Quanta 650 QEMSCAN platform running at 20 kV with a 10 nA beam current and fitted with

3 × 30 mm2 Bruker XFlash EDS detectors. QEMSCAN has been used widely to determine the

mineralogy of sedimentary rocks [e.g. 25–27]. The method is a powerful and versatile tool in

provenancing based on mineralogy [28, 29] and has been successfully applied to studies on the

origin of Stonehenge debitage [including the Altar Stone; 30–32].

Each thin-section was measured using the QEMSCAN fieldscan mode [see 33 for a descrip-

tion of measurement modes] with energy dispersive spectra acquired at a 10 μm grid spacing.

As the samples are virtually monomineralic, the area was optimised to scan as much of each

polished section as possible (approximately 15 × 24 mm), with a total of between 2,708,539

and 3,170,220 individual ED spectra acquired per thin-section. The data were then processed

using the iDiscover 5.4 software suite and each spectrum assigned to a defined mineralogical

grouping based on its compositional signature [see 34 for a detailed method summary]. Out-

put data includes modal mineralogy, false colour mineralogical maps and a range of other

mineral and textural properties including mean mineral size (a textural index) and mineral
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association (which minerals are in contact with each other). Mean mineral size data represent

the average horizontal intercept lengths of each mineral in the image. Where, for instance,

quartz grains are compacted and/or surrounded by quartz overgrowth cements, individual

grains appear merged together and the true quartz grain size cannot be derived. However, for

more widely separated phases, such as heavy minerals, the mineral size data represent an

approximation of actual grain size.

3.4.2. Automated mineralogy results. Modal mineralogical data, expressed as area %, are

presented in Table 2. Because approximately 3 million data points were acquired, data are

reported to three decimal places; this is necessary to highlight the presence of ultra-trace

(<0.01 area %) mineral phases within the samples that would otherwise be masked. The auto-

mated mineralogy results are entirely consistent with the petrographic descriptions in section

3.3.2, whilst providing fully quantitative data; note, however, that it is not possible to differenti-

ate the various types of quartz (e.g. mono- or polycrystalline quartz) or between detrital or dia-

genetic quartz using this method. Measured quartz content is between 99.568 and 99.679 area

%, while all other mineral phases comprise between 0.432 and 0.321 area % (note that these

values exclude porosity). Hence, the mineralogy of the three thin sections is essentially invari-

ant. Despite the almost monomineralic nature of the sarsens, textural features coupled with

the trace mineral assemblage identified can provide important detail both in terms of the prov-

enance and the diagenesis of the rock.

Quartz occurs as a framework of medium sand sized grains that appear partially merged in

the mineralogical images (Figs 11 and 12). Many of the grain boundaries and pore walls are

planar reflecting the presence of quartz overgrowth cement. Trace quantities of K-feldspar,

plagioclase, muscovite and biotite are present. Rather than occurring as discrete detrital grains,

examination of the images shows that these phases typically occur as tiny inclusions (<20 μm)

enclosed within the detrital quartz. Similarly, oversized pores occur across all samples suggest-

ing that labile phases may have dissolved and that only particles enclosed within quartz grains

or surrounded by quartz cement (i.e. separated from the pore fluids) remain.

Overall, the sarsen samples are extremely clean. Aside from the quartz cement, a moderately

connected intergranular pore network with between 7.2 (SH1B) and 9.2 area % (SH3B) poros-

ity is preserved (Table 2). Small quantities of Fe-oxides/hydroxides and clay occur within the

pore network. In line with the petrographic descriptions of thin-section set A (section 3.3.2),

the Fe-oxides/hydroxides locally partially to completely line pore walls, including those

cemented by quartz i.e. they post-date quartz cementation. Kaolinite, chlorite, and, to a lesser

extent, illitic clays occur as sparse <10 μm particles that are finely disseminated throughout

the pore network or enclosed within quartz overgrowths. Given this close spatial association

with pore space, these clay minerals may be diagenetic in origin and possibly contemporane-

ous with quartz cementation. However, occasionally clay minerals (primarily chlorite) occur

within rock fragments indicating that a proportion of the clay is detrital in origin. Other diage-

netic phases identified within the pore network include scattered carbonates (calcite, dolomite,

ferroan dolomite), pyrite and (in SH3B) baryte, but these minerals are represented by very spo-

radic, small crystals.

Detrital heavy minerals are isolated and sparse, but the assemblage is relatively diverse and

includes small grains of Fe-oxide, Ti-oxide (some of which may be diagenetic), and Fe-bearing

Ti-oxide, along with lesser amounts of tourmaline (both Fe- and Mg-rich compositions), kya-

nite and zircon. While the grains reported as kyanite in section 3.3.2 could potentially be anda-

lusite or sillimanite (these minerals are polymorphs so cannot be separated based on

SEM-EDS), the grain shape coupled with an optical assessment confirmed the identification as

kyanite. Also identified, but not present in all samples, are sporadic grains of chromite (SH1B),

apatite (SH1B and SH3B) and staurolite (SH2B and SH3B). Notably, the Fe-bearing Ti-oxides
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are comparatively Fe-poor and not ilmenite sensu stricto but instead the pseudomineral “leu-

coxene”, which typically occurs as an alteration product associated with extended oxidation

and Fe leaching of ilmenite [35].

In summary, based on the analysis of the three polished thin-sections, mineral abundance

after quartz, whether detrital or diagenetic in origin, is as follows: Fe-oxides/hydroxides, kao-

linite, chlorite, Ti-oxides, Fe-bearing Ti-oxides, calcite, Mg-tourmaline, tourmaline, pyrite,

plagioclase, kyanite, illite and illite-smectite, Fe-illite and Fe-illite-smectite, zircon, dolomite,

staurolite, muscovite, ferroan dolomite, K-feldspar, biotite, chromite, apatite and baryte. Grain

size data show that all the phases (other than quartz) interpreted as detrital in origin have a

mean grain size of typically 15–45 μm, apart from staurolite, which falls within the very fine

sand size fraction (96 μm).

3.5. High resolution SEM-CL and SEM-EDS

3.5.1. Methodology. Polished thin-sections SH1B, SH2B and SH3B from the Phillips’

Core were analysed at the Natural History Museum, London, by automated SEM. High-reso-

lution SEM-CL and SEM-EDS were used to examine (i) the internal characteristics of quartz

host grains, (ii) the internal structure of quartz overgrowth cements and (iii) the development

of late-stage void linings and fills. Prior to analysis, each thin-section was coated with 10 nm

Table 2. Results of automated SEM-EDS (QEMSCAN) mineralogy.

Modal Mineralogy (area %) SH1B SH2B SH3B

Quartz 99.679 99.582 99.568

K-feldspar 0.001 0.001 0.001

Plagioclase 0.004 0.006 0.011

Muscovite 0.001 0.001 0.002

Biotite 0.001 0.001 0.001

Kaolinite 0.043 0.055 0.082

Chlorite 0.039 0.041 0.084

Illite & illite-smectite 0.005 0.006 0.009

Fe-Illite & illite-smectite 0.001 0.003 0.013

Calcite 0.007 0.007 0.017

Dolomite 0.006 0.005 0.003

Ferroan dolomite 0.002 0.002 0.001

Fe-oxides 0.147 0.192 0.078

Chromite 0.002 0.000 0.000

Pyrite 0.005 0.006 0.013

Baryte 0.000 0.000 0.001

Ti-oxides 0.020 0.038 0.041

Fe-bearing Ti-oxides 0.016 0.025 0.032

Apatite 0.001 0.000 0.001

Kyanite 0.001 0.008 0.010

Mg-tourmaline 0.011 0.007 0.008

Tourmaline 0.005 0.008 0.013

Staurolite 0.000 0.003 0.003

Zircon 0.002 0.004 0.008

Undifferentiated 0.000 0.000 0.000

Porosity (area %) 7.2% 7.7% 9.2%

Number of EDS analyses 3170220 3103710 2708539

https://doi.org/10.1371/journal.pone.0254760.t002
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carbon to prevent charging. CL and EDS analyses were performed using a Zeiss EVO LS15

SEM. Mosaic images on two representative areas for each sample were collected with a Gatan

ChromaCL colour CL imaging system. To improve the spatial resolution for CL, the SEM was

operated at an intermediate accelerating voltage of 10 kV, a beam current of 6 nA, and a work-

ing distance of 14.1 mm at a distance of ~1 mm from the CL detector. Four digital images

(each 540×540 pixels, 320 nm pixel size) with three energy ranges, red (600–750 nm wave-

length), green (475–580 nm) and blue (375–450 nm), and a composite red-green-blue (RGB)

image were recorded for each field with a dwell time of 4 ms corresponding to a measurement

time of ~20 min. Each area was analysed by 3×3 fields using automated stage control with an

overlap of 10%. The nine individual RGB images were stitched into one mosaic using the

Gatan DigitalMicrograph software option, DigitalMontage. During stitching, the best overlap

fit for neighbouring images was calculated by cross correlation. Slight brightness adjustments

were made to ensure that colours matched between neighbouring images to give a more bal-

anced mosaic image and avoid unnecessary high contrast across the fields wherever possible.

Large area elemental maps were obtained with an Oxford Instruments Aztec EDS system

with an XMax 80 mm2 silicon drift detector. The SEM was operated at a working distance of

10 mm during elemental mapping. An accelerating voltage of 20 kV and a beam current of 3

nA resulted in an EDS pulse throughput of ~86,000 counts per second. Each thin section was

analysed by 3317 to 4711 fields, with each field covering an area of 413×309 μm and analysed

for 22 seconds. Secondary electron (SE) and backscattered electron (BSE) images were

acquired at a resolution of 256×192 pixels, corresponding to a pixel size of 1.6 μm. EDS spectra

were stored as hyperspectral imaging datasets at a resolution of 128×92 pixels, corresponding

to a pixel size of 3.2 μm. Aztec software was used to stitch the individual fields into one hyper-

spectral imaging dataset with an EDS resolution up to 48 megapixels (Table 3). The distribu-

tion of elements is displayed as net intensity maps where the background has been subtracted

and peaks with overlapping X-ray lines have been deconvolved.

High resolution BSE images of the thin sections were obtained using a Zeiss Ultra Plus field

emission SEM with the large-area imaging software and hardware package ZEISS Atlas 5.

Fig 11. Automated SEM-EDS (QEMSCAN) mineralogical maps for polished thin-sections SH1B, SH2B and SH3B from section 2–3 of the Phillips’ Core. The

box indicates the location of the higher resolution mineralogical map shown in Fig 12.

https://doi.org/10.1371/journal.pone.0254760.g011
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Individual images were obtained with an accelerating voltage of 20 kV, a working distance of

8.0 mm, and a resolution of ~750 nm per pixel. The Atlas 5 software was then used to stitch

the individual images from a thin section to produce a single mosaic image with a resolution

of ~50,000×40,000 pixels.

Fig 12. Automated SEM-EDS (QEMSCAN) mineralogical map (for area of thin-section SH2B from the Phillips’ Core detailed in Fig 11) highlighting textural

features.

https://doi.org/10.1371/journal.pone.0254760.g012

Table 3. Analysed area and number of spectra of hyperspectral SEM-EDS imaging datasets.

Thin-section x (mm) y (mm) Area (mm2) Spectra x Spectra y Total Spectra

SH1B 25.9 13.9 359 8,032 4,300 34,537,600

SH2B 25.6 17.6 450 7,942 5,433 43,148,886

SH3B 25.1 20.0 503 7,796 6,210 48,413,160

https://doi.org/10.1371/journal.pone.0254760.t003
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3.5.2. SEM-CL and SEM-EDS results. SEM-CL analyses allow a clear distinction to be

made between host sediment grains and macroscopic quartz overgrowth cements (Fig 13).

SEM-CL results support the findings of optical petrographic (section 3.3) and automated min-

eralogical (section 3.4) analyses in demonstrating the dominance of quartz within the host sed-

iment. Both red and blue luminescing quartz grains are present (Fig 13B and 13E), which

confirms a mixed metamorphic and igneous origin for the detrital quartz [36]. We acknowl-

edge, however, that CL colour shifts from blue to red with increasing radiation during analysis,

and that this has almost certainly happened, to a limited extent, during the scanning of the pol-

ished sections. Given the difficulty in attributing quartz provenance on the basis of CL colour

[36], and the effect of radiation, it is not possible to offer further detail about the proportions

of volcanic, plutonic and metamorphic quartz that might be present.

Grain-cement contacts are imaged more clearly in CL than by optical (Fig 10) or back-scat-

tered BSE microscopy (Fig 13A and 13D) and reveal that the majority of quartz grains are sub-

rounded (Fig 13C and 13F). In some cases, grains show localised evidence of dissolution pit-

ting/fretting. SEM-CL also offers unique insights into the internal structure of the quartz over-

growth cement within the sarsen. RGB images (Fig 13B and 13E) provide an overview of the

total luminescence but the variability in cement luminescence is best observed at red wave-

lengths (Fig 13C and 13F).

Throughout the three polished sections, the initial cement comprises a thin (<10 μm) zone of

non-luminescing quartz, which infills embayments and irregularities in quartz grain surfaces

(e.g. see clast in bottom right on Fig 13F). This is overgrown by multiple concentric cement

growth zones that become increasingly euhedral with distance from the quartz grain, culminat-

ing in crystal terminations in open pores (Fig 13B and 13E). Growth zones are typically on the

scale of a few tens of microns in width and likely reflect changes in physico-chemical conditions

during overgrowth precipitation and crystal growth [37–39]. Growth zones can be traced around

individual host detrital quartz grains but may be crosscut and truncated by adjacent grain over-

growths. The most complete cement stratigraphy is observed adjacent to primary pore spaces,

where up to 16 distinct growth generations of alternating luminescing and, typically thinner,

non-luminescing quartz cement can be identified (e.g. see top left and centre of Fig 13C). Sector

zonation is commonly superimposed on the concentric growth fabrics and ranges from relatively

simple (reflecting differences in crystal orientation) to more complex (Fig 13C and 13F).

Analysis of the thin-sections using SEM-EDS (Fig 14) reveals additional insights into the

development of late-stage void linings and fills within the sarsen. EDS net intensity composite

elemental maps (Fig 14B–14D) indicate that most Fe-rich void linings occur as planar coatings

on the faces of euhedral quartz overgrowths. These coatings can be seen to comprise crystallites

in a botryoidal habit. Where larger (up to ~50 μm) botryoidal Fe-rich void fills occur, they post-

date and sometimes truncate these planar coatings (e.g. top-centre Fig 14B). Ti-rich void linings

occur as extremely thin (~1–2 μm) coatings overlying planar and/or botryoidal Fe-rich void lin-

ings. In places, Fe and Ti appear to occur as complex mixed fills. However, on inspection, these

are highly altered, rounded detrital Fe-Ti-oxide grains with surrounding Fe-rich void fills. In

the area of thin-section SH3B shown in Fig 14D, for example, the host sediment would have

comprised quartz grains and an altered Fe-Ti-oxide grain. Euhedral quartz overgrowths devel-

oped on quartz grains while a more irregular quartz cement formed at the interface with the

porous Fe-Ti grain. Fe-rich minerals then part lined and/or filled the remaining void spaces.

4. Geochemistry of the core

The geochemistry of the Phillips’ Core from Stone 58 was assessed using three approaches.

First, a handheld pXRF scanner was used to determine chemical variability along the full
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Fig 13. Variability in the quartz-rich host sediment and quartz cement within polished thin-sections SH2B (left

hand column) and SH1B (right hand column) from the Phillips’ Core. Back-scattered electron (BSE) images (A, D;

786 nm pixel size) and cathodoluminescence (SEM-CL) images of the same areas (B, E—Red-Green-Blue composite;

C, F—red component; 320 nm pixel size). Arrows show ~2–6 μm zircon grains at the contact of a quartz grain and

initial layer of non-luminescing quartz cement. These images are reproduced under a CC BY 4.0 license, with

permission from The Trustees of the Natural History Museum, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g013
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Fig 14. Energy-dispersive spectrometry (EDS) net intensity composite elemental maps (A-D) and back-scattered electron (BSE) images (E-G) of

polished thin-section SH3B from the Phillips’ Core. (A) Mosaic EDS map (3.2 μm pixel size) overlain with BSE micrograph (5100 × 2500 pixels,

1.6 μm pixel size). Quartz is represented in blue (Si), iron oxides/hydroxides in red (Fe), titanium oxides in yellow (Ti), zircon in green (Zr) and kyanite

(arrow) in magenta (Al). (B-D) Image detail of the rectangles shown in (A). Arrows indicate ~5–10 μm zircon grains. (E-G) BSE images (749 nm pixel

size) of the areas shown in (B-D). These images are reproduced under a CC BY 4.0 license, with permission from The Trustees of the Natural History

Museum, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g014
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length of the core. Then the length of the semi-cylinder of sarsen from section 2–3 was ana-

lysed using an XRF core scanner; and set B of the polished thin-sections was analysed using

a μXRF scanner. ICP-MS and ICP-AES were applied to subsamples from section 2–3 of the

core (Fig 6D) to determine the whole-rock geochemistry. Whole-rock isotopic analysis was

also applied to the remaining subsamples from section 2–3 (Fig 6D).

4.1. Whole-rock major and trace element analysis (by pXRF)

4.1.1. Methodology. Portable XRF analysis was used to provide a rapid geochemical

assessment of the full Phillips’ Core. Analyses along the length of the core were undertaken

using a handheld Olympus Innov-X Delta Professional XRF spectrometer at the English Heri-

tage Collections Store, Temple Cloud (see Fig 5 for positions of analyses). The model operates

at 40 kV, is equipped with a Rh anode 4W X-Ray tube and uses a silicon drift detector. The

‘Geochem’ mode was used for all pXRF analyses; this captures Mg, Al, Si, P, S, K, Ca, Ti, V, Cr,

Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, W, Hg, Pb, Bi, U and Th.

Analyses were undertaken at approximately 5 cm intervals (Fig 5). At each point, the stone was

analysed for 120 s of total exposure. The device was positioned such that the detector window

was completely covered by the stone and the centre of the detection window sat on the apex of

the core. The Innov-X Delta instrument has a detector window of ~20 mm in diameter, while

the X-ray source excites a target circle with a 3 mm diameter. At the start and end of the analy-

ses, a calibration check was made against a 316 Stainless Steel Calibration Check Reference

Coin to ensure accuracy and consistency of the results. Data were processed in Excel.

4.1.2. Portable XRF results. Selected pXRF geochemical data for the Phillips’ Core are

shown in Table 4 and Fig 15 (the full dataset is available in the S1 Data and is archived at the

Archaeology Data Service). Note that these are uncalibrated raw count % data and, while inter-

nally consistent as a dataset, should not be compared directly with the whole rock major and

trace element analyses presented in sections 4.2 and 4.4; we include the data here for the bene-

fit of future researchers seeking to explore sarsen chemistry via pXRF. The pXRF data confirm

that the sarsen comprises almost pure silica, with only minor proportions of other major ele-

ments identified (Al, Ca, Fe, K, Mg, Mn, P and Ti). This remarkably high purity reflects the

quartz-rich mineralogy of the rocks. The chemistry remains remarkably consistent along the

length of the core, with only Fe showing magnitude variations in concentration (Fig 15A).

Throughout the core, the pXRF data show no correlation between Fe and Ti (Fig 15B). This

suggests that Fe variation within the core is not entirely controlled by the variable abundances

of Fe-Ti bearing oxides (e.g. rutile, ilmenite or magnetite). Sulfur was below detection limit

throughout the core, and there is no correlation between Fe and the abundance of either Cu

(Fig 15C) or Zn (Fig 15D). This indicates that the Fe variation is unlikely to be related to the

variable abundances of metal sulfide grains (or their weathering products). Instead, cross-

referencing these results with the petrographic observations in section 3.3.2 suggests that the

variability in Fe is likely driven mainly by changes in the abundance of Fe-rich oxides and

hydroxides such as limonite. This inference is supported by the association between peaks in

Fe concentration and the occurrence of pale brown-coloured (Fe-oxide/hydroxide) zones

along the core (Fig 15A). This suggests that variations in Fe abundance are controlled by the

variable precipitation of Fe minerals from Fe-bearing fluids percolating through the sarsen

while it was still buried in the subsurface.

4.2. Whole-rock major and trace element analysis (by XRF core scanner)

4.2.1. Methodology. Higher resolution XRF analysis of section 2–3 of the Phillips’ Core

from Stone 58 at Stonehenge was conducted using a Cox Analytical Systems ITRAX-MC core
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scanner at the British Geological Survey, Keyworth, UK. XRF profile scanning was performed

along the length of the sample using an Rh-tube set to 30 kV and 1.2 mA, and a Si-drift cham-

ber detector. The ITRAX-MC has a detector window of 8 mm (cross-core) by 1 mm (down-

core). Measurements were taken using continuous scanning at 1 mm resolution and an expo-

sure time of 30 s/mm. Replicate scans of the whole sample were performed to ensure the con-

sistency of results. XRF spectral data were processed using the Cox Analytical Systems Q-Spec

spectral analysis software version 15.7 to fit and extract the net peak intensities (counts) for

specific elements. The same software can be used to quantify elemental concentrations using a

fundamental parameter-based calibration and NIST610 as a reference sample.

4.2.2. XRF core scanning results. The process of spectral fitting was complicated by the

crystalline nature of the sample material, giving rise to spectral artefacts that have been inter-

preted as diffraction peaks, 29 of which were used in the spectrum analysis. In addition, anoma-

lous attenuations in the silica-rich cement impact elemental responses; for example, a small

peak for Mg will be interpreted as very high concentrations due to the high inter-element effects

in such a cement. To the low energy side of a dominant peak, in this case Si, the low energy tail-

ing can significantly increase the background scatter. Even with the implementation of the dif-

fraction peaks, the background at the tail of the spectrum (>8 keV) is poorly fitted, hence

elements in this region (e.g. Zr) cannot be properly quantified. The raw XRF data are available

in the S2 Data and are archived at the Archaeology Data Service. However, quantified data for

elements other than Si should be treated with caution and are therefore not reported here.

Table 4. Uncalibrated pXRF data showing element concentration (count %) measured at distances along the Phillips’ Core where elements were detected (blank

cells = not detected). See Fig 5 for locations of analyses.

Distance from end of

core (cm)

Si Ti V Mn Fe Ni Cu Zn Sr Y Zr Nb Mo Pb Bi U Total

1 59.14 0.051 0.0150 0.0962 0.0008 0.0003 0.0002 0.0038 0.0004 59.31

6 61.38 0.062 0.0137 0.0422 0.0035 0.0008 61.50

11 58.55 0.080 0.0441 0.0012 0.0034 0.0005 58.68

15 60.14 0.049 0.0120 0.1138 0.0008 0.0046 60.32

20 55.93 0.056 0.1215 0.0035 56.11

25 58.36 0.042 0.0133 0.1341 0.0031 0.0004 58.55

30 62.64 0.067 0.0171 0.1065 0.0018 0.0010 0.0003 0.0023 0.0005 62.84

35 52.70 0.108 0.1412 0.0013 0.0006 0.0002 0.0033 0.0008 0.0011 52.96

39 56.65 0.080 0.0213 0.0041 0.0531 0.0031 0.0004 56.81

44 57.14 0.037 0.0127 0.0884 0.0029 57.28

49 58.37 0.044 0.0168 0.0655 0.0002 0.0032 58.50

54 62.98 0.046 0.0615 0.0002 0.0028 63.09

59 61.97 0.046 0.3807 0.0030 62.40

63 61.48 0.046 0.0129 0.0435 0.0032 61.59

68 61.47 0.053 0.0960 0.0038 61.62

73 60.66 0.038 0.0120 0.1414 0.0010 0.0010 0.0034 60.86

78 60.11 0.049 0.1308 0.0006 0.0002 0.0027 60.29

83 59.34 0.057 0.1518 0.0033 0.0004 59.55

87 54.30 0.041 0.0136 0.1043 0.0039 54.46

92 56.37 0.123 0.0413 0.0002 0.0029 56.54

97 59.56 0.066 0.0121 0.0528 0.0008 0.0002 0.0039 59.70

102 59.67 0.030 0.1259 0.0011 0.0009 0.0002 0.0030 0.0006 59.83

107 58.99 0.072 0.0046 0.0497 0.0017 0.0004 0.0003 0.0045 0.0006 0.0008 0.0005 59.13

https://doi.org/10.1371/journal.pone.0254760.t004
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Fig 15. Portable XRF geochemical data showing (A) the variation in count % of selected elements and indicative Munsell colour along the

length of the Phillips’ Core from Stone 58. Fractures are indicated as dashed lines to allow cross-referencing with Fig 5. Panels (B) to (D) show

the correlation between Fe count % and (B) Ti, (C) Cu and (D) Zn. Error bars in B-D indicate instrumental error. Note that the error for Fe is

smaller than the symbol diameter so is not displayed.

https://doi.org/10.1371/journal.pone.0254760.g015
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The sample is SiO2-rich (SiO2 ~99.2 wt. %), supporting the petrographic (section 3.3),

pXRF (section 4.1) and ICP-AES (section 4.4) results. The concentration of SiO2 is relatively

constant along the length of the sample (Fig 16). Other element peak counts have been nor-

malised to the silica-peak to identify potential trends. Element counts of Fe and Ca show a

slight increase (Fig 16) in the first 10 mm of the scan, possibly caused by the artefact corre-

sponding to the diamond saw blade mark (Fig 7). Additionally, the elemental counts for Fe

show further variation, with peaks in counts centred upon ~47 and ~59 mm correlating with

thin bands of iron hydroxide staining. Apart from this, there is no significant chemical vari-

ability along the full length of section 2–3 of the Phillips’ Core. Other elements were present at

low levels such that it has not been possible to observe patterns in their distribution; this is

compounded by uncertainty in elements such as Al, P and S due to proximity to the dominant

Si peak, and Ti, V, Ni, Cr and Ba due to their interference with spectral artefacts and poor spec-

tral fitting.

4.3. Whole-rock major and trace element analysis (by μXRF)

4.3.1. Methodology. μXRF analysis was used to produce high resolution maps of the dis-

tribution and abundance of selected elements within section 2–3 of the Phillips’ Core. Polished

thin-sections SH1B, SH2B and SH3B were analysed using a Bruker Tornado M4 micro X-ray

fluorescence (μXRF) scanner at the Vrije Universiteit Brussel. μXRF mapping was carried out

under near-vacuum conditions (20 mbar), along a 2D grid with 25 μm spacing, a spot size of

25 μm and an integration time of 1 ms per pixel. The X-ray source was operated under maxi-

mum energy settings (600μA, 50kV) and no source filters were applied. Total scan time was

approximately 3.5 h to cover 1983×3143 pixels. This mapping approach by μXRF permits ele-

ment abundance distributions to be visualised.

Fig 16. Optical image and selected XRF data for section 2–3 of the Phillips’ Core from Stone 58 at Stonehenge.

Dashed line indicates path of XRF detector along the central axis length of the sample. Solid boxes indicate areas of

interest (see section 4.2.2.). Replicate XRF scans (3×) along the same axis line were performed to ensure consistency of

the results. The image and data are reproduced under a CC BY 4.0 license, with permission from the British Geological

Survey, original copyright (2019).

https://doi.org/10.1371/journal.pone.0254760.g016
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4.3.2. μXRF results. The results of μXRF analyses complement the data generated via

QEMSCAN (section 3.4), SEM-EDS (section 3.5) and the other whole-rock XRF approaches

(sections 4.1 and 4.2). Due in part to the dominance of silica (Fig 17A) and in part to thin-sec-

tion thickness, few elements provide clear signals. However, some patterns can be seen on ele-

mental abundance maps for those elements present in relatively higher concentrations.

Abundance maps for all elements providing clear signals and heatmaps for selected elements

are archived at the Archaeology Data Service.

Consistent with the results of SEM-EDS mineralogy (Table 2), Fe is the next most abundant

element after Si. Fe is distributed irregularly throughout sections SH1B and SH2B (lower two

images on Fig 17B), reflecting the distribution of Fe-rich detrital mineral grains and late-stage

void linings and fills (see section 3.2.2). Heterogeneity in Fe distribution can, however, be rec-

ognised in section SH3B (uppermost image on Fig 17B), where two bands of higher Fe concen-

tration are visible running through the top and bottom of this thin-section. These bands

correspond to the zones of pale brown staining seen parallel to the natural fracture plane in

section 2–3 of the Phillips’ Core (right hand end of Fig 7) and comprise late-stage void-lining/-

filling limonite (section 3.2.2). Differences in the Fe concentration in each band can be seen

from the Fe heatmap in Fig 18. The lower band on the heatmap, closest to the natural fracture

Fig 17. Composite showing μXRF elemental maps of thin sections SH1B (bottom row), SH2B (middle row) and SH3B (top row) from the Phillips’ Core (from

Stone 58 at Stonehenge) for (A) Si, (B) Fe and (C) Zr. Note that Zr is present at much lower concentrations than Si and Fe so some background noise is present in

panel C—example spots of higher Zr intensity are arrowed.

https://doi.org/10.1371/journal.pone.0254760.g017
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surface, exhibits bright orange-red colours, indicating that Fe is present in higher relative con-

centrations than the upper band (turquoise-green colours) ~20 mm away from the fracture

surface. The distribution of other elements tends to be irregular, as illustrated by the elemental

abundance map for Zr (Fig 17C).

Fig 18. μXRF heatmap of the relative intensity of Fe in thin sections SH1B (bottom), SH2B (middle) and SH3B

(top) from the Phillips’ Core (from Stone 58 at Stonehenge). Red colours indicate higher and blue colours lower

relative Fe concentrations.

https://doi.org/10.1371/journal.pone.0254760.g018

PLOS ONE Petrological and geochemical characterisation of the sarsen stones at Stonehenge

PLOS ONE | https://doi.org/10.1371/journal.pone.0254760 August 4, 2021 30 / 48

https://doi.org/10.1371/journal.pone.0254760.g018
https://doi.org/10.1371/journal.pone.0254760


4.4. Whole-rock major and trace element analysis (by ICP-MS and

ICP-AES)

4.4.1. Methodology. ICP-MS and ICP-AES analyses were conducted to generate high-res-

olution whole-rock geochemical data from the Phillips’ Core. The three larger subsamples

shown in Fig 6D were processed and analysed by ALS Minerals (Seville, Spain). These subsam-

ples are numbered SHCORE-ICP01 to SHCORE-ICP03, with the numbers 01, 02 and 03 cor-

responding to the respective thin-section number. In Spain, each subsample was crushed

using a hardened steel jaw crusher such that>70% of the resulting fragments passed through a

2 mm screen size (ALS Geochemistry preparation package CRU-31). The crushed samples

were powdered in an agate ball mill such that>85% passed a 75 μm screen size (ALS Geo-

chemistry package PUL-42). Major/minor oxides were analysed by lithium metaborate fusion

digestion and ICP-AES (ALS Geochemistry method ME-ICP06). Trace elements, including

rare earth elements, were determined using lithium metaborate fusion digestion and ICP-MS

(ALS Geochemistry method ME-MS81). As, Bi, Hg, In, Re, Sb, Se and Te were determined by

aqua regia digestion followed by ICP-MS (ALS Geochemistry method ME-MS42). Ag, Cd, Co,

Cu, Li, Mo, Ni, Pb, Sc, and Zn were determined by four-acid digestion and ICP-AES (ALS

Geochemistry method ME-4ACD81). In all cases, ICP-MS analyses were conducted using an

Elan 9000 instrument and ICP-AES analyses using a Varian 700 Series instrument. Total C

and S were analysed by Leco induction furnace and Leco sulfur analyser (ALS Geochemistry

methods C-IR07 and S-IR08 respectively). Loss on Ignition (LOI) was calculated following

ignition of sample powders at 1000˚C (ALS Geochemistry method OA-GRA05).

4.4.2. ICP-MS and ICP-AES results. Patterns within the whole-rock geochemical data.

Whole-rock geochemical data for the three subsamples are shown in Table 5. Full data are

available in the S3 Data, including analyses of certified reference materials (S4 Data), and are

archived at the Archaeology Data Service. Nash et al. [5] have described selected trace element

patterns in this dataset (Ba, Ce, Dy, Er, Gd, Hf, Ho, La, Nb, Nd, Pr, Rb, Sm, Sr, Tb, Th, Ti, Tm,

U, Y, Yb, Zr); here we consider the full geochemical dataset.

Supporting the petrographic data from section 3.3, QEMSCAN data from section 3.4 and

XRF data from sections 4.1–4.3, the three subsamples are highly silica-rich (SiO2� 99.7 wt.

%), with very little variation in major element chemistry (0.05–0.06 wt. % Al2O3, 0.01 wt. %

CaO, 0.09–0.12 wt. % Fe2O3 and 0.06 wt. % TiO2). The remaining major element oxides

(Na2O, MgO, K2O, MnO and P2O5) are at or below detection limit (0.01 wt. %). The trace ele-

ment data in Table 5 also show consistency in elemental concentrations across the three

subsamples.

The average total rare earth element (REE) contents of the three subsamples range from

3.01–3.48 ppm. These extremely low concentrations are likely to be partially due to dilution by

SiO2 during silicification [40, 41]. On chondrite-normalised REE plots (Fig 19), the three sub-

samples plot as a set of parallel concave signatures characterised by enrichment in both the

light (LREE: La, Ce, Pr and Nd) and heavy REE (HREE: Ho, Er, Tm, Yb and Lu) relative to the

middle REE (MREE: Sm, Eu, Gd, Tb and Dy). Subsample SHCORE-ICP01 is defined by a

partly ‘sawtooth’ pattern in the HREE. This subsample also contains highest SiO2 content and

the lowest REE abundances of the three samples. It is likely, therefore, that the sawtooth pat-

tern is an instrumentation artefact caused by the extremely low abundances. This mechanism

is also likely to have affected the reported Lu concentration, which was at detection limit in

two of the three subsamples and below detection limit in the third.

Noting these issues, comparison of the average chondrite-normalised signature from the

Phillips’ Core with that of the Upper Continental Crust (UCC) shows that, though the three

subsamples contain orders of magnitude lower absolute abundances of REE, both have similar
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Table 5. Whole-rock major and trace element geochemical data (by ICP-AES and ICP-MS) for three subsamples from section 2–3 of the Phillips’ Core (Stone 58,

Stonehenge). Detection limit is indicated by inequality sign.

Major elements (wt. %) SHCORE-ICP01 SHCORE-ICP02 SHCORE-ICP03

SiO2 100 100 99.7

Al2O3 0.05 0.06 0.06

Fe2O3 0.09 0.12 0.09

CaO 0.01 0.01 0.01

MgO <0.01 <0.01 <0.01

Na2O 0.01 <0.01 0.01

K2O <0.01 <0.01 <0.01

TiO2 0.06 0.06 0.05

MnO <0.01 <0.01 <0.01

P2O5 <0.01 <0.01 <0.01

C 0.07 0.1 0.08

S <0.01 <0.01 <0.01

LOI 0.53 0.39 0.34

Total 101.75 100.64 100.26

Trace elements (ppm)

V <5.00 5.00 5.00

Cr 10.00 10.00 10.00

Co <1.00 <1.00 <1.00

Ni 2.00 2.00 1.00

Ga 0.80 0.80 0.70

Rb 0.20 0.20 0.50

Sr 1.20 1.00 1.60

Y 0.90 1.60 0.90

Zr 40.00 36.00 37.00

Nb 1.00 1.10 0.90

Sn 1.00 1.00 2.00

Cs 0.02 0.01 0.03

Ba 12.80 11.90 11.60

La 0.70 0.70 0.70

Ce 1.10 1.30 1.20

Pr 0.12 0.17 0.14

Nd 0.40 0.50 0.50

Sm 0.10 0.07 0.11

Eu <0.03 0.03 <0.03

Gd 0.08 0.08 0.06

Dy 0.14 0.18 0.13

Ho 0.03 0.05 0.03

Er 0.14 0.18 0.10

Tm 0.02 0.04 0.03

Yb 0.13 0.14 0.10

Lu 0.01 0.01 <0.01

Hf 1.10 1.00 0.90

Ta 0.10 0.10 0.10

W 4.00 3.00 12.00

Pb <2.00 <2.00 2.00

Th 0.24 0.23 0.22

U 0.16 0.17 0.18

https://doi.org/10.1371/journal.pone.0254760.t005
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relative enrichments in the LREE relative to the MREE. In contrast, the subsamples record

inclined MREE—HREE patterns (Gd/Yb)N� 0.5, which are distinctly different to those of the

UCC (Gd/Yb)N = 1.4. This may indicate that the original sands that were cemented to form

the Stonehenge sarsens were derived from the sorting and deposition of mineral grains present

in proportions significantly different to ‘standard’ crustal materials.

Fig 20 shows the complete trace element chemistry of the three subsamples normalised to

the UCC. Also shown are trace element signatures for the North American Shale Composite

(NASC) and average values for sandstones deposited during the Archean, Proterozoic and

Phanerozoic aeons [44, 45].

The uniformly <1 normalised abundances of trace elements within the three subsamples

further attest to the diluting effects of silicification on the trace element geochemistry of the

original sediment [e.g. 40, 41]. Notable anomalies (i.e. significant peaks or troughs in normal-

ised element abundance) in the signature are a function of the relative abundance of particular

mineral phases, within which the specific trace elements are compatible [46]. Comparison of

the signatures in Fig 20 with the QEMSCAN mineralogy (Table 2) and petrographic descrip-

tions (section 3.3.2) allows some causative determinations to be made. The notable positive

anomaly in Ti in the Stonehenge signatures is likely due to the presence of former Fe-Ti oxides

in the subsamples, while the negative Sr anomaly is likely linked to the relative dearth of pla-

gioclase (only two potential grains observed in thin-section SH1A; section 3.3.2) as compared

to the UCC. The minor positive anomalies in Nb and Ta are likely due to an overabundance of

TiO2 phases (present in all three subsamples) relative to the UCC. The negative anomalies in

Rb and Ba are most easily explained by a relatively low detrital mica content in the subsamples

relative to the UCC. Minor positive anomalies in Zr and Hf are likely due to detrital zircon

present in abundances relatively higher than that found in the UCC. These factors together

produce a Stonehenge average trace element geochemical signature that, of the sediment com-

positions displayed in Fig 20, most closely resembles that recorded by Archean sandstones

[44].

Fig 19. Chondrite-normalised REE diagram for the three subsamples from section 2–3 of the Phillips’ Core from

Stonehenge (SH) showing the Upper Continental Crust (UCC) for comparison [42]. Concentrations below

detection limit are plotted at detection limit and are signified by dashed lines [normalisation factors from 43].

https://doi.org/10.1371/journal.pone.0254760.g019
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One perplexing feature of the UCC-normalised trace element geochemical signature for the

three subsamples is the positively inclined HREE trend. Positively inclined HREE trends in

sedimentary rocks are often explained by a relative abundance of detrital garnet in the sample

[47, 48]; this is due to HREE becoming more compatible in garnet with increasing atomic

number [49]. However, garnet was not detected optically or by QEMSCAN analysis in the sub-

samples (Table 2). This seeming contradiction between the geochemistry and mineralogy of

the subsamples could potentially be the result of alteration of any detrital garnet originally in

the sediment (to mica ± chlorite ± illite), during diagenetic or other alteration processes. Such

a mechanism could have altered the garnet, thereby changing the mineralogy of the rock, but

simultaneous retaining the immobile HREE within the alteration mineral assemblage. Alterna-

tively, the HREE trend might be partly explained by the presence of relative overabundances of

zircon and/or tourmaline grains, within which the HREE are increasingly compatible with

increasing atomic mass [50, 51]. However, several of the HREE (e.g. Lu, Tm) are detected in

only some of the subsamples at, or near detection limit (Table 5). Given that the accuracy of

ICP-MS analysis for HREE becomes less good at such low concentrations [e.g. 52], there is

potential for some of the interesting HREE trend observed in the Stonehenge core to be, in

part, an instrumentation artefact.

Classification. Chemical classification of the subsamples from the Phillips’ Core using stan-

dard geochemical schemes [e.g. 53, 54] is somewhat problematic. During the process of silcrete

formation, silicification of the original host sediment necessarily increases the SiO2 content of

the resulting rock relative to the original clastic detritus, while other major elements (e.g. Al

and Ti) may be remobilised [55]. Thus, classification of silcretes using schemes that rely on

major element abundances likely reflect the effects of silicification rather than exclusively the

composition of the original sediment.

The three subsamples from the Phillips’ Core plot as a tight cluster in the quartz arenite

field on major element classification diagrams (Fig 21). These major element diagrams are

Fig 20. UCC-normalised trace element diagram for the three subsamples from section 2–3 of the Phillips’ Core from Stonehenge showing

North American Shale Composite [45] and average compositions of Archean, Proterozoic and Phanerozoic sandstones (SST) [44] for

comparison [normalising factors from 42].

https://doi.org/10.1371/journal.pone.0254760.g020
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probably of limited use in understanding the petrology of the rock (due to the effects of silicifi-

cation noted above). They do, however, have utility as a tool for comparison between the core

and potential source regions, where the focus is on the degree of geochemical similarity rather

than understanding petrological mechanisms.

In contrast to major element classification schemes, those that use trace elements may be

more useful for both petrological and comparative purposes. During silicification by

Fig 21. Major element classification schemes for the three subsamples from section 2–3 of the Phillips’ Core from

Stone 58 at Stonehenge: (A) Log (SiO2 / Al2O3) vs. Log (Fe2O3 / K2O), modified after [53]; (B) SiO2 / Al2O3 vs. Na2O /

K2O, modified after [54]. Na2O was below detection limit in SHCORE-ICP02 and K2O was below detection limit in all

three samples. For plotting, detection limit values (0.01 wt. %) are used for the affected analyses.

https://doi.org/10.1371/journal.pone.0254760.g021
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groundwater [the most likely mechanism for the majority of UK silcretes; 1, 2], many of the

high field strength elements (including the REE) and other trace elements are not significantly

introduced to the host sediment by the percolating fluid [e.g. 56]. Simultaneously, these ele-

ments remain immobile in the host sediment and are not lost [e.g. 40] via dissolution. As such,

though their absolute abundances will decrease due to dilution by silica, the magnitude of

their ratios will not. The three subsamples plot as a tight cluster either within or close to the

fields defined by sandstones sourced from passive continental margins or continental arcs on

such classification diagrams (Fig 22).

4.5. Whole-rock isotope analysis

4.5.1. Methodology. Whole-rock isotope analyses were undertaken to constrain the poten-

tial source sediments from which the host sediments in Stone 58 were derived. Two small chips

from the Phillips’ Core (SHCORE-ISO01 and SHCORE-ISO02; numbers correspond to respec-

tive thin-sections) were used for whole-rock isotope analysis (Fig 6). Each subsample was

crushed in an impact mortar and pestle and then reduced to a fine powder in an agate ball mill.

The resulting samples were transferred to a clean cabinet (class 100, laminar flow) where they

were weighed into pre-cleaned Teflon beakers. The sample was mixed with 84Sr tracer solution

and 150Nd tracer solution and dissolved in cleaned Savillex Teflon beakers using 8M HNO3 and

Ultrapur 29M hydrofluoric acid. Samples were converted to bromide form using Ultrapur HBr.

Lead was collected using Eichrom AG1 X8 anion resin. The wash from these columns was

dried down and converted to chloride form using Teflon distilled 6 M CL. The samples were

taken up in calibrated 2.5 M HCl and centrifuged. Strontium and the bulk REE fraction were

collected using Eichrom AG50 X8 resin columns. Nd was separated using 2ml of Eichrom Ln-

Spec ion exchange resin packed into 10ml Biorad Poly-Prep columns.

Sr was loaded onto a single Re filament [following 57], and the isotope composition and Sr

concentrations were determined by thermal ionisation mass spectroscopy (TIMS) using a

Thermo Scientific Triton multi-collector mass spectrometer. The international standard

for 87Sr/86Sr, NBS987, gave a value of 0.710273 ±.000016 (n = 21, 2σ) during the analysis of

these samples and data are corrected to the accepted value for this standard of 0.710250.

Pb isotope analysis of the samples was conducted using a Thermo Fisher Neptune Plus

MC-ICP-MS (multi-collector ICP-MS). This mass spectrometer is fitted with the Jet interface,

in which enhanced sensitivity is achieved using a large volume interface pump (Pfeiffer On-

Tool Booster 150) in combination with the Jet sampler and X-skimmer cones. Prior to analysis,

each sample was appropriately diluted (using Teflon distilled 2% HNO3) and spiked with a

solution of thallium (Tl), which is added (in a ratio of ~1 Tl:10 Pb) to allow for the correction

of instrument-induced mass bias. Samples were then introduced into the instrument via an

ESI 50 μl/min PFA micro-concentric nebuliser attached to a desolvating unit (Cetac Aridus

II). All isotopes of interest were simultaneously measured using the cup configuration detailed

in Table 6. The acquisition consisted of 50 ratios, collected at 8.4 s integrations, following a 60

s de-focused baseline measurement made at the beginning of each analytical session.

The precision and accuracy of the method was assessed through repeat analysis of NBS 981

Pb reference solution (also spiked with Tl). Data are corrected (normalised) relative to the

known values for this reference [taken from 58]: 206Pb/204P = 16.9417; 207Pb/204Pb = 15.4996;
208Pb/204Pb = 36.724; 207Pb/206Pb = 0.91488; 208Pb/206Pb = 2.1677. The analytical errors,

reported for each of the sample ratios, are propagated relative to the reproducibility of the ses-

sion NBS 981, to take into account the errors associated with the normalisation process.

For Nd analysis, fractions were dissolved in 1 ml of 2% HNO3 prior to analysis on a

Thermo-Electron Neptune mass spectrometer, using a Cetac Aridus II desolvating nebuliser.
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Fig 22. (A) Th-Zr/10-Co and (B) Th-Zr/10-Sc trace element discrimination diagrams for the three subsamples

from the Phillips’ Core (Stone 58, Stonehenge). Co and Sc were below detection limit in all three samples. For

plotting, the samples are shown as arrays defined by Sc and Co concentrations at both detection limit (1 ppm) and

0 ppm. Field names: IA—Island Arc; CA—Continental Arc; ACM—Active Continental Margin; PCM—Passive

Continental Margin.

https://doi.org/10.1371/journal.pone.0254760.g022
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0.010 l/min of nitrogen were introduced via the nebuliser in addition to argon in order to min-

imise oxide formation. The instrument was operated in static multi-collection mode, with

cups set to monitor 142Ce, 143Nd, 144Nd, 145Nd, 146Nd, 147Sm, 149Sm and 150Nd. 1% dilutions of

each sample were tested prior to analysis, and samples diluted to ~20 ppb. Jet sample cones

and X-skimmer cones were used, giving a typical signal of c. 800–1000 V/ppm Nd. Correction

for 144Sm on the 144Nd peak was made using a ratio for 147Sm/144Nd derived from multiple

analyses of SpecPur samarium solution. This correction was insignificant due to the efficiency

of the column separation. Data are reported relative to 146Nd/144Nd = 0.7219. The Nd standard

solution JND-i was analysed during each analytical session and sample 143Nd/144Nd ratios are

reported relative to a value of 0.512115 for this standard.

4.5.2. Results of whole rock isotope analysis. The data in Tables 7 and 8 show that sam-

ples SHCORE-ISO01 and -ISO02 are taken from a “clean” silcrete with few impurities; this is

reflected in the low concentrations of Sr (1.6 and 1.3 ppm) and Nd (0.62 and 0.48 ppm) in

each sample respectively. The isotope composition reflects the average values of the mineral

components that contribute to the silcrete host sediment. The quartz-rich nature of the host

sediment means there are very few Rb bearing minerals, which may explain the relatively low

average 87Sr/86Sr value (0.71348) for the two samples compared with other British sedimentary

rocks [59–61]. The 146Nd/144Nd ratio of 0.511946 is consistent with sediments with an average

crustal residence age of Mesoproterozoic (i.e. 1.6 to 1.0 Gyr ago) [59], assuming a typical Sm/

Nd ratio of c. 0.19 [62]. The Pb data are provided for reference, as no published Pb whole rock

data from British sedimentary rocks were found for cross-comparison.

The Sr and Nd data are displayed in Fig 23 with published data [from 63] to provide some

constraints on the possible types of source sediment. It should be noted that there is limited Sr

and Nd isotope data on UK sediments, particularly sandstones. The two core samples have an

Nd value that is most closely matched by Mesozoic sedimentary rocks, suggesting that the sar-

sen host sediments were derived from eroded sediments of this age; Palaeozoic sedimentary

rocks tend to plot with higher 143Nd/144Nd values. Aside from Sr and Nd, only one previous

study has published isotope data for a British silcrete [17], but for stable oxygen isotopes only.

5. Discussion

Using a suite of complementary state-of-the-art methodologies, the preceding sections have

provided a petrological and geochemical characterisation of samples taken from Stone 58, one

of the large sarsen uprights within the trilithon horseshoe at Stonehenge (Fig 1). Here, we

Table 6. Cup configuration for whole-rock isotope measurement.

High 4 High 3 High 2 High 1 Ax Low 1 Low 2 Low 3 Low 4
208Pb 207Pb 206Pb 205Tl�2 204Pb, 204Hg 203Tl�2 202Hg�1

1 Measured to allow for the correction of the isobaric interference of 204Hg on 204Pb.
2 Measured to allow for the correction of instrumental mass bias.

https://doi.org/10.1371/journal.pone.0254760.t006

Table 7. Sr and Nd concentrations and 87Sr/86Sr and 143Nd/144Nd isotope ratios for the whole-rock samples from the Phillips’ Core at Stonehenge.

Sample Batch N Nd ppm 143Nd/144Nd corr Sr ppm 87Sr/86Sr

SHCORE-ISO01 P894 1 0.62 0.511946 1.6 0.713688

SHCORE-ISO02 P894 2 0.48 0.511946 1.3 0.713261

https://doi.org/10.1371/journal.pone.0254760.t007
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summarise the key properties of the stone and then draw comparisons with published analyses

of sarsens elsewhere, both at Stonehenge and in other areas of southern Britain.

5.1 Synthesis of the geological properties of Stone 58

Petrographic analyses of subsamples from the Phillips’ Core demonstrate that Stone 58 is a

highly indurated, grain-supported, structureless and texturally-mature groundwater silcrete,

comprising predominantly fine-to-medium grained detrital quartz sand cemented by

optically-continuous syntaxial quartz overgrowths. Optical microscopic and QEMSCAN

results indicate that, in addition to detrital quartz, silica-rich rock fragments and (in order of

decreasing abundance) trace quantities of Fe-oxides/hydroxides, kaolinite, chlorite, Ti-oxides,

Fe-bearing Ti-oxides, calcite, Mg-tourmaline, tourmaline, pyrite, plagioclase, kyanite, illite

and illite-smectite, Fe-illite and Fe-illite-smectite, zircon, dolomite, staurolite, muscovite,

ferroan dolomite, K-feldspar, biotite, chromite, apatite and baryte are also present.

Optical microscopic and SEM-CL analyses show that the quartz overgrowth cement devel-

oped in multiple phases. These phases include an initial typically <10 μm thick zone of non-

luminescing quartz cement that infills irregularities in quartz grain surfaces, followed by up to

16 distinct quartz cement growth zones that culminate in crystal terminations in open pore

spaces. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some of these pores;

Table 8. Pb isotope composition and uncertainties for the whole-rock samples.

Sample 206Pb/204Pb 2s % 207Pb/204Pb 2s % 208Pb/204Pb 2s %

SHCORE-ISO01 20.4267 0.0107 15.7128 0.0052 38.8567 0.0064

SHCORE-ISO02 19.9937 0.0108 15.7228 0.0052 38.9146 0.0063
207Pb/206Pb 2s % 208Pb/206Pb 2s %

SHCORE-ISO01 0.7692 0.0055 1.9023 0.0061

SHCORE-ISO02 0.7864 0.0055 1.9464 0.0061

https://doi.org/10.1371/journal.pone.0254760.t008

Fig 23. Sr and Nd isotope data for the whole-rock samples from the Phillips’ Core at Stonehenge plotted alongside

equivalent published data for UK lithologies [data from 63].

https://doi.org/10.1371/journal.pone.0254760.g023
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these are most prevalent in a zone close to an original fracture surface in the Phillips’ Core and

were likely introduced into Stone 58 while it was still in a sub-surface environment. As pro-

posed for saccharoid sarsens in Sussex, this ferruginisation may have accompanied break-up

of the original sarsen/silcrete body and its inclusion in Clay-with-Flints (a residual deposit

formed from the dissolution, decalcification and cryoturbation of the Chalk Group and

Palaeogene formations) [16]. QEMSCAN analyses indicate that the silcrete preserves 7.2 to 9.2

area % porosity as a moderately connected intergranular network.

ICP-AES and other geochemical data indicate that the silcrete is chemically very pure,

comprising� 99.7 wt. % SiO2. pXRF and XRF core scanner data show that the major and

trace element chemistry is also highly consistent, with the only magnitude variations being

observed in Fe content. The non-quartz accessory minerals within the silcrete host sediments

impart a trace element geochemical signature distinct from ‘standard’ sedimentary and other

crustal materials. 143Nd/144Nd isotopic analyses suggest that the detritus that makes up the sar-

sen host sediment was likely derived from eroded Mesozoic rocks and that these Mesozoic

rocks incorporated much older Mesoproterozoic material.

5.2 Comparison with previous analyses of sarsens at Stonehenge

The results in this study represent the first comprehensive analysis of sarsen samples taken

directly from one of the Stonehenge megaliths. The petrographic and mineralogical data in

section 3 can now be compared with previous analyses of sarsen debitage from the monument.

As noted in section 1, the earliest detailed description of sarsens at Stonehenge was by John

Wesley Judd, who worked on rock fragments excavated in 1901 by William Gowland from an

area around Stone 56. The report on the excavations [8] is written mainly by Gowland, with a

13-page “Note on the Nature and Origin of the Rock-fragments found in the Excavations” pro-

vided by Judd (pp.106-118). In his preamble to the 1902 report, Gowland notes that:

“. . .the sarsens in their composition are sandstones, consisting of quartz sand, either fine or

coarse, occasionally mixed with pebbles and angular bits of flint, all more or less firmly

cemented by silica. . . They range in structure from a granular rock resembling loaf sugar

[saccharoid sarsen] in internal appearance to one of great compactness similar to and some-

times passing into quartzite [likely hard sarsen]. The monoliths and trilithons all consist of

the granular rock”

[8, p.45].

Judd’s descriptions of sarsen fragments build upon this overview:

“In some cases they are coarse-grained, in others very fine-grained; the sand grains of

which they are composed are sometimes well rounded, at other times angular. Other miner-

als present within them besides quartz are feldspars more or less altered, mica and glauco-

nite, whilst chips of flint are in some cases not rare. The grains sometimes show only a

small quantity of cement between them; at other times this siliceous cement is large in

quantity and the outlines of the original grains can be traced only with difficulty, the rock

being almost indistinguishable from quartzite. Occasionally the cement around the grains

shows [a] radiated or spherulitic appearance”

[8, p.109-110].

It is not always easy to tell from Judd’s account if he is describing hard or saccharoid sarsen

(or indeed both). Further, his descriptions of mineralogy suggest that some glauconitic
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sandstone fragments may have been incorporated into his ‘sarsen’ sample. However, his

account includes a separate analysis of small chips broken from eight hard sarsen hammer-

stones [8, p.114]. By comparing Judd’s notes on these hammerstones with his more general

descriptions of sarsens, it is evident that the fragments in which the “siliceous cement is large

in quantity” and the “outlines of the original grains can be traced only with difficulty” are sac-

charoid sarsen and are essentially the same material as described from Stone 58.

No new information on the lithology of the Stonehenge sarsens was added until the work of

Hilary Howard in 1982 [pp.119-123 in 12]. Howard analysed thin-sections of 12 saccharoid

and 14 hard sarsen fragments from Mike Pitts’ 1979 and 1980 excavations [12–14] and con-

ducted heavy mineral analyses of selected fragments and natural sarsens. Howard’s thin-sec-

tion descriptions drew upon the now widely adopted terminology for silcrete fabrics

introduced by Mike Summerfield in the late 1970s and early 1980s [64], making her findings

directly comparable with those in this study. We focus here on her results for saccharoid sarsen

fragments only [12, p.120-123]; note that we do not know if these fragments came originally

from a single dressed boulder or multiple stones or, indeed, if the stone(s) from which the frag-

ments were struck remain at Stonehenge.

Howard’s saccharoid sarsen samples all exhibited a grain-supported fabric and displayed a

“remarkable macroscopical similarity” [12, p.121-122]. Quartz grains within the thin-sections

were generally more rounded than in her hard sarsen samples and ranged from 0.2 to 0.5 mm

diameter (fine to medium sand). Howard described the quartz cement within the saccharoid

sarsens as “. . .extremely sparse, and when present is always microcrystalline in nature”, noting

also that the “matrix crystals are distinctly angular” [12, p.122]. Howard further observed that

the quartz cement within her samples was sometimes obscured by ferruginous staining, with

patches of “brown haematite” (most likely limonite) observed “clustering around individual

grains” [12, p.122].

Howard’s thin-section descriptions compare well in terms of grain size variability with

those of the subsamples from Stone 58 (section 3.3). There are, however, significant differences

in petrography. First, Howard’s descriptions indicate that her saccharoid sarsen fragments

contain different types and quantities of cement compared to Stone 58 –respectively micro-

quartz versus quartz overgrowths, and sparse versus extensive cements. Second, her samples

appear to contain more progressive ferruginisation by late stage Fe-minerals. The latter differ-

ence could simply be the product of the residence time in a sub-soil environment for the bur-

ied sarsen fragments. The contrasting cements are, however, less easily explained. One

possibility is that Howard’s samples comprise material dressed from the less well-cemented

outer surface of one or more sarsen boulders. Alternatively, the contrast could reflect a funda-

mental petrological difference between Stone 58 and the original sarsen(s) from which How-

ard’s samples were struck.

Howard assessed the relative abundance of heavy minerals in five saccharoid sarsen frag-

ments using a four-point ordinal scale with the categories ‘very rare’, ‘rare’, ‘present’ to ‘abun-

dant’ [see Table 3 in 12]. In addition to ubiquitous non-magnetic opaque minerals (likely Ti-

oxides): zircon and rutile were identified in all five samples in quantities ranging from ‘rare’ to

‘abundant’; andalusite occurred in all samples and ranged from ‘very rare’ to ‘present’; stauro-

lite was ‘present’ to ‘abundant’ in all samples; kyanite was ‘present’ in three of the samples

only; tourmaline and garnet were present in two and one samples, respectively, where they

were ‘very rare’.

The suite of non-quartz accessory minerals described by Howard [12] is broadly similar to

that from the Phillips’ Core. However, the specific minerals identified, and their relative abun-

dances differ. For example, neither garnet nor rutile were detected via optical microscopy in

Stone 58, while zircon is less abundant and tourmaline much more abundant in Stone 58 than
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in Howard’s descriptions. The lack of garnet in Stone 58 could, in part, be diagenetic. As noted

in section 4.4.2, the positively inclined HREE trend within the UCC-normalised trace element

geochemical signature for the Phillips’ Core (Fig 20) may suggest that garnet was once present

in the sarsen host sediments but was altered prior to or during silicification. The rarity or

absence of tourmaline within Howard’s results is, however, surprising. Tourmaline is ubiqui-

tous within the thin-sections from Stone 58 and in descriptions of sarsen from across southern

Britain. It would appear that, either tourmaline has been under-identified in Howard’s analy-

ses or—combining her thin-section and heavy mineral data—the selected fragments from

Pitts’ excavation were all struck from a boulder (or boulders) of less well-cemented, ‘tourma-

line-absent’ sarsen. If the latter is true, then Howard’s samples are likely to be fragments from

a mineralogically distinct sarsen to Stone 58 –possibly Stone 26 or 160, identified by Nash et al.

[5] as chemically different to other sarsens at Stonehenge, or one or more of the ~28 sarsens

missing from the monument today [3].

5.3 Comparisons with sarsens elsewhere in southern Britain

Although the literature on sarsens is plentiful, there is comparatively little detailed work con-

cerning their micromorphological variability. Comparing the petrography of the subsamples

from Stone 58 with available published accounts suggests that their essential mineralogy and

textures are typical of saccharoid sarsens from across southern Britain. The majority of petro-

logical studies of sarsens confirm a simple micromorphology consistent with an origin as a

groundwater silcrete [2, 24], with samples commonly exhibiting a grain-supported fabric

cemented by optically-continuous syntaxial quartz overgrowths and/or microquartz and/or

‘chalcedony’ and/or cryptocrystalline silica [15–17, 65–72]. Stone 58 is relatively unusual in this

respect in having a cement approaching 100% quartz overgrowths on framework grains. This

suggests that the original sarsen host sediments were extremely ‘clean’ (i.e. they had a very low

initial clay content), since the presence of clay minerals inhibits the development of quartz over-

growths [64] and instead favours a microquartz-dominant or poorly crystalline silica cement

[55]. QEMSCAN results (section 3.4.2) support this interpretation by showing that the trace

quantities of clay minerals present within the sarsen occur mainly as late-stage void linings.

Published geochemical data for saccharoid sarsens are even more rare than detailed petro-

graphic descriptions and, where available, include analyses of major and only selected trace

elements. Comparisons of various geochemical datasets from the Phillips’ Core (e.g. pXRF,

XRF scanner, μXRF, ICP-AES) with equivalent published data for sarsens [16, 69, 70, 72, 73]

suggest that—while at the upper end in terms of wt. % SiO2 content—Stone 58 is typical of sac-

charoid sarsens elsewhere in southern Britain. The consistency in geochemistry across the

three samples from Stone 58 is also in line with results from Ullyott and Nash [16], the only

previous study to make multiple chemical assays from a single sarsen boulder. In common

with other sarsens [e.g. 16, 72], the Fe content in the samples from Stone 58 increases in visible

zones of ferruginisation, but still constitutes a minor component of the rock chemistry.

The only studies to include extensive trace element data for sarsens are the recent papers by

Nash et al. [5] and Day [73]. Using these data as a basis for discrimination, differences between

Stone 58 and sarsens elsewhere in Britain can be assessed. Nash et al. [5] focus on a selected

suite of 21 immobile trace elements (section 4.4.2) to compare the composition of Stone 58

presented here with equivalent data for 20 sites across southern Britain. Sarsens from the Val-

ley of the Stones (Dorset), Blue Bell Hill and Lenham Quarry (both Kent), Sudbury (Suffolk)

and one site at Gestingthorpe (Essex) exhibit different immobile trace element signatures for

all elements except Hf and Sr. Other sites in Wiltshire, Devon, Hampshire, Sussex, Essex and

Norfolk show closer immobile trace element signatures to Stone 58, but still differ in at least
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two element ratios. The only site with the same immobile trace element signature to Stone 58

is West Woods in Wiltshire, 25 km north of Stonehenge, suggested by Nash et al. to be the

source of the sarsen.

Day [73] provides whole-rock compositional data for nine fragments of sarsen collected

from the vicinity of the Medway megalith structures at Kit’s Coty, north Kent. Based on visual

assessment only, Day interprets these fragments as debitage left over from the dressing of the

sarsens that form the megalith structures. Treating Day’s whole-rock compositional data using

Nash et al.’s [5] method allows a direct comparison between the data for sarsens from Kent in

the two studies and the equivalent data for Stone 58. Such a comparison supports the conclu-

sion made by Nash et al. that sarsens from Kent exhibit a different immobile trace element sig-

nature to Stone 58, with Day’s sarsen samples differing in three or more of the 21 element

ratios used. It also suggests that there may be greater chemical variability across the sarsen

clusters remaining in Kent than was captured by Nash et al.

Day’s paper [73] includes limited mineral compositional data (for detrital zircon and Ti-

rich grains) and 207Pb/206Pb ages for a small number of detrital zircons within the sarsen frag-

ments. These types of analysis remain productive avenues for future sarsen provenancing stud-

ies. However, as noted in section 1, we were unable to determine reliable zircon ages from

Stone 58 owing to a paucity of large zircon grains. As such, unless technology improves, the

future application of these types of mineral compositional investigations to Stonehenge would

need to focus on minerals other than zircon.

6. Conclusions

Using a suite of state-of-the-art methods, this paper has presented an in-depth characterisation

of the sedimentology, mineralogy and geochemistry of a known sarsen megalith (Stone 58) at

Stonehenge, yielding the first detailed insights into the primary stone type used in the con-

struction of the monument. The main findings of the study are summarised in section 5.1. No

previous investigation has analysed a single sarsen boulder with such a range of complemen-

tary techniques, meaning that comparisons with previous studies are limited to selected rock

properties. Aside from being almost exclusively cemented by optically-continuous syntaxial

quartz overgrowths, the petrography of Stone 58 is otherwise unremarkable compared to other

sarsens. Likewise, the major element geochemistry of the stone is similar to the small number

of chemical datasets available for sarsens. Where Stone 58 differs to sarsens at other sites across

southern Britain is in its immobile trace element geochemistry. Selected geochemical data

from the Phillips’ Core have already been used by Nash et al. [5] to identify the source prove-

nance of Stone 58 and, by inference, all but two of the extant sarsens at Stonehenge, to the

West Woods area southwest of Marlborough, Wiltshire. This paper has presented a range of

significant new datasets for Stone 58 that could be used in future studies to further constrain

this provenance. Of these, studies that focus on the host sediment properties, and, in particu-

lar, sediment mineralogy and chemistry of sarsen source areas, are likely to be the most pro-

ductive. The novel combination of analytical approaches employed here will also be of use in

the wider context of stone procurement studies, not only for sarsens within the Stonehenge

landscape but anywhere in the world where silcrete was used in an archaeological context.
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S2 Data. XRF core-scanner data of section 2–3 of the Phillips’ Core from Stone 58 at Stone-

henge.

(XLS)

S3 Data. ICP-AES and ICP-MS data for three samples from section 2–3 of the Phillips’

Core from Stone 58 at Stonehenge.

(XLS)

S4 Data. Quality control data for ICP-AES and ICP-MS analyses of three samples from sec-

tion 2–3 of the Phillips’ Core from Stone 58 at Stonehenge.

(XLSX)

S1 Movie. Three-dimensional reconstruction and full simulation of X-ray computed

tomography data.

(WMV)
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