
 

 

 

 

 

Affective State Recognition in Virtual Reality from 

Electromyography and Photoplethysmography 

using Head-mounted Wearable Sensors. 

 

 

 

 

by 

Ifigeneia Mavridou 

 

 

 

A thesis submitted in partial fulfilment of the requirements of Bournemouth 

University for the degree of 

Doctor of Engineering 

 

 

Emili Balaguer-Ballester 

Ellen Seiss 

Charles Nduka 

 

February, 2021 



 

 

 

i 

 

 

 

Copyright statement 

This copy of the thesis has been supplied on condition that anyone who 

consults it is understood to recognise that its copyright rests with its author and due 

acknowledgement must always be made of the use of any material contained in, or 

derived from, this thesis. 

  



 

 

 

ii 

 

 

 

Abstract   

The three core components of Affective Computing (AC) are emotion expression 

recognition, emotion processing, and emotional feedback. Affective states are 

typically characterized in a two-dimensional space consisting of arousal, i.e., the 

intensity of the emotion felt; and valence, i.e., the degree to which the current 

emotion is pleasant or unpleasant. These fundamental properties of emotion can not 

only be measured using subjective ratings from users, but also with the help of 

physiological and behavioural measures, which potentially provide an objective 

evaluation across users. Multiple combinations of measures are utilised in AC for a 

range of applications, including education, healthcare, marketing, and entertainment.  

As the uses of immersive Virtual Reality (VR) technologies are growing, 

there is a rapidly increasing need for robust affect recognition in VR settings. 

However, the integration of affect detection methodologies with VR remains an 

unmet challenge due to constraints posed by the current VR technologies, such as 

Head Mounted Displays. This EngD project is designed to overcome some of the 

challenges by effectively integrating valence and arousal recognition methods in VR 

technologies and by testing their reliability in seated and room-scale full immersive 

VR conditions.  

The aim of this EngD research project is to identify how affective states are 

elicited in VR and how they can be efficiently measured, without constraining the 

movement and decreasing the sense of presence in the virtual world. Through a 

three-years long collaboration with Emteq labs Ltd, a wearable technology company, 

we assisted in the development of a novel multimodal affect detection system, 

specifically tailored towards the requirements of VR. This thesis will describe the 

architecture of the system, the research studies that enabled this development, and 

the future challenges. The studies conducted, validated the reliability of our proposed 

system, including the VR stimuli design, data measures and processing pipeline. This 

work could inform future studies in the field of AC in VR and assist in the 

development of novel applications and healthcare interventions.  
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Figure 34. Example of participant wearing the EMG sensors, headphones while viewing 

videos on a screen. 126 

Figure 35. Photographs of the apparatus (right) and physical area of the study (left). 126 

Figure 36. Classification accuracies for all 34 participants 128 

Figure 37. High-level overview of the proposed system. The Faceteq prototype is depicted 

on the upper left side. 134 

Figure 38. ROC curves per participant per experiment performed (user-dependent). 137 

Figure 39. ROC curves per experiment (user-independent). 138 

Figure 40.  Screenshot from within the VE used for relaxation and baseline recording in 

pre-study survey. 147 

Figure 41. Screenshots taken of the three affective VES from the user’s view (a, left side) 

and top view (b, right side). The first one (1a & 1b, top) is from the neutral environment, 

the second (2a & 2b, middle) is from the negative one and the third (3a &3b, bottom) is the 

positive VE. The square areas outlined in the top views (1b,2b,3b) show the perimeter of 

the walking area of the user. 149 

Figure 42. Top view of the scene used for the VEs. The write rectangle shows the perimeter 

of the user's walking area. The user would start from point A (left figure) then to point B 

while exploring the room, and back to point A (right figure) to exit the scene. 153 

Figure 43. 360 view of the VE. The yellow box (middle) shows the area that was visible to 

the user. 154 

file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761227
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761227
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761227
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761228
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761228
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761229
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761229
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761230
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761230
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761230
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761230
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761231
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761231
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761231
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761232
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761233
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761234
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761235
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761235
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761236
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761237
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761238
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761238
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761239
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761240
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761241
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761241
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761242
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761242
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761242
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761242
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761242
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761243
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761243
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761243
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761244
file:///C:/Users/Ifi/Documents/Writings/Thesis/POST%20VIVA/Final%20Library%20version/Ifigeneia%20Mavridou_thesis_combinedchaptersAfterCorrections_v6.2.docx%23_Toc79761244


 

 

 

xi 

 

Figure 44. Side and top view of the ray-casting from the viewpoint of the user towards 

objects in the VE. The rays are displayed in yellow for static neutral objects and in red for 

interactive events. 154 

Figure 45. Left side: Experimenter view of the scene. Right side: User view of the scene.

 154 

Figure 46. 360o view of an office based VE. The virtual door (indicated by the orange 

outline, left) was interactive and could assist participants exiting a VE by ‘touching’ it with 

the use of the hand controller. 156 

Figure 47. Mean valence and Arousal ratings for each VE condition presented from the 

first-person point of view of the user within VR. 161 

Figure 48. Mean valence and arousal ratings for all events in the three VE conditions. The 

x-axis (bottom) displays valence ratings and the y-axis (left) displays arousal ratings. 164 

Figure 49.  Mean valence and arousal ratings for each stimulus in each of the VE 

conditions. A list of all stimuli including static objects and animated events is displayed on 

the right side of each figure. A. neutral VE condition. B. positive VE condition. C. negative 

VE condition. 166 

Figure 50. Mean memory accuracy scores across events per VE condition. 168 

Figure 51.  Left figure - relationship between valence ratings (y-axis) and memory 

accuracy for each stimulus. Right figure - relationship between arousal rating (y-axis) and 

memory accuracy (x-axis) for each stimulus. Red dots are representing stimuli presented in 

the negative VE condition, green dots represent stimuli from the positive VE condition, and 

blue dots represent stimuli from the neutral VE condition. 171 

Figure 52.  Plot showing average presence scores per condition. 172 

Figure 53. Radar plot showing average scores for each subscale: Involvement, spatial 

presence (‘Spatial’) and experience realism (‘Reality’) per VE. General presence is 

excluded from this radar plot. 172 

Figure 54.  Mean valence and arousal ratings per alexithymia group. Left figure: Mean 

valence ratings for each condition. Right figure: Mean arousal ratings for each condition.

 174 

Figure 55. Mean valence ratings for high and low neuroticism groups. 176 

Figure 56. Mean arousal ratings for high and low agreeableness groups 177 

Figure 57. Dataset selection flowchart 187 

Figure 58. 360o view of the CASR-training VE. The screen in front of the user played four 

short videos. The AV space on the right of the screen gave visual feedback of the user’s 

rating. 188 

Figure 59. 360o screenshots of the VEs: 190 

Figure 60. Sketch of floor plan and photo of entrance area of the ‘Who Am I ?’ gallery at 

the Science Museum London. The study was conducted here. The space was designed in a 
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way that two sessions of active VR and two sessions of passive VR could run 

simultaneously. 191 

Figure 61. The participant is wearing the HTC Vive headset + EmteqVR and headphones, 

holding a controller. On the left side, one of base-station tripods is visible and a web-

camera fixed on the wall. With the exception of EmteqVR, controllers and base-stations, all 

devices were connected via cable to the PC. 193 

Figure 62. Outline of the experimental protocol used for the VR study divided in steps (1-

7). Step 1 included the introduction to the study, the Participant Information Form (PAF), 

the consent form, a demographic questionnaire with screening questions and the 

allocations of participant IDs. Participants were then divided into an active and a passive 

group. They were trained on how to use the CASR interface using the Vive Controller 

(Step2). Active group users were introduced to room-scale VR using the VR adaptation 

scene (Step 3). Next, both groups experienced the affective scenarios preceded by a 

baseline recording session and followed by a short experience questionnaire (Step 4 & 5). 

Step 6 included a short recording of facial expressions of three emotions. In the end, 

participants were asked to complete questionnaire (Q2) which included questions about 

their personality, as well as alexithymia and expressivity scales. 196 

Figure 63.  Flow chart of the EMG signal processing steps. 197 

Figure 64. Mean valence ratings (left) and mean arousal ratings (right) of VEs per group 

(VEs: 1= Negative, 2 = Neutral, 3 = Positive). 203 

Figure 65. Mean agreement scores per VE represented by circles. The centre of circle 

signifies the mean value for the arousal and valence ratings per VE, while the width 

represents the mean CV scores for arousal and valence. The vertical and horizontal lines 

represent the standard deviation of ratings per axis. 205 

Figure 66. Mean valence CASR ratings (left) and mean arousal CASR ratings (right) of 

VEs per group (VEs: 1= Negative, 2 = Neutral, 3 = Positive). 206 

Figure 67. Valence-Arousal coordinates for each event marker, grouped by colour for each 

VE (negative-pink, positive-green, neutral-blue). The event markers are divided in scores 

derived from the Active ("A") denoted by a blue outline and the Passive group ("P") 

denoted by orange outline. 208 

Figure 68. Plot showing the mean memory scores per condition (VE) for all participants. 

Error bars are standard deviations. 209 

Figure 69.  Plot presenting the mean memory scores and standard deviation from the 

Active (blue) and the Passive group (orange) per VE. 209 

Figure 70. Presence scores of the active and passive group per each VE. Error bars 

display standard deviations. 211 

Figure 71. Bar chart showing the median RMS activations per channel for each expression 

(Frown, Smile, Surprise) with their standard deviations. 214 
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Abbreviations 

1-D, 2-D, 3-

D 

One-, two-or three-dimensional; referring to the 

spatial dimensions of an image. 

A.C. or AC Affective Computing. 

ADs  Action Descriptors, used in FACS. 
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AUs  Facial Action Units, used in FACS. 
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skin resistance which is controlled by the sympathetic 

nervous system and is attributed to emotional and 
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EEG  Electroencephalography, is a technique that 

measures the electrical impulses of the brain using 

electrodes attached to the scalp. 
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measuring the electrical activity produced by muscle 

movements. 

EOG  Electrooculography.  
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corresponds facial muscle movements to facial expressions 
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Chapter 1 

 

Introduction and Thesis Summary 

Virtual Reality (VR) is no longer limited to laboratory settings. The range of its 

potential applications is rapidly increasing, due to recent technological 

advancements bringing low-cost portable VR headsets to the consumer market. 

From entertainment, training, healthcare and research, VR delivers a highly 

controllable system for the design of experimental studies, while also granting 

ecological validity [1]. The audio-visual content is under comprehensive creative 

control, which renders most aspects of the user’s experience assessable and 

quantifiable. Combining VR with the ability to track and measure the user’s 

behaviour within it, could potentially provide the ultimate laboratory for behavioural 

sciences and user-experience research. The ability to understand and measure 

emotional responses of an individual immersed in room-scale VR scenarios could be 

a great methodological improvement in VR research and it could facilitate 

applications in health-care and well-being [2]. 

As VR was an emerging technology at the time when this thesis started, a 

practical paradigm to capture different ranges of emotional responses in VR had not 

been yet standardised specifically for room-scale VR settings. An exploration of the 

available technologies for emotion detection was needed, and of devices and sensors 

that could potentially perform in synergy with the existing VR technologies. 

Potential candidates for such integration would be non-invasive, wearable sensors, 

that would not hinder or disrupt the user’s movement and experience. Confirming 

the feasibility of using a combination of sensor modalities to capture affective states, 

could allow subsequently the development of affect detection algorithms via 

machine learning. Such emotionally-intelligent algorithms for VR applications could 

reveal novel routes for interactive experiences as proposed in Affective Computing 

[3], and contribute to a better perception of various psychological or mental states 

(such as Flow and Presence [4]). All in all, the quantification of the user’s state could 

contribute to e.g. identify possible pathologies, and assist in the development of well-
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being tools and health-care related solutions [5] which have been increasingly 

incorporating VR technologies lately to provide therapies that could be delivered 

remotely. Multimodal real-time data acquisition and user-centred analysis would be 

vital to the development of such interventions. 

 Affect Detection in VR: Prospects & Challenges 

Affective Computing (AC) and Physiological Computing (PC; [6]) emerged, in 

order to provide computer scientists and researchers from several fields an 

interdisciplinary common space for collaboration on designing responsive 

computing systems to the psychophysiological activity of the user. The vision of 

Affective Computing (AC; [3])  reflects on enriching the computer’s intelligence by 

entailing mechanisms for realistic behaviour, that could potentially exceed the 

“Turing Test” requirements [7]. Remarkably, a fundamental step in forming 

affective dialogues between machines and humans is recognising the psychological 

states expressed by the human interlocutor during Human Computer Interaction 

(HCI). 

One potential way to get closer to this ability for HCI systems is to reliably 

detect emotional states in different settings. Numerous theories for emotional state 

detection and classification which have been suggested, will be presented in Chapter 

2. They link affect to human cognitive and behavioural processes as well as 

psychophysiological states (see brief description in section 2.3.). In addition, the 

advancement of technologies and the development of scientific methods, has enabled 

researchers to monitor and evaluate emotional reactions to stimuli from a plethora of 

metrics and expressive modalities, including gestures, body movements, facial 

expressions, central and autonomic nervous systems responses, as well as speech 

([8], [9]).  

More specifically, affect recognition studies in non-VR laboratory settings 

are currently using various methods including self-report measures (questionnaires), 

behavioural observations, and physiological measures, such as heart rate (HR), skin 

conductance (galvanic skin response; GSR), facial movement tracking via computer 

vision (CV) and electromyography (EMG) amongst others. These methods are used 

to identify and measure the manifestations of emotional reactions. However, the 

existing methodologies had not been widely applied in fully immersive, interactive 

VR settings. The majority of affective studies in VR settings rely on subjective post-
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exposure questionnaires, behavioural observations, and in some cases unimodal 

physiological measures that primarily focus on the identification of physiological 

arousal. By comparison, the measurement of valence levels from physiological 

measures was challenging [4]. This is mainly because VR imposes some practical 

constraints when it comes to the integration of conventional methods utilised for 

affect detection (see section 2.3). 

Naturally, as humans utilise multiple cues and features to recognise emotion 

in every-day interactions, we expect ‘intelligent’ computers to employ a similar 

approach, rendering multimodal affect recognition approaches increasingly 

appealing. Advantages of adapting a multimodal approach lie on the pretext that the 

amalgamation of multiple signals or features can provide a richer source of data. This 

methodological approach can reduce the limitations of unimodal approaches since 

obtaining truthfully accurate signals can be a considerable limitation for certain 

recordings [9]. The utilisation of multiple signals can alleviate this restriction and 

offer a more well-rounded view of the overall expressive properties of affective 

changes [10]. Potential challenges however can range from (a) identifying 

physiological signals and their features which can carry information which are useful 

for affect detection, (b) selecting signals and features of high quality (or less noisy) 

compared to others, and (c) explorer and identify which combination of those can be 

most informative for affect classifications. 

Ideally, multimodal affect detection in VR settings could also be achieved 

by combining methods in an especially adapted set-up framework, which would 

consider system usability, mobility, portability, and wearability factors. Thus, 

special focus is required towards the design of unobtrusive technologies for VR. 

Technological solutions including cumbersome set-ups with multiple cables, can 

impede one’s freedom of movement and distract them from the VR content. This in 

turn can disrupt the overall user’s experience with hampering results over the effects 

of immersion and presence [30]. These effects are suggested to provide a 

measurement of the efficiency of a VR simulation to induce naturalistic responses as 

the user believes in the reality presented by the simulation [11]. Wearable sensor 

technologies for VR are currently starting to emerge [3]. The latest hardware 

technological advancements result into an increase of computational power which in 

turn assists the development of novel interfaces and software solutions. These 

solutions could potentially open new avenues for real-time affective state analysis in 

VR.  
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 Research Problem and Objectives  

In every-day social settings, we are able to understand what our friends or colleagues 

are feeling, by drawing information from the way they express their emotions from 

verbal and non-verbal cues such as their tone of voice, body motion, tension, distance 

from others and facial expressions. The majority of current emotion detection 

commercial products utilising CV focus on discrete facial expression and muscle 

configurations, following an approach by Ekman and Oster [12]. In fact, recognising 

facial expressions in comparison to other behavioural measures offers some 

advantages related to the ingrained biological component [13] and the debated 

universality parameter, as supported by cross-cultural studies [14], [15] and affective 

neuroscience studies [16]–[18]. However, utilising unimodal approaches as cameras 

to analyse facial expressions to infer emotions is in fact insufficient [19]. It provides 

a low-grained understanding of the inner feeling of the user, which depends on 

cultural variables and context-related information (for example smiling slightly may 

mean that an individual is embarrassed or stressed). Consequently, efficient 

emotional state detection would require a larger range of data types in conjunction 

with contextual information (e.g., knowing if the condition in which the emotional 

response was made was threatening or friendly) and additional psychophysiological 

measures of for example tension (arousal) which can enrich the facial recognition 

side.  

In practice, the detection of affective states in VR would require the careful 

acquisition and interpretation of data which are normally highly subjective by nature 

[20], [21] together with the continuous monitoring of the context in which they were 

collected. This would allow us to understand the response to the interaction (the 

‘how’) to the content (to ‘what’ caused this reaction). Event-stimuli related 

information could be taken from the simulations as stimuli creation and control is 

feasible through VR development. The endeavour of obtaining continuous, reliable 

multimodal data in Virtual Environments (VEs) could be potentially achieved by 

integrating multiple biometric sensors on the already existing prerequisites of 

wearable apparatus (like e.g., VR headsets) used in VR settings, instead of being 

constrained by the usage of multiple individual sensory systems which can be 

cumbersome to use. As this research field has great potential but is still at its infancy 

[4], our team investigated the efficacy of using such an headset-based integrated 
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multimodal sensory system in VR, and the feasibility of capturing physiological 

changes in fully immersive VR settings. 

Consequently, the main objective of this EngD work was to assess the 

feasibility of using multimodal VR-integrated biometric approaches for affect 

detection, by combining objective measures of valence and arousal in stimuli-

controlled environments. The informative value of these combined measures was 

compared against subjective self-ratings of valence and arousal recorded 

continuously during the VR experience. This work draws scientific expertise from 

multiple disciplines (including psychology, computer science (and VR), emotion 

research, biology, hardware engineering, signal, and data science). Thus, our team 

collaborated with wearable technology company called emteq labs ltd, with whom 

an emotion detection interface was further developed. This interface and earlier 

prototypes (called originally Faceteq and most recently changed to EmteqPro) was 

tested and used in our experimental studies. 

In order to analyse the physiological responses and map them to affective 

states, we defined a detection system which combines data streams deriving from 

surface electromyographic (EMG) sensors, photo-plethysmographic (PPG) sensors 

and an inertial measurement unit (IMU) for movement detection embedded on the 

sensor insert. As part of this system, these co-registrations were mapped against 

participants’ self-ratings (the user’s reported affect) and were combined with content 

related data obtained from our custom-built stimuli-presentation applications, in 

order to gain insight on the emotional context of the user’s experience. Our 

hypotheses focus firstly on the affective responses collected from the facial area, 

including heartrate, movement data and facial muscle activations, and secondarily 

on the accuracy of the mapping of those responses to the affective valence and 

arousal ratings. 

In a summary, the following research (and development) aims were 

investigated in this thesis: 

1. Identify the affect recognition model and potential measures from which 

affective states can be inferred in VR. 

2. Design a system architecture including an experimental protocol, a sensor 

set-up and analysis protocols, to be used for the planned EngD studies. This system 

will be specifically designed to validate the feasibility of multimodal affect 

recognition measures and algorithms in immersive technologies.  
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3. Conduct quantitative studies with human participants, to identify and 

evaluate the link between negative, positive and neutral emotional content and 

emotional responses, and their impact on the selected physiological readings.  

4. Explore the feasibility of measuring affect in immersive VR settings through 

the following sub-goals : 

a. Create VR stimuli material and investigate the effectiveness of VR as an 

affect induction tool. 

b. Investigate the performance of our affect detection system in immersive 

room-scale VR. 

c. Assess the relationship between the levels of presence and the intensity 

of emotional responses in VR. 

d. Investigate the feasibility of applying automatic affect detection in 

immersive VR by designing classification models for both emotional 

dimensions (arousal and valence) and assess the levels of accuracy for 

each dimension that could encourage further research in this area. 

 Overview of Methodology  

As part of the work, we investigated the detection of voluntary expressions and 

spontaneous naturalistic affective changes to affective stimuli. The systematic affect 

analysis and detection system proposed in this thesis includes biometric and 

behavioural data acquisition, in conjunction with subjective ratings from users. For 

the measurement of those affective states’ changes we utilised telemetry, heartrate 

measures, facial muscle readings, and subjective annotations, as dependent 

measures. The experimental paradigm used in our studies revolved around the 

concept of independent variable manipulation from virtual stimuli and videos, 

including audio-visual features and interactive events which were designed (and 

validated) to induce various levels of valence and arousal.  

The data recorded were applied into the development of a multimodal 

affective state recognition system, whose architecture was based on data-processing 

levels in conjunction with the application of machine learning approaches for the 

effective classification of valence and arousal levels. 

As Virtual Reality imposed some technical challenges in terms of sensor 

placement and signal noise caused by external factors including movement, we 

initially commenced our experimentation with controlled “seated” experiences to 



 

· Chapter 1 

 

32 

 

minimise movement artefacts, In the first studies audio-visual video stimuli were 

used. In the last study we moved to fully immersive 3D Virtual stimuli. In the latter 

study, we tested the set up in seated passive VR conditions (passive setting) and in 

room-scale interactive VR conditions (active setting).  

Through continuous experimentation and improvement of both the 

biometric sensors’ set-up and the overall system architecture, we were able to isolate 

and focus on a specific set of sensory data for affect recognition in VR. Results from 

these observations are explained in the ‘Methodology’ chapter and detailed 

information about the specific studies conducted are available in chapters 4 to 6. 

 Justification of the Research  

Although there is a large body of research work conducted using physiological 

sensors for affect detection, little is known about their application in VR settings 

where discreetness and adaptability is highly desired. Additionally, the combination 

of different sensory modalities integrated within a head-mounted interface 

specifically adapted for affect recognition from the face in VR was not ever tested 

nor manufactured before, to the best of our knowledge, giving our team a wealth of 

interesting practical questions. In addition to developing and testing the hardware, 

out team envisioned the design of an experimental set-up and an event tagging 

software which could allow the automatic and direct coupling of affective responses 

to virtual content in VR and to continuous self-ratings made by the user. The main 

concept of such system is that it would enable researchers and developers to obtain 

meaningful information about the user’s state within VR experiences. This 

characteristic could support, and perhaps even help revolutionise the way we conduct 

event-response research e.g., in psychology, or the way we interact with the virtual 

content.  

This work concerns of a journey through efforts and endeavours of 

understanding and confirming that the proposed affect detection system architecture 

for free-walking VR is feasible. Most importantly, this research is aimed to assist 

and inform future implementations and further research on affect detection using VR 

technologies.  
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 Structure of Thesis  

In this section, the chapters of this thesis are outlined together with a brief overview 

of their contents; Starting from the literature review and the background research, 

followed by the methodological developments (including software and hardware 

solutions utilised and developed for this research), and leading to the detailed 

exhibition of the experimental and data-processing studies conducted, and the results 

acquired. The final chapter is dedicated to the conclusions upon the results, the 

potential implications as well as our suggestions for future work. 

 

• Chapter 1: Introduction and Thesis Summary. 

In this chapter we present an introduction to the research scope and an overview on 

the main research and development objectives of this EngD thesis, the 

methodological framework, and the structural skeleton of this thesis. 

 

• Chapter 2: Literature Review: Adapting Affective-Computing practices in 

virtual reality. 

In the second chapter, we present the related background research in terms of 

theoretical frameworks including emotion models, existing affect detection 

strategies from various physiological and behavioural signals and previous attempts 

to detect affect with and without the use of Virtual Reality technologies. In this 

chapter, the psychological phenomena described as presence and immersion are 

discussed in relation to emotion elicitation, and the parameters required to achieve 

sufficient levels for naturalistic interaction in VR. Current emerging technologies for 

affect detection in the market are also presented. The chapter closes with a discussion 

on the potential limitations and considerations for affect detection technologies in 

VR settings, and an overview of the proposed plan of research in order to achieve 

the set objectives explained in chapter 1. 

 

• Chapter 3: Methodology & System Architecture.  

The experimental approaches combining qualitative (subjective ratings) and 

multimodal quantitative data-acquisition techniques across the selected sensor 

modalities are presented. Subsequently, all methods, apparatus, software, signal 

processing and analysis approaches which were investigated, developed and used in 

the following studies are outlined. The system-architecture framework with which 
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we approached affect detection for VR settings is illustrated as a graph. The major 

components of this framework are described, containing the novel sensor set-up in 

VR, main methods, input data, intermediate processes/analyses, and output data. 

This model was followed in the studies discussed in chapters 4 - 6.  

 

• Chapter 4: Feasibility Studies 1 & 2 on valence and arousal detection. 

This chapter contains the feasibility studies conducted with conventional media 

using the VR-adapted sensor interface to validate and inform the system architecture 

proposed. The chapter contains three main sections. The first section involves the 

validation of a selection of affective videos which was used to elicit predefined 

ranges of valence and arousal in the studies described in this chapter. In the second 

section, we describe the study designed to explore the sensitivity of the 

electromyographic sensor set-up, to the participants’ valence changes induced by the 

videos presented. The data analysis and classification results are presented at the end 

of the section. The third section comprises the exploration of the positioning of a 

photoplethysmographic (PPG) sensor on the existing sensor set-up interface, in order 

to obtain reliable heart-rate reading from the area of the face. A study was conducted 

to collect PPG readings from participants alongside readings from 

electrocardiographic (ECG) readings, which served as the ‘ground truth’ for 

comparison purposes. The same experimental protocol was following as in the 

previous study. The results from the analysis are presented and discussed. These two 

studies served as a validation of the existing methodology and informed the design 

of the following studies.  

 

• Chapter 5: Development and validation of stimulus material for an affective 

VR study. 

Following the feasibility studies using video stimuli, out team designed the next 

study to be conducted in fully immersive conditions using commercial VR headsets. 

Four virtual environments/scenarios were created, populated by 3-D custom 

designed objects and interactive events, which were intended to induce variations of 

arousal and valence levels. We describe the creation of the environments and the 

stimuli together with the developed plan of interaction for triggering the stimuli 

activation in a non-linear fashion, based on the movement and gaze of the user. A 

custom-made event-tagging system was developed to track the user’s interaction 

with the stimuli, which was outputting event-markers alongside the signal data for 
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synchronisation purposes. This approach was explored in order to study the 

physiological changes recorded by the sensor set-up in relation to the contextual 

information (the virtual stimuli). An online survey study was conducted to validate 

the designed VR environments as an affect induction tool. The results from the 

survey are presented per environment, reinforced by the affective ratings reported 

per virtual stimulus, and memory accuracy scores. Additionally, presence scores are 

analysed per scenario and individual differences in terms of alexithymia are 

presented. The chapter closes with the discussion of the results which informed the 

main VR study presented in chapter 6. 

 

• Chapter 6: Affect detection in Virtual Environments 

The existing methodology, including the sensor set-up and virtual reality headset, 

were employed in highly immersive settings, using the VEs and stimuli described in 

the chapter 5. An untethered version of the sensor set-up was developed to increase 

the freedom of movement in virtual reality, and reduce the intrusiveness of the 

overall set-up. A large-scale study was conducted, where participants were asked to 

experience three VEs (a neutral, a positive and a negative) and self-rate their 

perceived affect in terms of valence and arousal. These ratings together with the 

physiological data recorded throughout each VE, allowed the validation of the virtual 

stimuli, and the exploration of feasibility to detect the changes in affective responses 

from the physiological data. The effects of interactivity and presence on affective 

responses were also explored. The participants were randomly divided into two 

groups, an ‘active’ one (interactive and free-walking) and a ‘passive’ one (vicarious, 

seated experience). A simple posed facial expression protocol was also used at the 

end of the experience to explore the sensitivity of our sensor-set-up to detect changes 

in muscle activation.  

The hypotheses, the methods and the overall experiment procedure are 

described first, followed by the results. This section is divided into four subsections. 

The first subsection described the findings from the analysis on the self-assessments 

and ratings per VE and across events/stimuli. In the second subsection, the 

physiological changes for each VE and event/stimulus (event-based analysis) are 

explored. These changes were also compared between the two groups, active and 

passive. The second subsection is dedicated to the exploration of the sensitivity of 

the EMG sensors to detect changes in posed expressions. The data recorded during 

the posed expressions were analysed and an expression classification experiment 
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was also conducted using three classifiers. The last subsection contains the 

classification experiments conducted on the spontaneous physiological changes 

recorded during the affective VE experiences. Three classification approaches are 

presented: a user independent mixed-users, a user-independent separated-users, and 

a user-dependent approach. For each approach, results from three classifiers are 

compared for valence detection and arousal detection. For each classifier, three 

classification models were trained using firstly data from both groups combined, and 

then for each group separately. The chapter discussion and conclusions provide a 

holistic overview of the findings from the study. 

 

• Chapter 7: Conclusions and Future work 

This chapter contain a summary of findings from building the affect detection system 

to the classification experiments, followed by a discussion reflecting the contribution 

and impact of the research conducted in this thesis on enabling affect detection in 

free-walking VR settings. The chapter ends with a ‘Limitations and Challenges for 

future work’ sections with outlines the potential implications the future work on 

affect detection in VR. This is the last chapter which is followed by the references 

and the attached appendices. 

 

 List of publications 

In this section the published papers and papers in preparation are presented. They 

are mapped to the listed aims (see list of aims in Section 1.2) of the EngD Thesis and 

isted in the order of the chapters. Publications 1-7 were extracted from the 

homonymous published paper which were reformatted to align with the formatting 
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 Chapter Conclusion 

This chapter presented the general scope of this EngD research, investigating novel 

ways to detect affective states of participants in Virtual Reality settings, while taking 

in consideration methodological and practical limitations. The prototype sensor set-

up and the affect detection system architecture were developed after careful 

examination of the existing past literature on emotion detection and VR research, 

which will be presented in chapter 2. The studies conducted (see chapter 4 -6) 

enabled us to test and validate the methodological techniques employed. The results 

from those studies together with our empirical observations informed our approaches 

and could assist future work towards affect detection using VR headsets in fully 

immersive conditions.  
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Literature Review: Adapting Affective-

Computing practices in virtual reality 

2.  

 Introduction 

Virtual Reality (VR) has expanded during recent years to a popular form of 

entertainment and a powerful tool for a variety of applications with a diverse range 

of experiences. As VR has the potential to emulate environments and situations 

similar to the real-world, it is being utilised amongst others in training [22]–[25], and 

treatment applications, such as exposure therapy (VRET) and cognitive behavioural 

therapy (CBT) [26], [27]. The rapidly growing international consumer market led to 

the sale of 13.4 million virtual reality headsets (aka head-mounted displays) in 2017 

[28]. 

Despite recent advances, researchers and developers are facing a lack of 

effective assessment methods regarding the user’s emotional state during a virtual 

experience [20]. Recognising the emotional state of the user could not only assist in 

the enhancement of human-computer interaction or the avatar-to-avatar interaction 

in VR, but could also be used as additional input, enabling interaction with content 

and adaptive control. Additionally, from a market-research point of view, 

understanding if the user felt pleasantly or unpleasantly within an experience could 

provide useful insights on the content’s impact and likeability by the user. 

Consequently, such metrics could be very useful for a plethora of applications in 

extended realities1 whose market size is expected to explode in the next few years 

[29].  

 
1Extended realities (XR) is a blanket term that encompasses all computer-generated simulations which 

are either completely virtual (Virtual Reality or VR), mixed with elements of the reality (Mixed Reality 
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As a result of this realisation, the focus on the quantification of emotion has 

grown steadily in the last 10 years, leading to an estimated business market worth of 

$20 billion [30]. The importance of assessing and quantifying emotion is clearly 

highlighted by various research groups in this area (e.g. [31], [32]). Nevertheless, 

there is only a small number of emerging technologies that combine affective state 

detection with VR. The majority of research labs in the field today are limited by the 

number of affect sensing methodologies available that can apply in VR settings and 

the inherited constraints some of them impose on the user’s movement [4]. 

The research aim of this thesis is to investigate ways to quantify the 

emotional experience from behavioural-physiological readings when engaged with 

immersive, computer-generated, affective content using modern consumer VR 

technologies. For this reason, we systematically reviewed previous research 

endeavours, definitions, models and controlling parameters. This helped us design 

the proposed affect assessment methodology and detection system for interactive 

immersive technologies. 

 

 Mapping the progress: Affect detection  

There is a vast amount of literature focusing on the nature of emotions, the processes 

involved, how it is experienced and expressed in humans and animals. Multiple 

studies proposed approaches for the efficient monitoring of physiological processes 

which were found to be closely correlated to bodily emotional responses. Such 

practices made it possible for the evolution of affective and physiological computing 

[3], [6] and assisted in the development of integrated wearable interventions. 

From these practices, the methodologies which are found to be good 

detectors of the two dimensions of affect (arousal and valence) are presented, 

together with a review of related affect detection systems developed, not exclusive 

to immersive technologies but applied in similar fields. Additionally, an overview of 

current related emerging technologies will be presented for VR applications.  

One of the more important factors of the immersive experience is the feeling 

of Presence, a psychological phenomenon linked to the successful impact or real-

like effect of VR on users. The link between presence and emotion will be explored 

 
or MR) or augmented on top of the real environment (Augmented Reality or AR). For the experience 

of such environments the user needs to wear head-mounted-displays interface. 
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and discussed in section 2.3.3). Aa new research methodology will be suggested and 

discussed in more detail in Chapter 3. 

 From Defining to Detecting Affect in VR 

A primary step into designing a paradigm for emotion detection is to select a fitting 

emotion model. The vast literature in psychology and other fields, of over one 

century now, offers a number of emotion categorisation models (see section 2.3.1) 

and diverse perspectives on emotion research. Some of those models, such as the 

dimensional model of affect, are preferred for emotion recognition applications in 

the area of Human-Computer Interaction (HCI) [33], as affective states can be 

illustrated in a space spanned by arousal and valence dimensions. As this is a high 

interdisciplinary area, researchers and engineers need to collaborate on a cross-

disciplinary basis and exchange of knowledge in order to understand the nature of 

emotional manifestations, and thus detect them as accurately as possible [8]. A level 

of abstraction is needed in order to tailor detection models towards easier to 

implement practices (e.g., deducting affective states from two dimensions). 

However, generalised simplifications may skew the reliability of developed systems 

across individuals. It is therefore fundamental for computer science researchers to 

follow and consider the advances and disadvantages as well as the active debates in 

the emotion research field across multiple disciplines, while focusing also on the 

technical challenges and the practical implementations.  

It is generally agreed that emotions comprise three components, (a) the 

subjective experience (e.g., feeling happy), (b) the expressive behaviour (e.g., 

smiling), and (c) the physiological component (e.g., sympathetic arousal) [34]. 

Emotions, as described by Barbara Fredrickson [35], are the personal assessment 

(based on subjective experience and cognitive processing) of an event that activates 

a sequence of response tendencies manifestations across component systems such as 

bodily behaviours, facial expression, vocalization, as well as physiological changes 

[15], [36]. Affective computing methodologies are based on the principle that by 

detecting the changes manifested through those component systems we can 

potentially infer the underlying emotional state of a user. 

Generally, emotional states can be referred using different terms, such as: a) 

emotions, as a short-timed, intense manifestation of a feeling addressed to a 

stimulating source, b) moods - which are actually longer lasting and do not need an 
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event to be triggered, c) affect (or core affect) as the underlying instinctual response 

to stimuli prior to cognitive evaluation, as well as c) feelings, a less well-defined 

term [37]. The term of affect and emotion are widely used in the area of AC. In 

section 2.3.1, we describe different categories of emotion models, upon which state 

detection systems can be built. These models offer insights on the mapping of 

expressive manifestations and contextual information to defined states or levels of 

affect. In particular, some of the most popular models are outlined, including the 

discrete or categorical model, the dimensional mode of affect, and the appraisal 

model of emotions. In those models the same emotional state can be associated to 

different characteristics relevant to each model; for example, ‘feeling happy’ can be 

linked to the smiling, to positive valence, and to approach. Such defining quantifiable 

characteristics along with their potential advantages and disadvantages in AC 

research will be described in the next section.  

 

2.3.1. Emotion modelling frameworks: From theory to practice 

Although the manifestation of emotions may vary between individuals are some 

common principles constituting their underlying processes (e.g., physiological 

responses) that allow for possible for interpretation through computational means. 

Certain interpretations became possible with the emergence and investigation of 

small dynamic behaviours coupled with exciting changes in physiology (showing a 

united biological origin and functional resemblance [38][39]). These physiological 

changes can be observed via technological and computational means, via the use 

sensors.  As such, data deriving from various bodily functions and sensory outputs 

can be integrated in computational systems which follow an explicit model of 

translating the signals into emotional connotations (a detailed discussion of the 

conceptual models can be found in [40]). Therefore, the role of the model used for 

such integration is paramount and any modelling approaches that are explored are 

consequently extremely interesting and imperative for the efficient design of such 

systems. Naturally, the construction of theoretical and computational models 

requires some levels of abstraction in their specification. Four main emotion 

modelling approaches relevant to computational modelling [37] are described next: 

the discrete or categorical approach, the dimensional approach, the componential or 

appraisal-based approach and evaluative space approach. 
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 Discrete Emotion Approach 

Some of the most prominent theories are classifying emotional states in distinct 

categories of the so-called basic or fundamental emotions. There seem to be an 

agreement over 6-8 basic emotions that can be expressed and recognised across 

cultures, including anger, surprise, fear, joy, disgust and sadness, with some theorists 

adding a few additional ones, such as pride and contempt ([14], [41]–[46]). Recent 

research argues that the basic emotions that can be detected early-on from facial 

expressions are actually four (happy, sad, fear/surprise, and disgust/anger) before 

dynamically evolving into more complex ones [47]. A large number of autonomic 

emotional state detection systems rely almost solely on detecting facial expressions, 

based on Ekman’s theories on facial expressions of emotions [48].  

Regardless of its straight-forward nature, this model is not always preferred 

for multimodal AC research, due to its strict, deterministic structure, and the 

complexity to identify and distinguish some states from others via physiological data 

[49]. This approach is however preferred for camera-based affect detection 

applications, where the state categorisation is based mostly on the differences 

between various facial muscle configurations related to the basic emotions (e.g.[50]). 

The expressions and individual facial configurations are distinguished and rated 

based on the Facial Action Coding System, aka FACS [48], by trained observers.  

Indeed, the human face can convey ubiquitous emotional information in 

everyday interactions but only a small volume of research has investigated the 

formation and context of spontaneous, naturally occurring expressions [51]. As 

explained by Calvo and Nummenmaa [52], the interpretation of spontaneous 

expressions is not as easy and it relies on knowledge of context (as opposed to posed 

expressions) as they do not encompass fixed signs of basic emotions. Recently, a 

systematic review on the reliability of distinctive facial expressional configurations 

(of basic emotions)  published by Barret et al. [19] criticised the widespread 

assumptions on the existence of facial expressions which can be universally 

interpreted into discrete emotional states (perceiver-dependent), some of which are 

nowadays used for applications in legal judgements, policy decisions, security and 

training practices. Further research is required into understanding the defining 

processes and interpretation of spontaneous facial expressions together with 
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contextual information confirmed by the persons’ subjective experience, requiring 

little or no observer inference.  

Camera based approaches in computer vision (CV) for affect detection have 

gained many followers as they offer an easy-to set up, non-intrusive hardware and 

are open to a wide area of applications [51], not limited to identifying discrete facial 

expressions. ‘Big’, full-intensity expressions have been explored predominantly as 

they are generally easier to detect than subtle ones [52], [53] which are complex in 

their morphology and more common in our everyday interactions [51].  However, a 

trend has recently emerged into automatically detecting dynamic and subtle facial 

expressions from a continuous data stream (instead of single photos) driven by 

every-day applications e.g.[54], a practice which may be deterred due to amount of 

manual coding required. Additionally, distant heart-rate detection (via skin 

pigmentation) is currently a novel CV approach with interesting results [55], [56]. 

Camera based approaches for use in Virtual Reality settings are however nearly 

impossible to attain as the required headsets containing mounted displays cover a 

big area of a person’s face allowing little space for camera installation within. 

Without the use of multimodal approaches and deciphering the contextual 

information or the person’s appraisals, the detection of facial expressions alone may 

not account for the accurate emotional state that the person is feeling, but habitually 

for the emotional state that they want to express to their interlocutor (posed vs 

spontaneous facial expressions of emotions, see [50], [57]). Detecting emotional 

states would require exploring a plethora of potential emotional encounters, stimuli 

and covariates while also collecting data from multiple sources and modalities, so 

that findings could be replicated and later applied outside laboratory settings, in real-

life scenarios. 

 Dimensional Model 

The rich spectrums of complex, non-basic and/or subtle affective states exhibited in 

our everyday interactions may not be fit for discrete label characterisation or by using 

categorical descriptions [58]. Instead, most studies in AC utilising multimodal 

methods, are classifying the affect using the dimensional approach [51]. Based on 

this approach, all emotions can be represented along a continuum. Most popular 

dimensional model is the pleasantness (Valence) and activation (Arousal) model, or 

else the Russel’s circumflex model of core Affect (see Figure 1) [58], [59], and 
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model of positive and negative emotional activation [60], [61]. These dimensional 

aspects of one’s experience are often collected using scales such as the Visual 

Analogue Scale (VAS) [62] and the Likert scale [63]. A vast majority of studies 

utilises the self-assessment mannequin (SAM) by Bradley & Lang [64], a 

questionnaire which combines visual representation of the scale’s elements into 

simplistic figures together with a numerical scale (see Figure 2). To avoid low inter-

participant agreement, participants are often asked to self-assess their own affective 

states using those scales which are then considered as ‘ground truth’.  

  

  

Figure 1. Russel's circumplex model of emotions. 

      

Figure 2. Example of the self-assessment manikins (SAM) for valence (top) and arousal 

dimension (bottom). 

In short, valence can be described as the polarity of the affective state, or else, the 

positivity or negativity levels. Arousal on the other hand is the physiological and 

behavioural intensity of an affective state. For example, the corresponding increase 

in heart-rate or loudness on our voice, ranging from low (sleepy) to high (excited or 

stimulated) levels. Dominance, which is less often used, is the degree of control 

exerted by a stimulus or event, whether the viewer feels in control or not in its 

presence [65]. In the Circumflex model of affect [58], single adjective descriptions 
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of emotional states were rated by 343 participants in terms of arousal and valence 

and these ratings were then used to construct the cartesian  space utilising those two 

dimensions (Figure 1), which are commonly used for emotional responses 

characterization in experiments using affective stimuli [66].  

The use of this model in automatic affect detection is an on-going work 

which started only recently [67]. The state-of-the-art strategies involve the detection 

and classification of two and three levels along the valence dimension (i.e. negative 

vs. positive or including neutral) and the two or three levels along the arousal 

dimension (i.e. low versus high, or including an intermediate level) [51], [68]. 

Alternatively, researchers have been using the four quadrants approach (see Figure 

3) which separates the dimensional space into four main areas of interest  (High 

Arousal / High Valence, High Arousal / Low Valence, Low Arousal / High Valence, 

and Low Arousal / Low Valence) e.g. [69].  

     

 

 Appraisal-based approaches 

Emotion theorists linked the function of felt emotions to specific components related 

to the reactions and action tendencies [70]–[74]. This approach of modelling emotion 

is also described as the componential approach [75], where the variability of 

emotions is regarded through changes on components related to cognition, 

motivation, physiology, behaviour and subjective feeling related [67]. Based on this 

approach, an individual can react to a stimulus (or a sensory input) based on the 

 

 

 

 

H.A/H.V. 

L.A/H.V. 

H.A/L.V. 

L.A/L.V. 

Figure 3. The four quadrants of High Arousal/high Valence (H.A/H.V), High Arousal / Low 

Valence (H.A./L.V), Low Arousal / High Valence (L.A./H.V.), and Low Arousal / Low 

Valence (L.A./L.V.). 
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context, the meaning (the connotation for the individual) and the possible 

consequences. According to this theory, each emotion is characterised by 

physiological phenomena, behavioural action tendencies [76], [77], and by the 

cognitive appraisal’s variables e.g. novelty, valence, goal relevance, goal 

congruence, and coping potential [78], [79], [80]. Thus, supporting the evolutionary 

adaptative nature of emotions, and the idea that specific emotions are linked to 

physiological changes [81]. In short, the affective reaction of a participant to a 

stimulus is determined by the coinciding impact of a number of appraisal or 

evaluative processes taking place for that individual, which are relevant to the 

corresponding meaning’s implications. 

The appraisal approach originates from Arnold’s suggestion (1970) and 

from the Schachter and Singer’s [82] experiment and theory of emotion (or Two-

Factor Theory), where emotional states are dependent to cognitive factors; valence 

(pleasantness) is linked to cognitive appraisal of a situation whereas arousal is related 

to the physiological body state and hence the intensity of the emotion. In other words, 

when arousal is induced through a stimulus, perception and interpretation of its 

context provide the apprehension of the specific emotion experienced. Frijda [71], 

[83] suggests that situations where an individual is satisfied with attaining a goal, 

enhancing power of survival or demonstrate her capacities is usually accompanied 

by positive emotions. On the contrary, painful or stressful events could elicit 

negative emotions, as negative emotions motivate actions towards preventing those 

events from happening.   

The componential models allow the study emotional states changes as a by-

product of various configurations of appraisal dimensions. They can therefore 

potentially offer a more composite view of emotions compared to the discrete and 

dimensional approaches [67]. Generally, this theory emphasises on the impact of the 

subjective experience, the between-subjects’ differences in emotion elicitation and 

the contextual information surrounding an interaction with a stimulus. Each stimulus 

or event is directly appraised and therefore its affective impact can vary between 

people. For example, a funny video could be positively rated by a large number of 

viewers, but an uninterested, stressed individual could rate it negatively. As such, 

the importance of human-centred interpretation of affective phenomena is 

emphasised rather than universal, generalised categorisation approaches. 

This approach is also supported by the theory of constructed emotion or the 

conceptual act theory (CAT) model [84]. The CAT hypothesises that the 
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interpretation of ones and others’ emotional states are perceived and categorised in 

emotion-related labels based on emotion concept knowledge of the perceiver. This 

knowledge is originating from prior experiences with one’s body and the word (e.g. 

cultural concepts) via ‘situated conceptualisations’[85]. In affective processing a 

situated conceptualisation, describes the construction of a concept derived from 

aggregated information across multiple interactions with a category member.  As 

such, district emotions are constructed and not biologically hardwired, whereas 

affect is perceived (via interoception [86]) as the ground truth, continuous bodily 

sensory experience. 

 The appraisal models emphasise the importance of context, and 

conceptualisations which are relevant to each individual. Therefore, for a 

computational affect detection model to work accurately on each individual, subject-

specific processes would need to put in place in order to map the reactions to the 

corresponding appraisal components. The application of such models in automatic 

emotion detection is still an open research question [51] although theoretical 

frameworks are starting to emerge e.g. [67]. Most automatic systems on emotion 

recognition are insensitive to contextual information (e.g. task and environmental 

factors) [68] which are strongly related to appraisal processes. By allowing the 

collection of such information we could potentially apply additional, appraisal-based 

layers of computational processing to infer emotion. 

 The evaluative space model  

With the exception of negative emotions as anger, negative events or unpleasant 

stimuli can produce defensive predispositions and behavioural tendencies towards 

withdrawal, whereas positive stimuli can produce response of appetitive 

predispositions towards approach [87]. The Evaluative Space Model (ESM) (also 

known as general model of valence of evaluative experience) [87]–[89] combines 

the simplicity of the dimensional model with the action tendencies suggested in the 

appraisal-based models. It suggests that the experience of valence comprises two 

affective components, an appetitive and an aversive one that impact our 

predispositions towards (approach) and against them (withdrawal) (see Figure 4). 

Based on some of the main ESM postulates, positive emotions are more similar to  
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each other than to negative ones, , the positive activation function’s offset is higher 

than the negative one and that the motivations towards withdrawal is stronger than 

the motivation to approach (negativity bias) although highly influenced by individual 

differences [87]. Behavioural patterns in space can be monitored through trackers, 

thus, the detection of valenced predispositions via the calculation of approach and 

distancing of an individual from targeted stimuli is feasible within VR. 

 Section Discussion  

The major emotion theoretical models describe the processes and characteristics 

from which emotional states can be inferred. From these models, the discrete and the 

dimensional model have been mostly used in affect detection applications. The 

discrete emotion model has been extensively used for automatic affect recognition 

and its main advantage lies on the labelling system itself, as it is intuitive and easy 

to match with the categorical description of emotions we use in everyday life. 

However, in everyday interactions we tend we express a range of dynamic emotional 

states and affective intensities that cannot be fully engulfed by discrete categories.  

 The dimensional model on the other hand, can describe a wide range of 

emotional valences and intensities. Although some emotional states may seem more 

difficult to distinguish, the dimensional model could be easily integrated in a 

multimodal automated affect recognition system as there is an extended body of 

research linking physiological patterns to those dimensions. The terms used in both 

Figure 4. The evaluative space based on the ESM model as illustrated by Cacioppo et al.[87] 

The surface represents the net predisposition of an individual towards (positive) or away  from 

(negative) a target stimulus. 
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the dimensional model and the evaluative model (ESM) are similar, i.e., positivity-

pleasantness and negativity-unpleasantness characterise valenced affective states, 

while the intensity of the emotion is characterised by the level of arousal. The 

observations of dynamic behavioural effects of approach or retraction from a 

stimulus in a virtual experience or a gaming environment is feasible via motion 

trackers. Hence, the incorporation of the ESM in VR-based affect detection could 

prove to be beneficial for multimodal valence detection, in addition to measuring the 

dimensions of affect via physiological measures and written or verbal reports.  

The appraisal model on the other hand is more challenging to incorporate as 

it requires the extraction of context and user-specific information, which is 

traditionally omitted in state recognition approaches. Ptazynski et al. [90] 

highlighted the important of context in emotion recognition by arguing that such 

states cannot be identified in real-word settings independently from the context in 

which they were experienced. We however see that some of the that information 

could be derived from a virtual environment as all the objects and events can be 

carefully designed and the user interactions within can be monitored. User 

information could be also potentially inferred via questionnaires and the analysis of 

user interactions within and outside VR. In general, contextual information related 

to the user, the task and the nature of the stimuli within the virtual reality experiences 

could potentially provide ground for more advanced user-based analysis and 

ultimately the link between subject-specific appraisal components and affective 

responses. 

Although the advancements of technology and science has broadened our 

understanding on emotion recognition, processing, and expression, the mechanisms 

behind the elicitations of emotional responses from individuals during the experience 

of affective content are yet to be fully understood. In addition, the importance of 

individual differences in emotional expression and its changes based on context 

could be preferably addressed in the future. In the area of Human Computer 

Interaction (HCI), the results from such research could enhance future development 

and improvement of affective applications and content, and assist in the creation of 

improved, subjectively tailored emotional experiences in XR and interactive media. 

 

For the studies explained later in this thesis, the two-dimensional model of 

emotions of valence and arousal was adopted, as the most suitable model for the 

proposed research. A two and three classes approach per dimension was applied. 
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Some key aspects from the appraisal and ESM models were also used. More 

specifically, we analysed movement data in relation to the nature of events as 

additional sources of data. In addition, we extracted user-relevant information on 

personality, alexithymia and felt affect via questionnaires. Stimuli-relevant 

information for each event or object in our custom-made virtual environments as 

name, type, properties and positions were also collected. This way, we could 

continuously track what the user was seeing and responding to. 

The changes along the valence and arousal dimensions for felt affect has 

been found in previous research to relate to changes in physiology and behaviour. In 

order to detect those changes, we employed similar methodological approaches.  In 

the next section, we describe the main physiological measures and modalities used 

in our research, followed by an overview of the related research and the emerging 

affect detection approaches for virtual reality.  
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2.3.2. Emotion externalisation & related physiological and 

behavioural metrics 

There is a distinct differentiation between emotion expression and emotion 

recognition in an interactive framework. In a minimalistic view, emotion expression 

involves the emotion externalization from a Sender, a role which can be attributed 

to a person or character, either real or virtual, that has the ability to be emotionally 

expressive. Emotion recognition concerns of a second participant, the Recipient who 

experiences and interprets the emotional externalisation of the Sender and adapts or 

maintains their behaviour. As a result, an iterative feedback system is developed (see 

Figure 5). This system enables the communication between two people or more. 

With the application of affect sensing techniques, it could also enable the 

communication between a computer and a user.    

As stated above, human emotion expression is a form of communication, 

usually signified via physical mediators, such as our voice and our body language 

using gestural and facial expressions, coupled with physiological changes [91].  We 

could argue that emotion in humans is manifested on a three-dimensional mapping 

involving behavioural, verbal and physiological components, often coinciding with 

each other based on the findings from several scientific studies (e.g. [10], [38], [72]–

[76]). More specifically, emotion expression could be categorised into three 

expressive mediators: 

• Facial Expressions: related to emotional states externalization and nonverbal 

communication. The Facial Action Coding System [97] is commonly used to link 

emotional states to facial configurations. Yet, facial expressions can additionally 

imply mental, cognitive and physiological states [98]–[100].  

• Bodily Behaviour: related to bodily responses including physiological 

changes [91] and body cues [101]–[107]. 

 

Sender  

(e.g. user) 

 

c) Responses 

(feedback) 

Receiver (e.g. system) 

 

 

 

b) Emotion  

Recognition 

a) Emotion  

     Expression 

 

Figure 5.  a) Emotion expression (Sender), b) Emotion recognition (Receiver) and c) 

responses to recognized emotion. 
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• Verbal Behaviour: including emotional content via vocalization [108], [109] 

and emotion felt self-assessment, via questionnaires and interviews.  

 

As there is a wealth of evidence in the coalition of those mediators in emotion 

manifestation, ideally a complete multimodal investigation could combine and cross-

validate readings from all three mediators. Features or patterns from each mediator 

can be associated with certain affective states. In the following sections we delve 

into the processes affecting each mediator in terms of their nature and how they are 

generated. We will discuss their homogeneity across individuals, their level of 

sensitivity to affective changes and the sensors that were employed in order to 

continuously monitor and measure their changes  

 

2.3.2.1. Facial Expressions: Measuring muscle contractions via 

electromyography (EMG) 

Our body, and especially the face, is considered as one primary expression mediator 

of the individual’s emotional states. Many scientists as Duchenne de Boulogne and 

Charles Darwin have been investigating the production of facial expressions, their 

meanings and how they were used to communicate inner feelings. Duchenne 

believed that understanding facial expressions could reveal an “accurate rendering 

of the soul’s emotions” [103, p.58]. Facial expressions can be triggered 

spontaneously, in response to emotional stimuli like a funny video (referred to as 

‘facial motor resonance’), or voluntarily like in a social smile or a posed expression 

(also referred to as ‘facial mimicry’) [111]. Although facial expressions can be self-

controlled or suppressed, they can appear consciously or unconsciously in various 

settings (e.g. [13]). In our everyday life, facial expressions as other bodily responses 

can be expressed within the interactive framework as a form of communication, but 

they can also occur as an externalisation of the internal affective state when exposed 

to physical stimuli or mental images. Various external factors including emotional 

contagion, experimental bias, and cultural factors, can affect the externalisation of 

our facial expressions because of our high awareness of our own facial movements.  

The combination of high awareness together with our innate ability to 

control certain facial expressions, makes us able to use posed expressions on our 

own volition when wanting to express a specific emotion or suppress another. 
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However, for applications to real-life scenarios, the detection of posed expressions 

of emotions may be less informative as they differ from those that spontaneously 

occurring in naturalistic settings [112], [113]. In other words, the facial movements 

intrinsic to posed expressions can display an emotional state that the sender intends 

to convey, while the expressions resulted by spontaneous facial movements resemble 

to the sender’s/user’s real, unmitigated affective experience. For example, when a 

person is genuinely happy, apart from the muscles activated when smiling to raise 

our cheeks (such as the ‘zygomaticus major’), the muscles surrounding the eyes 

(‘orbicularis oculi’) are also contracting  (resulting to the formation of the genuine 

or ‘Duchenne smile’[114]). A genuine smile is less susceptible to be falsified, as the 

muscles around the eyes are more difficult to be activated voluntarily [115].  

However, the majority of past expression detection research focused on 

voluntary posed expressions [19], with few studies investigating spontaneous 

expressions e.g. [116]. Assuring that the facial expressions of a person are sincere 

and spontaneous is a difficult task for researchers. For example, an inattentive study 

design could give away the main research goals and apply bias to the participants 

from simple details and/or instructions. Researchers in this area often resolve into 

concealing information relevant to the goals of the study (and the measures used for 

the detection of facial muscle activation) in order to collect sincere responses from 

the unwary participants.  

Generally, facial expressions are the result of the contraction of set of facial 

muscles. Arising from the bones to the skin, the muscles’ orientation of the fasciculi 

or else the muscle’s fibres can be parallel (linear), oblique or spiralized relative to 

the direction of pull at their attachment [117]. There are more than 20 muscle sets on 

our face, from which we can extract the foremost muscle regions which impact on 

the formation of facial expressions of major emotions. Some of those are the 

zygomaticus major, corrugator supercilii, frontalis, orbicularis oculi, depression 

anguli oris, orbicularis oris and the levator labii superioris alaeque nasi [118](see 

Figure 6). From those, the major muscles situated under the area of a standard VR 

HMD are the zygomaticus, frontalis, corrugator and orbicularis oculi, whose 

positions are shown in Figure 7.  
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Relevant to the dimensional model, the zygomaticus major and the corrugator have 

been extensively investigated for the distinction of positive versus negative valence, 

as they are responsible for smiling and frowning [119], [120]. There is however an 

on-going debate on (1) whether these recordings are specific enough to detect 

spontaneous positive or negative valence, and (2) whether reading from those 

muscles alone can suffice for valence detection or whether other muscle groups 

should be added [120]–[122]. Concerning the first point, one of the key-issues is that 

readings from sensors positioned on the cheeks (over zygomaticus major) can detect 

higher activations during smiling but also during other expressions/facial 

configurations as the muscle lies within close proximity of other muscles like the 

buccinator, masseter and zygomaticus minor [123] inducing high rates of cross talk 

between them. Additionally, aversive and negative expressions can also induce 

motion on the cheeks [120]. On the other hand, the corrugator muscle, which is 

responsible for frowning, can be activated in negative valence conditions but also 

during cognitively difficult tasks.  

Concerning the second point, emotional facial expressions can be more 

accurately detected when recording from several facial muscle groups 

simultaneously. For example, during a ‘Duchenne smile’, readings from both the 

muscles surrounding the mouth and the eyes could serve as a better indicator of 

spontaneous positive valence[124]. The frontalis or “brow” muscle is responsible for 

the raising movement of our eyebrows, stretching on top of our forehead. Such 

movements are attributed to dynamic expressions of generalised fear, anger, but also 

of surprise, which could be of ambiguous valence. The measurement of the 

activation of multiple facial muscles in parallel could allow the discrimination 

between facial activations from which affective states can be inferred. 

Figure 6. Facial muscles, adapted from [562]. Figure 7. The EMG sensor-

locations used in our studies. 
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The detection of affect via the inherent facial muscle activation of a user 

may be superior to the detection of their facial expression by video capture, as it is 

the underlying mechanism that creates those facial configurations and as the 

detection of those does not entail a subjective characterisation (e.g., forming a smile 

by lateral mouth movement equals to positive affect). In other words, the detection 

of individual muscle activation does not require their translation by a human expert 

observer as in the case of FACS (it is perceiver independent) and therefore a more 

objective way of evaluating facial movement all-together. Additionally, facial 

muscle contractions can be of different intensities (as in micro-movements) which 

are sometimes difficult to perceive with cameras and also difficult to ‘fake’ [125]–

[127]. Researchers supported that during facial motor resonance, the changes on the 

orbicularis oculi muscle (around the eyes) during a genuine smile were not visible to 

the eye, but detectable by electromyographic sensors (EMG) [128], [129], which 

makes EMG a superior methodology compared to video and computer vision.  

Although, some facial muscles like the zygomaticus major are easy to 

activate voluntarily, other muscles like the corrugator supercilii which is bilaterally 

innervated hinders fine voluntary motor control [120]. Nevertheless, there is a large 

number of facial muscles whose correlation to affect has not been investigated in 

depth yet. As the majority of facial muscles are extremely close to one another 

(especially crowded in the area of the cheeks [118]), their activations can be 

correlated, resulting to difficult discretisation of their activation. Perhaps detecting 

activation simultaneously from a group of areas superimposing major facial muscles 

and detecting affect based on their dynamic relative function, may prove 

advantageous compared to detecting activation from a specific muscle. 

Surface EMG is commonly the method used to measure underlying muscle 

contractions using sensors applied directly on the skin. These sensors can detect 

changes in surface voltages on the skin when muscle activations occur. Nowadays, 

measuring facial expressions and emotional responses using EMG is a fundamental 

tool for researchers in media, marketing, gaming and psychology [32], [115], [120], 

[130]–[134] and medical practitioners i.e. for the assessment of facial palsy [135], 

[136]. EMG has been used for the measurement of affect [91], facial expressions 

[19], gestures [137], fatigue or tiredness [138], stress [139] and pain [140] amongst 

others.  

Traditionally, two EMG sensors are placed along a muscle while also a third 

sensor is used as a reference or ‘ground’ sensor, placed on an area of the body or 
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face which is less likely to be affected by movement, like on the top of the forehead. 

Tethered, adhesive-based sensors are typically used in past research, which may 

require the additional application of conductive gel [141]. Such sensors can be used 

on various parts of the body. However, the application of multiple sEMG sensors on 

the face can unavoidably be intrusive and cumbersome to use. Data collected from 

those sensors are amplified and converted to microVolts (μV).  

       

Figure 8. Representation of surface EMG sensor on skin. 

The activation of a muscle in focus is visible via the visualisation of the EMG filtered 

data-stream. An envelope of the signal is commonly computed from the root-mean-

square (RMS) values of the EMG signal to facilitate interpretation and the 

visualisation of the activation power [142]. An example of filtered signal and their 

corresponding RMS envelopes from multiple EMG sensors recorded simultaneously 

from the face is shown the Figure 9.  

 

 

Figure 9. Up: Filtered EMG signals from seven sensors. Down: the RMS values of the 

sensors. The EMG-derived values here were multiplied by 104 for these visualisations. 
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 Bodily behaviour: Measuring arousal levels with skin conductivity and 

heart-rate changes 

Various studies investigate the activation of the autonomic nervous system (ANS) 

during emotional stimulation. For this, they have used different cardiovascular,  

electrodermal, and respiratory measures [40]. The most common cardiovascular 

measure is heart rate (HR), followed by blood pressure (systolic and diastolic BP), 

heart rate variability (HRV) and temperature. Electrodermal responses as a 

parameter of the sweat gland function (either phasic or tonic, see [143]) measured 

are the galvanic skin conductance and resistance (level, response rate and amplitude). 

Respiratory measures such as breathing rate, variability and period are also less 

frequently included. As electrodermal and respiratory measures were not included in 

our studies they will not be further discussed. 

Heart-rate activity can be measured with electrocardiographic (ECG) and 

photoplethysmographic (PPG) sensors, both of which are non-invasive and 

exosomatic, placed on the skin of the wearer. During an ECG recording, usually two 

(e.g. in a biometric scenario) or more electrodes (in clinical settings) are placed on 

the chest of a subject, in order to capture a clear and precise signal of the heart beats 

(namely R-wave, including the QRS complex[144]). This signal is achieved by 

measuring voltage changes on the skin resulting from the cardiac beats. The 

electrodes are normally applied on the upper abdominal and thoracic area [145]. 

Standard ECG acquisition practices typically require a careful preparation of the skin 

area before the signal acquisition; some systems even require the application of gel 

to the area under the electrode. Alternatively, ECG belts can be used more 

effortlessly compared to applying individual electrodes on the skin of a user. 

Unfortunately, both methods can constrain the motion of the wearer if tethered.  

A photoplethysmograph (PPG) measures the reflection of the illuminated 

light from an oximeter onto the skin, thus monitoring the changes of the absorption 

of light resulted from blood-volume’s changes. Consequently, PPG is able to detect 

the cardiac cycle from the area of the skin where the PPG is applied to. PPG sensors 

need to be applied on a close proximity to the surface of the skin. As these sensors 

do not rely on electrical activity, they do not require gels or adhesives upon 

application. Thus, integrating PPG sensors on wearables is cost-effective and the 

application of those sensors is more effortless than the application of ECG electrodes 

or the usage of ECG belts.  However, the signal acquired by a PPG measure is less 
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detailed than the one monitored by an ECG, and it can be subjected to noise artefacts 

resulting from the user’s movement, wrong placements on the skin, and the effect of 

other physiological parameters that can affect the blood flow, such as respiration and 

cardiovascular circulatory conditions [146], [147].  

Overall, as PPG sensors are typically inobtrusive and can be placed 

anywhere on the body where the blood vessels are close to the surface of the skin, 

they make excellent candidates for wearable integration; especially when 

considering the development of a VR wearable solution for heart-rate detection. In 

the experiment presented in Chapters 4, a PPG sensor was placed on the wearable 

VR insert. To assess if its quality was sufficient, the PPG signal was examined and 

compared to the signal from an ECG-belt. Examples of both signals are presented in 

Figure 10. 

 

 

With the right set-up, both methods, PPG and ECG, can be used to measure heart-

rate as beats-per minute (BPM) and heart-rate variability (HRV). Heart rate is 

commonly used in medical settings and it is integrated in an abundance of modern 

wearable devices, e.g., smart watches. If BPM is detected to be above or below the 

person’s ‘normal’ or ‘healthy’ range, it can indicate illness and other serious 

conditions [148]. HRV indexes on the other hand are considered one of the most 

promising markers of the ANS regulation with links to adaptive emotion regulation 

and related processes. Both BPM and HRV can show changes in physiological 

arousal between resting and active conditions. For example, in high-arousing, 

anxiety-inducing conditions BPM is expected to increase and HRV tis expected to 

decrease [149]. Heart-rate variability (HRV) is the study of the variation of the 

Figure 10. A segment of simultaneous recordings made with PPG and ECG sensors 

from a user who is initially is seated and stands up (middle of the recording). 
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successive R-R intervals, or else the time distances between continuous heartbeats 

in a specific time window. HRV can be affected by sympathetic and parasympathetic 

processes of the autonomic nervous system, which can be affected by changes in 

physiology and environmental factors. A such it has been used to assess emotional 

arousal [150], valence [151], mental workload [152], [153] and stress or anxiety 

states [154]. That being said, HRV  and well as BPM can be affected by confounding 

factors unrelated to emotional changes such as age  and  medical causes, including 

physical, breathing and cardiovascular conditions [155].   

The average BPM can be computed from a series of two or more peaks, thus 

allowing for its computation within short recordings. On the other hand, long-term 

signals recordings (in terms of duration) are suggested to be most informative for 

HRV[151], [156]. However, when it comes to active recordings, in different studies 

where the participants are engaged on a specific task that requires movement, short 

time-windows were also used, showing adequately rich information for every part of 

the active task [150], [157], [158]. Short time windows may vary from 10 seconds 

to 5 mins and more [159], provided that the signals have high signal-to-noise ratio. 

HRV indexes contain features which can be computed via time-domain and 

frequency-domain analysis. The most common methods  include the root mean 

square of successive differences (RMSSD), the standard deviation of beat-to beat 

intervals (SDNN) and the proportion of the number of R-R interval pairs that differ 

more than 50ms divided by the total number of R-R pairs (pNN50) (see [158], [159]). 

As these features measure the variability of the distances of the successive NN peaks, 

they depend on oscillations of high frequencies  thus being impervious to the use of 

short time windows [159]. The proportion of the signal within certain frequency 

bands (and their ratios) identified such as, typically low frequency (LF: 0.04 - 

0.15Hz), high frequency (HF: 0.15-0.4Hz) and very low frequency (VLF: 0.0033 – 

0.04Hz), can show different fluctuations caused by the parasympathetic nervous 

system and breathing [149], [160], [161]. For example, changes in HRV during acute 

stress may show a reduction in HF power from baseline [156]. However, accurate 

lower frequency detection requires long recordings (min. 4 minutes long) [112], 

[156]. The features selected based on the available recording durations and 

environmental conditions for the analysis of the experiments presented in this thesis 

are presented in Chapter 4 and 6. 
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 Bodily Behaviour: Measuring body movement 

The body itself, can mediate parts of the person’s emotional experience though its 

movement ([15], [41], [162]). There were many attempts to correlate specific body 

movement’s characteristics or postures with emotional states (e.g. [163], [164], 

[165]) . Such changes in our body movement (or the movement of our body parts 

e.g., hands) can be measured in terms of changes in orientation, velocity and shape 

of the movement.  

Motion or limb tracking can be attained via the use integration of inertial 

measurement units (IMUs) comprising of gyroscope, accelerometer, and 

magnetometer sensor along three axes, x, y and z. Such sensors can be easily 

integrated in wearable solutions and are non-invasive. A wealth of research is 

utilising inertial sensing for activity recognition in active experimental protocols 

(e.g. [166]) and for inferring the underlying emotional state of the user [167][168].  

We are constantly using motion tracking sensors with current VR 

technologies, especially when using HMDs and hand controllers with 3 and 6 

degrees of freedom (DOF). In HMDs, motion tracking systems are responsible for 

the synchronisation of head movement and display angle. In other words, the user’s 

actual physical movement is reflected on the user’s point of view within VR, and 

this is attained via integrated sensors onto the headset and motion sensing cameras 

when using room scale motion tracking (based on the degrees of freedom each 

system is allowing). Users in room-scale VR with 6DOF can walk and move as they 

would in the real-world using their bodies. Based on the ESM model (approach-

withdrawal) the analysis of movement patterns to specific contextual information in 

VR could offer a rich source of valence information regarding the affective state of 

the user.   
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2.3.3. Affect detection approaches using VR 

VEs and simulations offer many benefits as part of the experimental process. With 

VR we have the opportunity to create any environment or scenario that is 

programmatically and computationally possible, while being able to track and 

monitor the user. The advantage of VR technologies is that users often get deeply 

immersed in these virtual realities, that they often feel they are actually existing in 

those virtual spaces (feeling presence), maintaining reduced awareness of the real 

space and, therefore, reacting in a naturalistic way. There are various factors that can 

influence this feeling of presence such as technology and content (e.g. head mounted 

display (HMD), unobtrusive input technologies, the environmental attributes of the 

simulation, the task’s nature, interactivity, etc.), as well as subjective traits of the 

user which can enforce or reduce the effect of VR [169]. Research studies have 

suggested that those participants who feel a high level of presence in VR, will 

interact in VR in a naturalistic way as in real-life [170]–[172], which supports the 

argument concerning VR suitability for psycho-behavioural related research. 

Therefore, realistic emotional responses, of behavioural, physiological, and 

vocal nature, are expected to be elicited in VR settings. However, the development 

of methodologies focused on the detection of those in VR settings is still in its 

infancy (with the exception of eye and body tracking technologies). In recent years 

we have seen a drastic increase in the development of emerging wearable 

technologies integrating biometric sensors, which can be worn simultaneously with 

an HMD for use in VR. This sudden increase in prototype development is coupled 

with a further increase on the number studies focusing on detecting affect from 

physiological signals in VR, published in the last five years. A review of the related 

studies will be discussed in the next sections. 

 Virtual Reality as an experience: Presence and affect 

VR as a medium is highly advantageous over traditional experimental protocols. VR 

technologies have the potential to simulate real-world interactions which can be 

highly immersive and activate intense emotional reactions [173]. Emotional 

elicitation within VR is linked to the level of presence, the impact of immersion and 

the overall involvement of the user with the mediated experience [174]. VR is widely 

accepted as a medium whereby the experience of presence is able to occur [175], 
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[176]. Presence is described as the subjective “sense of being there” and among 

others, the “perception illusion of nonmediation” [177], [178]. In other words, while 

feeling present in VR, the user’s senses and cognition are preoccupied with the 

virtual environment in a level that her awareness of the outside world disappears, 

and the virtual simulation becomes the reality. In this context, the person is expected 

to feel and react to the simulated situations in similar ways as in the real-world. 

However, the level of presence that a person can experience in VR is dependent on 

various factors whose impact may vary between individuals e.g. personality and 

emotional state [11], [179]. 

 

Definition and assessment of Presence – There are many existing theoretical 

models for measuring presence in VR. These models can be divided into descriptive 

(defining the components of presence) and structural ones (focusing in the process 

of the generation of presence, cognitively and mentally) [180]. In those presence can 

be measured as a result of several factors or properties of the VR experience. These 

factors were derived from self-report acquired from participants and notes made by 

external observers. In 1988, four factors were suggested by Witmer and Singer [181] 

in terms of control, sensory, distraction and realism levels. Additionally the factors 

of vividness, interactivity/influence on content, and user characteristics were 

emphasised by Steuer [177] in 1992. The division to exogenous and endogenous 

factors were later suggested by Slater [182] in 1993. Exogenous factors are related 

to the fidelity of the simulation system and are the necessary conditions for presence 

to occur, such as the quality of the interface. Endogenous were those factors that 

affect the subjective experience of the user, related to the overall interactivity, virtual 

body, anticipation of action effects and consistency. Since then, many questionnaires 

were constructed to engulf and measure those factors, and additional ones were also 

suggested related to the social nature of the experience [183] and the engagement or 

enjoyment of the user [184](also see [185]).    

Presence is however by definition highly subjective [186], and therefore the 

effect that all these factors could have on the subjective experience of presence for 

each user can vary. For example, a VR simulation where all its objective components 

are prespecified, may be perceived as more or less immersive by different people. 

To disassociate the subjective feeling of presence from the objective characteristics 

of the simulation and the technology used, we followed the terminologies of presence 

and immersion as suggested by Slater ([187], [188]).  
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Immersion is one of the contributing factors of presence [176].  Slater and 

Wilbur [189] defined immersion as the objective technological qualification of the 

VR related capabilities and equipment employed e.g. HMDs and trackers equipped. 

Therefore, the feeling of presence is the human subjective response to the virtual 

reality experiences and to the level of immersion attained by the system [188]. 

Immersion has been found to increase emotional responses in simple neutral 

environments [190]. The level of immersion can be increased by several factors, as 

for instance: the number of human senses for which a medium provides stimulation 

(i.e. media sensory outputs), the consistency of sensory outputs, content features, 

resolution, field of view, virtual lighting, motion, dimensionality, camera techniques, 

aural presentation characteristics, interactivity, obtrusiveness of a medium, and the 

capabilities of the system for social interaction [178], [191], [192].  

With today’s technology it is possible to create highly immersive 

experiences due to the high-quality portable and less obtrusive VR inputs/output 

technologies (HMDs, controllers, tracking sensors) and the additional processing 

and graphic power of computers. Great consumer-ready examples used in VR 

research are systems like the HTC Vive [193], Oculus Rift [194], PS VR [195] which 

include high-quality displays, head and limb tracking locomotion,  as well as low 

latency and high-quality audio. Generating experiences with high interactivity and 

control mechanisms, ecological validity (term referring to the content’s 

richness/vividness[196]) and rich narratives is easier than ever. From this 

perspective, it is easier with today’s technological capabilities of the VR systems to 

build the necessary foundation for presence. 

However, this may not be the case for all VR users. Specific personality 

characteristics such as imagination and empathy[197], and certain emotional states 

such as fear and stress [176], [198], [199] have been found to be linked with higher 

elicited presence levels in VR. The experience within a virtual reality can become 

more realistic when a person in able to suspend their disbelief [177] and allow for 

expectancies to be generated [200].  The ability or willingness to suspend disbelief 

[201] and the suppression of the actual feeling against the expected interoceptive 

emotional states [202] are suggested to alter and intensify the effect of presence in 

virtual experiences. Measuring a person’s susceptibility to feeling presence in VR is 

challenging because to our best of knowledge, there is no questionnaire that 

specifically addresses presence proneness or suspension of disbelief in VR settings. 

As a way around this issue, researchers often tend to use fantasy proneness or 
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creativity experience questionnaires and absorption scales, such as [203]–[205]. 

However, absorption is not as clearly defined as presence because it contains aspects 

that are related to the big-five personality traits [206]. Witmer and Singer [127] 

designed an immersive tendencies questionnaire that measures the ability to get 

involved/immersed in everyday activities as a proxy to the virtual experiences. 

However, researchers argue that scores from this questionnaire accurately correlate 

with presence levels only in settings of high presence [144], and that items of this 

questionnaire in fact measure the engagement of the user [20] . 

Although predicting the subjective ability for increased presence in VR is 

challenging, presence can be measured within and outside the VR experiences. Up 

to this date, the level of presence in VR is commonly measured via observations and 

questionnaires, which are answered by the user retrospectively of their experience 

(post-experience). Frequently used questionnaires are the Presence Questionnaire by 

Witmer & Singer (QEP), Slater-Usoh-Steed Questionnaire (SUS), Krauss et al. 

Questionnaire, Presence Questionnaire (PQ), Igroup Presence Questionnaire (IPQ), 

ITC-Sense of Presence Inventory (ITC-SOPI) and others (list of questionnaires can 

be found in [208]).  

Alternatively, changes in physiological signals are suggested to show 

changes in presence [209]. Such physiological indicators of presence include 

galvanic skin response, heart-rate responses, skin temperature, muscle tension, and 

pupillometry [210]. However, as physiology can be affected by various parameters 

e.g., motion, emotion and stress, the reliable investigation of the true relationship 

between physiological changes and presence may be more complicated than 

expected. It is possible that emotional responses and by extension physiological 

changes are the by-product of highly immersive experiences. Freeman et al. [196] 

alerted researchers that such correlation could be limited to arousing stimuli, 

suggesting a presence model where arousal / alertness contribute to higher presence. 

Although this theory has not been systematically tested, significant links between 

physiological measures of arousal, such as heart rate and electrodermal activity, were 

found to accompany higher presence in immersive scenarios [27], [211]. 

Just like with emotion assessment, most ‘ground-truth’ methods of presence 

evaluation are focusing on written methods and ratings, either by the participants 

themselves or by external observers/perceivers. One of the caveats of using only self-

rating questionnaires for the evaluation of presence levels and emotional states is 

that, in most cases, individual ratings take place before, rarely during and/or after the 
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experience, at a dedicated and specified time window. Since a VR experience by 

default requires a duration of interaction (similar to watching a video or completing 

a task), interrupting the experience or completing the questionnaires at the end could 

provide attenuated and totalized results which are not representative of the moment-

by-moment feelings. For example, if a positive event happened within a generally 

negative experience, the overall rating of emotional valence could be affected. 

Therefore, the various levels of affect and presence may be better investigated in a 

fine-grained temporal level of analysis. This way, we could also account for the 

effects of highly memorable events over others e.g. events with high emotional 

impact and events that happened at the beginning and towards the end of the 

experience (based on primary and recency memory effects) [212],[212]. Ideally in 

the investigation of the link between affect and presence, ratings and reading should 

be recorded at shorter time windows or continuously while also respecting the flow 

of the experience of the user and avoiding any breaks in presence. 

 

The relationship between emotion and presence – It is considered that during an 

immersive virtual experience users may react in a similar way as in real-life 

conditions [213], a phenomenon that potentially derives from the effect of presence 

[213]–[215]. Overall, the level of presence and the intensity of emotional reaction in 

VR are appearing to be correlated [1], [216], [217]. In exposure therapy examples 

using fear inducing stimuli, presence is found to be strongly linked to the emotional 

responses (e.g. [216], [218]). However it is unclear whether presence is a pre-

requisite for enhanced emotional responses or whether emotional stimulation 

enhances the feeling of presence (as in [170]). Perhaps those phenomena can enhance 

each other in an iterative way, as long as there is an initial minimum level of 

presence.  

These unresolved specifics of the relationship between presence and 

emotion are exciting and deserve further investigation. Research findings show that 

the level of presence (and immersion) plays a significant role in the development of 

emotional stimulation in virtual experiences [180]. Parameters that can potentially 

increase presence, the technologies used, the content and the congruent narrative 

scenario can influence the elicitation of emotional experiences of users in VR [215]. 

In comparison pilot studies using immersive and non-immersive mediums found that 

negative visual stimuli were rated as more emotionally arousing and more negative, 

when presented in VR settings compared to a screen [219]. Yet many support that 
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presence constitutes a requirement for emotions to be elicited and it does not play a 

direct role into their intensities [220]. Nevertheless, presence in most cases is 

recorded as a one-off point at the end of the experience. It would be interesting to 

explore the relation of moment-by-moment presence levels to intensities of the 

emotional dimensions is we develop the means to.  For example, would be interesting 

to assess presence using multiple assessment measures within multiple randomised 

scenarios with various valenced and arousing events.  

 

Section synopsis  

VR is a medium, that unlike others, has the ability to make the users believe they 

‘are’ part of it, existing within its simulations. In these experiences, the users’ 

cognition, perception, and various sensorimotor exigencies are activated resulting 

into the feeling of presence. In this section we explained the terminologies of 

presence and immersion used in this study, and the current issues behind their 

measurement. The link between emotional stimulation and presence was described 

through the prism of the related research.  

In this thesis, the link between subjective valence, arousal and presence 

ratings will be investigated, via objective physiological measures and self-ratings. In 

addition, potentially mediating subjective factors will be also collected and 

considered for the interpretation of the findings. These factors are, for example, 

personality traits and emotional elicitation (e.g., alexithymia). Identifying the nature 

of the correlation between presence and emotional stimulation could provide 

valuable insights for future research. 

Congruent content narrative, interactivity and naturalistic movement (in the 

psychical space as in the virtual one) are some of the factors suggested to increase 

presence [221]. Within the last five years, VR technologies have hugely improved, 

allowing for capabilities which were not as easy and cost-effective to use in research 

in the past. These capabilities and controlling inputs which can set high immersion 

levels. They now allow room-scale interactive experiences for large scale studies, 

meaning participants can freely walk within the physical space. This can be done 

using cameras that track the user’s position and rotation in space. Keeping the 

immersion level persistent across participants, it will be interesting to investigate the 

effect of first-person, 3-dimensional, room-scale experience on presence and 

emotion against static-passive, vicarious experience.  
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 The effects of emotion on cognition, and the link to subjective factors 

Emotions are affecting cognitive processes such as perception, attention, memory, 

judgement and risk-taking when making decisions, but this effect is not always 

straight forward. These cognitions play an important role when processing mediated 

stimuli [222], [223]. For example, presence together with intense emotional 

stimulation can affect our perception of the environment around us (exteroception), 

our proprioception (sense of our body in space), locomotion, and kinaesthesia (sense 

of movement). The Yerkes-Dodson Law suggests that performance increases with 

physiological or mental arousal up to an optimal level. However if that level is 

surpassed and arousal increases higher, then performance decreases [224], [225] 

negatively affecting cognitive processes like attention and memory. This effect is 

shown in behavioural studies using highly distracting stimuli, which capture the 

viewer’s attention and result in attenuated performance during cognitive control 

tasks such as task switching, inhibitory control and memory target detection tasks 

[226]–[230]. The same effect applies to memory related process. For example, 

affective stimuli are generally more memorable compared to neutral ones [231] (with 

the exception of negative traumas [232], [233] where the memory is inhibited). In 

VR for example, Sutcliffe and colleagues suggested the use of memory recall tests 

to find negative effects caused by usability constrains, perceptual distortion and 

interactive controls [234]. Other studies, using VR, have reported that in healthy 

populations negative arousal and anxiety can negatively affect the storage and 

memory retrieval content of temporal and spatial information [235], and memory 

retrieval related to the actual physical world [236]. In decision making, the appraisal 

of a situation related to the avoidance of negative and the expectancy of positive 

emotions can drive our decisions [237]. However, as with memory retrieval and 

attention, high arousal and anxiety can hinder advantageous decision making [238], 

[239]. 

Appraisal theories suggest that emotional elicitation can be also influenced 

by subjective evaluations of occurring events (e.g. [72], [74], [240], [241]). Since 

subjectivity forms a decisive factor on emotional experience, any sustained 

variability in personality, state traits, or mood could impact on emotional processing. 

For example, negative valence and high arousing states (such as anxiety) have been 

postulated to affect processing effectiveness and attentional control [242], [243]. 

Certain personality traits, such as extraversion and neuroticism, have been found to 
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correlate with valence responses [244]. More specifically, people with high 

extraversion tend to self-rate stimuli more positively and neurotic people tend to rate 

more negatively.   

Additionally, alexithymia levels and interoceptive awareness (inability to 

identify and describe one’s emotions) could hinder subjective emotional appraisals 

and therefore affect emotional reactivity [245], [246]. The term alexithymia defines 

one’s ability to interpret, process and describe the emotions of themselves or of 

others. High alexithymia may reflect deficits in cognitive processing and regulation 

of emotion [247]. Although, high alexithymia was not found to strongly correlate 

with changes in valence, multiple studies have shown that alexithymia is linked to 

reduced physiological arousal (referred to as ‘hypo-reactivity’), assessed via hear-

rate and skin conductance measures [248]. By comparison, individuals with intense 

behavioural expressive tendency or else, emotional expressivity, tend to self-rate and 

externalise their emotions effortlessly [249], [250].   

Therefore, the synergy of cognitive evaluation during emotional processing 

with subjective covariates such as trait factors could provide crucial additional 

information about the user’s expected emotional responses.  

 Current Emerging Affect Detection Methodologies in VR & future 

directions 

Understanding the emotional state of the user in VR could assist in a range of use 

cases. It would aid real-time continuous affect recognition and the awareness of the 

user’s state changes, affective design and adaptive control of the surrounding 

environment. Adaptive control is when specific signals can be utilised to alter the 

environmental parameters, which in turn can possibly alter the user’s affect, as a 

feedback loop. In this section, we will present the current emerging affect detection 

technologies for consumers and researchers that are developed to either specifically 

mitigate practical issues of combining physiological sensors with modern HMD VR 

devices, or to provide wireless wearable capabilities with can used in VR settings. 

Apart from conventional unimodal methods such as camera tracking or 

heart-rate sensors, recent software and hardware prototypes have emerged that 

combine multimodal approaches and affective read-outs specifically adapted for 

real-time applications. Commercial technologies including, Emotiv Epoc, 

LooxidLabs, Enobio, Neurable and EmteqVR [251]–[255] have emerged in recent 
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years to provide real-time emotional feedback and affect recognition readings in VR. 

Although only a small number of studies using these technologies in VR are 

published, we were able to gather some of the more relevant findings as well as the 

practical implications of each technology.  

Arousal detection in VR, and especially the detection of stress, has been 

synonymised with analysing heartrate and electrodermal activity (EDA) changes 

[187]. The Q sensor by Affectiva [256] a wireless wearable biosensor has been used 

on a wide variety of studies, including one which investigated the levels of stuttering 

whilst in anxiety provoking VR environments [257].  Although the Q sensor is no 

longer available on the market, Affectiva has designed and developed software 

solutions for affect detection, offering a software development kit (SDK) for 

developers using the Unity3D game engine [258]. 

For valence detection in VR, researchers and developers can utilise 

technologies that incorporate electroencephalography (EEG) sensors and 

electromyography (EMG) sensors. Generally, the number of portable technologies 

using EEG is higher at the moment than EMG for gaming and VR purposes. EEG 

readings are extremely sensitive and can be affected by the user’s movement. 

However, the majority of studies using EEG are stationary, not leveraging the full 

potential of VR for spatial interaction and freedom of movement. 

A recent study aiming to assess emotional responses induced in virtual 

reality found statistically significant correlations between the reported valence and 

arousal picture ratings and the EEG bands outputted from the Emotiv EPOC+ 14 

channel EEG headset [259]. The system is light and easy to use, involving a short 

preparation of hydration of the sensors before usage. A limitation when using this 

headset alongside the HTC Vive VR system is the difficulty of ensuring precise 

localization of the electrodes which can increase variability of readings between 

participants but also between sessions of the same participant. Therefore, the Emotiv 

EPOC+ should be used in the correct context to ensure accurate affect detection. 

Similarly, the Neurable headset combines EEG sensors with the HTC Vive [193] 

HMD to ensure consistent localization, allowing user intent to be detected and used 

as interaction input in virtual environments [260], [261].  Further to this, Neurable 

have also developed an SDK for Unity 3D for developers [262]. Combining the SDK 

with the ability to measure gamma waves means there is potential for real-time affect 

detection in VR, as it has been found that gamma waves correlate with emotionality 

[263]. In 2016, a study examining the effect of body ownership in virtual reality 
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using a different EEG sensor technology, Enobio (32 sensor set-up) noted that both 

augmented and virtual reality produce higher brain activity in beta and gamma waves 

than when present in the real world, which is something to consider when using EEG 

sensors in Virtual Reality research [264]. Another technology that came out in 2018 

is the LooxidLabs headset, which combines 9 dry EEG electrodes and built-in eye 

tracking cameras into their own VR HMD. Unfortunately, we have little evidence of 

the system’s accuracy of detecting affective states as it has not yet been used in an 

emotion related VR research study. 

Currently, emotional valence is difficult to measure in room-scale VR (non-

seated experience) and the current EEG approaches may add additional movement 

constrains to the user. The method of measuring electromyographic signals (EMG) 

from the face of the user in VR could give us a reliable indication of their affective 

state [128]. In this context, another recent example of multimodal affect detection 

technology is the EmteqVR interface (including formerly know sensor-mask as 

‘Faceteq’), whereby EMG and PPG sensors are embedded on a foam VR insert, 

allowing its use on commercial head-mounted displays (HMDs). Studies 

investigating the detection of valence and arousal using this device have shown 

promising results [265], [266]. EmteqVR and the aforementioned technologies could 

be improved further by the addition of eye motion tracking, to monitor the 

individual’s gaze while in the virtual environment, thus, allowing a fully rounded 

analysis of the individual’s affective state when experiencing an emotional stimulus.  

All the technologies presented, showcase the growing need for multimodal 

signal analysis to understand the user’s emotional state in VR. As sensors become 

smaller and easier to integrate, we expect a rapid growth of affect-detecting 

technologies in the next years. The importance of heir unobtrusive wear-ability and 

usability in VR is paramount for VR research, as low levels of immersion and 

presence are correlated with hardware related distracting factors and reduced 

freedom of movement [267]. Ideally, researchers and developers in VR would 

benefit from the combination of metrics for simultaneous arousal and valence 

recognition, in user-centred hardware approaches that promote free movement and 

easy integration with HMDs. 
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Table 1. List of commercial systems for physiological and affective sensing and their 

compatibility with VR technologies. The table is divided into two sections, one for the arousal 

related methods and one for the valence related ones. (‘HMD comb.’: Compatibility with 

HMD headsets, ‘VR cond.’: VR conditions tested,  ‘e.o.u.’ : ease of use, ‘n.t.’: not tested).  

Method/Physiological 

sensor 

Body 

area 

Commercial 

system  

HMD 

Comb. 

VR 

system 

VR 

Conditio

n  

Room 

scale 

(e.o.u) 

Arousal 

Photoplethysmography 

(PPG)  

Wrist, 

palm 

E4[268] Y 

Y 

- 

- 

Seated 

[269] 

n.t 

(high) 

Electrodermal activity 

(EDA) 

Wrist, 

palm 

Q sensor[256] 

E4[268] 

Y 

Y 

- 

- 

Seated 

[270] 

n.t 

(high) 

       

Valence 

Electroencephalography 

(EEG) 

Head Emotiv EPOC 

[259] 

Neurable [254] 

Enobio [253] 

Looxidlabs [252] 

N 

 

Y 

Y 

Y 

- 

HTC-Vive 

- 

Own 

system 

Seated 

[259], 

[260], 

[264] 

 

n.t. 

(low*) 

Electromyography 

(EMG) 

Face Faceteq/EmteqPro 

[271], [272] 

Y HTC-Vive  To be 

tested  

*high sensitivity to motion artifacts 
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 Limitations and considerations on current affect 

detection approaches in VR settings 

[Extending to Context: Subject-Medium-Object] 

 

For this project, it was important to explore:(1) ways to induce affect in VR settings, 

(2) investigate the adequate methodologies for affect assessment assessed during a 

VR experience (subjective and objective), and (3) identify the state-of-the art 

classification techniques for affect detection (4), while attempting to ensure high 

presence and naturalistic behaviour. In this section we will outline relevant affect 

induction and detection studies using virtual reality technologies and express our 

considerations for the future emotion studies using interactive VR experiences with 

HMDs. 

 

2.4.1. Affect Induction in VR settings  

In section 2.3.2, we presented various studies in which VR environments were used 

as an emotion induction tool. Just like videos exceeded static images, immersive 

interactive experiences can exceed conventional audio-visual stimuli. Due to this 

highly immersive nature, virtual reality is an active method of stimulation which 

when coupled with high levels of presence can potentially induce more realistic 

emotional responses than conventional passive methods [170], [171], [273]. The 

methodological challenge for using VR settings is that the induction of naturalistic 

emotional responses to stimuli, and the related activation of an enhanced level of 

presence, requires careful experimental design and control. However, the generation 

of virtual immersive stimuli for affect induction is a relatively new area for 

exploration and we are aware of only one database so far that has been developed. 

This database, created by the team of [274] consists of immersive (360° degrees) 

videos for VR with corresponding arousal and valence ratings. With a good variety 

in video situations, easy replicability, and with the corresponding affective ratings, 

such databases can work as an excellent assistive tool. However, as mentioned 

before, attaining high levels of presence require high-interactivity options which are 

not covered by a standard, passive 360° video perspective. In fact, 360 videos may 

be more immersive and generate presence, but their emotion stimulation effect is 
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closer to videos than interactive, close-to-real-life experiences. Therefore, 

developing and using a validated database consisting of 3-dimensional, interactive 

virtual environments could potentially yield the true potential of virtual reality as an 

emotion induction tool. Developing such a stimuli library could facilitate research 

from different fields and little experience with VR development to use ready-made 

content in their research with little effort. 

Regardless of the available stimuli databases, the effect of virtual reality for 

emotion induction has been mostly explored for two main purposes: stress/arousal 

induction and stress reduction or meditation. Virtual environments as a 

psychological research tool have been used in conjunction with physiological 

responses acquisition in various application areas. Recent studies in anxiety and VR 

research showed that VR can be used in exposure therapy (VRET) to induce 

relaxation and to reduce anxiety [27], to distract users from pain (see review by 

[275]) and for stress reduction in clinical contexts [276], [277]. VR scenarios were 

also used to induce negative emotions and stress (negative arousal), for example in 

public speaking scenarios [278] and by introducing phobic elements into the VE 

[279]. Presence levels were reported higher in stressful VEs than neutral VEs 

scenarios agreeing with the existing literature [218], [280]. Other examples include 

phobia therapy [281], meditation and relaxation [282], [283], training and exergames 

([25], [284]–[286]), spectrum disorders [287], [288], mental health therapies [289], 

computer games [290], presence and aesthetic experiential research [171], [291]. In 

the majority of those studies, the spectrum of arousal and valence is skewed towards 

either highly arousing negative experiences or low arousing of neutral/positive 

valence. The identification of a generalizable stimuli-presentation protocol that can 

induce similar positive responses across  individuals is challenging, as it is difficult 

to detect positive responses without knowing the context [5]. High positive responses 

are much dependent on the context and the subjective appraisal of the stimulus (e.g. 

non-life-threating situation, rewarding) [292], which can have a different effect on 

individuals based on their previous experiences, cultural background, personality, 

expressivity, and sense of humour. Overall, the exploration of the full spectrum of 

the affective dimensions and the balanced focus on positive high-arousing 

experiences (e.g. generating laughter) as well as negative is scarce [293].   

 

Arousal and valence affect induction research involving 3-dimensional stimuli and 

spatial interactive elements in VR, is limited yet very promising. One of the most 
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recent projects utilising 3-dimensitonal immersive content (3D spatial structure, as 

static empty rooms) [294] where EEG and heartbeat dynamics were employed to 

detect three affective states in VR. The authors collected physiological signals and 

SAM scores per scenario of which visual aesthetic parameters (changes in lighting, 

colour, and textures) were altered to induce a certain affective state (negative, 

positive, neutral). Analysis and binary classification of arousal and valence were 

made for each one of the virtual environments, which showed promising results for 

the capability of immersive VEs to induce affective states. As the effects of each VE 

were analysed as a whole, the individual effects of the individual aesthetics 

properties used in each one of the environments were not tested. The effects of 

geometrical and aesthetic properties of virtual environments on affective states 

(mostly for valence and arousal) were tested against post-experience self-ratings in 

previous studies.  

 In other studies, certain audio-visual parameters were altered to study 

emotional arousal and relaxation using different version of a virtual park [295], [296] 

and valence properties of aesthetic parameters like colour and room length-width-

height ratio in indoor virtual spaces [297]–[299]. Results showed promising 

correlations of controlling parameters with certain affective values (e.g., ceiling 

height, number of windows, enclosure/room openness, brightness, colour hues) 

which could be used for the development of VR stimuli in future studies. However, 

the effects of these parameters on physiological measures (with the exception of 

room openness) were not tested in these studies. The effects of room enclosure on 

heart-rate responses was tested in a virtual Trier Social Stress Test (commonly 

referred to as VR-TSST), but however not significant differences were found 

between the groups who performed the task in the open space compared to the ones 

in the enclosed space [300]. On this note, these spatial manipulations alone may be 

insufficient to induce a wide range of spontaneous emotional responses along the 

dimensions of affect.  

In a realistic simulation, such parameters may change over time, or after 

certain user’s actions (moving from one room to another, closing light, interacting 

with an 3D object etc.). As such, the user interaction in Virtual reality with 

potentially stimulating content is predominantly non-linear and dynamic. The effects 

of those audio-visual surrounding parameters of the virtual experience on affective 

responses could be studied by analysing the moment-by-moment changes of the 

content/stimuli in conjunction to physiological changes. As a VR user can move their 
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view with a minimum of three DOF when using a VR headset, the continuous 

tracking of the user’s gaze or eye view (for instance via eye tracking methods) to the 

environmental properties would be greatly beneficial. Such tracking could allow us 

to correlate contextual information of the events/tasks happening in VR to the user’s 

physiological responses. Additionally, benefitting from latest VR technological 

proliferations, allows for active experiences, enhanced graphic representations, the 

addition of interactive stimuli and enhanced room-scale user movements. These 

improved properties of the platforms could potentially enhance the user experience, 

and result into stronger emotional elicitation and generally more naturalistic 

responses [301]. 

The incorporation of additional modalities in VR was limited until recently, 

due to the constantly iterative nature of these emerging VR technologies [302]. 

Today, additional measures like pupil diameter (detected with eye tracking 

technologies especially adapted for VR settings) and speed of limb movement 

(measured with from motion tracking sensors) are also starting to emerge as 

measures in studies of affect detection  [303], [304], and are expected to be very 

promising for the future of emotion detect in VR. 

 

2.4.2. Spontaneous Affect classification studies using VR 

Currently, only a small number of studies utilise immersive VR as an affect induction 

tool. Proportionally, there is a scarce number of studies combining continuous 

physiological data acquisition within a VR experience with Machine Learning (ML) 

for the automatic detection of valence and arousal. The majority of past research on 

spontaneous affect detection used other types of stimuli presentation, either in the 

form of static images, text, audio and videos [68], [305]–[307]. From those studies, 

when utilising physiological data to detect dimensional affect, the most common 

strategy found is the simplification of the dimensional space to dimensional ranges 

of interest, thus streamlining down to a binary or three-class problem [308], [309]. 

In the case of valence, the classes commonly detected are ‘negative’ versus 

‘positive’, and in some cases with an additional class ‘neutral’ (e.g. [307], [310]). 

For arousal, the dimension is usually divided in ‘low/passive’ versus ‘high/active’ 

areas (e.g. [311]), with the introduction of a ‘middle’ area (e.g. [312]). In cases were 

both dimensions are detected simultaneously, four classes are detected 

corresponding to the quadrants of the AV space (e.g. [313]).  
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Today, there is an increased interest on spontaneous affect detection 

methodologies from continuous physiological signals using virtual environments 

and immersive VR devices. In the last years alone, big technological advances were 

accompanied by advances on affect detection methodologies developed specifically 

for immersive VR settings using HMDs. In 2010, Wu and colleagues utilised skin 

conductance, respiration , ECG and EEG signals features to classify three levels of 

arousal in a VR Stroop Task [314]. A support vector machine (SVM) classifier was 

used. The paper does not define whether a highly immersive set-up, as a virtual 

reality headset or cave system, was used in the study. It is expected that a multi-

monitor set-up was used instead to allow the positioning of the EEG sensors which 

by design pose physical constraints. Shumailov and Gunes in 2017 classified two 

levels of arousal (low/high) and valence (negative/positive) from an EMG 

(positioned on the arm) during a VR gaming condition using a commercial VR HMD 

(HTC Vive) [315]. The paper demonstrated high accuracy in valence and affect 

detection (> 85% for both dimensions) with a SVM classifier from arm muscle 

patterns using data from eight participants. This approach applies to immersive VR 

gaming, where users are actively interacting with the content using hand controllers. 

Interactive VR applications may however utilise other types of tracking methods e.g. 

gaze or eye tracking [316][317]. Similarly, in 2019 Pinto and colleagues [318] 

combined physiological readings from the hand and chest (BVP, EDA, ECG and 

respiration) and an SVM classifier to detect low and high levels of arousal and 

valence across individuals. The teams utilised seven 360o videos (from the first VR 

video library created by [274], viewed in VR HMD) to induce different levels of 

affect and collected post-experience SAM ratings, which were used for the labelling 

of the classes (using the median as the class divisor: 1-5 for negative, 6-9 for 

positive). The system yielded 58% accuracy for arousal and 57% for valence, with 

accuracies across models being higher for arousal than valence similar to e.g. [319]. 

More recently, Marin-Morales and colleagues [294] utilised 3D immersive 

environments (viewed using a commercial VR headset) in conjunction to EEG and 

ECG sensors to detect two levels of arousal and valence using SVM algorithms. 

Their models reported achieved 75% accuracy for arousal and 71% for valence 

across participants.  
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Table 2. Table listing studies on affect detection performed using physiological sensors in 

VR settings (‘Condit.’: Recording Condition). 

Physiological 

sensor 

Detection 

(levels) 

Stimuli Labels VR system Study Sample Condit. 

GSR,RSP, 

ECG, EEG 

Arousal (3) VR stroop 

task 

Performa-nce 

scores 

Not known Wu et al., 2010 

[314] 

18 Seated 

Myo[320] 

EMG (both 

arms) 

Arousal (2) 

Valence (2) 

VR game Post-gaming 

annotation  

HTC Vive Shumailov and 

Gunes, 2017 

[315] 

8 Standing 

BVP, EDA, 

ECG RSP 

(hand, chest) 

Arousal (2) 

Valence (2) 

360o videos 

[274]  + 

YouTube 

videos  

SAM 

(post-video) 

HP  

Windows  

Mixed-

Reality  

Pinto et al., 

2019 [318] 

18 Seated 

EEG, ECG Arousal (2) 

Valence (2) 

Four 360o  . 

panoramas 

SAM 

(post-VE) 

Samsung 

Gear VR 

Marín-Morales 

et al., 2018 

[294] 

36 Seated 

 

The trends on emotion classification mention the necessity for the 

development of models that can apply to real-life data by collecting naturalistic-

spontaneous responses [10]. However, the data recording settings commonly 

arranged for the affect detection VR studies described are closer to controlled, 

laboratory settings rather than real-world ones [321]. This is mainly because the 

user’s body movement and location/seating were constricted, and that the 

participants are requested to perform a set of predefined tasks/ actions, rather than 

left to ‘freely’ explore and interact with the content. This may also be explained due 

to the non-interactive stimuli/content used, such as passive videos and non-

interactive spatial elements. As Virtual Reality allows for naturalistic behaviour, free 

head/body movement and interaction, as well as adaptable task/scenarios, data 

recording settings within virtual reality settings could potentially approach ‘real-

word’ settings. As such, virtual reality settings could offer the medium between strict 

laboratory and challenging real-word settings.  

Affect classification studies often mention the high variability between 

individuals’ ratings (e.g. [318]). These may be related to effects of external factors 

(e.g. the environment, the technology involved, the stimuli presentation interface, 

DOF), while also on the perception ambiguity of the content/stimuli, which may be 

attributed to various subjective differences (such as difficulty in self-rating perceived 

emotions, habituation/desensitisation and cultural differences) [75], [322], [323]. 
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One may suggest that difference in affect ratings for example for a long VR video, 

may be deriving from smaller events or details that occurred that may have generated 

different affective qualities for each individual. As a result, these secondary details 

may be experienced and remembered in different intensities by the individuals (see 

section 2.3.3.2). 

Still, the most common ground-truth used in past research for the data 

annotation/labelling is driven by affect self-ratings after the main experience (post-

experience) [301]. With the introduction of tools such as the Feeltrace annotation 

tool [324] affectRank [325], Gtrace [326] and the Continuous Measurement System 

(CMS) [327], continuous self-ratings could be recorded throughout an experience. 

Continuous self-ratings made during the VR experience could offer a higher 

resolution on the changes along the affective dimensions which could contribute to 

the development of finer-grained classification models for affect detection.  

A current disadvantage in emotion detection VR research, is the lack of 

common methodology, and thus reduced ability for generalisation and repeatability. 

Special focus could be on listing potentially influencing factors. For example, the 

different types of media experienced and the degrees of motion freedom (e.g., lying, 

standing, walking) may naturally have a different effect on physiological data 

recorded (see section 2.3.2). As such, different classification approaches may be 

more suitable for different conditions.  

 

In summary, despite the recent progress in the field, it appears that state of the art in 

affect detection using VR content is still limited to: 

 

1. Intrusive physiological sensor modalities that constrict use motion. 

2. Lack of spatial stimuli datasets, that could be used in an interactive set-up. 

3. Affective classifications based on post-experience self-ratings of an 

environment rather than dynamic changes of continuous in-VE ratings.  

4. Limited contextual information regarding the user’s characteristics, external 

factors, and in-depth annotation of the VR-content’s qualities.  

5. Use of VR for passive stimulation, not utilising full potential of current VR 

systems (e.g., interactivity, dynamic changes, room-scale locomotion). 
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 Chapter Discussion and Conclusions 

In summary, the area of affect induction and detection in VR is in early 

stages although there is wealth of potential applications including in a wide range of 

fields. The dimension of arousal has been extensively investigated with 

physiological measures in VR and other interactive media. However, for the 

spherical assessment of affect, valence evaluation should be equally measured with 

continuous physiological or behavioural measures. Current practical and 

technological challenges due to the obstruction of the face (the richest source for 

valence sensing), underlined the need for an adapted approach towards affective 

modelling in high-fidelity VR settings. Specifically, these challenges are triggered 

by commonly use of VR headsets and the motion difficulties in existing 

cumbersome, tethered sensor devices, designed for sedentary/seated conditions. 

The combination of the detection methodologies for both affective 

dimensions in one sensor set-up could provide the solution for affective recognition 

in VR settings. Until recently, the practical implications of HMD-based VR did not 

allow the use conventional valence measures, as used in previous lab-based 

experiments (e.g., wet facial EMG, cameras, EEG sensors), as the face and head 

were covered by the VR headset and its head-strap (see the area covered by the VR 

headset in Figure 11). In addition, VR headsets provide high-resolution head 

motion-to-vision mapping, which aspires for naturalistic behaviour and interactions 

as those in the real world. However, in a classic lab-based sensor set-up such whole 

body movements are avoided or minimised. The level of ecological validity of VR, 

together with high levels of subjective presence and immersion are suggested to 

produce naturalistic responses. Thus, designing a sensor set-up that could be applied 

in interactive VR settings, could also open avenues for physiological and affective 

sensing in real-world scenarios without the use VR headsets (e.g., in free walking 

and head-moving physical tasks, or even during social interactions).  



Chapter 2 

 

81 

 

  

Figure 11. Two photos of users wearing two different consumer VR headsets being. The 

majority of the face is covered by the headset, while the bottom of the face is shadowed. The 

head strap and headphones also cover the top and side of the head. 

Today, immersive technologies provide multiple input and output tracking 

capabilities, which combined with the virtual experiences simulating reality, offer a 

powerful tool for researchers. The data recording settings in modern high-immersive, 

interactive, room scale VR would potentially exceed the controlled laboratory 

settings (commonly used in affect recognition studies) by simulating environments 

that are closer to the real-world. This in turn could induce more naturalistic and 

spontaneous responses, thus providing rich affect data and improving the current 

affective modelling/recognition approaches (see section 2.3.3). 

.  

To leverage the potential of current commercial VR technologies (e.g., for 

physical movement and interactivity), one also needs to take into consideration the 

unnecessary distraction and movement constrictions that tethered and chunky 

physiological sensors can introduce, as well as related movement artefacts that can 

result in the data. Today, more and more emerging HMD-adapted technologies 

employ physiological sensors. However, the Faceteq prototype is one those 

emerging technologies which could be applied in highly immersive settings without 

hindering the interactive experience of the user. As our team is looking at ways to 

provide affect-related metrics into one hardware interface especially adapted for VR, 

it is our aim to combine arousal and valence detection according to the dimensional 

model of affect, using multimodal approaches. Therefore, for this research project, 

focused on facial muscle activation for valence (using a configuration consisting of 
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multiple EMG sensors underneath the HMD), in addition to arousal measures as PPG 

and ECG.  

 

In the next chapter, Chapter 3, we present the affect detection system that we 

propose, along with more details regarding the methodology used in three 

experiments.  

               



 

 

 

 

 

Chapter 3 

 

Methodology & System Architecture

3.  

 Introduction 

The research questions of this thesis were investigated following an experimental 

approach combined with quantitative2 data acquisition techniques across various 

data-collection modalities. The combined multimodality aspect together with the 

controlled experimental approach allowed for validation and reinforcement of any 

results. Based on our review, we designed a system architecture for affect detection 

within virtual reality experiences that is illustrated as a graph model. In this chapter 

we will outline this proposed system architecture, and discuss the methods, 

techniques and apparatus used in the experiments discussed in chapters 4 and 5.  

 The system architecture’s key components comprise of the input data, the 

main processing engine including the mapping of data to specific custom affective 

labels (e.g., positive or negative valence), and the detection or prediction output. 

These components will be explained in the following sections (3.2 – 3.5). All ‘user-

dependent’ data types (data obtained from the user) including physiological, 

behavioural, and subjective data (self-reports and questionnaires) are described in 

section 3.3 – 3.4. Additionally, as VR offers the freedom to coordinate and track the 

interaction between the user immersed in VR and the content, the suggested 

paradigm for the presentation and control over stimuli’s effect in VR will be 

explained in section 3.5. In that section we will also discuss the acquisition of 

additional contextual information that could potentially assist future content-

 

2 Quantitative approaches were preferred over qualitative for comparative research, due to 

their ability to define cause-effect relationships, and strengths of associations between 

numerical dependent variables, while maintaining validity and reliability in the interpretation 

of the responses ([559], [560]).  
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dependent affective studies using custom-developed content. In section 3.6 we 

discuss the data processing pipeline and analysis methods used. The processed data 

combined with self-ratings of affect are used for the mapping and classification of 

the participants’ affective responses to different levels of valence and arousal.  

 The methodological tools and protocols shared between the feasibility 

experiments were progressively refined based on observations and results from each 

experiment.  The specifics on the methodological changes will be discussed in the 

Methodology sections of each study in Chapters 4 to 6. 

 System Architecture 

In brief, the system architecture suggested for this project was based on the 

distinction of input data streams associated with either valence or arousal, based on 

the concept that both affective dimensions can deliver a better understanding of the 

affective state of an individual. Data modalities linked to valence such as 

electromyography and movement sensors, and those linked to arousal such as heart 

rate and electrodermal activity [93], [328] were combined in one data stream and 

were recorded synchronously.  

 Additionally, VR-specific settings needed to be considered for the 

unobtrusive acquisition of those signals. The majority of interactive VR experiences 

nowadays, either seated or standing, require the user to be able to freely move the 

limbs and/or body to interact with the content. Example types of those can be 

exploratory, educational, gaming, social, creative etc. Therefore one major goal for 

us was to utilise a variety of biometric signals while keeping a simple, unobtrusive 

set-up, thus reducing the numbers of sensors placed on limbs [328]–[330]. Further, 

in order to reduce the volume of cables surrounding the user (which can distract and 

create breaks in Presence [331], [332]), we utilised a wearable multimodal interface 

prototype, called Faceteq by Emteq Ltd (especially designed for use in VR). This 

prototype design allowed us to append additional sensor modalities and test them on 

the go in collaboration with the development team of the company [4], [329] (Figure 

12). Faceteq, comprised of EMG sensors positioned based on the protocol proposed 

by Van Boxtel, 2010 [122]. The prototype we first used was published and presented 

in 2016 [272]. 

 From 2015 to 2017, we utilised the Faceteq interface in various prototype 

versions including custom GSR, ECG and PPG sensors incorporated on the 
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interface. Through extensive testing, we found that this interface offered promising 

potential for unobtrusive affect detection in VR. Certain aspects of the interface such 

as the materials used, the number of sensors and the data collection paradigm were 

defined in the duration of this EngD. As part of the EngD programme, the findings 

originating from extensive pilots and studies assisted the further development of the 

interface (hardware and software). The outcome of these experiments rendered 

specific recommendations for:  

(a) shape and elasticity of the wearable interface,  

(b) width and type of foam utilised in its construction,  

(c) number, type and positioning of sensors utilised,  

(d) the development of a protocol pipeline for new users on how to utilise the 

interface, apply sensors and record data,  

(e) the implementation of an event-marker based data collection system, and  

(f) the development of a dedicated affect detection algorithm for offline analysis. 

  

  

For the proposed affect detection system entailed an input data stream provided from 

wearables interfaces (such as Faceteq) and the successful mapping of their activation 

patterns to the two dimensions of affect. arousal and valence (core affect dimensions 

[64], [333]). Following this principle, the suggested system architecture is presented 

in Figure 13. There are three streams of input data; a) continuous streams from 

physiological and movement sensors, b) the user-specific traits recorded via self-

ratings and questionnaires, and c) streams related to the stimuli content within a 

simulation environment (boxes numbered (1) and (2) in left upper and lower side of 

the figure).  

 The continuous streams of raw data are recorded while participants are 

exposed to stimuli with affective content, and during that time they are also self-

rating their levels of valence and arousal on a continuous scale (bottom orange box 

including our custom-built continuous affect self-rating application ‘CASR’). 

Collecting the levels of arousal and valence on a continuous scale from the user is  

Figure 12. Prototype version of Faceteq interface in 2016 and 2019. 



Chapter 3 

 

86 

 

 

an essential step for acquiring information on the levels of emotional stimulation, or 

else ‘emotional flow’ of an experience [334]. These data can also be used in order to 

verify the content’s affective impact and therefore the success of the experimental 

design in attaining the intended emotional manipulations.  

 Once the multimodal data-streams from our sensors are collected 

(predominately EMG and PPG, movement specific metrics were added later on) they 

become subject to signal processing (schema ‘Data Processing’ No.3). These 

physiological signals are denoised and divided into epochs (e.g 512 seconds was 

used for Feasibility Study 2, Chapter 4). Next, various components or features of the 

signals are extracted through the ‘feature extraction’ step. From those components 

(e.g., the calculation of the variability of Inter-Beat-Intervals (IBI) or peaks 

distances, and the room mean square (RMS) of the f-EMG signal) we can infer the 

level of arousal/stress felt and valence expressed by the user. Detailed lists of the 

features and specific data analysis processes are included in the experimental design 

description of each study in Chapters 4 and 6. The features together with the 

participants’ self-ratings are then sent to train a classifier to categorize the 

physiological patterns and affective responses into arousal and valence levels. 

Finally, the outputs of the classifier can then be used to produce a two-dimensional 

Figure 13. Flowchart of the proposed system architecture for affect detection in VR. 

Physiological data streams are entered (1, left) together with contextual information of the 

experience (2). The data are then processed through filtering and normalisation before being 

fed to a classifier (3, centre up) Using the user’s self- ratings (centre bottom), the classifier 

model is trained. This model can be used to detect arousal and valence from new data (output, 

right). 
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representation of the user’s state, which can be used for adaptive control and 

feedback within VR.  

3.2.1. Feasibility studies  

In order to evaluate the system’s architecture for off-line analysis, we designed a 

series of feasibility studies with human participants (Feasibility studies for the 

detection of emotional responses (FEDEM)). In the studies, physiological responses 

together with continuous self-ratings from each participant were collected initially 

using conventional content-presenting technologies and later on using virtual 

environments, see Figure 14.  

 For the first study our plan was to record affective responses in controlled 

conditions using already validated stimuli, with minimised head movements and 

without a VR headset. The stimuli were selected to induce five affective states, which 

populate the four quadrants of the affective space plus the neutral (high valence – 

high arousal (HVHA), high valence -low arousal (HVLA), low (negative) valence-

high arousal (LVHA), low (negative) valence – low arousal (LVLA) and neutral – 

medium arousal (NMA)).  

 From then we moved to the integration of supplementary modalities and the 

recruitment of additional participants. Finally, after performing adjustments on the 

main apparatus and the processing pipeline we designed the next study (Fedem 3) 

using virtual stimuli in custom-built 3-D dimensional environments using 

commercial VR headsets. In this study the participants could either watch videos of 

pre-recorded explorations from matched participants (passive group), or actively 

explore three virtual environment (VE) scenarios (active group): three different 

versions of the same environment containing stimuli of positive, neutral and negative 

valence and of various levels of arousal. In the VE scenarios, stimuli were presented 

as ‘events’ were predefined although triggered according to the user’s interaction 

(gaze) and time spent in the environment. 

The detailed experimental protocol and information regarding the stimuli 

used for each study are presented in Chapter 4 (for studies Fedem 1 & 2) and Chapter 

5-6 (for study VR study Fedem 3). 
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 Discrete & Continuous Self-Rating Data 

Subjective data, including questionnaires and interviews, are a fast and low-cost 

data-acquisition method. In this thesis, questionnaires were administered in all 

experiments conducted. We were interested in the individual differences between 

participants (e.g., alexithymia, expressivity levels) that could have an effect on the 

responses of each participant to the stimuli used in our studies.  

 The subjective data sources can be divided into two categories: the ‘discrete 

responses’ collected per participant using questionnaires, and the continuous 

affective self-rating (CASR) data which includes Valence and Arousal ratings 

collected throughout similar emotion detection studies, like in [324], [335].  

 

3.3.1. Discrete Responses  

As such, in the first category we included questionnaires on demographics, SAM 

mannequins and screening questions, as well as personality traits, alexithymia, and 

expressivity as they can correlate with changes in sympathetic activity, emotional 

expression and inhibition [244], [249], [336]–[341].  

Figure 14. Feasibility studies designed to detect arousal and valence levels using affective 

videos and virtual stimuli. For each study the affective stimuli were chosen from the 

corresponding-coloured areas on the VA space (bottom left and right); blue are stands for 

neutral, red for negative and green for positive valence. Three valenced VR scenes were 

designed for the Fedem3 study, containing stimuli/events of mixed levels of arousal. 
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 The demographic questionnaire included questions on age (as aging can 

increase expressive control and reduce HRV ([342]–[345]), gender (as sex difference 

were found on emotional expressivity [346], [347]) and experience with immersive 

technologies (see Appendix D). Additional screening questions were added in the 

Feasibility study 3 study regarding the existence of phobias (related to the stimuli, 

for instance arachnophobia), and extreme neural, medical, cardiovascular, mental 

and psychological conditions which could affect our data. Examples of those where 

given, e.g., facial paralysis, stroke, aortic aneurism, anxiety, depression. The 

participants were recommended to discuss this further with the experimenter if they 

were unsure of their response.  

 For the personality we administered the OCEAN (Big 5) questionnaire 

consisting of multiple questions calculating 5 personality traits of extraversion 

agreeableness, neuroticism, conscientiousness and openness to experiences [348]. 

More information will be found in chapter 5. 

  We also used the Toronto Alexithymia Scale (TAS-20) [339] questionnaire 

which quantifies one’s ability of people to interpret, process and describe the 

emotions of themselves or of others. High alexithymia can affect emotion regulation 

of emotion with effects of physiological responses during affective stimulation using 

audio-visual stimuli (see section 2.3.3.2).   

 In cases where we needed one rating per stimulus, video or Virtual 

Environment scenario for valence and one for arousal we used the SAM scales [64], 

excluding the dimension of control.  

 Additionally, the Berkeley’s questionnaire on Expressivity [249], the 

Depression Anxiety and Stress scales (DASS) [349], [350] and the Basic Empathy 

Scale (BES) [351] were added as optional questionnaires in the last study (Study 3). 

 The responses from all questionnaires were anonymised and were associated 

to the raw data using numerical codes to allow for the between groups comparisons. 

 

3.3.2. Continuous affect self-rating tool (CASR)  

As the affective impact on an experience can vary during its duration, we recorded 

moment-to-moment ratings of valence and arousal rather than one rating overall. For 

this purpose, we developed out own version of self-rating tool called ‘CASR’ 

(continuous affect self-rating tool) using Unity game engine [352], based on an 
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existing tool for continuous affect rating ‘Feeltrace’ [324]. The CASR interface was 

integrated within our custom-built stimuli presentation software (see Figure 15).  

 

The participants would first get trained into rating their affective state using the 

mouse. The pointer of the mouse appeared as a blue dot appearing onto the CASR 

space (with or without emotion labels integrated within the cartesian space, pictures 

1 and 3 of Figure 15). Then, within the study they would use the same space by 

hovering over the regions of interest throughout the experience (pictures 2 and 4 of 

Figure 15. On the x-axis we added the valence dimension ranging from very-negative 

(“-1”, left) to neutral (“0”, middle) and to the very positive (“1”, right). Similarly, 

we added the arousal dimension on y-axis ranging from very low/sleepy (“-1”, down) 

to very aroused/active (“1”, up). The users were able to use the in-between spaces, 

using the entire cartesian space. Space limits were set to control or out of space-

border ratings. In the latest version of the interface, the participants used an input 

wireless controller with an integrated circular trackpad instead of a mouse. 

 

1 

2 

 

3 

4 

Figure 15. Screenshots from the Continuous Affect Self-Rating (CASR) interface; First 

version (1, left side) during training and (2) in main study using an optical mouse. Last version 

(3, right side) in training and (4) during main study using VR controller. 
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 Physiological Signals & Additional Modalities  

The proposed metrics used in this project that can be linked to valence changes are 

EMG and distance from stimulus (approach/withdrawal), while the ones linked to 

arousal changes are the ECG, PPG and GSR. The measures used together with the 

location where they were positioned on each user are depicted on Figure 16. 

 Utilising the Faceteq prototype [255] gave us the opportunity to use ‘dry’ 

EMG sensors, no requiring gel or special skin preparation, fixed onto a mask-frame. 

This interface (newest version known as EmteqVR) can be adjusted on commercial 

head-mounted displays (HMDs) like the HTC Vive [193]. It utilises EMG 

technology for muscle tone detection to determine facial muscle activations. Unlike 

standard surface EMG electrodes which require skin preparation, conductive gel and 

adhesive pads, this prototype consists of eight dry integrated EMG sensors (24-bit 

signal resolution, sample rate: 1000 Hz, signal bandwidth: 20-450Hz). Remarkably, 

there were no inter-sensor latency variations, thus allowing for simultaneous 

sampling across sensors. The sensors are individually shielded and connected to an 

ADC box (Analog-to-Digital Converter) which digitalises and amplifies the sensors’ 

streams (Figure 17, the outputted values correspond to micro-Volts, where typical 

outputted value looks like this: e.g., 0.0981mV.  

 

1 

 

2 3

6

4

5

Figure 16. Measures used; (1) the Faceteq mask with EMG and with (2) PPG sensors, (3) 

external GSR, (4) ECG belt, (5) VR headset from which we extracted (6) IMU data (rotation 

& position). 
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Complementary sensors – Additional sensors integrated onto the Faceteq interface 

are a 9DOF accelerometer-gyroscope and a PPG sensor (positioned on the left 

temple). The device (the ADC box) is connected to the computer via USB cable 

although in the last version we used Bluetooth connection instead. This multi-sensor 

setup can enable the system to record information about the user’s movement, gaze, 

facial tension, and heart rate simultaneously while wearing a VR headset. Another 

advantage of using this prototype was the existing live data streaming solution to 

Unity3D [352] (the game engine we used for the development of the stimuli 

presentation environment/applications used in our experiments) via an API provided 

by Emteq Labs. 

 The recordings of raw data were exported and stored in ASCII (text) format 

for post-acquisition data analysis. The recordings were then analysed and filtered in 

MATLAB, and the root mean square (RMS) values between time-windows was be 

calculated for visualisation and further analysis. An example of the EMG trace after 

transformation into RMS values while a user is performing three facial expressions 

(3-open smiles, 3-frowns, 3 surprises) is shown on Figure 18.  

 The choice of the hardware allowed for quick application on the user while 

also allowing freedom of movement in VR. Especially easy to integrate on wearable 

solutions are the PPG sensors, which unlike the ECG sensors (both measuring heart-

rate activity) can be adjusted on anywhere on the body where blood vessels exist 

close to the surface of the skin, requiring little to no skin preparation. EMG and PPG 

readings were provided from the Faceteq Interface. A custom-built ECG belt 

consisting of two sensors was also used for the first experiment.  

Figure 17. The EMG sensors (N = 8) on the Faceteq device are connected to an ADC box. 

The signals are amplified and streamed simultaneously with a 1000 sampling rate. 
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The ECG design we followed a 2-lead configuration (2 electrodes and 1 ground 

sensor) using an elastic belt. The belt holding the two electrodes (negative and 

positive) is positioned symmetrically around the heart, in this case on the upper 

abdominal area, on the floating ribs on the left and right side of each user, with 

relative distance between each electrode (approx. 7-20 cm, Figure 19). As ground 

electrode we used the ground electrode from the Faceteq interface, used for common 

mode rejection (used to prevent power line noise from interfering with the bio-

signals) located on the upper forehead.  

Figure 18. Example of EMG signal traces from a user performing 6 expressions (3 

consecutive smiles, 3 frowns, and 3 surprises). Upper figure shows the filtered signals, and 

the lower figure shown the RMS trace of the signals, across all sensors (Zyg.: Zygomaticus, 

Orb.: Orbicularis oculi, Front.: Frontalis, and Corrugator).  
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As an additional measure of valence, we measured movement tendencies of 

approach and withdrawal to/from stimuli the within the virtual environment (for 

Fedem 3 study). For this purpose, we calculated the distance between the user and 

an object/event in real-time as the user was walking within the virtual scene (Active 

group, ‘Fedem3’ experiment, Chapter 5). The user-object distance was extracted 

from within the VR simulated experience expressed as ‘distance’ (distance from 

point a (position of user in VR) to b (position of stimulus in VR), as in Figure 20).  

 

 

 Stimuli Presentation and Event design in VR 

Although humans perceive and interpret affective stimuli subjectively (e.g. related 

to their semantic knowledge and associated memories) [353], certain audio-visual 

parameters have been found to impact on affective stimulation. Such parameters vary 

Ground 

 

a

PPG1 

 

PPG2 

b

c

d

e

Figure 19. (a) An ECG was applied in a 2-lead configuration using a belt with the ground 

sensor within the headset. (b) A PPG sensor was intergrated within the headset, and (c) the 

two positions explored were over the left temple  (blue point) and the lower middle of the 

eyebrows (green point). Graphs (d) and (e)  shows the traces of the ECG and the PPG signals. 

The successive peaks for each steam were used to calculate inter-beat-intervals. 

Figure 20. The distance variable was calculated between (a) the virtual viewpoint of the 

user and (b) an object's center's position (or ‘pivot point’) in the virtual environment. This 

metric was added in the last experiment ‘Fedem3’, where dimensions and user’s starting 

point are constant between scenarios. 
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from the low-level features to high-level attributes, dynamic movements and 

interaction/narrative design  [354]–[361]. Low-level features include colour, size, 

shape, texture, and opacity, while high-level attributes involve quality, composition 

(level of complexity/simplicity), orientation and functional content parameters such 

as, lighting and visibility (e.g., contract with background). For the FEDEM 3 study 

we created the VR environments (VEs) inspired by these parameters, with special 

focus on dark versus bright lighted compositions (negative-positive), with intense 

colours and textures for the arousing VEs. These parameters’ specific impact within 

immersive experiences could be investigated via systematic studies in the future. As 

all constructed content, 360o VR environments provide the ‘canvas’ for the 

construction of worlds and scenarios, falling under complete artistic and engineering 

control. Investigating the composition elements that create emotional experiences 

could assist all future VR applications but was outside the scope of this EngD work. 

  

In interactive 360 experiences, the view of the user is not following a strict linear-

narrative (e.g. seeing event 1, then event 2 etc.), but can vary based on the 

spontaneous action-motion of the user (user-controlled exploration) [362], [363]. In 

order to know which stimulus was visible to the user at any point throughout the 

experience, we need to know what the user is seeing in real-time. This can be 

achieved by tracking the gaze of the user through their point of view (commonly 

using a technique known as ‘ray casting’) and through ‘eye-tracking’ via eye-

tracking technologies, e.g. [362], [363], see also Figure 21. 

Figure 21. Four models of tracking using VR: Experience tracked outside ((1) cyan shapes 

represent the motion tracking, and (2) magenta shapes represent the action tracking using 

input devices such as controllers) and within VR (3) by tracking the view of the user (black 

shape) and (4) the individual objects information of the surrounding virtual environment 

(e.g. the butterfly appearing), enabling the flow of contextual information (e.g. he smiled 

- because he saw a butterfly). 
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 In the experimental paradigm developed for FEDEM 3 (VR study), we 

developed an event-marker algorithm (using Unity3D [352] and the HTC VIVE 

input utility plugin [364]) (explained in Section 5.3.1). Practically, the algorithm is 

tracking the gaze of the user continuously (via ray-casting) and adds event-markers 

in the data corresponding to the visible stimuli within the field of view of the user 

(Figure 22). Using this algorithm, a VE designer can link objects or actions to 

specific event-markers. These event markers are continuously tracked and save in 

ASCII format so that they can be inspected at the end of the experience. These 

markers were synchronised via system-time timestamps with the rest of the collected 

data adapted from the EmteqVR application.  

 

This way, not only we can track the users’ movement (via camera tracking), or their 

actions (via their controllers’ gestures), but also the contextual information within a 

VR experience. Without this algorithm, it would be difficult and time-consuming to 

know what the person reacted to and which event applied the most affective impact, 

as it would require to annotate numerous screen-recordings. Coupling the 

information regarding the content with emotional responses could allow us to better 

understand the context of an affective experience.  

  

Figure 22. Integrating a custom-built event-marker system for VEs. 
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 Experiment Variables & Data processing protocol 

Chapter 4 shows a feasibility study for the inference of affective responses with a 

system ready to be incorporated in VR setting. In Chapter 6 we describe the 

experiment using VR technologies designed based on and the findings reported in 

Chapter 4 and 5. Both experimental designs allowed us to investigate the effect of 

affective changes (cause by emotion induction via audio-visual stimuli) on the 

metrics (dependent variables) obtained by our sensors, and the sensors’ ability to 

detect those changes in VR settings without impacting heavily on the overall 

immersive experience of each individual (levels of presence). 

 

3.6.1. Variables and study designs  

As independent we define the variables that can affect and cause changes on the 

dependent variables across participants. For our designs we used audio-visual stimuli 

(pictures, videos and 3-D spaces/scenes) as independent variables, which we 

manipulated to create different affective conditions; either following the quadrant 

model of affect or following a 3-level valence/arousal model with (shown in Figure 

14). The dependent variables (also described as input data in the system’s 

architecture section) were recorded using continuous self-ratings, post-experiential 

surveys and physiological data. The values from those dependent variables were then 

analysed in conjunction with explanatory variables, in order to explore effects due 

to the impact of the independent variables. 

 To account for individual differences and the effects of certain variables on 

the dependent variables with little or no-relation to the independent variables effect, 

we recorded additional explanatory variables. As such, those variables were recorded 

in the form of a demographic pre-acquisition questionnaire, the personality traits of 

the participant, alexithymia levels, expressivity levels and an objective baseline 

measure of the participants physiological metrics. 

 In the first preliminary experiments, our goal was to measure changes 

between affective states induced by stimuli across participants. We therefore 

followed a repeated measures within-group design with various stimuli (conditions), 

using 2 factors (Arousal and Valence) with 2 or more levels (high/ low or 

positive/negative), following a 2x2 factorial design (see Table 3). Thus, each 
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participant experienced all conditions in a randomised order. This design is very 

common in other affect-detection studies [69], [365]–[367]. The main advantage of 

this design is even a small sample size of participants can yield rich data for all 

conditions, that could potentially divulge a more coherent narrative. A possible 

disadvantage is that the participant may develop expectations between conditions 

and that the effects of each condition may be carried over on the next one (especially 

for the carry-over effect of negative stimulation) [368] if an adequate break between 

condition is not considered. In our designs, breaks and neutral stimuli were used 

between conditions.  

 

Table 3. 2x2 Factorial design user for Feasibility study 2 using video stimuli as conditions. 

 Group A - Factors  

 

Positive Valence Negative Valence 

Low Arousal Condition 1 Condition 2 

High Arousal Condition 3 Condition 4 

 

The last experiment described in this thesis (Fedem 3 VR study) was 

designed based on a between-group and a within-group analysis approach. In the 

within-one-group design, data collected from our conditions (affective VEs) were 

analysed to determine the effect of the independent variables on the dependent 

variables (valence and arousal ratings and physiological measures). Yet, we added 

the independent factor of interactivity, by having two independent groups in total; 

one that experienced all the conditions (randomised) actively (Active group) and one 

passively, vicariously (Passive group), see  

Table 4. Subsequently between groups comparisons were explored. 

 

Table 4. Independent group factorial design used for Feasibility study 3 using VE as 

conditions. 

 Group Active  Group Passive  

 Negative Neutral Positive Negative Neutral Positive 

Arousal Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 
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3.6.2. User-dependent and User-independent classification 

approaches  

Both a user-dependent approach and user-independent analysis approach was 

conducted in our experiments.  

User-dependent design allows for comparative research across conditions for each 

participant separately using the user’s self-ratings as ground-truth. The main 

advantage of this approach is that since an emotional experience is highly subjective, 

we can observe changes on the dependent variables which are characterising a 

particular user, allowing for the development of personalised models. User-

dependent affect classification models are expected to perform more efficiently than 

user-independent models [323] but they have low potential to generalise to new 

users.  

 The user-independent approach or the across-subjects approach is a 

cumulative comparative analysis treating all subjects in a concatenated fashion. The 

average changes on the dependent variables between conditions or groups are used, 

assuming that the manipulation of independent variables had a holistic effect on the 

majority of the participants. Other researchers [69], [365], [369], [370] have used 

this approach to create affect detection models that can be applied to new users. High 

individual variability in emotional responses make the creation of such models a 

difficult task. The validation accuracies decrease especially when the testing data 

originate from ‘new’ users (not previously used for the training of the model) instead 

of using mixed-subjects cross validation (where part of users’ data can be found in 

both training and testing set) [323].  

 

3.6.3. Data Pre-Processing  

The classification experiments and statistical analysis tests were made after the pre-

processing of all data, including the processing of the physiological data. For each 

experiment exhibited in the following chapters, specific steps for the pre-processing 

of the raw data were followed including data filtering and feature extraction. The 

processing steps conducted from the Feasibility study 1 and 2 are explained in 

Chapter 4 ‘Data processing’ section and for Feasibility study 3 VR study in 

Chapter’s 6 ‘Signal Data Processing’ section. All data including questionnaire 
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responses, continuous-self-ratings and data streamed from our sensors, were linked 

together, concatenated, and parallelised for each participant, into one large dataset. 

Subsequent datasets were extracted for the different user groups related to the 

analysis goals of each experiment. Final steps included the pre-processing of sensor 

data (incl. cleaning, filtering etc.) and the organisation and concatenation into a 

format for further statistical and classification testing. The raw data from our sensors 

and the virtual environment were stored in either .txt/.csv(ASCII, comma delimited) 

or json format.  

 

3.6.4. Quantitative analysis of responses data 

The appropriate statistical methods were adopted to assess relationships between the 

independent variables and the continuous dependent variables, which are experiment 

dependent. Generally, for both experiments, we were interested in the comparative 

evaluation of the effects of the factors for each study on our measures, e.g., group 

type (if any), conditions (stimuli), signal features on our physiological measures and 

on the self-ratings of arousal and valence. Kolmogorov-Smirnov and Shapiro-Wilk 

tests of normality were performed on the data to assess whether the data were 

following a normal distribution. Analysis of variance (ANOVA) was used to test the 

significant differences between means of groups and/or multiple conditions (factors) 

within subjects which followed a normal distribution. Significant effects found from 

ANOVA (p < .05) were examined with subsequent Bonferroni-corrected post-hoc 

tests. In cases where the number of observations were above 25 and there was slight 

departure from normality, ANOVA was still used as analysis method because it is 

robust to small violations to the normality assumption [371]. The ANOVA was 

followed up with non-parametric post-hoc tests where necessary.  For highly non-

parametric distributed data we used the Friedman’s ANOVA test to test for 

significant differences between conditions (e.g., positive, neutral, negative stimuli), 

followed by multiple comparisons Bonferroni-corrected post-hoc tests in case of 

statistically significant results, such as Wilcoxon signed rank test for within-users 

pairwise comparisons, and Mann-Whitney U for comparisons between two 

independent groups. The tests were performed in SPSS® [372] and MATLAB® 

[373]. The significance ‘alpha level’ value for all tests was a = 0.05 (5%) (and thus 

any p values which was equal or less than the value were considered statistically 

significant). 
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 Additional tests included Simple and Multiple Linear Regressions to 

investigate the ability of the independent and explanatory variables to predict 

changes of the continuous, dependent variables such as the level of arousal and 

valence. We tested whether regression models were significant and concentrated on 

the r-squared values (or else coefficient of determination) because it is related to the 

goodness-of-fit of the regression line. The r-squared value is expressed between 0%-

100% (the percentage of the dependent variable variation explained by the model).  

 Correlation analysis were also computed to measure relationship between 

two measured variables e.g., correlating the root mean square (RMS) values of one 

EMG channel with the self-rating on valence. Pearson correlations were selected for 

data following a normal distribution (or when sample size N>=25) while Kendall's 

tau or Spearman’s correlations were used for non-normal distribution. The 

correlation coefficient r indicates the strength and direction of the relationship 

between the variables. 

 

3.6.5. Classification algorithms  

We explored both user-dependent and user-independent approaches in both 

experiments. In the feasibility study 2 (FEDEM 2: Chapter 4) we use a regularised 

Support Vector Machine (SVM) classifier and in the feasibility study 3 (FEDEM 3: 

Chapter 6) we used three classifier methods: Support Vector Machine (SVM), 

Naive-Bayes (NB), and k-nearest neighbour (KNN). These classifiers have been 

suggested [327]–[328] and used in emotion recognition studies before showing 

promising results (KNN on f-EMG and heart-rate signals [376], [377], SVM used 

for discrimination of facial muscular activations [369], [378]–[381], and NB for 

affect detection from physiological signals [310], [382], [383]). Automatic 

hyperparameter tuning was applied to optimise the penalty parameter γ and the 

kernel function parameter σ for the radial basis function (RBF) of the SVM [384], 

the distance metric and the k variable of the KNN, and the ‘width’ parameter of the 

NB. To develop the model we used the internal functions of MATLAB® and the 

libSVM® [385] library.  

 Signal features were extracted from the pre-processed EMG and PPG 

signals. The features selected for each experiment as specifically described in the 

corresponding section of each chapter. These features were used as the input 

variables (predictors).  
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 The arousal/ valence responses from the CASR self-rating tool were rounded 

to create 2 and 3 categories (for 2-classes: negative and positive for valence, low and 

high for arousal, and for 3-classes: negative, neutral, positive for valence and low, 

average, high for arousal).  

 The classifier was then used to map the features ranges with the responses 

during training. A 10-fold cross validation (CV) approach (used in FEDEM 2 and 3) 

and a leave-one-subject-out (in FEDEM 2) were adopted as explained in Chapter 6. 

These methods are commonly used for supervised learning to assess the predictions 

ability of one model using data which were not previously used in the training of the 

model, thus avoiding overfitting [386]. K–fold CV obtains k number of subsets 

having equal number of members from the dataset which are randomly distributed 

in the subsets. In practise, each of the subsets is used as a testing set in turn, and the 

remaining data as the corresponding training set. The resultant prediction accuracy 

rate is calculated by the average accuracy rates of all k predictions (out-of-sample 

accuracy). In the leave-one-subject-out (LOSO) CV approach, the data from one or 

more subjects (the number used is experiment-dependent) are used for the evaluation 

of the model, while the remaining data (from all other users) are used for the training 

of the model [294]. Therefore, the data from each participant can either be used for 

the training or the testing of the model. The reported accuracy is the ratio of correctly 

detected labels against the total testing labels expressed as percentages. 

 Ethical Considerations 

All experiments reported in this thesis were pre-approved by the Bournemouth 

University Research Governance and Ethics Committee. Specifically, the feasibility 

study 2 (FEDEM 2) was approved on 26/01/2017 (ID: 12025) and the feasibility 

study 3 (FEDEM 3) was approved on 13/02/2018 (ID: 18848).  

 

In this final section we will address a range of practical and ethical considerations: 

 

Data protection: The requirements of the Data Protection Acts 1988/ 2018, the 

General Data Protection Regulation (Regulation (EU) 2016/679) and the data 

processing requirements of Bournemouth University have been complied with. This 

includes the secure collection, storage, dissemination, and retention of data. 
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Numerical IDs were randomly selected, to link pre-trial surveys, main-study data 

and post-experiential self-ratings which were collected from different devices. 

 

Voluntary informed consent and participation: Sufficient explanation of the 

experimental process and the potential risks were given to the participants before 

they were required to sign a consent form either in paper or in digital format, 

confirming their approval in taking part and allowing their anonymised data to be 

collected.   

 

Emotional Stimuli: Affective audio-visual stimuli were selected to induce various 

intensities of valence and arousal. We anticipated that they may induce negative 

emotions to the viewers, and in some cases stress. To reduce the level of stress as 

much as possible, we carefully selected the stimulus material that was used based on 

a) the content of the stimuli used in similar studies and validated databases and b) 

subjective evaluations from individuals in our pilot and validation (survey) study. 

However, since the affective impact of content is highly subjective, we were always 

in communication with the participant, allowing for breaks within the experiment 

and early withdrawal from the study in the case of fear for negative symptoms. 

 

Reduce potential harm: We informed the participant about the nature of the stimuli 

and entered screening questions before the experimental studies to check for 

different health and psychological conditions (e.g., anxiety, depression) or phobias 

related to the selected stimuli, such as arachnophobia (excessive fear of spiders), 

together with well-being questions (e.g., motion sickness) which was administered 

before and after each block of sessions throughout the experiment.  

 

Audio-visual recordings: For the evaluation of our measures related to the facial 

muscle activity we collected visual evidence of the facial responses. The audio-

visual materials were stored in a secure UK based digital environment with suitable 

password protection. Transcription was undertaken in a secure and confidential 

environment and was not used in any outputs (publication, dissemination, etc.)  

 

Compensation: Participants involved in our laboratory-based studies (FEDEM 2) 

were compensated for their time with voucher at a value of £10 per hour.  Participants 

in our last study (FEDEM 3) were volunteers from the Science Museum in London 
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(UK) who participated without the expectation of a compensation. All participants 

were given a debrief postcard with the details of the study, and the contact details of 

the experimenter. 
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 Chapter Discussion,Conclusions and 

Interconnections Between Chapters 

In this chapter, the overarching methodology used to investigate physiological 

responses to affective stimuli was descripted. The methods proposed were adapted 

for integration with VR technologies. The experiment set-up (sections 3.3 - 3.5), the 

study factorial designs (section 3.6), and experimental procedures pursued in the 

studies were also described. The overall system architecture was described in section 

3.2. This system was comprised by the input methods, which recorded physiological 

and self-ratings data from the users, the data processing and classification methods, 

which were used to generate models that mapped the physiological features to the 

self-reported levels of arousal and valence. The system outputs were the detected 

levels of valence and arousal in discrete, two and three classes (Figure 13).  

 As part of the input methods, we presented the prototype sensor set-up which 

was developed and tested in feasibility study 1 comprising EMG sensors along the 

frame of the VR headset for easy integration in VR settings. In the next studies, the 

prototype was enriched with additional sensors, including a photoplethysmographic 

(PPG) sensor for heart-rate detection and an IMU, for movement tracking. Usability 

factors were also investigated as part of this EngD, including comfort, fit on the skin, 

sensor contact during facial movement and integration within commercial VR 

headsets. As a result, multiple iterations of the prototype were designed and informed 

from the studies described in the next chapters (chapters 4 and 6).  

 The SAM ratings were used as the main method of reporting valence and 

arousal levels and was later adapted into a custom-build tool, called CASR. This tool 

developed for capturing the continuous valence and arousal ratings from the users in 

VR was described. The CASR tool was developed for the HTC Vive controller, and 

was used during the feasibility studies. The position of the user’s finger on the 

controllers’ trackpad were mapped into the 2-dimensional space and were outputted 

in ASCI-formatted file together with the signal data for data synchronisation 

purposes. 

 For each feasibility study a custom-build stimuli presentation environment 

was built, which included event-marker in-build systems for automated data 

labelling. These systems were used with linear video presentation used in the studies 

described in chapter 4, and also in the interactive, VR experiences used as part of 

chapter’s 6 VR study. The stimuli (video and virtual stimuli) were validated by 
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online survey studies. The statistical analyses tools and methods used were described 

in section 3.6. The tests were used to investigate the relationship of the dependent 

variables and independent variables of our studies. 

This system architecture allows a robust recording and analysis of 

physiological responses to affective responses in VR settings. This setup could allow 

the integration of additional sensors as EEG for VR (see overview of emerging 

technologies for affect detection in VR in section 2.3.3.3), which could enhance the 

multimodality of the set up even further. Saying that, this endeavour is outside the 

scope of this EngD thesis. 

  The practical and ethical considerations addressed in our studies were 

described in section Error! Reference source not found. including data protection, 

informed voluntary participation, compensation, the selection of emotional stimuli 

and measures taken to reduce risk and protect the participants in our studies. The 

studies reported in this thesis were reviewed and approved by the Ethics panel of the 

Bournemouth University. 

Figure 23 shows the design iterations of the sensor set-up described in this 

chapter used in the first feasibility studies (1 & 2, explained in chapter 4) and the 

progression of the experiment set-up towards the main VR study, described in 

chapter 6. Chapter 4 discusses the two preliminary experiments for assessing the 

feasibility of valence and arousal detection from the sensor set-up proposed. 

Experiment 1 focused on the use EMG sensors around the area of the face for 

integration with commercial HMD devices and the development of the experimental 

paradigm and event tagging system which was used in the subsequent studies. 

Experiment 2 added the integration of additional PPG sensors into the Faceteq 

device. These were tested for feasibility. Many of the methods (and hardware used) 

described in the current chapter were developed for these two preliminary 

experiments. The final version of the device comprising the types and number of 

sensors suggested by those experiments was used in the VR study described in 

Chapter 6. 
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Figure 23. Diagram showing the connections and dependencies between chapters. Each box 

outlines a separate chapter. A high-level overview of the contents of each chapter are 

described under box.  Each chapter is connected to a research aim whose corresponding 

number is added on the top right corner.  The continuous lines reflect dependencies between 

chapters and the dotted lines represent information flows between chapters. For example, the 

methodology and system set-up described in chapter 3, was applied to the studies described 

in chapter 4 and in chapter 6. Chapter 5 was informed by the outputs of chapter 4 and was 

prerequisite to chapter 6 as it provided the validation of the VR stimuli used in VR study.  

 



 

 

 

 

 

Chapter 4 

 

Feasibility Studies on valence and arousal 

detection with the Faceteq prototype 

(FEDEM) 1 & 2 
4.  

 

 Introduction  

Experiencing Virtual Reality environments involves a naturalistic user behaviour, 

i.e., free movement of the body. Recording high-quality physiological responses to 

affective Virtual Environments is still a challenge because acquiring good signals 

from physiological sensors rely heavily on the sensor quality, the contact with the 

skin, and the ability to deal with enhanced levels of artefacts in the data caused by 

the interactive nature of the VR set up [387]. The experiments reported in this 

chapter, do address this issue by evaluating the feasibility of detecting valence and 

arousal levels with our sensor set-up as described in Chapter 3, section 3.2. For these 

initial feasibility experiments, it was decided to conduct studies which required no 

head movement by the users, using a standardarised affect induction paradigm. For 

this purpose, we used 2-D stimuli on a virtual screen which allowed the user to look 

in the same direction throughout the experiment. Videos from validated libraries 

were used as stimuli for these experiments. Similar stimuli have been used by the 

majority of affect stimulation studies as described earlier in Chapter 2.  

One online questionnaire and two feasibility studies are reported in this 

Chapter. The feasibility studies investigated a) the effect of positive, neutral and 

negative valence on the f-EMG signals, and b) the effect of low and high arousal on 

PPG signals are described. Thus, we designed these studies to test sensitivity of our 

dependent variables, the physiological signals derived from our prototype set-up, by 

inducing high and low activations varieties along the dimensions of valence and 

arousal. The position of the sensors (on the mask insert), the materials used, the 
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experimental paradigm used and the fit of the mask to the face of the users were also 

aspects we wanted to determine for future studies.  

For these feasibility studies we decided to use affective and neutral videos 

as stimuli because the emotional effect on physiological signals from audio-visual 

videos exceeds often the effect elicited by static images [388]–[391]. Indeed videos 

engage auditory and visual senses simultaneously, and variably over time [180]. We 

also expect VR 3D stimuli to induce more intense responses than 2D stimuli. 

Another reason behind the choice of videos, is that they are one step closer towards 

a VR experience than static images. The narrative, dynamic nature of an unravelling 

event and the experience of a continuous situation in which emotion can be 

dynamically modulated, can also exist in an experience within virtual reality. These 

dynamic changes over time and the contextual background often enhance emotional 

experience [218], [392], [393]. 

To ensure that our affect induction would induce the different categories of 

valence and arousal (positive, neutral, negative valence with low-high arousal 

levels), we decided to use videos from a previously validated video library. The 

library had  videos which were new at the time and, hence, we expected that they 

were also new to our participants (based on the evidence that habituation can 

decrease physiological reactivity [394]–[396]). However, because the video library 

was rather new, we also decided to revalidate the stimuli in our feasibility studies 

using a video validation survey.  

After careful examination of the database, we found that there was a high 

percentage of videos consisting of babies in the positive category, while in the 

negative category there were some videos that could be perceived as very distressing. 

In our effort, to choose the best combination of videos to represent our affective 

categories we conducted this video validation survey, asking participants of our 

target age group (18-35 years) to rate the videos in the terms of arousal and valence, 

indicate if they have ever seen the video before, and flag videos which they found 

very distressing. From this survey, a list of 40 videos were selected and were used in 

the following feasibility studies measuring valence and arousal.  

In short, this chapter will describe these three studies: (a) the affective video 

validation study using an online video validation survey, (b) an experimental 

feasibility study on valence detection, and (c) an experimental feasibility study on 

arousal detection using the Faceteq prototype. For these studies we followed an 

affect induction protocol that used video-clips on a screen; a protocol which has been 
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used in numerous affect detection studies, e.g. [69], [365], [397] (see an explanation 

of the protocol on section 4.2.1).  

In Study 1, a selection of videos originally extracted from a film database by 

[397] were rated by 82 participants in terms of valence and arousal using an online 

survey. Based on the average ratings per video, 20 affective ones and 20 neutral 

videos were selected. In Study 2, data from eight EMG sensors were recorded from 

participants using the Faceteq insert (without wearing an HMD). In Study 3, a PPG 

sensor together with an ECG belt were embedded on the insert. Apart from the 

additions made on the apparatus, the experimental set-up and procedure were kept 

identical between the two feasibility studies, including the video-clips, the video-

presentation software, and the self-rating method.  

 

 Study 1: Affective video validation study: An online 

survey 

To ensure the reliable induction of affective states within our studies, we started 

investigating the available stimulus databases, in particular the video databases. 

Videos from a film database by [397] published in 2016 were chosen for our online 

validation survey study because the database had short clips of various affective 

states that were previously rated on arousal and valence rating scales by 411 

participants. It contained crowdsourced clips which were collected from online video 

hosting services. The film database was published just before the start of our survey 

design development. 

Through initial viewing of the videos, we identified that a large portion of 

the positive low arousing and high arousing videos contained faces of infants. 

Although the effect of infant faces has shown certain correlations to positive 

attributions, and higher attention on mothers [398], we were unsure whether the same 

effect would be prominent in our targeted participant population, i.e. female and 

male university staff and students between the ages of 18 and 35 years. Therefore, 

we decided to assess the affective impact of selected videos. As part of the conditions 

for the creation of the video database, we also wanted to find out whether those 

videos have been viewed by participants beforehand because they have been 

circulated on online media portals in the past. Previous exposure to the videos is 

likely to impact the affective ratings due to habituation effects (causing weaker 
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affective responses overtime compared to new viewers [305]). Therefore, we 

decided to exclude the video clips with high familiarity scores from the stimulus 

material used in future studies.  

 

Therefore, a survey was created to revalidate the evoked valence and arousal 

levels by the selected videos. The videos were originally divided in categories that 

could elicit negative, positive, neutral and, and mixed emotional states (see [399]). 

The valence and arousal ratings per video for each category provided by the authors 

were used to identify videos that could induce distinct low and high arousal 

responses as well as negative, neutral and positive valence. The categories for the 

video selected were five in total: four based on the four quadrants of the affective 

model (High-Arousing Positive, High-Arousing Negative, Low-Arousing Positive 

and Low-Arousing Negative) and one for the neutral-medium arousal state, as shown 

in Figure 24Error! Reference source not found.. The most representative and 

distinctive videos for each of the five categories were carefully chosen. Specifically, 

eight of the most representative videos for each targeted affective category and 25 

neutral videos (total of 57) were selected for this survey. 

As stated in chapter 2 (Section 2.3.1), the choice of these video categories 

was based on the dimensional model of core affect. As explained for the studies 

reported in section 4.3 and 4.4, establishing these distinct videos categories as 

stimulus material will allow us to record distinct physiological measures (facial 

EMG, and PPG) which can be continuously and simultaneously captured, together 

with the subjective arousal and valence ratings of the videos. For example, the 

recording of heart-rate changes in non-affective (neutral) and affective (negative or 

positive) settings. In addition, the creation of a database specifically designed for the 

study of affective responses from physiological signals will be valuable for future 

Figure 24. The five affective states represented in the affective space. HVHA: High Valence 

(positive) and High-Arousal, LVLA: Low Valence (negative) and Low-Arousal etc. N: 

Neutral. 
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studies where, for example, effects of the extreme polarities of the two dimensions 

could be investigated.  

 

In summary, the aims of this survey were to: 

1. assess affective impact of each video using subjective arousal and valence 

ratings and select five clips per affective category as well as 20 neutral videos as 

stimulus material for future feasibility studies. 

2. identify videos which have been already seen by a large percentage of our 

participant population. These videos would be excluded from the studies 

precautionary so as to account for the effect of habituation and thus reduced affective 

response.  

We predicted that the selected videos would generate the expected valence and 

arousal ratings in our target group as per the ratings reported by Samson et al. (2016). 

We also expected that the negative videos would be more arousing that the positive 

ones (as seen in studies described in section 2.3.3). 

4.2.1. Methods 

Participants 

For the survey, 82 participants from the student and staff population of Bournemouth 

University (78% females, 22% males) with an age range of 18-40 years (Mage = 24.22 

(±6.64)) were recruited. Participants were screened for mental/psychological 

disorders (e.g., clinically diagnosed anxiety and depression). The majority of the 

participants had not participated in a similar study before (78,05%). Participants 

were given either SONA credits and/or vouchers (£5) as compensation for their time.  

 

Materials and Procedure 

The 54 selected videos used in the survey are listed in Table 3. The videos belonged 

to one of the following five categories: positive-valence high-arousal (PH), positive 

low-arousal (PL), negative low-arousal (NL), negative high-arousal (NH), and 

neutral-medium arousal (NEU). The valence and arousal ratings from the original 

study by Samson et al. [247] are visualised on the cartesian affective space in Figure 

25 (the individual scores are also displayed in the Appendix C, Table ). Since the 

original mean SAM ratings are given on a range from 1 to 6, we rescaled the values 
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to 1-9 using the following formula: xnew = ((xold – 1) / (5)) × (8) + 1, where xold  is the 

value which is converted, and xnew is the rescalled value. 

 

Survey design. The videos were embedded within the survey and all information 

that could bias the participants i.e., titles of videos, were deleted. The survey was 

designed in Qualtrics and administered via ‘anonymous link’. A short demographic 

questionnaire and a training session on how to rate videos using the SAM scales 

were added at the beginning of the survey using videos which were not used in the 

rest of the survey. We asked participants to view the videos using speakers or 

headphones. A quick audio check was added using an audio file to ensure all 

participants had the sound volume adjusted so that they could hear the sound from 

the videos.  

The survey was programmed to randomise the categories of the videos and 

the videos within each category. A white, blank page was dedicated per video and 

the self-rating scales for each were not made visible unless the participant had 

watched the video in full. A 9-point slider was included per valence and arousal scale 

with the original SAM figures on top of each scale, and text descriptions were added 

above numbers ‘1’, ‘5’ and ‘9’ per scale. These descriptions were taken from the 

instruction manual provided with the SAM scales [64]. Under the SAM scales, a 

question on whether the participants had seen the video before was added. 

Participants could answer with ‘yes’ or ‘no’ by clicking in the respective button on 

their screen. Feedback from each participant were requested on whether there was 

an issue with the flow of the survey and general feedback on the videos used, asking 

specifically for any very distressing videos found in the survey. The option for 

feedback was provided through the free text boxes within the survey.  
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4.2.2. Data analysis plan 

The criteria below show the conditions which the selection of videos had to satisfy 

for the creation of the video database that could induce the five categories of affect. 

As part of the criteria, the selected videos per category had to fall within specific 

valence and arousal score ranges, but also show reduced familiarity by our target age 

group. A threshold of 30% was chosen for the familiarity (i.e., if three out of 10 

participants had seen the video before), above which the video would be excluded. 

The ratings of the videos from the survey would indicate their ability to induce the 

respected levels of valence and arousal. Since we had three categories for valence, 

negative, neutral and positive, the valence scale was divided into three parts: from 1 

(very negative) to 4.5 (where 5 was neutral) was indicated as ‘Negative’ area, from 

4.5 to 5.5 were indicated as ‘Neutral’ and from 5.5 to 9 (very positive) were indicated 

as ‘Positive’. The videos of the preselected valence categories were required to be 

induce the corresponding mean valence SAM score. Similarly, the videos were 

classified into two main categories of high and low arousal (based on the original 

ratings, see Figure 25) whether their SAM ratings exceeded 3.5 (high: 3.5-9 (very 

intense), low: 1 (very calm, sleepy)-3.5. For the neutral videos, mean arousal scores 

were expected to be lower than 2.5 since their affective impact was intended to be 

lower than all the other categories. All the criteria for including the videos in the 

corresponding category as described below:  

1. Percentage of participants familiar with the video less than 30%. 

2. PH (Positive, High arousing): Mean Valence>5.5, Mean Arousal>3.5 

3. PL (Positive, Low arousing): Mean Valence>5.5, Mean Arousal<3.5 

Figure 25. Rescaled valence and arousal scores (range: 1-9) based on ratings from the film 

data base [247]. 
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4. NH (Negative, High arousing): Mean Valence<4.5, Mean Arousal>3.5 

5. NL (Negative, Low arousing): Mean Valence<4.5, Mean Arousal<3.5 

6. NEU (Neutral, Low arousing): 4.5<Mean Valence<5.5, Mean Arousal<2.5 

7. Mean Valence scores of PL and PH are equal 

8. Mean Valence scores of NL and NH are equal 

9. Mean arousal scores of PL, PH, NL, NH > Neutrals 

10. Similar difference of arousal scores between the two positive and the two 

negative categories. 

 

To control for changes in arousal within valence categories, our team added 

criteria no. 7 and 8. This equality between valenced categories permitted us to study 

arousal changes when valence scores are of similar value. This equality could be 

expected for the arousal scores between the positive and negative groups since we 

did anticipate negative videos to elicit higher levels of arousal [400], [401] 

(additional studies are described in section 2.3.3). The physiological impact of 

arousal for the neutral videos was expected to be lower than that of the other 

categories (see criterion 9) [401], [402]. For each couple of categories per valence 

hemisphere (positive and negative), the difference in mean arousal was expected to 

be of similar value, so as to allow for the study of arousal changes independently of 

valence. This design is related to the affective model theory where valence and 

arousal dimensions are not correlated, and high arousal can be found in either 

positive or negative (see affective model, p. 16).  

4.2.3. Results 

Familiarity with the videos:  The question ‘Have you seen this video before?’  was 

testing the familiarity with the presented videos. The overall familiarity was very 

low (M: 4.92% ± 0.10). Only two videos scored more than 30% (clips named ‘PL1’ 

and ‘NEU5’). Detailed percentages per video are presented in Figure 26. 
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Valence and arousal ratings: The mean arousal and valence scores and standard 

deviations for each of the video clips are displayed in  

Table 5. The mean ratings for all videos per category and the mean scores across all 

videos in the category are represented in Arousal-Valence (AV) Cartesian Space in 

Figure 27 and  Figure 28.  

 

Table 5. Mean AV scores per videoclip used in the survey. 

ID Title of clip Mean Valence (±SD) Mean Arousal (±SD) 

PL1 Babybitesbrosfingers • 7.4 1.59 4.3 2.13 

PL2 Babydoesn’tlovehis daddy  6.85 1.36 3.32 1.99 

PL3 Babyshiccupandjauph  7.27 1.38 4.03 2.19 

PL4 Cookiebaby  6.92 1.30 3.78 1.81 

PL5 Smartbabywithpacifier  • 6.64 1.47 2.95 1.84 

PL6 Excalatorspinning  6.47 1.51 4.48 2.06 

PL7 Beatboxbabydance  7.13 1.24 4.08 2.09 

PL8 Catsucklesair • 7.21 1.38 4.38 2.04 

PH1 Babydancebeyonce  7.49 1.44 4.43 2.34 

PH2 Babyfailshulahoop • 7.62 1.34 4.51 2.34 

PH3 Babycontrolscheers • 7.39 1.46 4.3 2.28 

PH4 Bridelauphingduringvows  7.46 1.18 4.7 2.11 

PH5 Girlthrownintobasketballhoop  • 6 1.50 5.76 2.08 

PH6 Pandasneezealot  7.17 1.25 4.37 2.34 

PH7 Singingdog  7.17 1.95 4.6 2.25 

PH8 Weedingphtographerfail 6.8 1.42 4.88 1.53 

NL1 Armbentfromskateboard  3.29 1.93 5.47 2.27 

NL2 Bmxfaceplant  3.86 1.57 5.28 2.02 

NL3 Boyfaceplants • 3.77 1.56 5.42 2.15 

NL4 Bullwrongtarget • 3.1 1.51 5.77 2.28 

NL5 Snowboardercrashes • 4.08 1.45 4.85 2.07 

NL6 Tablebackflip  • 4.34 1.88 4.97 2.17 

NL7 Skaterfallsbreakwrist  2.93 1.62 5.65 2.03 

NL8 Bikeintowall  3.92 1.59 5.24 2.15 

Figure 26. Percentage of familiarity with video per clip from the survey. Acronyms indicates 

the name of the video (see Table 4), accompanied by the familiarity score (%). 
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NH1 Bikefalloffcliff -intense 3.19 1.79 6.32 2.03 

NH2 Bullthrownandtrample- intense 2.96 1.92 6.13 1.80 

NH3 Carhitsskater -intense 3.15 1.59 6.24 2.19 

NH4 Breakdancerkickskid-intense 4.1 1.94 6.06 2.26 

NH5 Crocbitesman - intense  3.01 1.82 6.79 2.10 

NH6 Fatboyrollercoaster -intense • 5.68 1.35 6.26 1.75 

NH7 Horribleskiaccident  3.43 2.44 5.71 1.90 

NH8 Motorcyclejumperfruiflesshort  • 3.54 1.16 5.56 1.87 

NEU1 Bart  4.94 1.20 2.51 1.56 

NEU2 Boydrinkingtea  4.75 1.71 1.92 1.40 

NEU3 Assembly 4.92 1.59 2.33 1.80 

NEU4 Airport2 • 4.8 1.28 2.5 2.00 

NEU5 Cablecar  5.03 1.37 2.37 1.46 

NEU6 Café  5.1 1.37 2.22 1.40 

NEU7 Cityinthenight  5.2 1.24 2.56 1.63 

NEU8 Denvertrain  • 4.86 1.46 2.65 2.10 

NEU9 Eatingpizza  5.01 1.74 2.41 1.52 

NEU10 Eatingwithchopstics  4.91 1.51 2.33 1.77 

NEU11 Gilsbruthingtheirteeth  4.84 1.84 2.41 1.55 

NEU12 Hairwashing  • 5.24 1.41 2.11 1.56 

NEU13 Hikinginthewood  4.74 1.69 2.19 1.60 

NEU14 Museum  4.85 1.55 2.15 1.43 

NEU15 Nystreet • 4.92 1.40 2.96 1.71 

NEU16 Ridingthetube1  4.88 1.62 2.2 1.44 

NEU17 Ridingthetube2  4.92 1.68 2.18 1.65 

NEU18 Sanfran  4.85 1.36 2.35 1.60 

NEU19 Sittingonthesofa  5.17 1.43 2.18 1.51 

NEU20 Snow  5.18 1.39 2.68 1.29 

NEU21 Swimlaps • 5.12 1.45 2.41 1.70 

NEU22 Tea  4.95 2.04 2.09 2.00 

NEU23 Treadmill  4.9 1.39 2.22 1.29 

NEU24 Vangoghmuseum  5.08 2.12 2.3 2.05 

NEU25 Pillow 5.06 1.50 2.13 1.48 
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Video clip selection for future studies: Five clips were selected per affective category (PL, 

PH, NL, NH) and 20 videos for the neutral category based the selection criteria set out in the 

methods section (section 4.2.2). The selected videos are displayed as framed with squares in 

Figure 15. The excluded videos are marked with a blank dot (•) in Table 5. More specifically, 

mean ratings were calculated for each video, and outliers per affective dimension, such as 

videos PH5 and NH6, were removed to create more homogeneous groups. Based on the 

feedback of our survey participants, video NH8 was also excluded because it was perceived 

as being extremely negative. The remaining videos were included or excluded based on visual 

inspection with respect to the clear representation of the five categories on the AV space (see 

Figure 15) and the selection criteria (see criteria 2-10 section 4.2.2). The mean valence and 

arousal ratings for these selected videos are displayed in Table 6.  

 

Table 6. Mean valence and arousal scores for each affective category after video selection 

for future studies.   

Categories Mean Valence (SD) Mean Arousal (SD) 

PL 7.11 (±0.23) 3.90 (±0.37) 

PH 7.10 (±0.47) 4.63 (±0.16) 

NL 3.26 (±0.25) 5.63 (±0.12) 

NH 3.28 (±0.47) 6.30 (±0.29) 

NEU 4.97 (±0.15) 2.33 (±0.23) 
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Figure 27. Mean valence and arousal scores per video are represented in the AV space, for 

the 5 affective categories PL, PH, NL, NH, NEU. The mean values per affective category 

(four in total) are represented as ‘mean values’. The five videos per affective category that 

were selected for the studies are indicated by a square surrounding the video-points. 
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Afterwards, one-way repeated measures ANOVAs were performed to test whether 

the valence and arousal ratings significantly differed between the five categories.  

 

Valence ratings. The results showed that the five categories were significantly 

different in their valence ratings (F(4,324) = 325.402 = p<.001, eta.=.801). Post-hoc 

tests with Bonferroni correction showed significant differences in valence between 

the videos from the four affective categories against the neutral videos (t(7) = 10.34, 

p<.001), and significant difference between the positive and the negative categories 

of the same arousal (PH-NH: t(7)=9.936, p<001, PL-NL: t(7) = 17.79, p<.001). The 

valence differences between PH-PL and NH-NL were found not significant (p=.426 

and p=.930) which showed that they elicited the same level of valence regardless of 

their level of arousal. This effect was expected per the initial selection of the videos 

(criteria no. 7 and 8).  

 

Arousal ratings. There were also significant differences between the categories for 

the arousal ratings (F(4,324) = 129.161, p<.001, eta.=.615). Post-hoc tests showed 

significant differences in arousal between all conditions (PL-PH: t(7)=-2.39, p=.48), 

NL-NH: t(7) = -3.74, p=.007, PH-NH: t(7)= -8.66,p<.001, PL-NL: t(7) = -7.30, 

p<.001, PL-NEU: t(7)=9.02, p<.001,  NL-NEU: t(7)=26.37, p<.001). These results 

showed that affective videos were significantly more arousing than non-affective 

(neutral) videos and that significant difference were found between the valenced 
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Figure 28. The mean arousal and valence scores across all selected videos per category. The 

vertical and horizontal lines indicate the standard deviation for each affective dimension. 
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groups. The negative videos per category were found significantly more arousing 

than the positive ones, supporting our initial expectations.  

4.2.4. Discussion 

This survey was designed to validate the selection of videos for five affective/neutral 

categories (from the video database [397]), [397]), that were chosen based on the 

quadrant arousal-valence model (high-arousing positive, low-arousing positive, 

high-arousing negative, low-arousing negative, neutral). The results from the online 

survey presented, showed that the selected video clips were able to induce three 

distinctive valence states, positive, neutral and negative, and three distinctive levels 

of arousal, a high and low for the affective conditions (positive and negative) and 

one for the non-affective non-arousing category (neutral). This design allowed us to 

investigate the effect of valence and the effect of arousal independently of one 

another (as per the circumflex model of affect, see Section 2.3.1, p.44).  

The videos were selected based on the category creation criteria specified in 

section 4.2.2. The first criterion was the familiarity with the videos was less than 

30%. The response from the survey showed that the majority of the videos selected 

scored very low on familiarity scores, which showed that our sample target age group 

had not been previously exposed to them via other studies or types of media. This 

effect was expected since the specific video database was recently published and 

included video clips from online streaming platforms. The familiarity percentage of 

the videos selected from this survey was less than 25% with the majority of videos 

scoring 0% for all participants (signifying no familiarity). The mean familiarity score 

across all videos was 4.92% which indicated that the videos have not been watched 

by the targeted population before. 

 The main analysis was related to the mean valence and arousal ratings for 

each of the five video categories, namely PL, PH, NL, NH and NEU. The results 

from the survey showed that the videos per affective category achieved the expected 

valence scores which satisfied criteria 2 to 6 for valence. For arousal, the mean scores 

reported per category also satisfied the specified criteria, although negative 

categories exceeded the expected arousal ranges, compared to the scores presented 

by [397]. The neutral videos scored very low on arousal as expected, which satisfied 

criterion 6. In order to investigate arousal and valence in future studies 

independently, the two positive and two negative video categories were designed to 

induce the same valence ratings (criteria 7 and 8). This was indeed the case. The two 
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positive categories, PL and PH, achieved the same mean valence ratings. The same 

was true for the two negative categories, NL and NH.  

 In terms of arousal, based on previous research, it was expected that 

affective videos would always have higher arousal ratings relative to neutral videos 

(criterion 9). In addition, the two positive categories (PL-PH) were designed to have 

the same arousal difference as the two negative categories (PL-PH) (criterion 10). 

The findings were clearly in line with criterion 9, i.e., arousal ratings were higher for 

affective compared to neutral videos. However, the negative videos induced a 

stronger effect along the arousal dimension than the positive videos. The difference 

between NL and NH was found significantly different, however the difference 

between PL and PH was not found significant. As a result, criterion 10 was not 

satisfied. This result was somewhat expected, since negative stimuli have been 

reported in the past to elicit a larger effect of on arousal than positive stimuli ([403]–

[405], due to negativity bias [400] and attentional bias [406].  

Overall, the survey study confirmed the creation of video database for the 

induction of three discrete levels valence, negative, neutral and positive, and three 

levels for arousal, low, medium and high. This database enabled us to investigate the 

effect of valence and arousal on the physiological signals in the next studies collected 

via the sensors embedded in the hardware prototype. The next sections describe these 

studies. As we explored the feasibility of detecting valence and arousal from the 

novel set-up using facial sensors, we called the next studies ‘Feasibility studies on 

emotion detection’ (i.e., FEDEM). The next section will describe the study that 

focused on valence detection and the following one will describe the study that 

investigated arousal detection. 
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 Towards valence detection from EMG for Virtual 

Reality applications (FEDEM 1) 

In 2016, we proposed a novel hardware solution, ‘Faceteq’, for facial muscle 

activation monitoring [329] in VR, consisting of eight electromyography (EMG) 

sensors. We hypothesise that such an interface can track the valence information 

needed for continuous emotion assessment in VR. Our team designed this pilot 

feasibility study to explore the effect of spontaneous facial expressions on the EMG 

sensors incorporated on the Faceteq interface. To our current knowledge, this is the 

first study where integrated surface facial EMG sensors have been used for 

spontaneous valence detection in VR. We investigated the feasibility of this 

approach in controlled conditions, using audio-visual stimuli on a monitor. The 

video clips were selected to induce five affective states, each per quadrant of the 

affective space and one for neutral. In this study, participants watched a randomised 

sequence of the selected video stimuli while self-rating their emotional state 

continuously. For this study, we only analysed the valence ratings of those videos 

After a specifically designed signal pre-processing, we aimed to classify the 

responses into three classes (negative, neutral, positive). Our prediction was that the 

EMG sensors on the location predefined (see 3.2) would be able to read facial muscle 

activations responsible for facial expressions of positive and negative affective states 

(see also 2.3.2). 

4.3.1. Methods 

 Participants  

For this study, 35 participants were recruited (20 females, 15 males). We excluded 

the data from one participant due to synchronisation issues, bringing the total of 

participants used for data analysis to 34. The ages of the participants ranged from 18 

to 40 years old (Mage: 22.8 (±5.2) years). Each participant was compensated by a £5 

voucher for their time. 

 Materials 

The physical space – 
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The study took place in a room (3m long x 3.5m wide) with two computer desk 

spaces divided by a wall partitions, see Figure 35. An infrared enabled camera 

(sample rate: 60Hz) was installed on one of the desks, which allowed camera 

recordings with poor lightening conditions. The camera was directed at the 

participant face during the recording session. This way the experimenter was able to 

control and view the video presentation and the participant’s reactions while being 

in a separated area of the room. The participant’s desk was supplied with a mouse, a 

42” monitor, and a foam surface for the comfort of the participant’s hands. The 

presentation of the stimuli on the participant’s screen was managed by proprietary 

application that was developed.  

 

Stimulus presentation environment – For the study, an application with three 

environments was developed. The first one was a self-rating training environment 

where participants were introduced to the terms of arousal and valence. During this 

training period (duration: 15-30 min) we asked the participants to get acquainted 

with rating these two dimensions using their mouse’s pointer on our Continuous 

Affect Self-rating (CASR) interface (Error! Reference source not found. & Error! 

Reference source not found.). The second one was a grey (relaxation) scene where 

the participants were asked to relax while neutral base-line data were recorded, and 

the third environment was a semi-dark cinema environment where the videos were 

presented next to the CASR interface. The participants were asked to minimise their 

head movements during the recording, to avoid motion-related signal artifacts. 

 

Stimuli sequence – The selected videos (see Section 4.2 of this chapter) were 

counterbalanced across participants and presented as follows: Five videos from one 

category, followed by four neutral videos, then followed by five videos from another 

category and so on, until all videos have been played. The selected original videos 

had approximately the same duration, however some of them were slightly longer or 

shorter. The videos were therefore carefully modified to a fixed duration of 27 

seconds based on the timing of the affective events happening in each video. Shorter 

videos were played in a loop. Grey images lasting 8 seconds were added as ‘breaks’ 

after every video. The overall duration of the video presentation was 22 minute long. 

The videos sequence within a category was randomised for each participant.  
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Monitoring Equipment and sensors – The software solutions and hardware 

devices developed for this study are described below. The Faceteq insert prototype 

(Figure 33) was equipped with eight surface dry electromyography (f-EMG) sensors 

on the right and the left side of the face (Channels; 1 & 2 on Zygomaticus major, 3 

& 4 on Frontalis, 5 & 6 on Orbicularis oculi, and 7 & 8 Corrugator muscles) using 

an adapted protocol described by [118].  The participants were wearing the insert 

throughout the study (example of user in  Figure 34). The full sensor set-up and the 

area where the study took place are shown in Figure 35. 

 

 

Figure 29. Video presentation environment 

 (participant’s view). 

Figure 30. The CASR interface. The 

blue dot is controlled by a mouse. 

Figure 31. The Faceteq prototype used for the study. 
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 Experiment procedure 

The study took approximately 50-60 minutes per participant at our laboratory at 

Innovation Centre at Sussex University. Following an introduction and explanation 

to the protocol, the participants were asked to sign the informed consent form and 

get acquainted with the set-up. To prevent knowledge of the recording leading to 

conscious or unconscious changes in facial expression, participants were told that 

we were monitoring the electrical conductivity of their skin. Questionnaires verified 

that the participants were not suffering from anxiety, depression or any disorder that 

can affect their facial movements at the time that the study took place. Prior to the 

video presentation, participants were instructed how to rate their felt emotions in 

terms of arousal and valence, through a training session using the CASR rating 

system controlled by a wired mouse. Example videos were used for this session 

which were not included in the main study. Once the participants were feeling 

comfortable and confident using the system, we started the main study. During the 

study, each participant watched a randomised sequence of the video clips for 22 

Figure 32. Example of participant wearing the EMG sensors, 

headphones while viewing videos on a screen. 

Figure 33. Photographs of the apparatus (right) and physical area of the study (left). 
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mins. During this time, they were asked to rate their emotions in terms of arousal 

and valence using the CASR interface. They were advised to start rating as soon as 

a video commenced. After each video and during the grey images or ‘breaks’, 

participants were instructed to return their rating pointer to the centre of the CASR 

interface (the neutral area). During the video presentation, video capture of the 

participant’s face and physiological responses were recorded. All sensor data 

streams were synchronised with the video presentation via the Faceteq API.  

  Data processing 

The EMG signals from 8 channels were recorded at 1000Hz sampling rate. Firstly, 

a baseline correction function was applied, by subtracting the mean EMG values. 

We then removed 50Hz and their harmonics up to 350Hz using Notch filters. The 

signals were band-pass filtered from 30 to 450Hz. Extreme outliers caused by motion 

artefacts were removed using a Hampel filter. The clean signal from the 8 channels 

was then divided in epochs corresponding to the stimuli durations, minus 3 seconds 

from the beginning of each video.   

Next, the Root-Mean Square (RMS) value per 512 samples window was 

calculated. As EMG are highly variable between wearers, and since we are interested 

in detecting valence states (negative, neutral, positive) we applied a Maximum-

Minimum normalization function [407]. The RMS data were used as input features 

to train a C-Support Vector Machine (SVM), using the libSVM [408]. For each video 

and for each participant from the data set, the ground truth was defined by the 

corresponding participant’s CASR valence scores. The data and labels were sent into 

an SVM (RBF kernel) for classification, using 10-fold cross validation for each 

participant separately. The two free parameters of the method (C and γ) were 

optimized for the first participant and fixed for the rest. The low computational cost 

of the implementation enabled the approach to provide a cross-validated readout in 

less than 0.5 seconds per participant. 

4.3.2.  Results 

Overall, we tested the feasibility of our prototype for valence detection in VR. The 

C-SVM enabled us to map the levels of activation of EMG channels with the 

valenced affective ratings recorded during the video categories for each participant. 
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A model was created per user, for a total of 34 participants. Each model achieved a 

category cross-validated classification accuracy ranging from 62.8% to 96.9%, with 

an average accuracy across the group of 82.5% (Std: 8.2) (Figure 36).  

 

 

4.3.3. Discussion 

The classification tests showed overall high accuracy in correctly matching the 

recorded EMG output measures into the three valence categories (negative, neutral 

and positive) on an individual level using person-specific self-ratings. A C-SVM 

classifier was cross-validated for each participant, reaching an out-of-sample 

average accuracy of 82.5%. As these signals were collected using the novel Faceteq 

hardware prototype, the results of this initial study confirmed the feasibility of our 

technological set-up to detect three levels of valence. These high accuracy results 

were in accordance with our expectations as the negative and positive affective states 

are physically expressed on the face via distinctively different muscles (corrugator, 

zygomaticus; see section 2.3.2).  

Saying that, one of the advancements of this feasibility study is that in this 

study the EMG signals were collected during more modern video presentations, thus 

acquiring spontaneous facial muscle activation which is more representative to the 

affective responses observed in real-world conditions. Other studies often posed 

expressions which have been predominantly used for discrimination of emotional 

expressions using EMG signals [50], [67], [309]. Additionally, the self-ratings of 

each participant per video were used as ‘ground truth’ for the labelling of the 

categories for each model (instead of using the same labels for all users), which are 

found to facilitate increased accuracy rates, as they are suggested to be better suited 

for ground-truth measurements [409][309].  

Figure 34. Classification accuracies for all 34 participants 
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A second advancement of the study was the introduction of continuous affect 

ratings. Moreover, the prolonged CASR training session allowed for users to rate 

their emotions comfortably and effortlessly without looking at the mouse. As result, 

no major motion artefacts were observed in the data, partly due to the participants 

limited head movement but also to the careful fit of the sensor mask interface on the 

face of each user by making slight modifications were made for each wearer. This 

results in reduced signal-noise ratios during data acquisition. This process allowed 

us to observe face shape and size differences between participants, which were listed 

and explored to inform the design of the next version of the prototype. As stated, the 

prototype sensor mask was tested in highly controlled and motion-constraining 

conditions to confirm the feasibility of valence detection using neutral and intense 

positive and negative videos. In real-world conditions however, the VR-user is 

expected to look-around and explore the environment around her in 360 degrees. The 

effect of movement on the data was not accounted for in this initial study but was 

explored in the study reported in Chapter 6. 

The next section will report the arousal detection findings from sensors 

embedded on the same prototype sensor mask. The study followed the same 

experimental protocol but the data analysis was concentrating on the heart rate 

responses recorded during the stimuli presentation deriving from an ECG and a PPG 

sensor. The results from both studies provided further insights for the development 

of the system prototype, as well as assisted on the refinement of both valence and 

arousal detection in designed VR applications  
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 Towards an Effective Arousal Detection System for 

Virtual Reality (FEDEM 2) 

This section describes a feasibility study to explore the effect of affective video 

content on heart-rate recordings for Virtual Reality applications. In this work, we 

proposed a system for the detection of high and low arousal via capturing heart-rate 

responses from the face of the user using a PPG sensor. An ECG belt was used to 

compare the PPG signal. Continuous self-ratings on arousal from participants were 

used for the classification of heart-rate responses to low and high arousal states. The 

low-cost reflected-mode PPG sensor and the ECG chest-belt sensor were attached 

and synchronised via the Faceteq wearable interface, which was specially adjusted 

to the needs of this study.  

As part of the Faceteq, the PPG sensor was positioned within the frame of 

the mask. However, since previous research on facial locations for PPG signal 

acquisition indicated high-susceptibility to head movement [410], the positioning of 

our sensor and overall fit of mask’s set-up was also evaluated through this study. 

Also, based on our work on EMG detection, we expected that in settings where 

emotional stimuli are presented, certain muscles of the face would activate, as for 

example the frontalis muscles during brow raise. This expressive behaviour of the 

face could result to skin movement which would impose additional noise artifacts on 

the PPG signals. Although the majority of research on heart-rate detection from PPG 

on the forehead focused on recording data from non-emotional settings, our team 

investigated the feasibility of HR detection from PPG on the face during stimuli-

generated elicitation of affect and spontaneous facial expressions. The same 

experimental procedure was followed for this study as described in Section 4.3. 

Videos with affective content were used to induce five affective variations of arousal 

and valence, namely high-arousing positive, low-arousing positive, high-arousing 

negative, low-arousing negative and neutral states (see section 4.2).  

Although ECG recordings have been primarily used for HRV monitoring 

due to its distinct profile of R peaks (Figure 10), there might be many advantages of 

measuring Pulse Rate Variability (PRV) from the PPG. The PPG is easy to use, non-

invasive, cost-effective, it involves less sensors and it enables continuous, long-term 

recordings [411], [412]. However, PPG signals are easily susceptible to movement 

artefacts and the detection of R-R intervals from arterial pulses from distant sources 

(e.g. fingertips or legs) could potentially be erroneous [413]. Researchers have 
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explored the improvement of pulse rate estimation from reflective PPG sensors, by 

utilising accelerations data (three-axis) to remove motion artifacts [414]. PPG 

sensors have been utilised in a large variety of experimental studies and on numerous 

body locations, including fingers, hands, forearms, earlobes, wrists, auditory canal, 

legs, but-tocks, and the back [411]. Researchers have also recorded reflected PPG 

signals from the forehead using an elastic band for heart-rate and HRV analysis for 

the monitoring of soldiers in the battlefield [415] and neonatal patients [416]. PPG 

forehead placement showed advantages over other peripheral body location because 

it offered greater sensitivity to pulse changes during low blood flow [417], and 

because it was less susceptible to motion artefacts during certain body movements 

[418]. 

PPG sensors have also been utilised in VR research. Besides placing the 

sensors on common body-locations e.g. fingers [419], several attempts have been 

made towards facial placement and HMD incorporation, e.g. middle of the forehead 

using a headband [420], and directly placed on the face plate of the HMD [421]. 

However, the quality of the signal was not evaluated for these approaches. As PPG 

measurements could be susceptible to changes in light perfusions and movement 

artefacts, we envisaged that by incorporating PPGs on an interface between the HMD 

and the user’s skin, we could obtain a clear pulsative reading for reliable arousal 

detection in VR. Hence, we took this PPG placement approach for this study. 

The objective of this study was to test the feasibility of arousal detection 

with a PPG sensor placed on the superficial temporal vein. We also wanted to explore 

its performance efficiency when compared to an ECG (conventional method) and to 

the combination of both modalities, in affective video watching settings. Our 

prediction was that PPG reading when adjusted on a wearable face frame 

superimposing the superficial temporal vein, will be less susceptible to movement 

generated from facial expressions, and thus provide useful insights on the level of 

physiological arousal of the wearer, comparable to the ones provide from ECG 

readings. 
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4.4.1. Methods  

 Participants  

For this study, the same participant pool was used as per the previous study. Due to 

technical issues occurred during data collection, the heart-rate data from both PPG 

and ECG sensors were only collected from the last 15 participants. Data from further 

four participants were excluded from the analysis after data quality assessment. We 

observed noise artefacts on the PPG steams related to wrong sensor placement and 

potentially facial movement during the data collection. For two participants the ECG 

belt could not be well fixed to the participants’ chest size. As a result, data from 11 

participants were used (referred to as P1-P11; 5 female and 6 male), with a mean age 

of 21.5 years (±2.6). Participants did not suffer from anxiety, depression or any 

disorders of cardiovascular nature which could affect their heart-rate metrics at the 

time of study Each participant was compensated by a £5 voucher for their time. The 

study was reviewed and approved by the Research Ethics Panel of Bournemouth 

University (reference ID: 12025) 

 Materials 

The software solutions and hardware devices developed for this study are described 

below. 

The stimuli presentation – The stimulus presentation environment was the same as 

the one use in the previously reported FEDEM 1 study (section 4.3.1.2). 

 

Monitoring equipment and sensors – The interface prototype was equipped with a 

custom-made PPG sensor (reflection mode) on the upper left side of the mask (see 

Figure 37), corresponding to the area over the superficial temporal vein and artery. 

Additionally, a custom-made ECG chest-belt was developed comprising two ECG 

sensors, which were connected to the Faceteq™ insert. Both data streams were 

recorded simultaneously. 
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 Experiment procedure 

The experimental procedure was the same as the one use in the previously reported 

FEDEM 1 study, explained in section 4.3.1.3. Specifically for this study, participants 

were asked to avoid caffeinated drinks on the study day, as caffeine has shown to 

trigger increases in blood pressure and heart-rate [422], and also decrease the eye-

hand coordination [423]. The latter which could affect the continuous self-ratings 

was an important element of the study, described earlier in sections 3.3 and 4.3.1.3).  

 Data processing 

Signal pre-processing – PPG and ECG recordings from all participants were 

recorded using Faceteq API (sampling rate: 1000Hz). The analysis steps were as 

follows: First, the recorded raw data were filtered (Notch filter: 50Hz; band-pass 

Butterworth filter: 0.5Hz and 6 Hz for the PPG, 5Hz and 25Hz for the ECG; order: 

2). Subsequently, the filtered recordings were divided in 25 seconds long time-

window epochs corresponding to each video stimulus, excluding the first 2 seconds. 

Each epoch was further subdivided into 4.5 seconds over-lap 5 second windows. 

Next, a peak detection method was applied on the PPG and ECG epochs, to identify 

the R-peaks. The distances between peaks were calculated for all the detected peaks 

within each time-window. 

 

Figure 35. High-level overview of the proposed system. The Faceteq prototype is depicted 

on the upper left side. 



Chapter 5 

 

135 

 

Feature extraction – The mean peak distance (IBImean) and the Root-Mean Square 

(RMS) of successive R-R interval distance (RMSIBI) per epoch were calculated. 

The whole feature vector was transformed based on the Minimum-Maximum 

normalisation [407] for each participant. The total number of processed samples per 

video-length was 48 per metric, resulting for 20 videos to a total number of 960 

samples per participant per metric. 

 

Arousal Classification tests – As the automatic state recognition can be constrained 

by individual user differences, two scenarios were explored: a user-dependent and a 

user-independent approach. The following tests were performed using: (1) the PPG 

derived metrics, (2) the ECG derived metrics and (3) the combination of both PPG 

and ECG derived metrics. The two outputs (IBImean and RMSIBI) per modality 

were used as input to train a C-Support Vector Machine (SVM) using a gaussian 

kernel. The open-source libSVM framework [408] was adopted to train the binary 

C-SVM. 

 

Table 7. Agreement scores across users per video (mean values, standard deviation and 

Coefficient of Variation).  

 

In the user-dependent classification scenario, a 10-fold cross-validation was applied 

for each participant separately. In the user-independent scenario, we applied leave-

one-participant-out cross validation by pooling all 11 datasets and predicting the 

rating of each participant in turn based on the remaining 10. The two free parameters 

of the method (the regularization penalty C and the standard deviation of the kernel 

function) were optimized exclusively on the training data for both dependent and 

user-independent scenarios.  

The corresponding arousal CASR ratings per participant were used as the 

ground truth definition. Self-reported scores across users in terms of arousal for each 

video typically showed low dispersion (coefficient of variation, CV, Table 7) 

indicating high rating agreement per video across participants (the lower the CV 



Chapter 5 

 

136 

 

score, the higher the between-users rating agreement). Videos which presented rating 

disagreement were part of the positive emotion-inducing categories (videos 1-10), 

indicating higher rating variability during positive content.  

 

The mean CASR value per participant for the user-dependent, and the mean value 

across all participants’ ratings for the user-independent scenario were utilised as the 

division point for the of high and low arousal classes. The total number of samples 

per participant was 960 (total: 10560s). The mean number of samples for high 

arousal levels for the user-dependent scenario is 532±20 (mean ± SEM; ranging from 

368 to 602 samples); and 5852 for all participants (P1-P11). Thus, the distributions 

of the high and low arousal classes were largely balanced, for both user-dependent 

and user-independent scenarios.  

4.4.2. Results 

We tested the feasibility of arousal detection via PPG sensor from the superficial 

temporal vein in VR. The C-SVM enabled us to map the level of arousal with the 

metrics calculated from the PPG and ECG recordings (IBImean and RMSIBI) during 

the presentation of four audio-visual stimuli categories. The results from the 

classification tests performed for the user-dependent and user-independent approach 

are presented below. 

 

User-dependent scenario – In Figure 38, the receiver operating characteristic 

(ROC) curves per experiment performed are illustrated. The ROC curve is largely 

used as a graphical method to show the diagnostic ability of binary classifiers, and it 

is created by plotting the true positive rate (the correctly predicted labels for one 

class) against the false positive rate (the incorrectly predicted labels for the same 

class) of a classifier model. Generally, classifiers that give curves closer to the top-

left corner indicate a better performance. In the ROC figures presented below, each 

line represents a participant. The areas under curve (AUC) are included on the 

bottom right corner of each plot. The AUCs here are used to summarise the 

performance of the each classifier, as a general measure of predictive accuracy 

considering all decision thresholds [424], since in the goal of this section is to 

establish a broad comparison between both recording modalities.. Despite the 

variations in performance between participants, the system’s capability observed for 
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detecting changes in arousal is higher for the fusion versus unimodal approaches for 

most of the participants (Figure 38c). 

 

 

To evaluate the performance of each classification experiment, we compared the 

AUC per metric in recording modality pairs (e.g. PPG against ECG) using the two 

sided Bradley’s test at the significance level α = 0.05 [424], [425]. The results from 

this test are reported on Table 8. We denote in bold when their AUC means are 

significantly different (see details in [424]). Detection performances between PPG 

and ECG modalities were significantly different for six out of 11 participants (see 

participants 2, 4, 6, 7, 10 and 11, p<.05). Moreover, the combined PPG-EEG metric 

(termed here the fusion approach), outperforms the PPG and ECG modalities 

individually for 9 out of 11 subjects (Table 8). 

 

Table 8. Bradley scores between experiments per participant 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

PPG-ECG -1.5 -1.8 0.3 2.5 -0.7 2.1 7.2 1.3 0.2 -3.3 4.6 

PPG-Fusion -5.6 -7.0 -3.9 -5.7 0.0 -2.4 7.2 -1.1 -4.3 -5.7 -4 

ECG-Fusion -4.0 -5.3 -4.2 -8.3 0.7 -4.6 0.0 -2.4 -4.5 -2.3 -8.8 

Significance level at 5% | *significant values are indicated in bold  
 

 

User-independent scenario. The system showed a similar ability to discriminate 

high and low arousal levels from ECG, PPG and from the fusion of the two 

modalities (Figure 39). The AUC values for each experiment are included on the 

bottom right corner of the plot. The performance of the system when using only the 

PPG metrics was significantly lower than ECG and fusion. Finally, the best overall 

performance is achieved via the fusion approach (significance level at 5%), Table 9. 

 

Table 9. Two-sided Bradley scores between experiments performed.  

                 (a)PPG                             (b)ECG                       (c)Fusion 
(PPG & ECG)  

Figure 36. ROC curves per participant per experiment performed (user-dependent). 
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PPG-ECG -4.3 PPG-Fusion -9.1 ECG-Fusion -4. 

significant values are indicated in bold  
 

 

4.4.3. Discussion 

We proposed a system for arousal detection in VR settings, by designing a novel 

interface which incorporates PPG and ECG sensors. During the study, participants 

facially expressed their emotions in response to video stimuli that resulted into 

limited head, and therefore sensor movements. Nonetheless, using the PPG-derived 

metrics, our system yielded a similar detection performance to the ECG-derived 

metrics for 5 out of 11 participants in the user-dependent scenario. This result 

supports our assumption regarding the system’s capability to detect arousal via PPG 

recordings from the superficial temporal vessels (on the face), subject to individuals’ 

variability. Moreover, the fusion of both methods provides an enhanced performance 

overall, which was expected as the fusion of physiological sensors is highly 

considered for the reliable detection of heart-rate, increased accuracy and reduction 

of incorrectly detected classes cause by noise or motion artefacts [426], [427]. 

 The arousal detection issues that occurred in all three classification 

experiments for participant 5 suggest that changes in heart rate during audio-visual 

stimulation are induced and elicited in different intensities among individuals. Thus, 

the detection capacity of the system was less reliable. Additionally, detection issues 

could have resulted from bad sensor placement, sensor’s quality, intense movements 

(like during laughter) which could also reposition the sensors, or to skin sweatiness.  

Overall, the system’s detection using PPG in the user-independent scenario 

performed slightly worse than using ECG. This result could be attributed to the 

observed signal quality for this participant sample, and to the ability of PPG sensor 

Figure 37. ROC curves per experiment (user-independent). 
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to detect heart-rate changes during emotional expression. In terms of signal quality, 

the signal from the PPG sensor for some participants was clear, demonstrating 

prominent peaks throughout the recording, while for others the peaks observed were 

weak and often mixed with noise related artifacts. Therefore, the position proposed 

in this study for the PPG sensor could be selected with caution, following careful 

adjustment of the mask and sensor per user before data acquisition, while also taking 

into consideration the participants’ face shape, and the movement of the face during 

emotional expression. Alternative facial positions for the PPG sensors were explored 

and used in the next studies. Although PPG-derived metrics achieved lower accuracy 

than ECG, PPG sensors are affordable and easy to use, making them strong 

candidates for wearable integration in practice. Likewise, although ECG sensors are 

difficult to integrate at the moment, we envisage that improved ECG sensors will be 

readily available for integration with wearable devices and clothes in future. Thus, 

given the enhanced performance for the fusion set-up demonstrated in this feasibility 

study, the combination of both sensors for arousal detection seems a robust approach 

for multiple applications incorporating immersive technologies.  
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 Chapter Discussion and Conclusions 

In this Chapter, the first studies to evaluate the feasibility of the system designed 

(including affect induction paradigm, the novel sensor set-up and the physiological 

data processing flow) to detect valence and arousal as parameters of affect are 

presented.  

Prior to the data collection, an affect induction paradigm was designed. A 

list of audio-visual stimuli materials from a recently published database (at the time 

of the study) were carefully selected following a validation survey with 82 

participants. The video clips were rated in terms of arousal and valence and were 

distributed into five discrete affective areas based on the linear combination of the 

valence and arousal polarities including neutral (i.e., four affective quadrants and 

one neutral area). This design allowed to study the effects of high and low arousal 

on our sensors, together with the effects of negative, neutral and positive valence. 

As part of the selection process, the familiarity of the target age group with the videos 

was also assessed, and videos which were widely known or viewed before were 

excluded. This re-validation survey on the selected videos per category permitted us 

to confirm the ability of certain videos of the positive category to induce the expected 

levels of positive responses to our target age group, due to the depicted context (e.g. 

babies), and to identify and exclude extreme negative videos. The video library 

created as a result from this survey was used for the subsequent feasibility studies.   

The two studies using EMG for valence detection and PPG-ECG for arousal 

detection allowed us to evaluate positively the feasibility of our affect detection 

approach in controlled laboratory conditions. A video stimuli presentation 

experimental process was adopted, in order to induce spontaneous affective 

responses to participants. In the first study, the detection of positive, neutral and 

negative valence was achieved with a mean out-of-sample accuracy of 82.5% across 

participants, following a user-dependent analysis and classification approach. In this 

approach, a classification model was created per user, and the self-ratings on valence 

per user for each video were utilised as ground-truth labelling of the classes.  

The same classification approach together with a user-independent one 

(where all users’ data were pooled together) was followed in the second study, in 

which we explored the ability of the system to detect high and low arousal from a 

PPG sensor placed on the mask which covered the superficial temporal artery and 

vein, as part of the novel mask prototype. An ECG sensor was also simultaneously 
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used during the study, which is considered as the ‘golden standard’ sensor for heart-

rate detection. Although the sample size of this study was small (11 participants), 

the results for the classification tests showed that the overall ability of PPG to detect 

arousal is in most cases slightly worse than the ECG. However, the fusion of both 

modalities for arousal detection proved to be advantageous against the unimodal 

approaches, consistent with previous relevant studies [367].  

The results of the data analysis for valence and arousal detection, coupled 

with the observations and experience gathered by conducting these studies with 

multiple participants offered insights to potential limitations related to sensor 

placement (esp. for the PPG sensor), the materials, and the characteristics of the 

proposed system. This knowledge was used to improve the equipment, experimental 

protocol and analysis pipeline of the third study described in Chapter 6. Specifically 

in these studies, the application of the sensor set-up on individuals outside the 

research team showed some minor problems with sensor placement due to variant 

head and face sizes, skin folds and face curvatures [387]. The empirical observations 

combined with the need for careful signal quality assessment for each user informed 

the development of the next generation of the Faceteq mask interface, and the 

‘EmteqVR_app’ software for real-time signal monitoring. We envisage that a larger 

sample size and the enhanced technical abilities of the new prototype would enable 

the system to achieve higher accuracy on valence and arousal detection, which would 

allow for the development of a more robust affect detection model. More 

specifically, we aim to enhance the utilisation of the detection common facial 

patterns in clusters of participants for a more accurate valence detection, and a better 

PPG placement for more accurate arousal detection. 

 In both aforementioned studies, the controlled nature of the experimental 

procedure allowed for the reduction of expected noise-artifacts derived from the head 

movement of the users, but we did not account for facial muscle movement as the 

result of emotional expression induced by affective stimuli. The effect of emotional 

stimulation on facial muscles was expected and measured using the f-EMG sensors. 

The main objective of building the prototype mask was to combine multimodal 

measures for detecting both dimensions of affect. Thus, the simultaneous detection 

of heart-rate and facial movement (for arousal and valence) was paramount, and 

therefore the noise on the PPG signals caused by facial movement was anticipated.  

The highly controlled experimental paradigm adopted for these studies 

allowed us to explore the sensors sensitivity to physiological changes caused by 
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affect-related variations, while maintained a clear connection between the stimulus 

(as the origin point of affect stimulation) and the resulted impact on the signals 

recorded. This clear link between cause and effect is of great importance in order to 

understand not only the physiological outcome (the ‘symptoms’ of an affective 

state), but understand what caused it, and perhaps even combine them to predict 

further changes in physiology. This context-related approach could provide a path 

towards the application of componential appraisal models for emotion detection [67] 

and assist future automatic state recognition (see section 2.3.1). Ensuring the direct 

connection between stimulus and effect in VR was further explored for the 

development of the virtual stimuli scenarios utilised in the next study (Chapter 5). 

As part of the next step in feasibility for affect detection in VR settings, the 

same affect detection approach was applied in active VR settings, using a 

commercial HMD. Naturally, the motionless passive nature of the first feasibility 

experiments, does not represent the every-day usage requirements of the highly 

interactive nature of immersive VR. Indeed, in VR, the user is usually free to 

experience the virtual space in three dimensions and look around in 360o (depending 

on the capacities of the immersive technology used). In the next study our stimuli 

consisted of virtual 3D-spatial environments, specifically designed for creating a 

fully immersive set-up. This setting could be experienced using motion capture and 

head tracking, enabling us to explore further the capabilities of our improved system 

to detect affect in VR settings. We wanted to record naturally occurring affective 

states within fully immersive VR scenarios, similar to contemporary VR experiences 

that are available on the market. Inspired by research on the feeling of presence and 

immersion (see section 2.3.3), we decided to develop a VR experience that allows 

the user to explore the room naturally. That is by simply walking around, without 

the need of a controller or a mouse for directing their movement. The virtual 

environments were custom-designed and programmed to track and control the 

affective interactions with virtual stimuli and their parameters within VR (i.e., to 

know the origin point of the stimulation, what the participant is focusing on).  

Chapter 5 introduces next the design, development, and validation of these virtual 

environments. 
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Chapter 5 

 

Development and validation of stimulus 

material for an affective VR study  
5.  

 

 Designing affective interactive VR environments 

This chapter is describing the development and validation of the VR environments 

used for affect induction in the VR study. This VR study used the EmteqVR 

equipment to detect arousal and valence and it was recorded in the Science Museum 

in London. More details on this study, and specifically on the data analysis using 

classifier are reported in Chapter 6. The introduction will explain the rationale behind 

the choices made for the VR environment development, describes how we marked 

specific events within the VR scene, and practical solutions for the experimental 

protocol. Afterwards, findings from an online survey conducted on 67 participants 

will be reported. As an overview, the survey was developed to evaluate videos and 

images of the virtual environments as well as specific events that were programmed 

Summary of key findings for Chapter 4 

• Online survey (Section 4.2): Validation of a selection of 40 affective 

videos, i.e. 20 positive and 20 negative videos, as well as 20 neutral 

videos. These can be used for further studies. 

 

• Feasibility of negative, neutral and positive valence detection (Section 

4.3): Valence detection was feasible as evidenced by the user-dependent 

(using a 10-Kfold CV) classification accuracy of 82.5% (SD: 8.2). 

 

• Feasibility of low vs high arousal detection with PPG vs ECG sensors 

(Section 4.4): There was a high inter-subject variability and the signal to 

noise ratio was low (5/11 subjects PPG comparable to ECG). This 

finding led to mask design. 
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for the VR scenes. Participants were instructed to rate their perceived level of 

valence and arousal, the memorability of each stimulus, and their levels of presence 

for each VE video using a Presence questionnaire. Additional questionnaires about 

personality and alexithymia were given to the participants at the end of the survey. 

The user ratings validated the stimulus material selected for each VE and assisted a 

better understanding on the affective impact of each individual stimulus/event on 

participants. As stated above, the findings from the online survey (see section 5.4) 

were used to inform the experimental setup of the study reported in Chapter 6.  

As a recap, virtual reality offers a flexible tool for the construction of affect 

evoking situations and environments, similar to those depicted in popular libraries 

of affective images or videos (e.g. IAPS [405]). Actually, this tool might be more 

powerful than the usually used conventional stimuli as images and videos. In fact, a 

progression from using still images to videos has been observed in past research. 

Gross and Levenson [428] said that “Films also have a relatively high degree of 

ecological validity, in so far as emotions are often evoked by dynamic visual and 

auditory stimuli that are external to the individual” (p. 88). Properties such as the 

screen size, colour, motion, audio incorporation, [355], [429]–[432] found in videos 

were suggested to influence the potency of the experience thus increasing the 

intensity of responses compared to still images. Today, immersive VR technologies 

offer high-resolution display properties, audio incorporation, high framerate for 

movement synchronisation and the animation of features in the virtual space, while 

also allowing the design of interactive content. If videos can therefore outperform 

images in emotion elicitation, can immersive interactive VR environments 

outperform videos and which features do they need to achieve this? 

Researchers argue that real-like experiences can evoke naturalistic 

emotional responses, and so, an immersive simulation can provide the host 

environment for real-like experiences [433]. One of the main differences between 

non-immersive and ‘fully immersive’3 (using VR) experiences is the level of 

presence they can elicit to the user, which is related to the type of interaction that the 

user has with the content and the coherence of body actions with spatial VE structure 

[332]. Other factors explained by Singer and Witmer [331] can be categorised as 

control and sensory based, such as the immediacy of control, mode and degrees of 

 

3 Term used according to Kalawsky [561], who specified as ‘fully immersive’ a VR system 

presenting a 360o information space on a display.   
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control, action responsiveness and environment modifiability. By enriching these 

‘interactivity’ factors in a VE, we can increase immersion and in theory increase 

presence (see sections  2.3.3 & 2.4).  

In other words, in conservative affect elicitation mediums, the user is asked 

to passively observe a stimulus / scene or listen to a sound in a controlled linear 

fashion, whereas in the immersive medium scenario the user ‘steps’ inside the space 

of the image or video, surrounded by it. Within this intricate, sensitive system, a VR 

user can experience presence [434], allowing themselves to get absorbed by the 

virtual world, and respond to its content possibly in a naturalistic manner. Perhaps, 

the effect of immersive stimuli derive power from not just the function of the 

enabling technology (immersion), but the fidelity of the simulation to the extent that 

it covers the subjective expectations of the users within it; the link between 

proprioception and sensory data on a physical (e.g., synchronisation of motion 

tracking and display) but also a conceptual level. For example, if a user is holding a 

cup full of coffee and she lets it fall on the floor, coffee should be spilt, or if a fire 

starts, we expect to see smoke and feel its warmth. 

Immersive technologies can provide the tool for the creation of real-like or 

ecologically valid, affect-inducing experiences which can be implemented in 

controlled laboratory conditions. Indeed, nowadays more and more researchers agree 

on the effectiveness of Virtual Environment for emotion induction [171], [199], 

[273], [282], [433] . However, would it be misleading to assume that not all 

immersive experiences have this potential and that certain parameters need to be met 

to succeed? Perhaps the factors for successful immersion, presence and emotional 

elicitation are linked. The level of interactivity and ‘physical interaction’ in the VE, 

can enhance the immersivity of a simulation and create the powerful sensation of 

physical Presence [183]. In turn it has been suggested the level of immersivity induce 

significantly higher self-reported arousal responses [171] and that the level of 

presence is linked with intense emotions [218], [280], [435]. 

Unfortunately, the existing research on emotion elicitation using interactive 

immersive content is scarce. Additionally, immersive content (i.e., 360 videos, also 

see section 2.4.2), is rarely actively experienced in research studies, to the full 

potential offered by the current commercial VR technologies. To be able to progress 

in this area of research and development, our team was faced with two main 

challenges. The first challenge was the lack of existing libraries with pre-validated 

affective stimuli in highly interactive and immersive VR. Secondly, the existing 3rd 
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party applications and VR experiences were not designed to allow for the controlled 

study of affective responses elicited in VR, lacked tools and solutions to successfully 

evaluate the link between the cause (stimulus) and the effect (emotional impact) 

required for the nature of this research. Consequently, our team decided to design 

and develop the virtual experiences required for the adaptation of our affect detection 

approach in VR from scratch, giving us full creative and experimental control over 

the properties of the virtual environments (VEs). The ability of those environments 

(and their elements) to induce the targeted affective impact was validated using an 

online survey which is described in section 5.3. 

As a result, four affective VEs were designed; one intended to relax the user 

(used for baseline recordings before entering the affective scenarios), and three 

indoor VEs for the induction of neutral, positive, and negative valence. The three 

indoor VEs shared the same room structure as the virtual replicas of a real office 

room. Existing literature on the effect of low-level audio-visual features (e.g., 

brightness, colour hue, sound manipulations) informed the design of the VEs. The 

environments were populated with 3D objects (as stimuli), which were designed to 

enhance the overall targeted affective impact for each VE. Those objects (here are 

refereed as ‘events’) had various sizes and attributes. They were placed within the 

virtual rooms, in various locations, taking advantage of the overall virtual space and 

structure of the room replicas, thus allowing the user to experience them by freely 

exploring the rooms. Some of those stimuli were static objects while others were 

animated. The activation of animated objects including sounds (the so-called 

‘interactive events’) was programmed to occur based on certain predefined criteria 

(i.e., based on the user’s interaction and time spent in the scene).  

An event-marker system was developed to annotate in real-time the times 

when each event was actively triggered and made visible to the VR user. This system 

was used to synchronise the timings of activated events with the data recorded from 

the physiological sensors. Another key feature of the VR simulation was the 

development of a gaze-based interaction system which was applied to track the 

stimuli viewed in real-time by the users. This system was completely invisible to the 

user, thus allowing them to explore the virtual rooms freely, at their own pace and 

volition. This custom-made gaze-based interaction system combined with the event-

marker system provided the tools controller non-linear stimuli presentation in VR.  

The description of the environments developed together with the stimuli 

tracking and event-marker solutions are presented in the next section. The ability of 
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those VEs (and their elements) to induce the targeted affective impact on our target 

age group was validated using an online survey, which is described in section 5.3. 

 

 Description of the Virtual Environment   

In this section, the design of four 3-D VEs is described. The environments were 

named ‘Baseline-relaxation scene’, ‘Neutral scene’, Positive scene’ and Negative 

scene’. The software used for the development were Unity3D game engine [352] to 

design the VE scenarios, and Autodesk Maya 3D [436] for the design of the 3D 

objects. 

The first VE was a baseline-relaxation scene using a 360o underwater 

environment and a smooth water audio-track (Figure 40). Participants of the main 

study would be entering this scene before each VE, for at least 2 minutes per visit. 

This environment was designed to allow the participant to relax before entering one 

of the main affective scenes, thus decreasing the physiological arousal which could 

be elevated due to the novelty of the media experienced [396]. The idea for the 

introduction of the water element of this VE was inspired by research on the 

restorative effects of aquatic environments [437], [438]. We expected this 

environment to evoke low arousal and neutral/slightly positive valence levels. The 

addition of aquatic elements, and marine biota was avoided in order to control for 

high positive valence ratings [439].   

 

 

The remaining three VEs were based on an existing office space (see photos of 

details of the actual room used in Appendix C Appendix: Study Materials’). The 

VEs were mapped according to that space and populated with virtual counterparts of 

the physical objects. The virtual office room was 2.3m width x 2.90m length x 2.20m 

Figure 38.  Screenshot from within the VE used for relaxation and baseline recording in 

pre-study survey. 
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height with an allocated walking area of 1.6m x 2m which was consistent between 

all VEs. The dimensions and the basic synthesis of the space in those VEs was kept 

identical. In all settings, the room contained a bookcase, two office desks with chairs, 

a window, lights, two PCs with monitors, a small cupboard with a printer, a garbage 

bin, a mirror and two paper notebooks. The individual configurations for each VE 

were adjusted to evoke specific affective responses. In the positive VE and the 

negative VE, several parameters were altered to evoke either positive or negative 

affective responses, based on the low-level visual modifications and the integration 

of static and interactive objects (see Figure 41). The neutral VE was created to evoke 

a neutral mood with low arousal levels. These configurations are discussed per VE 

next. 
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Neutral VE. The neutral environment contained all static basic objects of the office 

synthesis without the elements that were designed for negative or positive valence 

elicitation. The colour palette and temperature was kept in grey and cold faded tones, 

with low contrast to reduce the possibility for increased physiological arousal [294], 

[440]. No audio samples or interactive events were planned for this VE. The lighting 

conditions were soft and dimmed with smooth shadows. This way the room was not 

strongly lighted or bright but completely visible for exploration by the user. A roman 

blind was designed in front of the window, to reduce the incoming light from the 

virtual sun embedded in the scene. The space outside the room, visible through the 

window was set to a grey, cloudy view with faded colour detail. 

Figure 39. Screenshots taken of the three affective VES from the user’s view (a, left side) 

and top view (b, right side). The first one (1a & 1b, top) is from the neutral environment, 

the second (2a & 2b, middle) is from the negative one and the third (3a &3b, bottom) is the 

positive VE. The square areas outlined in the top views (1b,2b,3b) show the perimeter of 

the walking area of the user. 

2b 

3b 
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2a 
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Negative VE. The colour palette for this room was set to intense, dramatic contrasts. 

The overall atmosphere was inspired from two scary/horror games in VR: ‘Resident 

Evil 7 VR’ and ‘Affected: the Manor’ [441], [442]. The main lights were direct, 

switching on and off as if they were faulty using a custom-built switch with short, 

randomised time intervals. The walls and floor were covered with an additional 

material resembling of dirty, unpainted concrete. The synthesis of lights and textures 

was based on the design experience of the research team. Multiple additional objects 

(event description in section 5.2.1) were placed inside the room, including interactive 

and animated spiders, stressful notes, a ghost-like figure in the mirror, an animated 

shadow-figure appearing outside the window, an animated rat, a candle, litter placed 

around the bin, a fire trigger and an alarm. The majority of those events were 

triggered by the gaze of the user (see description of the gaze-based interaction in 

Section 5.2.3), e.g., a shadow outside the window or a ghost face in the mirror. Others 

like the ‘spider attack’ event was be triggered once, attempting to jump-scare the 

user. The rest of the spiders were activated throughout the whole VE experience by 

slowly follow the users gaze in the room, climbing on walls and main virtual 

furniture. Once the user had spent 65 seconds in the scene, a fire was triggered, and 

10 seconds later the fire alarm went off requesting the user to head towards the exit 

and leave the room. The fire alarm included a bright, red light circling around the 

room in quick intervals and a loud siren. These events were designed to increase the 

physiological arousal towards the end of the experience and intensify the negativity 

of valence. Audio were incorporated in all interactive objects, including light bulbs, 

the ghost event, the shadow (lightning), the rat, the fire alarm, and the spiders. Some 

of audio were downloaded from the free sound audio library [443] . 

 

Positive VE. Similarly, all audio-visual parameters were set to provoke pleasant 

feelings with variations of arousal for the positive environment. Multicolour 

synthesis was selected, including bright tones with intense colour hues and 

saturation. All lights were set brighter across the whole room and an intense sun light 

was designed to enter through the window. The roman blinds were not covering the 

view anymore allowing for the user to look outside the window. Along with static 

objects including posters, post-its, an apple, and pictures, multiple interactive events 

(descripted in Section 5.2.1) were programmed to be activated in different time 

ranges based on the gaze of the user. These interactive events were: a flock of 
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butterflies entering the room through the window, birds flying outside the window, 

fairy lights or star dust inside the room, a robot dancing on the table, webcam feed 

of the user on the mirror, flowers growing, a plant moving and an interactive videos 

of a goat on a picture screen. Again, audio was incorporated in all interactive events 

and animated objects. Approximately after 75 seconds in the room, and if the user 

was not engaged with another event/object, the windows would open allowing 

laughter sounds to enter the room.  

5.2.1. Affective stimuli: Interactive and static events 

Table 10 shows the list of events and objects per scene used in the main study. Screenshots 

of all objects and events are available in Appendix C. Videos of the rooms and videos/pictures 

of the events were sent for evaluation via an online survey to participants (section 5.3). In 

this section, the overall interaction design and how the events can be triggered within the 

VEs will be described. 

 

Table 10.  List of objects and events for each virtual environment. 

 Negative Neutral  Positive 

1 Fire Alarm Bookcase  Green plant 

2 Documents  Clock  Baby poster 

3 Window -

Lightening/silhouette  
Green Notebook  Light explosion 

4 Glitch in viewpoint  Grey Notebook  Reflection in mirror 

5 Fire Guitar   Dog poster 

6 Overflowing bin  Window  Butterflies 

7 Flickering light (bulb 

fusing)  
News board  Robot 

8 Spooky mirror Calendar/Cup  Monitor message 

9 Spiders in room  Computer Mouse  Stardust (Light particles) 

10 Light (bulb exploding) Desks   Guitar  

11 Spilt drink (cup) Bin   Flower  

12 Rat  Mirror   Birds  

13 Spider attack  Carpet Floor   Amplifier 

14 Spooky music  Monitor  Beach ball 

15 Candle/skull*   Goat picture* 

16 Office room*   Backpack* 

17    Pokemon ball* 

18    Office room* 

19    Window (mountains)* 

Items marked with (*) were added later on and thus were not included in the survey  

 

Every detail in the 3D VE room was designed and positioned manually Hence, all 

objects and their features (such as animations) can be controlled by the programmer. 
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Current available VR experiences with tasks like games or creative applications like 

painting in 3D, allow the user to interact with 3D elements and control them in real-

time. Similarly, in this study, we designed the VEs to allow free-walk exploration in 

3D rooms, as a more natural, innate way of environment exploration rather than 

using controllers and joysticks. This ‘naturalistic’ way of navigation the virtual space 

could promote and enhance increased feelings of immersion and presence (see 

section 2.3.3). As the affective stimuli were positioned in context at different 

locations of the room, and since the users’ gaze is completely dependent on their 

own body movements, stimuli were activated when visible to the user or when the 

user is directly looking at them (using a gaze-based technique explained in section 

5.2.3).  

For this reason, all objects and features (together we call them ‘events’) had 

an ‘interactive marker’ which was activated when once of the following conditions 

are met: (a) the gaze of the user is directed towards the object, and the fixation 

duration is larger than 2 seconds, or (b) the time passed since the start of the VE 

experience (based on a predefined sequence of event activation per VE). Once the 

pre-defined conditions for each stimulus were satisfied, an interactive marker was 

added with an ‘ID’, a number corresponding to the activated event. Up to three 

events could be active at the same time, including two events activated separately by 

the user’s gaze and one event activated by time passed. The event markers allowed 

us to also track the interaction periods on the data stream, by exporting the 

timestamps of the activated events together with the rest of the recorded data 

(physiological signals and movement data).  

5.2.2. The task and area of interaction 

Figure 42 shows an aerial view of the virtual office. The starting position of user was 

the same across all VEs (point A) looking towards the other end of the room (point 

B.) The area was designed to allow the user to approach certain areas and interactive 

objects while also avoid some others. For example, starting point A, the user could 

look to the right and approach the chair and the mirror on the wall, and would avoid 

walking onto the virtual tables as they would have perceived as physical obstacles. 

The desks were replicas of the actual desk of the experimenter, which also placed in 

the same area in the physical world. The idea behind it was to make the overall 

experience more believable by giving some of the expected proprietary haptic 
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feedback. For example, when the user could touch the virtual desk, she could actually 

feel the real physical desk.  

 

 

 

5.2.3. Gaze ray-casting for event marking 

In order to find the objects that are in the user’s point of view in real time, an invisible 

ray was casted from the middle of the user’s point of view, facing forwards. The 

function ‘Raycast’ from the ‘Physics’ library in Unity Engine [444] was used. Since 

the room was overall small and the field of view set at 60o wide, there were only up 

to 4 different interactive events visible at the same time. We prioritised the 

objects/events that were in closer proximity to the user’s position and the ones that 

were actually visible to the user, i.e. not hidden behind another object such as a 

monitor hiding the poster on the wall or the flowerpot on the desk (see example 

Figure 43). Figure 44 shows the ray-casting in real time within the positive VE. In 

this figure, the camera icon is the viewpoint of the user looking towards the virtual 

robot. In this particular area of the scene the affective, interactive events were the 

robot and the monitor. All other objects used as decorative contextual props were 

categorised as static objects, e.g., apple, mouse, pencil, coffee-cup. As seen in Figure 

44 and Figure 45 all these objects and events were currently in the user’s field of 

view. For demonstration, ray-casting lines are displayed in yellow for neutral objects 

and in red for interactive. 

 

A B A B 

Figure 40. Top view of the scene used for the VEs. The write rectangle shows the perimeter 

of the user's walking area. The user would start from point A (left figure) then to point B 

while exploring the room, and back to point A (right figure) to exit the scene. 



Chapter 5 

 

154 

 

 

 

 

Once the algorithm detected one or more event-markers, it activated the 

corresponding event(s). For example, looking at the robot activated a specific audio 

clip and the robot started dancing based on a predefined animation. The animation 

and the audio clip only stayed activated if the user’s gaze continued to look at the 

robot. Otherwise, it would automatically freeze. In addition, all surrounding visible 

‘static’ objects were registered as ‘visible objects’ in the system and were also 

exported with timestamps in separate list (ASCII format).  

Figure 41. 360 view of the VE. The yellow box (middle) shows the area that was visible to 

the user. 

Figure 42. Side and top view of the ray-casting from the viewpoint of the user towards 

objects in the VE. The rays are displayed in yellow for static neutral objects and in red for 

interactive events. 

Figure 43. Left side: Experimenter view of the scene. Right side: User view of the scene. 
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Unlike the static objects, all events were designed to be visible to each 

participant for at least one time throughout the VR experience. For this purpose, 

certain conditions were designed, which were applied according to the nature of the 

stimuli-events. Short events (e.g., email on the monitor, in Positive VE) were able to 

replicate their animation up to 5 times once the gaze-ray was directed at them for 

longer than 2 seconds. While longer events (such as butterflies or fire) would only 

happen once, following a pre-defined activation time (i.e., >60 seconds in the VE). 

All interactive objects and events were enriched with audio clips which especially in 

the case of the longer events, attracted the attention and the gaze of the user towards 

the direction of the event or object. In the case where two interactive events were 

active at the same time, both their audio clips would be active at the same time. The 

volume of the audio clips was programmed to change in relation to the user’s gaze 

and position, relative to the wave source. Audio clips from interactive objects would 

fade out and stop when the user would stop interacting with the corresponding 

object-event. Some more elaborate events, like fire in the negative VE, triggered a 

sequence of other abstract stimuli (non-interactive) such as the fire sound, smoke in 

the room, and the fire alarm with the red light. These events were all timed to be 

activated within 15 seconds from the activation of the event ‘fire’. Of those only the 

‘fire’ event and the ‘fire alarm’ had individual event markers. 

5.2.4. Exiting the scene 

Exiting a VE could be executed either manually by the experimenter or by the 

participant, via the participant’s direct interaction with the virtual door in the office-

based VEs. Specifically, the participant could go towards the virtual door and ‘touch’ 

it with the controller, see Figure 46. The door would only open when the participant 

had spent at least 70 seconds in the VE. Once the participant exited a room, they 

would return to the ‘baseline VE’. 
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 Evaluation of elements of the affective VR 

environments: An online survey study 

The four VEs were designed to elicit different ranges of valence and arousal in VR 

(see section 5.2). The effects of the design of those environments were validated 

using an online survey. Audio-visual materials were extracted from each VE and 

their corresponding events. For each VE, a walk-through video was embedded in the 

survey (each video showing a VE lasted 76 seconds), which was recorded from the 

point-of-view of a VR-user. After each VE video, individual short videos and images 

of each event were added (14 events in total per VE). For each VE or event, 

participant was asked to rate their perceived valence and arousal using SAM rating 

scales embedded into the survey. This way, we were able to obtain a subjective 

overall valence and arousal rating (per affective dimension) for each VE scene (see 

section 1), but also a rating each stimulus-event which gave us insight into the 

affective impact differences in between events across multiple viewers (see section 

5.3.2.1), and inform the design of the VR study presented in chapter 6.  

Additionally, to validate the affective impact of the event stimuli, a memory 

question was added (see section 2.3.3 ). Participants were asked to report whether 

they remembered seeing each event in the VE walk-through video. We hypothesised 

that the memory accuracy will be enhanced for more affective stimuli than non-

affective ones. Previous work with conventional (i.e. 2D) stimuli showing that 

emotional arousing stimuli are most likely to be stored in memory and recalled 

against neutral stimuli [445]–[448]. In section 5.3.2.3, the memory accuracy scores 

Figure 44. 360o view of an office based VE. The virtual door (indicated by the orange 

outline, left) was interactive and could assist participants exiting a VE by ‘touching’ it 

with the use of the hand controller. 
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were calculated for each event and their relationship to the affective scores was 

analysed.  

For each VE scene, a presence questionnaire was added in the survey, 

resulting to three total presence scores. The IGroup Presence (IPG) questionnaire 

[176], [449] was added to measure the expected presence scores. Since the VE scenes 

were viewed via videos on a screen on this survey, the level of presence they could 

induce was expected to be low. By comparison, the immersive viewing of those VEs 

was expected to induce high levels of presence in the main VR study (which is 

described in Chapter 6). The analysis of the presence scores is presented in section 

5.3.2.5. 

Participants were asked to fill a basic demographic questionnaire, a 

personality questionnaire (Big-5, 44 items) [450] and the Toronto Alexithymia Scale 

TAS20 (20 items) [339]. High alexithymia is a trait related to the deficiency of an 

individual to identify and describe emotions of their own and others, with various 

effects on self-ratings and differences in the expected physiological responses 

induced by affective stimuli (also see section 2.3.3, p. 68). Therefore, for this survey, 

we explored the effect of high and low alexithymia on the perceived valence and 

arousal ratings. Additionally, we analysed the effects of personality traits on affect 

self-ratings. The results of the analysis are provided on section 5.3.2.5.  

In the next sections, the affective impact of each VE and their events will be 

evaluated against the intended valence and arousal scores (neutral-low arousing, 

negative-high arousing and positive-high arousing VEs). The conclusions of the 

analysis are presented in section 5.4. 

5.3.1. Methods 

 Participants 

The responses from 67 participants (out of 91) who completed the survey were used 

for the following analysis. As part of the initial steps of the survey, the participants 

were screened for severe psychological, mental disorders and/or encephalopathy. 

Participants with severe phobias of spiders, fires, enclosed spaces, and of the dark 

were not allowed to continue with the survey, registering an incomplete session. We 

excluded in total 24 participants, 22 due to incomplete responses and 2 due to 

invariant responses. 92% of the selected group of participants were female and 7.6% 
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male. The mean age was 19.78 (±2.51). In terms of experience with games, 7.5% 

had no experience, 58.5% had little experience (novice), 30.3 % had average 

experience with games and 13.6% considered themselves as experts. However, 

participants had little experience with virtual reality overall, with 36.3% having no 

experience at all, 43.9% having little experience, and 19.7% having average 

experience. None of the participants considered themselves experts with VR. The 

participants were recruited from the Sussex Innovation Centre staff and 

Bournemouth University student populations via online advertisement. Interested 

participants were asked to read the information sheet which they received via email 

before participating. The study was reviewed and approved by the Research Ethics 

Panel of Bournemouth University (reference ID: 18848). The participants were 

compensated for their time via Sona credits or £5 Amazon vouchers. 

 Materials & Procedure 

The survey consisted of three main parts and was programmed in Qualtrics Software 

[451]. The first part included a description of the study, the methods used, and the 

participation consent form. This part also included a short demographic 

questionnaire, on age, gender, fluency in the English language, and level of 

education. The experience of participants with VR and games was assessed with two 

questions which were ranged from ‘novice’ to ‘expert’ with four overall levels. 

Questions related to the exclusion criteria of the study were added, such as questions 

whether the participants were suffering from anxiety and depression, 

encephalopathy, and fatigue syndrome. Additionally, to protect participants from the 

exposure to stressful stimuli, participants were screened for extreme phobias to 

spiders (arachnophobia), fires (pyrophobia), enclosed spaces (claustrophobia) and 

fear of the dark (nyctophobia), all of which were related to the stimuli presented. 

Participants who responded positive to the exclusion related questions and phobias 

were excluded from the study.  

The second part was a practical instruction to ensure that participants were 

familiar with the format of the survey and the meaning of the valence and arousal 

rating scales. Examples were given using videos which were not the VE stimuli. The 

participants were reminded that the rating of each video or picture should reflect 

their immediate personal experience, and no more. Then, a brief sound check was 

performed using a short bell sound. This ensured that all users could hear the auditory 
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information of the videos. The participants were encouraged to relax before starting 

the survey and were reminded to take short breaks of up to 5 minutes throughout the 

survey. 

The preparation step was followed by the evaluation of the VEs. The 

evaluation consisted of four main sections, one per VE i.e., the baseline, neutral, 

positive and negative VE. The sections were randomised for each participant. Each 

for the VE sections consisted of a video which showed the VE from a first-person 

perspective within VR (which was always shown first). With the exclusion of the 

baseline VE, each video was followed by the presentation of fourteen events whose 

sequence was randomised. Each VE video lasted approximately 75 seconds to reflect 

the duration of the experience designed for the main VR study. The participants were 

instructed to imagine their experience as if they were within the presented 

environments. The arousal and valence rating scales were added after each VE video. 

Time-based control was added for each VE video to ensure the participants had 

watched the whole video before rating it.  

Fourteen events per VE scenario (neutral, positive, negative) were extracted 

as images and videos giving a total of 42 object-items to be rated; videos were 

preferred for interactive or animated objects/events involving sounds, and still 

images were preferred for static objects. Per stimuli, we asked the participants to rate 

valence and arousal, and answer a memory question (2 levels) about whether they 

remembered this event/object from the video they watched earlier. We hypothesised 

that three conditions were equally memorable, however the most memorable events 

within each condition would also be the ones eliciting high affective rating (reported 

via SAM) along the two affective dimensions. The scale used for valence ranged 

from 1-very negative (unpleasant) to 9-very positive (pleasant), and for arousal from 

1 low (sleepy) to 9 high (active, excited). The completion of all questions was 

requested by each participant. 

Once the VE video and events were rated, participants were asked to rate 

their perceived feelings of presence within the respected VE. The option to view the 

video of the VE again was given to re-jog their memory. The IGroup Presence (IPG) 

questionnaire [176], [449]  was used, consisting of 14 items assessing sense of 

presence in virtual environments (e.g., “I was completely captivated by the virtual 

world”). The IPQ is a popular questionnaire in the area of VR ([452],[453]) as it has 

exhibited good psychometric properties across multiple participants [454]. Items 

from other presence questionnaires, namely Slater-Usoh [455], Witmer and Singer 
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[181], Hendrix [456], Carlin, and Hoffman, & Weghorst [457], were also used to 

construct of the IPQ. Responses are provided using a 7-point Likert scale [63]; rated 

from -3 (not at all) to 3 (very much). These responses were then mapped to 1 to 7 for 

analysis purposes. 

At the end of the stimuli assessment (third part), participants were asked to 

fill a personality questionnaire (Big-5, 44 items)[450] and the Toronto Alexithymia 

Scale TAS20 (20 items) [339]. An optional comment box for participants was added 

for recording the participants’ feedback.  

5.3.2. Results 

The results section is divided into five sections: (a) results for each VE condition 

(positive, neutral, negative) when analysing  the ‘VE video’ (section 1), (b) results 

for each VE condition when analysing event-related measures relative to the 

occurrence of static and interactive objects (section , (c) memory accuracies for each 

VE environment and event-stimuli, d) presence ratings for each VE environment, 

and d) individual differences in alexithymia, personality traits and their relation to 

arousal and valence ratings in each VE environment.  

2.3.2.1. Data analysis of the entire VE video  

The affective impact in terms of valence and arousal of each environment as a whole 

was assessed first. The average arousal and valence scores were calculated for three 

main VEs (office-based) and the relaxation-baseline VE (underwater-themed) across 

participants. As expected, the neutral VE was rated as neutral in valence (Mean: 

4.81, SD: ±1.48) and a low in arousal (2.55 ±1.68). The ratings for the negative VE 

were low in valence s (3.12 ±1.66), meaning they were perceived as negative, and 

high in arousal levels (6.13 ±1.83). The ratings for the positive VE were high in 

valence (6.18 ±1.49), meaning they were perceived as positive, and moderately high 

in arousal levels (4.55 ±2.22). The baseline VE generated for valence ratings close 

to neutral (5.54 ±1.83) and low arousal ratings (3.72 ±2.24). The means (M) 

described along with the medians (Md.) and standard deviations (SD) for the VEs 

are presented in Error! Reference source not found. The mean scores per VE are 

also presented on the affective space diagram in Figure 47. 
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Table 11. Mean arousal and valence ratings for each VE as recorded in the online survey 

 

 

Inter-Rater Agreement for VE videos. The coefficient of variation (CV=SD/mean) 

was used as a measure of calculation of the dispersion of the participant’s ratings for 

each video. Two CVs were calculated as percentages for each VE, one per affective 

dimension (all results in Table 12). Low CV shows low dispersion and therefore high 

agreement between raters.  

Overall, the videos showing the walk through in the neutral and positive VEs 

designed, were rated in high agreement between participants (CVval_Neutral = 30.5%, 

CVval_Pos = 24%) for their perceived valence (CV < 50%, with criteria of 0.50%). 

The negative scene generated a higher variation in the valence scores across 

participants resulting to a lower agreement (CVval_Neg = 52.7%). The arousal scores 

of the negative scene showed high agreement between raters scoring CVar_Neg = 

29.5%, and good agreement for the positive scene CVar_Pos = 48.5%. The arousal 

ratings for the neutral scene varied across participants, giving a high CV (low 

agreement) of 65.4%. For the baseline VE, the agreement score for valence were 

 Arousal scores  Valence Scores 

VE Mean Arousal Md. (SD)  Mean Valence Md. (SD) 

Neutral 2.55 2 (± 1.67)  4.81 5 (± 1.47) 

Negative 6.13 6 (± 1.81)  3.12 3 (± 1.64) 

Positive 4.55 5 (± 2.21)  6.18 6 (± 1.49) 

Baseline 3.72 3 (± 2.24)  5.54 5 (± 1.83) 
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Figure 45. Mean valence and Arousal ratings for each VE condition presented from the first-

person point of view of the user within VR. 
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high (CVVal_Baseline =33.07%) while the agreement scores on arousal were low 

(CVar_Base = 60.22%). 

 

Table 12. Coefficient of Variation (CV) scores per VE video across survey rates. 

VE CV Valence scores (%) CV Arousal scores (%) 

Neutral 30.56 65.38 

Negative 52.70 29.53 

Positive 24.04 48.50 

Baseline 33.07 60.22 

 

Valence ratings of VE-videos. As stated above the valence ratings in the negative 

scene were the lowest, and ratings in the positive scene were the highest with the 

other ratings in between. A Shapiro-Wilk test of normality was performed and 

indicated that ratings for both dimensions were not normally distributed (p<.05). 

Therefore, a non-parametric Friedman’s test was conducted on the valence ratings 

for the four VE conditions. The test showed that the ratings were significantly 

different between VE conditions, χ2(3) =91.02, p<.001. Consequently, Bonferroni 

corrected post-hoc Wilcoxon tests were used to compare each of the conditions. 

These tests showed significant differences between most conditions. More 

specifically, the valence ratings in the negative VE were significantly lower than in 

the neutral VE (z = 5.39, p<.001), the positive VE (z = 6.77, p<.001), and the 

baseline VE (z = 6.27, p<.001). This is shown by also the significantly higher ratings 

for the positive VE than for the neutral VE (z = 4.706, p<.001), but not compared to 

the baseline VE. The baseline VE had also significantly higher valence ratings than 

the neutral VE (z = 2.62, p = .036). These findings show that the three office-based 

VEs achieved expected valence ratings. However, the baseline VE room induced 

more positive valence ratings than initially intended. 

  

Arousal ratings of VE-videos. Like for the Valence ratings, a Shapiro-Wilk test of 

normality indicated that ratings for both dimensions were not normally distributed, 

and thus a non-parametric Friedman’s test was conducted on the arousal ratings for 

the four VE conditions. The test showed significant differences between the four 

VEs, χ2(3) =79.86, p<.001. Bonferroni corrected pairwise post-hoc Wilcoxon tests 

showed significant differences between arousal scores reported. More specifically, 

the arousal scores of the Negative VE were significantly higher than the neutral VE 
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(z =6.78, p<.001), the baseline VE (z = 5.59, p<.001), and the positive VE (z = 4.81, 

p<.001), rendering the negative VE as the most arousing condition. The positive VE 

had significantly higher arousal ratings compared to the neutral VE (z =5.42, 

p<.001), and the baseline VE (z =2.31, p = .021). Unexpectedly, the baseline VE 

also achieved a significantly higher arousal ratings than the neutral VE scene (z = 

3.91, p<.001). In summary, arousal ratings were as expected for the VEs, except for 

the significant difference between the neutral and the baseline conditions.  

The results from the statistical analysis showed that the valence and arousal 

ratings of the videos depicting the experiences within the VR scenarios were 

significantly different, with the neutral scene being rated as neutral in valence with 

low arousal levels, while the affective scenes (positive and negative) were able to 

elicit stronger affective states in terms of high arousal and strongly antithetical 

valence levels in the Arousal-Valence (AV) space. However, the aquatic baseline 

scene did not portrait our initial design expectations, scoring higher in valence and 

in arousal ratings than the neutral scene. For this reason, the environment was 

replaced by a duplicate of the neutral VE with only the basic architecture structure 

of the room and no stimuli (the final version on the scene depicted is presented in 

Chapter 6).  

 Event-related data analysis  

Apart for the VE videos, participants rated all 14 stimuli (objects/events) per scene 

(neutral, positive, negative) using the same valence and arousal SAM scales (1-9). 

The objects/events that were rated are in the Table 55, Appendix C. Participants were 

also asked whether they remembered the objects/events. The findings for the valence 

and arousal ratings are presented here. The findings for the memory accuracy are 

shown in the subsection 5.3.2.3.  

 

Mean valence & arousal ratings. In Table 13 the mean valence and arousal scores 

across stimuli were calculated per VE. For the stimuli events in the neutral VE, the 

mean valence ratings (across all events) were 4.63 (±0.15) and the mean arousal 

ratings were 2.61 (±0.35). For the objects / events in the positive VE, the mean 

valence ratings were 5.72 (±0.56) and the mean average rating for the arousal ratings 

was 4.06 (±0.68). For the negative scene, the valence ratings were 3.45 (±0.45) and 

the arousal ratings were 5.18 (±1.04) on arousal. Ratings for each object/ event are 
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depicted in Figure 48 based on their average valence and arousal scores averaged 

across participants. As expected, the events and objects within each condition 

elicited different levels along the valence and arousal dimension, as characterised 

within the AV space. The depicted ‘V’ shape is similar to shapes valence and arousal 

scores reported in several studies [458].  

 

Table 13. Mean valence and arousal scores across stimuli per VE 

Stimuli/VE Mean Valence scores  Mean Arousal scores  

Neutral 4.63 (±0.15)  2.61 (±0.35) 

Negative 3.45 (±0.45)  5.18 (±1.04)  

Positive 5.72 (±0.56)  4.06 (±0.68) 

 

 

The event-based analysis was made to inform the design for the VR study described 

in Chapter 6. The results allowed us to find objects/event that did not induce the 

required affective range, which was predesigned for each VE, or objects that were 

not consistently rated, exhibiting high levels of variability. In general, the categories 

were found to be well separated. No stimuli exhibiting negative valence was found 

in the positive category, and similarly no positive valenced stimuli were found in the 

negative category.  

From the inspection of the events whose ratings approached the neutral, low 

arousing area of affective space, for the positive and negative VE, we observed that 

they belonged mainly in the group of ‘static’ objects.  The valence and arousal scores 

Figure 46. Mean valence and arousal ratings for all events in the three VE conditions. The 

x-axis (bottom) displays valence ratings and the y-axis (left) displays arousal ratings. 
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were recalculated to observe the effect of those objects in the average valence and 

arousal scores of each affective VE. It was found that for example after excluding 

the static objects of ‘guitar’ and the ‘amplifier’ from the positive VE condition, the 

mean arousal ratings increased to 4.20 (±0.69) compared to the previous ratings of 

4.06 (±0.68), bringing the mean arousal score for the events of this VE category 

closer to the arousal scores of the negative VE ratings. The inclusion of the static 

objects populating each VE allowed us to observe the average affective impact of 

each VE from an all-stimuli inclusive point of view. As the VR experience was 

meant to be explored in an interactive manner, the affective impact of all static 

context related objects per VE would be dependent on the duration and subjective 

interaction per user.  

Note, the most arousing stimulus in the positive VE condition was the ‘light 

explosion’ (mean arousal= 5.03). However, the ‘light explosion’ was found 

‘confusing’ and generated some ambiguous comments by our survey participants. 

Therefore, this event was excluded from the main VR study. Figure 49 shows the 

scores per event per VE condition in the affective space, based on their mean valence 

and arousal ratings (also see Table 55 of the Appendix C). 
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Positive 

Figure 47.  Mean valence and arousal ratings for each stimulus in each of the VE 

conditions. A list of all stimuli including static objects and animated events is displayed 

on the right side of each figure. A. neutral VE condition. B. positive VE condition. C. 

negative VE condition. 

Neutral 

Negative 
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Inter-rater Agreement. The coefficient of Variation (CV) was computed for each 

event stimulus from the SAM scores from all participants. Overall, low inter 

participant variation (high agreement) was found for valence ratings in all three 

conditions (mean_CVval < 50%). This was also the case for arousal ratings 

(mean_CVar < 55%). Saying that, the participant agreement was a bit lower for 

arousal ratings compared to the valence ratings, as reflected in higher CV scores.  

More specifically, high agreement was recorded for valence ratings in the neutral 

condition (32.36±3.02%) and the positive condition (30.92±2.97%). The variation 

was slightly higher for the valence ratings in the negative condition (49.99±10.10%). 

For the arousal ratings, the highest agreement was present in the negative condition 

(41.88±8.54%), followed by the positive condition (53.4±5.56), and the neutral 

condition (63.4±3.06%) see Table 14.  Due to the size of the table, the CV results 

per event are attached in Table 56, in Appendix C.  

 The mean CV scores per dimension across all the events per VE 

followed the same pattern as the CV scores per VE video ratings (see previous 

section). Overall, for both scores, VE video and mean across events per VE, high 

inter-rater agreement was observed for positive, neutral valence but not for negative 

valence ratings. Instead, higher-interrater agreement was found in the negative 

arousal ratings compared to the other two conditions. This pattern observed in the 

CV scores per VE reinforces the need for both dimensions self-rating measures in 

order to distinguish between conditions, as otherwise, one rating measure would not 

be sufficient. 

 

Table 14. Mean Coefficient of Variation (CV) scores across events per VE condition. 

VE CV Valence scores (%) CV Arousal scores (%) 

Neutral 32.36 63.40 

Negative 49.99 41.88 

Positive 30.92 53.40 

 

 Memory accuracy of events within each VE environment 

A quick memory question was added at the end of each stimulus “Do you remember 

this object/event?”. For each stimulus participants rated if they remembered it or not 

(1 or 0). All participants answered the memory questions for all events in the survey. 
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The memory accuracy levels of an event would allow us to deeply evaluate the 

affective impact of our stimuli and identify events which elicited stronger responses 

thus leaving a stronger trace in the memory of most participants. Thus, the memory 

accuracy scores for the objects/events were used an additional way to evaluate our 

study design and to differentiate between affect inducting events and non-affective 

ones.  

As a first step, the memory accuracy scores for each stimulus were calculated 

(average score across participants*100) for each object/event per condition (see 

Figure 50). For those, we also calculated the mean memory accuracy averaged across 

all events per VE condition. The results showed similar mean scores between 

conditions. The mean accuracy across events for the neutral condition was 

71.12±39.02, for the negative condition was 68.66±36.20, and for positive condition 

was 76.33±37.80. The memory accuracy scores were tested for normality and 

homogeneity of variance. The non-parametric related samples Friedman’s test on the 

average memory accuracy scores across events per VE showed no significant 

differences between the VE conditions, showing that all three conditions were 

equally memorable. Note, the variability of the answers was high in this online 

survey. These results showed an overall high average level of memory accuracy for 

all three scenes.  

Next, the mean memory accuracies per event across participants were 

examined in reference to their corresponding valence and arousal rating scores. The 

memory accuracy scores for each event are presented on Table 15. The events per 

VE condition that scored the lowest on memory accuracy (lower 25%) and the events 

that scored the highest scores (upper 25%) are highlighted with pink and green colour 

respectfully.  

From the stimuli used in the negative condition, the ‘spider attack’ event was 

the most memorable, which was also the most arousing, event (Vscore=3.76, 

 

Figure 48. Mean memory accuracy scores across events per VE condition. 
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Ascore=6.66), followed by the ‘mirror’ (ghost figure) event (Vscore=3.52, Ascore=6.43)  

and ‘spiders’ across the room (Vscore=2.76, Ascore=5.90). Similarly, the most 

memorable stimuli for the positive scene were the ‘butterflies’, the ‘robot’ and the 

‘dog poster’, whereas, the least memorable stimuli were ‘guitar’,’ flower’ and 

‘ball’. Not surprisingly, the least memorable objects/events across all three VE 

conditions were the static objects, such as the ‘cup’, ‘guitar’, ‘documents’, ‘grey 

notebook’, and ‘rubbish bin’ (mean memorability <50%). Although they existed in 

all scenes, they were not expected to be memorable nor arousal eliciting. The 

remaining objects and events rendered a high memorability (between 55 - 95%) with 

the exception of the ‘rat’ event in the negative scenario which scored lower than 

expected; the low memory accuracy score could be caused by the reduced visibility 

of the event in the video used in the survey (located on the lower bottom of the 

screen).  

 

Table 15.  Mean memory accuracy in percentage for each stimulus in each condition. 

Neutral VE Negative VE Positive VE 

Stim.ID M Std. Stim.ID M Std. Stim.ID M Std. 

Bookcase 91.05 28.55 Fire Alarm 86.57 34.10 Green Plant 89.55 30.59 

Clock 61.19 48.73 Documents 22.39 41.68 Baby Poster 70.15 45.76 

Green 

Folder 
55.22 49.73 Lightening 91.05 28.55 Light Explosion 88.06 32.43 

Grey 

Notebook 
41.79 49.32 Glitch-View 55.22 49.73 

Mirror 

Reflection 
85.08 35.63 

Guitar 50.75 49.99 Fire 89.55 30.59 Dog Poster 88.06 32.43 

Window 89.55 30.59 Rubbish Bin 26.87 44.33 Butterflies 95.52 20.68 

News-board 71.64 45.07 
Flickering 

Light 
91.05 28.55 Robot 95.52 20.68 

Cup 35.82 47.95 Mirror 94.03 23.69 
Monitor 

Message 
88.06 32.43 

Mouse (PC) 76.12 42.64 Spiders 88.06 32.43 Star Dust 83.58 37.04 

Desks 97.02 17.02 Light Bulb 74.63 43.52 Guitar 44.78 49.73 

Bin 55.22 49.73 
Cup (Spilt 

Drink) 
23.88 42.64 Flower 52.24 49.95 

Mirror 83.58 37.04 Rat 41.79 49.32 Birds 76.12 42.64 
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Carpet 92.54 26.28 
Spider 

Attack 
97.02 17.02 Amplifier 55.22 49.73 

Monitor 94.03 23.69 
Spooky 

Music 
79.10 40.66 Ball 56.72 49.55 

  TOP 25%         BOTTOM 25% 

 

Based on the hypothesis that the memory accuracy scores are enhanced for 

more affective stimuli, Spearman correlations between the memory accuracy scores 

(following tests for normality, see section 3.6.4) and the valence and arousal ratings 

were analysed, separately for the positive and negative VE condition. The findings 

(Table 16) show that more positive or negative the valence ratings (deviation from 

neutral) and higher arousal ratings are strongly correlated with higher memory 

accuracy. Please note, valence and arousal ratings were strongly intercorrelated 

(r(12) = .68, p = .007 for the positive VE, r(12) =-.94, p<.001 for the Negative VE, 

and r(12) =.49, p = .018 for the neutral VE) which makes it more difficult to interpret 

this finding (see discussion). 

Table 16.  Correlations between memory accuracy and the valence and arousal ratings for 

each affective condition. 

Memory scores * Corr. Coef. (r) P (Sig) 

Valence (Negative VE) -86* <.001 

Arousal (Negative VE) .92* <.001 

Valence (Positive VE) .58* .032 

Arousal (Positive VE) .69* .006 

*Significance at a 0.01 level 

 

Two simple linear regressions were calculated to predict memory accuracy based on 

the a) valence distance from mean and b) on arousal ratings per stimulus. Valence 

distance was calculated as:  

Valence Distance = abs (valence –mean), where mean = 4.6. 

Valence distance scores significantly predicted memory accuracy scores, β = 16.40, 

t(1) = 3.23 , p = .003. Valence distance scores also explained a significant proportion 

of variance in memory scores, R2 of 0.216, F(1,40) =10.47, p = .003. Similar results 

were observed using the arousal scores β = 7.11 , t(1) = 4.43 , p < .001, with R2 of 

0.172 , F(1,40) =8.31, p = .006. This finding is also displayed in Figure 51. In line 

with the previous correlational analyses, the findings from the regression analysis 
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show that memory accuracy can be partially predicted by the affective value of an 

object / event, as measured by the valence and arousal ratings.  

 

 Presence Ratings for each VE environment.  

The IGroup Presence questionnaire was answered after each of the three affective 

VE video clips (positive, neutral, negative) in the online survey. The questionnaire 

is consisted of three independent subscales and a general item not belonging to a 

subscale. The subscales are namely ‘spatial presence’ (the sense of physically being 

present in the VE), ‘involvement’ (the level of devoted attention and involvement 

experience in the VE) and ‘experience realism’ (measuring the subjective experience 

of realism in the VE) [449]. The additional item assesses the general feeling of 

presence as the ‘sense of being’ in the VE. A score for all three subscales and one 

for the general presence were calculated across participants for each VE video. Table 

17 shows the result per VE condition. 

 

Table 17. IGroup presence mean results per subscale and condition 

 Neutral VE Positive VE Negative VE 

General Presence 1.75(±1.72) 1.94(±1.62) 3.06(±1.74) 

Spatial Presence 1.87(±1.24) 1.96(±1.33) 2.80(±1.43) 

Involvement 1.64(±1.21) 2.27(±1.25) 2.78(±1.43) 

Experience realism 1.80(±1.11) 1.38(±1.09) 1.84(±1.20) 

 

Figure 49.  Left figure - relationship between valence ratings (y-axis) and memory accuracy 

for each stimulus. Right figure - relationship between arousal rating (y-axis) and memory 

accuracy (x-axis) for each stimulus. Red dots are representing stimuli presented in the 

negative VE condition, green dots represent stimuli from the positive VE condition, and blue 

dots represent stimuli from the neutral VE condition. 



Chapter 5 

 

172 

 

As expected, all three conditions scored low on presence because VE experiences 

were presented as videos through non-immersive interfaces in an online survey. The 

mean presence score for the neutral condition was 1.77±1.02, for the positive 

condition 1.89±1.13, and for the negative condition 2.62±0.55 (see scores for all four 

factors per condition in Figure 52). In Figure 53 the presence scores as the expression 

of the three main subscales (involvement, reality and spatial) per condition are 

shown.  

 

 

 

Kolmogorov-Smirnov and Shapiro-Wilk tests of normality were carried over the 

average presence scores for each dimension which indicated that the presence scores 

for the neutral and positive scenarios were not normally distributed. The difference 

between the three conditions in terms of presence was statistically significant as 

shown by a Friedman’s related-samples ANOVA by ranks (χ2(2) = 34.17, p < .001). 

Wilcoxon tests with Bonferroni corrections were conducted to evaluate whether the 

participants’ scored higher average presence in one of the conditions against the 

others. The results indicated significant differences between the neutral and the 

negative condition (z = 5.55, p <.001, where mean ranks in favour of the negative 
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Figure 50.  Plot showing average presence scores per condition. 

Figure 51. Radar plot showing average scores for each subscale: Involvement, spatial 

presence (‘Spatial’) and experience realism (‘Reality’) per VE. General presence is excluded 

from this radar plot. 
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conditions was 36.57 while the mean of ranks in favour of neutral was 19.67), and 

the positive against the negative scores (t = -5.12, p <.001, where mean ranks in 

favour of the negative conditions was 38.13 while the mean of ranks in favour of 

positive was 19.03). However, the difference between the presence scores of the 

positive and the neutral condition was not significant. As a result, it was concluded 

that the negative scenario drew significantly higher feeling of presence than the other 

two scenarios, even though they were all watched as a pre-recorded video in this 

survey. 

 Since the negative scenario elicited also high arousal ratings (see section 1), 

we investigated the relationship of presence scores with the arousal scores for each 

condition. Interestingly, we found a significant positive correlation between the 

arousal ratings and the presence ratings for the negative scenario (r= 0.362, p = 

.003). The correlation between the arousal ratings for the positive scenario and the 

presence scores was also tested, and was found significantly positive (r = 0.257, p = 

.036). These results show that mean presence scores in our sample increased with 

higher arousal, regardless of the polarity of the affective context, whether positive or 

negative. As a next step, the correlation between valence scores and presence scores 

showed a negative significant correlation for the negative condition (r = -.263, p = 

.031) but not for the positive scenario (r = 0.24, p = .054). Once more, the results 

confirm the relationship between highly affective content and presence ratings as 

discussed in section 2.3.3.  

 Individual differences in alexithymia and personality and their 

relation to arousal and valence ratings in each VE environment. 

Alexithymia. The Alexithymia scores were calculated per person and a simple, 

binary categorisation of the score was made based on a division point (division point 

= 51) as used in previous research [339]. With this categorisation, alexithymia scores 

higher than 51 were labelled as ‘high’ and the rest as ‘low’. Out of 67 participants, 

17 were categorised as having ‘high’ levels and 50 as having low levels of 

alexithymia. 
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The left side of Figure 54 shows that valence scores for people with high alexithymia 

were slightly higher for the negative and neutral conditions. In other words, the 

valence perceived by participants with high alexithymia was not affected by the 

stimuli manipulation (affective VEs) as much as the participants with low 

alexithymia. The effect of alexithymia on valence scores was explored with a 3 x 2 

mixed ANOVA with the within-participant factor the three VE conditions and the 

between-participant factor the alexithymia group (low vs. high alexithymia levels). 

The dependent variables used was the absolute valence distances between negative 

and neutral, and between positive and neutral (as in section 5.3.2.3). The result of 

the test showed that there was no significant main effect of the alexithymia group on 

the valence ratings (F(2,130) = 3.43, p = 0.68).  

In the right side of shows the mean arousal rating of each condition for the 

alexithymia groups. A higher mean arousal rating was observed on the participants 

of the high group in the cases of neutral and positive condition, and slightly lower 

means arousal rating for the negative condition. A 3x2 mixed ANOVA was 

conducted to compare the effect of alexithymia group on the arousal ratings in the 

three VE conditions. There was not a significant effect of alexithymia groups on the 

arousal ratings, F(2,130) = 1.17, p = .314. The group division was unbalanced, since 

only about 25% per cent of our participants could be categorised as ‘high’ 

alexithymics. Overall, the effects of alexithymia of A/V scores were not found to 

have a significant impact on valence and arousal scores.  

 

Personality Traits. In this section, findings regarding the relationship of each trait 

(extraversion, neuroticism, openness, agreeableness, and conscientiousness) with the 

arousal and valence ratings from the survey are presented. Due to the sample size 

Figure 52.  Mean valence and arousal ratings per alexithymia group. Left figure: Mean 

valence ratings for each condition. Right figure: Mean arousal ratings for each condition. 
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and the absence of any control metrics or supervision in place for the completion of 

the personality questionnaire, we present the following findings as preliminary 

results.  

To explore the effects of those five traits on the valence and arousal ratings 

reported, 3 x 2 mixed ANOVAs with the factors |VE condition (positive, neutral, 

negative) and Group (low vs high personality trait). These ANOVAs were conducted 

for each personality trait (5) and for each rating type (arousal vs. valence), separately. 

The groups were created by using a median split to define a high and a low category. 

Table 18 shows the number of participants for each group. As in previous sections 

the results for valence ratings are described first. 

 

 Table 18. Number of participants per trait category (high, low). 

 High category (N) Low category (N) 

Extraversion 31 36 

Agreeableness 33 34 

Conscientiousness 32 35 

Neuroticism 33 34 

Openness 32 35 

 

The findings from the ANOVAs performed on the valence ratings are presented in 

Table 19 and Figure 53. 

 

Table 19. Analysis results from effect of personality traits on valence ratings. 

Personality 

Trait 

Main Effect 

Group 

Main Effect 

VE Condition 

Interaction Group  

x VE Condition 

Extraversion - - - 

Agreeableness - - - 

Conscientiousness - - - 

Neuroticism sign - sign 

Openness - - - 

 

For the neuroticism trait, the analysis revealed a significant main effect of Group 

(F(2,78) = 3.95, p =  .023) The mean scores are shown in Figure 53. Across all 

conditions, people in the high neuroticism group had higher valence ratings (5.1) 

compared to people in the low neuroticism group (4.3). However, this effect was 

further modulated by VE condition type. More specifically, Bonferroni corrected 

independent t-tests did not show significant group differences for the neutral (t(65) 

= 1.40, p=0.5) and for the positive VE conditions (t(65) = .34, p=2.2), but for the 

negative VE condition (t(65) = 4.33, p<.001). Here, higher valence ratings (Nhigh = 



Chapter 5 

 

176 

 

3.9) were given by the high neuroticism group compared to the low neuroticism 

group (Nlow = 2.4). Note, for both neuroticism groups, valence scores were highest 

for the positive VE condition, medium for the neutral VE condition and lowest for 

the negative VE condition. However, the high neuroticism group rated the negative 

VE as less negative than low neuroticism group.  

 

 

Figure 53. Mean valence ratings for high and low neuroticism groups. 

 

Following the same process, the effects of the five personality traits on arousal 

ratings where analysed. The findings are presented in Table 20 and mean arousal 

ratings per group and VE condition are shown in Figure 54   

 

Table 20. Analysis results from effect of personality traits on arousal ratings. 

Personality 

Trait 

Main Effect 

Group 

Main Effect 

Condition 

Interaction 

Group x Condition 

Extraversion - - - 

Agreeableness - - sign 

Conscientiousness - - - 

Neuroticism -  - -  

Openness - - - 

 

Significant effects were found for the agreeableness trait where a significant interaction 

between group and VE environment can be reported (F(2,78) =6.33, p = .003). This 

interaction was further analysed using Bonferroni corrected post-hoc t-tests. First, VE 

condition differences were analysed for each group separately using paired t-tests. It was 

found that for the low agreeableness group, arousal ratings were lowest for the neutral 

condition (Alow-NEU = 2.2), at a medium level for the positive condition (Alow-POS = 4.1and at 

highest for the negative condition (Alow-NEG = 6.4). All ratings were significantly different 

from each other (Neutral-Positive: t(33)=-5.29, p<.001, Neutral-Negative: t(33) = -11,65, 

p<.001, Positive-Negative: t(33)=-5.95, p<.001). However, this was not the case for the 

group with high agreeableness scores (Ahigh-NEU = 2.9, Ahigh-POS = 5.0, Ahigh-NEG = 5.8). Here, 

significant arousal rating difference were found between the positive and neutral conditions 

(t(32) = 4.51, p<.001), and the negative and neutral conditions (t(32)=7.04, p<.001),  
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but not between the positive and negative conditions (t(32) = 2.2, p=.10).  
The latter result showed that this group rated both negative and positive VE 

conditions as high arousing. Note, there were no significant group differences 

between the low and high agreeableness groups when each of the VE conditions 

were analysed separately with independent t-tests (Neutral arousal ratings: t(65) = 

1.58, p=.33, Positive arousal ratings: t(65) = 1.53, p=.39, Negative arousal ratings: 

t(65) = 1.13, p = .78). 

 

 

Figure 54. Mean arousal ratings for high and low agreeableness groups 

 

In summary, two of the personality traits (extraversion, introversion, agreeableness, 

openness, neuroticism, and conscientiousness) were found to have affect the valence 

and arousal ratings for each VE. High agreeableness was found to produce similar 

high arousal ratings for both positive and negative VE scenarios. High agreeable 

people are expected to collaborate [459] and perhaps be more succumbed to 

experiment bias, thus rating the VEs in a manner that would benefit the researcher. 

The trait of extraversion was not found to significantly affect with valence distance 

and arousal ratings, although extraversion has been suggested to be linked to 

increased experiences of positive emotions in the past [460], [461]. The tests 

conducted showed a significant difference on valence scores between people with 

high and low neuroticism, which was significantly prominent in the negative 

condition. The mean valence scores indicated relatively more positive ratings for the 

members of the high neurotic group compared to the low one. We would generally 

expect highly neurotic individuals to have a tendency towards experiencing negative 

emotions more intensely [462], and therefore rate the negative videos more 

negatively. These studies used different types of stimuli including realistic 

photographs, human faces and intense negative features e.g., blood etc. which have 
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an active reference to real-life. In our case we used virtual spatial stimuli of non-

human objects, which were created to represent existing objects. Thus, our stimuli 

potentially do not reflect the same affective impact as the stimuli used in other 

studies. Perhaps this effect could be investigated in the future studies. However, this 

effect was not visible in our valence ratings, which indicate that the video of the 

negative scenario did not have the expected negative effect on people with high 

neuroticism. It is though worth noting that the sample size was limited and the 

responses from both groups exhibited high standard deviations in their valence 

ratings. Additionally, as the online survey required approximately 50 minutes for 

completion per participant, it is possible that these effects on the ratings could be 

influenced by fatigue and/or boredom.  

  

 Chapter Discussion and Conclusions 

In this chapter the development and the validation of the VR environments designed 

to induce different variations valence and arousal were described. In section 5.2, the 

process of designing the environments as a replica of an existing office room was 

explained, as well as the spatial elements including a balanced number of audio-

visual stimuli per VE (which were divided into ‘interactive events’ and ‘static 

objects’). A proprietary event-system was developed to detect and track the 

apparition of stimuli and the user’s engagement with the virtual stimuli. This event-

system permitted the tagging of events-markers and the saving of those from within 

the application for synchronisation with physiological signal data. Interaction 

mechanisms were developed and incorporated within the virtual simulation in order 

to a) trigger certain interactive events based on the user’s movement and gaze (non-

linear interaction), and to b) facilitate the user’s free movement in the virtual spaces, 

so that they could explore and experience the contents of each room in a personalised 

manner.  Special effort was put in the design of each environment from 3D objects, 

3D-sounds, animations and textures to physics and light/shadow rendering, to create 

an overall realistic space for the user to feel present within. The validation of using 

the designed virtual environments (as well as the stimuli which populated each) as a 

method of affect induction, was made by creating and disseminating an online 

survey. 
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The survey (explained in section 5.3) included videos of the environments 

recorded from the point of view of a user in VR, as well as images from each 

object/event (1 video and 14 stimuli in total per VE). The conditions (VEs) were 

randomised between themselves, and within each, the images of the stimuli were 

also randomised. The participants were asked to rate their perceived affect in terms 

of arousal and valence using SAM scores for both videos and stimuli. The mean 

affective scores for the stimuli were re-validated against memory accuracies scores, 

which were calculated by the participants’ responses to whether they remembered 

the object from the initial VE video. Additional questionnaires on demographics, 

presence and individual differences in alexithymia were also added. In total, four 

virtual environments were validated, a baseline, neutral, positive and a negative. 

With the exception of the baseline, each VE was designed to stimulate a predefined 

(by design) range of valence states (either neutral, negative or positive), with 

different variations of arousal evoked by various stimuli within each environment.  

Responses from 67 participants, showed that the videos of the VE-scenario 

conditions achieved to induce the expected mean arousal and valence ratings. More 

specifically, the neutral scenario elicited neutral valence and low arousal, while the 

positive and negative scenario elicited highly positive and highly negative valence 

respectively, and above-average arousal, which was found to be increased for the 

negative VE (see Section 1). With the exception of the baseline VE, the conditions 

were found to induce significantly different valence and arousal scores from each 

other. The baseline environment was rated as more positive and more arousing than 

the neutral environment, against our initial expectations, which prompt us to redesign 

this environment (see Appendix C for more information).  Overall, the validation of 

the VEs and the individual stimuli used was an important step towards studying and 

reliably inducing affect in VR. As shown by the example of baseline environment, 

it is imperative that more research groups take a similar approach in order to interpret 

their data more accurately before stepping directly to physiological data collection.  

Apart from the ratings per VE video, the valence and arousal ratings per 

event (14 in total for each scenario) were also analysed. Primarily, the average 

ratings of all stimuli per VE were calculated and analysed, re-validating the ratings 

per VE-video which were earlier observed. The ratings of the stimuli for each VE 

allowed us to inspect the effect of the environmental properties in more detail, and 

to find and exclude those that did not induce the affective ranges desired. 

Interestingly, the stimuli which were rated as more arousing and highly valenced, 
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were the VE-specific interactive ones compared to VE-specific static objects and 

other elements which existed in all VEs. The interactive events were also the most 

memorable, as confirmed by the memory accuracies scores. Significant correlation 

was found between memory accuracies, valence and arousal scores. Linear 

regressions also showed that memory accuracy of a stimulus could be predicted by 

their affective ratings. Overall, all three VEs were equally memorable, as expressed 

by the mean scores across the stimuli per VE. These results agree with the 

relationship between affect intensity and memory (see section 2.3.3.2). 

Presence scores were also reported in this survey for each VE video. We 

expected that the presence scores withing those VEs would be higher using VR 

technologies in the main study. Indeed, the level of presence was rated low, which 

was expected due to the nature of the experience and the type of the content-

presentation tool that was used. When the presence scores between the three VEs 

were compared, a significant difference was found, with the negative VE provoking 

higher presence scores than the other scenarios. Tests indicated strong relationship 

with arousal ratings for both positive and negative VEs, which agrees with the theory 

discussed in Section 2.3.3 on the relationship between presence and arousal. This 

result also suggests that by utilising high arousing affective elements a VR designer 

may be able enhance the presence levels that users feel within. 

The individual differences in alexithymia in relation to the valence and 

arousal ratings for each VE were also explored. High alexithymia can cause 

difficulty in recognising and regulating one’s emotions and has been shown to have 

an influence on how physiological responses are elicited in an affect stimulating 

context (see section 2.3.3). The differences between the two groups however did not 

yield statistically significant results. Therefore, the effects of alexithymia on 

physiological responses were not further explored in the next studies. 

In summary, the design of the affective, virtual experience comprising of 

three virtual room replicas, was validated by the survey. The validation was three-

fold, using SAM ratings per environment, SAM rating per stimulus, and memory 

accuracy scores. This affective library specifically designed for immersive 

consumer-VR headset, is to our best of knowledge the first involving 3D, interactive, 

virtual environments and individual objects/events which are triggered by the user’s 

actions, mapped to existing physical room to allow the user to naturally walk within 

it. The designed VEs were used for our next study, the Feasibility study 3 (termed 
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VR study), involving physiological data acquisition from participants wearing a VR 

headset at the Science Museum in London explained in Chapter 6. 

 

 

 

 

Summary of key findings for Chapter 5 

• Four interactive 3D VR scenarios for affect induction were created and 

validated using an online survey. 

• Three of these designed scenarios (neutral, positive and negative scene) 

were able to induce low arousing neutral, high-arousing positive and 

high-arousing negative responses in participants. These were compared 

to the fourth baseline scenario. This validation was three-fold from 

post-VE ratings, ratings per event/stimulus in each scene and from 

memory accuracy scores. 

• An event-detection system was developed based on a custom gaze 

tracking for dynamic data annotation in real-time. This system along 

with the validated scenarios were used in the next study.  
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Affect Detection in Virtual Environments 

(FEDEM 3 study) 
 

6.  

 Introduction 

In this chapter we will describe the third study designed to explore the feasibility of 

our technologies to detect affect in virtual reality settings. Until recently, affect 

modulation was implemented predominantly using non-immersive technologies and 

stimuli. Affect stimulation can be influenced by the level of involvement of the user 

with the content provoking realistic responses and experiences [433]. In VR this can 

be in turn reflected in the level of presence the users feel, which can be affected by 

the level of immersion of the technologies utilised as explained in section 2.3.3.  

 Currently, immersive technologies offer advanced, light-weight user 

tracking methods combined with high-resolution graphic tools. These advances in 

turn encourage the overcoming the traditional use of these technologies in seated 

experiences with distractive and cumbersome set-ups, and move towards the 

incorporation of unintrusive, wearable technologies for naturalistic exploration and 

interaction within VR. Currently, the number of studies that utilise virtual reality as 

an emotion induction tool are scarce. However, in the majority of those, e.g. [294], 

the experience of the user with the content is often spatially and physically 

constrained. Nowadays, multiple affective databases of images, videos, and even 

360° immersive videos exist. However, all of these require passive observer-like 

participation of the user, not taking advantage of the 3-dimensonality offered by this 

constantly-advancing VR medium. The utilisation of 3D VEs have started to emerge 

in emotion research (such as [294], [463], [464]). However, as far as we are aware 

the effect of active exploration within immersive VR settings on affective responses 

(compared against passive observation) has not been sufficiently investigated. The 

presented study addresses this issue.  
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For this, a fully immersive VR experience comprising 3D affective VE scenarios 

was custom-built with two modes of interaction: active and passive. The aims of the 

study were: firstly, to validate the affect-detection system and the proposed sensor 

set-up (see description of the system in section 3.2) for use within virtual reality 

experiences, and secondly, to compare the ability of the system to detect voluntary 

facial expressions and spontaneous affective responses recorded within directly 

(inter)active and vicariously passive VR conditions. As affect detection studies in 

VR were scarce at the time of the study, and existing libraries on affective stimuli 

were limited to 2D content, custom-made human-scale 3-D virtual environments 

(VEs) were designed for the purpose of this study.  

In short, the VEs developed were replicas on an existing physical office 

room. Each replica was populated with 14 audio-visual stimuli (referred to as 

‘events’) and decorative elements corresponding to the arousal and valence levels 

that each was indented to evoke (see section 5.2. for more details). To allow for 

naturalistic interaction and exploration in VR, the VEs were designed to be explored 

using a commercial head-mounted display (referred later as VR headset), which 

allowed the user to look and move freely in various directions, by leveraging high 

resolution motion orientation (via IMU sensors), and mapping that position and 

orientation to the view of the 3D VE inside the VR headset (see section 2.3.3).  

In order to fully utilise the free-walking capabilities of the VR technologies, 

a user-gaze based interaction tracking system and an event-marker system were 

developed. These systems enabled us to track the elements of the space that the user 

was looking at, and thus provide the link between affective responses and the stimuli 

in non-linear, immersive VR experiences. These systems allowed the analysis of 

physiological changes in relation to the context of the user’s virtual interactions. The 

importance of context for the interpretation of affective responses was explained in 

section 2.3.1.The study paradigm designed for this study could assist in future studies 

utilising immersive VR technologies.  

The study presented in this chapter was to our best of knowledge the first 

large-scale affect-detection study where commercial VR technologies were utilised 

(with free-walking capabilities) in conjunction to physiological data acquisition. For 

this study, the affect detection system (with novel sensor set-up) was used as 

described in chapter 3. The sensor set-up was designed for unobtrusive integration 

with existing commercial VR devices (i.e., HMDs) leveraging the potential of fully 

immersive free-walking VR experiences; a medium that has the capacity to become 
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the ideal experimental tool for behavioural and affective sciences (section 2.3.3). 

The proposed sensor set-up was mounted onto an existing high-resolution 

commercial VR headset (which is fitted on the face and head, thus providing constant 

contact with the skin of the wearer). Moreover, it was designed to transmit 

continuous readings from the sensors wirelessly, via Bluetooth connection. 

For both interaction modes, active and passive, the commercial Vive VR 

headset by HTC was used[465]. The active mode was built in the way that allows for 

users to explore and interact with the 3D-spaces. The active users were able to walk, 

explore and even make actions to affect the outcome of an event. In the active VR 

scenario, interactive stimuli were embedded within the 3-D environments and the 

participant had the complete control over her movement and duration of interaction 

with the surrounding stimuli. To control the interactivity4 levels between the two 

groups, but also ensure that both are exposed to exactly same scenarios and events 

for compatibility, pre-recorded videos of real active users’ experiences in the VEs 

were used in the passive mode. This way the event triggers were not influenced by 

the user’s actions and the duration of the videos was predefined. The users were 

merely observers in a vicarious, seated experience. The stimuli were recorded 

through the point of view of participants within the active scenario and presented to 

the participants of the passive scenario on 2-D screen within a VR cinema 

environment. Importantly, one of the main differences between the two scenarios 

was the level of interactive control that the user had, e.g., being inside a 3-D space 

versus watching it through a 2-D video (see factors of presence described in section 

2.3.3).  

For the purposes of this study, three additional VEs were designed apart 

from the four affective VEs, bringing the total to seven VEs. More specifically, we 

designed (1) a ‘training CASR’ (explained in section 3.3), (2) a ‘VR adaptation VE’, 

(3) a ‘home cinema’, (4) a ‘Baseline VE’, (5) a ‘Neutral VE’, (6) a ‘Positive VE’, 

(7) and ‘Negative VE’). The first two VEs were used for training and testing 

purposes. The training CASR scene was used to train participants how to use the 

CASR system to rate their felt affect along the x-axis of the controller corresponding 

to valence and the y-axis corresponding to arousal. The VR adaptation scene allowed 

 
4 Interactivity here is used as the level of enriched interaction the user can have with the 

virtual world, involving control and sensory factors explained by Witmer and Singer [181] 

as the degree of control, immediacy, environment modifiability, multimodal presentation, 

degree of movement perception and active search. 
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users to perform a similar task to the main study in a dedicated virtual environment 

that was not used in the main study. This environment allowed them to learn the 

limits of the walking area and view events happening all round (360°) in the 3-D 

virtual space. The third was the main VE for the passive group, and the remaining 

four environments were designed for the Active group (the differences between the 

two groups are explained in section 6.2.4). The baseline VE was designed for 

baseline recordings and to allow participants to relax between conditions. The three 

remaining VEs were designed to provoke negative, neutral and positive affective 

states. These three environments sharing common architecture, were populated with 

events designed to stimulate various combinations of valence-arousal. The selected 

VEs and events were pre-evaluated in an online survey using videos and pictures 

(see section 5.3.2). The gaze-based interaction algorithm implemented for the active 

mode of the study, recorded and marked events throughout the participant’s 

experience with the immersive content. These events were then used as markers for 

the processing and analysis of the streamed data from both the active and passive 

mode. 

The main study involved the execution of both experimental protocols 

(active and passive modes) at the Science Museum in London for six weeks, outside 

laboratory conditions. The participants were divided into two independent groups, 

active and passive group. The aim of this study was to investigate the feasibility of 

the sensor set-up to detect changes in affect within VR and to investigate the potential 

benefit from using a highly immersive and interactive set-up. The following related 

hypotheses (H) were formed: 

 

Behavioural Rating Measures 

H1:  The VEs evoke the predesigned neutral, positive and negative affective states 

in both groups as measured by continuous valence and arousal ratings (manipulation 

check).  

 

H2: Participants in the active groups show stronger affective responses compared 

participants in the passive group. 

 

H3: Affective positive and negative VEs are more arousing and memorable than the 

neutral VE. 
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H4: Participant in the active group feel higher levels of presence compared to the 

passive group. 

 

H5: Affective positive and negative VE induce a higher level of presence than the 

neutral VE. 

 

Physiological Measures 

H6: Our EMG sensors are sensitive enough to detect posed facial expressions. 

 

H7: Our EMG sensors can reliably detect spontaneous valence changes in passive 

and active VR settings. 

 

H8: Our PPG sensor and the combination of EMG and PPG sensors can reliably 

detect arousal changes in passive and active VR settings. 

 

H9: Despite higher noise levels on physiological sensors, stronger affective 

responses (and thus VEs should be more distinguishable) in the active group than the 

passive group because of higher presence and interactivity levels. 

 

Computational Modelling Outcomes 

H10: Both valence and arousal classifiers perform well when data from participants 

are used for both training and testing sets (for mixed-subjects user-independent 

approach against separated-subjects).  

 

H11: Training a predictive model per user (user-dependent) could provide higher 

performance in mean classification accuracy than generalised models (user-

independent ones). 

 

This chapter’s outline will describe the experimental design and the analysis that was 

conducted to investigate the described hypotheses. The VR study (FEDEM3) 

methods section is described in section 6.2, including information on the 

participants, the materials and methods, and the experimental procedures. The signal 

pre-processing steps for data analysis used for the recorded data in the main study 

for both groups are described in Section 6.2.5. The results from the analysis of the 

valence and arousal self-ratings, the memory accuracy scores, presence scores, the 

expression imitation exercises (voluntary), the physiological signals based on event-
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markers (event-based analysis), and the classifications findings of spontaneous 

responses for each group are described in Section 6.3.  

 

 Methods  

6.2.1. Participants 

A group of 730 volunteers between ages of 14 to 45 years (M = 26.25 ± 10.40) 

participated in the study. From those, 496 participants were initially selected because 

they were within the age range of 18-35 years and fluent English language speakers. 

The selected group suffered from neither cardiovascular, medical, or psychological 

conditions. After reading the participant information sheet, written informed consent 

was obtained at the beginning of the study while being introduced to the experiment 

protocols. The study was approved by the Bournemouth University Research 

Governance and Ethics Committee (ID: 18848). 

To assess if the participants had trouble understanding the task, we screened 

them by running a short verbal rating session. In practice, we asked them to think of 

four different scenarios and rate their valence and arousal for each one. Data from 

participants with no fluency in English and the ones unable to follow the rating test 

were not recorded. Sessions with participants of low English fluency were also not 

completed and the data from those participants (N=42) were not included in the 

analysis. Additionally, we excluded datasets from participants with incomplete 

recordings and with noisy data (e.g., intense noise artefacts on the signals or low 

signal-to-noise ratio, e.g., speaking during the stimuli elicitations and chewing gum). 

Data were also excluded when technical problems occurred, such as sensor 

positioning (e.g., because of narrow faces or small heads), and unstable sensor 

signals (see Figure 57).  

Figure 55. Dataset selection flowchart 
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The remaining number of participants was n=291 with a mean age of 24.76 

(± 4.61), of which 163 were female (56%) and 126 were male (43.3%). The selected 

participants had little to no experience with VR (81.44%). From those na=139 

participants were in the ‘Active’ group (76 females (54.7%) and 63 males (45.3%), 

with a mean ageActive= 25.22 (± 4.69)), and np=152 in ‘Passive’ group (87 females 

(46.1%), 64 males (42.1%), and 1 transgender/non‐binary individual (0.7%), with a 

mean agePassive = 24.35 (±4.51)).  The data recorded from these participants formed 

the database which was used for the analysis that will be presented in the following 

sections. 

6.2.2. Materials and Methods 

Virtual Environments (VE) – Seven virtual environments were designed to study 

affective responses: ((1) ‘training CASR’ (explained in section 3.3), (2) ‘VR 

adaptation VE’, (3) ‘home cinema’, (4) ‘Baseline VE’, (5) ‘Neutral VE’, (6) 

‘Positive VE’, (7) ‘Negative VE’).  

The training CASR was a simple VE with a screen where instructions were given on 

how to self-rate using the CASR tool, upon a wireless hand controller (Figure 58). 

 

The VR adaptation VE one VE designed to assist users familiarise themselves with 

the VR technologies used, the movement boundaries and the ability to explore spaces 

by looking at 360 degrees. This was an outdoor VE, consisting of trees and moving 

elements which the user could practice exploring while self-rating. The VE featured 

a 3D path that has the exact same size as the VEs office-replicas. 

 The dark home-cinema VE, was used mainly for the passive mode. This VE 

was also used for the recording of posed facial expressions. It included a screen for 

video presentation visible to the participant, and a user interface button to select 

videos which was only visible from the experimenter’s desktop view.   

Figure 56. 360o view of the CASR-training VE. The screen in front of the user played four 

short videos. The AV space on the right of the screen gave visual feedback of the user’s 

rating. 
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 The remaining four VEs used for active mode data collection (see Figure 

59). The four affective scenarios were alterations of one 3D office room replica, 

consisted of: a) the baseline, b) the neutral, c) the positive and d) the negative version 

of the room. In all the virtual office-room versions, the dimensions of the room, 

together with the point of entrance of the user were kept identical. Variations were 

made in their content to allow for affective manipulations within VR. Section 5.4 

contains detailed descriptions about these VEs, their variations and the specific 

events/objects. 
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Figure 57. 360o 

screenshots of the VEs: 

(1) VR adaptation, 

(2) VR cinema, 

(3) Baseline VE, 

(4) Neutral VE, 

(5) Positive VE, 

and (6) Negative VE. 
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Physical Space – The study was conducted at the ‘Who am I?’ gallery space 

within the Science Museum in London. The area was divided into two main spaces, 

the main gallery, consisting of six desks with computers and the storage room, which 

was emptied for the purposes of the study. Two sessions of active VR and two 

sessions of passive VR could run simultaneously as shown in the floor representation 

(left side) in Figure 60. The red dots correspond to the locations of the participants 

in the VR sessions. The room for movement is outlined by walking-space (blue 

rectangles) for active group setups, and by sitting-down (blue circles) for the passive 

group setups. The remaining desks and desktops, and four tablets were used for the 

information of users, the completion of the questionnaires and additional activities 

for the children of volunteers, including colouring exercises using pictorial 

representations of facial expressions.  

The dimension of each active VR walkable area was approximately 2.5m x 

3m, including the desk where the experimenter was sitting. Those desks were 

successfully masked (and thus avoided by participants wearing the headset during 

the study) by positioning virtual desks and objects on the same place the physical 

ones were, following the idea from [466].  

Figure 58. Sketch of floor plan and photo of entrance area of the ‘Who Am I ?’ gallery at 

the Science Museum London. The study was conducted here. The space was designed in a 

way that two sessions of active VR and two sessions of passive VR could run simultaneously.  
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6.2.3. Apparatus and instrumentation 

Four HTC Vive HMDs were used, together with 6 EmteqVR interfaces. 

Additionally, to ensure participants wearing the HMDs would not accidentally touch 

or hit a physical object outside the interaction area (the ‘play-area’), two external 

webcams were positioned in the corners of room to monitor the participants’ 

movement. Two additional web-cameras were positioned on the wall, in the physical 

location of where the virtual mirror would be in the VEs. The feed from the camera 

was used as the reflection for the virtual mirror. This effect was only visible in the 

positive scenario, and when the users’ gaze was hovering over the mirror. That way 

the participant looking at the virtual mirror would see their real self-mirrored back. 

The area per active VR system was calibrated using two HTC Vive base stations at 

an approximate height of 2.5 m (2 base stations per headset). The passive VR 

headsets were calibrated using the same base stations.  

Six desktop computers (OS: Windows 10) were used overall, i.e., two for 

the passive VR setup, two for the Active VR setup, and two for the completion of 

forms and questionnaires. Additionally, four tablets (OS: Android) were used for the 

completion of forms and questionnaires. A pair of headphones was connected with 

each HMD using the VIVE deluxe audio strap including easily adjustable 

headphones [467]. The view from each participants headset was streamed on the 

experimenter’s screen connected to each computer. The OBS software was used to 

combine and record simultaneously the view of what was displayed in VR together 

with the corresponding camera’s feed of the user. The collected videos were used for 

synchronisation and detection of movement artefacts. 

 

6.2.4. Experimental Procedure  

The experimental procedure of this study entailed two main phases, i.e., the VR 

experiment phase and the questionnaire phase. The order of these parts was 

counterbalanced across participants (random allocation). The entire study consisted 

of seven experimental protocol steps which are outlined in Figure 62. These steps 

are described in more detail below. The entire study had a duration of approximately 

40 minutes.  

Step 1 - Introduction: Once a participant volunteered to participate, they were given 

a physical or digital version of the participant information sheet and consent form. 
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An experimenter was available to answer any questions and explain the phases of 

the study. Participants with medical, psychological (e.g., anxiety, depression), 

cardiological (e.g., arrythmia, pacemaker usage), facial related conditions (e.g., 

facial palsy, stroke) and intense phobias were discouraged from participating. 

Participant IDs were allocated to the volunteers using randomised 6-digit numbers 

to ensure anonymity of the data.  

At this stage, participants were divided into the two interaction mode groups. 

The remaining steps were followed by both groups, except for Step 3. 

 

Step 2 –Set-up & CASR rating: The participants wore the VR headset together 

with the physiological sensors (EmteqVR). Whilst seated on a standard office chair 

(see Figure 61) they held the controller and rated four different affective videos using 

the CASR tool while following the instructions of the experimenter who was in close 

physical proximity. This step was introduced to assess the sound quality and to train 

the participant in the continuous rating one’s own affect in term of valence and 

arousal. This step had no predefined duration.  

 

Step 3 –Active Group only: Once participants felt comfortable with rating their 

affective state, they were asked to enter the ‘VR adaptation scene’. The translocation 

from one scene to the other was controlled externally by the experimenter. Once 

inside the adaptation scene, participants were asked to stand up and try walking 

around while exploring every part of the scene within their reach. For the participants 

Figure 59. The participant is wearing the HTC Vive headset + EmteqVR and headphones, 

holding a controller. On the left side, one of base-station tripods is visible and a web-camera 

fixed on the wall. With the exception of EmteqVR, controllers and base-stations, all devices 

were connected via cable to the PC. 
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safety the outlining of the walkable area (else called ‘play-area’ grid provided by the 

SteamVR application for the Vive headset) was activated when they stepped too 

close to obstacles or walls in the physical room. After the first exploration, 

participants were asked to start rating how they feel while exploring the objects 

around them. This step allowed them to familiarise with the length and width of the 

walking area and with the concept of continuous affect rating while exploring a VE 

at the same time. This step had a duration of approximately 3 minutes. 

 

Step 4 - Baseline: Participants were asked to relax before proceeding to the affective 

scenes while sitting on a chair. Following the data quality control and a recording of 

one minute, the experimenter would verbally ask a set of questions. Firstly, 

participants were asked whether they felt dizziness, nausea or any discomfort which 

originated from the VR simulation experience. Next, they were asked how well they 

remembered specific events that occurred in the previous VE. Then they were asked 

to rate their experience in terms of arousal (ranging from 1 (very low) to 9 (very 

high)) and valence (ranging from 1 (very negative) to 9 (very positive), end of 

experience rating). Using the same rating scales, participants were also asked to rate 

how much they enjoyed the VR experience and how present they felt inside the VE 

[468] (1 (very low) to 9 (very high)). The baseline scene was presented before each 

affective VE (total 3 times) as seen in Figure 62. 

 

Step 5 - VEs: The participants experienced all three affective scenes (i.e., neutral, 

positive, negative) in a counterbalanced order following a Latin square. The 

participants were not aware of the nature of the VEs before they entered them nor of 

the order of presentation. They were instructed to relax, stand up when ready, and to 

explore the VE (active group) or watch the videos (passive group) while rating how 

they felt throughout the entire experience using the CASR and the hand-controller. 

Once the minimum required duration in VR had passed (75 seconds), participants 

could exit the VE by touching the virtual handle of door using their controller or by 

expressing it verbally. Any verbal communication with the experimenters 

throughout the VE exploration was strongly discouraged, except in the case of 

sickness and discomfort.  

 

Step 6 - Expressions: After the VR experience, participants were asked to mimic 

facial expressions following video displayed on a virtual monitor whilst still wearing 



Chapter 6 

195 

 

the setup. Dynamic expressions compared to static ones were suggested  to enhance 

facial mimicry response [469]. Thus, a video of a person performing facial 

expressions with corresponding audio instructions was used to direct the users. The 

video included a short relaxation exercise to ensure they would start the exercise 

with a neutral, relaxed face. Participants performed the required facial expressions 

while seated on a chair. In the video, a woman performed the following set of facial 

expressions while sitting in front of a white background: 1) a closed mouth smile 

displaying a happy expression, 2) an intense frown displaying an angry expression, 

and 3) a forehead wrinkle and eyebrow raise as a surprised expression. Each 

expression had three repetitions which were performed for 3 seconds each, followed 

by short breaks of 3 seconds between repetitions, and 7 seconds between different 

expressions. These facial expressions were chosen to record the EMG activation of 

the facial muscles upon which the EMG sensors were placed (i.e., frontalis, 

zygomaticus major, orbicularis oculi and corrugator, see 3.2).  

 

Step 7 – Q2: Participants were asked to complete the second set of questionnaires 

(‘Q2’) consisting of the TAS-20 on Alexithymia, Expressivity Questionnaire, and 

Personality Questionnaire (as used in online study survey (section 5.3). See also 

sections 3.3.1 and 3.6). All questionnaires were designed using the Qualtrics 

Software [451] (the surveys used are available in Appendix C. The scores from each 

questionnaire were calculated immediately afterwards, and they were given to the 

participants at the end of the session, together with a brief description of the 

questionnaires.   
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6.2.5. Signal Pre-Processing for Data Analysis  

Electromyographic signals (EMG) 

EMG data were processed with the Signal Processing toolbox in MATLAB using a 

similar approach as the one described for the study in Chapter 4 (section 4.3). For 

this study, the low cut of the bandpass filter was adjusted to 50Hz (previously set to 

30Hz). The processing chart of EMG signals is shown in Figure 63. 

 

As a reminder, first, data streams from each electrode (Sampling rate: 1000Hz) were 

filtered and visually inspected for malfunctions and low signal-to-noise ratio which 

in our case could be cause by interference with movement artefacts, bad electrode 

placement, or faulty fitting of the sensors. A notch filter on 50Hz and harmonics 

(from 100 to 450Hz) was applied on all signals prior to other pre-processing steps. 

Next, a Butterworth bandpass filter at 50-450Hz (6th order) was applied. The low-

cut filter was adjusted relative to the Fedem2 processing protocol, to reduce 

interference caused by movement. Baseline correction was applied by subtracting 

the mean value of the signal per channel. Extreme outliers were removed using a 

Hampel filter at a 600 samples (600ms) window. The first and last 1000 samples (1 

second) from each recording were excluded from the processed signal, before 

segmenting data into epochs (details below). 

Next, the signals were normalised using the min-max normalisation method 

(1), where the normalised signal was calculated by subtracting the minimum value 

across the four recordings per user (x1-4: 3VEs and voluntary expressions) and 

Figure 61.  Flow chart of the EMG signal processing steps. 
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dividing by the difference of the maximum value across recordings minus the 

minimum value. 

 

Equation 1.  Minimum-Maximum normalisation. 

 

𝑥𝑛𝑜𝑟𝑚 =  
𝑥 − min(𝑥1, 𝑥2, 𝑥3, 𝑥4)

(max(𝑥1, 𝑥2, 𝑥3, 𝑥4) − min(𝑥1, 𝑥2, 𝑥3, 𝑥4))
 (1) 

 

Two approaches were used to epoch the data: an event-data based approach 

and a standard rolling-window approach. In the event-based approach, data epochs 

were selected based on the event markers. The epoch length has a minimum length 

of 10 seconds, reaching up to 20 seconds, from the beginning of an event marker 

(duration of the events was relative to user’s interaction). The average range of 

event-markers per recording was 10-14 per participant. Afterwards, the root mean 

square (RMS) value of the signal of the epoch (Equation 2) was computed. 

 

Equation 2. Root mean square of EMG signal. 

 

𝑅𝑀𝑆 = √
1

𝑁 
∑ 𝑥𝑛

2

𝑁

𝑛−1

 (2) 

where xn is the signals from the EMG channels, and N is the length of xn. 

 

In the standard-rolling window approach, rolling window epochs with the size of 

5000 samples (5 seconds) with 2500 samples (2.5 seconds) overlap between 

windows were analysed. Since the duration of the recording varied between 

participants, the number of epochs was relative to the overall duration of the 

recording. The following descriptive statistics of the RMS signal were calculated per 

epoch: median, minimum, maximum, and standard deviation.  

Photoplethysmographic signal (PPG) 

The PPG data from the EmteqVR interface (sampling rate: 1000Hz) was 

processed to reduce noise artifacts and extract information on the heart-rate peaks 

(R-R wave). The PPG data was filtered with a Butterworth bandpass filter (0.5 – 

4Hz). A Hampel filter was applied (300 samples (300ms) window) to remove any 
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outliers. The data were synchronised with the EMG data and epochs were created 

for the EMG and PPG data in exactly the same way to create comparable data. 

The R-peaks were detected using the ‘findpeaks’ [470] MATLAB’s function 

using custom values to constrain the detection. More specifically, the function was 

applied twice. In the first run the mean peak amplitude for the whole recording was 

assessed, excluding the first and last second of the recording. The second time, we 

run the peak detection function again on the whole signal, by setting the minimum 

peak prominence to be equal to the previously calculated mean peak amplitude 

divided by 5 and minimum peak distance set to 300 samples.  

The number of beats-per-minute (BPM) and the mean inter-beat-interval (I-

B-I) were calculated from the R-R wave. In addition, the pulse-rate variability (PRV) 

was measured by calculating root mean square of the successive differences 

(RMSSD), and the standard deviation of the NN (R-R) intervals (SDNN) using the 

HRV tool designed by Marcus Vollmer [471]. This tool has been used in similar 

studies for HRV related biometric measurements in the past [472]–[474].  

 Self-rating values from CASR 

The data from the CASR tool, were synchronised with the physiological 

signals using the system time stamps. The data were epoched along with the EMG 

and PPG signals while considering the average human response-delay of 200ms 

[475]–[477]. Median valence and arousal values were calculated for each epoch. 

 

6.2.6. Machine learning strategy & approaches. 

A rolling window-based dataset was constructed by combining the data 

corresponding to each epoch from all modalities used, i.e., EMG, PPG, CASR. Two 

different approaches were adopted (see also section 3.6),  

a) a user-independent approach by building a classification model based 

on the combination of data across participants, and then data is randomly 

split to cross-validate the classifiers, 

b)  a second user-independent approach in which data from users were kept 

separately for training and testing of the models  

c) A user-dependent “causal” approach, by building a personalised model 

per user. We used data obtained from the start of the recording session 
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for training the classifiers, and then validated them with the subsequent 

data of the user’s session (see details below). 

For both approaches we used three classifier methods, i.e., a C-Support Vector 

Machine (SVM), a Naive-Bayes (NB), and a k-nearest neighbour (KNN) classifier 

method. These classifiers have been suggested and used in affect recognition studies 

before and they showed promising results [327]–[328]. More specifically,  KNN was 

used for f-EMG and heart-rate signals [376], [377], SVM for the discrimination of 

facial muscular activations [369], [378]–[381], and NB for affect detection from 

physiological signals [310], [382], [383]. Thus, they were our choice in this study. 

Automatic hyperparameter tuning was applied to optimise the penalty parameter σ 

and the kernel function parameter (γ) for the radial basis function (RBF) of the 

SVM[408], the distance metric and the k variable of the KNN[478], and the ‘width’ 

or Kernel smoothing window width parameter of the NB [479]. For binary svm 

classification the ‘fitsvm’ function in Matlab® was used, and for multiclass 

classification we used the ‘fitcecoc’ function [480]. Similarly, the MATLAB® 

functions ‘fitknn’[481] and ‘fitcnb’[479] were used for the optimisation of the 

parameters of the KNN and NB classifier. 

For the user-independent approach, 30% of the participants were randomly 

selected for the hyperparameter optimisation, and the remaining participants (70%) 

were used for the cross-validation. This was done for each classifier. For the user-

dependent approach, the first 70% of the data of each participant was used as training 

set, and the remaining 30% as the testing. In other words, the temporal sequence of 

recordings was preserved for each user for causality purposes. The sets used for the 

user-independent approach and the user-dependent’s testing sets were normalised by 

subtracting the median (Md) values and dividing by the median absolute deviation 

of the training set(s) (Equation 3). 

 

Equation 3.  Normalisation formula used on datasets prior to classification. 

 
𝑥𝑛𝑜𝑟𝑚 =

(𝑥 − 𝑀𝑑)

𝑀𝑑(|𝑆𝐷(𝑥)|)
 

(3) 

 

The models were evaluated by calculating the accuracy level and F-scores. 

All the algorithms were developed in Matlab© R2019b. 
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 Results 

This section includes a description of the findings, divided into four main sections 

related to the research hypotheses listed in section 6.1.  

 

1. Section 6.3.1 contain the analysis of subjective self-reported behavioural rating 

data (hypotheses 1- 5).  

2. Section 6.3.2 presents physiological data analysis and classification data analysis 

of posed facial expressions (hypothesis 6). 

3. Section 6.3.3 contain the physiological data analysis from the event-markers in 

the three VEs for both groups (hypotheses 7-9). 

4. Section 6.3.4 contain the classification of valence and arousal changes from 

rolling time-windows of physiological data of the three VEs for both groups. 

This section is further divided into three classification approaches: user-

independent with and without pooling data from different participants, and a 

user-dependent prediction approach (hypotheses 10-11). 

 

The post-VE arousal and valence ratings per scene and the continuous self-ratings 

via the CASR tool are analysed in section 6.3.1.; enabling us to investigate the 

affective ranges evoked by the VEs, for the active and passive groups (Hypotheses 

1 and 2). Additionally, the memory accuracy scores per event and averaged for each 

VE are analysed across participants to allow for the comparison of affective against 

neutral VE scenarios (Hypothesis 3). Next, the presence scores as reported in the 

VR experience are compared between the two interaction modes (groups) and 

between the affective and the neutral VE conditions (Hypothesis 4 and 5). 

 

In Section 6.3.2 the analysis of the three voluntary expressions (smile, frown, 

surprise) the participants were instructed to perform after the VR experience are 

analysed. This step was performed to test the sensitivity of the EMG sensors to detect 

these posed facial expressions (Hypothesis 6) Additionally, three competitive 

classifiers were used to detect these expressions.  

 

In Section 6.3.3 an event-based analysis of spontaneous responses per VEs presented 

using data recorded from the EMG and PPG sensors throughout the VR experience. 

This analysis allowed the view of the physiological changes caused by event-stimuli, 
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and the strength of the sensor measures on discriminating between the affective VEs 

(Hypothesis 7,8). The differences of the measures to discriminate the VE conditions 

are examined per group (Hypothesis 9).  

 

The final section, 6.3.4 includes on the classifications tests we performed on the 

spontaneous responses collected via physiological data during the VR experience.  

EMG data were used for the training of classification models for valence detection, 

and PPG data were used for the arousal detection. The continuous self-ratings were 

used to evaluate the performance of the classifiers (additionally for Hypothesis 7 and 

8). For all analyses described, the classification tests are performed on data from the 

total participant population, and also separately for the active and passive groups. 

The user-independent classification tests were performed twice (per approach), in 

order to explore the relationship between classicisation performance and the ability 

of the trained model to detect affect reliably using new users’ data (Hypothesis 10). 

These were: a user-independent approach by pooling users’ data together, and a user-

independent by separating data from participants between training and testing sets. 

Additionally, the superiority of user-dependent (one model per user) classification 

against use-independent models was explored in the last subsection (Hypothesis 11).  

 

6.3.1. Participants’ self-assessment: Valence and arousal ratings 

In this section, the participants subjective valence and arousal ratings are analysed. 

This analysis relates to the hypotheses 1, 2, 3, 4 and 5.    

 Mean valence and arousal ratings (post-VE).  

Table 21 and Figure 64 display the mean valence and arousal ratings that were 

reported by the participants after each VE experience. The ratings are shown for each 

VE (neutral, positive, negative) and the passive and active groups separately. For the 

VE ratings, they seem follow the expected pattern of results. These data were 

analysed with mixed 3x2 ANOVA with the within-participant factor VE (positive, 

neutral, negative) and the between-participant factor Group (passive vs. active 

group) for the valence and arousal ratings separately.  
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Table 21. The mean valence and arousal ratings reported by all the participants (overall), the 

participants within the Active group (Active) and the Passive group (Passive). Standard 

deviations are presented in brackets. Valence ranged from 1 = negative, to 9 = positive, and 

arousal from 1 = low to 9 = high. 

 Negative VE Neutral VE Positive VE 

 Valence Arousal Valence Arousal Valence Arousal 

Total 

(N=291) 3.39 (±1.79) 6.25 (±1.83) 4.62 (±1.45) 2.65 (±1.85) 6.79 (±1.61) 4.98 (±2.03) 

Active 

(N=139)  3.88 (±2.13) 6.50 (±1.77) 4.96 (±1.52) 2.78 (±1.89) 7.43 (±1.25) 5.41 (±2.11) 

Passive 

(N=152)  3.39 (±1.79) 5.80 (±2.03) 4.41 (±1.49) 2.52 (±1.78) 6.20 (±1.65) 4.51 (±2.09) 

 

 

Valence Ratings: The mixed ANOVA results revealed a main effect of VE 

(F(1.877, 542.532) = 340.270, p< .001).  Post-hoc paired t-tests showed that valence 

ratings were significantly different for positive vs neutral VEs (M±SD: 6.79±1.61 vs 

4.62±1.45; t(290)=18.285, p<.001), negative vs. neutral VEs (3.40±1.80 vs 

4.62±1.45; t(290)=8.674, p<.001) and positive vs. negative VEs (6.79±1.61 vs 

3.40±1.80; t(290)=23.694, p<.001). Secondly, the main effect of group was also 

significant (F(1, 289) = 22.044, p< .001), meaning that the active group had higher 

valence ratings across all VEs compared to the passive group (5.19±0.92  vs 

4.70±0.90). More importantly, the interaction between the factors VE and group was 

also significant (F(1.877, 542.532) = 10.708, p< .001). This interaction was further 

analysed with parametric post-hoc t-tests. For both groups, significant valence rating 

differences were present between all three VEs, as assessed with paired t-tests (all 

t≥5.309, all p<.001). Importantly, the interaction was caused by significant group 

differences in their valence ratings for the positive VEs (t(280.321)=6.943, p<.001), 

1
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Figure 62. Mean valence ratings (left) and mean arousal ratings (right) of VEs per group 

(VEs: 1= Negative, 2 = Neutral, 3 = Positive).  
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but there were no group differences for the neutral (t(289)=0.650, p=.516) and 

negative VEs (t(270.001)=0.847, p=.398; see Table 21 and Figure 64, left panel).  

 

Arousal Ratings: The mixed ANOVA results revealed a main effect of VE 

(F(1.987, 574.188) = 337.599, p< .001).  Parametric paired t-tests showed that 

arousal ratings were significantly different for positive vs neutral VEs (M±SD: 

4.98±2.03 vs 2.66±1.85; t(290)=17.057, p<.001), negative vs. neutral VEs 

(6.25±1.83 vs 2.66±1.85; t(290)=24.584, p<.001) and positive vs. negative VEs 

(4.98±2.03 vs 6.25±1.83; t(290)=9.071, p<.001). Secondly, the main effect of group 

was also significant (F(1, 289) = 7.991, p=.005), meaning that the active group had 

higher arousal ratings across all VEs compared to the passive group (4.85±1.27 vs 

4.43±1.30). The interaction between the factors VE and group was not significant 

(F(1.987, 574.188) = 1.954, p= .143; see Table 21 and Figure 64, right panel).  

 

Inter-rater agreement. The agreement scores between participants were calculated 

using the coefficient of variation (CV) per dimension. Higher agreement (<55%) was 

found amongst participants ratings for the affective scenes (Negative VE: CV = 

52.81% (valence), 29.25% (arousal). Positive VE: CV = 23.73% (valence), 40.63% 

(arousal)), with the exception of the neutral VE which scored high only on valence 

agreement (CV = 31.26%) but low on arousal scores (CV= 69.56%).  The points of 

Figure 65 shows the mean arousal and valence scores per VE together with their 

standard deviations (error bars). The CV is represented as the mean value between 

the two axes per VE as the width of the circle. 
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Figure 63. Mean agreement scores per VE represented by circles. The centre of circle 

signifies the mean value for the arousal and valence ratings per VE, while the width 

represents the mean CV scores for arousal and valence. The vertical and horizontal lines 

represent the standard deviation of ratings per axis. 
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 Event-related valence and arousal CASR rating scores 

Figure 66 shows the mean valence and arousal CASR ratings for each VE and group 

(active and passive) separately. In this initial analysis, CASR ratings were averaged 

for events of a specific VE.   

CASR valence ratings – A mixed ANOVA results revealed a main effect of VE 

(F(1.905, 550.515) = 511.975, p< .001), meaning that valence ratings were 

significantly different for positive vs neutral VEs (M±SD: 1.41±0.32 vs 0.99±0.27; 

t(289)=18.671, p<.001), negative vs. neutral VEs (0.63±0.33 vs 0.99±0.27; 8.007, 

t(289)=14.255, p<.001) and positive vs. negative VEs (1.41±0.32vs 0.63±0.33; 

Z=13.560, 28.127, p<.001). Secondly, the main effect of group was also significant 

(F(1, 289) = 204.830, p< .001), meaning that the active group had higher valence 

ratings across all VEs compared to the passive group (1.06±0.17 vs 0.97±0.20). Most 

importantly, the interaction between the factors VE and group was also significant 

(F(1.905, 550.515) = 16.715, p< .001). This interaction was further analysed with 

post-hoc t-tests. For both groups, significant valence rating difference were present 

between all three VEs, as assessed with paired t-test (all t≥8.585, all p<.001). 

However, the groups only differed in their valence ratings for the positive VEs 

(t(256.460)=7.423, p<.001), but not for the neutral (t(272.263)=1.492, p=.131) and 

negative VEs (t(289)=.426, p=.670), as assessed with independent t-tests.  

 

CASR arousal ratings - The mixed ANOVA results revealed a main effect of VE 

(F(1.977, 571.386) = 246.697, p< .001).  Post-hoc t-tests showed that arousal ratings 

Figure 64. Mean valence CASR ratings (left) and mean arousal CASR ratings (right) of 

VEs per group (VEs: 1= Negative, 2 = Neutral, 3 = Positive). 
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were significantly different for positive vs neutral VEs (M±SD: 1.06±0.38 vs 

0.54±0.36; t(289)=18.670, p<.001), negative vs. neutral VEs (1.13±0.37 vs 

0.54±0.36; t(289)=19.189, p<.001) but not for positive vs. negative VEs (1.06±0.38 

vs 1.13±0.37; t(289)=2.163, p=.093, not significant after Bonferroni correction). 

Secondly, the main effect of group was also significant (F(1, 289) = 368.093, 

p<.001), meaning that the active group had higher arousal ratings across all VEs 

compared to the passive group (0.96±0.26 vs 0.86±0.23). Finally, the interaction 

between the factors VE and group was also significant (F(1.977, 571.386) = 9.472, 

p<.001). This interaction was further analysed with post-hoc t-tests. For the passive 

group, significant arousal rating differences were present between all three VEs, as 

assessed with paired t-tests (all t(138)≥4.790, all p<.001). This was not the case for 

the active group. Here, arousal rating differences were only present between the 

positive and neutral VE (t(138) = 13.673, p<.001) and the neutral and negative VE 

(t(138) = 11.613, p<.001). However, there was no arousal rating difference between 

the positive and negative VE (t(138)=1.605). Furthermore, independent post-hoc t-

tests comparing both groups for each VE showed the following pattern. Arousal 

ratings differed between the active and passive group for the positive VE 

(t(289)=5.261, p<.001) but not for the neutral VE (t(289)=2.394, p=.050 and the 

negative VE (t(289)=0.391, p=.554). 

 

After the analysis of the mean CASR ratings for each VE and group, we 

investigated the valence and arousal ratings for each event within each VEs 

(based on event-markers) using the CASR ratings. These event-related valence and 

arousal ratings are presented for each VE and for both groups in Figure 67. The mean 

arousal and valence ratings of the events are grouped by colour, within cartesian 

system following the structure of the circumflex model of affect. A so-called ‘V-

shape relation’[458] is observed with the in-experience continuous ratings in the AV 

space. The mean rating per event per group are grouped by outline colour as ‘A’ for 

Active group (blue outline) and ‘P’ for the passive group (orange outline). The figure 

clearly shows that the event ratings follow the expected distribution within the AV 

space, following the initial stimuli design. However, there is one exception, the 

passive group rated the positive events as less positive and less arousing and, 

surprisingly, sometimes even as negative in combination with low arousal, when 

compared to the active group. These group differences were not found for negative 
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events, but they might explain the positive valence rating differences between the 

groups. This will be further discussed in section 6.4)   

 

 

The findings so far have shown that arousal and valence ratings for the positive, 

neutral, and negative VEs were as expected (manipulation check). This was the case 

for both the passive and the active groups. More specifically, there was a clear 

difference between the valence ratings for the three VE conditions for both the end-

of-scene ratings and for the CASR event-based ratings. Valence ratings were lowest 

for positive events / VEs, at a medium level for neutral events / VEs, and highest for 

negative events / VEs. Interestingly, valence ratings were more positive for the active 

group compared to the passive groups for the positive VE only, which can be 

explained when having a closer look at the event-based ratings. These ratings showed 

that positive events were sometimes seen as positive and sometimes as negative 

Figure 65. Valence-Arousal coordinates for each event marker, grouped by colour for each 

VE (negative-pink, positive-green, neutral-blue). The event markers are divided in scores 

derived from the Active ("A") denoted by a blue outline and the Passive group ("P") denoted 

by orange outline. 
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(with very low arousal levels) in the passive positive condition. Concerning the 

arousal ratings, these were also as expected for both the end of scene and the CASR 

event-based ratings. Saying that the CASR arousal ratings were more sensitive to the 

event-based differences in the positive condition (as already discussed above). 

Reasons for these event-based rating differences between the passive and active 

groups in the positive condition will be further explored in the discussion below. 

 Memory Accuracy Scores  

This section links to hypothesis 3. The memory accuracy scores were calculated per 

event across participants and the average memory accuracy scores calculated per VE. 

As shown in Figure 68, the mean memory 36.10±12.47 for the neutral VE, 

33.24±15.95 for the negative VE, and 37.19 ±15.03 for the positive VE. The memory 

accuracy scores are presented separately for the active and passive groups in Figure 

69. 

 

 
 

Memory accuracy scores are normally distributed, based on z-score analysis of 

skewness and kurtosis values. A mixed 3x2 ANOVA with the within-participant 

factor VE (positive, neutral, negative) and the between-participant factor Group 

(passive vs. active group) was conducted. The findings showed a significant effect 

of VE (F(1.909, 551.595) = 38.731, p< .001) showing that memory scores were 

significantly different for positive vs neutral VEs (t(290) = 4.09, p <.001), negative 

vs. neutral VEs (t(290) = 3.08, p=.006) and not for positive vs. negative VEs (t(290) 
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Figure 66. Plot showing the mean memory 

scores per condition (VE) for all participants. 

Error bars are standard deviations. 

Figure 67.  Plot presenting the mean 

memory scores and standard deviation 

from the Active (blue) and the Passive 

group (orange) per VE. 
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= 1.30, p = .57). The main effect of group was also significant (F(1, 289) = 25.111, 

p< .001), meaning that the active group remembered the events better than the 

passive group (Mas_active = 37.76% vs Mas_passive = 33.45%). Most importantly, 

the interaction between the factors VE and group was also significant (F(1.909, 

551.595) = 24.214, p< .001). This interaction was further analysed with post-hoc t-

tests (with Bonferroni Corrections).  

When looking at group differences for each VE separately, independent t-

tests revealed that the active group had higher memory scores for the positive VE 

(t(289) = 5.19, p<.001) and for the negative VE (t(289) = 4.37, p<.001) compared 

to the passive group. However, memory scores were similar for both groups in the 

neutral VE.  

The following pattern can be reported, when comparing VEs for each group 

separately with paired t-tests. For the active group, memory scores were higher for 

the positive compared to the neutral VE (t(138)=7.57,p<.001) and for the negative 

compared to the neutral VE (t(138) = 5.99, p<.001). However, there was no 

significant difference between the positive and negative VE after Bonferroni 

correction (t(138)=1.87, p=1.89). For the passive group, memory scores were not 

significantly different between the three VEs (Positive vs neutral t(151) = .93, 

p=1.068, Negative vs Neutral t(151) = .80, p=1.266, Negative vs Positive t(151) = 

.136, p=2.676).  

This analysis shows that memory accuracy was higher in the active 

compared to the passive group. Moreover, memory accuracy was modulated by VE 

type in the active group but not the passive group. In the active group. memory 

accuracy was enhanced for the affective conditions (positive and negative) compared 

to the neutral conditions. This effect was expected and it supports past research on 

the link between enhanced memory in conditions of affective elicitation (see section 

2.3.3.2).   

 Presence scores 

The analysis of the presence scores is related to hypothesis 4 and 5 predicting that 

participants will feel higher levels of presence in the active compared to the passive 

group, and higher levels of presence in the affective VEs compared to the neutral 

VE. This seems to be indeed the case, as shown in Figure 70 which displays presence 

ratings for both groups and all three VE conditions.  
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A mixed ANOVA with the factors VE (positive, negative, neutral) and group (active 

vs passive) was conducted to analyse these data. Results showed that the main effect 

of group was significant (F(1, 289) = 88.863, p<.001), meaning that the active group 

had indeed higher presence ratings across all VEs compared to the passive group 

(6.47±1.42 vs 4.54±2.00). Secondly, the main effect of VE was also significant (F(2, 

578) = 13.724, p< .001).  Non-parametric Wilcoxon Rank signed tests showed that 

valence ratings were significantly different between the positive vs neutral VEs 

(M±SD: 5.65 ±2.32 vs 5.11 ±2.35; Z=4.734, p<.001), the negative vs. neutral VEs 

(5.64 ± 2.26 vs 5.11 ±2.35; Z=4.634, p<.001) but not between the positive vs. 

negative VEs (5.65 ±2.32 vs 5.64 ± 2.26; Z=0.033, p=.974). Finally, the interaction 

between the factors VE and group was not significant (F(2, 577.964) = 0.972, p= 

.379).  

In summary, this finding shows that presence scores were higher in the 

active compared to the passive group, and higher in both affective VEs compared to 

the neutral VE. There was no presence difference between the positive and negative 

VE.   

 

To summarize the findings from this section, the key finding is that we were able to 

validate the use of immersive VE as emotion induction tool. VE scenes, events and 

objects that were previously validated with the online survey described in Chapter 5, 

elicit expected valence, arousal and presence rating in this re-validation within VR 

settings. The three VEs were able to evoke the targeted ranges of valence and arousal 
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Figure 68. Presence scores of the active and passive group per each VE. Error bars 

display standard deviations.  
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ratings across all participants. This confirmed out first hypothesis (Hypothesis 1). 

Note, an exception was the passive positive VE, were some events surprisingly 

evoked negative, low arousal ratings. Secondly, as expected arousal ratings were 

significantly higher for the active group compared to the passive group (Hypothesis 

2). Thirdly, and in line with the previous findings, memory accuracy was higher in 

the active compared to the passive group. Moreover, memory accuracy was 

modulated by VE type in the active group but not the passive group. In the active 

group. memory accuracy was enhanced for the affective positive and negative 

conditions compared to the neutral conditions (Hypothesis 3). Finally, presence 

ratings were higher in the active compared to the passive group (Hypothesis 4) and 

higher in both affective VEs compared to the neutral VE independent of group 

assignment (Hypothesis 5).  

In the next two sections, the analysis of the physiological measures will be 

presented, firstly for the voluntary facial expression (section 6.3.2) and then for the 

spontaneous responses within the three VEs (section 6.3.3).  

6.3.2. Analysis and Classification of Voluntary Expressions 

This section will report the analysis of the physiological measures from the voluntary 

facial expressions. This was done to validate and explore the sensitivity of the EMG 

sensors to detect voluntary facial expressions (hypothesis 6), the voluntary 

expressions recorded after the VE experience were analysed, and the between-

channels comparison per expression are presented in the next section. The three 

chosen facial expressions are involved in the activation of the muscles underlying 

the EMG sensor locations [122]. As a reminder, some commonly used emotional 

expressions are characterised by specific facial muscle configurations [97][482]. 

Although, the level of activation and morphology of the expressions many vary 

between individuals, it is supported that in general positive and negative affect can 

be reliably distinguished from the zygomaticus major and corrugator muscle activity 

[124]. From those ‘basic’ or ‘predominant’ expressions of emotion [97], [118], in 

our study we chose the facial expressions of happiness (smile), anger (frown) and 

surprise (raising eyebrows). The EMG recordings of those three expressions, (step 6 

of the study protocol, after the VE experiences) were pre-processed, analysed, and 

then fed into three classifiers. The expression data were extracted from the recording 

of N=287 participants instead of 291 (due to 2 incomplete datasets and 2 corrupted 

data sets). The average RMS of the activation of each EMG sensor (referred to as 
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‘channels’) was calculated per expression across three repetitions (each repetition 

lasted 6 seconds).  

For each expression, a different pattern of channel activations was expected, 

see Table 22. Specifically, for smile we expected predominantly higher activation in 

channels 1,2 (zygomaticus) and some activation on the sensors positioned next to the 

eyes corresponding to channels 5 and 6 (orbicularis oculi). During frowning, higher 

activation in channel 7 (corrugator), some activation on channels 5 and 6 on the 

orbicularis oculi and some subsequent co-activation of the channels 3 and 4 caused 

by lowering the eyebrows (frontalis)[483] were expected. For the surprise 

expression, higher activation on the sensors on the frontalis caused by the elevation 

of the brows, reflected on channels 3 and 4 was anticipated. The EMG measures 

were hypothesised to be sensitive and capable at discriminating between the three 

voluntary expressions (Hypothesis 6), which would support the system’s ability to 

detect facial muscle activations across individuals while wearing a VR headset. 

Table 22. EMG channels to corresponding facial expressions and the generated actions based 

on [43], [484] 

Selected Basic 

Expressions 
Actions expected Facial muscles involved 

Corresponding 

EMG channels  

Smiling happily 
Closing eyelids 

Pulling mouth corners  

Orbicularis oculi 

Zygomaticus major  

5 

1 

6 

2 

Surprise 
Raising eyebrows 

Raising upper eyelid  

Frontalis Levator  

Levator palpebrae superioris 

3 4 

Anger 

 

Lowering eyebrows 

Closing eyelids 

Corrugator supercilii (effect 

of frontalis) 

Superioris Orbicularis oculi  

   7  (3, 

 

5 

4) 

 

6 

 

Physiological Data Analysis for Voluntary Expressions 

 

Figure 71 shows the median RMS activations and standard deviations per expression 

for each channel. As shown in the figure, differences in the RMS activation patterns 

between the expressions are observed which agree with our initial expectations. 

These patterns were tested with non-parametric Friedman tests because data were 

non-gaussian.  
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RMS comparisons across channels between expressions. Friedman’s related 

samples test showed that the median (Mdn) activations of EMG channels per 

expression were significantly different (χ2(2) = 41.94, p<.001), with the smile 

expression yielding the highest activation compared to the other two expressions. 

The activation of the smile expression (Mdn: 0.12) was significantly higher than 

frown (Mdn.:0.07) (Z = -7.95, p<.001), the activation of the surprise expression 

(Mdn:0.10) significantly higher than the frown one (Z= -6.08, p<.001) and the 

median activation during the surprise expression significantly lower than the smile 

expression (Z = -3.57, p<.001). 

 

Comparison between channels per expression. To determine the differences 

between expressions based on the individual EMG channel activation, related-

samples Wilcoxon tests were conducted to compare the median RMS values of the 

three expressions separately for each channel. The results from the tests are reported 

for channel pairs (e.g., channel 1 and channel 2, referred to as ‘CH.1-2’) as these 

sensors have been placed in mirrored locations, i.e., on the left and right facial muscle 

of the same type (e.g., Zygomaticus Major left, Zygomaticus Major right), with the 

exception of channel 7 which is located on the corrugator supercilii muscle. 

 

EMG channels 1-2. Channel 1 (Zygomaticus left) was found to be significantly 

higher in the smile expression (Mdn: 0.19) than the frown (Mdn: 0.03) and the 

surprise (Mdn: 0.02) (Smile-Surprise: Z=14.46, p<.001, Smile-Frown: Z=10.79, 

p<.001, Frown-Surprise: Z=9.43, p<.001). Similarly, Channel 2 (Zygomaticus 

Figure 69. Bar chart showing the median RMS activations per channel for each expression 

(Frown, Smile, Surprise) with their standard deviations. 
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right) was also found to increase significantly in the smile expression (Mdn: 0.19) 

against the surprise (Mdn: 0.02) and the frown (Mdn: 0.03) (Smile-Surprise: 

Z=14.40, p<.001, Smile-Frown: Z=11.00, p<.001, Frown-Surprise: Z=10.215, 

p<.001).  

 

EMG Channels 3-4. Channel 3 (Frontalis left) was found to activate higher during 

the surprise expression (Mdn: 0.24) than the frown (Mdn: 0.07) while remained low 

during smiling (Mdn: 0.03) (Surprise-Smile: Z=14.10, p<.001, Frown-Smile: 

Z=10.74, p<.001, Frown-Surprise: Z=-13.30, p<.001). Similarly Channel 4 

(Frontalis right) was also significantly higher during the expression of surprise (Mdn: 

0.24) against frown (Mdn: 0.07) and smile (Mdn: 0.03) (Surprise-Smile: Z=14.30, 

p<.001, Frown-Smile: Z=11.49, p<.001, Surprise- Frown: Z=13.35, p<.001).  

 

EMG Channels 5-6. Channel 5 (Orbicularis Oculi left) was significantly higher in 

the expression of smile (Md:0.12) than frown (Md:0.04) and surprise (Md: 0.03) 

(Smile-Surprise: Z=13.92, p<.001, Smile- Frown: Z=9.75, p<.001, Frown- 

Surprise: Z=4.96, p<.001). Channel 6 (Orbicularis Oculi right) followed the same 

pattern as channel 5, activating significantly higher in the smile expression 

(Md:0.11) than the frown (Md:0.04) and surprise (Md: 0.04) expressions (Smile-

Surprise: Z=13.73, p<.001, Smile- Frown: Z=9.66, p<.001, Frown- Surprise: 

Z=4.45, p<.001). These channels were expected to activate predominantly during 

smiling, as in genuine ‘Duchenne’ smile (section 2.3.2). 

 

EMG Channel 7: Channel 7 (Corrugator supercilii) was activated significantly 

higher in the frown expression (Md:0.09) against the surprise (Md:0.08) and smile 

(Md:0.02) expressions (Surprise-Smile: Z=12.85, p<.001, Frown-Smile: Z=13.18, 

p<.001, Frown- Surprise: Z=3.33, p=.001).  

 

Overall, the results showed significantly higher RMS activation of channels 1,2,5,6 

during the smile expressions, channels 7,3,4 for the frown expression and 3,4 for the 

expression of surprise which was in alignment with our expectations. 

Comparisons between the active and passive groups.  

As a next step, RMS activations were compared by averaging the three expressions 

across channels but for the active and passive groups separately. Notably, median 
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RMS activation were significantly higher across expressions for the active group 

(Mdn: 0.12) compared to the passive group (Mdn: 0.09), as assessed with a Mann-

Whitney U test (U: 6457.00, p <.001). When comparing the groups for the 

expressions separately, the following results were found. The Mann-Whitney U tests 

per expression determined that indeed the activation during the expression of smile 

(Active Mdn.: 0.16, Passive Mdn.: 0.08, U=5,375.00, p<.001) and surprise (Active 

Mdn.: 0.12, Passive Mdn.: 0.08, U = 6,806.00, p<.001) were statistically higher 

within the active group by comparison to the passive. There was no significant group 

difference in median activations for the frown condition (Active Mdn.: 0.08, Passive 

Mdn.: 0.07, p>.05). 

Figure 72 shows the median RMS activation for each channel and expression 

while comparing the active and the passive group. Group differences in RMS 

activations seem to be enhanced for the ‘expressive’ channels. For example, on 

channel 1 and 2 (Zygomaticus) and channel 5 and 6 (Orbicularis oculi) during 

smiling. These group differences were tested using Mann-Whitney U tests and 

significant differences were found between the two groups on channels 1,2,3,5.6 for 

the smiling expression, channels 1,2,3,4,7 for the frowning expression, and channels 

2,3,4,5,6 for the surprise expression (see  

Table 23). 
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Figure 70. Bar plots showing median activation of each channel per expression for each group 

(Active (orange), Passive (blue). 
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Table 23. Table presenting the findings for the comparisons of the active and passive groups 

for each EMG channels and for each of the three expressions. Data were analysed using 

Mann-Whitney U tests.  

 

Expression Channels U Sig.(p) 

Smile 

EMG_channel 1 5,278 <.001 

EMG_channel 2 5,821 <.001 

EMG_channel 3 8,422 .009 

EMG_channel 4 10,272 .995 

EMG_channel 5 6,646 <.001 

EMG_channel 6 6,144 <.001 

EMG_channel 7 9,265 .153 

Frown 

EMG_channel 1 12,912 <.001 

EMG_channel 2 12,308 .004 

EMG_channel 3 7,352 <.001 

EMG_channel 4 8,335 .006 

EMG_channel 5 11,379 .114 

EMG_channel 6 11,288 .146 

EMG_channel 7 6,294 <.001 

Surprise 

EMG_channel 1 8,932 .057 

EMG_channel 2 8,675 .023 

EMG_channel 3 6,368 <.001 

EMG_channel 4 7,441 <.001 

EMG_channel 5 7,532 <.001 

EMG_channel 6 7,880 .001 

EMG_channel 7 9,093 .094 

Bold at a significance level of .05 / Asymptotic Sig. (2-sided) 

 

Due to the nature of the experiment participants completed the voluntary expression 

mimicry step after the VR experience. We did not expect to observe significant 

differences on the overall EMG activation between the two groups, as the group 

selection was randomised, and the experimental procedure was followed similarly 

for both groups. It is possible that the overall EMG activation differences between 

the participants was due to the effect of the VR experience and the interactivity it 

entailed. Participant of the passive group could be less inclined to perform salient 

expressions with respect to the participants of the active group. Perhaps such 

activation difference in the active group could be resulted from the intense muscle 

activation during the VR experience, which acted like a ‘warm up’ exercise (similar 

to those that actors do before a show). 

To investigate further this between group difference, correlation analysis 

was conducted between the mean activation across channels and mean scores of 

enjoyability (1 value, ranging from 1=’I didn’t enjoy’, to 9= ‘I enjoyed very much’), 

presence scores, the overall duration spent in the VR experience (which was variable 

for each individual; expressed in seconds), and the expressivity scores for all users. 

A statistically significant positive correlation (Spearman’s correlation) was found 
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between the mean RMS activation and the mean presence scores (r = .152, p=.010) 

and a significant positive correlation with the mean enjoyment scores (r = .120, 

p=.042). The mean RMS activation was not found to significantly correlate with the 

duration of the experience and the expressivity scores. These observations allow us 

to assume that participants who attained higher level of presence (as in the active 

interaction mode) and the ones who enjoyed the VR experience were more inclined 

to perform stronger facial expressions, regardless of the time spent in VR or their 

expressivity scores. 

Classification of voluntary expressions 

Having analysed the effect of voluntary expressions of the EMG signals which 

served as a test for the equipment used [485], we examined the feasibility of 

distinguishing the three voluntary expressions with further classification tests. A 

standard classification protocol was tested using the voluntary expression. The role 

of this first analysis was to evaluate the feasibility of decoding facial activations form 

our EMG signals data before applying it to the spontaneous affect detection data 

(section 6.3.4) collected during the VR experiences in the VEs. The classification 

tests and critical results for the automatic voluntary expression detection within VR 

will be presented in this subsection.  

 

Procedure. The mean and standard deviation of the RMS activation values per 

expression across all participants were labelled based on corresponding expression 

(1=smile, 2=frown, 3=surprise) and were fed into three competitive classifiers, 

namely a Support Vector Machine (SVM) with radial basis function (RBF) kernel, a 

K-nearest Neighbour (KNN) and a Naïve Bayers (NB). The performance of the three 

classifiers was tested through via 10-fold cross validation.  

To assess the importance of the features derived from the EMG channels 

towards the classification of the three expressions, the Minimum Redundancy 

Maximum Relevance (MRMR) algorithm was used [486]. The aim of the MRMR 

was to measure the ability of the predictors (features) to identify the classification 

label, by quantifying the redundancy and relevance of the features. These concepts 

are defined by the mutual information of the features. In short, the mutual 

information measures how much uncertainty of one variable that can be reduced by 

knowing the other variable [486]–[488]. More specifically, in this approach a large 

MRMR score represents confidence in the selected feature for predicting the class 
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label. In practice, by reducing the number of features in a subset, the required 

computation cost can be significantly reduced. This algorithm has been used in 

similar studies, e.g. [489], [490]. 

 

Classification results. The out-of-sample, 10-fold cross-validated accuracy for the 

detection of the three expressions achieved was 80.02% using SVM, 79.67% using 

KNN, and 75.38% using NB, using all features from all the EMG channels (Table 

24). The features included average amplitudes (RMS) per channel, i.e., ‘mCh1’ 

(mean value for channel 1), and the standard deviation per channel, i.e., ‘sdCh1’ 

(standard deviation of values for channel 1). Reducing the features (the predictors) 

to 8 out of 14 (by setting a threshold based on the standard deviation of the predictor 

MRMR scores, see Figure 73) minimally reduced the accuracy per each classifier to 

79.09% with SVM, 79.21% with KNN, and increased the accuracy to 75.61% with 

NB (

 

Table 25). Overall, the accuracies of the classifiers ranged from 75% to 80%, with 

the SVM classifier tending to provide the best classification accuracy. These 

classification rates indicate that the EMG data recorded across individuals from the 

interface prototype can be used to discriminate and classify the voluntary facial 

expressions of smiling, frowning and surprise.  

Table 24. Confusion matrix and out-of-sample accuracies per classifier (expressed in 

percentages) together with the corresponding F-scores. 

Confusion Matrix (%) 

Classifier Expressions Smile Frown Surprise Accuracy F-scores 

SVM 
Smile 90.24 6.27 3.48 

80.02 [0.84, 0.73, 0.83] 
Frown 20.56 68.99 10.45 

Figure 73. Predictor ranks as computed with MRMR feature selection algorithm. The 

selected features are the ones above the threshold (line, red filled bars). 
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Surprise 4.18 14.98 80.84 

KNN 

Smile 89.90 5.92 4.18 

79.67 [0.84, 0.71, 0.83] Frown 20.21 64.11 15.68 

Surprise 3.480 11.50 85.02 

Naïve 

Bayes 

Smile 83.97 14.98 1.05 

75.38 [0.83, 0.65, 0.78] Frown 17.42 66.90 15.68 

Surprise 1.74 23 75.26 

 

Table 25. Confusion matrix and out-of-sample accuracies per classifier after feature selection 

(expressed in percentages) along with the corresponding F-scores. 

Confusion Matrix -50% features (after MRMR) 

Classifier Expressions Smile Frown Surprise Accuracy F-scores 

SVM 

Smile 92.68 3.83 3.48 

79.09 [0.84, 0.71, 0.82] Frown 24.04 64.81 11.15 

Surprise 5.23 14.98 79.79 

KNN 

Smile 88.85 6.97 4.18 

79.21 [0.82, 0.71, 0.83] Frown 22.30 66.20 11.50 

Surprise 4.53 12.89 82.58 

Naïve 

Bayes 

Smile 82.93 16.03 1.05 

75.61 [0.83, 0.67, 0.78] Frown 15.68 71.08 13.24 

Surprise 1.39 25.78 72.82 

 

To summarise the data analysis of the physiological measures and the classification 

analyses for the voluntary facial expressions, the results were as expected. The facial 

expressions of smile, surprise, and frown elicited distinct patterns of EMG channel 

activations when using the EmteqVR device. These differences between channels 

were statistically significant between the three expressions, and they allowed for the 

classification of those facial expression with 80% accuracy across multiple users 

Figure 71. Predictor ranks as computed with MRMR feature selection algorithm. The 

selected features are the ones above the threshold (line, red filled bars). 
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(Hypothesis 6). Additionally, the classifiers performed equally well when using only 

a subset of the data, deriving from the higher ranked features (79% accuracy), which 

could reduce computational cost in automatic expression detection in the future.   

The active and passive groups showed significant differences in the overall 

EMG, with the active group achieving an overall higher EMG activation for all three 

voluntary facial expressions. This effect was unexpected, as there was not variation 

in the procedure for both groups. This effect might have been induced by the VR 

interaction mode, which in turn affected the participants’ presence and enjoyment 

scores, along with potentially their motivation to perform stronger emotional facial 

expressions.  

The observed effects for voluntary facial expressions informed the analysis 

and processing of the spontaneous physiological responses within VR, the analysis 

of which is divided into two sections, starting with the data  analysis of physiological 

measures in section 6.3.3, followed by the classification tests in section 6.3.4. More 

specifically, as facial muscle activation can be subjected to interindividual 

differences due to potential variation in musculature [122] as well as experimental 

conditions (as in the case of active vs passive group’s mean EMG activation 

difference, see section 6.3.2), a subject-specific normalisation method for EMG was 

chosen for the classification of spontaneous muscle activations. The data recorded 

during the three voluntary facial expression (which targeted the facial muscles 

underlying the skin when the EMG sensors were positioned) were used to inform the 

subject specific normalisation method, following the process of utilising maximum 

voluntary muscle contractions for the normalisation of EMG signals suggested by 

[248] and [342].  

Next, the effects of spontaneous affective responses on physiological 

measures within VR are investigated. The affective impact of the VE events on the 

EMG and PPG measures was examined for the active and passive groups, related to 

Hypotheses 7-9.   
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6.3.3. Event-based analysis of continuous physiological data from 

naturalistic affect elicitation in VR 

In this section, three main hypotheses are investigated: (a) that EMG sensors can 

reliably detect spontaneous valence changes in passive and active settings 

(Hypothesis 7), (b) that PPG and/or EMG sensors can reliably detect spontaneous 

arousal changes in passive and active VR settings (Hypothesis 8), and (c) that affect 

detection is more reliable in the active compared to the passive group due to higher 

presence and interactivity levels, despite higher noise levels expected due to room-

scale locomotion  (Hypothesis 9).   

For this section, the event-based analysis approach was taken. This means 

that signals were epoched based on event-onsets (epoch duration based on start and 

end of event e.g.-250ms to min +10000ms) and then averaged across all events 

within each VE. Afterwards, a database was created consisting of mean activations 

for each physiological measure (referred to as features) for each VE. Please note, out 

of the 291 data sets, 288 were analysed for this physiological data analysis due to 

technical difficulties, i.e.  no event-markers were recorded in three EMG data sets.   

Tests of normality showed that all EMG data were non-parametric. Initial 

ANOVA results are also reported given its robustness in large sample sizes against 

moderate violations of normality (explained in section 3.6.4). Significant findings 

were followed up with non-parametric Friedman tests, Wilcoxon signed rank/Mann-

Whitney U tests. All correlations were Spearman correlations. 

 EMG analysis comparing VE conditions in active and passive groups 

Figure 74 shows the EMG activity for all channels combined. The data show EMG 

activity for all three VEs as a total across both groups but also separately for both 

groups. When looking at the figure one can see that EMG activity is less strongly 

modulated by VE in the passive group compared to the active group. In the active 

group EMG activity increases from the neutral to the positive to the negative VE 

condition. This raise is less pronounced or absent in the passive group.  
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The combined EMG activity across all channels, was analysed using a mixed 3x2 

ANOVA with the factors VE Condition (neutral, positive, negative) and Group 

(active vs. passive group). The analysis revealed a significant main effect of Group 

(F(1,285)=87.268, p<.001) meaning that EMG activity was higher in the active 

compared to the passive group. There was also a significant main effect of VE 

condition (F(1.642,468.037)=73.932, p<.001), showing that for both groups 

combined the EMG activity was lowest in the neutral condition, intermediate in the 

positive condition, and highest in the negative condition. All three conditions were 

significantly different from each other. In addition, the interaction between the 

factors VE condition and Group was also significant (F(1.642, 468.037) = 48.320, 

p<.001) showing that the modulation of the EMG activity across VEs was more 

pronounced for the active compared to the passive group. 

In the next step, we analysed all EMG channels separately by using mixed 

3x2 ANOVAs with the factors VE Condition (neutral, positive, negative) and Group 

(active vs. passive group). The findings are shown in Table 26. In short, for all 

channels there was a significant main effect of Group (all F-values >=7.614; all p 

Value <=.006) showing that EMG activity was always higher in the active compared 

to the passive group. There was also always a significant main effect of the VE 

condition (all F-values >=5.940; all p <=.003). The non-parametric post-hoc tests for 

both groups combined are presented in table 25 below. Finally, there was also a 

Figure 72. Mean EMG activation across channels per VE (Neutral, Positive and Negative) 

for (a) all users (Grey outline), (b) users in the Active group (blue outline), (c) subjects in 

the Passive group (orange outline). The table under the figure shows the means and standard 

deviations (also depicted in error bars). 



Chapter 6 

224 

 

significant interaction between the factors group and condition (all F-values >= 

5.443; all p<=.006), with the exception of the findings for EMG channel 7. Here, the 

interaction was only marginally significant (F(1.693, 484.124)= 2.901, p=.065) but 

it showed a similar pattern as seem for all other channels. This pattern was already 

described above, EMG activity showed a stronger modulation by VE condition in 

the active compared to the passive group. A detailed description of the non-

parametric post-hoc tests for the active and passive groups is presented in section 

6.3.3.3.  

 

Table 26. Mixed ANOVAs findings for each EMG channel. 

EMG Channel 
Main Effect 

Group 

Main Effect 

VE Condition 

Interaction 

VE Condition x Group 

Combined EMG Sign (p<.001**) Sign (p<.001**) Sign (p<.001**) 

Channel 1 Sign (p<.001**) Sign (p<.001**) Sign (p<.001**) 

Channel 2 Sign (p<.001**) Sign (p<.001**) Sign (p<.001**) 

Channel 3 Sign (p<.001**) Sign (p<.003**) Sign (p<.006**) 

Channel 4 Sign (p<.006**) Sign (p<.001**) Sign (p<.001**) 

Channel 5 Sign (p<.001**) Sign (p<.001**) Sign (p<.001**) 

Channel 6 Sign (p<.001**) Sign (p<.001**) Sign (p<.001**) 

Channel 7 Sign (p<.006**) Sign (p<.001**) n.s. (p=.065) 

* significance level p <.05, ** significance level p <. 01 

 PPG sensor analysis comparing VE Conditions between the active and 

passive group  

The activity of the PPG sensor was analysed by extracting several HR related 

features such as IBI (N-N intervals), RMSSD (RMS of N-N intervals), SDNN (SD 

of N-N intervals), and rBPM (BPM-baseline BPM). Initial ANOVA analysis were 

conducted to determine whether these features can dissociate between the VE 

conditions and whether this effect is different for the active and passive groups (see 

Table 27). For all features, the main effect of Group was significant (all F-

values>=12.895; all p<.001) meaning that enhanced values for the active compared 

to the passive group. The main effect of condition was only significant for the IBI 

(F(1.827, 522.659) = 9.667, p<.001) and the rBPM feature (F(2, 572) = 19.706, 

p<.001). This will be further explored with Friedman and post-hoc tests below and 

in Table 26. The interaction between VE Condition and Group was only significant 
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for the IBI (F(1.827, 522.659) =3.752, p=.028) and the rBPM feature (F(2, 572) 

=3.774, p=.024), meaning that the features behave differently for the active and 

passive groups across VE conditions. This was further evaluated when conducting 

Friedman and post-hoc tests for the active and passive groups separately. The 

findings for this are presented in Table 29 and 28.  

 

Table 27. Mixed ANOVAs findings for the PPG features. 

HR Feature Main Effect 

Group 

Main Effect 

VE Condition 

Interaction  

VE Condition x Group 

IBI Sign (p<.001**) Sign (p<.001**) Sign. (p=.028*) 

RMSSD Sign (p<.001**) n.s. (p=.417) n.s. (p=.087) 

SDNN Sign (p<.001**) n.s. (p=.245) n.s. (p=.094) 

rBPM Sign (p<.001**) Sign (p<.001**) Sign (p=.024*) 

 

 Comparisons between VEs per sensor / feature (both groups 

combined). 

In order to investigate the Main Effect of Condition for all EMG channels and HR 

features in more detail, Friedman tests and follow up Wilcoxon tests were conducted 

for each separately. They are presented in Table 28. To facilitate the interpretation 

of the findings median scores for each VE environment are provided and significant 

findings are displayed in bold.  

Table 28.  EMG and HR analysis for the combined data from the active and passive groups. 

Results of Friedman tests and post-hoc pairwise comparisons between the three VE 

conditions when significant differences are found for the Friedman tests. Significant post-

hoc tests are displayed in bold. Neutral (‘Neu.’), Positive (‘Pos.’), Negative ( ‘Neg.’). 

Descriptives include the median (Mdn) scores for each VE.  

Friedman’s Tests Descriptives Pairwise comparisons 

(Wilcoxon, Bonferroni corr.) 

Features Chi-Square 

(χ2) 

Sig.(p) VE Mdn

.  

Pairs  Stat. 

(Z) 

p 

EMG sensors        

EMG Channel1 92.79 <.001 

Neu. .015 Pos. - Neu.   -9.84 <.001** 

Pos. .028 Neg. - Neu.  -8.85 <.001** 

Neg. .027 Neg. - Pos.  -1.31 .189 

EMG Channel2 108.67 <.001 
Neu. .015 Pos. - Neu.   -9.11 <.001** 

Pos. .029 Neg. - Neu.  -9.11 <.001** 
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Neg. .030 Neg. - Pos.  -1.83 .194 

EMG Channel3 2.650 .266      

EMG Channel4 3.092 .213      

EMG Channel5 124.55 <.001 

Neu. .019 Pos. - Neu.   -10.0 <.001** 

Pos. .035 Neg. - Neu.  -9.69 <.001** 

Neg. .034 Neg. - Pos.  -1.34 .180 

EMG Channel6 123.83 <.001 

Neu. .021 Pos. - Neu.   -2.54 <.001** 

Pos. .032 Neg. - Neu.  -10.07 <.001** 

Neg. .038 Neg. - Pos.  -9.24 .033* 

EMG Channel7 3.43 .180      

PPG  

sensor  
  

  
 

  

HR. IBI 25.86 <.001 

Neu. .88 Pos. - Neu.   -2.66 .024* 

Pos. .86 Neg. - Neu.  -6.33 <.001** 

Neg. .85 Neg. - Pos.  -3.01 .009** 

HR. RMSSD 2.63 .268      

HR. SDNN 4.42 .110      

HR. rBPM 28.46 <.001 

Neu. 2.30 Pos. - Neu.   -2.79 .015* 

Pos. 5.33 Neg. - Neu.  -6.23 <.001** 

Neg. 7.18 Neg. - Pos.  -3.27 .003** 

* significance level p <.05, ** significance level p <. 01 

  

Overall, affective conditions (positive and negative VE) were related to 

enhanced EMG activations for the channels 1-2 (Zygomaticus Left-Right), 5 - 6 

(Orbicularis Oculi Left and Right), reduced IBI intervals and enhanced rBPM levels 

when compared to the neutral condition (see ‘Pairwise Comparisons (Wilcoxon)’ 

section of Table 28; see also descriptive section). This finding aligns with reports 

from previous research suggesting that affective stimuli increase heart-rates and 

enhance the activation of facial muscles (e.g. [492], [493] extended review of 

externalisation mediums of affect in Chapter 2). Please note, the Friedman’s test was 

not significant for EMG channels 3 and 4 even when the main effect of the VE 

condition was significant for these channels in the ANOVAs presented in Table 26. 

As our data are non-parametric, we decided to use the findings from the more 

conservative Friedman’s test. Secondly, the findings did not only show that these 

physiological measures were able to dissociate between affective and neutral VEs 

(EMG measures, IBI, rBPM), they were also able to dissociate between the affective 

positive and negative VEs (EMG channel 6, IBI, rBPM). 

 

 Comparisons between VEs per sensor / feature per group.  

We decided to compare VE conditions for each group separately to gain a closer 

understanding of the significant interactions between VE environment and Group 
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that were present for all but one EMG channel. For each analysis, Friedman tests 

were conducted. If they were significant, they were further followed up with 

Wilcoxon post-hoc tests.   

 

Active Group. In this section, we test the sensitivity of our physiological sensors 

and features to the VE manipulation for the active group. There was one additional 

measure called distance (Dis) because participants of this groups were able to walk 

towards or away to/from a stimulus in the virtual space, the mean distance from 

stimulus ‘Dis’ was calculated per user in each VE (equal to Dis(tend of event-N) – Dis(tstart 

of event-N)).  

Following the same approach described in the previous section, the results 

from related samples Friedman’s tests are presented on Table 29. Bonferroni 

corrected pairwise comparisons Wilcoxon’s test were conducted when Friedman 

tests were significant.   

Table 29. EMG and HR analysis for the ‘active’ group. Results of Friedman tests and post-

hoc pairwise comparisons between the three VE conditions when significant differences are 

found for the Friedman tests.  Neutral (‘Neu.’), Positive (‘Pos.’), Negative (‘Neg.’). 

Descriptives include the median (Mdn) scores for each VE.  

Friedman’s Tests Descriptive Pairwise comparisons  

Sensors/Features χ2 Sig.(p) VE Mdn Pairs Z p 

EMG Sensors        

EMG Channel1 106.50 .001** Neu. .022 Pos. - Neu. -8.88 <.001** 

   Pos. .048 Neg. - Neu. -8.70 <.001** 

   Neg. .056 Neg. - Pos. -2.60 .018* 

EMG Channel2 117.228 <.001** Neu. .025 Pos. - Neu. -8.57 <.001** 

   Pos. .057 Neg. - Neu. -9.07 <.001** 

   Neg. .069 Neg. - Pos. -5.73 .036* 

EMG Channel3 9.304 .010* Neu. .051 Pos. - Neu. -1.91 .168 

   Pos. .049 Neg. - Neu. -3.23 .003** 

   Neg. .052 Neg. - Pos. -2.58 .030* 

EMG_Channel4 12.194 .002** Neu. .043 Pos. - Neu. -1.27 .618 

   Pos. .042 Neg. - Neu. -3.43 .003** 

   Neg. .049 Neg. - Pos. -2.97 .009** 

EMG_Channel5 114.978 <.001** Neu. .025 Pos. - Neu. -8.77 <.001** 

   Pos. .052 Neg. - Neu. -8.99 <.001** 

   Neg. .057 Neg. - Pos. -2.71 .021* 

EMG_Channel6 105.555 <.001** Neu. .028 Pos. - Neu. -8.44 <.001** 

Pos. .061 Neg. - Neu. -8.92 <.001** 

Neg. .071 Neg. - Pos. -3.18 .003** 

EMG_Channel7 19.388 <.001** Neu. .016 Pos. - Neu. -2.66 .024* 

Pos. .017  Neg. - Neu. -4.51 .003** 

Neg. .026 Neg. - Pos. -2.76 .018* 

PPG  

Sensor 
       

HR. IBI 24.826 <.001** Neu. .930 Pos. - Neu. -3.16 .006** 
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   Pos. .915 Neg. - Neu. -5.58 <.001** 

   Neg. .885 Neg. - Pos. -1.32 .561 

HR. RMMSD .391 .822      

HR. SDNN 1.696 .428      

   Neu. 3.50 Pos. - Neu. -3.50 <.001** 

HR. rBPM 25.739 <.001** Pos. 9.83 Neg. - Neu. -5.55 <.001** 

   Neg. 10.57 Neg. - Pos. -2.26 .072 

Movement        

Distance 5.666 .059      

 

 

The RMS signal calculated from the EMG channels showed significant differences 

between the three affective VEs, as shown in Table 29. As expected, significant RMS 

differences were found between all VE conditions for most channels (1, 2, 5, 6 and 

7). EMG activation on channel 3 and 4 (positioned on the frontalis muscle, whose 

activation is linked to mental workload and fatigue [132]) were found to be 

significantly different between the affective conditions (positive and negative), and 

also between the negative and the neutral VE. They could not, however, significantly 

discriminate between the neutral and the positive VE conditions.  

Continuing to the analysis of the heart-rate features of IBI and r-BPM (BPM 

– baseline BPM) showed significant differences between affective and arousing VEs 

and the neutral, low arousing VE. Unfortunately, both HPV features extracted 

(SDNN, RMSSD) did not offer any discriminatory differences between the three 

conditions. The distance feature (distance of user from events) was also not 

significantly different between conditions (p = .059).   

Since the active participants required to explore by physically walking 

around the area, the physiological signals recorded were expected to carry higher 

body and head movement-related noise which could also potentially result into 

crosstalk between sensors. However, the results for the active group showed larger 

changes between all three VE conditions compared to the results across all users 

described earlier. This additional sensitivity effect could be resulted from the overall 

emotional intensity that users could have in the active group experience, which was 

overall more energetic and exciting for the users than the passive group. These 

findings support Hypothesis 9.  

 

Passive Group. As for the active group, the ability of each sensor/feature to 

discriminate between the VE conditions was tested for the passive group. As a 

reminder of hypothesis 9, for this group we expected weaker affective changes 

between VEs on both EMG and PPG measures despite the reduced noise levels.  
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Table 30 presents results from the related samples Friedman’s test and the 

corresponding pairwise post-hoc comparisons with Bonferroni corrections.  

 

Table 30. EMG and HR analysis for the ‘passive’ group. Results of Friedman tests and post-

hoc pairwise comparisons between the three conditions VE when significant differences are 

found for the Friedman tests; Neutral (‘Neu.’), Positive (‘Pos.’), Negative (‘Neg.’). 

Descriptives include the median (Mdn) scores for each VE. 

Friedman’s Tests Descriptive Pairwise comparisons (Wilcoxon) 

Features χ2 Sig.(p) VE Mdn. Pairs Z p 

EMG Sensors        

EMG Channel1 13.276 .001** 

Neu. .008 Pos. - Neu.   -4.11 <.001** 

Pos. .014 Neg. - Neu.  -2.66 .008* 

Neg. .013 Neg. - Pos.  -1.07 .285 

EMG Channel2 18.893 <.001** 

Neu. .010 Pos. - Neu.   -4.40 <.001** 

Pos. .015 Neg. - Neu.  -3.72 <.001** 

Neg. .013 Neg. - Pos.  -.51 .613 

EMG Channel3 .487 .784      

EMG Channel4 2.913 .233      

EMG Channel5 27.013 <.001** 

Neu. .013 Pos. - Neu.   -4.83 <.001** 

Pos. .018 Neg. - Neu.  -3.80 <.001** 

Neg. .016 Neg. - Pos.  -.927 .354 

EMG Channel6 32.437 <.001** 

Neu. .014 Pos. - Neu.   -4.08 <.001** 

Pos. .019 Neg. - Neu.  -4.48 <.001** 

Neg. .020 Neg. - Pos.  -.004 .997 

EMGChannel7 3.139 .208      

PPG Sensor        

HR. IBI 9.566 .008** Neu. .843 Pos. - Neu.   -.12 .903 

   Pos. .819 Neg. - Neu.  -2.95 .003** 

   Neg. .821 Neg. - Pos.  -3.24 .001** 

HR. RMSSD 6.171 .046* Neu. .218 Pos. - Neu.   1.73 .083 

   Pos. .237 Neg. - Neu.  .044 .965 

   Neg. .240 Neg. - Pos.  1.45 .147 

HR. SDNN 8.895 .012* Neu. .162 Pos. - Neu.   2.22 .026* 

   Pos. .178 Neg. - Neu.  .15 .882 

   Neg. .174 Neg. - Pos.  -1.91 .056 

HR. rBPM 6.493 .039* 

Neu. 1.69 Pos. - Neu.   .099 .921 

Pos. 3.46 Neg. - Neu.  3.06 .002** 

Neg. 4.28 Neg. - Pos.  2.57 .010* 

* significance level p <.05, ** significance level p <. 01 

 

RMS signal differences were observed between the affective, high arousing VE 

conditions (negative and positive) and the neutral, low arousing VE condition for the 

EMG channels 1, 2 5, 6. Interestingly, none of the EMG channels showed significant 

differences that would enable discrimination between the positive and the negative 

condition, including channels 3-4 and channel 7. In general, we saw lower activation 

differences between VE conditions for the passive than for the active group for all 

EMG channels. 
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Concerning the PPG features, significant differences between the positive 

and negative affective conditions were observed for the IBI and rBPM features in 

the passive group. These differences were not present in the active group. Results 

showed that heart-rate features IBI and rBPM also revealed significant differences 

for the negative condition compared to the neutral VE conditions. In addition, the 

SDNN activity was significantly lower in the neutral VE compared to the positive 

VE. This difference was not found for the active group. The low SDNN found in the 

neutral stimuli relates to lower variability caused by unpleasant stimuli compared to 

pleasant ones [494], [495]. However, the difference between the neutral and negative 

events was not pronounced for this measure, rendering it less reliable compared to 

the other HR measures. By comparison, the IBI and the rBPM showed good 

discriminatory ability for the negative events against positive and neutrals. This may 

be explained by the higher CASR arousal ratings found on the negative events 

compared to the positive and neutral ones for this group (see 6.3.1.2). The differences 

indicated that these measures showed similar sensitivity for the passive group as for 

the active group in detecting increases in negative affect (as a parameter of arousal) 

but not for the positive events. As seen previously in section 6.3.1.2, the affective 

impact of the positive events was reduced for this passive compared to the active 

group, which can explain the reduced discriminatory power of the HR-measures.  

In summary, the analysis above clearly shows that physiological measures 

are able to detect spontaneous affective changes in VEs. We did show that all EMG 

channels were able to dissociate between VE conditions and that this dissociation 

was even more pronounced for the active compared to the passive group, despite the 

enhanced activity (or noise) levels in the EMG channels. In the active group, all 

EMG channels showed significant differences between VE conditions while for the 

passive only channels 1,2,5,6 were found to show significant differences between 

affective and neutral conditions. These results show that spontaneous affect and 

specifically valence detection in VR settings can be reliable for both active and 

passive conditions (Hypothesis 7). The HR features (IBI and rBPM) showed higher 

discriminatory power for the affective / high arousing VEs vs the low arousing, 

neutral VE condition for both groups (Hypothesis 8), especially between the 

negative and the neutral VE condition. Additionally, the IBI and rBPM features 

differ between the two affective conditions for the passive group, showing an overall 

weak affective manipulation for the positive VE condition. This agrees with the 
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effect observed in the CASR valence and arousal ratings for the positive events for 

the passive group (see section 6.3.1.2, Figure 67). 

The majority of studies detecting affect outside VR record data from users 

in seated positions facing one direction (e.g. [9], [333], [366], [496]). In our study, 

despite physical movement, the ability of physiological features to detect 

discriminate between the VEs was stronger overall for the active group compared to 

the passive (Hypothesis 9), which makes the active setting a potential better 

candidate for future affect elicitation studies. Physical movement can directly affect 

the physiological signals (e.g. raise heartrate) and degrade signal quality by 

introducing undesired variations and artefacts in the signal [497], especially in 

upright positions [498]. This effect was found predominantly in the HR and PRV-

related features whose computation can be severely affected by the motion noise 

[487][499] which can explain the weak effect found on PRV features for the active 

group. Thus, the computation of PVR measures in VR is more sensitive to motion 

changes compared to IBI, rBPM and EMG features.  
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6.3.4. Valence and Arousal Classification from spontaneous 

affective responses recorded within VEs 

In this section we will address the general case, which is the automatic identification 

of spontaneous affective states which can involve a wide range of expressions using 

classification methods. Spontaneous expressions can differ drastically from posed or 

voluntary expressions, and in some cases were found to be less intense and form 

different muscle configurations (see section 2.3.2 on ‘Facial Expressions’). The aim 

of this section is to validate the ability of the detection system to automatically 

distinguish affective changes in valence (Hypothesis 6) and arousal (Hypothesis 7) 

in both active (standing) and passive (seated) VR settings from continuous 

physiological measures. There are several advantages for such an automated affect 

detection system.  

 Firstly, the 222event-based data-window approach allowed the analysis of 

physiological activations for certain events. This event-based approach accounts for 

only the data collected during the user’s interaction with a tagged event in the VR 

simulation, which allowed the confirmation of the study design to induce the 

predesigned affective states. However, such approach could be proven difficult to be 

applied for automatic affect detection in VR as it relies on developers/content 

creators to tag the events of interest, while potentially interesting data windows 

(including the transitions between events) would be overlooked. For this reason, a 

continuous rolling time-window data segmentation approach was applied for the 

calculation of physiological features recorded per VE condition. 

 Secondly, machine-learning (ML) classification approaches allow for 

automatic human affect recognition, bringing us a step close towards natural human-

computer interaction.  ML methods enable computers to learn directly from data 

examples, overcoming the requirement to provide an explicit model [500], while 

taking the simultaneous activity changes and regularities across channels into 

account. Today, with automatic data analysis and machine-learning approaches we 

can map data feature combinations to certain labels (i.e., ground truth), thus 

developing the models which can be deployed to automatically detect those labels in 

new data (in a dynamic manner) [501]. As such, machine learning approaches can 

be used to predict future events and to classify existing data. Such techniques have 

been commonly used in Affective computing, where have shown promise in building 

automatic detection systems from physiological data [305]. 
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For the purpose of the classification analysis, three classification approaches 

were performed for the detection of each affective dimension (valence and arousal), 

as explained in Methods: a) a user-independent approach where all users’ data were 

pooled together and then randomly divided for the training and testing of the models, 

here referred to as “mixed-subjects” , b) a second user-independent approach in 

which data from users were kept separately for training and testing of the models 

referred to as “separated-subjects” (to investigate Hypothesis 10), and c) a user-

dependent approach in which a model was created for each participant (to investigate 

Hypothesis 11). The classifications tests were performed, firstly, on the data from 

the total participant sample and afterwards for each group in order to explore the 

performance of affect detection for each interaction mode (active against passive 

group) (Hypothesis 9). 

 

Following this structure this section is divided in the subsections below: 

a) User-Independent Classification (mixed-subjects). 

b) User-Independent Classification (separated-subjects). 

c) User-dependent Classification -– for each participant separately. 

 

Data structure and Classification Procedure. For these classification tests, 

additional features were calculated from the EMG and PPG signals. Table 31 

contains the list of features extracted from the PPG and the EMG signals which were 

used for the classification of arousal and valence responses. 

 

Table 31.  List of features and features measures extracted per modality 

Original signal Extracted features Measures from individual features 

PPG 

IBI Mean (average) value 

Maximum value 

Minimum value  

Standard Deviation 

Mean of previous 5 seconds 

RMSSD 

SDNN 

BPM 

Peaks (loc) 

EMG 

RMS for 

EMG Channels 1-7 

 

Mean (average) value 

Maximum value 

Minimum value  

Standard Deviation 

Mean of previous 5 seconds 
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After filtering (see section 6.2.5), the data were segmented into rolling-

windows, where each epoch contained 5000 samples (equal to 5 seconds) with 2500 

samples overlap (forward step). Since the duration of the recordings and the 

interaction with the VE per user was different, the number of epochs per participant 

also varied.  

The ‘user-independent ‘and ‘user-dependent’ classification tests were 

performed separately for binary (two levels: positive/negative) and three levels 

(negative/ neutral/positive) valence classifications and arousal classification. Each 

test was run using three classifiers, a C-SVM, KNN, and NB as executed for the 

expression classification. 

By comparison, in the ‘separated-subjects’ user-independent approach, the 

10-fold cross validation was devised by splitting the dataset into folds while also 

keeping the entirety of each participant’s data; leaving 10% entire subjects out in 

turn for testing while training with the rest (90%), until all subjects have been tested.  

For the user-dependent approach, a model was trained per participant, using 

the first 70% of the data for training and the subsequent 30% for testing that is, the 

validation respects causality as it is performed on future data. The means accuracies 

across models overall and per group were calculated. This user-centred approach 

cannot be generalised to new users, it however was expected to provide a better 

performance accuracy for valence and arousal detection. 

 

Model testing. As explained in Section 6.2.6 (Machine learning strategy & ) the data 

were divided into sets. In the mixed-subject user-independent approach (a), a random 

selection of 30% of the participants were used to tune the hyperparameters of the 

classifiers and the 70% were used to classify valence and arousal using 10-fold cross-

validation, by concatenating all data from the subjects. This means that during the 

data division, parts of a participant’s data could end-up in the training set and the 

remaining in the testing sets. This approach was expected to yield good performance 

accuracy but have lower generalizability to newer subject’s data (see section 3.6).  

In the user-independent-separated-subjects approach (b), after tuning the 

hyperparameters with the 30% of the participants, the remaining users were divided 

into 10-folds. Each fold (10% of total participants) was used as testing set while the 

remaining 90% of the subjects’ data were used for training of the model. In this way, 

the entirety of each participant’s data were kept in either the training or testing set, 
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until all users were tested. This approach is expected to have high generalisability 

yet to yield lower accuracies than the mixed-subjects approach.  

In the user-dependent pipeline (c), data form each individual subject is tested 

separately and preserving causality in the data. That is, the first 70% of the data 

recorded per subject is used as training, whilst the following 30% for testing. The 

accuracy from the testing sets was calculated (together with F-scores and area under 

curve AUC per model which are available in the Appendix A).  

 

Ground-truth class labels. The CASR self-rating scores of each participant were 

used as the ‘ground-truth’ labelling for the valence and the arousal classes. For the 

binary classification of arousal and valence, the CASR scores were bipolarised in 

high/positive and low/negative using the median (Mdn) score (low< Mdn >high) of 

each dimension across all subjects. The median division point for valence was 1.05 

and for arousal was 1.11 (both ratings ranged from [0 to 2]). The number of time-

windows corresponding to each label (class) was balanced: 51% negative and 48% 

positive valence; 51% for low arousal and 49% for high arousal. For the 3-classes 

classification the scores were divided using the median plus and minus the standard 

deviation (Sd: 0.53) divided by 10 (i.e., negative/low class corresponded to ratings 

between 0 and Mdn-(Sd/10), neutral/medium between Mdn-(Sd/10) and 

Mdn+(Sd/10), and the positive/high between Mdn+(Sd/10) to 2). The number of 

segments per class were also balanced for valence (negative 33%, neutral 29%, 

positive 38%), and for arousal (low 36%, average 30%, high 33%).   

 

Normalisation. The training data sets were normalized by subtracting the median 

value and dividing by the mean absolute standard deviation over each feature column 

[294]. The testing data were normalised similarly, using the median values and 

absolute standard deviation of the training data. The same normalisation approach 

was followed in the 10-fold cross validation (mixed-subjects) and the 90:10 split 

folds (separated-subjects, and user-independent). The results for the classification 

sessions are presented in the following sections. 

 User-Independent Classification (mixed-subjects)  

A total of 45 models were developed and tested with data from users from the active 

and the passive group. The out-of-sample accuracies achieved per model are 
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described in Table 32 and Table 33. The best performance classification for 2-classes 

of valence was 93.62% in the Active and 93.33% in Passive group, while for 3-

classes our models reached 88.91% in the Active and 90.17% in the Passive. For 2-

classes arousal detection, our models performed similarly when using only PPG 

features (86.10% Active, 80.54% Passive). The fusion of features from both EMG 

and PPG yielded similar accuracies to unimodal approaches (i.e., PPG-based 

features) for the arousal detection but not for the valence detection, as seen in Figure 

75. Interestingly, when EMG features were used alone for the classification of 

arousal, the classifiers were able to perform arousal detection with higher accuracy 

than when using PPG-based features (90.93% Active group, 91.71% Passive group). 

The fusion with PPG features for arousal detection slightly lowered the accuracy 

performances (80.86% Active, 80.67% Passive). 

 

Table 32. Out-of-sample accuracies per classifier (SVM, KNN, NB) for binary (2 cl) and 

ternary (3 cl) valence detection using 10-fold cross validation (user-independent, mixed-

subjects) 

 Valence detection Accuracies (%) (CV-User-independent)  

 All subjects Active group Passive group 

 
2cl (EMG) 

3cl 

(EMG) 

2cl 

(EMG) 

3cl 

(EMG) 

2cl 

(EMG) 

3cl 

(EMG) 

SVM 84.19 73.95 71.89 63.65 80.61 75.75 

KNN 94.71 90.95 93.62 88.91 93.33 90.17 

NB 72.36 58.88 62.97 53.58 68.49 57.58 

 

Table 33. Out-of-sample accuracies per classifier for arousal detection using 10-fold cross 

validation (user-independent) 

 Arousal detection Accuracies (%) (CV-User-independent)  

 All subjects Active group Passive group 

 2cl 

(PPG) 

2cl 

(EMG) 

2cl 

(fusion) 

2cl 

(PPG) 

2cl 

(EMG) 

2cl 

(fusion) 

2cl 

(PPG) 

2cl 

(EMG) 

2cl 

(fusion) 

SVM 66.79 83.45 74.22 69.63 72.28 67.98 67.70 80.09 75.68 

KNN 83.53 93.37 81.47 86.10 90.93 80.87 80.54 91.71 80.67 

NB 61.36 71.52 59.23 62.25 62.84 53.53 62.50 63.82 58.92 
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Paired t-tests with Bonferroni corrections showed significant differences between 

the three classifiers on the mean accuracies for all subjects, with KNN (MKNN=88.06) 

achieving a significantly higher accuracy than the SVM (Msvm = 73.86, t(14) = 

10.35, p<.001) an the NB (MNB=61.99, t(14)=20.33, p<.001), and SVM achieving a 

higher accuracy than NB (t(14) = 11.25, p<.001). In summary, the KNN classifier 

achieved the best performance for this classification approach. The classifiers 

performed statistically equal for the active and the passive group.  

 User-Independent Classification (separated-subjects) 

A total of 45 models were trained, only this time following the separated-subjects 

splitting approach.  

Table 34 shows the mean accuracies achieved per classifier for valence and arousal 

detection. The resulted means (and standard deviations) were calculated from the 

accuracies achieved for all the folds. 

 

Table 34. Mean detection accuracies across folds (separated-subjects, leave-one-fold-out) 

per classifier (SVM, KNN, NB) for all subjects and for each group, Active and Passive. 

  Detection Accuracies (%) (Standard Deviation) 

  All subjects Active group Passive group 

Valence SVM 63.29 (±2.71) 56.43 (±2.02) 54.13 (±3.23) 

KNN 53.19 (±6.21) 55.71 (±7.17) 56.98 (±5.41) 

NB 65.28 (±3.57) 55.49 (±4.87) 55.08 (±3.07) 

 mean 60.59 (±4.16) 55.88 (±4.69) 55.40 (±3.91) 

Figure 73. Accuracies per classifier (combined groups) for valence detection (left) and 

arousal detection (right) using unimodal-derived features against the fusion of both features 

(EMG and PPG). 
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Arousal SVM 60.70 (±4.17) 53.76 (±2.65) 51.58 (±3.30) 

KNN 51.99 (±4.95) 55.21 (±4.47) 52.18 (±3.77) 

NB 61.24 (±0.78) 54.31 (±1.61) 51.79 (±1.55) 

 mean 57.98 (±3.30) 54.43 (±2.91) 51.85 (±2.87) 

 

To compare the effects of the classifier and the affective dimension on the 

classification performances a repeated measures ANOVA was used on the accuracy 

scores from all users (both groups combined) (classifier (3 levels) x affective 

dimension (2 levels: valence, arousal)). The results yielded significant main effects 

(F(2,18) = 13.607, p<.001). Indeed all pairs compared with pairwise comparisons 

with Bonferroni correction showed significant difference with each other (val_svm 

– val_knn: t(9) = 5.10, p=.009, val_knn – val_nb: t(9)=-5.69, p<.001,  arou_svm – 

arou-knn: t(9)=6.15, p<.001, arou_knn – arou_nb: t(9) = -6.32, p<.001). The SVM 

and NB were found to perform similarly well for both valence and arousal 

classification, yielding no significant differences between their performances 

(p>.05).  

The main effects of the affective dimension detected (valence and arousal) 

on the classifiers’ performances was not statistically significant (F(1,9)=4.89, 

p=.054). The test however indicated a strong interaction effect between the 

classification performance and the affective dimension (F(2,18)=31.01, p<.001). 

Pairwise comparisons between the performance for valence and arousal detection 

did not yield significant differences on any of the classifiers. A second repeated 

measures ANOVA on the accuracies scores between the two groups (active and 

passive) with 3 factors (group (2 levels: active and passive) x affective dimension (2 

levels: valence, arousal) x classifiers (3 levels)) showed that the effect of the group 

was not significant (p>.05).  

These results showed that when comparing the performances of the 

classifiers, the KNN and the NB performed better than the KNN for arousal and 

valence detection.  Using this classification approach, no differences were found 

between the detection accuracies for the active and passive group. 

 User-Dependent Classification 

Six models for each participant were trained: three for binary valence detection 

(negative, positive) and three binary arousal detection (low, high) using the three 
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classifiers: SVM, KNN, and NB. Table 35 shows the mean prediction accuracies, 

using the testing sets of each user (the last 30% of each recording session). The 

averaged accuracies across participants are presented for all users combined, and for 

each group (active, passive), accompanied by the standard deviation of the 

accuracies achieved across users.  

 

Table 35. Mean prediction accuracies across users per classifier, for (a) valence detection 

and (b) arousal detection. The columns correspond to the database used (from all users, the 

active and the passive group). 

  Prediction Accuracies (Standard Deviation) 

  All subjects Active group Passive group 

Valence SVM 66.51 % (±22.10) 65.81 % (±23.84) 67.28 % (±20.67) 

KNN 69.76 % (±21.06) 69.25 % (±22.94) 70.31 % (±18.84) 

NB 69.67 % (±19.51) 69.42 % (±20.88) 69.93 % (±17.94) 

 mean 68.65 % (±20.90) 68.01 % (±22.66) 75.68 % (±16.28) 

Arousal SVM 72.33 % (±19.36) 72.83 % (±20.93) 71.65 % (±16.69) 

KNN 77.80 % (±16.65) 76.60 % (±16.40) 79.68 % (±16.95) 

NB 71.96 % (±16.96) 69.49 % (±18.13) 75.84 % (±14.18) 

 mean 74.03 % (±17.66) 72.98% (±18.76) 76.55% (±16.30) 

 

We observe a consistently similar performance between classifiers for all groups, 

with KNN achieving slightly higher accuracies. To compare the performance 

differences between the three classifiers, Friedman’s tests was conducted on the 

accuracies for all users combined (as the data were non-parametric), firstly for 

valence and then for arousal. When significant effects were found, the tests were 

followed up post-hoc Wilcoxon tests. 

The mean differences between the accuracies achieved on Valence detection 

for each classifier were significantly different (χ2(2)=10.97, p=.004). Pairwise 

comparisons using Wilcoxon’s signed-ranks test showed significant differences 

between the accuracies of the KNN and the SVM classifier (Z = 2.58, p=.10) and 

between the NB and SVM classifier (Z = 2.24, p=.25), with the SVM performing 

lower than the other two classifiers. The accuracies achieved for each classifier for 

each group (active and passive) were also compared using Mann-Whitney U tests, 

yielding no significant differences (p>.05).  

Similarly, the accuracies achieved between the three classifiers for arousal 

detection were significantly different (χ2(2) = 28.06, p<.001). Pairwise comparisons 



Chapter 6 

240 

 

indicated that the accuracies achieved by the KKN classifier were both significantly 

higher than SVM (Z= 4.21, p<.001) and NB (Z = 4.18, p<.001). The difference 

between NB and SVM was not found significant (p>.05). The accuracies achieved 

for the active and the passive group were compared using Mann-Whitney U tests, 

showing the arousal detection accuracies for the passive group were higher than the 

active group for the NB classifier (U = 5949.50, p=.010). 

 

In summary, the user-dependent approach yielded high valence and arousal detection 

performances. For the three classifiers used, the KNN was found to achieve the best 

performances for both valence and for arousal detection. A similar finding was 

observed for the mixed-subjects’ generalised classifications, where KNN 

outperformed the competing classifiers. By comparison, the KNN performed poorly 

for the separated-subjects generalised approach, which also yielded the lower 

performance accuracies. Additional investigation on classification methods and 

optimisation techniques could be used to improve the attained accuracies, although 

they were comparable with previous results in different settings [294], [313], [323], 

[502].  The splitting method used for the separate-subjects approach yielded a lower 

classification performance but is more appropriate to be generalized to new users’ 

data, as the testing sets included the entirety of new participants data not seen by the 

classifier (Table 32). By comparison, the mixed-subjects approach although 

performing significantly better, required an initial subset of all subjects’ data to be 

used for the training of the model (Tables 30, 31).  The user-dependent classification 

results showed that developing a user-centred model provides the high prediction 

results to future data recorded by the same user (Table 33), albeit requiring an initial 

subset for the training of each model. Most importantly, these findings confirm the 

feasibility of automatic affect detection from the physiological features recorded 

from the system prototype.  
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 Chapter Discussion and Conclusions 

The purpose of this study was to explore the feasibility of automatically detecting 

the affective states evoked while a user is immersed in Virtual Reality using head-

mounted wearable technologies. Three pre-validated virtual experiences were used 

as tool for the induction of neutral, positive and negative affective states. The 

experiences contained interactive and static events which were triggered by the gaze 

of the user. Two interaction modes for the VR experiences were explored: the 

interactive first-person participation in room-scale VR (active participant group), 

and the passive observation of virtual stimuli from a third-person perspective in VR 

(passive participant group). The physiological sensor set-ups used (incl. EMG and 

PPG sensors) and the movement tracking sensors were the same across groups. 

Participants reported their felt valence and arousal levels in two ways for each VE; 

firstly, throughout the VE experience using the continuous self-rating tool (CASR) 

and once at the end of the experience using a 9-point rating scale (post-VE).  

Using the data recorded from this study, we investigated the validation of 

the study design, the effects of the used interaction mode (active vs passive group), 

and the sensitivity of the sensor modalities to detect changes in expression and affect 

along the dimensions of valence and arousal. Lastly, the development of a valence 

detection system and an arousal detection system were also investigated.  

Firstly, the self-ratings data were analysed to assess the ability of the three 

VEs and their events to induce the predefined variations of valence and arousal to all 

participants in VR. This step served as a manipulation check. The findings showed 

that the VEs induced the targeted ranges of valence and arousal across individuals 

which confirmed our first hypothesis (H1).  

 Differences were found between the two groups as reflected in their self-

ratings. In line with our expectations, the passive group was less susceptible to the 

affective manipulations, reporting overall lower arousal ratings than the active group 

(H2) reduced memory accuracy scores (H3) and reduced presence scores (H4). The 

affective VEs, positive and negative, were found to be generally more arousing and 

more presence inducing (H5) than the neutral VR. These findings confirm the 

relationship between affect and presence in VR (section 2.3.3). In the case of this 

study, the interaction modes examined showed to have a significant effect on a 

person’s experience with VR content, thus affecting the intensity of the emotion 

induction.   
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Notably, the continuous affect self-rating (CASR) method for self-rating 

was more sensitive than the post-VE ratings, revealing additional difference between 

the two groups. More particularly, the post-VE ratings across individuals showed 

that the negative VE was rated as the more arousing than the positive VE for both 

groups. This asymmetry was somewhat expected as suggested by the evaluative 

space model [87], [88] as negative stimuli generate higher arousal responses than the 

equivalent positive ones [503], [504] due to the so-called ‘negative bias [74]. 

Interestingly, this asymmetry was not as prominent for the CASR ratings of the 

active group because the active group did rate the positive events more positively 

and more arousing than the passive group. By comparison, the passive group’s event 

ratings were sometimes positive but also sometimes slightly negative with very low 

arousal levels. This was surprising because all of these events were pre-validated 

with our online survey (see section 5.3). So, why did this effect occur in the passive 

condition? There are several explanations.   

Firstly, valence and arousal ratings are likely to be modulated by the 

interactivity of the experience. As such, it appears that the interaction mode had a 

detrimental impact on the perception of positive stimuli and the positive valenced 

ratings. An advantage of CASR is that physiological measures and self-ratings can 

be measured in parallel. Hence, a change in ratings over time or with specific events, 

should also be seen in the physiological data. As such, future studies could 

investigate in depth the effect of interactivity on the perception of positive stimuli in 

VR, and potentially analyse the separate clusters of events in the positive VE to see 

whether these differences are also reflected in the physiological responses. 

Secondly, differences were observed between the mean facial activation of 

the two groups during the post-VR voluntary expressions, showing reduced overall 

EMG activation for the passive group. This unexpected difference in the findings 

was analogous to the effect of fatigue on facial muscles, where reduced EMG 

activation overall is observed [505]. Therefore, the effect of the interaction mode not 

only showed overall decreased affective stimulation for the passive group and 

increased negative stimulation (which especially affected some of low arousing 

events of the positive VE), but also had long lasting effects on the overall the 

expressivity intensities of the participants.  

The virtual objects and events within those VEs evoked mean valence-

arousal rating combinations which when graphed into the 2-D affective space 

followed a V-shape relation which was extremely prominent for the ratings of the 
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active group. The V-shape relation or ‘boomerang shape’ [506] considerably evident 

on ratings of the IAPS picture library, e.g. [405], shows that arousal reflects the 

intensity of valence, towards higher pleasure (positive) or displeasure (negative).  

Interestingly, a similar effect was observed in the physiological data recorded during 

the spontaneous affect elicitation within the three VEs. Heart-rate measures which 

were traditionally used for the detection of arousal responses, had good 

discriminatory power between high arousing VEs against the low arousing neutral 

VE (esp. for the passive group). Similarly, the EMG channel activation measures not 

only discriminated between the positive and negative conditions (esp. for the active 

group) but also between the affective conditions and the neutral one for both groups. 

These findings not only agreed with our hypotheses (H7 and H8) but showed a 

potential for valence and arousal detection from EMG alone. This observation was 

further confirmed in the classification experiments, showing high accuracy for 

valence and arousal using only EMG derived measures.  

This study was one of the first to include 3D interactive events in free-

walking VE using HMDs for affect stimulation, as the affective libraries with 

affective content were limited at that time to 2D stimuli. Notably, the event-based 

analysis of physiological signals showed that data from the active group allowed for 

stronger discrimination between the VEs, compared to the passive group, despite the 

increased noise levels (H9). This, together with the stronger affective responses 

observed from self-ratings in the active group, suggests that free-walking interactive 

VR experiences can outmatch traditional passive seated experiences when it comes 

to affect elicitation in VR. This finding also suggests that emotion stimulation in VR 

using virtual passive stimuli, and potentially 360 degree videos (as used in previous 

VR research, see sections 2.3.3 and 6.1), could be hampered by the choice of the 

stimuli presentation medium and the reduced user interactivity.  The findings for this 

feasibility study suggest that future research in affective stimulation, can not only 

manipulate low-level audio-visual features but also use interactive events and objects 

with affective contextual information to evoke different intensities of valence and 

arousal. Based on our findings, we would certainly strongly recommend the usage 

of these interactive VR environments over passive video and VR settings in future 

studies.  

This study also tested an automated detection for voluntary facial 

expressions and spontaneous affective responses using classification methods. 

Starting with voluntary expressions, the three posed expressions analysis (smile, 
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frown and surprise) showed distinct EMG channel activations patterns, yielding 80% 

classification accuracy across participants (H6). These findings confirmed the 

feasibility of detecting voluntary expressions of positive and negative emotions, as 

expressed by the activation of zygomaticus major and corrugator (see section 2.3.1). 

From the three classification experiments, the user-independent mixed-subjects 

approach (Table 32, 31) yielded the best accuracy in detecting two and three levels 

of valence, and two and three levels of arousal for both active and passive groups 

(H10). The best competing classifier was KNN achieving 95% accuracy in binary 

valence, and 93% for arousal detection. Interestingly, arousal detection was achieved 

from EMG measures alone, at an average 91% accuracy for both groups.  

By comparison, the user-independent separated-subjects approach (Table 

34) showed reduced accuracies for both dimensions, with an average out of sample 

accuracies of 65% in binary valence, and 61% in binary arousal across folds, with 

NB being the best performing classifier.  This approach although less performing, 

provides more conservative results for new unknown users (generalisation) since the 

entire data from the user’s session is new to the classifier. Thus, the development of 

generalised models from spontaneous physiological signals, still presents challenges 

when applied to new subjects. This difficulty has been argued in past research using 

physiological signals for naturalistic affect detection [323]. Nevertheless, the user-

independent experiments show promising potential for noisy, naturalistic settings, 

where users are freely moving their heads and their body. The current 

experimentations were made using out of box classifiers commonly used in 

automatic expression detection due to their ease of execution and swiftness in 

training. Additional exploration of more sophisticated supervised and unsupervised 

detection models, and optimisation approaches could be applied to yield better 

performing models.  

To mitigate the issue observed in the use-independent approaches, a novel 

user-dependent approach [323] was presented in which causality was preserved. A 

model was trained per user, using continuous sequences of data recorded in the study, 

and using the remaining data of that user for the testing of the model.  Overall, high 

accuracy scores were observed, with all three classifiers performing 69% prediction 

accuracy on average for valence and 74% prediction accuracy on average for arousal. 

For this approach, the KKN classifier yielded the higher performing models (70% in 

binary valence, 78% for binary arousal). Similar performances were observed for 

both active and passive groups. This approach was further reenforced by preserving 
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the sequence of the data points using the training, thus preserving causality. The 

accuracies were higher than the user-independent approach with separated subjects 

(H11). The findings from these experiments confirmed the feasibility of developing 

user-centred affect detection approaches for VR-based settings.  

The introduction of such wearable sensor set-up could open new avenues in 

affect detect in different settings, including extended realities. Their unintrusive, 

integrated, miniaturised and mobile nature makes them perfect candidates for virtual 

reality as they are non-invasive and less distracting than traditional tethered versions. 

In this study, we showed how virtual experiences could be used efficiently as a mood 

induction tool. Such experiences could be used in future research studies to elicit 

naturalistic, spontaneous responses, in passive but also in interactive settings. Future 

work could investigate the performance of different classifiers in different settings, 

such as when using different locomotion techniques and in different contexts such 

as in simulations involving cognitive tasks. Additionally, ensemble and 

unsupervised ML techniques can be employed to deal with the complexity of 

physiological data mapping to affective states in adaptive settings [313], [500]. 

Further to this, affect detection in VR could be benefited from understanding more 

about the effect of subjective traits on the affect elicitation such as alexithymia and 

expressivity. Most importantly, we demonstrated the feasibility of designing 

context-aware system architectures for automatic affect detection VR. This in 

addition to automatic affect detection can assist future applications in entertainment, 

simulation training and health-care interventions using VR, by providing an 

objective assessment of the user’s state. 
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Summary of key findings for Chapter 6 

• This was one of the first VR studies to run in fully up-to-date 

immersive settings with free walking capabilities while comparing 

behavioural and physiological responses to affective virtual scenarios 

• The study achieved the collection of one of the largest biometric 

datasets outside laboratory settings to our current best knowledge. 

Participants were recruited from a diverse population and they were 

highly motivated. 

• Participants who actively experienced the VR environment (by freely 

walking and exploring) had a stronger affective experience and higher 

feelings of presence compared to the passive group. 

• The negative scenarios elicited higher intensities of arousal than the 

positive scenarios which was expected due to the so-called ‘negative 

bias’.  

• Most importantly, we showed the feasibility of detecting affective state 

in VR settings with the novel sensor set-up: User-independent 

classification experiments yielded 77-94% accuracy when using mixed-

subjects CV, reduced to 55-65% when using separated-subjects CV 

(high-generalisability). A user-dependent approach achieved mean 

prediction accuracy of 69-80% for 2-levels of valence and arousal, 

showcasing the robustness of subject-specific models (low-

generalisability). 

• We confirmed feasibility to detect affect in seated and in free-walking 

VR settings. 

• VR can indeed be used as a reliable affect induction tool. 
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Conclusions & Future work  
 

7.  

 Summary of findings 

Virtual Reality (VR) is an excellent way to extent cognitive, affective and 

behavioural research to laboratory settings that are closer to real life environments. 

One of the key questions in VR research is how people do perceive emotions in this 

setting and how does that affect the interaction between emotion, cognition and 

behaviour. One of the key challenges is to develop a VR system that can detect 

affective responses without having to rely on subjective affective ratings by the user. 

These ratings can be rather disruptive.  

The aim of this thesis was to overcome this challenge by testing the 

feasibility of combining physiological readings and machine learning approaches to 

reliably detect changes in affect for VR users. Changes in affective states were 

explored as a function of valence and arousal. We saw VR as a platform which can 

offer the ideal laboratory for cognitive and behavioural sciences. As part of our 

collaboration with Emteq Labs, our team contributed towards the development and 

testing of the EmteqVR prototype system. This system comprised of a wearable 

sensor interface and software development tools specifically designed for use in VR 

settings. As part of this thesis, we proposed that the EMG and PPG integrated sensors 

on this interface could reliably contribute towards the detection of valence and 

arousal.  

Towards this goal, three complementary feasibility studies were conducted 

with human participants. The first two feasibility studies explored the detection and 

sensitivity of the sensor set-up in controlled laboratory conditions using conventional 

2D video stimuli. After a series of improvements on the prototype system, a third, 

larger study was conducted, this time using custom-made 3D interactive virtual 

environments. As such, the existing methodology was applied in seated and room-

scale exploratory VR settings. The findings from this work, not only confirmed the 
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potential use of VR as an affect induction tool, but also corroborate the use of the 

wearable sensor set-up for valence and arousal detection in VR settings. 

In the subsection 7.1.1 we describe and discuss the development of the initial 

theoretical design of the first affect detection system framework, to the 

implementation of this system architecture.  The early prototype of the system was 

tested in the first two feasibility studies which are discussed in section 7.1.2. As part 

of that section, we also describe the video validation study. The application of the 

system in highly-immersive VR settings, the creation of the VR stimulus materials, 

and the findings from the last feasibility study are discussed in sections 7.1.3-7.1.5.  

7.1.1. Affect detection system architecture for VR settings. 

The first research aim of this thesis was the identification of an affect 

recognition model and potential measures for affective state inference in VR for 

our research (for the complete list of aims, please refer to Chapter 1). The affective 

sciences literature uses two categories of models to describe emotions/affect. The 

first model is heavily rooted in distinct emotion state detection, such as the ‘basic 

emotions’, which are detected from facial configurations and behavioural patterns. 

Emotions are highly personal experiences with complex patterns and connections to 

cultural contexts, which are difficult to be broken down to smaller parts. This model 

was recently heavily criticised in the affective neuroscience literature and it has been 

shown that physiological and neuroscience measures are often not able to clearly 

distinguish specific emotions. By comparison, a more commonly used model to 

describe emotions in the affective computing and affective neuroscience literature 

are the dimensional valence and arousal model [305]. Affect is the core function of 

emotional responses, the energy flow that precedes and produces those altogether 

experiences. In the dimensional model, physiological and psychological changes can 

be measures with valence (positive to neutral to negative), and an arousal intensity 

(low to high) (see section 2.3.1). This way of defining affect, is more useful as it can 

better relate to other models and related evidence, such as the conceptual act model 

(see section 2.3.1.3). These models are supported by a recent neuroscientific 

evidence [507]. Our team decided to mostly build their research on valence and 

arousal detection methodologies and metrics, with the ultimate aim of combining 

and applying them in VR settings. Thus, our first affect detection for VR system 

framework was designed. 

Past research on affect detection proposed multiple methods, ranging from 
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audio-visual, to physiological and motion data for the measurement of the core affect 

dimensions, valence and arousal (section 2.3.2). However, until now, only few 

studies have utilised those methods for arousal detection in VR and even less for 

valence detection (section 2.4). Valence can be determined from facial 

configurations, e.g., positive expressions versus negative expressions, and 

behavioural cues, such as approach or withdrawal from stimulus. In fact, the face is 

visibly for most people one of the richest sources of valenced emotional information 

on our body [508]. Although, advances in computer vision have brought novel ways 

of automatically detecting changes on facial configurations, such approaches are not 

easily applicable in HMD-enabled VR. An alternative approach is the usage of 

surface EMG sensors to effectively detect the activation of the facial muscles and 

facial configurations (section 2.3.1). Thus, in our experiments, eight EMG sensors 

were positioned on the HMD frame on the positions suggested by Boxtel [122] to 

infer affective states.  For the measurement of arousal, a PPG sensor was embedded 

onto the sensor set-up to provide continuous measurement of the heart systolic peaks, 

as a parameter of the autonomous nervous system (section 2.3.2.1). The proposed 

system architecture was depicted in Figure 13, explained in section 3.2. 

 

7.1.2. Confirming sensitivity of sensors to affect changes  

The second aim of this thesis was to design a system architecture including an 

experimental protocol for affect induction in VR. VR was a novel technology at 

the time when the thesis started, thus only a few potential affect detection 

methodologies could be applied in VR (see section 2.3.3.3). Besides the 

technological constraints of working with early prototypes, out team experienced 

challenges in designing a controlled affect induction paradigm for the study of affect 

using VR. This was mainly due to the lack of existing immersive VR environments 

for emotion induction, and the uncertainty over the effect of VR as a technological 

medium on the affective impact of stimuli material.  

For the initial testing of the VR headset prototypes, our team designed a 

paradigm using affect eliciting stimuli in traditional settings with the prototype 

sensor set-up. Affect self-ratings tools and audio-visual stimuli materials were 

explored, and the CASR self-rating tool was designed for our studies. This tool 

included visualisation of the affective scale onto the user’s screen which was linked 

to an input device (later implemented using a VR controller). Video stimuli were 
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chosen instead of images/sounds as the closest validated stimuli to the nature of VR 

experiences (see section 3.5). Moreover, videos from a validated video library [397] 

were carefully selected using an online survey based on their ability to induce 

affective qualities corresponding to the four quadrants of the affective model and 

neutral low arousing affect. This careful approach allowed us to evaluate the data 

quality of the physiological sensors and their ability to detect different affective 

states in a systematic way, before using more complex virtual environments which 

was the third aim of the thesis. 

The third aim was to conduct quantitative studies to study the effect of 

affect changes on the physiological readings for the sensor set-up, and pilot 

automatic valence-arousal detection. In the feasibility studies discussed in Chapter 

4, we attempted to systematically check the sensitivity of the physiological measures 

to affective changes induced by the selected video stimuli. We started with 

conventional video clips, before advancing to 3-D animated objects in VR in a later 

study.  

In the first study (Fedem 1) we recorded 35 seated participants and their 

physiological responses to 40 video clips, and mapped those responses to their 

valence self-ratings, achieving a mean mixed-subjects accuracy of 82.5% when 

detecting 3 levels of valence (negative, neutral and positive) using C-SVM (section 

1154.2.3). This finding confirmed the sensitivity of the EMG sensors to spontaneous 

valence changes using traditional stimuli.  

In the second study (Fedem 2, section 4.4), the location and sensitivity of a 

facial PPG sensor to arousal changes was investigated. Data were collected from a 

subgroup of participants in the same settings described in Fedem 1 study. Readings 

from the PPG sensor incorporated on the frame along with an ECG belt were 

recorded from 11 seated participants following the same experimental protocol as in 

Fedem 1. We chose to position the PPG sensor on the VR insert frame over the 

temporal artery and vein which was a set-up that had not been tested before. As ECG 

is the golden standard in detecting heart-rate changes, we compared the 

performances of the ECG-based and PPG-based derived features.  

Our findings showed that as expected the ECG outperformed the PPG in the 

user-independent approach (across all subjects). However, the PPG-based measures 

offered a similar or improved performance against the ECG for 9 out of 11 

participants when developing classification model per user (user-dependent 

approach). As expected from similar previous work on valence and arousal detection, 

user-dependent models performed higher than user-independent (generalised) 
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models (see section 3.6.4). This effect is attributed mainly due to subjective 

differences in physiological responses to similar stimuli but also in high inter-subject 

variability when self-rating affect levels. Additionally, differences were observed in 

the actual fitting of the interface on different individuals which was relative to facial 

features, musculature, and bone structure. The main drawback identified was the 

sensitivity of the PPG sensor to different mask fits on each individual, due to 

variations in the face shape and sizes observed. Therefore, these findings concluded, 

albeit from a small sample, that arousal detection from facial-PPG is possible but the 

set-up needs some improvements. Further pilot studies were executed as part of the 

prototype’s development to improve the mask fit. The findings from these pilot 

studies were not included in this thesis but the improved set-up was used in future 

studies.  

The first two studies validated the feasibility of the prototype set-up design 

for valence and arousal detection in ready-for-VR settings. The empirical 

observations acquired from these pilot studies, combined with the need for careful 

signal quality assessment for each user informed the development of the next 

generation of the Faceteq interface, the ‘EmteqVR’ insert (where softer materials 

and different forehand curvatures were added onto the interface) and the 

‘EmteqVR_app’ software for real-time signal monitoring. After confirming the 

sensitivity of our sensor set-up and the performance of the system architecture, we 

continued by applying them in immersive VR settings. 

7.1.3. Validity of the approach in immersive, free-walking VR  

The fourth aim of this thesis was to investigate the effectiveness of VR in 

inducing emotional responsesand the efficiently of reading those via our system 

set-up (Aims a-d). To this goal, we custom designed and developed a selection 

room-sized stimuli and environments, given the aforementioned lack in room-scale 

immersive affect stimulus library (section 5.1). Four versions of 3-D replica of an 

office room (where the first studies took place) were designed and were populated 

with context-based 3-D affective events (involving visual, audio and user-triggered 

animations). A custom gaze-based interaction system and an event-marker 

annotation system were developed. These systems allowed the continuous tracking 

of the user’s attentional focus on the surrounding environment, and the automatic 

annotation of the physiological data with object/events specific markers. This 

interaction systems facilitated the users’ free movement within the VR room-scale 
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environments. Special effort was put in the design of each environment from 3D 

objects, 3D-sounds, animations, and textures, to physics and light/shadow rendering, 

to create an overall realistic space for the user to feel presence. In the following 

section, we discuss our findings on VR being a powerful mood induction medium 

and that interactivity plays a large role in the affect intensity induced 

 

7.1.4. Creation of stimulus materials for affect-inducing VR. 

Three VEs were developed for the VR study, i.e., a neutral, a positive and negative 

affect inducing VE. Each VE consisted of the same 3D spatial structure and 14 VE-

specific objects/events. The VEs and the event stimuli were validated using with an 

online survey, where the VE and the individual object/events for each VE were rated 

by 67 participants on their perceived valence and arousal levels. Participants were 

also asked which objects/events the memorised for each VE. These memory 

accuracy scores as a second level of validation, since affective stimuli tend to be 

more memorable than neutral, see section 2.3.3.2. The ratings from the participants 

showed that the videos of the VE-scenario conditions induced the expected mean 

arousal and valence ratings, which were significantly different from each other. More 

specifically, the neutral scenario elicited neutral valence and low arousal, while the 

positive and negative scenario elicited highly positive and highly negative valence 

respectively, and above-average arousal. The negative VE was the most arousing 

condition, as expected due to the ‘negativity bias’, discussed earlier in section 1.  

The valence and arousal ratings for the specific objects and events within 

each VE allowed us to inspect the effect of the environmental properties in more 

detail, and to find and exclude those objects and events that did not induce the desired 

affect. Interestingly, the stimuli which were rated as more arousing and highly 

valenced, were the VE-specific interactive events compared to VE-specific static 

objects and elements that were present in all three VEs. The interactive events were 

also the most memorable, as confirmed by the memory accuracies scores. Significant 

correlation was found between memory accuracies, valence and arousal scores, in 

line with past literature on the link between memory recall and affect (see section 

2.3.3.2).  

Presence ratings were assessed in the online survey and in the VR study 

because the part of the forth aim (4c) was to assess relationship between presence 

and affective intensities. As expected, presence ratings of the VEs in the online 
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survey were low, due to the non-immersive medium used for their presentation. Still, 

the negative VE provoked higher presence ratings than the other scenarios. The 

finding also suggest a strong relationship between presence and arousal ratings for 

both positive and negative VEs, which is in line with the previous findings 

suggesting that presence increases in physiologically active and arousing 

experiences or tasks suggesting that presence increases in physiologically active and 

arousing experiences or tasks (see section 2.3.3). This finding also strengthens the 

existing work on the link between emotion elicitation and presence (see section 

2.3.3). It also suggests that future work on immersive VR may be able to manipulate 

presence levels in VR by incorporating affect inducing elements into the VR 

simulation.  

In addition, subjective difference such as alexithymia levels were expected 

to have an impact on self-ratings and physiological readings (see section 2.3.3.2). 

High alexithymia causes difficulty in recognising and regulating one’s emotions 

which was expected to influence the affect self-ratings. We used the TAS-20 

questionnaire to assess alexithymia levels in our study. Interestingly, alexithymia 

levels were not found to have any effect on the valence and arousal self-ratings. 

Hence, further investigation on the effect of alexithymia on affect ratings and 

physiological responses was not followed as part of this thesis. 

In sum, the online survey validated the stimuli and the VEs and three ways: 

firstly, by confirming the mean VE ratings, secondly, by acquiring self-rating per 

stimulus/event, and thirdly, by recording corresponding memory accuracy scores. 

Our next step was to test the affect induction approach in immersive settings using 

HMD-enabled VR.  

 

7.1.5. Achieving automatic affect detection in seated and room-

scale VR. 

Finally,Aim 4.d. of this thesis was to investigate the feasibility of applying 

automatic affect detection in immersive VR. To achieve this goal, a large VR 

study was conducted at the Science Museum in London. The objectives for this study 

were to validate the use of immersive VR scenes as a reliable affect induction tool, 

explore the effects of affect, presence and interactivity on physiological readings, 

and confirm the feasibility of automatic affect detection in seated and free-walking 

VR settings. The pre-validated VE and stimulus materials from the online survey 
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were used in this VR study. Two interaction modes for the VR experiences were 

explored: the interactive first-person participation in room-scale VR (active 

participant group), and the passive observation of virtual stimuli from a third-person 

perspective in VR (passive participant group). Continuous physiological readings 

from the sensor set-up, along with subjective continuous self-ratings (via CASR) and 

post-VE ratings were recorded from 291 participants.  

 

The effect of interactivity on subjective ratings. The self-ratings revalidated the 

reliability of the VEs for affect induction, agreeing with what was previously 

reported in the online survey, making interactive virtual scenes a powerful affect 

induction tool. As expected, the ability of room-scale, freely moving (compared to 

vicarious passive viewing) amplified the affective responses. This was shown 

through differences in arousal self-ratings, between the two groups, but also through 

memory accuracy scores and presence, with the active group achieving higher scores 

than the passive group (see section 5.3.2). This finding was not directly due to the 

level of immersion imposed by the medium, as both groups experienced the stimuli 

using the same HMD technologies. The difference was perhaps rather in the overall 

visual perception of the 3D world, the interactivity (head-view coordination) and 

high fidelity in the simulated world which allowed for a more naturalistic exploration 

in active condition [509]. Perceptual biases in perceiving 3-D shapes and spaces can 

be eliminated in moving observes, (compared to static observes), which in turn 

increases ecological validity of the simulated environment. This in turn can permit 

an overall more naturalistic interaction with the content, which can reflect how we 

reach with the world (see section 2.3.3).  

The effect of interactivity was not the only factor inducing stronger affective 

responses and stronger presence. The self-ratings also showed that the intensity of 

the affective content itself was found to be linked to higher levels of presence. In our 

study, the positive and negative VEs were also the most arousal and presence 

inducing across all users, agreeing with the suggested relationship between affect 

and presence (section 2.3.3). Again, in the VE examples we explored, the neutral VE 

contained non-interactive, neutral objects compared to the affective VEs. It is 

possible that interactive events add another dimension in affective elicitation, in a 

similar way that moving pictures do compared to static images (as described in 

sections 2.4.1 and 4.1). The results suggest that interactive affective experiences hold 

a better potential in eliciting higher intensity responses and a higher sense of ‘being-

there’ in VR.  
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Continuous ratings can reveal finer-grained and event-related differences. We 

developed a continuous CASR rating scale to assess subjective valence and arousal 

changes throughout the users’ interaction in the VEs. The CASR scale was easy to 

use. As expected, CASR ratings showed a higher sensitivity to affective changes 

compared to post-VE ratings. When averaged per VE scene, the mean CASR ratings 

showed similar arousal levels between the positive and negative scene for the active 

group, showing no effect of negativity bias on the ratings.  

More importantly, we were also able to link affective ratings to individual 

events which were visible to the user at certain points during the experience (gaze-

based detection, explained in section 5.2.3), because of the nature of the CASR 

ratings. For example, the event-specific analysis showed that the passive interaction 

mode affected the experience of positive stimuli. The passive group’s mean VE 

ratings were more negative compared to the active group ratings. This was because 

several positive stimuli reported as slightly negative and low arousing in the passive 

environment, despite being rated as positive in the online survey. Low arousing 

negative ratings are usually attributed to tiredness and boredom (see dimensional 

model in Figure 1). It is hard to pinpoint the reason why those ‘positive’ events were 

rated so differently than the others but potential explanations could be (1) inhibition 

of approach [510] generated by the passiveness of the condition, and (2) cognitive 

inhibition in stimulus recognition [511] due to perceptual biases and method of 

visualisation. Passively observing a virtual experience through the eyes of someone 

else may also pertain to subjective traits (e.g. empathy levels) and other media-

related ramifications that were not controlled for [512], [513]. These media type 

effects should be further and systematically explored in future studies. 

Overall, the virtual objects and events within those VEs evoked mean 

valence-arousal combinations, which when graphed into the 2-D affective space 

followed a V-shape relation. This was most prominent for the ratings of the active 

group. The V-shape relation, or as often also called ‘inverse U-shaped curve’ [506], 

is considerably evident on the ratings of the IAPS picture library [405] which shows 

that arousal ratings increase with the intensity of valence towards higher pleasure 

(positive) or displeasure (negative). Therefore, arousal may be expressed as a 

function of valence and they are not truly independent; although this relationship can 

be affected by the individual parameters, and the context in which they were reported 

(in this case e.g., interactive versus passive environments).  
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Validity of automatic detection of voluntary facial expressions recognition. As 

part of the VR study, our team explored the sensitivity of the f-EMG sensors in 

detecting posed, voluntary expressions in a facial emotion mimicry exercise. Data 

from the voluntary expressions, of smile (as ‘being happy’), frown (as ‘being angry’) 

and brow raise (as ‘being surprised’), were analysed per channel. The expressions 

were carefully chosen to induce intense activations on the facial muscles underlying 

the f-EMG sensors (zygomaticus major, corrugator, orbicularis oculi and frontalis) 

(see section 6.3.2). From those expressions, we computed the maximum muscle 

contractions were which were used for the normalisation of the spontaneous EMG 

responses. The voluntary expressions analysis showed distinct EMG channel 

activations patterns for each expression. For example, positive and negative 

expressions were distinguishable, as expressed by the activation of zygomaticus 

major and corrugator (which agreed with previous research, discussed in section 

2.3.1).  

More importantly, as expected, the expressions were distinguishable from 

all users using a generalised classification model yielding 80% classification 

accuracy across participants. The performance scores are comparable to expression 

classification work by Hamedi et al., [514] using EMG RMS feature with SVM 

classifier (85.5% accuracy). Direct comparison with other studies is difficult, since 

the number of sensors, the facial expressions and features vary between different 

studies [515]. Our work was further improved in a different study in 2019 [516] 

where we achieved 86% accuracy in detecting five expression using the same sensor 

set-up. These findings confirmed the feasibility of detecting voluntary expressions 

with this setup with high accuracy.  

 

Validity of spontaneous affect detection in VR settings. In the final study 

participants of the active and the passive group experienced the three VEs while 

wearing the sensor set-up. We wanted to assess the overall feasibility of inferring 

spontaneous affective changes from physiological readings within VR, which was 

the last research aim of this thesis. Therefore, physiological data recorded from EMG 

and the PPG sensors were analysed to validate the reliable measurement of affective 

states in different VEs, for both the passive and the active group. An event-based 

analysis of physiological metrics showed changes between the VE conditions, which 

were more prevalent for the active group. Despite the increased noise accounted by 

the movement of the participants in the active scenario, EMG measures showed 

strong detection potential for the negative, positive, and neutral conditions which can 
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be attributed to valence changes (explained in section 2.3.1) in spontaneous, 

naturalistic settings.  

By comparison, the HR measures dissociated between the affective and 

neutral conditions for both groups, showing closer link to arousal rating differences 

(see section 2.3.2.1). This differentiation was stronger for the negative versus the 

neutral VE, which was expected as the negative VE was rated as overall more 

arousing than the other conditions (post-VE ratings, see Figure 64). The PRV 

measures showed good discriminatory power for arousing against neutral condition 

in the passive group but did not provide a similar effect in the active group. One 

reason for this could be the method of data feature extraction. More specifically, the 

extraction of those features was made using short time windows which have been 

suggested to be sufficient for time-domain HRV calculation metrics [517]–[521]. 

However, these metrics could have been heavily affected by movement noise in the 

active scenario, rendering the PVR metric calculation erroneous (further explained 

in section 2.3.2.1 and 4.4). Therefore, the calculation of PRV metrics in active 

(walking) settings should be further improved in future studies, potentially by 

applying an averaging approach between multiple short time windows as in [517]. 

Nevertheless, our result show that the features of IBI, rBPM (and potentially EMG 

RMS) could be used instead to detect changes in affect intensity in future which is 

an encouraging first step in the right direction.   

 

Automatic affect detection can be attained in seated and free-walking 

conditions using classification methods. The feasibility of employing classification 

methods for the detection of valence and arousal changes was explored. Such 

methods allow the mapping of physiological responses to self-ratings of valence and 

arousal, via the identification of patterns in the data. In our classification 

experiments, continuous EMG measures from both groups were used to classify two 

and three classes of valence and arousal using classifiers commonly used in 

physiological data processing. For the training and validation of the classifiers for 

this study, we devised a user-independent approach as it is commonly used for the 

creation of generalisable models (see section 3.6.4), applying a mixed-subjects 

cross-validation (CV) and a separated-subjects cross validation (CV) (the later has 

been supported that can generalise better to new incoming data although the 

accuracies may be reduced [10], [323]). Additionally, we devised a user dependent 

approach, by developing a personalised model per user.  
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Our findings for such user-independent models showed that the best 

classifier can discriminate between two and three levels of valence and arousal with 

77-94% accuracy when using mixed-subjects CV. The accuracies however drop to 

55-65% when using separated-subjects CV. This demonstrates the intricacies of 

detecting naturalistic affective states in free-walking VR conditions (similar to 

[323]). Additionally, we computed the out-of-sample classification for each user 

separately (user-dependent approach) (section 6.3.4.3). The temporal sequence of 

the data was preserved when fed to the classifiers to account for time-based changes 

on the data (e.g., impedance, carry-over effects etc.) as well as preserve the causality 

of the changes. The best classifiers reached a mean prediction accuracy between 

participants of 69-80% for 2-levels of valence and arousal, showcasing once again 

the robustness of subject-specific models, which lack the ability however to 

generalise for new users (section 3.6.4, 6.2.6).  

Between the three classifiers which were chosen based on previous research 

(see review by  [10]), we observed that the KNN performed higher for the user-

independent across mixed-users CV, NB performed higher for separated-subject CV 

user-independent approach (for discrimination of valence) and KNN performed 

significantly higher than other two classifiers in the user-dependent prediction 

approach. The results from the classification of valence and arousal demonstrated 

the feasibility of automatic affect detection using wearable technologies in free-

walking immersive VR settings which to our best knowledge, has not been explored 

before. 

Affect detection from naturalistic, non-stationary physiological signals pose 

many challenges, however understanding their nature could open new avenues for 

deployment in real-world affective computing applications. The performance of such 

automatic affect detection systems could be improved with the use of ensemble [522] 

and deep learning (DL) methods. Increasing number of research on affective 

computing promote the use of deep artificial neural network architectures for valence 

and arousal recognition from image[523], speech[524] and physiological 

signals[525]–[527] in controlled conditions outside VR. These methods overcome 

the difficulties of manual ad-hoc feature extraction and have the ability to reduce 

signal resolution across different layers, potentially saving computational resource 

[528]. Existing datasets with physiological data recorded in controlled conditions 

(e.g., DEAP[365], AMIGOS[529]) were classified with high accuracies (>75%) 

using convolutional and deep neutral networks [530], [531]. However, such methods 

perform lower (~65%) in data recorded in non-stationary settings [532]. Recently, 
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DL approaches have started to emerge for stress and fear detection systems using 

immersive VR technologies [533], [534]. The future investigation of successful 

employing DL approaches for real-time affect detection in VR could allow for affect-

responsive applications and enhance the capabilities of VR based therapies and 

training applications.  

Future work on affective computing in VR could be enriched by exploring 

the effect of (inter)active experiences, outside controlled seated conditions. By 

accounting for the factors contributing to the feeling of presence and embodiment, 

affective responses in VR could reliably reflect real-world, naturalistic responses. 

As sensor methods are miniaturising, becoming less obtrusive and even wireless, the 

physical movement constraints will be reduced, allowing for more realistic user 

interaction with content. Overall, the active condition in our study induced stronger 

affective responses visible on self-ratings, and in spontaneous and voluntary facial 

muscle activations. The larger changes between conditions noted in the active group, 

could be the effect of realistic affective responses as a result of place illusion 

(presence) and plausibility illusion and the factors pertaining it [535]. Generally, the 

findings show that there are inherent differences between the two modes of virtual 

stimuli presentation that can influence the participants responses drastically.  

Overall, these results agree with previous research using VR stimuli against 

video clips, and video-clips against static images [294], as VR can indeed be used as 

a reliable affect induction tool. Our findings suggest that moving experiences, as in 

room-scale VR, and the interactive element of features inside the simulated world, 

can not only induce negative and positive affect but show stronger arousal responses 

to stimuli overall compared to non-interactive passive experiences. Additionally, 

sensor data recorded from the prototype set-up can be used to dissociate affective 

conditions, and ultimately detect valence and arousal. 

 Discussion 

The detection of involuntary, naturalistically elicited emotional states is a 

challenging task which is still in early stages [8], [68]. Most of the studies in the past 

focused on the detection of affect in controlled laboratory conditions, which was a 

necessary step for the investigation of suitable methods for automatic affect 

detection. However, it is argued that such constrained elicitation may not generalise 

to real-world conditions [323], [536], [537]. The detection of spontaneous elicited 

affect in naturalistic conditions is superior to voluntary [538] (e.g., posing or 
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imitating an actor expressing an emotion) and controlled laboratory induced affect 

[323], [539], as they can represent more realistically the effects of actual emotions 

on our behaviour and physiology in real-life.  

In our work, we employed physiological methods for the detection of two 

dimensions of affect (EMG on facial muscles for valence, and heart-rate sensors for 

arousal) on a novel wearable insert for virtual reality (VR) that had not been tested 

before. Physiological changes are less sensitive to induced affective states and the 

influence of social masking [322], and the methods generally utilised to detect them 

are of high temporal resolution which can show subtle changes that are not visible 

by eye otherwise [128], [537], [540]. We envisioned that this novel interface could 

continuously record physiological responses, while becoming ‘invisible’ to the 

senses of the wearer who is being immersed in VR. Today, as sensors are becoming 

increasingly smaller, we are witnessing of large expansion into wearable 

technologies which are incorporating physiological sensors [4]. These sensors are 

progressively more cost-effective and less intrusive to the wearer, making them 

perfect candidates for every-day interventions [541], potentially applied in areas as 

education, entertainment, well-being and healthcare treatments, social and computer 

interactions, adaptive control and security. Although the hardware technologies are 

evolving, we have still to enlarge our understanding on the intricate factors (e.g. [6], 

[542] ) and the non-emotional influences (e.g. coughing, walking) [328], [543] (or 

lack thereof) underlying physiological activation during data collection. One of the 

main challenges is inter-subject and mixed-subjects differences on affect elicitation 

and detection [75], [322], [323]. Several external and internal factors could play a 

role. External factors could include the environment, the task performed, the 

technology involved, the stimuli presentation interface, and the degrees of freedom 

of the setup (standing, moving, seated, lying). Examples for internal factors could 

include personality, gender, cultural background, alexithymia levels, and generally 

the individual differences in the quality, intensity, and latency of affect expression 

as a response to the same stimulus. As such, future work will try to address the effect 

of individual differences on naturalistic affect elicitation and experiences in virtual 

reality. 

The development of automatic affect detection models for application in 

real-world scenarios, will be greatly benefited by more systematic investigation of  

suitable and best performing classification methods tailored towards the detection of 

affective states from physiological signals in naturalistic conditions [10]. For 

example, it is difficult to determine which is the best classifier for the different types 
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of physiological signals for each data collection condition and degrees of freedom 

[323]. Additionally, there is a big discrepancy between the data collection conditions 

(e.g., contextual information), protocols and methodologies (e.g., classification 

models) used between studies, a lack in available public databases for naturalistic 

affect elicitation and only a small body of research on affect elicitation in VR using 

different types of stimuli. These together with the fact that technologies change 

rapidly (even within a year), makes the replication of such studies complicated. 

Effort should be put for future classification experiments on attempting developing 

classification models that can apply in the real-world scenarios, either for user-

dependent models or for user-independent models, emphasising holistically on the 

factors that could influence emotion elicitation and how those models developed 

could be used for the classification of new data from the same or many new users.  

Past research on spontaneous affect detection within and outside VR 

revolved around the detection of two or three level of valence and arousal from 

physiological signals (similar to our studies) by utilising post-experience self-ratings 

and ratings from external observers, in controlled laboratory conditions (e.g. [294], 

[333], [538], [544]–[546]). Our work attempted to expand the scope of past research 

by (a) inducing spontaneous, stimuli and context induced, affective states in 

naturalistic conditions, (b) not limiting movement involving walking in space in VR, 

(c) bringing the research study to the participants (Science Museum) instead of 

taking them to the laboratory, (d) utilising the immersive abilities of VR to induce a 

state of Presence, (e) testing the feasibility of novel sensor equipment for head-

mounted tracking using EMG, and (f) allowing for triple labelling of the data (self-

rating throughout the experience, retrospective (post-VE) scores per user, 

experiment-specific labels via validation from online surveys). Finally, as part of this 

thesis we also classified physiological responses in distinct levels of valence and 

arousal (two and three) from 1) seated laboratory-based affect induction from videos, 

4) passive seated VR-based vicariously induced affect, and we took one step further, 

attempting affect detection in 3) actively-walking VR-based naturally induced affect. 

Our findings showed overall the superiority of interactive immersive experiences for 

spontaneous, naturalistic affect elicitation in VR, and its effects on presence. 

Enabling reliable automatic affect detection in such conditions forecast a promising 

future in applying such affective systems into real-world applications. 

Such affect-enabled sensing VR technologies could be applied in three main 

contexts, in research, healthcare and commercials applications. VR can enable 

researchers and developers to directly design the experience of the wearer by 
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providing direct control over what is seen, heard, and interacted with. Researchers 

could study the effects of different parameters (e.g., changes in colours or shapes) or 

scenarios VR, which could enhance our understanding of the emotional impact of 

those parameters on different users and facilitate the development of better practices. 

Immersive VR can also provide high ecological validity which can in turn induce 

naturalistic responses in users. For this reason, VR has been successfully adapted in 

clinical research settings and for mental-health therapies and meditation 

interventions. In those settings, affect detection could provide an additional layer of 

information on the emotional state of a patient, which for example could inform and 

assist therapists and mental care practitioners delivering VRETs[547]. These sensing 

metrics could also be used as adaptive feedback to the simulation, thus providing 

more personalised content to the needs of the user. As such, training and educations 

applications could also benefit from such methodologies. In the post-COVID-19 era, 

where new practices and regulations are developed [548], we expect VR to play a 

bigger role in delivering those therapies and personalised content to the user [2], 

[549]. Similarly, the quantification of affective changes could be applied in 

commercial applications including market research and entertainment.  

 

 Limitations & Challenges for Future Work 

Reliability of self-ratings. Mapping the physiological responses to the adequate 

labels or annotations is typically challenging. In our studies, we used the CASR self-

ratings throughout the virtual experiences for the labelling of the data. Generally, 

self-reported labels may not occur simultaneously with the physiological responses, 

due to delays and/or errors in reporting which may not be easy to locate nor fix 

([228], [477]). Although we tried to compensate for simple reaction-time delays by 

adjusting the CASR and physiological data synchronisation during processing, the 

exact and precise localisation of the labels could be subjected to individual 

differences (e.g. cognitive load, attention deficit disorders, mental fatigue [550]–

[552]). Perhaps we could next complement the self-ratings with additional 

judgements from external observers and by investigating additional self-rating 

processing models such as in [325]. Without doubt, continuous self-rating without 

pre-training could also increase the cognitive load to the users [334] and distract 

them from the main task with potential impact on the feeling of presence. Future 

research could investigate the effect of simultaneous rating on the feeling of 
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presence, and the effect of VR on reaction times. Next, in our work we plan to 

compare the presence levels of users who were self-rating their affect against users 

who only rated retrospectively, from multiple shorter virtual stimuli experiences. 

Note that recording of the self-ratings is important for the development of the 

automatic affect detection systems. Once the system is successfully deployed, such 

ratings will not be necessary. 

 

Generalisation to open environments. In our VR study, we used context-based 

stimuli in indoor virtual environments (office replicas). It is unclear whether the 

results could generalise to different environments or different stimuli e.g., using 

avatars. As such further research could focus on incorporating additional VR corpora 

that can simulate various situations and environments (e.g., outdoors, involving low-

level architectural elements, additional sound, abstract synthesis, realistic social 

environments). Additionally, in our study the event-stimuli were activated by the 

user’s gaze. Our event-based algorithm could be greatly benefited from the addition 

of accurate eye-tracking technologies which are currently emerging in the market 

([553]–[556]).  

To allow the users to move naturally and explore the virtual spaces, we 

wanted to reduce the number of factors contributing towards their distraction and 

discomfort. This led to the development of a wireless version of the main apparatus 

used for physiological signal detection, which was found non-intrusive nor hindering 

movement. However, the HMD VR headset with motion tracking we used, was 

heavy and required connection via cable to the computer. VR technologies are now 

launching wireless, smaller headsets with motion tracking capabilities which could 

greatly enhance the overall user experience. Additionally, the insertion of 

supplementary sensorimotor contingencies, e.g., a virtual body (avatar) in the place 

where the user’s physical one should be in VR, could contribute to the feeling of 

embodiment and the subjective feeling of presence [213], [557], which could 

augment naturalistic affect elicitation. 

 

Limitations of recordings and analysis approaches. The feasibility studies 

showed an overall promising result for valence and arousal detection. We used only 

a subset of features which are commonly utilised in existing related literature, in 

order to control for complexity added from feature multidimensionality [323]. The 

careful addition of extra features and additional modalities could potentially improve 

the accuracy performance, and as such it will be explored in our future work. Further 
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solutions to increase robustness and accuracy of our models will be investigated, 

such as the implementation of other classification models, multimodal fusion 

techniques, deep learning and ensemble combination strategies [558], on 

spontaneously elicited responses in naturalistic conditions.  

Another challenge in this area of research can be obtaining reliable 

annotation of affective states [334] and data filtering from long-term recordings in 

VR. Movement and non-emotional influences can cause artefacts issues and data-

missing occurrences in the data streams, which can naturally be increased with the 

addition of multimodal sensors. Future research should not only systematically study 

the effectiveness of classifications methods on affect detection in various settings, 

but also tackle common data-collection issues such as corrupted and missing data.  

We have observed that detection accuracies on spontaneously elicited 

affective responses decrease, especially when using a separated-users validation 

approach. Natural expressions are involving subtle changes and are highly context-

sensitive and subject-dependent. VR as a method of induction is very recent, and 

thus could have additional, unexplored effects on the experience of distinct and 

complex affective states. For that reason, we anticipate a substantial volume of future 

research will be dedicated for this endeavour. 
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Summary of all key findings 

In this EngD thesis, we have: 

• Developed and validated a novel sensor set-up specifically designed 

for head-mounted VR settings using physiological sensors. This set-

up was able to reliably detect valence and arousal responses in seated 

and active/walking conditions using affective videos.  

• Designed a system architecture for automatic affect detection in VR 

(utilising the dimensional model of affect). 

• Created and validated affective VR 3D scenarios and stimuli, which 

were able to successfully induce variations of valence and arousal 

levels. 

• Conducted on of the largest VR data set to our knowledge in fully up-

to-date immersive settings with free walking capabilities outside 

laboratory settings whilst recording affective states. Physiological 

responses from this study confirmed the feasibility of automatic affect 

detection in fully immersive VR settings. VR can indeed be used as a 

reliable affect induction and detection tool. 

Future directions: 

• PPG and EMG sensor placement improvements  

• Investigate effects of the intricate factors and non-emotional 

influences.  

• Employ different VR environments to extend the range of settings 

confirming reliable affect detection.  

• Investigation of suitable and best performing classification methods. 

• Explore additional features, modalities and user newer, lighter VR-

HMD headsets  
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A. Appendix 

 

Chapter 6 – Additional material: 

A.1  Presence correlations to other subjective ratings per VE 

The relationships between presence scores, end of VE valence and arousal ratings, 

and memory accuracy were investigated separately for each VE, using Pearsons 

correlations.  

For the positive VE, presence scores were positively correlated with post-

VE valence ratings (r(291)=0.496, p<.001), post-VE arousal ratings (r(291)=0.311, 

p<.001). Presence scores were also positively correlated with the CASR valence 

ratings (r(291)=0.341, p<.001) and CASR arousal ratings (r(291)=0.313, p<.001). 

The weak positive correlation between presence ratings a memory accuracy was also 

significant (r(291)=0.133, p=.023).  

For the negative VE, a different pattern emerged. For the post-VE ratings, 

presence scores were only significantly correlated with arousal ratings 

(r(291)=0.541, p=.001), but not with valence ratings. For the average CASR ratings, 

presence scores were correlated with valence ratings (r(291)=-0.151, p=.01) and 

arousal ratings (r(291)=-0.185, p=.002) but these correlations were much weaker. 

There was no correlation with memory accuracy (r(291)=0.078, p=.187).  

Finally, for the neutral VE, presence scores were positively correlated with 

post-VE valence ratings (r(291)=0.217, p<.001) and the post-VE arousal ratings 

(r(291)=0.210, p<.001). The same pattern was found for the CASR ratings. Here, 

presence scores were also positively correlated with the CASR valence ratings 

(r(291)=0.183, p=.002) and the CASR arousal ratings (r(291)=0.182, p=.002). 

However, there was no relationship between presence ratings and memory accuracy 

(r=-.005, p=.395). 

The relationship between presence and enjoyment was also analysed for 

this study. Generally, the significant correlations between presence and enjoyment 

scores were highest for the positive VE (r(291)=0.610, p<.001), at a medium level 
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for the neutral VE (r(291)=0.470, p<.001), and lowest for the negative VE 

(r(291)=0.279, p<.001).  

For the positive VE, enjoyment was correlated with all valence and 

arousal measures (all r(291)≥0.325, all p<.001) but there was no correlation with 

memory accuracy (r=0.078, p=.185). For the negative VE, enjoyment was correlated 

with post-VE valence and arousal measures (all r(291)≥0.188, all p≤.001) but there 

were no significant correlations between enjoyment scores and mean CASR valence 

ratings (r=0.095, p=.105), CASR arousal ratings (r=0.094, p=0.110) and memory 

accuracy (r=0.028, p=.635). For the neutral VE, enjoyment was correlated with all 

valence and arousal measures (all r(291)≥0.219, all p<.001) but there was no 

correlation with memory accuracy (r=0.093, p=.112).  

Taken together, these findings show that there is a clear relationship between 

feeling present and affective value of a VE for all three VEs, meaning the more 

valence or arousal in a VE the higher was the presence rating too. Interestingly, 

higher presence levels were only related to higher memory scores in the positive VE. 

Presence was correlated with enjoyment scores. This relationship was strongest 

for the positive VE, less strong for the neutral VE, and least strong for the negative 

VE. As for the presence scores, there was a clear relationship between enjoyment 

and the affective value of a VE for all three VEs. However, enjoyment was not 

correlated with memory accuracy.  
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A.2  Classification Experiments 

A.2.1  User-Independent mixed-subjects 

Figure 76 shows the highest out-of-sample accuracies reached for valence and 

arousal detection for binary (2-classes) and ternary (3-classes) classification. These 

include the accuracies achieved for the active, the passive and the combination of 

both groups. The blue bars represent the accuracies for binary classification and the 

red bars for ternary. For both dimensions, the active group was achieved the highest 

accuracies. 

 

 

A.2.2.  User-Independent (mixed-subjects): Valence Classification  

In this section, we present the confusion matrices and the Roc curves per classifier, 

firstly for all the subjects and then for active and the passive groups for all valence 

classification experiments. 

 

Combined groups (2-classes) –Table 36 show the confusion matrices per classifier 

for two classes valence (negative, positive) from data of both groups, the out-of-

sample accuracies obtained and the corresponding F-scores. The best performing 

classifier was KNN with 94.71% accuracy and the lowest out-of-sample 

misclassification rate (k-LossKNN = 0.05, k-LossSVM =0.16, k-LossNB = 0.28). Figure 

77 shows the ROC curves per classifier with their corresponding area under curve 

(AUC). 

 

Figure 74. Best accuracies achieved per group (active, passive and combined groups) for 

valence detection using EMG features (left figure), and for arousal detection using PPG 

features (right figure). 
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Table 36. Confusion matrixes for the SVM, KNN, NB classifiers for valence, together with 

their equivalent CV accuracy percentages and F-scores, using data from both groups 

combined. Values are expressed as percentages. 

Confusion Matrix -2 classes 

Classifier Valence Negative Positive Accuracy F-Scores 

SVM 
Negative 79.50 20.50 

84.19 0.83, 0.85 
Positive 11.11 88.89 

KNN 
Negative 4.03 6.55 

94.71 0.95, 0.95 
Positive 5.47 95.97 

Naïve Bayes 
Negative 76.90 23.10 

72.36 0.73, 0.71 
Positive 32.16 67.84 

 

Combined groups (3-classes) – Table 37 show the confusion matrices per classifier 

for three classes valence (negative, neutral positive) using EMG features from data 

of both groups, the out-of-sample accuracies obtained and the corresponding F-

scores. The best performing classifier was KNN with 90.95% accuracy and the 

lowest out-of-sample misclassification rate (k-LossKNN = 0.09, k-LossSVM =0.26, k-

LossNB = 0.41). Figure 78 shows the ROC curves per classifier with their 

corresponding area under curve (AUC). 

 

Table 37. Confusion matrixes for the SVM, KNN, NB classifiers for 3 classes of valence, 

together with their equivalent accuracy percentages and F-scores, using data from both 

groups combined. Values are expressed as percentages. 

Figure 75. ROC curves per classifier (for combined groups-2 classes valence 

classification). 
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Confusion Matrix -Valence -3 classes 

Classifier Valence Negative Neutral Positive Accuracy F-scores 

SVM 

Negative 79.27 8.69 12.04 

73.95 0.80, 0.57, 0.78 Neutral 15.33 48.43 36.25 

Positive 5.57 7.41 87.03 

KNN 

Negative 92.24 4.31 3.45 

90.95 0.94, 0.85, 0.92 Neutral 5.59 83.96 10.46 

Positive 0.44 4.86 94.70 

Naïve 

Bayes 

Negative 71.95 9.23 18.82 

58.88 0.65, 0.32, 0.66 Neutral 35.53 23.23 41.24 

Positive 20.14 7.94 71.92 

 

 

 

Active group (2-classes) – 

 

Table 38 show the confusion matrices for the three classifiers per valence class 

(negative, positive), the out-of-sample accuracies obtained and the corresponding F-

scores. The best performing classifier was KNN with 93.11% accuracy and the 

lowest out-of-sample misclassification rate (k-LossKNN = 0.06, k-LossSVM =0.28, k-

LossNB = 0.37). Figure 79 shows the ROC curves per classifier with their 

corresponding area under curve (AUC). 

 

Table 38. Confusion matrixes (2 classes) of the testing set for the SVM, KNN, NB classifiers 

for valence, together with their equivalent CV accuracy percentages and F-scores. Values are 

expressed as percentages. 

Figure 76. ROC curves per classifier (for combined group-3 classes valence classification). 
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Confusion Matrix of testing set - 2 classes 

Classifier Valence Negative Positive Accuracy F-Scores 

SVM 
Negative 83.53 16.47 

71.89% 0.74, 0.69 
Positive 39.05 60.95 

KNN 
Negative 95.19     4.81 

93.62% 0.94, 0.94 
Positive 7.86    92.14 

Naïve Bayes 
Negative 63.51 36.49 

62.97% 0.62, 0.63 
Positive 37.54 63.49 

Active Group (3-classes) – Table 39 shows the confusion matrices, the out-of-

sample accuracies and F-scores per optimised classifier for detection of 3 classes of 

valence, negative, neutral and positive. The best performing classifier was KNN with 

88.91% accuracy and the lowest out-of-sample misclassification rate (k-LossKNN = 

0.11, k-LossSVM =0.38, k-LossNB = 0.46). Figure 80 shows the ROC curves per 

classifier with their corresponding area under curve (AUC). 

 

Table 39. Confusion matrixes of the testing set (3 classes) for the SVM, KNN, NB classifiers 

for valence, together with their equivalent CV accuracy percentages and F-scores. Values are 

expressed as percentages. 

Confusion Matrix -Valence Testing Set - 3 classes 

Classifier Valence Negative Neutral Positive Accuracy F-scores 

SVM 

Negative 62.75 6.63 30.61 

63.65% 0.64, 0.58, 0.65 Neutral 21.67 50.21 28.13 

Positive 20.13 6.67 73.20 

Figure 77. ROC curves per classifier (for Active group-2 classes valence classification). 
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KNN 

Negative 90.75 8.29 0.97 

88.91% 0.93, 0.82, 0.90 Neutral 4.54 86.58 8.88 

Positive 1.15 10.09 88.76 

Naïve 

Bayes 

Negative 61.27 14.56 24.18 

53.58% 0.54, 0.50, 0.56 Neutral 30.94 45.15 23.91 

Positive 33.05 13.46 53.50 

 

Passive group (2-classes) – Table 40 show the confusion matrices for the three 

classifiers for two valence classes (negative, positive). The best performing classifier 

was KNN with 93.33% accuracy and the lowest out-of-sample misclassification rate 

(k-LossKNN = 0.06, k-LossSVM =0.19, k-LossNB = 0.32). Figure 81 shows the ROC 

curves per classifier with their corresponding areas under curve (AUC). 

 

Table 40. Confusion matrixes of the testing set of passive group for the SVM, KNN, NB 

classifiers for valence, together with their equivalent CV accuracy percentages and F-scores. 

Values are expressed as percentages. 

Confusion Matrix of testing set - 2 classes 

Classifier Valence Negative Positive Accuracy F-Scores 

SVM 
Negative 68.43 31.57 

80.61 0.77, 0.83 
Positive 8.93 91.07 

KNN 
Negative 91.93 8.07 

93.33 0.93, 0.94 
Positive 5.47 94.53 

Naïve Bayes 
Negative 59.55 49.45 

68.49 0.64, 0.72 
Positive 23.82 76.18 

Figure 78. ROC curves per classifier (for Active group - 2 classes valence classification). 
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Passive group (3-classes) –Table 41 show the confusion matrices for three classes 

valence (negative, neutral, positive) from data of the passive group., the out-of-

sample accuracies obtained and the corresponding F-scores. The best performing 

classifier was KNN with 88.39% accuracy and the lowest out-of-sample 

misclassification rate (k-LossKNN = 0.10, k-LossSVM =0.24, k-LossNB = 0.42). Figure 

82 shows the ROC curves per classifier with their corresponding area under curve 

(AUC). 

 

Table 41. Confusion matrixes of the testing set of passive group for the SVM, KNN, NB 

classifiers for 3 classes of valence, together with their equivalent CV accuracy percentages 

and F-scores. Values are expressed as percentages. 

Confusion Matrix -Valence Testing Set -3 classes 

Classifier Valence Negative Neutral Positive Accuracy F-scores 

SVM 

Negative 84.04 11.32 4.64 

75.75 0.79, 0.72, 0.76 Neutral 19.10 69.01 11.88 

Positive 14.65 12.48 72.87 

KNN 

Negative 90.96 8.25 0.79 

90.17 0.92, 0.86, 0.92 Neutral 5.99 87.76 6.25 

Positive 0.50 7.62 91.88 

Naïve 

Bayes 

Negative 66.90 19.65 13.44 

57.58 0.62, 0.54, 0.56 Neutral 31.43 51.76 16.81 

Positive 28.22 19.41 52.38 

 

Figure 79. ROC curves per classifier (for Passive group-2 classes valence classification) 
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Valence Classification with fusion of EMG and PPG features – In Table 42 the 

confusion matrices, accuracies and F-scores and misclassification rates are shown 

per classifier using the combination of features from the EMG and PPG sensors 

(fusion). Figure 83 shows the ROC curves per classifier when data from both groups 

are combined. 

 

Table 42. Confusion matrixes and performance metrics per classifier using combined 

features (fusion), per group (active, passive and all combined). The confusion matrix and 

accuracy per classifier are expressed in percentages.  

Confusion Matrix -Valence– 2 Classes from EMG & PPG features (fusion) 

Group Classifier Arousal Neg. Pos. Accur. F-scores k-loss 

All 

(combined) 

SVM 
Negative 74.72 25.28 

73.42% 0.75, 0.72 0.27 
Positive 28.03 71.97 

KNN 
Negative 72.87 27.13 

80.87% 0.80, 0.82 0.19 
Positive 10.22 89.78 

NB 
Negative 65.37 24.63 

59.31% 0.61, 0.57 0.41 
Positive 47.46 52.54 

Active 

SVM 
Negative 58.25 41.75 

69.57% 0.63, 0.74 0.30 
Positive 21.27 78.73 

KNN 
Negative 75.04 24.96 

76.88% 0.74, 0.79 0.23 
Positive 21.64 78.36 

NB 
Negative 46.29 53.71 

60.38% 0.54, 0.53 0.40 
Positive 28.24 71.76 

Passive SVM 
Negative 81.92 18.08 

75.74% 0.79, 0.71 0.24 
Positive 32.15 67.85 

Figure 80. ROC curves per classifier (for combined group-3 classes valence classification). 
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KNN 
Negative 83.38 16.62 

81.86% 0.84, 0.79 0.18 
Positive 20.07 79.93 

NB 
Negative 65.09 34.91 

61.86% 0.66, 0.57 0.38 
Positive 42.27 57,73 

 

  

Figure 81. ROC curves per classifier foe valence detection (2 classes) from all participants 

(both groups combined). 
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A.2.3 User independent (mixed-subjects): Arousal Classification from 

PPG features 

Combined group (2-classes) –  

 

Table 43 shows the confusion matrixes, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from PPG features from data of both groups 

combined. The KNN achieved the higher accuracy (83.53%), and the lowest out-of-

sample misclassification rate (k-LossKNN = 0.16, k-LossSVM = 0.33, k-LossNB = 0.39). 

Figure 84 shows the ROC curves per classifier with their corresponding area under 

curve (AUC). 

 

Table 43. Confusion matrixes per classifier for 2 classes of arousal, together with their 

equivalent accuracy percentages and F-scores (using data from both groups). Values are 

expressed as percentages 

Confusion Matrix -Arousal – 2 Classes (Combined groups) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 60.23 39.77 

66.79% 0.63, 0.70 
High 27.16 72.84 

KNN 
Low 93.93 6.07 

83.53% 0.85, 0.82 
High 26.03 73.97 

Naïve Bayes 
Low 58.41 41.59 

61.36% 0.59, 0.63 
High 35.93 64.07 
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Combined group (3-classes) –  

Table 44 shows the confusion matrixes, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from PPG features from data of both groups 

combined. The KNN achieved the higher accuracy (76.89%), and the lowest out-of-

sample misclassification rate (k-LossKNN = 0.23, k-LossSVM = 0.48, k-LossNB = 0.55). 

Figure 87 shows the ROC curves per classifier with their corresponding area under 

curve (AUC). 

 

Table 44. Confusion matrixes for 3 classes of arousal, together with their accuracy 

percentages and F-scores (combined groups). Values are expressed in percentages. 

Confusion Matrix - Arousal -3 classes (Combined groups) 

Classifier Arousal Low Medium High Accuracy F-scores 

SVM 

Low 56.30 18.90 24.80 

54.41% 0.55, 0.48, 0.53 Medium 26.22 45.96 27.82 

High 24.43 21.44 54.13 

KNN 

Low 90.80 7.29 1.86 

76.89% 0.78, 0.71, 0.80 Medium 25.15 65.55 9.30 

High 18.84 8.39 72.77 

Naïve 

Bayes 

Low 43.44 27.25 29.31 

44.98% 0.45, 0.43, 0.47 Medium 27.44 44.74 27.82 

High 26.96 26.30 46.74 

 

Figure 82. ROC curves per classifier for combined groups (2-classes Arousal 

classification). 
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Figure 83. ROC curves per classifier for combined groups (3-classes Arousal classification). 
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Active group (2-classes) – Table 45 shows the confusion matrix for the three 

classifiers (2 levels of arousal, low-high), the out-of-sample average accuracies per 

model tested and the F-Scores distinguishing two arousal classes (low, high), from 

PPG features of the active group. The KNN achieved the higher accuracy (86.10 %), 

and the lowest out-of-sample misclassification rate (k-LossKNN = 0.14, k-LossSVM 

=0.30, k-LossNB = 0.38). Figure 86 shows the ROC curves per classifier with their 

corresponding area under curve (AUC). 

 

Table 45. Confusion matrices for 2 classes of arousal, together with their equivalent accuracy 

percentages and F-scores for the active group.  

Confusion Matrix -Arousal -Testing Set – 2 Classes (Active) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 75.38 24.62 

69.63 % 0.74, 0.64 
High 37.97 62.03 

KNN 
Low 93.61 6.39 

86.10 % 0.88, 0.83 
High 23.82 76.18 

Naïve Bayes 
Low 66.92 33.08 

62.25 % 0.67, 0.56 
High 43.92 56.08 

 

 

Active group (3-classes) –  

 

Table 46 shows the confusion matrices, the out-of-sample accuracies and F-scores 

per optimised classifier for detection of 3 classes of arousal (low, average and high), 

from PPG features of the active group. The KNN achieved the higher accuracy 

Figure 84. ROC per classifier for Active group (2-classes Arousal classification) 
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(76.93%), and the lowest out-of-sample misclassification rate (k-LossKNN = 0.23, k-

LossSVM = 0.40, k-LossNB = 0.50). Figure 89 shows the ROC curves per classifier 

with their corresponding area under curve (AUC). 

 

Table 46. Confusion matrixes for the SVM, KNN, NB classifiers for 3 classes of arousal, 

together with their equivalent CV accuracy percentages and F-scores (active group) . Values 

are expressed as percentages. 

Confusion Matrix -Arousal Testing set -3 classes (Active) 

Classifier Valence Low Medium High Accuracy F-scores 

SVM 

Low 63.57 26.39 10.04 

59.63% 0.60 0.60, 0.57 Medium 25.56 63.33 11.11 

High 25.45 24.11 50.45 

KNN 

Low 92.19 6.32 1.49 

76.93% 0.79, 0.73, 0.79 Medium 27.04 65.19 7.78 

High 18.30 8.89 72.77 

Naïve 

Bayes 

Low 55.76 28.25 15.98 

50.20% 0.56, 0.50, 0.43 Medium 26.67 53.33 20 

High 21.43 38.84 39.73 

 

Passive group (2-classes) –  

 

Table 47 shows the confusion matrixes, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from PPG features of the passive group. The 

KNN achieved the higher accuracy (80.54%), and the lowest out-of-sample 

misclassification rate (k-LossKNN = 0.19, k-LossSVM = 0.32, k-LossNB = 0.38). Figure 

Figure 85. Roc curves per classifier for Active group (3 classes Arousal classification) 
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88 shows the ROC curves per classifier with their corresponding area under curve 

(AUC). 

 

Table 47. Confusion matrixes per classifier for 2 classes of arousal, together with their 

equivalent CV accuracy percentages and F-scores (passive group). Values are expressed as 

percentages 

Confusion Matrix -Arousal -Testing set – 2 Classes (Passive) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 69.06 30.94 

67.70 0.68, 0.67 
High 33.68 66.32 

KNN 
Low 91.82 8.18 

80.54 0.83, 0.78 
High 30.94 69.06 

Naïve Bayes 
Low 65.70 34.30 

62.50 0.64, 0.61 
High 40.75 59.25 

Passive group (3-classes) – Table 48 show the confusion matrixes, accuracies and 

F-scores for three classes arousal (low, medium, high) from PPG features of the 

passive group. The KNN achieved the higher accuracy (77.30%), and the lowest out-

of-sample misclassification rate (k-LossKNN = 0.23, k-LossSVM = 0.38, k-LossNB = 

0.49). Figure 89 shows the ROC curves per classifier with their corresponding area 

under curve (AUC). 

 

Table 48. Confusion matrixes for 3 classes of arousal, together with their equivalent CV 

accuracy percentages and F-scores (passive group). Values are expressed as percentages. 

Figure 86. ROC per classifier for Passive group (2-classes Arousal classification). 
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Confusion Matrix - Arousal Testing set -3 classes (Passive) 

Classifier Arousal Low Medium High Accuracy F-scores 

SVM 

Low 68.28 14.19 17.53 

61.81% 0.64, 0.59, 0.62 Medium 24.86 55.54 19.60 

High 21.54 17.36 61.10 

KNN 

Low 92.82 5.83 1.34 

77.30% 0.77, 0.76, 0.79 Medium 25.70 68.97 5.99 

High 24.37 6.18 69.45 

Naïve 

Bayes 

Low 53.26 21.87 24.87 

51.23% 
[0.53, 0.49, 

0.52] 
Medium 25.41 48.46 26.13 

High 25.04 23.21 51.75 

 

 

 

  

Figure 87. ROC per classifier for Passive group (3-classes Arousal classification). 
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Arousal classification with fusion of EMG and PPG features – In . The Roc 

curves are presented in Figure 90. 

 

Table 49 the confusion matrices, accuracies and F-scores and misclassification rates 

are shown per classifier using the combination of features from the EMG and PPG 

sensors (fusion). The Roc curves are presented in Figure 90. 

 

Table 49. Confusion matrixes and performance metrics per classifier using combined 

features (fusion), per group (active, passive and all combined). The confusion matrix and 

accuracy per classifier are expressed in percentages. 

Confusion Matrix -Arousal – 2 Classes from EMG & PPG features (fusion) 

Group Classifier Arousal Low High Accur. F-scores k-loss 

All 

(combined) 

SVM 
Low 71.12 28.88 

74.22 0.74, 0.75 0.26 
High 22.62 77.38 

KNN 
Low 73.14 26.86 

81.47 0.80, 0.83 0.19 
High 10.04 89.96 

NB 
Low 64.39 35.61 

59.23 0.61, 0.57]  0.40 
High 46.03 53.97 

Active 

SVM 
Low 66.90 30.10 

67.98 0.70, 0.66 0.32 
High 34.14 65.86 

KNN 
Low 89.15 10.85 

80.87 0.83, 0.78 0.19 
High 28.29 71.71 

NB 
Low 52.07 47.93 

53.53 0.54, 0.53 0.47 
High 45.29 54.71 

Passive 

SVM 
Low 65.84 34.16 

75.68 0.72, 0.79 0.24 
High 15.77 84.23 

KNN 
Low 70.38 29.62 

80.67 0.77, 0.83 0.19 
High 10.39 89.61 

NB 
Low 66.25 33.75 

58.92 0.60, 0.58 0.41 
High 47.46 52.54 
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Arousal Classification from EMG features 

Combined groups (2-classes) –  

Table 50 shows the confusion matrices, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from EMG features from data of both groups 

combined. The KNN achieved the higher accuracy (93.37%), and the lowest out-of-

sample misclassification rate (k-LossKNN = 0.07, k-LossSVM = 0.17, k-LossNB = 0.28). 

Figure 91 shows the ROC curves per classifier with their corresponding area under 

curve (AUC). 

 

Table 50. Confusion matrixes and performance metrics per classifier using combined 

features (fusion), for all users combined for arousal detection (2-classes) using only EMG 

features. The confusion matrix and accuracy per classifier are expressed in percentages. 

Figure 88. ROC curves per classifier for combined groups using EMG and PPG derived 

features (2-classes Arousal classification). 

Figure 89. ROC curves per classifier for 2-classes arousal detection using EMG 

features (all users). 



Appendix A 

A-20 

 

Confusion Matrix -Arousal – 2 Classes (Combined groups) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 81.38 18.62 

83.45% 0.84, 0.82 
High 13.98 86.02 

KNN 
Low 95.37 4.63 

93.37% 0.94, 0.92 
High 9.11 90.89 

Naïve Bayes 
Low 76.81 23.19 

71.52% 0.75, 0.67 
High 35.04 64.96 

Active group (2-classes) – 

 

Table 51 shows the confusion matrixes, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from EMG features from the Active group. 

The KNN achieved the higher accuracy (90.93%), and the lowest out-of-sample 

misclassification rate (k-LossKNN = 0.09, k-LossSVM = 0.28, k-LossNB = 0.37). Figure 

92 shows the ROC curves per classifier with their corresponding area under curve 

(AUC). 

 

Table 51. Arousal classification using EMG features (Active group) 

Confusion Matrix -Arousal – 2 Classes (Active group) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 58.75 41.25 

72.28 0.89, 0.75 
High 13.27 86.73 

KNN 
Low 89.69 10.31 

90.93 0.91, 0.91 
High 7.74 92.26 

Naïve Bayes 
Low 65.11 34.89 

62.84 0.64, 0.61 
High 39.58 60.42 
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Passive group (2-classes) – 

 

Table 52 shows the confusion matrixes, accuracies and F-scores of the testing set for 

three classifiers for two arousal classes, from EMG features from the Active group. 

The KNN achieved the higher accuracy (91.71%), and the lowest out-of-sample 

misclassification rate (k-LossKNN = 0.08, k-LossSVM = 0.20, k-LossNB = 0.36). Figure 

93 shows the ROC curves per classifier with their corresponding area under curve 

(AUC). 

 

Table 52. Arousal classification using EMG features (Active group) 

Confusion Matrix -Arousal – 2 Classes (Active group) 

Classifier Arousal Low High Accuracy F-scores 

SVM 
Low 76.21 23.79 

80.09 0.80, 0.81 
High 15.85 84.15 

KNN 
Low 92.93 7.07 

91.71 0.92, 0.91 
High 9.57 90.43 

Naïve Bayes 
Low 74.98 25.02 

63.82 0.67, 0.58 
High 47.87 52.13 

 

Figure 90. ROC curves per classifier for 2 -classes arousal detection using EMG features. 

(active group) 
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Figure 91. ROC curves per classifier for 2-classes arousal detection using EMG features 

(passive group) 



 

 

 

 

 

 

B. Appendix: Glossary 

Accuracy: The extent to which a system’s detection performance corresponds to the 

given ‘ground-truth’ given by the participants in an experimental task.  

 

Affect: A general property of experience that has at least two features: pleasantness 

or unpleasantness (valence) and degree of arousal. Affect is part of every waking 

moment of life and is not specific to instances of emotion, although all emotional 

experiences have affect at their core. 

 

Agreement: The extent to which two people provide consistent responses; high 

agreement produces high inter-subject consistency.  

 

Appraisal: A psychological feature of experience (e.g., experiencing an event as 

unexpected). The word appraisal is commonly used in research as the cognitive 

assessment of a feature of an experience (e.g., the judgement of whether the event 

was unexpected or novel).  

 

Approach/avoidance: A fundamental dimension of motivated behaviour towards 

an event or stimulus.  

 

Arousal: The intensity of the physiological component of one’s emotions. Arousal 

is one dimension of affect, and it is independent of valence. For example, someone 

can be happy and serene (high in valence but low in arousal) while watching the sea 

waves and they can be happy and excited (same level of valence but high in arousal) 

when receiving a good surprise gift. 

 

Consistency: An outcome that does not vary greatly across time, context, and 

different individuals.  
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Emotional expression: A facial configuration, bodily movement, or vocal 

expression that reliability and specifically communicates an emotional state.  

 

Facial action coding system (FACS): A system to describe and quantify visible 

human facial movements. 

 

Facial expression: A facial configuration caused by contractions of the facial 

muscles that is often inferred to express an internal state. 

 

Generalize/generalizability: High venerability means that findings can be 

replicated or a detection model can be applied to new users, across different settings. 

 

Multimodal: Combining information from more than one of the senses (e.g., vision 

and audition). Similarly, with sensor multimodality researchers refer to the 

integration of various types of sensors to collect data for a certain task. 

 

Perceiver-dependent: An observation that depend on human judgment. 

 

Prototype: A new, preliminary version of a model, for example of a type of 

technology. Prototypes are often used to present feasibility of one’s idea that the 

creation or performance of such model is possible.  

 

Reliability: An observation that is repeatable across time, context, and individuals.  

 

Sensitivity - Refers to the ability of a system or a being in detecting changes around 

them. High sensitivity can provide with finer-grained detections. In binary 

classification test, sensitivity is the ratio of correctly detected true positives. 

 

Specificity: A measure of evaluating how well the system can correctly detect true 

negatives, or ‘false alarms’. A balanced, detection system should have a good a level 

of specificity as sensitivity (see sensitivity).  

 

Universal: Something that is common or shared by all humans, across cultures. 

 



 

 

 

 

 

C. Appendix: Study Materials 

Chapter 4: Video validation study (Section 4.2.3). 

Table 53.Videos clips selected from the film database by Samson et al. [247]. The video 

clips are sorted by targeted affective category, with their rescaled mean valence and arousal 

scores per video (scaled from 1-6 to 1-9). The video names are extracted from the original 

list.  

Category ID Video Titles VFL AFL 

PL 

1 Babybitesbrosfingers  7.11 2.89 

2 Babydoesn’tlovehis daddy  6.26 2.41 

3 Babyshiccupandjauph  6.65 2.81 

4 Cookiebaby  6.57 2.68 

5 Smartbabywithpacifier  6.81 2.33 

6 Excalatorspinning  6.36 3.05 

7 Beatboxbabydance  6.70 2.82 

8 Catsucklesair • 7.16 3.00 

PH 

1 Babydancebeyonce 7.37 3.82 

2 Babyfailshulahoop  7.45 3.83 

3 Babycontrolscheers  7.91 3.80 

4 Bridelauphingduringvows  6.84 3.59 

5 Girlthrownintobasketballhoop  5.75 3.93 

6 Pandasneezealot  6.89 3.80 

7 Singingdog  7.30 3.93 

8 Weedingphtographerfails  6.30 3.45 

NL 

1 Armbentfromskateboard  2.76 2.74 

2 Bmxfaceplant  2.87 2.49 

3 Boyfaceplants  3.02 2.60 

4 Bullwrongtarget  3.26 3.03 

5 Snowboardercrashes  3.72 2.81 

6 Tablebackflip  3.13 2.92 

7 Skaterfallsbreakwrist  2.31 3.08 

8 Bikeintowall  2.82 2.95 

NH 

1 Bikefalloffcliff 2.58 4.06 

2 Bullthrownandtrample 2.65 4.07 

3 Carhitsskater  2.57 4.02 

4 Breakdancerkickskid 2.87 3.90 

5 Crocbitesman  2.23 4.18 

6 Fatboyrollercoaster 3.58 3.99 

7 Horribleskiaccident 2.74 3.90 

8 Motorcyclejumperfriuiflesshort  2.90 4.01 

N
E

U
T

R
A

L
 

1 Bart  4.44 1.51 

2 Boydrinkingtea  4.22 1.34 

3 Assembly  4.26 1.45 

4 Airport2  4.30 1.50 

5 Cablecar  4.54 1.67 

6 Café  4.66 1.35 
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7 Cityinthenight  4.34 1.48 

8 Denvertrain  4.65 1.83 

9 Eatingpizza  4.52 1.61 

10 Eatingwithchopstics 4.66 1.83 

11 Gilsbruthingtheirteeth  4.57 1.62 

12 Hairwashing  4.47 1.56 

13 Hikinginthewood  4.65 1.69 

14 Museum  4.30 1.69 

15 Nystreet  4.28 1.88 

16 Ridingthetube1  4.31 1.56 

17 Ridingthetube2  4.50 1.56 

18 Sanfran  4.06 1.54 

19 Sittingonthesofa  4.02 1.50 

20 Snow  4.57 1.70 

21 Swimlaps  4.57 1.48 

22 Tea  4.33 1.37 

23 Treadmill  4.47 1.51 

24 Vangoghmuseum  4.65 1.83 

25 Pillow  4.81 1.91 
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Chapter 5: Construction of the Virtual Environments.  

Photos of office room were used to recreate the VR office replicas. The following pictures 

were taken from the physical room in order to design details used for the development of the 

virtual replicas. 
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Table 54. This table contains pictures of the targeted stimuli used in the VR scenes. All other 

static objects and events of the scenes were also tracked but were omitted from this table. 

Tracked 

objects/events per 

scene 

Scene / VR_Object/EventID Picture 

The bookcase 

 
All / 15 

 

The clock 

 
All /24 

 

The green folder 

 
All / 7 

 

The grey notebook 

 
All / 8 

 

The guitar 

 
All/10 
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The window All /17 

 

The newsboard All /16 

 

The cup All / 0 

 

The mouse All / 5 

 

The desks All  / 37 

 

The bin 

 
Neutral / 9 
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The mirror 

 
All  / 22 

 

The carpet 

 
All  /18 

 

The fire alarm 

 
Negative  /34 

 

The documents 

 
Negative / 42 

 

The lightening 

/shadow on the 

window 

 

Negative  /39 

 

The glitch in 

viewpoint 
Negative  /36 

 

The fire/smoke Negative  /32 
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The overflowing 

rubbish 
Negative  /9,53 

 

The flickering light 

 
Negative  / 33 

 

The mirror Negative  /39 

 

The spiders 

 
Negative  / 8-18 

 

The light bulb 

fusing 

 

Negative  /33 

 

The spilt drink 

(coffee-cup) 

 

Negative / 28 
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The rat Negative /100 

 

The spider attack 

 
Negative  /37 

 

The green plant Positive / 2 

 

Poster of a baby 

 
Positive  / 0, 201(sound) 

 

The light explosion 

(Changed Event 

"Light Explosion" 

to "Light and 

Laughter".) 

 

Positive  /9 

 

The mirror 

reflection 
Positive  /4 

 

The dog poster 

 
Positive / 39 
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The butterflies Positive  /6 

 

The robot 

 
Positive  /1 

 

The monitor 

message 
Positive /205 

 

Star dust in the 

room 

 

Positive  /7 

 

The guitar Positive  /25 

 

The growing flower 

on the desk 
Positive  /3 

 

The birds Positive  /203 
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The amplifier 

 
Positive  /7 

 

The ball 

 
Positive  / 34 
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Correlation of Coefficient per stimulus used in survey (Section 5.3) 

 

Table 55. List of video and object stimuli used in survey prior to main Fedem3 study. For 

each stimulus the mean (M), standard deviation (Std.) and Coefficient of Variation (CV) are 

reported for valence (V) and Arousal (A). 

Neutral Condition Negative Condition Positive Condition 

 M Std CV  M Std CV  M Std CV 

Video_V 4.806 1.468 30.555 Video_V 3.119 1.644 52.697 Video_V 6.179 1.486 24.041 

Video_A 2.552 1.669 65.382 Video_A 6.134 1.811 29.526 Video_A 4.552 2.208 48.498 

Neu_1_V 4.750 1.199 25.241 Neg_1_V 3.209 1.570 48.915 Pos_1_V 5.388 1.516 28.130 

Neu_1_A 2.373 1.534 64.642 Neg_1_A 5.851 2.053 35.097 Pos_1_A 3.343 1.974 59.047 

Neu_2_V 4.478 1.353 30.225 Neg_2_V 4.075 1.696 41.613 Pos_2_V 5.746 1.624 28.260 

Neu_2_A 2.179 1.424 65.345 Neg_2_A 3.776 1.991 52.731 Pos_2_A 3.358 1.906 56.757 

Neu_3_V 4.537 1.605 35.380 Neg_3_V 3.254 1.713 52.658 Pos_3_V 5.403 1.924 35.617 

Neu_3_A 2.388 1.545 64.693 Neg_3_A 6.090 1.991 32.687 Pos_3_A 5.030 2.178 43.309 

Neu_4_V 4.343 1.531 35.256 Neg_4_V 3.612 1.476 40.857 Pos_4_V 5.657 1.881 33.256 

Neu_4_A 2.493 1.705 68.400 Neg_4_A 4.821 1.977 41.007 Pos_4_A 4.373 2.101 48.037 

Neu_5_V 4.612 1.666 36.119 Neg_5_V 3.299 1.612 48.860 Pos_5_V 6.537 1.765 26.995 

Neu_5_A 2.940 1.803 61.314 Neg_5_A 5.776 1.786 30.915 Pos_5_A 4.448 2.469 55.520 

Neu_6_V 4.776 1.544 32.319 Neg_6_V 4.000 1.574 39.351 Pos_6_V 6.881 1.881 27.337 

Neu_6_A 3.119 1.825 58.491 Neg_6_A 3.433 1.941 56.545 Pos_6_A 4.761 2.419 50.815 

Neu_7_V 4.418 1.468 33.218 Neg_7_V 3.522 1.587 45.051 Pos_7_V 5.776 2.043 35.369 

Neu_7_A 2.642 1.562 59.115 Neg_7_A 5.328 2.003 37.589 Pos_7_A 4.925 2.377 48.265 

Neu_8_V 4.612 1.564 33.914 Neg_8_V 2.761 1.845 66.835 Pos_8_V 6.015 1.732 28.795 

Neu_8_A 2.418 1.575 65.158 Neg_8_A 6.433 2.228 34.628 Pos_8_A 4.522 2.160 47.772 

Neu_9_V 4.701 1.526 32.459 Neg_9_V 3.104 1.854 59.716 Pos_9_V 6.269 1.833 29.244 

Neu_9_A 2.567 1.538 59.903 Neg_9_A 5.896 2.395 40.622 Pos_9_A 4.896 2.293 46.838 

Neu_10_V 4.761 1.436 30.163 Neg_10_V 3.776 1.794 47.510 Pos_10_V 4.955 1.559 31.464 

Neu_10_A 2.463 1.587 64.425 Neg_10_A 5.030 2.246 44.651 Pos_10_A 3.149 1.910 60.660 

Neu_11_V 4.597 1.649 35.865 Neg_11_V 4.075 1.558 38.236 Pos_11_V 5.537 1.765 31.870 

Neu_11_A 2.388 1.555 65.096 Neg_11_A 3.343 1.936 57.905 Pos_11_A 3.627 2.218 61.161 

Neu_12_V 4.791 1.626 33.932 Neg_12_V 3.761 1.754 46.640 Pos_12_V 5.910 1.690 28.601 

Neu_12_A 3.507 2.083 59.392 Neg_12_A 4.463 2.146 48.095 Pos_12_A 3.821 2.137 55.918 

Neu_13_V 4.597 1.394 30.315 Neg_13_V 2.627 1.953 74.365 Pos_13_V 4.731 1.589 33.584 

Neu_13_A 2.373 1.601 67.451 Neg_13_A 6.657 2.328 34.972 Pos_13_A 3.284 1.802 54.885 

Neu_14_V 4.881 1.399 28.655 Neg_14_V 3.209 1.579 49.210 Pos_14_V 5.299 1.820 34.357 

Neu_14_A 2.761 1.763 63.839 Neg_14_A 5.567 2.132 38.290 Pos_14_A 3.343 1.951 58.364 

M_CV_V  32.361   49.987   30.920 

Std.  3.018   10.104   2.967 

M_CV_A  63.376   41.838   53.382 

Std.  3.056   8.538   5.556 

 

  



Appendix C 

C-12 

 

 

Table 56. Mean self-rating valence and arousal scores of static objects per VE scenario. ID 

is for the identity number of the object, M for mean, Sd for standard deviation, CV (%) for 

coefficient of variation 

A/V Positive VE Negative VE Neutral VE 

ID M. SD. CV. ID M SD CV ID M. SD. CV. 

V. 1 0.96 0.27 27.91 1 0.81 0.34 41.97 1 0.73 0.25 34.01 

A.   0.93 0.35 37.41   0.51 0.43 84.13   0.41 0.31 76.64 

V. 2 0.95 0.27 28.56 6 0.96 0.29 30.52 5 1.00 0.29 29.50 

A.   0.93 0.35 37.28   0.88 0.31 35.69   0.86 0.27 31.72 

V. 3 0.96 0.27 27.92 8 0.96 0.27 28.17 6 0.99 0.27 27.19 

A.   0.93 0.34 36.65   0.92 0.40 43.33   0.98 0.42 43.16 

V. 4 0.95 0.27 28.54 9 0.98 0.25 25.16 7 1.01 0.25 25.20 

A.   0.93 0.35 37.29   0.88 0.35 39.70   0.89 0.33 37.34 

V. 5 0.96 0.27 28.58 10 0.97 0.26 26.93 8 1.01 0.26 25.56 

A.   0.92 0.35 37.78   0.89 0.38 42.62   0.94 0.40 42.72 

V. 6 0.97 0.26 27.23 11 0.93 0.24 25.92 9 0.95 0.23 23.97 

A.   0.90 0.31 34.04   0.90 0.41 45.08   0.96 0.44 45.72 

V. 7 0.96 0.27 27.92 12 0.95 0.29 30.54 10 1.01 0.28 28.29 

A.   0.93 0.34 36.65   0.89 0.33 37.41   0.89 0.31 34.91 

V. 8 0.97 0.27 27.85 13 0.97 0.26 26.93 11 1.01 0.26 25.56 

A.   0.90 0.31 34.74   0.89 0.38 42.62   0.94 0.40 42.72 

V. 9 0.96 0.27 27.92 14 0.97 0.26 26.93 12 1.01 0.26 25.56 

A.   0.93 0.34 36.65   0.89 0.38 42.62   0.94 0.40 42.72 

V. 10 0.92 0.27 28.92 17 0.97 0.26 27.24 15 1.00 0.26 25.89 

A.   0.90 0.33 36.56   0.89 0.39 43.26   0.94 0.41 43.26 

V. 11 0.95 0.27 28.56 18 1.00 0.24 24.15 16 1.02 0.25 24.13 

A.   0.93 0.35 37.28   0.93 0.36 39.20   0.96 0.39 41.03 

V. 12 0.94 0.30 31.60 20 0.97 0.26 26.93 17 1.01 0.26 25.56 

A.   0.92 0.38 41.44   0.89 0.38 42.62   0.94 0.40 42.72 

V. 13 0.97 0.26 26.74 22 0.96 0.26 27.03 18 1.00 0.26 25.65 

A.   0.95 0.34 35.53   0.90 0.39 42.84   0.94 0.40 42.77 

V. 15 0.94 0.27 29.02 24 0.99 0.26 26.33 20 1.03 0.25 24.24 

A.   0.92 0.35 37.87   0.89 0.37 42.08   0.93 0.39 42.09 

V. 16 0.95 0.28 29.23 23 0.97 0.27 27.36 21 1.01 0.26 25.95 

A.   0.93 0.36 38.24   0.89 0.39 43.32   0.94 0.41 43.33 

V. 17 0.97 0.27 28.13 25 0.97 0.26 26.93 22 1.01 0.26 25.56 

A.   0.95 0.35 36.82   0.89 0.38 42.62   0.94 0.40 42.72 

V. 18 0.94 0.26 28.02 26 1.00 0.27 27.51 23 1.02 0.29 28.20 

A.   0.94 0.35 36.72   0.84 0.34 40.45   0.81 0.32 39.23 

V. 19 0.93 0.23 25.09 27 0.99 0.28 27.89 24 1.03 0.27 26.24 
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A.   0.93 0.38 40.44   0.86 0.39 45.05  0.91 0.41 45.83 

V. 20 0.96 0.28 28.55         

A.   0.88 0.31 34.63         

V. 21 0.95 0.28 29.71         

A.   0.94 0.37 39.91         

V. 22 0.96 0.27 27.91         

A.   0.93 0.35 37.41         

V. 23 0.96 0.27 27.92         

A.   0.93 0.34 36.65         

V. 24 0.96 0.27 28.46         

A.   0.91 0.33 36.31         

V. 25 0.96 0.27 27.92         

A.   0.93 0.34 36.65         

V. 31 0.99 0.27 27.59         

A.   0.97 0.36 36.99         

V. 34 0.95 0.27 28.56         

A.   0.93 0.35 37.28         

V. 35 0.96 0.27 28.58         

A.   0.92 0.35 37.78         

V. 37 0.96 0.27 27.92         

A.   0.93 0.34 36.65         

V. 38 0.95 0.27 28.54         

A.   0.93 0.35 37.29         

V. 39 0.95 0.27 28.57         

A.   0.93 0.35 37.45         

V. 40 0.96 0.27 27.92         

A.   0.93 0.34 36.65         

V. 41 0.94 0.29 30.39         

A.   0.88 0.34 39.01         

V. 42 0.97 0.27 27.78         

A.   0.93 0.35 37.46         

V. 43 0.96 0.27 27.92         

A.   0.93 0.34 36.65         

V. 44 0.96 0.27 27.92         

A.   0.93 0.34 36.65         
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Figure 93. Mean scores of objects per scenario and their standard deviations. The mean CV 

score is represented by the scale of the bubble. 
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Chapter 5-6: Design amendments in VEs 

The results and feedback obtained from this survey were used to improve and finalise the 

design of the VEs, including the objects/events that were present in the VEs. In particular, 

we decided to change the timing between certain events (additional 6 seconds were added 

between time-controlled events) to allow additional time for the user to inspect the room and 

to further differentiate the stimuli activation times. We changed the design and the animation 

of the ‘rat’ object, to make it more realistic and slightly more negative, so that it can attract 

the user’s attention. The event could now be triggered four times instead of one, to ensure 

visibility by the user. The light explosion camera-effect event in the positive scenario was 

replaced by an event where the window opened and laughing sounds from outside the room 

were activated. Small lighting touches were applied in all three rooms to improve the 

visibility of the stimuli and to improve the shadow displays. This was achieved by added an 

office lamp on the desks of all three VEs and by using performance effective light baking 

when appropriate [445]. In the case of the negative scenario, in order to keep the dark 

atmosphere of the room, an additional candle in front of skull-looking sculpture was added 

on the second right shelf of the bookcase. 

 As the underwater baseline environment elicited higher levels of valence and 

arousal than expected, we replaced it with an office-based room, from which all potentially 

stimulating objects and events were excluded. That room was called ‘baseline VE’, 

containing only the bookcase the walls and the window, which we used in the main study to 

relax our participants and record baseline data. 

 To improve the positive valence ratings of the positive scene, we added a few 

objects. Firstly, an audio soundtrack of a baby laughing was added to the ‘baby poster’ object. 

The sound is only triggered when the participant looked directly towards the poster. The 

sound was implemented to be 3-D, with a centre at the baby poster when the sound is stronger, 

reaching towards the window and the end of the room. Its sound volume was decreasing with 

distance from the poster. Additionally, a picture of a goat was added on the second right self 

of the bookcase, which when triggered by direct gaze of the user, it would automatically play 

a short video of a goat laughing from an online repository. The window view was also 

improved by using tree images and 3D plants. A small second ball, ‘pokemon ball’ was added 

on the second desk and the initial ‘(beach) ball’ was slightly enlarged. The remaining stimuli 

were kept as initially designed. 



 

 

 

 

 

D. Appendix: Questionnaires 

 

Demographics’ Questionnaire 

 

No. _____  Time : _____________ Date: _____________________  

 

Please answer to the following questions and select by ticking or circling your response where appropriate. 

 

1. How old are you? 

 

2. With what gender do you identify? 

 

Prefer not to say 

3. Do you speak English fluently?  

Yes 

No 

4. What is the highest level of education you have completed?  

Secondary School 

Technical School (2 years) 

College 

Bachelor's degree 

Master's degree 

Doctoral degree 

Professional degree (MD, JD, etc.) 

Other: 

5. Are you left or right-handed? 

Left-handed 

Right-handed 

I use both hands equally well 

6.  Have you participated in a similar experiment before? 

Yes 

No 

7. On a scale from 1-10, please rate your experience with virtual reality?  

(Not at all experienced)     (Very experienced) 

          1         2        3         4         5         6         7        8         9        10       

8. Do you suffer from any mental/psychological disorders (e.g. clinically diagnosed anxiety and depression)? 

  Yes     No 
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9. Do you suffer from any cardiovascular conditions?  

 Yes         No 

10. Are you aware of having any conditions that are affecting facial movements such as facial palsy or stroke? 

Yes           No 

11. Do you suffer from any of the following? 

o excessive fear of snakes (ophidiophobia),  
o excessive fear of insects (entomophobia) or excessive fear of spiders (arachnophobia),  
o excessive fear of fire (pyrophobia),  
o excessive fear of enclosed spaces (claustrophobia),  
o excessive fear of the dark (nyctophobia)  
o intense motion sickness (nausea, sweating, vertigo, dizziness etc.) while traveling or during a Virtual 

reality experience – only for VR task participants 

  Yes            No 

If you selected “Yes” in any of the above four questions (8-11) we strongly recommend avoiding taking part in 

this study. (*Please do not continue with the survey (for online survey).) 
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VR Environment Survey 

 

Note, the SAM figures, the videos, figures and skip/show question logics were omitted from this 

version of the questionnaire. 

 

Q217 Participant Agreement Form   

    

 Title of Project:  Online Survey - Evaluation of emotional responses in Virtual Reality        

In this online survey you will be asked to rate how different events and/or objects that appear in 

three Virtual Reality environments' videos make you feel.    

The total time required to fill the questionnaire can range from 20-30 minutes.   

    

 In this form we ask you to confirm whether you agree to take part in the Project. You should 

only agree to take part in the project if you understand what this will mean for you.  If you 

complete the rest of this form, you will be confirming to us that:         

1. 1. You have read and understood the Project Participant Information Sheet and 

have been given access the BU Research Participant Privacy Notice which sets out how we 

collect and use personal information 

(https://www1.bournemouth.ac.uk/about/governance/access-information/data-protection-

privacy)  

2. You have had the opportunity to ask questions; 

3. You understand that:     

a. Your participation is voluntary.  You can stop participating in research activities 

at any time without giving a reason, and you are free to decline to answer any particular 

question(s).   

b. If you withdraw from participating in the Project, you may not always be able to 

withdraw all of your data from further use within the Project, particularly once we have 

anonymised your data and we can no longer identify you.      

c. Data you provide may be included in an anonymised form within a dataset to be 

archived at BU’s Online Research Data Repository.         

d. Data you provide may be used in an anonymised form by the research team to 

support other research projects in the future, including future publications, reports or 

presentations.         

 

Q218 I agree to take part in the project on the basis set out above 

o Yes  (1)  

o No  (2)  

 

Q13 How old are you? 

________________________________________________________________ 

Q15 How do you identify yourself? 

Female  (1)  

Male  (2)  

Other  (3)  

Q17 Which hand do you predominantly use? 

Left  (1)  

Right  (2)  
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Either (ambidextrous)  (3)  

 

Q19 Do you speak English fluently? 

Yes  (1)  

No  (2)  

 

Q21 What level of Education do you have? 

Less than high school  (1)  

High school graduate  (2)  

College  (3)  

Degree  (4)  

Masters  (5)  

Doctorate  (6)  

If other, please specify  (7) ________________________________________________ 

 

 

Q23 Please rate your experience in any immersive experiences, particularly virtual reality. 

 No experience (1) Novice (2) Average (3) Expert (4) 

Experience in 

immersive reality 

(1) 

    

 

Q25 Please rate your experience with video games 

 No experience (1) Novice (2) Average (3) Expert (4) 

Experience in 

gaming (1) 
    

 

Q27 Do you suffer from any mental/psychological disorders (such as anxiety/depression)? 

o Yes  (1)  

o No  (2)  
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Q29 Do you suffer from chronic fatigue syndrome (extreme fatigue that doesn't go away with 

rest or sleep)? 

o Yes  (1)  

o No  (2)  

Q241 Do you suffer from encephalopathy (a disease that affects the structure or function of your 

brain)? 

o Yes  (6)  

o No  (7)  

 

Q242 Do you suffer from any cardiovascular disorders (any problems with the heart or blood 

vessels)? 

o No  (1)  

o If yes, please be more specific:  (2) 

________________________________________________ 

 

Q35 Do you suffer from any of the following psychological phobias?   

    

If yes, please give a number from 1 to 10 to indicate how much this phobia affects you (above 5 

meaning a severe phobia). If no, then leave the space blank. 

 Yes (1-10) 

Spider phobia (Arachnophobia) (1)  

Entomophobia (excessive fear of insects) (2)  

Pyrophobia (excessive fear of fire) (3)  

Claustrophobia (excessive fear of enclosed 

spaces) (4) 
 

Nyctophobia (excessive fear of the dark) (5)  

 

Q37 If you have scored higher than 5 for any of the stated phobias then please don't continue 

with the study. 

 

End of Block: demographics and phobias 
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Start of Block: PART2: INSTRUCTIONS 

 

Q345 Instructions  

  

    

 Here we will add an example of what the survey looks like. 

     

You will see a video window and underneath that, you will find 1 question.   

Once you have watched the video and answered the question, you will be able to click the "-->" 

or " next" button to view the next page. In the next page, you will find 2 sets of 5 figures. We 

call them SAM figures.    

SAM shows different kinds of feelings: Happy vs. Unhappy and Calm/Bored vs. 

Excited/Aroused.    

You will be asked to rate the emotion you felt using these two scales/sets of figures for the 

video you just watched.      

    

There are no right or wrong answers, so simply respond as honestly as you can.    

 

 

Q347  (EXAMPLE) Please watch the entire video and report how you felt using the sliders 

below. 

    

 

 

Q348 Please rate how you felt watching this video    

    

Each SAM figure varies along each side. In this illustration the first figure is unhappy 

/frowning (annoyed, unsatisfied, melancholic, bored) and the last one is smiling being very 

happy (pleased, satisfied, contented, hopeful).  

 

 

If what you saw made you feel very unhappy, you can select 1 or if you feel very happy you can 

select 9.  

 

 

Q349 Example: Please select valence (you can change the rating by clicking and dragging the 

slider to your preference) 

 from happy/smiling to unhappy/frowning 

 1 2 3 4 5 6 7 8 9 

  () 

 

 

 

Q350 Please rate the level of excitement 

       

Now you can select the excitement/intensity of the emotion you felt during the video. 

 

This scale ranges from calm (relaxed,  sluggish, dull, sleepy, unaroused) to aroused 

(stimulated, excited, frenzied, jittery, wide-awaked). 
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The descriptions on the scales will remain for the duration of the survey.   

 

Q351 Please select arousal 

 from calm/unaroused to excited/aroused 

 1 2 3 4 5 6 7 8 9 

  () 

 

 

 

 

Q352 You will be asked to watch a video (4 videos in total) and rate how specific objects/events 

appearing in the video made you feel. Some of the videos may prompt emotional experiences; 

others may seem relatively neutral.   

  

We want to remind you your rating of each picture should reflect your immediate personal 

experience, and no more.    

Please rate each one as you actually felt while watching the video. It is important for the 

completion of the survey that you watch and rate all the videos included in this 

survey.  Important events may be found in the middle or even at the end of a video clip 

so please watch the whole duration of each video.    

  

Feel free to take breaks before each video throughout the survey, however if possible please avoid 

taking breaks until all questions per video stimulus are answered (14 in total per video).    

     

 

 

Page 

Break 
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Q353 Part 2: Main Survey  

   

Please take a short break before the start of the main survey to ensure you are feeling relaxed and 

that your computer/phone has enough battery, and your headphones are connected. 

       

When you are ready to begin, click "yes" in the following question. 

   

Q354 Would you like to begin? 

o Yes  (1)  

 

Q356 Important notice: We want to remind you that the sliders for the video rating will be 

available after you have watched the entire video. Simply press the video to play and once it has 

ended click the "next" or "->" button at the bottom of the page to continue.   

  

End of Block: PART2: INSTRUCTIONS 

 

Start of Block: Sound check 

 

Q243 Before starting to watch the videos, we would like to adjust the audio volume for the rest 

of this survey to a level that it is comfortable for you. The following sound check is required in 

order to set an optimal volume level for you regarding the overall audio tracks included in the 

videos of this survey.    

    

Instructions:   

    

1) Set your Audio volume to ~50% 

     

2) Play the following video and adjust the volume so as to barely hear the synchronous 

tones.   

    

*If you cannot hear the audio of this video, please ensure that the mute switch is not enabled, the 

headphones or speakers are connected, and that the volume level of the YouTube player is set to 

100%. We recommend a volume range between 28 - 58%. 

       

When you complete this step, please press the "next" button to continue with the survey.  
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Q245 How many times did the bell ring? 

o 0  (6)  

o 1  (7)  

o 2  (8)  

o 3  (9)  

o 4  (10)  

o 5  (11)  

End of Block: Sound check 

 

 

Start of Block: neutral 

 

Q88  Please watch the entire video and report how you felt using the sliders in the next page.   

 

 (BASELINE VIDEO) 

 

Q214 Please rate how you felt watching this video, in terms of valence 

  

 from unhappy/frowning to happy/smiling 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

 

Q94 Please rate how you felt in terms of the level of excitement. 

  

 from calm/relaxed to excited/aroused 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q206  Please watch the entire video and rate how you felt using the sliders in the next page. 

  

  (NEUTRAL VIDEO) *This video does not contain audio 

 

Q208 Please rate how you felt watching this video, in terms of valence 

  

 from uphappy/frowning to happy/smiling 

 1 2 3 4 5 6 7 8 9 
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1 () 

 

 

Q210 Please rate how you felt watching this video, in terms of the level of excitement 

  

 from calm/relaxed to excited/ aroused 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

 

 

Page Break  
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(Example of questions presented for each stimulus after the video of a VE.) 

 

Q95 The bookcase: 

 

  (IMAGE for static objects/ SHORT VIDEO for interactive events) 

 

Q378 Do you remember this object? 

o Yes  (5)  

o No  (6)  

 

Q426 Please rate how you felt during this stimulus in terms of valence: 

  

 from unhappy/frowning to happy/smiling 

 1 2 3 4 5 6 7 8 9 

  () 

 

 

Q97 In terms of the level of excitement   

    

 from calm/relaxed to excited/aroused 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

 

Page Break  

The next section was presented after all stimuli from the affective category were rated by the 

participant. 

 

Q276  

We would like to evaluate the feeling of 'presence' (the feeling of actually being in the virtual 

space) when walking through or watching a pre-recorded video of a virtual reality environment.   

Please rate the following questions honestly about how you felt when watching the videos.    

You will notice that some questions are very similar to each other. This is necessary for statistical 

reasons. 

 

Q277 Please feel free to watch the video again if you need to re-jog your memory. 
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 (VIDEO)  

 

(Presence questionnaires follows. Here we show an example question.) 

 

 

Q247-INV1 How aware were you of the real world surroundings while watching the navigation 

of the virtual environment in the video (i.e. sounds, room temperature, other people, etc.)? 

 Extremely aware Moderately 

aware 

Not aware at all 

 

 -3 -2 -1 0 1 2 3 

 

1 () 

 

 

Page Break  

 

End of Block: neutral 



 

 

 



 

 

 

Stage 2 VR study Questionnaire, Science Museum - Memory, presence and 

sickness per VE. 

 

Start of Block: Initial Observations 

End of Block: Initial Observations 
 

Start of Block: forest presence + sickness 

Q213 Participant number:  

________________________________________________________________ 

 

Q267 Which computer are you using? (e.g. 1, 2, 3, 4) 

____________________________________________________________ 

 

Q37  

Forest scene: 

 

These questions will be asked after each scene to help us understand how you felt 

while walking through the virtual reality environment.   

 

All questions will be on a scale of 1-9, where:   

1 = Not at all 

5 = Kind of   

9 = Very much  

 

Q38  

Did you enjoy the VR experience?   

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q39  

Did you have a sense of "being there"? (To which extend do you feel present in the virtual 

environment, as if you were really there) 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 
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1 () 

 

Q40  

Did you feel completely captivated by the Virtual Environment?   

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

Q41  

Did you think of the virtual environment more as images you saw rather than somewhere 

that you visited?   

 Images Place you visited 

 1 2 3 4 5 6 7 8 9 

1 () 

 

Q42  

Did you experience any discomfort during your experience with the system? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

Q43  

Did you experience dizziness, nausea or disorientation?   

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q44  

How difficult did you find the VR task (walking in the environment while rating)? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

  

End of Block: forest presence + sickness 
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Start of Block: Block 10 

For experimenter: 

Q266 During Baseline (please write if the user moved around, how intense the movement 

was, if they spoke, and flag any other issues related to the recording or data quality) 

▢ Baseline 1  (1) 

________________________________________________ 

▢ Baseline 2  (2) 

________________________________________________ 

▢ Baseline 3  (3) 

________________________________________________ 

 

 

Q212 Select Next Scene (Use randomizer per Participant) 

o Neutral  (1)  

o Positive  (2)  

o Negative  (3)  

 

End of Block: Block 10 
 

*Negative =Selected 

Start of Block: Negative memory 

 

*Repeated three times, once per VE experienced. The Memory table contained the stimuli 

corresponding to each VE. In this example we showed the stimuli in the Negative VE. 

 

Q214 Negative VE 

 

1. "Could you tell me what you remember most from that scene?" 

- Tick off every object as yes- very memorable 

 

2. Ask about all other objects they did not refer to and how confident  

- Tick off as slightly memorable or not memorable 
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No definitely didn't 

see it (1) 

Kind of confident 

(after asking) (2) 

Yes very confident 

(on their own) (3) 

Spooky mirror/skull 

(1) 
   

Fire (2)    

Fire alarm (3)    

Spider attack (4)    

Spiders in room (5)    

Flickering light (6)    

Lightening/Man 

outside (8) 
   

Glitch in viewpoint (9)    

Documents (11)    

Spilt coffee cup (12)    

Overflowing bin (13)    

Light bulb explodes 

(15) 
   

Spooky music (16)    

Rat (17)    

candle/skull (27)    

Office room (28)    

Any other mentioned 

(24) 
   

Any other mentioned 

(25) 
   

Any other mentioned 

(26) 
   

 

Q261 For things not added in the list above: 

________________________________________________________________ 

End of Block: Negative memory 
 

Start of Block: new presence + sickness neg 

 

Q238  

Negative scene:   

 

Q262 Valence ratings: Could you rate how this experience made you feel on a scale of 1 - 

9: 

1 = completely unhappy, annoyed, unsatisfied, melancholic, bored 
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5 = neutral 

9 = happy, pleased, satisfied, contented, hopeful 

 negative positive 

 1 2 3 4 5 6 7 8 9 

  () 

 

Q264 Arousal ratings: How intense was this emotion 

1 = Relaxed, calm, uninterested 

9 = Excited, stimulated, interested 

   

 1 2 3 4 5 6 7 8 9 

  () 

 

 

Q239 On a scale of 1-9 did you enjoy the VR experience? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q240 Presence rating: Did you have a sense of "being there"? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

 

Q241 Did you feel completely captivated by the Virtual Environment and not aware of the 

real environment?   

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q242 Did you think of the virtual environment more as images you saw rather than 

somewhere that you visited?   

 More like images More like a place/space 

 1 2 3 4 5 6 7 8 9 
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1 () 

 

 

Q243 Did you experience any discomfort during your experience with the system? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q244 Did you experience dizziness, nausea or disorientation?   

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

Q245 How difficult did you find the VR task (walking in the environment while rating and 

remembering the objects/events around you)? 

 Not at all Very much 

 1 2 3 4 5 6 7 8 9 

1 () 

 

 

 

End of Block: new presence + sickness negative 

 

 

 


