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Abstract—Reconfigurable Intelligent Surface (RIS) technology
is emerging as a promising performance enhancement for next-
generation wireless networks in terms of the quality of service
and radio connectivity. Inspired by the promising potential of
RIS technology, we investigate the secrecy performance of the
downlink RIS-aided non-orthogonal multiple access network. To
characterize the network’s performance, the expectation of the
new channel statistics for the reflected links with Nakagami-m
fading is derived. Furthermore, the performance of the proposed
network is evaluated according to the secrecy outage probability
(SOP). The closed-form expressions of the SOP are derived. To
obtain further insights, the asymptotic SOP and secrecy diversity
orders are obtained. Our analytical results demonstrate that:
1) the expectation of channel gain for the reflected links is
determined by the number of RISs and the Nakagami-m fading
parameters; 2) Both the SOP of user Bobl and the SOP of user
Bob2 are 1 when the number of RISs is sufficiently large; 3) The
secrecy diversity orders are affected by the number of RISs and
Nakagami-m fading parameters.

I. INTRODUCTION

In recent years, Reconfigurable Intelligent Surface (RIS) has
been proposed as a new technology to deal with the randomness
and uncontrollability of wireless signal propagation [1]. RIS
has the ability to overcome the negative effects of natural
wireless propagation by controlling the scattering, reflection,
and refraction characteristics of the radio waves [2,3]. Also,
RIS provides a new direction for the design and optimization of
wireless communication networks. By appropriately adjusting
the amplitude-reflection and phase coefficients, the RISs can
enhance the received signals [4, 5], or eliminate the undesired
signals such as co-channel interference [6, 7].

Power domain non-orthogonal multiple access (NOMA')
has the ability to provide services to multiple users in the
same physical resource block (e.g., time and frequency) at the
same time, thereby significantly improving SE and connection
density [8,9]. As demonstrated in [10], to unleash the full
potential of NOMA is important to ensure that an appropriate
power difference exists between the users. The RIS has the
ability to change the channel gains, which is able to enhance
the performance of NOMA by arousing desirable differences
of channel gains among the users.

I'Throughout this paper, we focus our attention on the family of power-

domain NOMA. We simply use “NOMA?” to refer to “power-domain NOMA”
in the following.
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Fig. 1: System model

Motivated by the potential joint benefits of RIS and NOMA,
the RIS-aided NOMA networks have been investigated re-
cently [11-13]. Considering the broadcast nature of wireless
transmission, the issue of physical layer security (PLS) attracted
widespread interests. Although rigorous efforts have been done
in PLS of wireless communications, overall progress has been
relatively slow [14]. However, the emergence of RIS technology
provides a new solution for PLS problem. In [15], the authors
studied the secrecy performance of an RIS-aided wireless
communication network in the presence of an eavesdropper
(Eve). Similarly, in [16], the authors investigated an RIS-aided
secure wireless communication network, where the eavesdrop-
ping channels are stronger than the legitimate communication
channels. In [17], the authors investigated whether the use of
artificial noise is helpful to enhance the secrecy rate in the
RIS-aided network. Most of the existing works on PLS in
the RIS-aided networks studied the optimization problem to
maximize secrecy rate [18-20]. As mentioned above, PLS has
been studied in various scenarios, but it is rarely studied in
RIS-aided NOMA, which motivates this contribution.

II. SYSTEM MODEL

As show in Fig. 1, we consider the secure downlink (DL)
of an IRS-aided NOMA network, where a BS communicates
with two legitimate users (LUs) in the presence of an Eve. It is
assumed that the BS, LUs and Eve are equipped with a single
antenna. For the two LUs , the NOMA transmission protocol
is invoked. We also assumed that Eve has powerful detection
capability which is capable of overhearing the messages of the



LUs. We have N intelligent surfaces at the appropriate location.
More specifically, user Bob2 is the cell-edge user which needs
help from the RIS to communicate with the BS. At the same
time, user Bobl is the cell-center user that can communicate
with the BS directly. Besides, there is no direct link between
the RIS and user Bobl, as well as that between the BS with
user Bob2 and Eve, due to long-distance and blocking objects.

The small-scale fading vector between the BS and RISs is
denoted by

h = [k, ho, -, hn]", (1)

The small-scale fading vectors between RISs and user Bob2
and that between RISs and Eve are given by

2

gB2 = [92,1,92,2, s ,92,N]7

and

3)

respectively. The elements in h, gps and gg follow the
Nakagami-m distribution with fading parameters mi, ms, and
mg, respectively.

The BS sends s = /a1s; ++/a2s2 to LUs with the power of
P. where s; and sy are the signal intended for user Bobl and
user Bob2, respectively. /a1 and /az are the power allocation
factors of user Bobl and user Bob2, respectively. dp; and d;
denote the distances from the BS to user Bobl and the RIS,
respectively, dgo denotes the distance from the RIS to user
Bob2, api, 1 and aps denote the path loss exponents for
BS-Bobl link, BS-RIS links and RIS-Bob2 links, respectively.

The signal received by user Bobl, user Bob2 and Eve are
given by

8 = [gE,th,?v' o 79E,N]7

Y1 = hp1\/dg?”' Ps +na, “)
y2 = gpa®hy/d] “1d55 P2 Ps + ng, (&)

and
YE :gEQh\/dl_oquaEPS—f—nE, (6)

respectively, where n; and ne and ng denote additive white
Gaussian noises (AWGNs) with variance ¢2. In addition,
® £ diag[B1¢1, Boda, ..., Bnén] is a diagonal matrix, which
represents the effective phase shift applied by all intelligent sur-
faces. 3, € (0,1] denotes the amplitude reflection coefficient
of RISs, while ¢,, = exp(jb,), j = vV—1, Vn = 1,2,..., N,
and 0,, € [0, 27) represents the phase shift caused by the n-th
intelligent surface.

III. SECRECY PERFORMANCE ANALYSIS

In this section, we consider the RIS design as in [12].
Specifically, in order to simultaneously control multiple RISs,
the channel state information (CSI) of the paired NOMA users
channels is assumed to be perfectly available. However, the CSI
of Eve is not available.

A. New Channel Statistics

According to the previous assumption, the instantaneous
signal-to-noise ratio (SNR) of user Bob1 and the instantaneous

signal-to-interference-plus-noise ratio (SINR) of user Bob2 can
be expressed as

vB1 = pai|hp1|PdgTEt, (N
and _
as o |2y d g
= 2l Ty ®)

7 —a1 -« 1’
ar|hp2|?dy  dpy ™ + o

resR]ectively, where p denotes the transmit SNR, h B2 =
> n—1l92,n]|hn| denotes the equivalent channel of BS-RIS-
Bob2 links.

The phase shifts are designed for user Bob2, hence the ef-
fective channel gain for Eve cannot be evaluated. In this paper,
we consider the worst-case scenario of the RIS-aided NOMA
network, in which all of the BS-RIS-Eve signals are co-phased.
Therefore, the equivalent channel of Eve is similar to user
Bob2’s, which can be expressed as hp = EnNzl |98 7| hn -
Therefore, the instantaneous SNR of detecting the information
of user Bobl and user Bob2 can be expressed as:

vE, = peaslhp*d; * dg*®,

€))

where ¢ € {1,2} and p, is the transmit SNR to the Eve. The
cumulative distribution function (CDF) of vp; is given by

x

(x)=1-e medny P

F

TYB1

(10)

Lemma 1. Recall that the fading parameters of the elements in
h and gps are mq and mo, respectively. The CDF of ypo in the
low-SNR regimes and the high-SNR regimes (when my # ms)
are given by

Fop(a) =1-Qy <\fA, \/N<1 - 6)p(”‘;2 — WM) . (1)

and
(z) = Oy <2msN, _2vmamit me“) . (12

0+
F’YB2

plas —ayx)L

respectively, where
2

s (i) ()

—msN

13)

m™ (4mymy)

0= T(2m,N)

(14)

with

gme=mit (m g )PT(2m,)T(2my — 2m,
o VT (msmy) 7T @ms D@m= 2ms) - )

L(mg)L(my)T(my —mg + 3)

Qal-,-) is the Marcum Q-function, L = dj “'d55"%, my =
max (my,ma), ms = min (my, mg), A = 25, I'(-) denotes
the Gamma function and (-, -) is the lower incomplete Gamma

function.

Proof. Please refer to Appendix A. O

Lemma 2. Denote that Z = ZnNzl l9E.n

| |. The expectation



of Z? is given by

p=aNwNd *NENG, (16)

where a = 2mc,b:mc—md+%,c=mc+md—|—

1 — 9  /mame AT (momg) ™ e T (2m )T (2my)
5 d Vmemg, w e EI Eo——y

me = min(my,m3), mqg = max(my,mg) and U = Uy +
27,2
Uy — Us + Uy with U = “NFL 5, = 208 (N 1),

c2d?k?
4(a+1)(b*+b
U3 = 4535\];’1“2 and Uy = %k — A ky. Furthermore,

Ifl = 2F1 (a,b; C; —1), k2 = 2F1 (a—|— ].7b+ 1;C+ 1, —1) and
ks = oF1 (a4 2,b+ 2; ¢+ 2; —1) are the Gauss hypergeomet-
ric function [21, eq. (9.100)].

Proof. Please refer to Appendix B. O

Remark 1. The use of moments results in (16) is accurate
for the global CSIs. Hence, from (16), we can obtain that the
expectation of channel gain for the reflected links is determined
by the number of RISs and the Nakagami-m fading parameters.

B. Secrecy Outage Probability

In the proposed network, the capacity of LU is given by
Cp, = log(1 + ~vp,), while the capacity of the Eve’s channel
for the i-th user is quantified by Cg, = log(1 + g, ). As such,
the secrecy rate of the i-th user can be expressed as

C; =[Cp, — Cg,]", (17)

where [z]* = max{z,0}.

1) SOP analysis: we assumed that the targed rate is ;. The
SOP of the i-th user can be expressed as

1+ vB;
=Pl < R;
<og2 <1+’YE¢> Z)
=P (vpi <2 (1+7yp) — 1),

Then we derive the SOP of user Bobl and user Bob2 in the
following theorems.

(18)

Theorem 1. In the considered RIS-aided NOMA network, the
SOP of user Bobl is given by

—Y1
—op

Py(Ry) ~1—e8 (19)

where yy = 21 (1 + a1 pepdy “dp™?) — 1.
Proof. Based on (9) and (18), we have
Pi(Ri) =P (v, <2 (1+7p,) - 1)
~P(yp, <2 (1+aipepd; “'dg") —1)  (20)
=Fyp, (11)-

Then, by substituting (10) and (16) into (20), in the case of
m. = min(mq,ms3) and my = max(my, ms), we can obtain
(19) after some mathematical manipulations. This completes
the proof. O

Theorem 2. The SOP of user Bob2 in the low-SNR regimes
and high-SNR regimes (when mq # ms) are given by

SERICESE

PY(Ry) ~e™? , @1
L T )
and
PMRy) = By (2msN, 2\/msmyys) (22)
respectively, where
Y2
Y= e ——— (23)
N(1—e)p(ag — ary2)d; tdpy P
Y
Yn = Vi ; (24)
\/P(az — a1ya)dy “dpgy ™
and
yo = 282 (1 + agpped; “ d5*") — 1. (25)

Proof. Based on (9), (18) and Lemma 2, the SOP of user Bob2
in the low-SNR and high-SNR regimes can be derived as

P3(Ry) ~ Fyp, (12) (26)
and
Py (Ry) = Y%, (ya), 27)

respectively. Then, by substituting (11) and (16) into (26),
substituting (12) and (16) into (27), (21) and (22) can be
obtained. This completes the proof. O

Proposition 1. Both the SOP of user Bobl and the SOP of

user Bob2 are 1 when the number of RISs is sufficiently large.

Proof. By substituting N — oo into (16), we have

N 2
p~ a®N? (“’C?l) <1 - 2bk2> :

28
o (28)

Since ¢ = 1 +a — b, ki can be rewritten as ki =
L(me+ma+3)0(1+mc) _ whki P
T 2m)b(mat D) - Let p; = =7*, then by substituting k1

into p1, we have
_maAmeTma  (memg)™e T (2me)T (2mg) (1 + me)
= T(me)2y/memal (1 + 2me)T(mg + %)
29)

Due to I'(142) = 2T'(z) and I'(z)T'(z+1) = 2! 72* /7 (2z),
(29) can be rewritten as

= 22mc_1(mcmd)mc_%f‘(mc)f‘(md).

Since mg > m. > %, we have y; > 1. Then by substituting

(30) into (28), when N — oo, we have ;1 — oo. By substituting
w in to Theorem 1 and Theorem 2, in the case of N — oo,
we have P (R;) = P,(R2) = 1. This completes the proof. [J

(30)

C. Asymptotic SOP and Secrecy Diversity Order Analysis

In order to derive the secrecy diversity order to gain further
insights into the network’s operation in the high-SNR regimes,
the asymptotic behavior is analyzed. Again, as the worst-case



scenario, we assume that the Eve have a powerful detection ca-
pability, and all of the reflected signals are co-phased. Without
loss of generality, it is assumed that the transmit SNR for the
paired NOMA users is sufficiently high (i.e., p — o0), and the
SNR of the BS-RIS-Eve links is set to arbitrary values. The
secrecy diversity order can be defined as follows:

d, = — 1im 287"
p—oo logp

€2y

where P*° is the asymptotic SOP.
Corollary 1. The asymptotic SOP of user Bobl is given by

PR(Ry) = — (32)
Proof. By expanding the exponential function in (19) and ex-
tracting the leading-order term, (32) is obtained. This completes
the proof. O

Remark 2. Upon substituting (32) into (31), the secrecy
diversity order of user Bobl is 1.

Proposition 2. The floor of Pi(Ry) in the case of p. = p is
given by
_ 2P

P (Ry) = (33)

—a5,
dp,

Proof. By Substituting p. = p in (32), after some mathematical
manipulations, (33) can be obtained. This completes the proof.

O
Corollary 2. The asymptotic SOP of user Bob2 is given by
mNy2mSN
P(Ry) = ———0——. 34
2 (12) I'(2msN +1) 4

Proof. Based on Theorem 2, we have the SOP of user Bob2
in the high-SNR regimes. Then, by using the expansions of the
lower incomplete Gamma function [21, eq. (8.354.1)], (22) can
be represented as

2m s N+k

P(Ry) = 6§: (—1)F (2/mgmiyn)

k! (2msN + k) (35)

k=0
By extracting the leading-order term in (35), (34) can be
obtained. This completes the proof. O

Remark 3. Upon substituting (34) into (31), the secrecy
diversity order of user Bob2 is msN.

Remark 4. The secrecy diversity order of user Bobl is not
affected by the number of RISs and Nakagami-m fading pa-
rameters. On the contrary, the secrecy diversity order of user
Bob? is affected by the number of RISs and Nakagami-m fading
parameters.

IV. NUMERICAL RESULTS

In this section, our numerical results are presented for
characterizing the performance of the considered network.
Meanwhile, Monte-Carlo simulations are conducted to verify
the accuracy. It is assumed that the power allocation coefficients
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Fig. 2: SOPs for user Bobl versus the transmit SNR. The
analytical results and the floor are calculated from (19) and

(33).

of NOMA are a; = 0.2, as = 0.8, respectively. In addition,
the amplitude reflection coefficients of RISs are set to 1. The
fading parameters are set to m; = 3, mg = m3 = 1. The length
of the BS to RIS is set to d; = 100m. The length of the RIS
to user Bob2 and Eve are set to dgs = 10m and dg = 50m,
and that of the BS-user Bobl link is set to dg; = 20m. The
path loss exponents of the reflected links (i.e., BS-RIS, RIS-
Bob2 and RIS-Eve) and the direct BS-Bobl link are set to
a1 = apy = ag = 2.5 and ap; = 3.5, respectively, unless
otherwise stated. For comparisons, we regard the RIS-aided
OMA network as the benchmark. Specifically, the RISs are
employed for providing access service to user Bob2 as well as
Eve to communicate with the BS.

Fig. 2 plots the SOP of user Bobl versus the transmit SNR
for different number of RISs. It confirms the close agreement
between the simulation and analytical results. A specific obser-
vation is that the SOP of user Bobl reduces as reducing the
number of RISs. That is because the number of RISs has no
effect on the channel gain of user Bobl, whereas, the channel
gain of Eve increases as the number of RISs increases. As a
benchmark, the SOP curves for the RIS-aided OMA network
are plotted for comparison. We observe that for user Bobl in
the RIS-aided OMA network has better performance than that
in the RIS-aided NOMA network in the high-SNR regimes. It
is because that the transmit power allocated to user Bobl in the
NOMA network is lower than that in the OMA network due
to the influence of the power allocation factor. As the transmit
SNR increases, we find that the SOP of user Bobl tends to a
constant, which is consistent with Proposition 2.

Fig. 3 plots the SOP of user Bob2 versus the transmit SNR.
We observe that, since the use of central limit theorem (CLT)
in the channel statistics for user Bob2, the analytical results are
accurate in the low-SNR regimes, but inaccurate in the high-
SNR regimes. As a benchmark, the SOP curves for the RIS-
aided OMA network are plotted for comparison. We observe
that the performance for user Bob2 in the RIS-aided NOMA
network has superior performance than that in the RIS-aided
OMA network. It is because the transmit power allocated to
user Bob2 in the NOMA network is higher than that in the
OMA network due to the influence of the power allocation
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Fig. 3: SOPs for user Bob2 versus the transmit SNR. The
analytical results are calculated from (21).
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Fig. 4: Asymptotic results of SOP versus the transmit power in
the case of p. = 10 dB. The asymptotic results are calculated
from (32) and (34).

factor.

Since the SOP of uer Bob2 in the high-SNR regimes is not
accurate in Fig. 3, we further plot the high-SNR asymptotic
curves in the cases of N = 1 and N = 3 in Fig. 4. We
observe that the SOPs of user Bobl and user Bob2 gradually
approach their respective asymptotic curves, which validates
our analysis. Furthermore, we also observe that, in the cases of
N =1 and N = 3, the secrecy diversity orders of user Bobl
are both 1 and the secrecy diversity orders of user Bob2 are
1 and 3, respectively, which is consistent with Remark 2 and
Remark 3.

In Fig. 5, the SOP curves versus the number of RISs are
depicted. We observe that, on the one hand, since we have
global CSI for user Bobl, the SOP of user Bobl is accurate.
On the other hand, the SOP of user Bob2 is accurate in the low-
SNR regimes. However, the SOP of user Bob2 is not accurate in
the high-SNR regimes, which results from the use of the CLT-
based channel statistics of user Bob2. We also observe that the
SOP of user Bobl increases as the number of RISs increases
since the ER of user Bobl is not affected by the number of
RISs. On the contrary, the SOP of user Bob2 decreases as the
number of RISs increases since the RIS transmission for Eve
experience more severe path loss then that for user Bob2.
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Fig. 5: SOPs versus the number of RISs. The analytical results
are calculated from (19) and (21).

V. CONCLUSIONS

In this paper, the secrecy performance of the RIS-aided
NOMA network was studied. Specifically, we first derived
the new channel gain for the reflected links. Then, based on
the new channel statistics, the closed-form results of the SOP
were derived. Numerical results were presented for validating
our results. Furthermore, secrecy diversity orders have been
obtained for further insights. An important direction is that the
presence of the direct link between the BS and the cell-edge
user as well as Eve for the RIS-aided NOMA network is worthy
of investigation for the future work.

APPENDIX A: PROOF OF LEMMA 1

Firstly, according to [12], the CDF of X = N(—o)

in the low-SNR regimes is given by
Fx(z) =1-Qy (VA V)

Hence, the CDF of vpo in the low-SNR regimes can be
derived as

Fyp,(z) =P (yp2 < @)

(A.1)

x (A2)
= Fx —a1 j—apz |7
N(1 —e€)plaz — arx)d; ' dp,

Then, according to [12], the CDF of Y = ZnN:1 |g2,n || Pn ]
in the high-SNR regimes is given by
FY(y) = 67 (2m5N7 2\/ msmly) .

Therefore, the CDF of yp2 in the high-SNR regimes can be
derived as

F% () =P (yp2 < )

YB2
., z (A4)
Y\ plaz — arz)d;ordpgEe )

By substituting (A.1) into (A.2), and substituting (A.3) into
(A.4), (11) and (12) can be obtained. This completes the proof.

(A3)




APPENDIX B: PROOF OF LEMMA 2

Denote that z, = |ggn|lhs|, and f,, is the probability
density function (PDF) of z,, according to [12], the Laplace
transform of f, is given by

Ly, (s) =w(s+2y/memg) >3 F (a,b;c;d).  (B.1)

Denote that fz is the PDF of Z. Therefore, the Laplace
transform of f; is given by

—d\\ Y
L, (s)=wN(s+d)~ N <2F1 (a, b; ¢c; ;—d)) . (B2)
f(s)

g(s)
According to the relationship between Laplace transform and
moments, we have

E(Z?) = L}, (0). (B.3)
From (B.2), we have
Ly, (s) = Ji(s) + Ja(s)Ju(s), (B.4)
where
Ji(s) = —aNw (s + d)~*N1g(s), (B.5)
s d\\ N1
Jo(s) = f(s) N <2F1 <a, b; c; S—l—d)) ) (B.6)
J3(s)
and
ab s—d 2d
= —HF 1 1; 1, —— ) ———=. (B.
J4(S) 02 1<a+ 7b+ 7C+ 7S+d> ($+d)2 ( 7)
Furthermore, we have
L7, (0) = J1(0) + J5(0)Ja(0) + J2(0),(0), (B8
where
Jo(0) = wNd N NEN, (B.9)
2ab
J1(0) = — ks, (B.10)
! N j—aN—2;.N—1 2ab
J1(0) = aNw™d ky (aN 4+ 1)k; — —Nko |,
c
(B.11)
’ N j—aN—1pN-2 20D
JQ(O):W d Nkl T(N*l)k'Q*aNkl ,
( (o ) ) (B.12)
/ da(a + 1 +1 4a
J,(0) = (et D ks — @k‘g. (B.13)

Then, by substituting (B.9)-(B.13) into (B.8), and after some
further mathematical manipulations, (16) can be obtained. This
completes the proof.
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