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ABSTRACT Caching in a network of caches has been widely investigated for improving information/content
delivery efficiency (e.g., for reducing content delivery latency, server load and bandwidth utilization).
In this work, we look into another dimension of network of caches – enhancing resilience in information
dissemination rather than improving delivery efficiency. The underlying premise is that when information
is cached at more locations, its availability is increased and thus, in turn, improve information delivery
resiliency. This is especially important for networks with perturbations (e.g., node failures). Considering a
general network of caches, we present a collaborative caching framework for maximizing the availability
of the information. Specifically, we formulate an optimization problem for maximizing the joint utility of
caching nodes in serving content requests in perturbed networks. We first solve the centralized version of
the problem and then propose a distributed caching algorithm that approximates the centralized solution.
We compare our proposal against different caching schemes under a range of parameters, using both
real-world and synthetic network topologies. The results show that our algorithm can significantly improve
the joint utility of caching nodes. With our distributed caching algorithm, the achieved caching utility is up
to five times higher than greedy caching scheme. Furthermore, our scheme is found to be robust against
increasing node failure rate, even for networks with a high number of vulnerable nodes.

INDEX TERMS Information resilience, caching, network of caches, network with perturbations.

I. INTRODUCTION
With the dramatic increase in information/content access
demand, content caching has now been an integral part of
modern communication networks. Content delivery networks
(CDNs) (e.g., Akamai) deploy high-capacity proxy servers
for accelerated content distribution [1] while the impending
5G network exploits caching for enabling new emerging
applications [2]. Cloud and, the more recent, mobile edge
cloud (MEC) [3] exploit network edge caching capability for
improving user experience. With these developments, cache
management has received renewed attention especially due
to the advent of the Information-centric Networking (ICN)
paradigm [4], [5] which advocates the use of in-network
caching where network elements have content caching capa-
bility [6]. This recent exploding body of work (e.g., [6], [7])
has shown the benefits of distributed content caching. How-
ever, most of these work mainly focus on improving content
delivery performance in terms of latency, server load and
bandwidth utilization.
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Since the cache locations are now geographically dis-
tributed, the availability of content and dependability of the
network of caches as a whole system are also of interest.
In view of this, in-network caching has been advocated for a
different purpose, namely for information resilience [8]–[10]
whereby the aim is to improve content availability and
reachability in disruptive network environment rather than
improving content delivery efficiency. The rationale is that
the network management and control under such volatile
operating conditions could benefit from a caching scheme
that considers possible network perturbations which results
in topology changes and even network fragmentation. It has
been highlighted in [11] that there is a clear lack of under-
standing of howmuch in-network caching improves informa-
tion availability under such a scenario. Network perturbations
could be due to human errors and random equipment failures.
They could also simply be a natural part of the network
(e.g., topology changes due to node movements in mobile
networks). Severe scenarios involve perturbations resulted
from natural disasters or malicious attacks intending to cause
maximum damage.

Information resilience focuses on protecting information/
content directly. This is in contrast with traditional resilience
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concept in telecommunication networks which seeks to
ensure continuity of service via protection and recovery
of the physical infrastructure (e.g., maintenance of con-
nectivity, fault detection, resource redundancy) [12], [13].
Traditionally, network resilience usually involves physical/
link layer protection mechanisms and redundancy provision-
ing [12]. When a path is disrupted, resilience is conven-
tionally achieved via traffic re-routing [13]. The idea of
information resilience in our context is derived from the ICN
paradigmwhere content is named and can be explicitly identi-
fied independent of network locations. ICN has already been
identified as particularly suitable in emergency/disruptive
scenarios [14], [15]. The inherent anycast capability of ICN,
whereby an information object can be delivered by multiple
sources or caches, allows continuous reachability of content
even when the source is unavailable as the content is not
strictly bounded to one host.

Here, we consider the problem of providing information
resilience in the general case of a network of caches with per-
turbations. We abstract the problem focusing on the network
of caches without considering the technical realization of
the networking paradigm/architecture. Specifically, we con-
sider a network consists of cache-enabled nodes (i.e., nodes
are equipped with cache capacity, able to cache content
and satisfy content requests). We investigate a collaborative
caching framework for maximizing the joint utility of the
caching nodes in a perturbed network in which the network
topology changes over time. We consider a wide range of
failure scenario (cf. Section III-D). We formulate an integer
programming optimization problem and solve the centralized
version of the problem to obtain the optimal caching solution.
Since the problem is NP-hard, we then proceed to design
and evaluate a distributed collaborative caching algorithm
that closely approximates the performance of the optimal
centralized solution.

The main contributions of this paper are summarized
below:

1) We study the problem of collaborative caching in a
network of caches considering possible network pertur-
bations. Specifically, we seek to maximize the caching
utility and considers the effect of network perturbations
(e.g., node failures). We show that the optimization
problem is convex and present a centralized solution.

2) We further study a distributed caching algorithm that
approximates the centralized solution by adopting
a sub-gradient Lagrangian relaxation approximation.
In our distributed solution, each network node makes
its own caching decision in collaborationwith its neigh-
bors. We show the utilities given by both the cen-
tralized and distributed solutions are sufficiently close
(i.e., within 2%).

3) We comprehensively evaluated our proposal across dif-
ferent scenarios. We compare our solution against both
random and greedy caching algorithms across both
real and synthetic networks and across a wide range
of failure probability distributions. Our results show

significant improvements even under severe network
perturbations.

The rest of the paper is organized as follows. In Section II,
we review the background and related literature. System
overview and problem formulation are given in Section III.
Section IV is devoted to solving the centralized problem.
In Section V, we derive a distributed solution by adopt-
ing a sub-gradient Lagrange relaxation approximation. For
the distributed solution, we present a distributed caching
algorithm to approximate the optimal centralized solution.
In Section VI, we evaluate the performance of the proposed
collaborative caching scheme. We conclude our paper in
Section VII.

II. BACKGROUND AND LITERATURE REVIEW
Most work on content caching and management aim
to improve content delivery efficiency (e.g., reducing
latency) [7], [16], [17]. Here, we focus on approaches that can
be leveraged for providing information resilience and latest
related works that directly addressed information resilience.

A. ONLINE REACTIONARY APPROACH
A caching scheme that responds to network dynamics
could be employed for providing information resilience. The
default ICN caching scheme uses an indiscriminate caching
approach [18]. Caching gain1 is obtained opportunistically
along the shortest path. In [11], it is found that when the frac-
tion of broken links grows beyond 50%, such indiscriminate
caching has diminishing returns. Arguing that such approach
unnecessarily limits the potential gain, [19] investigated a
joint forwarding and caching approach that allows content
requests to be forwarded off the default shortest path to find
the requested content. Along the same line, [20] proposed to
improve caching gain by flooding content requests to discover
content cached nearby the shortest path in tandem with leave
copy down (LCD) caching policy [21]. However, flooding
incurs high overhead. To improve scalability, [22] proposed
to limit the flooding scope to three hops and argued that
there is limited improvement when compared against uncon-
strained flooding. Also to improve scalability, [23] exploited
hash-routing to route content requests, thus avoiding the com-
plex problem on efficiently routing requests to cache nodes.

For information resilience, [24] defined a recovery process
via alternative content sources when the original one fails by
exploiting ICN feature whereby information is individually
identifiable. In [9], an information resilience scheme for the
NDN architecture [25] is studied in which the scheme pro-
posed to keep a record of satisfied interest so that a failed
request can be forwarded on an alternative path that has
been successful in the past. Such reactionary event-triggered
approaches do not ‘‘prepare’’ the network in advance to
maximize content availability but rather attempt to find the
requested content replica after perturbations.

1We use the generic term ‘‘caching gain’’ to describe the benefit obtained
via caching (e.g., reduction of server load, content delivery latency).
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B. COOPERATIVE CACHING
An alternative approach to improve information resilience
is via node cooperation. Cooperative caching has been
adopted in several past works. For instance, [26] pro-
posed an online distributed cache management solution for
information-centric networks in which cache ‘‘managers’’
periodically exchange messages to identify changes needed
in their cache store to improve caching gain. Citing pro-
hibitive signaling overhead in cooperative caching, [27]
attempted to strike a balance between performance and scal-
ability via a lightweight local cooperation caching design.
In [28], an agent reinforcement learning-based cooperative
content caching policy is proposed for the mobile edge
networks (MENs) when the users’ preference is unknown.
Some other caching policies and algorithms are studied and
compared in MENs in [29]. Delay due to the backhaul and
mobility effect are been considered. In [30], network bot-
tleneck and interruption problems are raised for the MENs.
However, the issue has not been addressed by any available
solution. These work, however, neglected possible network
failures and as such, could be complementary to our proposal
here when operating under normal network conditions (i.e.,
no failures). Since various works pointed to the benefits of
having nodes to cooperate [31]–[34] attempted to answer the
question on how much coordination is required to optimize
in-network caching in ICN. The authors concluded that the
level of coordination between nodes is highly dependent on
the content request distribution.

For information resilience, [10] considered implicit coop-
eration amongst caching nodes by exploiting features of
network topology and proposed a modularity-based caching
scheme that allows nodes within a community structure
to cache content with origins outside of that commu-
nity. This solution does not require explicit communication
between caching nodes but nonetheless, still increases the
diversity of content cached within the community. How-
ever, such a scheme may not offer significant gain when
the network topology does not exhibit strong community
structure.

C. CONTENT PLACEMENT
Finally, another approach that can be potentially leveraged
is through adding redundant content replicas through strate-
gic content placement. Such approach has been adopted in
the past such as in CDNs [1], telco-CDNs [35] and web
caching [36]. Server duplication mechanism is often used
for load balancing when demand is high. Such mechanism
involves the full replication of all content in the server
which often requires high-capacity servers. With ICN, new
solutions based directly on information are developed. For
instance, [37] considered how popular content could be dis-
tributed across information-centric networks comprises of
access and transit domains considering the cost and util-
ity of caching content that is deemed popular. The authors
in [38] investigated content placement for achieving fairness

amongst the caching nodes. It considered each node is owned
by a different stakeholder and are selfish and would individu-
ally maximize its own utility. The authors employed game
theory to find stable caching solutions such that all nodes
converge to an optimal caching solution. Our problem for-
mulation takes this work as the starting point but we focus on
information resilience instead. Content placement problem
over a network of caches is also studied in [39] where a prob-
abilistic content placement algorithm is proposed offering a
bound of 1− 1/e factor from the optimal solution.
For information resilience, [8] extended [39] and proposed

an optimal distributed content placement algorithm that max-
imizes the caching gain in the presence of failures. In this
work, the network failure probability is explicitly considered
when making a caching decision. However, a priori knowl-
edge of the failure probability of each node is required to
implement the caching decisions. This presents a challenge
as it is difficult to estimate and quantify failure probability
in reality. As shown in [40], [41], node failure probability is
affected by a combination of factors (e.g., variety and varying
operating environment). As such, deriving an exact model
to predict the failure probability is a challenging research
topic on its own. In this work, we instead exploit metrics
from network science [42] as an indicator of failure proba-
bility. Furthermore, our framework also employs cooperative
caching for maximizing the joint utility of caching nodes in
network with perturbations.

D. SUMMARY
We take elements from approaches discussed in Section II-B
and II-C. In our approach, nodes collaborate with their
neighbors within a limited radius to maximize cache hit
considering different possible permutations of network per-
turbations. We do not ‘‘blindly’’ reduce cache redundancy
by simply caching different content but instead seek to
place content optimally within limited distance away from
requesting nodes.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider an arbitrary undirected network, G(V ,E) with
V = {v1, v2, . . . , vN } cache-enabled nodes and E =

{e1, e2, . . . , eM } links where their cardinalities are N = |V |
and M = |E| respectively. Each vi is equipped with a
cache store with capacity Ci. Further, we define l∗i,j as the
number of nodes involved in a content delivery path between
vi and vj inclusive of both these nodes and the set of nodes
involved in this path as ζi,j. Thus, l∗i,j = |ζi,j|. By this
definition, the path length, li,j = l∗i,j−1. Considering network
perturbations, we also define pi as the likelihood of failure
for node vi. We consider pi as a function of different fac-
tors and evaluate their implications to information resilience
(cf. Section III-D).

Let O be the content population in the system where ok
is the k th item in the content set. sk denotes the size of
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content ok . We assume that there exists an origin server
for each content object and each content request is routed
towards this origin server via a pre-determined shortest path.
The content request can be satisfied by any nodes along the
path having cached the requested content (i.e., a cache hit).
In this case, the requested content is returned without the
involvement of the origin server. Furthermore, we define an
N × |O| demand matrix, W with its element wi,k denoting
the expected or estimated content request arrival rate for
content ok at vi.

B. COLLABORATIVE CACHING FRAMEWORK
We consider a collaborative caching framework in which
nodes collaborate with nearby nodes to satisfy content
requests. In our evaluation, the request is generated one at
a time and originated from a randomly chosen node that is
not the node hosting the content itself. Once a request is
issued, the request is forwarded over a fixed path to the origin
server. At each hop, the node receiving the request searches
its neighborhood for the requested content if that content is
not cached in its own cache store. We define ri as the search
radius (in hop count) of vi. It indicates that vi will search
all nodes within ri hops away from itself for the requested
content. Furthermore, let ηi be the set of nodes within ri hops
away from vi. As ri increases, the cost of collaboration grows.
Table 1 summarizes the notations.

TABLE 1. Summary of notations.

In a collaborative caching framework, we would like to
fetch the requested content from a node as near to the
requester as possible to reduce content delivery latency and
as this involves fewer nodes, it is also less likely to encounter
a failed node. This then involves two decisions. The first
decision relates to whether a node decides to cache a specific
content in its cache store and second, whether a node retrieves
a content from another neighboring node instead of following
the pre-computed path to the origin server. We represent the
above with two decision variables, X and Y . Specifically,
x(i,k) ∈ {0, 1} denotes whether vi caches content ok while
y(i,j,k) ∈ {0, 1} denotes whether vi retrieves the content ok

from vj. For both variables, we follow the convention of
denoting a negative decision with ‘‘0’’ and the alternative
with ‘‘1’’. For instance, xi,k = 1 if node vi decides to cache
content ok .

Considering the total number of network nodes and the
cached objects is large, to reduce the computation complexity
for the caching decision, the integer constraints on X and Y
are relaxed as [0,1]. The details on this relaxation is given in
Section IV.

C. PROBLEM FORMULATION
Given the above system model, we formulate a joint
utility maximization problem to find the optimal caching
strategy.

1) UTILITY
A node derives utility from successfully satisfying a content
request it receives. The utility depends on whether the node
can satisfy the request (e.g., a node may not be able to reach
the origin server in some fragmented perturbed networks) and
how fast it can serve this request (e.g., edge nodes can directly
serve content requesters).

The utility of node vi, Ui, is then given by:

Ui =
∑
ok∈O

skwi,k (1− pi)xi,k

+

∑
ok∈O

∑
vj∈ηi

[
skwi,k
l∗i,j + 1

yi,j,k
∏
n∈ζi,j

(1− pn)
]

(1)

where X = [xi,k ]vi∈V ,ok∈O ∈ {0, 1}
|V |×|O|, and Y =

[yi,j,k ]vj∈i,ok∈O ∈ {0, 1}
|V |×|V−1|×|O|.

The first term on the right hand side of Eq. 1 computes
the utility derived from satisfying a content request locally
by vi while the second term sums the utility gained from
collaboration with nodes in its neighborhood, ηi. It reflects
that the utility decreases as the distance to retrieve a content
from a remote node increases. The content request is routed
along a computed path towards the origin server until a
cache hit occurs or the request reaches the server. At this
point, the requested content is sent back to the requester via
the reverse of the path taken by the content request. The
product expression

∏
n∈ζi,j (1 − pn) in Eq. 1 reflects that the

utility gained reduces when the content delivery path length
increases. It becomes critical especially for the scenarios
with nodes having high failure probability (e.g., malicious
attacks).

To obtain high utility, each node aims to serve its clients
with both the lowest possible delay and the highest content
request satisfaction rate. However, considering the aggre-
gated demands of the entire network, we are seeking the
optimum among all nodes, which points to the need of
a collaborative caching scheme whereby utility is maxi-
mized through satisfaction of content requests via combi-
nation of local caching as well as redirections to nearby
neighbors.
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2) OPTIMIZATION OBJECTIVE
Consequently, we define our utility maximization problem as
follows:

max
∏
vi∈V

Ui (2)

Taking the logarithm of Eq. 2, we obtain the following:

ln (max
∏
vi∈V

Ui) = max ln(
∏
vi∈V

Ui). (3)

By taking the negation, Eq. 3 is equivalent to the following:

max
∑
vi∈V

ln(Ui)⇒ min
∑
vi∈V

−ln(Ui) (4)

Substituting Eq. 1 to Eq. 4, we have:

min
∑
vi∈V

−ln
{ ∑
ok∈O

wi,k (1− pi)xi,k

+

∑
ok∈O

∑
vj∈ηi

[
wi,k
li,j

yi,j,k
∏
n∈ζi,j

(1− pi)]
}

(5)

3) CONSTRAINTS
Our problem is subjected to the following constraints:∑

ok∈O

xi,k ≤ Ci, ∀vi ∈ V , ok ∈ O (6)

∑
vj∈ηi

yi,j,k ≤ 1, ∀vi ∈ V , ok ∈ O (7)

xi,k ∈ {0, 1}, ∀vi ∈ V , ok ∈ O (8)

yi,j,k ∈ {0, 1}, ∀vi vj ∈ V , ok ∈ O (9)

0 ≤ pi ≤ 1 (10)

yi,j,k ≤ xi,k , ∀vi vj ∈ V , ok ∈ O (11)

Constraint (6) ensures that content stored at node vi does
not exceed its cache capacity, Ci. Constraint (7) ensures that
a node can only retrieve a maximum of one complete object
per request. Constraints (8) and (9) are the domains of the
decision variables. Constraint (10) defines the probability of
failure for node vi. Constraint (11) means that vi can retrieve
ok from vj if the cache hit occurred at vj and vi can retrieve
the content from vj only if vj cached it.

D. FAILURE PROBABILITY DISTRIBUTIONS
In this paper, we study the impact of various node failure
patterns. We define different node failure probability distri-
butions to represent different network perturbation scenarios.
We differentiate random failure patterns which are usually
modeled with random events from malicious attacks that are
intended to incur maximum disruption [43]. In the following,
we detail the three different failure models considered in this
paper.

1) UNIFORM MODEL
This node failure probability distribution follows uniform
probability. All nodes have fixed equal failure probability, p.
Each node fails independently. We use this uniform distri-
bution to represent failure scenarios where perturbations are
caused by random events such as equipment failures, human
error or unpredictable natural failure events.

2) LINEAR MODEL
We further define two failure probability distributions in
which node failure probability is linearly proportional to
some centrality measures reflecting the node’s relative impor-
tance in the network. This mimics malicious attacks on the
network where the perpetrator, with the intention to cause
maximum damage, logically targets nodes that are deemed
to be important. Such attacks may come in physical form, via
equipment tampering or electronically via computer viruses.
We assume a node with higher centrality will have higher
chance of being targeted.We choose two widely used central-
ity measures, namely degree and betweenness centrality [44].
For the case where we use degree centrality, we first limit
the maximum failure probability of the node with the highest
degree to pmax. Then, we compute a base failure probabil-
ity with pbaseD =

pmax

max(D(vi);∀i)
where D(vi) is the degree of

node, vi. Finally, we compute vi’s failure probability by pi =
pbaseD ×D(vi). We use the same methodology for betweenness
centrality case by replacing D(vi) with the betweenness of
each node, B(vi). Figure 1 shows the cumulative distribution
functions (CDF) of failure probability based on degree and
betweenness of nodes in a sample ER and SF network each
and three real-world networks, namely L3, Sprint and AT&T
networks (cf. Section VI). From Figure 1(a), we note that the
ER network has comparatively higher node failure probabil-
ity with almost all nodes having failure probability higher
than 0.25. In contrast, AT&T has approximately 80% of the
nodes with 0.04 failure probability or lower. Meanwhile,
the failure probability distribution based on betweenness
showed two groups of networks. The ER, SF and AT&T net-
works have high number of nodes with similar betweenness
(i.e., many nodes have similar failure probability). L3 and
Sprint networks have ‘‘wider’’ betweenness spread.

3) NON-LINEAR MODEL
In real networks, failure probabilities often do not follow
linear models. Correspondingly, we also define node failure
probability to be proportional to degree or betweenness of
node but in a non-linear fashion. In this scenario, the fail-
ure probability increases non-linearly with the degree or
betweenness. For a given node vi, its failure probability is then
defined using a Sigmoid function as follow:

pi(x) =
σ0

1+ e−(µ0+µ1x)
. (12)

where x is either D(vi) or B(vi) of the node. We use the
first half of the Sigmoid function. When σ0 = 1, then the
midpoint of the function equals 0.5 which, in our case, means
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FIGURE 1. The failure probability distribution of different networks based
on node degree (a) and betweenness (b) of each network.

pmax
= 0.5. µ1 controls the slope of the Sigmoid function

whereby µ1→ 0 leads to gradual increase in pi with increas-
ing x while conversely, pi will have a steep sharp transition
as x increases. The ratio−µ0/µ1 defines where the midpoint
of the function (i.e., determines the ‘‘shift’’ of the Sigmoid
function along the x-axis). Hence, we can get the x value at the
midpoint of the function via this ratio. Using the maximum
degree/betweenness of the network, we find the µ0 value that
satisfy pmax.

IV. SOLVING THE CENTRALIZED PROBLEM
Equations (5) to (11) are affine functions and thus, are all log-
concave. Since their composite with logarithmic functions
preserves concavity, the problem is a convex optimization
problem over a set of convex constraints. For such problems,
a unique Pareto efficient solution exists [45].

Our optimization problem above is a typical Integer Pro-
gramming (IP) problem which is NP-complete. It has been
shown in [46], [47] that no pseudoplolynomial algorithm is
likely to exist for the general integer programming problem as
this problem is strongly NP-complete. Since the centralized
problem of Eq. (5) is NP-complete, we apply the Lagrangian
relaxation. The Lagrangian relaxation uses Lagrange multi-
pliers to reduce a part of the constraints by including the
constraints in the utility function and divides the original
primal problem into sub problems independent of respective

variables. The optimal solution is then obtained by solving
its dual problem. Solving the relaxed version of the problem
gives us the lower bound of the original problem. Specifically,
we relax the constraints (8) and (9) as xi,k ∈ [0, 1] and
yi,j,k ∈ [0, 1]. Then the caching decision variables X and
Y can be further achieved by rounding xi,k and yi,j,k for the
approximated integer solution.

To solve our problem here, we first apply Lagrangian relax-
ation to derive the Lagrangian dual of the primal problem (5)
with regard to constraint (11), as follows:

L(x, y, λ) =
∑
vi∈V

[
− ln(Ui)+

∑
ok∈O

∑
vj∈ηi

λi,j,k (yi,j,k − xj,k )
]
(13)

where λ ≥ 0 is the non-negative Lagrangian multiplier,
associated with xj,k and yi,j,k . However, xj,k is constrained
by cache capacity of the node, given in (6), and yi,j,k is
constrained by (7) which ensures that a node only retrieve
one maximum of one complete object per request. Applying
Lagrangian multipliers and substituting (6) and (7), we have

L(x, y, λ, u, v, α, β)

=

∑
vi∈V

[
− ln(Ui)+

∑
ok∈O

∑
vj∈ηi

λi,j,k (yi,j,k − xj,k )

+

∑
ok∈O

ui,k (xi,k − Ci)+
∑
vj∈ηi

vj,k (yi,j,k − 1)
]

(14)

where ui,k ≥ 0 and vj,k ≥ 0 are two Lagrangian multipliers
associated with the problem (5). The constraints (8), (9)
and (11) can be combined and relaxed as: 0 ≤ yi,j,k ≤ xi,k ≤
1, ∀vi vj ∈ V , ok ∈ O. xi,k ≤ 1 and yi,j,k ≥ 0 are further
relaxed from (8) and (9) based on (11). Applying Lagrangian
multipliers and substituting these two constraints, we get:

L(x, y, λ, u, v, α, β)

=

∑
vi∈V

[
− ln(Ui)+

∑
ok∈O

∑
vj∈ηi

λi,j,k (yi,j,k − xj,k )

+

∑
ok∈O

ui,k (xi,k − Ci)

+

∑
vj∈ηi

vj,k (yi,j,k − 1)+
∑
ok∈O

αi,k (xi,k − 1)

−

∑
ok∈O

∑
vj∈ηi

βi,j,kyi,j,k
]

(15)

where α ≥ 0, β ≥ 0 are nonnegative Lagrangian multipliers.
The objective function is concave and continuously differ-

entiable. All constraints on the variables are affine. Hence,
Karush-Kuhn-Tucker (KKT) conditions which are neces-
sary and sufficient for the existence of an optimal solution
apply [48]. Thus, the optimal caching strategy X and Y can
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be derived by solving the set of equations below for all nodes:

λi,j,k (yi,j,k − xj,k ) = 0, ∀ vi, vj ∈ V , ok ∈ O∑
ok∈O

ui,k (xi,k − Ci) = 0, ∀ vi ∈ V , ok ∈ O∑
vj∈ηi

vj,k (yi,j,k − 1) = 0, ∀ vj ∈ V , ok ∈ O

αi,k (xi,k − 1) = 0, ∀ vi ∈ V , ok ∈ O
βi,j,kyi,j,k = 0, ∀ vi, vj ∈ V , ok ∈ O

(16)

The centralized solution for Eq. (5) requires the infor-
mation from all nodes to compute the optimal solution.
A standard solver needs the demand matrix of each node,
cache size, content set, node failure probability set and net-
work topology as inputs. Equation (15) has 3|O| × |V |2 +
2|O| × |V | + |V | variables and the same number of equa-
tions. For a large |O| and N , the computation overhead is
prohibitive and generally infeasible for standard off-the-shelf
processors. Thus, a distributed solution is next proposed as a
more scalable method.

V. DISTRIBUTED SOLUTION
A. DISTRIBUTED COLLABORATIVE CACHING WITH
CONSTRAINTS
Equation (16) gives the centralized solution. In this section,
by decomposition, we derive a distributed solution where
each node optimizes its utility locally as a subsystem, to sup-
ply an approximated solution with significant lower com-
plexity. Our solution simultaneously considers the effect of
collaboration with the neighboring nodes in ηi for each node.
From the set of constraints (6) to (11), constraint (11)

is a complicating or coupling constraint [49]. We apply
Lagrangian relaxation as before to simplify constraint (11)
and obtain (13). Then we define the Lagrange dual
function g as:

g(λ) = inf
x∈X ,y∈Y

L(x, y, λ) (17)

When the Lagrange dual is unbounded below in x and y,
the dual function takes on the value -∞. Since the dual func-
tion is the point-wise infimum of a family of affine functions
of λ, it is concave. The dual function Eq. (17) yields lower
bounds on the optimal p∗ of the problem Eq. (5), for λ ≥ 0,
we have:

g(λ) ≤ p∗ (18)

Hence, we have a lower bound that depends on λ. To seek
the best lower bound from the Lagrange dual function,
the optimization problem below needs to be addressed.

max g(λ), s.t. λ ≥ 0. (19)

Eq. (5) is the primal problem and Eq. (13) is the
Lagrange dual problem associated with Eq. (5). The prob-
lem (13) is a convex optimization problem since the object
to be maximized is concave and the constraints are convex.
This is the case regardless whether the primal problem is
convex [50], [51].

We denote the optimal value of the Lagrange dual problem
as d∗. By definition, the best lower bound on p∗ can be
obtained from the Lagrange dual function. Therefore, the fol-
lowing inequality can be obtained:

d∗ ≤ p∗ (20)

which holds even if the original problem is not convex.
The difference d∗ − p∗ is referred to as the duality gap.

If d∗ = p∗, then strong duality holds, which means that
the best bound obtained from the Lagrange dual function is
tight. The Slater’s theorem states that strong duality holds if
duality gap is zero and the problem is convex [52]. Therefore,
we have:

max g(λ) ⇐⇒
d∗=p∗

inf
x∈X ,y∈Y

L(x, y, λ) s.t. λ ≥ 0. (21)

By standard sub-gradient optimization method, we iter-
atively seek the best lower bound [52]. The sub-gradient
method minimizes a non-differentiable convex function.
It uses step lengths that are fixed ahead of time, instead of an
exact or approximate line search as in the gradient method.
By combining the sub-gradient method with primal or dual
decomposition techniques, we develop a simple distributed
caching algorithm for our problem (detailed in Section V-B).
After decomposition, each node only needs to optimize its

utility locally for a given λ by calculating:

minLi(x, y, λ) = −ln(Ui)

+

∑
ok∈O

∑
vj∈ηi

λi,j,k (yi,j,k − xj,k ) (22)

Problem (13) is convex and convex relaxation technique
is used to produce an approximated solution to the primal
problem. However, this solution may not satisfy the con-
straints (8) and (9) of the original problem as it may include
solutions with fractional values rather than binary values [53].
To resolve this, we adopt the rounding scheme introduced
in [39]. The approximation process consists of two steps: we
first relax the integer program to a convex optimization prob-
lem and produce a solution within a constant approximation
from the optimal. In our problem, we relax the constraints (8)
and (9) as xi,k ∈ [0, 1] and yi,j,k ∈ [0, 1]. Then, the (possibly)
fractional solution is rounded by rational approximation to
produce a solution to the original integer program. To solve
the problem (13), a projected sub-gradient method is used.
Each node computes individually to achieve the optimal solu-
tion and the utility function converges to the optimal point.
Hence, given a solution x∗i,k and y

∗
i,j,k with fractional values,

we approximate the solution with binary values, rounding the
fractional variable to its closest integer value 0 or 1.

B. DISTRIBUTED CACHING ALGORITHM
We detail our distributed caching algorithm with the cor-
responding pseudo code presented in Algorithm 1. At the
initialization stage, a node, vi, takes theW and λmatrices and
its search radius, ri as inputs. The outputs are caching decision
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Xi and collaboration decision Yi. The algorithm searches out-
wards from vi until the search radius, ri is reached. As shown
in Lines 1-2 in Algorithm 1, the search path distance grad-
ually increases and in each iteration (indexed by n), the dis-
tributed optimal solution for problem (13) is derived subject
to constraints (Lines 4-5). δ is a constant of small value.
In each iteration, y∗i,j,k−x

∗
j,k is calculated (Line 6). If the con-

dition y∗i,j,k − x
∗
j,k ≤ δ is satisfied, then the defined objective

function is convergent where the updated optimal solution is
achieved.

Algorithm 1: Distributed Caching Algorithm of Node vi
Input : Demand matrixW , Dual variables matrix λ,

Path distance starts at l = 0, Search radius ri
Output: Caching decision Xi, Collaboration decision Yi

1 while l ≤ ri do
2 l = l + 1; n = 0; Set fi(λ0);
3 while fi(λn) > δ do
4 Solve for xni , y

n
i = argminx,y(Li(x, y, λ

n))
5 Subject to∑

ok∈O
xi,k ≤ Ci,∑

vj∈ηi
yi,j,k ≤ 1,

and xvi,k yi,j,k ∈ [0, 1];
6 fi(λn) = y∗i,j,k − x

∗
j,k ;

7 for vj ∈ ηi do
8 Retrieve fj;
9 fi = fi +

∑
vj∈ηi

fj;

10 λ = (λ+ γnfi(λn))+;
11 end
12 n = n+ 1;
13 end
14 end

The projected sub-gradient solves the following
(Line 3-13),

Solve for xni , y
n
i = argminx,y(Li(x, y, λ

n))

λn+1 = (λn + γnfi(λn))+, i = 1, . . .m (23)

where fi(λn) = y∗i,j,k − x
∗
j,k is the sub-gradient of Li which is

given by: fi(λn) ∈ ∇ g(λ) and γn > 0 is the nth step size which
can be determined by several standard methods [52]. In this
work, a non-summable diminishing step size is used [52].
Further, (.)+ is the projection. In each iteration, node vi need
to solve the subsystem to update dual variable λ. Projected
sub-gradient method projects λ on its constraint (λ ≥ 0) in
each iteration. The primal solution can be constructed from
optimum λ. We assume that Slater’s condition holds (convex
problems with the Slater’s condition), and each λn is a unique
minimizer. Then the limit point of λn is primal feasible, which
is also the optimal. The dual variable matrix λ is taken into
account in the algorithm. λ is updated after each iteration.
For each fi, vi retrieves ok from neighboring node vj where

the ‘cache hit’ occurred and updates λ while l grows. After
each iteration locally, the adjustment fi will be updated by
removing information that is not included in λ. It is noted
that vi exchanges the updated fi within its neighborhood and λ
contains the aggregated popular content in the neighborhood.
This process is shown in Lines 7-11.

C. COMPUTATION COMPLEXITY AND OVERHEAD
ANALYSIS
For the centralized solution, Equation (15) has 3|O| × |V |2 +
2|O| × |V | + |V | variables and the same number of equations.
This optimal centralized solution comprises of |O|matrices of
size |V |2, which has a computation complexity of2(|O||V |2).
However, since we consider only ri-hops neighbourhood of
each node, our proposed Algorithm 1 does not scale with
increasing network size but rather scale with the expected
number of nodes within their neighbourhood. Specifically,
in Algorithm 1, the collaboration distance of the neighbor-
hood is restricted by ri, as shown in Line 1 of Algorithm 1.
We denote with Ni as the neighbourhood of node vi with
a limited collaboration distance ri and |N i| is the expected
size of Ni. Further, following [38], let |O′| be the truncated
content set size according to the Zipf-like distribution. For
instance, for a Zipf distribution with α = 1.0, with a content
set of 106, we are able to cover 72.8% of the requests by
caching only 2% of |O|, which translate to 98% (i.e., |O′| =
0.02|O|) reduction. The complexity of Algorithm 1 is then
significantly reduced to 2(|O′||V ||N i|). Comparing with the
centralized solution, Algorithm 1 has reduced the computa-
tion complexity by |O

′
|

|O| ×
|N i|
|V | .

In collaboration schemes, there is additional communica-
tion overhead for nodes to gain knowledge on the content
distribution within its neighborhood to make better caching
decisions. Having nodes to collect information from all
nodes in the network is clearly prohibitive for network with
large size. Therefore, it is important for the collaboration
to be restricted to a small neighborhood. In our proposed
Algorithm 1, we can see that the communication overhead
due to computing λ originates from two parts: (1) replies to
queries from nodes having vi in their neighborhood, N+i and
(2) information collection from nodes in vi’s own neighbor-
hood, Ni. The communication overhead is measured by the
number of exchanged messages, and the overhead φi of node
vi is given by [38]:

φi = c× |O| × (|N+i | + |Ni|) (24)

Scalar c represents a constant factor for communication
overhead, and the system communication overhead 8 due
to collaboration for calculating optimal caching strategy can
then be written as follows [38]:

8 = 2c× |O| ×
∑
vi∈V

|Ni| (25)

where node vi has a neighborhood Ni uniquely determined
by its search radius ri. In a network G(V ,E) where a node’s
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average neighborhood size equals |Ni|, system communica-
tion overhead equals:

8 = 2c× |O| × |V | × |Ni| (26)

For a node vi, we can organize its neighborhood Ni into ri
concentric circles according to the neighbor’s distance to vi.
We denote zr as the average number of r-hop neighbors on the
r th circle, where, |Ni| = z1+z2+. . .+zr . In a random network
where nodes have average search radius r , the induced system
overhead 1r+1

r 8 by increasing the average search radius
by 1 is given by [38]:

1r+1
r 8 = 2c× |O| × |V | × [

z2
z1
]r × z1 (27)

It shows that the increase in overhead depends on the ratio
between the number of two-hop and one-hop neighbors. This
applies to any general network with arbitrary degree distribu-
tion. The overhead only converges if there are less two-hop
neighbors than first-hop ones, i.e., [ z2z1 ] < 1, which actually
implies the graph is not connected and has multiple compo-
nents [54]. This is important for collaborative caching, and
shows that the collaboration overhead grows exponentially
on general connected topologies. Therefore, collaboration is
suggested to be restricted to a very small neighborhood to
keep overhead reasonable [52].

VI. EVALUATION
In our evaluation, we use both synthetic topologies based on
well-known graphmodels as well as real-world networks. For
synthetic topologies, we use the Erdos-Renyi (ER) random
graph model [55] and the Barabasi-Albert (BA) scale-free
(SF) graph model [56]. We set the synthetic network size,
N = 100 nodes. For ER model, given N , a link randomly
connects a pair of nodes with probability pERr independent
of other links. This results in binomial degree distribution.
For generating the ER graph, we set pERr = 2pERc = 2 ×
ln(N )/N (i.e., two times the sharp threshold for connected-
ness, pERc ). This ensure the generated topology is connected
at the start of the evaluation while simultaneously having low
link density to avoid highly meshed topology. For SF graph,
preferential attachment [56] is used and in each step, three
new nodes are attached based on the degree of current nodes
whereby the probability of an existing node chosen is propor-
tional to its current degree. This results in power-law degree
distribution. Hence, ER and SF graphs offer two different
topological structures with distinct degree distributions. For
real-world networks, we use the dataset from [57] and extract
three topologies with L3 (AS1), Sprint (AS1239) and AT&T
(AS7018) as the root domain. Their respective sizes are 42,
52 and 113 nodes.

The content population is randomly distributed in the net-
work with each content object persistently hosted in one
server. We set the entire content catalogue to be 100,000.
Content popularity follows Zipf-distribution with popular-
ity factor, α = 0.9537 [58]. In a similar manner as
in [38], we truncate the content population and consider

the top 500 most popular content to reduce computational
complexity. Further, without loss of generality, we assume all
nodes have the same cache capacity, i.e., Ci = Cj; ∀{i, j} ∈ V
and Ci is defined as a fraction of the overall content popula-
tion. We set it to 10% of the truncated content population. For
the rest of the paper, we also assume unit object size, sk = 1.
Finally, unless otherwise specified, the default flooding scope
is set to three.

We investigate different node failure probability distribu-
tions as detailed in Section III.C. We compare our solu-
tion (labeled as Optimized) with two common caching
approaches:
• Random – A node caches a content at random. This
algorithm is simplistic and does not require keeping any
information about the content access history.

• Greedy – A node caches a content without collabo-
rating with its neighbor nodes. The caching decision
is aimed at maximizing its own utility. The algorithm
makes its caching decisions based on its local knowledge
of content popularity. This then involves the overhead
of tracking the access frequency of content at the node.
This algorithm closely resembles the popularity-based
caching approach studied in the information-centric net-
working (ICN) literature (e.g., [59]).

A. CENTRALIZED SOLUTION
Using the centralized solution described in Eqs. 15 and 16,
the joint utility of the problem in Eq. 5 is evaluated.
Constraints 8 and 9 are relaxed to xi,k ∈ [0, 1] and
yi,j,k ∈ [0, 1]. Then the caching decision variables X and
Y are further rounded up/down to obtain the approximated
solution.

As the centralized solution has high computational com-
plexity, we are restricted to evaluate its performance on a
small network.We chose to use the L3 networkwith 42 nodes.
In Figure 2, we compare our solution (Optimized) against
Random and Greedy caching schemes across three failure
probability distributions (i.e., Uniform, Degree-based Linear
and Betweenness-based Linear). All achieved utilities are
normalized against the utility achieved by our Optimized
in a no failure scenario (i.e., when pmax

= 0). As such,
in an unperturbed network, the normalized utility achieved
by Optimized equals 1.0.

We see that Optimized consistently achieves the best
utility against other caching schemes across different fail-
ure distributions, with Random performing the worst in
all cases. The utility achieved by Optimized is up to
68% and 11% better against Random and Greedy respec-
tively. In general, when the failure probability is increased
(i.e., the network suffers more perturbations), the utility
achieved decreases. This applies to all schemes. This is
most obvious for the case when failures are set propor-
tional to node degrees (Figure 2(b)). The performance gain
achieved by Optimized is consistent for the uniform and
betweenness-based failure probability distribution cases but
decreases for degree-based failure probability distribution.
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FIGURE 2. The utility in L3 with different cache schemes for (a) uniform, (b) degree-, (c) betweenness-based linear failure probability distributions.

FIGURE 3. The utility in L3 with different scope-flooding radii for (a) uniform, (b) degree-, (c) betweenness-based linear failure probability
distributions.

This behavior could be understood from studying Figure 1.
In the case of betweenness-based linear failure probability
distribution, most node failure probabilities concentrate to
small values (e.g., ≈75% of nodes have failure probabil-
ity less than 0.1 for the L3 network) while comparatively,
the failure probabilities under the degree-based linear failure
probability distribution have higher values.

Next, we investigate the impact of scope flooding content
request on the achieved utility (see Figure 3 for L3 network)
where we vary the flooding scope between one and four
from each node to its neighbors. This experiment is computed
using the same centralized approach in Eq. 2. The achieved
utility increases as the flooding scope increases. However,
the normalized utility for Scope = 3 and Scope = 4
overlaps for all three different failure probability distribu-
tions. This means that the caching gain has diminishing return
and saturates at three hops (i.e., expanding the flooding scope
further will not significantly improve the achieved utility).
This observation validates the findings reported in [22]. This
also indicates that there is no necessity to increase the node
collaboration neighborhood beyond three hops away since
the additional benefit will be minimal while the overhead
increases.

We repeat the experiment on L3 with non-linear fail-
ure probability distributions as detailed in Section III-D3.
Figure 4 shows the results. Our solution consistently achieves
the best utility. Compared to the results in Figure 2, we note

that with increasing pmax, the utility of the degree-based linear
model reduces more rapidly than the non-linear one. How-
ever, for the betweenness-based failure models, both linear
and non-linear cases have similar performance. The improve-
ment by Optimized is generally stable for different pmax.

B. CENTRALIZED vs. DISTRIBUTED SOLUTIONS
We compare in Figure. 5 the normalized utility achieved by
both our centralized solution and distributed caching algo-
rithm for L3 network.We are restricted to use a small network
because the computation for centralized solution is not feasi-
ble for large networks. For the distributed solution, we show
the utility achieved for one sample node as an example (v4 in
this case). In the figure, the normalized utility achieved by the
centralized and distributed approaches across the three dif-
ferent failure distributions (Set1 - uniform, Set2 - degree-
based linear and Set3 - betweenness-based linear failure
probability distribution). Both approaches achieve results that
closely agree with each other. Our distributed solution mostly
underestimates the utility by a small margin. The difference
is consistently small (i.e., greater than 96% accuracy).

C. DISTRIBUTED CACHING ALGORITHM WITH UNIFORM
AND LINEAR FAILURE PROBABILITY DISTRIBUTION
In this section, we evaluate our distributed caching algorithm.
We first focus on both uniform (cf. Section III-D1) and
linear (cf. Section III-D2) failure distributions. We follow the
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FIGURE 4. Normalized utility achieved in L3 network: (a) degree- and
(b) betweenness-based non-linear failure probability distributions.

FIGURE 5. Centralized and distributed results closely match.

proposed algorithm (cf. Section V-B) by using a sub-gradient
method to find an optimized distributed caching solution
for each individual node. We repeat our analysis with the
same input parameters over five networks (i.e., ER, SF, L3,
Sprint and AT&T networks). The normalized caching utility
achieved are given in Figure 6 and Figure 7 for synthetic
and real world networks respectively (Solid lines for our
Optimized solution and dashed lines for Greedy caching

scheme.).2 Our distributed solution achieves highest normal-
ized utility for all the cases. With our distributed caching
algorithm, we have the additional benefit of having lower
complexity compared to the centralized solution yet obtaining
similar caching gain.

We further investigate the impact of cache size, Ci, on our
proposed distributed caching algorithm. Figure 8 shows
the normalized utility achieved with cache sizes ranging
between 2% and 12% of the size of the total content for
the L3 network. The failure probability is set based on
uniform, degree-based linear and betweenness-based linear
distributions respectively with pmax

= 0.5. For this set of
results, we normalize all achieved utilities against the highest
utility achieved by Optimized scheme. The figure shows
the normalized utility of a sample node in the network.
The results shows that the utility achieved using distributed
optimized algorithm is much higher than the Greedy and
Random caching schemes. The gain in utility achieved by
Optimized increases initially for smaller cache sizes (e.g.,
between 2%–8%) after which the gain achieved stabilizes, all
the time maintaining better caching utility against Greedy
and Random schemes.

Figure 9 presents the normalized utility achieved with dif-
ferent flooding scope for pbase = {0.0, 0.02, 0.04} across uni-
form and linear failure probability distributions. The utility
does not increase significantly when flooding scope increases
beyond three hops, which corroborates with the results for
centralized solution (see Figure 3). Further expanding the
flooding scope will significantly increase the computational
complexity. Hence, we recommend that the flooding scope
is limited to three when Optimized is applied. Moreover,
the highest increase in the achieved utility happens when
the flooding scope is increased from one hop to two hops.
This property could be exploited for the cases when com-
putation resource is highly constrained whereas sub-optimal
utility could be accepted. The overall achieved utility is
negatively affected when the failure probability increases
(from pbase = 0 to pbase = 0.04).

D. DISTRIBUTED CACHING ALGORITHM WITH
NON-LINEAR FAILURE PROBABILITY DISTRIBUTION
In the previous section, the failure probability of a node, pi,
is either uniform or linearly proportional to its degree or
betweenness centrality. We now proceed to study the per-
formance of our distributed caching algorithm when the
node failure probability distributions follow those described
in Section III-D3 (i.e., node failure probability distribution
follows a non-linear Sigmoid function).

We first present the normalized utility for degree- and
betweenness-based non-linear models for ER and SF net-
works with pmax between 0.1 and 0.5. The settings of
the Sigmoid function are listed in Table 2. σ0 is set as
{0.2, 0.4.0.6, 0.8, 1.0} according to different pmax. Figure 10
shows the results for degree-based and betweenness-based

2We omit Random here as it consistently performs significantly worse.
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FIGURE 6. The utility of Greedy and Optimized in ER and SF for (a) uniform (b) degree and (c) betweenness based linear failure probability
distributions.

FIGURE 7. The utility of Greedy and Optimized in L3, Sprint, AT&T for (a) uniform, (b) degree, (c) betweenness-based linear failure
probability distributions.

FIGURE 8. The utility with different cache sizes in L3 for (a) uniform (b) degree and (c) betweenness-based linear failure probability
distribution (pmax = 0.5).

FIGURE 9. The utility with different flooding scope in L3 network for (a) uniform, (b) degree-based and (c) betweenness-based failure
probability distributions.

non-linear failure models. We see that the Optimized
caching scheme has better utility than the Greedy algo-
rithm for both ER and SF topologies. Furthermore, the

improvement is stable with increasing pmax. This is because
with the non-linearity, only a few nodes have very high failure
probability while the rest have small failure probability.

136146 VOLUME 9, 2021



D. Wu, W. K. Chai: Information Resilience in Network of Caches With Perturbations

TABLE 2. Sigmoid function settings for experiments with different pmax.

FIGURE 10. The utility in ER and SF: (a) degree- and
(b) betweenness-based non-linear failure probability distributions with
different pmax.

For real-world networks (i.e., L3, Sprint and AT&T),
we show the results in Figure 11 for degree-based and
betweenness-based non-linear models. Our Optimized
algorithm still consistently achieves higher utility. However,
compared to their linear counterparts (see the linear case
in Figure 7(b)–(c)), the utility achieved for L3 network
decreases at a rate much faster in the linear case. This is due to
the different failure distribution where in the non-linear case,
there are only several nodes with very high failure probability
but the rest of the network has low failure probability.

In the previous results, we gradually increase pmax. Since
pi no longer forms a linear relationship with node degree
or betweenness, the skewness of the Sigmoid function also
influences the utility. Hence, we further provide the normal-
ized utility for a set of Sigmoid functions by varying µ0
and µ1 parameters to get increasing mean failure probability,
pmean. The settings are given in Table 3. With a fixed pmax,

FIGURE 11. The utility in L3, Sprint, AT&T: (a) degree-,
(b) betweenness-based non-linear failure probability distributions with
different pmax.

TABLE 3. Sigmoid function settings for analysis with different pmean.

the Sigmoid function becomes increasingly more skewed
(i.e., most nodes having almost zero failure probability while
a few nodes with highest degree or betweenness having
pi ≈ pmax) when µ0 is increasingly more negative. Con-
versely, the Sigmoid curve increasingly becomes a linear line
graph when µ0 → 0 (see Figure 13). Figure 12 shows the
normalized utility for degree- and betweenness-based non-
linear failure patterns for L3, Sprint and AT&T.

For the degree-based non-linear failure model, our
Optimized caching scheme achieves better utility than
Greedy. However, the improvement generally decreases
when pmean increases. This implies that when the network
is increasingly volatile, the achievable utility tends to con-
verge regardless of the failure pattern. The improvement of
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FIGURE 12. The utility in L3, Sprint, AT&T: (a) degree-,
(b) betweenness-based non-linear failure probability distributions with
different pmean.

FIGURE 13. Example failure probability curves using a non-linear model
for L3, σ0 = 1, µ0/µ1 = −8.

Sprint and AT&T are more significant than L3. From the
failure probability distribution, we notice that this improve-
ment depends on the non-linearity of the Sigmoid function.
Compared to Sprint and AT&T, L3 has a more uniform failure
distribution.

Finally, we show how different failure patterns impact the
utility across different cache sizes. Figure 14 shows the nor-
malized utility achieved for the L3 network. For degree-based

FIGURE 14. The comparison of a (a) degree-based and
(b) betweenness-based linear and non-linear failure probability
distributions.

non-linear failure probability distribution, we use pmax
=

0.5, σ0 = 1, µ1 = 10 and µ0/µ1 = −8 while for
betweenness-based pattern we use µ1 = 20 and µ0/µ1 =

−0.7. For both cases, Optimized caching schemes gen-
erally achieve higher utility than others. Comparing against
itself, Optimized achieves higher utility for the non-linear
case. This is again due to the non-linearity in the failure
probability distribution.

VII. CONCLUSION
In this paper, we focus on enhancing resilience in informa-
tion/content delivery. Specifically, we investigate how col-
laborative caching could improve information resilience in
perturbed networks (considering both random and targeted
failures). We first formulate a convex optimization prob-
lem for maximizing the joint utility of caching nodes in
serving content requests. We solve the problem in a central-
ized manner by adopting a sub-gradient Lagrangian relax-
ation approximation, showing significant improvement in the
achieved caching utility over greedy and random caching
approaches. For scalabiity, we further developed a distributed
caching algorithm and show it approximates the performance
of the centralized solution. We study the performance in
terms of utility across different networks and failure patterns,
the impact of cache size and request flooding scope. While
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the achievable utility generally decreases when the failures in
the network increase, our solution consistently achieves sig-
nificantly higher caching utility compared to other schemes.
Our results show that with the proposed optimized caching
scheme, the utility is up to five times higher when compared
against a greedy caching scheme for different networks. The
performance of our scheme is also robust against increasing
failure rate, even for networks with nodes having high failure
probability.
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