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Chapter 7: Biases in object location estimation: the role of camera rotations 

and translation 

7.1. General Introduction 

Our ability to navigate and orient critically depends on our ability to recognize the 

place we are in. Place recognition requires memory for object locations as well as the ability to 

retrieve object locations from different perspectives (Epstein, Harris, Stanley & Kanwisher, 

1999; Postma, Kessels & van Asselen, 2004). Typically, place recognition across different 

perspectives is studied using tasks in which participants are presented with static images 

depicting a scene, an array of objects or environmental features from one perspective and are 

then asked to indicate whether the array has changed when presented from a different 

perspective (Diwadkar & McNamara, 1997; Schmidt et al., 2007; Hartley et al., 2007; Sulpizio, 

Committeri, Lambrey, Berthoz, & Galati, 2013; Montefinese, Sulpizio, Galati & Committeri, 

2015; Muffato, Hilton, Meneghetti, De Beni & Wiener, 2019; Hilton et al., 2020; Segen, 

Avraamides, Slattery, Wiener, 2021a, 2021b). Our recent research suggests that such 

paradigms may yield a systematic bias in reporting memorized locations (Segen, Colombo, 

Avraamides, Slattery, Wiener, 2021c, 2021d). Specifically, we found that when participants 

were asked to indicate where an object was positioned after a perspective shift (Segen et al., 

2021d) or when asked to judge the direction in which an object has moved after a perspective 

shift (Segen et al., 2021c), they made systematic errors associated with the direction of the 

perspective shift and as a result, shifted their responses further to the direction of the shift.  

Interestingly, this bias is not driven by distortions introduced in memory as participants also 

exhibited this bias in perception conditions that did not involve memory (Segen et al., 2021d).  

It is not entirely clear what gives rise to this systematic bias. However, given that the 

direction of the bias is associated with the direction of the perspective shift, it is likely that the 



197 

 

bias results from egocentric, rather than allocentric, influences on the estimates. Specifically, 

we believe that uncertainty about the exact nature of the perspective shift leads to uncertainty 

about the exact position of the object, which in turn results in participants biasing their 

estimates towards the egocentric self-to-object estimates derived during encoding (i.e. before 

the perspective shift).  Henceforth, we will refer to this systematic shift in responses in the 

direction of the perspective shift as the perspective shift related bias. This idea aligns well with 

the anchoring and adjustment heuristic proposed by Tversky and Kahneman (1974). According 

to this heuristic, people base their responses on initial estimates (the anchor) that they adjust 

to correct for errors when they are uncertain. Often, these anchors are based on egocentric 

representations (Epley, Keysar, Van Boven, Gilovich, 2004; Gilovich, Medvec, & Savitsky, 2000; 

Keysar, Barr, Balin, & Brauner, 2000). Epley et al. (2004), for example, found that participants 

used their previous experience (exposed either to positive or negative events) when making 

judgements about how others would perceive ambiguous stimuli (sarcastic or genuine).   

In our task (Segen et al., 2021d), participants may use the egocentric vector between 

themselves and the object during encoding as an anchor for their response. Indeed, using the 

egocentric representation of the object location as an anchor would result in participants 

y, 

previous research suggests that adjustments require time and cognitive effort (Epley et al., 

2004) and are often insufficient and responses are therefore biased in the direction of the 

initial anchor, in part, because people stop adjusting once a plausible estimate is reached 

(Tversky & Kahneman, 1974; Quattrone, 1982). If participants in our previous experiments 

(Segen et al., 2021c, 2021d) also showed insufficient adjustments, this would explain why their 

estimates were systematically biased in the direction of the perspective shift.  

Potential sources of uncertainty that may encourage the use of an anchor based on 

the egocentric self-to-object relations are: (1) uncertainty about the position of the object in 



198 

 

the environment and (2) difficulties in understanding the exact nature of the perspective shift. 

The uncertainty about the object position could be reduced by enhancing the environment to 

include more spatial information i.e. by adding stable environmental cues that help to encode 

the position of the object more accurately (Cánovas, Leon, Serrano, Roldan & Cimadevilla, 

2011; Chamizo, Artigas &  Banterla, 2011; Kamil & Chen, 2001; Ekstrom & Yonelinas, 2020). In 

addition, stable environmental cues may also improve the understanding of the perspective 

shifts.  For example, participants can use the change in the egocentric relations to those cues 

as well as the changes in the visual projection of those cues to understand how their position 

in space has changed following a perspective shift.  Thus, we propose that enriching the 

environment with further spatial information will reduce the uncertainty about the object 

position after the perspective shift.  If our conjecture about the role of uncertainty is correct, 

then reducing uncertainty by adding cues in the environment should reduce the perspective 

shift related bias by decreasing the weight given to the egocentric anchor as well as by 

improving the adjustment process.  

It is possible that the uncertainty about the perspective shift may have also arisen 

from the way we introduced perspective shifts. For example, in our previous studies, the 

perspective shift consisted of both translation and rotation (Segen et al., 2021c, 2021d). 

Specifically, the camera moved on a circle such that it translated to one direction and at the 

same time rotated in the opposite direction. This combination of camera translation and 

rotation is typical for spatial perspective-taking tasks (Montefinese et al., 2015; Muffato et al., 

2019;  Hilton et al., 2020; Segen et al., 2021a, 2021b; Sulpizio et al., 2013; Schmidt et al., 2007) 

as it ensures that the same part of the environment is visible before and after the perspective 

shift. Given the small perspective shifts introduced in our studies (that involved small 

translations requiring only 20 to 30-degree rotations), the resulting images looked quite 

similar. This may have produced difficulties in understanding the perspective shifts, increasing 

participants' uncertainty regarding their movement within the environment. For example, if 
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participants thought that the camera movement between encoding and test was smaller than 

it was, this could have caused a bias that is congruent with the direction of the perspective 

shift.  

 So far, the unique role of camera rotations and of translations during perspective 

taking has not been studied. Although our previous research suggests that the observed 

perspective shift related bias is linked to the introduction of camera movements during 

perspective shifts, it is not clear whether it is driven by camera translations or rotations 

separately or by the specific combination of the two. Therefore, the main aim of this study is 

to investigate the contribution of camera rotations and translations to the perspective shift 

related bias that we have observed in our previous studies (Segen et al., 2021c, 2021d).   

Although no perspective-taking studies have investigated the role of translations and 

rotations separately, this has been done in tasks assessing spatial updating based on real or 

imagined body movements (Rieser, 1989, Wraga, 2003; Presson & Montello, 1994; Easton & 

Sholl, 1995). In such tasks, participants memorize an array of objects and are then either asked 

to move or to imagine moving to a different position in the array and point to one of the 

objects from that new position. Results show that, with physical movement, no differences in 

performance are present when the new position is reached by translation or rotation. 

However, when participants are asked to imagine moving to the new position, rotations lead 

to greater errors and longer response times than translations (Rieser, 1989; Presson & 

Montello, 1994; Sancaktar & Demirkan, 2008; Easton & Sholl, 1995).  The difficulties in 

imagined rotations are also highlighted by difficulties in using maps that are misaligned with 

982; Presson & Hazelrigg, 1984; 

Roskos-Ewoldsen, McNamara, Shelton, & Carr, 1998).  It is, however, not clear whether or how 

these results translate to spatial perspective taking tasks, as participants do not need to 

stead they need to use the available information to 
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determine how they have moved in space. The current study aims to shed some light on this 

issue.  

Another aim of the current study is to investigate potential ageing differences in object 

location memory.  Previous research suggests that ageing is associated with difficulties in 

memorising and recognising object locations across different perspectives (Hartley et al., 2007; 

Montefinese, et al., 2015; Muffato, et al. 2019; Hilton et al., 2020; Segen et al., 2021a) with 

some studies reporting a specific deficit in spatial perspective taking abilities (e.g. Watanabe, 

2011; Montefinese, et al., 2015; Segen et al., 2021a).  Furthermore, there is evidence for age-

related declines in the precision of encoding spatial locations. For example, in a number of 

studies, older adults were found to be less precise in estimating previous locations of objects 

presented on a computer screen compared to younger adults, despite positioning the objects 

in the correct region of the stimuli  (Pertzov, Heider, Liang, & Husain, 2015; Nilakantan, Bridge, 

VanHaerents, & Voss, 2018). Additionally, there are report of age-related declines in precision 

of spatial memory in a virtual Morris water maze task (McAvan et al., 2021). In this study, 

participants physically navigated in a virtual environment presented via a head mounted 

display. Interestingly, older participants showed comparable performance for memory of 

object locations across different perspectives and displayed similar strategy use, yet their 

memory of object locations was less precise.  These age-related declines in the precision of 

spatial representations may be caused by differential age-related changes in the anterior and 

posterior hippocampus. Indeed, a recent longitudinal study (Langnes et al., 2019) reported 

that the posterior hippocampus, typically associated with fine-grained spatial processing, was 

more affected by ageing than the anterior hippocampus, which is involved in the formation of 

coarser spatial representations (Røe Evensmoen et al., 2013; Nadel, Hoscheidt & Ryan, 2013).  

7.1.1. Aims & Hypotheses 
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In the current study we present two experiments. The key aim of Experiment 1 is to 

provide a conceptual replication of Segen et al., (2021d) in which we found a perspective shift 

related bias during object position estimates. In the original task (Segen et al., 2021d), 

participants memorised the position of a target object that was always located on a plank in a 

virtual room. Then, following a short delay and a perspective shift, the target object 

disappeared, and participants were asked to indicate its position by selecting one of several 

predefined positions. In the current study, we introduced two key changes compared to the 

original task. First, we have removed the plank which may have acted as an influential cue that 

restricted the possible locations where the target object could be placed.  Second, instead of 

presenting participants with predefined object positions that were overlaid on the plank 

during the test phase, participants' responses were unconstrained, and they could indicate the 

position of the target object anywhere in the environment.  Removing the plank and the 

positional markers reduced the risk that participants relied on strategies we did not control for 

and which could be responsible for the perspective shift related bias. 

The key aim of Experiment 2 was to investigate the contribution of camera rotations 

and translations to the perspective shift related bias. To do so, we manipulated camera 

rotation and the translations independently during the perspective shifts. We also investigated 

if enriching the environment by including additional objects that could be used as cues would 

he target object across 

different camera movements (rotations and translations). Furthermore, we examined the role 

aging has on the precision with which participants estimate target object positions across 

different camera movements.  Lastly, we investigated if older adults are differentially affected 

by camera rotations, translations, and the presence of additional cues in the environment 

compared to younger adults.    
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We postulate that the presence of the additional objects in the environment should 

improve the precision of participants' representations of the target object location (Cánovas et 

al, 2011; Chamizo et al., 2011; Kamil & Chen, 2001; Ekstrom & Yonelinas, 2020) as well as the 

understanding of the perspective shifts. Thus, we predicted smaller errors and a reduced 

perspective shift related bias when additional cues are present. Given the age-related declines 

in spatial memory (Hartley et al., 2007; Montefinese, et al., 2015; Muffato, et al. 2019; Hilton 

et al., 2020; Segen et al., 2021a, 2021b) and precision of spatial encoding across 2D stimuli 

(Pertzov et al. 2015; Nilakantan et al., 2018) together with possible perspective-taking deficits 

(Watanabe, 2011; Montefinese, et al., 2015; Segen et al., 2021b), we predicted that older 

adults would be less precise compared to younger adults and would display a larger bias 

related to camera movements in the environment. This prediction is based on our previous 

research that showed that older adults were more affected than younger adults by the 

direction of the perspective shift when estimating the direction in which the object has moved 

(Segen et al, 2021a). To our knowledge, this is the first study using spatial perspective-taking in 

which camera rotations and translations are decoupled. We therefore have no specific 

prediction on how the camera movements would contribute to performance and the 

perspective shift related bias. It is possible that participants will be more affected by camera 

rotations, as previous research on spatial updating shows that imagined rotations are harder 

than imagined translations (Rieser, 1989; Presson & Montello, 1994; Sancaktar & Demirkan, 

2008; Easton & Sholl, 1995).  Alternatively,  if the perspective shift related bias that we 

reported in earlier studies was driven by the specific camera movements that we have used 

where the rotation is always in a different direction to the translation, we would expect the 

bias to be present only in such situations 

7.2. Experiment 1 

7.2.1. Introduction  
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In Experiment 1 we introduced a modified version of a task we used in Segen et al., 

(2021d) to investigate spatial memory across different perspectives. In this task participants 

memorised scenes containing a target object and then, following a short delay, they were 

presented with a second image showing the same scene from a different perspective but 

without the target object. When viewing the second scene, participants had to indicate the 

position of the target object.  

The main aim of this experiment k was to provide a conceptual replication of the 

results reported in Segen et al. (2021d). Thus, we predict that participants' errors will be 

biased in the direction of the perspective shift.  

7.2.2. Method 

7.2.2.1. Participants 

Twenty-eight participants aged between 18 to 35 years of age (mean age =24.04 years, 

SD = 4.69; age range = 18-33 years; 16 females and 12 males) took part in this study. 

Participants were recruited through the participant recruitment system of Bournemouth 

University and received course credit for their participation.  All participants gave their 

informed consent in accordance with the Declaration of Helsinki (World Medical Association, 

2013). 

7.2.2.2. Materials 

The virtual environment was designed with 3DS Max 2018 (Autodesk) and consisted of 

a square 9.8m x 9.8m room.   Posters depicting famous landmarks were placed on the walls of 

the virtual room. The landmarks were chosen based on familiarity ratings obtained from 

previous research by Hamburger & Roser, (2014).  The target object, a potted plant, was 

placed in one of 18 predefined positions and the scene for encoding was rendered from one of 

three camera positions (camera locations depicted in Figure 7.1).  At test, the object was 
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removed, and the scene was rendered from one of the six test camera positions (Figure 7.1) 

such that the camera either moved to the left or to the right of the encoding position. The 

experimental stimuli were renderings of the environment with a 58° horizontal field of view 

(FOV). A custom asymmetric viewing frustum that resembles natural vision with a 15% shift in 

the vertical FOV was used. This asymmetric viewing frustum resembles natural vision and has 

been found to improve distance perception in virtual environments (Franz, 2005).   

 

 

Figure 7.1  A top-down schematic of the virtual environment used in the experiment with camera 

positions. Green cameras represent camera positions at encoding and blue cameras represent 

the corresponding camera positions at test. B: Trial structure with green and blue arrows 

showing the encoding and test cameras used to render the encoding and test scenes 
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 7.2.2.3. Procedure 

The experiment was carried out online using Testable (testable.org). At the beginning 

of the experiment, participants were asked to adjust the screen zoom settings to ensure that 

the entire scene was visible during the experiment which was run in full-screen mode. Each 

experimental trial started with instructions to remember the position of the object (1000ms), 

this was followed by a fixation cross and a scrambled stimuli mask presented for 750 msec 

(Figure 1B). In the encoding phase, participants were presented with a rendering of the room 

with one of the 18 possible target object positions from one of three encoding camera 

positions for 5 seconds.  This was followed by the presentation of a fixation cross and a 

scrambled stimuli mask for 750 msec. Finally, in the test phase, participants were presented 

with a rendering of the room without the target object from one of the six possible camera 

positions (Figure 7.1A). Participants had to indicate the position of the object taking into 

account the camera movements between encoding and test. Participants moved the mouse 

cursor to the position where they thought the object was during encoding and clicked to 

register their responses. They were instructed to use the base of the target object to 

remember the position it occupied on the floor. 

Each of the 18 possible target object positions was presented twice for each of the 

three encoding camera positions which resulted in 108 experimental trials that took around 25 

minutes to complete. 

7.2.3. Results 

Since the main aim of the experiment is to investigate biases in the direction in which 

participants estimate object locations, only angular errors (i.e., the unsigned distance between 

sition and the object's 

actual position) presented noted in the supplementary materials. 
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To investigate if the direction of the perspective shift between encoding and test biased the 

direction of participants' position estimates for the object, we focused on signed angular error 

(Figure 7.2). Positive and negative errors indicate that the object was estimated to be to the 

right or the left (respectively) of the correct object position.   We ran linear mixed-effects 

models (LME) using LME4 (Bates et al. 2015) in R (R Core Team, 2013) to investigate the role 

the Perspective Shift Direction (PSD) had on participants signed angular errors. PSD (Left/Right) 

was coded using sum contrasts such that left perspective shifts were compared to the average 

errors for the Left and Right PSD. We found that PSD (Left) influenced -

6.712, SE=0.426, t=-15.743), with participants positioning the target object further to the left 

when the perspective shift was to the Left. If we reverse the contrasts such that Right PSD is 

compared to the grand average, a reve

the right for Right PSD. In other words, participants exhibited a bias in their estimates that 

were in the same direction as that of the perspective shift between encoding and test (Figure 

7.2).                            

                                                

Figure 7.2 Distribution of Signed Angular Errors as a function of Camera Direction 
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7.2.4. Discussion 

Experiment 1 showed that when indicating target object positions, participants 

systematically made errors in the same direction as the perspective shift.  We also found that 

participants systematically overestimated the distance of the object as they had placed the 

object further than its actual position.  The presence of a systematic shift in participants' 

estimates of the position of the target object in the same direction as the perspective shift 

provides a conceptual replication of our previous findings (Segen et al., 2021d). Notably, in the 

original task, the objects were always placed on a plank and participants were provided with a 

set of predefined positional markers on the plank and indicated the position of the target 

object by selecting one of the markers.  In the current task, we removed both the plank and 

the positional markers to rule out the possibility that these cues were related to the 

perspective shift induced bias.  Thus, the presence of a systematic influence of the perspective 

shift on participants' object location estimates in the current study suggests that the bias is 

more likely to be driven by camera movements in the environment.  In Experiment 2, we 

further explore what may be driving the perspective shift induced bias. 

7.3. Experiment 2 

7.3.1. Introduction  

It is possible that the camera movements used in Experiment 1 and in other studies 

with spatial perspective tasks (Montefinese et al., 2015; Muffato et al., 2019;  Hilton et al., 

2020; Segen et al., 2021a, 2021b ,2021c, 2021d; Sulpizio et al., 2013) contributed to the 

perspective shift related bias in target object position estimates. Specifically, we speculated 

that there might be something special about this combination of camera rotations and 

translations, where the camera translates in one direction and rotates in the opposite 

direction, that gives rise to the perspective shift related bias. For example, participants may 

have difficulties in correctly perceiving the size of the perspective shift since the images 
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rendered from both perspectives look strikingly similar. This is because the rotation in the 

opposite direction to the translation ensured that the same features of the scene remained 

visible. This could lead participants to systematically underestimate the extent of the camera 

movement and lead to the systematic shift in the errors in direction of the camera shift.  

The key aim of Experiment 2 was, therefore, to investigate the contribution of camera 

rotations and translations to the perspective shift related bias. To do so, we varied camera 

rotations and translations independently by creating situations with rotations but without 

translations and vice versa. In addition, we introduced camera movements that we and others 

have used in previous work (Segen et al., 2021a, 2021b ,2021c, 2021d; Montefinese  et al, 

2015; Muffato et al., 2019; Hilton et al., 2020;  Sulpizio et al., 2013; Schmidt et al., 2007), in 

which the camera translates and rotates in opposite directions, to investigate if only this 

specific combination of camera movements gives rise to the perspective shift related bias. 

Lastly, we added a situation where the camera translates and rotates in the same direction.  

We have argued that uncertainty about the location of the target object following 

perspective shift is likely to contribute to the perspective shift related bias (Segen et al., 2021c, 

2021d). We expect that enriching the environment with additional stable environmental cues 

will help participants to better estimate  the exact object location (Cánovas et al.,  2011, 

Chamizo et al., 2011) and to understand the perspective shift, thereby reducing the 

uncertainty regarding the target position.  The second aim of Experiment 2 was, therefore, to 

investigate if the introduction of stable environmental cues (two round pillars) would improve 

overall precision and reduce the effect of the perspective shift on participants' performance.    

In addition, in Experiment 2 we investigated whether ageing mediates the effect of 

camera translations and rotations, as well as the effect that the additional cues may have on 

the ability to precisely encode and retrieve object positions and, specifically, on the 

perspective shift related bias.   Since ageing is associated with declines in the precision of 
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spatial memory (Pertzov et al. 2015; Nilakantan et al., 2018; Segen et al., 2021a, 2021c; 

McAvan et a., 2021) and has been linked with perspective taking deficits (Watanabe, 2011; 

Montefinese et al., 2015; Segen et al., 2021a), we expected that older adults would be less 

precise in estimating the position of the target object. Due to reduced precision, we expect 

that older adults would experience greater uncertainty about the exact position of the target 

object and therefore show a more pronounced error bias in positioning the target object in the 

direction of the perspective shift.   

7.3.2. Method 

7.3.2.1. Participants 

Forty-five young adults (mean age =20.70 years, SD = 3.26; age range = 18-33 years; 25 

females and 20 males) and forty-one older adults aged 60 years and over (mean age=68.00, 

SD=6.44, age range=60-86; 21 females and 20 males) took part in this study. Participants were 

recruited either through the participant recruitment system of Bournemouth University or 

Prolific (https://www.prolific.co), an online participant recruitment system.  Older adults 

received monetary compensation for their time whilst younger participants received course 

credit.  All participants gave their written informed consent in accordance with the Declaration 

of Helsinki (World Medical Association, 2013). 

7.3.2.2. Design 

The experiment followed a mixed 2 (Age Group: Young/Older) × 2 (Environment: No 

Columns/Additional Columns) × 3 (Camera Translation: Left Translation/No Translation/Right 

Translation) x 3 (Camera Rotation: Left Rotation/No Rotation/Right Rotation) design with 

Environment, Camera Translation and Camera Rotation manipulated within participants and 

Age Group manipulated between participants. 
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7.3.2.3. Materials 

We used the same virtual environment as in Experiment 1. In this experiment, 

however, we only used 4 predefined target object positions and the encoding scenes were 

rendered only from the central camera position (Figure 7.1A). During encoding, the camera 

was oriented to always face the centre of the room.  For the test stimuli, the target object was 

removed and the scenes were rendered from one of the three test camera positions such that 

the camera either remained in the same position, moved to the left, or moved to the right by 

1m from the encoding position. The rotation of the camera was also manipulated at test such 

that the camera rotated by 10° to the left, 10°to the right, or did not rotate.  This design 

yielded a total of nine possible combinations of camera position and rotation for the test 

stimuli (examples of stimuli shown in Figure 7.3A).  In the Additional Columns condition, two 

round columns that differed in colour were added to the environment (Figure 7.3B). 
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Figure 7.3 Sample scene during encoding. A Test scenes across different camera translation and 

rotation combinations; B Examples of scenes during encoding, depicting the No Columns and 

Additional Columns Environment conditions.

7.3.2.4. Procedure

The experimental procedure was identical to that of Experiment 1. Each of the 4 

possible target object positions were presented twice for each Camera Translation, Camera 

Rotation and Environment combination. This resulted in a total of 144 experimental trials that 
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were preceded by 2 practice trials. The entire study took approximately 30 minutes to 

complete and was run online using Testable (testable.org). 

7.3.2.5. Data Analysis 

Data were analysed with LMMs and included Age Group (Young/Older) and 

Environment (No Columns/Additional Columns) in all the models.  Effect coding was used to 

set contrasts.  To reduce the complexity of some of the models we combined Camera 

Translation and Camera Rotation into a single factor we refer to as Camera Movement (Figure 

3B). This resulted in 5 levels, No Movement (No Translation and No Rotation), Rotation Only 

(No Translation and Left or Right Rotation), Translation Only (No Rotation and Left or Right 

Translation), Congruent movement (Left Translation and Left Rotation or Right Translation and 

Right Rotation)  and Incongruent movement (Left Translation and Right Rotation or Right 

Translation and Left Rotation). Camera movement was used to analyse Absolute Angular 

Errors, contrasts were set using treatment coding with No Movement used as the baseline.  In 

the analysis of Signed Angular Error, Camera Translation and Camera Rotation were used as 

separate fixed factors and were also coded using treatment coding with No Translation and No 

Rotation used as a baseline, respectively.  All models included a random by-subject and by-

item intercept.  Prior to analysis, outlier responses were removed using the interquartile range 

method on individual absolute distance error (m) distributions, which led to a 3.6% data loss.  

7.3.3. Results 

7.3.3.1. Absolute angular errors 

The LMM analysis showed that the absolute angular errors were larger with camera 

movements than without (Table 7.1 and Figure 7.4). Specifically, there was a small increase in 

angular errors when camera rotations were introduced (Rotation Only trials), a larger increase 

in errors was found for Incongruent trials, followed by an even larger increase for Translation 

Only trials and for Congruent trials.  We also found a significant interaction between 
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Environment and Camera Direction, with a lower increase of error in the Additional Objects 

condition with the introduction of Congruent and Translation Only trials. In addition, we also 

found an interaction between Camera Movement and Age Group with a larger increase of 

error in the Incongruent and Translation Only trials in Older Adults. 

Table 7. 1 Coefficients from Absolute Angular Error LME analysis 

  Absolute Angular Error 

Predictors Estimates std. 
Error 

t-value 

(Intercept) 1.718 0.147 11.659 

Environment (Additional Columns) -0.137 0.126 -1.084 

Camera Movement (Congruent) 3.373 0.155 21.753 

Camera Movement (Incongruent) 2.024 0.155 13.079 

Camera Movement (Rotation Only) 0.770 0.155 4.975 

Camera Movement (Translation Only) 2.721 0.155 17.581 

Age Group (Older) 0.033 0.104 0.318 

Environment (Additional Columns)*Camera Movement 
(Congruent) 

-0.563 0.155 -3.633 

Environment (Additional Columns)*Camera Movement 
(Incongruent) 

-0.258 0.155 -1.666 

Environment (Additional Columns)*Camera Movement 
(Rotation Only) 

-0.259 0.155 -1.676 

Environment (Additional Columns)*Camera Movement 
(Translation Only) 

-0.541 0.155 -3.494 

Environment (Additional Columns)*Age Group (Older) 0.049 0.071 0.694 
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Camera Movement (Congruent)*Age Group (Older) 0.087 0.088 0.986 

Camera Movement (Incongruent)*Age Group (Older) 0.263 0.087 3.005 

Camera Movement (Rotation Only)*Age Group (Older) -0.090 0.087 -1.030 

Camera Movement (Translation Only)*Age Group (Older) 0.195 0.087 2.225 

Environment (Additional Columns)*Camera Movement 
(Congruent) *Age Group (Older) 

-0.045 0.088 -0.510 

Environment (Additional Columns)*Camera Movement 
(Incongruent) *Age Group (Older) 

-0.132 0.087 -1.507 

Environment (Additional Columns)*Camera Movement 
(Rotation Only) * Age Group (Older) 

-0.078 0.087 -0.893 

Environment (Additional Columns)*Camera Movement 
(Translation Only)*Age Group (Older) 

-0.091 0.087 -1.040 

 

Figure 7.4 Absolute angular error as a function of Camera Movement, Environment and Age 

Group 
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7.3.3.2. Signed Angular Errors  

To investigate which camera movements systematically bias the direction of object 

location estimates, we focused on signed angular error. Positive errors indicate that the target 

object was estimated to the right of the correct position and negative errors indicate errors to 

the left of the correct position.  In this model we have included Camera Translations and 

Camera Rotations as separate fixed factors, as otherwise the errors for different directions of 

camera rotations and translations could cancel each other out.  

The LMM analysis (see Table 7.2 and Figure 7.5) showed that Camera Rotations 

introduced a small bias in errors in the direction of the rotation.  Camera Translations had a 

much larger effect on participants' signed angular errors, with participa

object locations showing a large shift in the direction of the translation.  We also found an 

Environment by Camera Translation interaction: errors were less biased when the camera 

translated to the left in the Additional Columns condition than in the No Columns condition. A 

similar trend (t=1.955) was also present when the camera translated to the right. 

We also found an interaction between Camera Rotation and Age Group, with older 

adults showing smaller error bias when camera rotations were present compared to younger 

adults. This effect was only significant for rotations to the left, but the numerical trend is 

present also for rotations to the right. In contrast, older adults seem to be more affected than 

young adults by camera translations. This was corroborated by the presence of an Age Group 

by Camera Translation interaction with older adults showing a greater error bias in the 

direction of camera translations compared to young adults. Again, the interaction was only 

significant for camera translations to the right with a similar trend for camera translation to 

the left.  

 To quantify the differences between the effect of camera rotations and translations, 

we conducted linear hypothesis tests and found that the effect for each direction of the 
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camera rotation were significantly different for the corresponding effect for each direction of 

camera translation, i.e. left translation vs left rotations (p <.001). Next, we compared the 

magnitude of that difference and found that the effect of camera translation on signed angular 

error is almost threefold (2.85) to that of camera rotations (p<.05). 

Table 7.2 Coefficients Signed Absolute Angular Error LME analysis 

  Signed Angular Error 

Predictors Estimates std. 
Error 

t-value 

(Intercept) -0.211 0.193 -1.095 

Environment (Additional Columns) -0.117 0.181 -0.644 

Rotation (Left) -0.631 0.257 -2.459 

Rotation (Right) 0.765 0.257 2.977 

Translation (Left) -3.647 0.257 -14.199 

Translation (Right) 4.036 0.257 15.728 

Age Group (Older) -0.185 0.115 -1.607 

Environment (Additional Columns)*Rotation (Left) 0.128 0.257 0.498 

Environment (Additional Columns)*Rotation (Right) -0.044 0.257 -0.171 

Environment (Additional Columns)*Translation (Left) 0.502 0.257 1.955 

Environment (Additional Columns)*Translation (Right) -0.625 0.257 -2.435 

Rotation (Left)*Translation (Left) 0.054 0.363 0.148 

Rotation (Right)*Translation (Left) 0.192 0.363 0.530 

Rotation (Left)*Translation (Right) -0.360 0.363 -0.990 
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Rotation (Right)*Translation (Right) 0.042 0.364 0.116 

Environment (Additional Columns)*Age Group (Older) 0.039 0.094 0.408 

Rotation (Left)*Age Group (Older) 0.332 0.134 2.487 

Rotation (Right)*Age Group (Older) -0.207 0.134 -1.545 

Translation (Left)*Age Group (Older) -0.170 0.134 -1.266 

Translation (Right)*Age Group (Older) 0.273 0.134 2.041 

Environment (Additional Columns)*Rotation 
(Left)*Translation (Left) 

0.148 0.363 0.408 

Environment (Additional Columns)*Rotation 
(Right)*Translation (Left) 

-0.113 0.363 -0.312 

Environment (Additional Columns)*Rotation 
(Left)*Translation (Right) 

0.173 0.363 0.476 

Environment (Additional Columns)*Rotation 
(Right)*Translation (Right) 

0.090 0.364 0.246 

Environment (Additional Columns)*Rotation (Left)*Age 
Group (Older) 

-0.021 0.134 -0.154 

Environment (Additional Columns)*Rotation (Right)*Age 
Group (Older) 

-0.017 0.134 -0.127 

Environment (Additional Columns)*Translation (Left)*Age 
Group (Older) 

-0.005 0.134 -0.035 

Environment (Additional Columns)*Translation (Right)*Age 
Group (Older) 

-0.121 0.134 -0.906 

Rotation (Left)*Translation (Left)*Age Group (Older) -0.116 0.190 -0.610 

Rotation (Right)*Translation (Left)*Age Group (Older) -0.013 0.190 -0.066 

Rotation (Left)*Translation (Right)*Age Group (Older) -0.169 0.189 -0.892 

Rotation (Right)*Translation (Right)*Age Group (Older) 0.153 0.191 0.804 

Environment (Additional Columns)*Rotation 
(Left)*Translation Left)* Age Group (Older) 

-0.156 0.190 -0.822 

Environment (Additional Columns)*Rotation 
(Right)*Translation (Left)*Age Group (Older) 

0.108 0.190 0.570 

Environment (Additional Columns)*Rotation 
(Left)*Translation (Right)* Age Group (Older) 

-0.030 0.189 -0.157 
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Environment (Additional Columns)*Rotation 
(Right)*Translation (Right) * Age Group (Older) 

0.207 0.191 1.083 

 

 

Figure 7.5 Signed angular error as a function of Camera Translations, Camera Rotations and Age 

Group in the No Columns condition (top panel) and Additional Columns (bottom panel) 

7.3.3.3. Linear combination of errors for camera rotations and translations 

To investigate how camera rotations and translations interact, we modelled predictions for 

combined movements based on rotation and translation data. Specifically, we created three 

models (Figure 7.6), one in which signed errors were solely affected by camera rotation 

(Rotation Only model), one in which signed errors were solely affected by camera translation 

(Translation Only model) and one which assumed an additive influence of camera rotation and 

translation (Additive Model). The predictions of the three models, along with the experimental 
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data, are presented in Figure 8. It is apparent that participants' errors are unlikely to be driven 

solely by camera rotations, whilst both the Translation Only model and the Additive Model fit 

the experimental data well. However, the Additive Model provides a significantly better fit 

than the Translation Only model (Translation Only RSS=1677.5, Additive Model RSS=1146.1, 

F=35748, p<.001).  The close fit of the predictions of the additive model for the combined 

camera movements with the actual data suggests that camera rotation and camera translation 

independently influence participants' performance. 

 

Figure 7.6 Experimental Data and predictions of the Additive, Translation Only and Rotation Only 

models 
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7.3.3.4 Absolute Distance Errors 

Lastly,  to investigate differences in the precision with which participants recalled the 

position of objects following a perspective shift,  we focused on the Absolute Distance Errors  

The LMM analysis (complete results are presented in supplementary materials) showed that 

-0.983, SE=0.013, t=-6.471). 

compared to the No Movement baseline. Notably, the increase was not uniform.  The lowest 

SE=0.016, t=2.134), followed by trials with Incongruent camera movements (camera translates 

and rotates in opp

with Congruent camera movements (camera translates and rotates in the same direction; 

condition than in the No Columns condition, but this difference was larger in younger 

compared to older adults.  This finding suggests that older adults did not benefit from the 

availability of extra spatial information (extra columns) as much as younger adults did. 

7.3.4. Discussion  

In the present study we investigated the role camera rotations and translations have 

the environment by providing additional spatial information influences the ability to precisely 

estimate the position of the target object following a perspective shift as well as the 

perspective shift related bias in the position estimates. We also investigated age-related 

differences in the precision with which people estimate target object locations. Lastly, we 



221 

 

examined if older adults are differentially affected by camera rotations and translations as well 

as by the presence of additional cues when estimating target object locations.  

  We found that the introduction of any camera movements between encoding and 

test increased error in estimating the position of the target object. This was the case for both 

absolute angular deviations and absolute distance errors.  Importantly though, the effect of 

translations was larger than the effect of rotations.  Furthermore, we replicated the 

perspective shift related bias that we described in our previous studies (Segen et al., 2021c, 

2021d). Specifically, we found that participants' responses were biased in the direction of 

camera movements for both rotations and translations, yet this bias was stronger with the 

introduction of translations.  

There were age-related differences in the manifestation of the perspective shift 

related bias, as older adults were less affected by camera rotations compared to younger 

adults, whilst at the same time being more affected by camera translations than younger 

participants.  Furthermore, we found that enriching the spatial information in the environment 

improved the precision with which participants estimated the position of the object following 

a perspective shift, yet older adults benefited less from the additional spatial information.   

In line with our previous research (Segen et al., 2021c),  we found that the presence of 

additional spatial information reduced the systematic bias in participants' object position 

estimates following a perspective shift, yet this was only true for perspective shifts containing 

camera translations.   Lastly, we showed that a linear additive model of errors for pure 

rotations and translations described our data well, suggesting that camera rotations and 

translations affected participants' errors independently.     

We attribute the perspective shift related bias to egocentric influences on target 

object estimates. In the current task there were no self-motion cues that could support the 
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automatic updating of egocentric representations of object locations during the perspective 

shift (Wang & Spelke, 2002). Instead, spatial perspective taking had to be achieved through 

more effortful processes (Easton & Sholl, 1995). Examples of those include using an allocentric 

representation that contains information of the object-to-object relations (which are 

independent from own/camera position in the environment) or by engaging in mental 

transformations of the egocentric representations to ensure that the encoding and test 

representations align (King et al, 2002; Hegarty & Waller, 2004). If participants relied solely on 

an allocentric representation in which the position of the target object was encoded relative to 

other features in the environment, their own position and movement in the environment 

should not have influenced their responses and perspective shifts would not have resulted in 

systematic biases in the same direction as the perspective shift (King et al, 2002; Hegarty & 

Waller, 2004). However, if participants relied on egocentric representations, their responses 

could be biased towards the egocentric estimates derived before the perspective shift (i.e., 

during encoding) which would result in the systematic shift in the direction of the camera 

movement.  

 In the current experiment, we decoupled camera rotations and translations and 

showed that translations resulted in a substantially larger angular bias in the direction of the 

camera movement than camera rotations. We propose that the differential effects of camera 

rotations and translations on participants' performance are driven by differences in how 

camera rotations and translations affect the egocentric self-to-object relations and on the 2D 

projections of object-to-object relations.  We propose that in order to estimate the position of 

the target object following a perspective shift, participants need to first  encode the position of 

the target object during encoding,  then to compare the encoding and test stimulus to 

understand how they have moved through space (i.e. to understand the perspective shift 

which requires self-localization at both encoding and test), and finally to recompute the target 

object position given their new location in the environment.   
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When camera rotations are introduced, the distance to the object and other features 

in the environment remains the same but the location of the object and other features of the 

environment on the screen are uniformly offset by the rotation angle. Thus, the relative 

position of the target object in relation to other features in the environment on the image 

remains the same despite appearing at a different part of the image. As a result, participants 

do not really need to self-localize during camera rotations as they can rely on their memory for 

the object position relative to other nearby features in the environment. Alternatively, they 

can use the offset in the position of other features in the environment to estimate the position 

of the target object.  However, when camera translations are introduced, the distance 

between one's own position and other objects changes. Notably, this change is not uniform 

and depends on the position of the objects. This leads to changes in the vectors and angles 

between the self and the environmental features, including the to-be-remembered object 

locations, and therefore to positions these features occupy on the screen.  Participants need to 

consider this new information to understand how they moved through space, and to update 

the target object position accordingly.  

Since camera translations are more difficult to resolve than camera rotations, they 

introduce more uncertainty about the position of the target object. Consistent with the  

anchor and adjustment heuristic (Tversky & Kahneman, 1974), we suggest that due to higher 

uncertainty following camera translations than rotations, participants exhibit greater reliance 

on an egocentric anchor (Epley et al., 2004; Gilovich et al., 2000; Keysar et al., 2000). According 

to the anchor and adjustment heuristic, the anchor is typically adjusted until a plausible 

response is reached, however, such adjustments are often insufficient (Tversky & Kahneman, 

1974; Quattrone, 1982) such that the response remains biased in the direction of the initial 

estimate. In our task, the egocentric anchor is the self-to-object vector during encoding. 

Insufficient adjustment of this egocentric vector on basis of the perspective shift, would result 

in a systematic shift in object position estimates in the same direction as camera translations 
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and rotations. Moreover, in line with our interpretation that camera translation results in 

greater uncertainty and consequently greater reliance on the anchor, the systematic shift is 

greater when camera translation rather than camera rotations are introduced. 

The idea that uncertainty mediates the reliance on the egocentric anchor is in line with 

the reduction of the systematic bias introduced by camera translations when additional spatial 

information (stable environmental cues) was provided in the environment. Specifically, the 

addition of stable environmental cues is likely to improve the precision with which the object 

location can be encoded (Cánovas et al, 2011; Chamizo et al., 2011; Kamil & Chen, 2001; 

Ekstrom & Yonelinas, 2020).Consistent with this account, we found that participants are more 

precise when environmental cues are available. Additionally, the presence of these cues 

enriches the spatial structure of the environment and can therefore improve the 

understanding of the perspective shift. Improvements in the precision with which participants 

can encode the object location and the understanding of their own position following camera 

movements is bound to reduce the uncertainty that participants have about object positions at 

test. In turn, this is likely to reduce the weight that is given to the egocentric anchor during 

target object position estimation following a perspective shift.  

Additional spatial information may not only help to reduce the uncertainty that 

participants have allowing them to rely less on an egocentric anchor but may also help them to 

improve the adjustment process.  Specifically, additional cues may limit the range of plausible 

object positions. That is, if the object was between the two columns, then participants can use 

this information during adjustments to reduce errors as well as the systematic bias in the 

direction of camera movements.   

The finding in our study of a greater detrimental effect of camera translations than 

rotations on overall performance and on the systematic bias in object position estimate,  is 

inconsistent with the finding from the spatial updating literature that typically shows that 
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imagined rotations have a more debilitating effect on performance than imagined translations 

(Klatzky et al., 1998; Rieser, 1989; Wraga, 2003; Presson & Montello, 1994).   In spatial 

updating studies greater error is observed during imagined rotations than translations because 

the latter are less computationally demanding (Rieser, 1989; Presson & Montello, 1994). For 

example, Rieser (1989) argued that during imagined translations participants can simply 

retrieve the stored information from memory. However, for imagined rotations participants 

either need to recompute the object-to-object relations considering their new orientation or 

combine the signed self-to-target angle and the signed self-to-observation point angle.  Both of 

those would require additional mental computations to transform the initial encoded 

representation of object locations. 

 Also, Presson and Montello (1994) suggested that differences between the imagined 

rotations and translations in a spatial updating task may be driven by a conflict between actual 

and imagined heading directions.  Specifically, they proposed that humans have a strong 

tendency to use their immediate heading direction as a primary frame of reference.  And in the 

imagined rotation condition participants need to override this primary frame of reference to 

adopt an alternative imagined heading direction.  Such conflict between reference frames is 

not present in the translation condition as the actual and imagined heading always remain the 

same.  The lack of conflict between reference frames is also likely to make the updating of self-

to-object relations easier (Presson & Montello, 1994).  

In our task, however, the impact of camera rotations and translations is different. 

Specifically, the object-to-object relations as they are projected on the screen change in the 

camera translation condition but not in the camera rotation condition. In addition, as noted 

earlier, the self-to-object relations are uniformly offset in the rotation condition, therefore the 

new self-to-target object relations can be calculated much easier in conditions when camera 

rotations are introduced. Conversely, in the translation condition participants need to engage 
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in more demanding computations to estimate the new self-to-target object position.  

Furthermore, in our task, there is no conflict between heading directions. Participants are 

shown their new heading direction instead of imagining it. Therefore, their new heading is 

apparent at both encoding and test. Thus, in our view, the differential impact of rotations and 

translations between our task and the spatial updating paradigms is responsible for differences 

in the results. 

The experimental design allowed us to investigate how the influence of camera 

rotations and translations combine during camera movements that include both rotation and 

translation components to influence participants' performance. We found that a simple linear 

model with additive inputs of pure rotation and pure translation errors closely matches the 

empirical data for combined camera movements and provides a significantly better fit than 

models that are based on errors associated with translations or rotations only. This result 

suggests that rotation and translation influences do not follow the winner-takes-it-all principle 

that has been used to explain higher-level cognitive phenomena such as visual attention  (Itti 

and Koch, 2001; Walther & Koch, 2006) and decision making (Wang, 2002; Furman & Wang, 

2008). Instead, we believe that performance on trials with combined camera translation and 

rotations results from independent influences of rotations and translations that are linearly 

combined to produce the observed errors.  The linear additive model also explains the smaller 

errors observed after incongruent camera movements (camera rotates and translates in 

opposite direction) compared to congruent camera movements (camera rotates and translates 

in the same direction).  Specifically, in incongruent movements, the errors have opposite signs 

since they are biased in the direction of movement for both camera rotations and translations. 

Therefore, when the errors are combined, they cancel each other out. In congruent 

movements the errors for rotations and translations are biased in the same direction and are 

therefore additive. 
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The final aim of Experiment 2 was to investigate how ageing affects the precision with 

which participants remember the position of objects following a perspective shift and whether 

older adults are differentially affected by camera rotations and translations as well as by the 

presence of additional cues in the environment compared to younger adults. Against our 

predictions, we found that, overall, older adults performed just as well as the younger 

participants. We did, however, find that older adults benefited less than younger adults from 

the addition of stable environmental cues. This is in line with our previous work (Segen et al, 

2021c) in which we showed that older adults were more biased by the direction of the 

perspective shift when estimating object displacement directions than younger adults in whom 

the addition of extra spatial information substantially reduced the systematic bias related to 

the perspective shift.  

One explanation for why older adults benefited less than younger adults from the 

presence of additional environmental cues is that the presentation of extra cues was not 

blocked. Instead, trials with and without additional environmental cues were randomly 

presented. This may have prevented older adults from utilising these additional cues due to 

problems in switching strategies to use additional information when it was available (for 

review on strategy switching in navigation and aging see Colombo et al., 2017). Instead, older 

adults may have relied only on the information that was available across all trials. Additionally, 

our previous eye-tracking research using similar tasks suggests that older adults have a 

preference towards encoding object locations in a room using more distal room based cues 

such as posters, rather than encoding the spatial layout of more proximal object cues 

distributed in the room (Segen at al., 2021a, 2021b). This preference may further contribute to 

older adults not utilizing the additional spatial information in the room when it was available.  

In line with our predictions, we found that older adults were more affected by camera 

translation than younger adults and displayed a greater bias in the direction of camera 
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translations when estimating target object positions.  Also, compared to younger participants, 

older adults exhibited larger absolute angular errors  when camera translations were 

introduced. The larger bias in the direction of camera translation in older adults may be driven 

by greater uncertainty stemming from less precise encoding of object locations (Dai et al., 

2016; Pertzov et al., 2015; Nilakantan et al., 2018; Segen et al., 2021a; McAvan et al., 2021) 

and difficulties in spatial perspective-taking in older adults (Segen et al., 2021a; Montefinese  

et al., 2015; Watanabe, 2011; Inagaki et al., 2002), which cause them to rely more on an 

egocentric anchor. Yet, contrary to our predictions, older adults did not display a bias in the 

direction of camera rotations, unlike younger adults who were affected by camera rotations. It 

is not clear from the current data why older participants were less affected by camera 

rotations than younger adults. This could be the focus of future studies. 

The differential response to camera rotations and translation in older compared to 

younger adults may also explain the larger absolute angular errors in incongruent camera 

movements. Specifically, if errors for a specific rotation (i.e. right) are linearly combined with 

errors for a specific translation (i.e. left) then in younger adults, who are more biased by 

rotations, the rotation and translation errors are have different signs and when combined the 

angular errors are reduced in incongruent trials. However, since older adults show only very 

small systematic rotation errors, when combined with translation errors, the overall errors do 

not reduce as much as with younger participants in the incongruent trials. Note that the age-

specific differences in angular errors related to camera rotations and translations are very 

small compared to the main effects of camera translation and rotations that we report in the 

current study. More research is needed to understand the role of ageing in mediating the 

effects camera rotations and translation have on memory for object locations.  

7.4. General Summary   
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positions following a perspective shift. In Experiment 1, we replicated (Segen et al., 2021d) a 

systematic shift in position estimates in the same direction as the perspective shift. In 

Experiment 2 we investigated the contribution of camera rotations and translations to this bias 

and showed that translations are largely responsible for causing a systematic bias in object 

location estimation. Camera translations introduced a greater change in the relations between 

own position and the object as well as other features in the environment compared to 

rotations. We believe that those greater changes lead to increased uncertainty regarding the 

position of an object in the environment which results in greater reliance on egocentric 

anchors leading to the systematic bias in errors in the same direction as translations.  We also 

show that the influence of camera translations is influenced by both environmental properties 

and individual differences (age-related difference), such that the bias was larger in less 

informative environments and in older adults whose  abilities to remember object locations  

have been shown to decline (Montefinese et al., 2015; Muffato et al., 2019; Hilton et al., 2020; 

Segen et al., 2021a).  Lastly, this is the first study to show that the influence of camera 

rotations and translations on participants' performance is guided by a linear additive process.  
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