
Autocomplete Element Fields
Chen-Yuan Hsu

Bournemouth University
Li-Yi Wei

Adobe Research
Lihua You

Jian Jun Zhang
Bournemouth University

(a) graphic design (b) artistic collage (c) aggregate modeling

Figure 1: Autocomplete element synthesis following partial user specifications. Our autocomplete system can be applied for
different output domains such as 2D planes (a), 3D surfaces (b), and 3D volumes (c), distinct types of aggregate elements, and
various applications such as design (a), collage (b), and modeling (c). The proposed system can automatically optimize the entire
element distributions, orientations and scales based on the partial user strokes (a) (inset), enable users to interactively arrange the
elements over the domain (b), and directly compute the volumetric output (c) from a given surface direction field (see Figure 15).

ABSTRACT
Aggregate elements are ubiquitous in natural and man-made
objects. Interactively authoring these elements with varying
anisotropy and deformability can require high artistic skills
and manual labor. To reduce input workload and enhance
output quality, we present an autocomplete system that can
help users distribute and align such elements over different
domains. Through a brushing interface, users can place and
mix a few elements, and let our system automatically populate
more elements for the remaining output. Furthermore, aggre-
gate elements often require proper direction/scalar fields for
proper arrangements, but fully specifying such fields across
entire domains can be difficult or inconvenient for ordinary
users. To address this usability challenge, we formulate ele-
ment fields that can smoothly orient all the elements based on
partial user specifications without requiring full input fields in
any step. We validate our prototype system with a pilot user
study and show applications in design, collage, and modeling.

Author Keywords
element, field, synthesis, anisotropy, interface, modeling

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376248

CCS Concepts
•Human-centered computing → Interactive systems and
tools; •Computing methodologies→ Texturing;

INTRODUCTION
Aggregate elements are widely used in various applications
such as rendering [54, 55], modeling [51, 65, 63], simulation
[24, 25], interaction [34, 33], and design [35, 17, 83, 38].
However, interactively authoring such elements with varying
anisotropy and deformability for ordinary users still remains
challenging, especially in 3D domains [7].

Manual creation of aggregate elements allows full control
but can require high artistic skills and manual labor, while
automatic batch synthesis can apply in 2D or 3D (e.g. [51,
65, 67]) but might not provide sufficient freedom and interac-
tivity. Although there exist methods to automate interactive
authoring of 2D elements (e.g. [34, 33]), users still need to
place all broad strokes or position element collections step
by step. Efficiently authoring elements with general shapes,
distributions, and alignments in various output domains is
significantly harder and lacks good solution so far. The ideal
system should be user-friendly without requiring significant
expertise or efforts and yet efficient and general enough to
interactively design and explore diverse outcomes.

We propose an autocomplete system for interactive authoring
of aggregate elements within different output domains includ-
ing 2D planes, 3D surfaces, and 3D volumes (Figure 1). Anal-
ogous to conventional painting workflows, through a brushing

interface, users can select and even mix distinct types of el-
ements from an element palette, brush the selected elements
over the output domain (e.g. 2D planar canvas or 3D object
surface) and see the corresponding outcomes interactively.

To better orient aggregate elements, existing methods often
need to incorporate full direction/scalar fields, but to obtain
such fields across domains either manually or automatically
can be challenging for ordinary users. The input fields, even
when automatically computed, may also force undesirable
artifacts, such as singularities which cannot be entirely avoided
[56]. To reduce input workload and enhance output quality,
we formulate element fields that can smoothly orient the whole
elements following partial inputs (e.g. user strokes) based on
inter- and intra-element relationships as illustrated in Figure 2.

(a) user stroke (b) element fields from (a)

(c) full field from (a) (d) element fields from (c)

Figure 2: Element fields. Our method can directly compute
smoother element fields (b) from a partial input (a) and more
adaptively fit different elements with (a) than (d) preprocessing
a full input (c) from (a) via Laplacian interpolation [56].

Since to optimally compute an accurate layout for arbitrary
mixtures can be time-consuming as described in [38, 67] and
the computational complexity can further increase by element
anisotropy and deformability as well as domain dimension,
our algorithm is designed to balance between quality and
interactivity. We thus devise an element representation that
can better characterize elements with varying anisotropy and
deformability to strengthen connection and reduce penetration.
Our procedural approach can effectively synthesize aggregate
elements based on user specifications and directly create novel
mixtures from individual elements without the need to prepare
input exemplars used in the data-driven methods (e.g. [51]).

The developed system, centered on the idea of element fields,
can handle elements with general shapes, distributions, and
alignments, offer more usability and interactivity than existing
practices and enable users to create compelling artwork like
Figure 1b without requiring significant expertise or efforts.
We evaluate our prototype system with a pilot user study and
show applications for both interactive design and collage as
well as batch modeling, with partial or full input fields.

RELATED WORKS
Element packing
A variety of algorithms have been proposed to pack elements
for various applications such as mosaics [21, 35, 10, 26],
collages [17, 27, 29, 38, 67], glyphs [79, 83] and artistic
layouts [69, 61, 68] in different domains. These algorithms
optimize packing layouts without considering interactivity or
user-specified element distributions, orientations and scales.

Element modeling
Modeling aggregate elements considering individual shapes
and distributions can be achieved via data-driven methods [30,
51, 1, 39, 63, 20, 11] or procedural approaches [58, 42, 43,
65, 66]. By allowing merging or overlapping the elements,
structures with desired appearance can be formed for practical
manufacturing [82, 80, 6, 13]. However, these approaches
mainly focus on automatic computation without providing suf-
ficient user interaction (e.g. element mixing) and require fully
specified input fields for appropriate element arrangements.

Unlike existing packing and modeling algorithms, our method
can automatically optimize element distributions, orientations
and scales with user specifications, and through a brushing
interface, ordinary users can interactively arrange element
collections over various output domains in an intuitive manner.

Anisotropic element placement
Placing anisotropic elements has various applications such as
hatching [22, 57, 32], ornaments [68], calligrams [53], solids
[74, 81], and visualization [56]. The anisotropic elements
often need to follow certain direction fields, whose topology
and resolution can directly influence the quality of the resulting
outputs. Existing methods predominantly preprocess a full
direction field and then force elements to follow. For better
synthesis quality and user efficiency, our approach can directly
compute smooth element fields (e.g. Figure 2b) according to
user intention (e.g. partial user strokes) without requiring fully
specified input fields from users in any algorithmic step.

Interactive design
Interactive design systems have been presented for patterns
[62, 47, 45, 49, 46, 48], elements [34, 33], streamlines [70,
5], distributions [14, 11], geometric textures [4, 20, 16], and
dynamic effects [78], but these proposed interfaces are tai-
lored for specific applications in 2D planes and 3D surfaces.
Interactive texturing with a general interface for applications
across different output domains is a more challenging prob-
lem and has received less attention so far, especially in 3D
volumes. Although a 3ds Max plugin [18] aims for interactive
placement and simulation of rigid objects in 3D domains, sim-
ilar to element packing, elements following directions are not
considered aside from basic gravity and collision.

Analogous to a canvas-based palette tool [71], our brushing
interface offers general and intuitive controls that enable users
to interactively produce desired outcomes following their in-
tention for various applications within different domains. Like
common color mixing in [72], user-interactive element mixing
can also be achieved via the interface. Our proposed system
can not only more naturally fit element synthesis with interac-
tive authoring but also provide higher functionality for users.

(a) inputs (b) output domain (c) user strokes (d) autocomplete (e) final arrangement

Figure 3: Workflow. Users can select single or multiple input elements (a), brush the chosen inputs over the domain (b) and see the
brushing results (c) interactively. According to (c), our system can automatically create the full output (d) with intended element
orientations and scales. The users can further arrange the elements for the final outcome (e) via corresponding brush operations.

SYSTEM DESIGN RATIONALE
We recap our system design rationale for element synthesis as
follows. Manual placement offers full authoring freedom but
can require heavy efforts and expertise, while prior practices
need full input fields for arrangements but such fields can be
hard for users to specify. Even if the fields can be supplied, the
final outputs (e.g. Figure 2d) might not fit user intention. We
thus aim for an interactive system that retains full user control
and yet can smoothly synthesize distinct types of elements
with partial user specifications. Through our system, users can
iteratively design diverse compositions with reduced work-
load and enhanced quality under the same brushing workflow
without needing to learn any field design systems like [56].

USER INTERFACE
As illustrated in Figure 4, our brushing interface is directly im-
plemented into Autodesk Maya to leverage its overall system
manipulation such as camera control. Users can choose and
mix different elements from the element palette, tune relative
parameters from the control panel, and perform corresponding
brush operations to create desired works through the brushing
canvas. The basic workflow is exemplified in Figure 3.

Figure 4: User interface. The element palette and the control
panel are on the left. The brushing canvas is in the middle.

Brushing canvas
Analogous to traditional painting interface, we provide a brush-
ing canvas for users to interactively arrange elements. Users

can brush a few strokes of elements, and click a button to let
our system autocomplete the rest. The output domain can be a
2D plane, 3D surface, or 3D volume for various applications.

Element palette
Users can directly select single or mix multiple input elements
and set various properties such as scale and rigidity respec-
tively via the element palette (Figure 5). The combination of
the selected elements can be saved as a new palette entry for
further use and remix analogous to color palettes [72].

(a) element palette (b) two types (c) eight types

Figure 5: Element palette. Through the element palette (a),
several kinds of music symbols can be chosen by users to form
a shoeprint consisting of only two types (b) or eight types (c).

Brush operations
In our system, we offer add, erase, and replace brush oper-
ations for interactive authoring. The add operation enables
users to directly place elements across the domain while the
erase operation can remove the already placed elements. The
replace operation is a combination of erase and add opera-
tions. For automatic completion, the user-specified strokes
(e.g. Figure 3c) can indicate the intended overall element
orientations and scales, and instead of keeping these strokes
unchanged, our autocomplete system optimizes the entire inter-
and intra-element relationships (e.g. Figure 3d) to improve
total synthesis quality and produce smoother results while
adequately observing and reflecting the original user intention.

FORMULATION
Given input element exemplars I = {e1, . . . ,el}, an output
domain D, and a partially specified direction or scalar field
O over D, our goal is to automatically compute an output X
composed of I such that all elements e ∈ I are well distributed
within D and have coherent orientations or scales with O.

Element Representation
We represent each element e by a set of samples {s1, . . . ,sm} as
[51, 50]. However, only using samples is not enough to prop-
erly depict elements with varying anisotropy and deformability.
We thus extend the representation with weights and graphs.

Sampling
Since elements are represented by samples, the number and
locations of these samples are important. Ideally, we would
like to use as few samples as possible while representing the
elements as accurately as possible. As illustrated in Figure 6,
instead of using unweighted samples in [51, 50], we adopt
fewer weighted samples to better characterize distinct types of
elements. Moreover, a graph structure G inspired by Sumner
et al. [73] is further employed to indicate the connectivity
among samples and their relationship with element shapes.

(a) grass (b) leaf (c) semiquaver (d) treble clef

Figure 6: Element representation. The black dots indicate the
sample positions. The radii of the yellow circles represent the
sample weights ws. The blue lines denote the element graphs.
The sampling can be sparse (a), dense (b), overlapping (c) or
hybrid (d). These samples can be either manually placed by
designers or assisted by algorithms [2, 77, 75, 41].

Sample attributes
In addition to the sample weight ws, each sample s contains
individual attributes such as spatial position p, orientation
matrix o and scale c. In our formulation, the attributes p, o
and c are variables to optimize for element synthesis.

Element Distribution
In order to well distribute aggregate elements, we devise a
distribution objective Ee to effectively handle both inter- and
intra-element relationships. Ee consists of a sample distribu-
tion Ed term, a conflict check Ek term, and a graph similarity
Eg term. Ed and Ek measure the quality of inter-element dis-
tributions, and Eg preserves the intra-element connections for
elements composed of multiple samples.

Sample distribution
To properly position elements within the given domain, we can
calculate a balanced distance between each sample to evenly
maintain their inter-element distributions. We utilize a power
diagram [3] that partitions the domain based on the weighted
samples of elements to obtain a potential position for each
sample. As demonstrated in Figure 7, analogous to general

Lloyd-like methods, we can move each sample to the centroid
of its power cell to acquire evenly-distributed samples. Hence,
the sample distribution Ed term can be formulated as:

Ed (X) = ∑
s∈X
|p(s)− centroid(s)|2 , (1)

where centroid(s) represents the centroid of s’s power cell.

Here we quantify sample distributions procedurally instead of
from input exemplars (like in [23]) to facilitate faster compu-
tation and more flexible manipulations (e.g. element mixing).

sample

centroid

(a) centroid (b) triangulation

Figure 7: Power diagram. In (a), a potential position (purple)
for a sample (red) can be derived from the centroid of the
sample’s power cell. A weighted Delaunay triangulation (b),
which is the dual graph of the power diagram, can be further
used to construct neighborhood information for each sample.

Conflict check
Mixtures consisting of elements with distinct sizes or shapes
(e.g. Figure 1a) might not have the relevant distribution space
partitioned by the power diagram. In order to increase synthe-
sis quality for arbitrary mixtures, Ek is exploited to avoid the
conflicts between samples by checking the distances between
the weighted samples. Since the distance between two sam-
ples should not be less than the sum of their weights, we can
formulate the conflict check Ek term as:

Ek (X) = ∑
s∈X

∑
s′∈Ns

wk
(
s,s′
)∣∣p̂(s′,s)−wX

(
s,s′
)

p̌
(
s′,s
)∣∣2 ,

wk
(
s,s′
)
=

{
1 if wX (s,s′)> 1 and s ∈ e,s′ ∈ e′,e , e′

0 if wX (s,s′)≤ 1 or s,s′ ∈ e
,

wX
(
s,s′
)
= c(s′)ws(s′)+c(s)ws(s)

|p̌(s′,s)| ,

(2)

where Ns denotes a set of all neighboring samples of s de-
rived from a triangulation (Figure 7b), p̂ is the displacement
between s′ and s we want to solve, and p̌ means the current
displacement between s′ and s treated as a constant during op-
timization. Note that since elements might be represented by
overlapping samples, Ek ignores samples in the same element.

Graph similarity
Elements consisting of multiple samples should keep similar
graph structures. To appropriately preserve the intra-element
connections for such elements, we can measure the distance

between the current graph G(s) and the original graph G′(s)
for each sample s to consistently maintain the graph structure
of each element and define the graph similarity Eg term as:

Eg (X) = ∑
s∈X

d
(
G(s),G′(s)

)
,

d
(
G(s),G′(s)

)
= ∑

s′∈Gs

∣∣p̂(s′,s)− c(s)o(s)p̂′
(
s′,s
)∣∣2 , (3)

where Gs denotes a set of all connected samples of s, p̂ is the
same as in Equation (2), and p̂′ represents the displacement
between s′ and s in the original graph treated as a constant.

Putting everything together, we have:

Ee = (Ed +Ek)⊕wgEg, (4)

where + means that Ed and Ek are minimized together, ⊕ indi-
cates that Eg is minimized separately during optimization, and
wg is a relative weight set to 100 from our experiment to firmly
restructure the graphs from unexpected sample distributions.

Element Fields
In addition to forming well-distributed elements, these synthe-
sized elements should also match the user-specified field O
while behaving reasonably well in the unspecified portions of
the output domain D. We design a field objective E f for both
scalar and direction fields to include: a field alignment Ea term
to effectively align the elements with O in the specified areas,
a field continuity Ec term to smoothly orient all the elements
over D, and an element rigidity Er term to determine the ele-
ment deformability. Each term is also formulated in samples
for consistency. Here we first define the distance between two
scales c and c′ for scalar fields and the distance between two
orientation matrices M and M′ for direction fields as:

d
(
c,c′
)
=
∣∣c− c′

∣∣2 ; (5)

d
(
M,M′

)
=

n

∑
i=1

∣∣Mi−M′i
∣∣2 , (6)

where n denotes the domain dimension, and Mi and M′i repre-
sent the i-th column vectors of M and M′ respectively. Below
we mainly detail the direction field objective Ed

f and then
briefly describe the scalar field objective Es

f .

Field alignment
Since each sample s∈ e is associated with a local orientation o,
the sample orientation o(s) in the specified domain should be
properly aligned with the given field orientation O(p), where
O(p) means the orientation matrix of O at p which is the clos-
est specified domain point to the sample s. Hence, the distance
between o(s) and O(p) for each sample s in the specified areas
should be minimized for the field alignment Ea term as:

Ea (o,O) = ∑
s∈X

wa (s)d (o(s),O(p)) ,

wa (s) =


π(c(s)ws(s))2

A in 2D
4
3 π(c(s)ws(s))3

V in 3D
,

(7)

where wa is a confident weight which means larger samples
dominating larger domain spaces should contribute more influ-
ences than smaller samples, and A and V are the 2D area and
3D volume of a domain unit (e.g. pixel/voxel) respectively.

Field continuity
To fully complete the element alignments (including regions
with or without user-specified O), we orient nearby samples
as similarly as possible. Additionally, the effect of field conti-
nuity for each pair of samples with a closer distance or sim-
ilar orientations should be increased accordingly in order to
smoothly fit all the samples with their nearby samples. As a
result, the field continuity Ec term can be formulated as:

Ec (o) = ∑
s∈X

∑
s′∈Ns

wc
(
s,s′
) n

∑
i=1

wo
(
s,s′, i

)∣∣oi(s)−oi(s′)
∣∣2 ,

wc
(
s,s′
)
= 1

1+(wX(s,s′)
−1)

2 ,wo
(
s,s′, i

)
=
(
1+o′i(s) ·o′i(s′)

)
,

(8)

where wc is an inverse quadratic radial basis function used to
adaptively adjust the effect according to wX(s,s′)−1 in Equa-
tion (2) (i.e. the inter-distance between s and s′ altered based
on both ws and c), wo aims to better orient samples with their
nearby samples which have similar orientations, oi represents
the i-th column vector of o as in Equation (6), and o′i treated as
a constant here denotes the i-th column vector of the current
orientation matrix o′ of a sample. For dimension reduction, we
optimize the closest three/four neighboring samples s′ chosen
from Ns for each sample s in 2D/3D according to wX(s,s′)−1.

Element rigidity
If the element e is rigid, all samples s∈ e should have identical
local orientations o(s)= o(s′), ∀s,s′ ∈ e. If e is deformable, all
samples s ∈ e might have different local orientations. Hence,
to distinguish between rigid and deformable elements, the
element rigidity Er term is consequently formulated as:

Er (o) = ∑
s∈X

∑
s′∈Gs

wr (e)d
(
o(s),o(s′)

)
, (9)

where wr(e) is the weight of element rigidity which can be
defined by users via the element palette (e.g. 0 for deformable
elements and 100 for rigid elements in our implementation).

Since we define the local orientation o as a rotation matrix, in
order to penalize the deviation of o to well keep a pure rotation
matrix during the optimization as in [73], we apply an extra
constraint Eo term for the direction field objective Ed

f as:

Eo (o) = ∑
s∈X

R(o(s)) , (10)

where R(o) = (o1 ·o1−1)2 +(o2 ·o2−1)2 +(o3 ·o3−1)2 +

(o1 ·o2)
2 + (o2 ·o3)

2 + (o3 ·o1)
2, and o1, o2 and o3 are the

corresponding column vectors of o. As a result, the direction
field objective Ed

f is a summation of Ea, Ec, Er and Eo as:

Ed
f = Ea +α

2Ec +Er +Eo. (11)

Replacing Equation (6) by Equation (5) in Equations (7) to (9)
and removing wo from Equation (8), we represent the scalar

(a) initialization (b) iteration 2 (c) iteration 8 (d) iteration 20 (e) iteration 100

Figure 8: Optimization process. Our solver iteratively optimizes the scale, orientation and position of each element sample. The
number of iterations for automatic completion can range from 5 to 100 depending on the number of elements, the completeness of
fields, the complexity of mixtures, and the domain size and shape. Users can use fewer iterations (e.g. (d)) for fast previews during
the iterative design procedure and utilize more iterations (e.g. (e)) for final designed outcomes or more complicated scenarios.

field objective Es
f as follows:

Es
f = Ea +β

2Ec +Er. (12)

Note that α and β (both default values = 1) are parameters that
users can tune for specific scenarios/applications (Figure 9).

(a) user strokes

(b) α = 1, β = 1 (c) α = 3, β = 1

(d) α = 1, β = 10 (e) α = 3, β = 10

Figure 9: Field continuity. By increasing α and β via our
interface, it can encourage smoother element orientations and
scales. Our system can observe the user intention to optimize
overall synthesis quality with the tuned values accordingly.

SOLVER
We optimize the set of samples for the objectives Ee and E f re-
spectively through a combination of the Lloyd-like method and
gradient-based optimization in an iterative way. The overall
optimization process is exemplified in Figure 8.

Initialization
We randomly place individual elements into the output domain,
and the orientations and scales of samples of each element are
initially set to the stroke direction and brush size captured in
the closest user-specified domain point to the element.

Iterations
In each iteration, we take a distribution step, an orientation
step, and a scale step for different objectives, and each step
optimizes only one variable (e.g. p, o, or c) at a time. At
the beginning, each sample’s neighborhood is built via the
power diagram (Figure 7). Based on this, we first carry out the
scale step for Es

f and then run the orientation step for Ed
f . The

distribution step is fulfilled for Ee at the end of each iteration.

In the scale step, c is the variable, and we can directly solve Es
f

via linear least squares. In the orientation step, o is the variable,
and due to the Eo term, we optimize Ed

f via the Levenberg-
Marquardt method [52] to solve this nonlinear least squares
problem. Finally, in the distribution step, p is the variable, and
we first solve Ed and Ek together to optimally rearrange the
inter-element distributions via linear least squares. While the
elements are composed of multiple samples, to precisely struc-
ture the intra-element connections, Eg multiplied by wg can
be solved according to the optimized positions, orientations
and scales of samples via linear least squares as well.

IMPLEMENTATION
To obtain a brushing canvas, we voxelize the selected object
and employ a sparse octree to indicate all the voxels similar to
[36]. Each voxel also represents a domain point p and captures
relevant information such as stroke direction and brush size.
We also calculate the volume of each input element by voxels
in preprocessing, so the total number of elements placed into
the domain can be proportionally estimated according to the
number of domain voxels. During the initialization, a k-d tree
is utilized for the nearest domain point search. Furthermore,
we extend Voro++ [64] to compute the power diagram in
parallel and construct the sample neighborhoods. By adding
extra fixed samples to the boundary voxels of the selected
object, we can apply the conflict check term to the boundary
samples and their nearby element samples, and thus boundary
condition for various domain shapes can be efficiently handled.
For the final output, the element samples can be used as control
points to regularize the mesh vertices of elements as in [73].

EVALUATION
Element manipulation
Since previous algorithms either only work for rigid elements
(e.g. [61, 38]) or need extra schemes such as physics solvers

(a) user strokes (b) density field (c) dense (d) sparse (e) spatially-varying

Figure 10: Varying distributions. Users can directly specify strokes (a) with density values to obtain a partial density field (b)
via the same brush operations. Without adopting (b), dense (c) or sparse (d) element distributions can be uniformly formed by
adjusting the number of elements placed into the domain. By incorporating (b), the elements can be distributed non-uniformly (e).

for deformable elements (e.g. [51, 67]), the capability of
freely mixing user-specified elements is confined. Although an
earlier version of our method [23] allows users to mix different
elements from user-prepared input exemplars (Figure 11), its
data-driven process can significantly slow down computation
and thus compromise both usability and interactivity, and the
prepared exemplars can also heavily limit the synthesis quality
as well as the freedom of element distributions. In contrast,
our procedural approach can enable users to individually mix
distinct types of elements from the element palette without
the necessity of preparing the input exemplars in advance and
directly bring novel mixtures into existence as users desire as
possible in high quality and efficiency without requiring extra
schemes. Moreover, by assigning the samples of each element
arbitrary local orientations and scales via the interface, users
can further randomly orient, distort and resize the synthesized
elements to enrich visual diversity of artworks (Figure 12).

(a) user strokes (b) our method (c) Hsu et al. [23]

(d) input exemplars used in (c)

Figure 11: Solver comparison. Our procedural approach (b)
can more uniformly distribute elements in better performance
than the data-driven method (c). Both contain the same 689
elements and 1598 samples, and the synthesis times of (b) and
(c) are 9 and 44 seconds respectively in 100 iterations.

Distribution manipulation
Due to algorithmic limitations (e.g. computational cost), prior
approaches cannot let users interactively manipulate element
distributions, while our system enables users to freely form
diverse compositions, such as spatially-varying element distri-
butions, under the same brushing workflow. More detailedly,
we can incorporate an extra density field to spatially vary the
density of element distributions as illustrated in Figure 10. To

(a) aggregate vegetables (b) tangled metals

Figure 12: Element mixing. Users can create compelling mix-
tures composed of user-specified elements with chaotic align-
ments (a), distorted shapes (b) or varying sizes (Figure 1c).

fulfill it, each stroke can be equipped with a density value ρ

between 0 and 1, and we directly modify the weights of sam-
ples by the given densities ρ(s) but do not change the sizes of
elements (e.g. w′s(s) = (1+ρ(s))ws(s)). This optional density
field can be optimized individually via the same formulation
and step with Es

f during the iterations. With toroidal boundary
conditions, our method can further generate 2D/3D element
tiles to seamlessly tile a large output as shown in Figure 13.

(a) rigid (b) mixed (c) deformable

Figure 13: Tile-based distributions. Our system can produce
various element tiles. Note that in (b), we randomly align the
music symbols, while the words follow the stroke directions.

Field manipulation
As exemplified in Figure 9, by tuning α and β from the in-
terface to manipulate the effect of field continuity, different

(a) overlapping (b) intertwined (c) distorted (d) incoherent element fields from (a), (b) and (c) respectively

Figure 14: Incoherent user strokes. Our method can well handle overlapping (a), intertwined (b) and distorted (c) user strokes with
incoherent directions or scales for desirable results (d), while to deal with such cases can be hard for users via existing methods.

outputs with desired appearances can be designed according to
users’ personal preferences. Moreover, Figure 14 shows that
incoherent user strokes can be well tackled by our method with-
out incorporating any extra processes, and Figure 15 demon-
strates that our system can also automatically generate volu-
metric element distributions from only surface direction fields
(a very small subset relative to the whole volume) without pre-
defining the entire field resolution. More examples about field
manipulation can be seen in the supplementary document.

(a) input mesh (b) cross section of Figure 1c

Figure 15: Sparse input fields. We compute an extrinsically
smooth field [28] over a sparse set of mesh vertices (a) but
apply our method to the entire volume not just the surface.
The cross section (b) shows that the full outcome (Figure 1c)
can be smoothly constructed from the sparse direction field.

Performance
The synthesis times of our representative works are reported
for reference in Table 1. In our current prototype, there exists
room to improve the performance. We leave it for future work.

USER STUDY
Our autocomplete system aims for reducing input workload
(by partial user specifications) and enhancing output quality
(by smooth field topology). To evaluate our system, we have
conducted a pilot user study, and the goal of our study proce-
dure was designed to measure how much workload users can
reduce via our system while achieving the designated targets.
The study participants included 2 professional artists and 3
novice users without experience in element authoring.

2D case # elements # samples time # iterations
Figure 1a 725 1656 9s 100
Figure 9b 303 1276 15s 200
Figure 10c 381 1560 8s 100
Figure 10d 215 905 5s 100
Figure 10e 274 1139 7s 100
Figure 13a 187 402 4s 200
Figure 13b 194 650 6s 200
Figure 13c 206 838 8s 200
Figure 14a 367 849 5s 100
Figure 14b 516 1675 18s 200
Figure 14c 355 1477 28s 400
3D case # elements # samples time # iterations
Figure 1b 3994 19970 28s 5
Figure 1c 6280 43960 170s 20
Figure 12a 5272 15931 60s 50
Figure 12b 5344 26344 145s 50

Table 1: Synthesis timing. The CPU we use is Intel® Xeon®

E5-1650 3.20GHz. Note that Figures 9b to 9e have similar
synthesis times as well as the same numbers of elements and
samples, and Figures 14a to 14c here represent the correspond-
ing outputs in Figure 14d respectively.

Procedure
The study includes four sessions: warm-up, target brush, open
brush, and final interview. All tasks were conducted on a
desktop computer with a mouse and a Wacom tablet, and the
whole study took around 2 hours per participant on average.

Warm-up session
This session aims to help the novice users have basic under-
standing of Autodesk Maya such as camera control and famil-
iarize all the participants with our system. The process consists
of interactive authoring and automatic completion for given
2D and 3D objects. One of the authors helped the participants
to realize the brushing workflow through the session.

Target brush session
In this session, we aim to measure the usability of our brushing
interface for the participants with different levels of expertise.
During the session, each participant was asked to create similar
outcomes to the designated targets (Figure 16). Although the
2D target (Figure 16a) can be achieved by Adobe Photoshop
or Illustrator (e.g. [40, 76]) and the 3D target (Figure 16b)
can be fulfilled by PhysX Painter (e.g. [19]) plus manual
placements, it can require significant artistic skills and manual
labor from users in a time-consuming procedure. Thus, instead
of asking the participants to achieve the designated outputs by

(a) 2D target (b) 3D target

10

8

6

4

2

0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

2D auto off 2D auto on 3D auto off 3D auto on
min

(c) production time

175

150

125

100

75

50

25

 0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

2D auto off 2D auto on 3D auto off 3D auto on
strokes

(d) number of user strokes

7

6

5

4

3

2

1

0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

utility easy to use quality efficiency satisfaction

(e) user feedback

Figure 16: User study targets, outcome statistics, and user feedback. Similar outputs to (a) and (b) were produced by the
participants during the study procedure. The production time (c) and the total number of user strokes (including both placed and
erased strokes) (d) for each target were measured individually. In (e), the participants marked our autocomplete system in terms of
utility, easy to use, quality, efficiency, and satisfaction , and all quantities are expressed in a 7-point Likert scale.

existing tools, we let our participants directly create results
through our system under two conditions: autocomplete on,
and autocomplete off (i.e. synthesizing elements only under
the user strokes). We then recorded the production time and
the total number of user strokes for each task respectively.

Open brush session
To identify possible usability, we encouraged the participants
to freely create other works and observed their behavior for
potential improvement in the session. One of the authors also
accompanied the participants, provided related supports, and
discussed conceivable usage with them throughout the process.

Outcome
Figures 16c and 16d offer quantitative measures of production
time and stroke counts for each target task. The outcome statis-
tics demonstrate that our system can significantly reduce both
the production time and the number of user strokes for either
artists or novices. Please refer to Figures 27 and 28 for the sam-
ple user study outputs. Below we highlight the participants’
authoring behaviors from our observation.

For the 2D target, without the autocomplete mode, the partici-
pants had to frequently adjust the brush size and place strokes
following the target’s element directions one by one to fill the
entire domain. Even if they could quickly and intuitively brush
all over the domain through our interface, like common sketch-
ing and painting, to perfectly place the strokes side by side was
not easy to them as the brushing paths could be a little tilted.
Hence, the outputs about manual brushing can contain some
obvious gaps and the orientations and scales of elements are
not smooth enough either. While with the autocomplete mode,
the participants placed a few strokes around the singularity
and some other evenly spaced strokes within the remaining
domain for automatic completion. The results created by our
autocomplete method can have smoother element distributions,
orientations and scales as well as similar appearances to the
2D target even if the partially specified strokes are not the
same. In general, some of the user strokes might follow the
target’s outline but the outline did not actually affect their au-
thoring strategies, while the target’s element directions could
affect where to place the strokes for automatic completion.

Similar outputs to the 3D target could be made via both with-
out and with the autocomplete mode as the participants did

not need to consider element alignments for the target’s shape
(i.e. lemons and bananas), but it can be seen that with the
mode, the outcomes can have overall tighter element distribu-
tions. An interesting situation is that since the target’s nose (i.e.
cucumbers) has precise element alignments (i.e. horizontal
directions), to avoid obvious element misalignments appearing
at the target’s nose, multiple participants demanded to brush
more than once for better oriented cucumbers, while the rest
(except the target’s shape) could be specified with a single
brush stroke in most cases. In summary, through our autocom-
plete system, the participants could more flexibly produce the
designated results with reduced user workload and enhanced
synthesis quality without compromising their control.

Feedback
Figure 16e summarizes each participant’s feedback about our
system. Overall, the participants were content with the system
and commented that they can easily learn our system and di-
rectly produce desirable results without requiring significant
practice and expertise as the brushing interface fits the natural
artist workflow. They also said that with our system, they only
need to design a few specific strokes for automatic comple-
tion instead of full element arrangements, and this concept is
creative and novel to them. When asked about comparing man-
ual placement with autocomplete, the participants stated that
the system can indeed help them reduce workload and obtain
smooth layouts in an efficient way, and it can encourage them
to explore more interesting experiments. They were happy to
see that our system can improve existing production pipelines
for artists and benefit more novices in artwork creation.

The participants also made comments related to possible en-
hancement and usage for our system. The artists recommended
that it is desirable to have more advanced brush controls such
as a single stroke with varying brush radii for more varied
effects, and being able to save the designed strokes as presets
for further reuse (i.e. relocating a set of predefined strokes at a
desired position) may be handier. Some participants expressed
that after automatic completion, to let users slightly adjust a
few elements with specified orientations or scales as partial
inputs for local optimization can be an alternative for local
field manipulation as it can still work under our formulation,
and this may benefit some scenarios which need more precise
control of flow directions. Since our current prototype is a

general interface for interactive texturing across different do-
mains, we believe that their advice can be integrated into our
framework for tailored applications according to demand.

OTHER APPLICATIONS
In addition to graphic design, artistic collage, and aggregate
modeling, below we show more applications from our system.

Pattern design
Element arrangements are important for pattern design [44],
but interactively designing tile-based patterns still remains
challenging since existing tools require tedious manual pro-
cess (see [9, 59]). As shown in Figure 17, our autocomplete
system can form tileable patterns with a variety of element
distributions without requiring a great deal of labor from users.

(a) colorful pattern (b) floral pattern (c) fish pattern

Figure 17: Pattern design. Tileable patterns with dense (a),
evenly overlapping (b) or spatially-varying (c) element dis-
tributions can be formed by relevant user specifications via
our system. Note that in (c), we utilize the user stroke in Fig-
ure 13c and a tileable density map to generate the pattern. The
input elements used here are designed by Freepik [15].

Solid texturing
Since most proposed algorithms [31, 60, 37, 12] create solid
textures from 2D input exemplars such as photos, the exem-
plars with specific structures might not be well synthesized.
There is also a lack of algorithms which can generate tile-based
solid textures from user-specified elements. As illustrated in
Figure 18, our method can not only create such solids from
specific elements but also maintain the element configuration.

Field visualization
As demonstrated in Figure 19, by properly aligning anisotropic
elements with underlying fields, our algorithm can be consid-
ered as a geometry-based field visualization technique.

LIMITATIONS AND FUTURE WORK
Since we randomly place elements into the output domain
for fast initialization, the distribution optimization might be
trapped in a local minimum when the elements are highly
anisotropic and the domain is irregular. As in Figure 1a, the
distribution densities in the four feet are slightly different, but
this can be relieved via a teleportation scheme like [8] or a
progressive initialization like [11]. In addition, our approach
cannot entirely avoid interpenetrations or floating elements,

(a) pebble cement (b) beehive rock (c) peanut caramel

Figure 18: Solid texturing. By randomly resizing and orienting
a few elements, tile-based solid textures can be created for
concrete (a), eroded (b) and colloidal (c) structures. Note that
in (b), the elements are used as cutting objects to trim models.

but the issue is not visually obvious in our results and it is also
feasible to integrate physics solvers into our framework if nec-
essary. While autocompleting large outputs (e.g. Figure 12),
our system may lack interactive speed. To incorporate GPU
computing for further speedup can be an alternative solution.

For future work, since our current prototype does not con-
sider continuous elements [63] due to the difficulty of mixing
such elements, a potential direction is to extend our algorithm
with [63] for continuous element synthesis. Additionally, VR
brushing has recently received significant attention as it pro-
vides an immersive environment for 3D painting and modeling.
We plan to implement our method under VR and offer a user
interface for interactive authoring in immersive environments.

REFERENCES
[1] Zainab AlMeraj, Craig S. Kaplan, and Paul Asente.

2013. Patch-based Geometric Texture Synthesis. In CAE
’13. 15–19.

[2] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri.
2001. The Power Crust. In SMA ’01. 249–266.

[3] F Aurenhammer. 1987. Power Diagrams: Properties,
Algorithms and Applications. SIAM J. Comput. 16, 1
(1987), 78–96.

[4] Cyprien Buron, Jean-Eudes Marvie, Gaël Guennebaud,
and Xavier Granier. 2015. Dynamic On-mesh
Procedural Generation. In GI ’15. 17–24.

[5] Guoning Chen, Vivek Kwatra, Li-Yi Wei, Charles D.
Hansen, and Eugene Zhang. 2012. Design of 2D
Time-Varying Vector Fields. IEEE Transactions on

(a) 2D plane

(b) 3D surface (c) 3D volume

Figure 19: Field visualization. To more clearly depict flow
directions, elements can be assigned ramp textures to increase
visual effects as in (a). By mapping elongated elements onto
mesh surfaces (b), cross fields over surfaces can be visualized.
Like [56], to visualize 3D tensor fields, anisotropic elements
can be used to indicate the orientations of field axes (c).

Visualization and Computer Graphics 18, 10 (2012),
1717–1730.

[6] Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing
Xin, Jonàs Martínez, and wenping wang. 2017.
Fabricable Tile Decors. ACM Trans. Graph. 36, 6,
Article 175 (2017), 15 pages.

[7] Jun Han Cho, Athena Xenakis, Stefan Gronsky, and
Apurva Shah. 2007. Anyone Can Cook – Inside
Ratatouille’s Kitchen. In SIGGRAPH 2007 Courses.

[8] David Cohen-Steiner, Pierre Alliez, and Mathieu
Desbrun. 2004. Variational Shape Approximation. ACM
Trans. Graph. 23, 3 (2004), 905–914.

[9] Teela Cunningham. 2015. How to Create Seamless
Patterns in Illustrator. (2015).
https://www.youtube.com/watch?v=ITRZ75OKrG0.

[10] Ketan Dalal, Allison W. Klein, Yunjun Liu, and Kaleigh
Smith. 2006. A Spectral Approach to NPR Packing. In
NPAR ’06. 71–78.

[11] Timothy Davison, Faramarz Samavati, and Christian
Jacob. 2019. Interactive example-palettes for discrete
element texture synthesis. Computers & Graphics 78
(2019), 23 – 36.

[12] Song-Pei Du, Shi-Min Hu, and Ralph R. Martin. 2013.
Semiregular Solid Texturing from 2D Image Exemplars.
IEEE Transactions on Visualization and Computer
Graphics 19, 3 (2013), 460–469.

[13] Jérémie Dumas, Jonàs Martínez, Sylvain Lefebvre, and
Li-Yi Wei. 2018. Printable Aggregate Elements. CoRR
abs/1811.02626 (2018).

[14] Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani,
Pierre Poulin, and Bedrich Benes. 2015. WorldBrush:
Interactive Example-based Synthesis of Procedural
Virtual Worlds. ACM Trans. Graph. 34, 4, Article 106
(2015), 11 pages.

[15] Freepik. 2019. Graphic resources for everyone. (2019).
https://www.freepik.com/.

[16] Leonhard Frehse. 2018. AutoModeller Pro. (2018).
http://www.automodeller.com/.

[17] Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and
Daniel Cohen-Or. 2007. 3D Collage: Expressive
Non-realistic Modeling. In NPAR ’07. 7–14.

[18] Clovis Gay. 2016a. PhysX Painter. (2016). http:
//www.scriptspot.com/3ds-max/scripts/physx-painter.

[19] Clovis Gay. 2016b. PhysX Painter Teaser. (2016).
https://vimeo.com/162046605.

[20] Eric Guérin, Eric Galin, François Grosbellet, Adrien
Peytavie, and Jean-David Génevaux. 2016. Efficient
modeling of entangled details for natural scenes.
Computer Graphics Forum 35, 7 (2016), 257–267.

[21] Alejo Hausner. 2001. Simulating Decorative Mosaics. In
SIGGRAPH ’01. 573–580.

[22] Aaron Hertzmann and Denis Zorin. 2000. Illustrating
Smooth Surfaces. In SIGGRAPH ’00. 517–526.

[23] Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun
Zhang. 2018. Brushing Element Fields. In SIGGRAPH
Asia 2018 Technical Briefs (SA ’18). Article 6, 4 pages.

[24] Shu-Wei Hsu and John Keyser. 2010. Piles of Objects.
ACM Trans. Graph. 29, 6, Article 155 (2010), 6 pages.

[25] Shu-Wei Hsu and John Keyser. 2012. Automated
Constraint Placement to Maintain Pile Shape. ACM
Trans. Graph. 31, 6, Article 150 (2012), 6 pages.

[26] Wenchao Hu, Zhonggui Chen, Hao Pan, Yizhou Yu,
Eitan Grinspun, and Wenping Wang. 2016. Surface
Mosaic Synthesis with Irregular Tiles. IEEE
Transactions on Visualization and Computer Graphics
22, 3 (2016), 1302–1313.

[27] Hua Huang, Lei Zhang, and Hong-Chao Zhang. 2011.
Arcimboldo-like Collage Using Internet Images. ACM
Trans. Graph. 30, 6, Article 155 (2011), 8 pages.

[28] Zhiyang Huang and Tao Ju. 2016. Extrinsically smooth
direction fields. Computers & Graphics 58 (2016),
109–117.

https://www.youtube.com/watch?v=ITRZ75OKrG0
https://www.freepik.com/
http://www.automodeller.com/
http://www.scriptspot.com/3ds-max/scripts/physx-painter
http://www.scriptspot.com/3ds-max/scripts/physx-painter
https://vimeo.com/162046605

[29] Zhe Huang, Jiang Wang, Hongbo Fu, and Rynson W. H.
Lau. 2014. Structured Mechanical Collage. IEEE
Transactions on Visualization and Computer Graphics
20, 7 (2014), 1076–1082.

[30] Takashi Ijiri, Radomír Mêch, Takeo Igarashi, and Gavin
Miller. 2008. An Example-based Procedural System for
Element Arrangement. Computer Graphics Forum 27, 2
(2008), 429–436.

[31] Robert Jagnow, Julie Dorsey, and Holly Rushmeier.
2004. Stereological Techniques for Solid Textures. ACM
Trans. Graph. 23, 3 (2004), 329–335.

[32] Evangelos Kalogerakis, Derek Nowrouzezahrai, Simon
Breslav, and Aaron Hertzmann. 2012. Learning
Hatching for Pen-and-ink Illustration of Surfaces. ACM
Trans. Graph. 31, 1, Article 1 (2012), 17 pages.

[33] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
Shengdong Zhao, and George Fitzmaurice. 2014. Draco:
Bringing Life to Illustrations with Kinetic Textures. In
CHI ’14. 351–360.

[34] Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao,
and Richard Davis. 2012. Vignette: Interactive Texture
Design and Manipulation with Freeform Gestures for
Pen-and-ink Illustration. In CHI ’12. 1727–1736.

[35] Junhwan Kim and Fabio Pellacini. 2002. Jigsaw Image
Mosaics. ACM Trans. Graph. 21, 3 (2002), 657–664.

[36] Yeojin Kim, Byungmoon Kim, and Young J. Kim. 2018.
Dynamic Deep Octree for High-resolution Volumetric
Painting in Virtual Reality. Computer Graphics Forum
37, 7 (2018), 179–190.

[37] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver
Deussen, Dani Lischinski, and Tien-Tsin Wong. 2007.
Solid Texture Synthesis from 2D Exemplars. ACM
Trans. Graph. 26, 3, Article 2 (2007).

[38] Kin Chung Kwan, Lok Tsun Sinn, Chu Han, Tien-Tsin
Wong, and Chi-Wing Fu. 2016. Pyramid of Arclength
Descriptor for Generating Collage of Shapes. ACM
Trans. Graph. 35, 6, Article 229 (2016), 12 pages.

[39] Pierre-Edouard Landes, Bruno Galerne, and Thomas
Hurtut. 2013. A Shape-aware Model for Discrete
Texture Synthesis. In EGSR ’13. Aire-la-Ville,
Switzerland, Switzerland, 67–76.

[40] Moshe Levis. 2014. Tutorial on How to do a typography
design of a woman’s face in Photoshop CC. (2014).
https://www.youtube.com/watch?v=LcZFp1s1AQI.

[41] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming
Zhang, and Wenping Wang. 2015. Q-MAT: Computing
Medial Axis Transform By Quadratic Error
Minimization. ACM Trans. Graph. 35, 1, Article 8
(2015), 16 pages.

[42] Yuanyuan Li, Fan Bao, Eugene Zhang, Yoshihiro
Kobayashi, and Peter Wonka. 2011. Geometry Synthesis
on Surfaces Using Field-Guided Shape Grammars. IEEE
Transactions on Visualization and Computer Graphics
17, 2 (2011), 231–243.

[43] Hugo Loi, Thomas Hurtut, Romain Vergne, and Joëlle
Thollot. 2013. Discrete Texture Design Using a
Programmable Approach. In SIGGRAPH ’13 Talks.
Article 43, 1 pages.

[44] Hugo Loi, Thomas Hurtut, Romain Vergne, and Joelle
Thollot. 2017. Programmable 2D Arrangements for
Element Texture Design. ACM Trans. Graph. 36, 3,
Article 27 (2017), 17 pages.

[45] Jingwan Lu, Connelly Barnes, Stephen DiVerdi, and
Adam Finkelstein. 2013. RealBrush: Painting with
Examples of Physical Media. ACM Trans. Graph. 32, 4,
Article 117 (2013), 12 pages.

[46] Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente,
Radomir Mech, and Adam Finkelstein. 2014.
DecoBrush: Drawing Structured Decorative Patterns by
Example. ACM Trans. Graph. 33, 4, Article 90 (2014), 9
pages.

[47] Jingwan Lu, Fisher Yu, Adam Finkelstein, and Stephen
DiVerdi. 2012. HelpingHand: Example-based Stroke
Stylization. ACM Trans. Graph. 31, 4, Article 46 (2012),
10 pages.

[48] M. Lukáč, J. Fišer, P. Asente, J. Lu, E. Shechtman, and
D. Sýkora. 2015. Brushables: Example-based
Edge-aware Directional Texture Painting. Comput.
Graph. Forum 34, 7 (2015), 257–267.

[49] Michal Lukáč, Jakub Fišer, Jean-Charles Bazin, Ondřej
Jamriška, Alexander Sorkine-Hornung, and Daniel
Sýkora. 2013. Painting by Feature: Texture Boundaries
for Example-based Image Creation. ACM Trans. Graph.
32, 4, Article 116 (2013), 8 pages.

[50] Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin
Tong. 2013. Dynamic Element Textures. ACM Trans.
Graph. 32, 4, Article 90 (2013), 10 pages.

[51] Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011.
Discrete Element Textures. ACM Trans. Graph. 30, 4,
Article 62 (2011), 10 pages.

[52] K. Madsen, H. B. Nielsen, and O. Tingleff. 2004.
Methods for Non-Linear Least Squares Problems (2nd
ed.). (2004). http://www2.imm.dtu.dk/pubdb/views/
publication_details.php?id=3215.

[53] Ron Maharik, Mikhail Bessmeltsev, Alla Sheffer, Ariel
Shamir, and Nathan Carr. 2011. Digital Micrography.
ACM Trans. Graph. 30, 4, Article 100 (2011), 12 pages.

[54] Johannes Meng, Marios Papas, Ralf Habel, Carsten
Dachsbacher, Steve Marschner, Markus Gross, and
Wojciech Jarosz. 2015. Multi-scale Modeling and
Rendering of Granular Materials. ACM Trans. Graph.
34, 4, Article 49 (2015), 13 pages.

[55] Thomas Muller, Marios Papas, Markus Gross, Wojciech
Jarosz, and Jan Novak. 2016. Efficient Rendering of
Heterogeneous Polydisperse Granular Media. ACM
Trans. Graph. 35, 6 (2016).

https://www.youtube.com/watch?v=LcZFp1s1AQI
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215

[56] Jonathan Palacios, Lawrence Roy, Prashant Kumar,
Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi
Wei, and Eugene Zhang. 2017. Tensor Field Design in
Volumes. ACM Trans. Graph. 36, 6, Article 188 (2017),
15 pages.

[57] Jonathan Palacios and Eugene Zhang. 2007. Rotational
Symmetry Field Design on Surfaces. ACM Trans. Graph.
26, 3, Article 55 (2007).

[58] Adrien Peytavie, Eric Galin, Jérôme Grosjean, and
Stéphane Mérillou. 2009. Procedural generation of rock
piles using aperiodic tiling. Computer Graphics Forum
28, 7 (2009), 1801–1809.

[59] Charles Purdy. 2019. Make It, Sell It: Repeating
Patterns in Adobe Illustrator. (2019). https://create.
adobe.com/2019/4/2/make_it_sell_it_repe.html.

[60] Xuejie Qin and Yee-Hong Yang. 2007. Aura 3D
Textures. IEEE Transactions on Visualization and
Computer Graphics 13, 2 (2007), 379–389.

[61] Bernhard Reinert, Tobias Ritschel, and Hans-Peter
Seidel. 2013. Interactive By-example Design of Artistic
Packing Layouts. ACM Trans. Graph. 32, 6, Article 218
(2013), 7 pages.

[62] Lincoln Ritter, Wilmot Li, Brian Curless, Maneesh
Agrawala, and David Salesin. 2006. Painting with
Texture. In EGSR ’06. 371–376.

[63] Riccardo Roveri, A. Cengiz Öztireli, Sebastian Martin,
Barbara Solenthaler, and Markus Gross. 2015. Example
Based Repetitive Structure Synthesis. Comput. Graph.
Forum 34, 5 (2015), 39–52.

[64] Chris Rycroft. 2009. Voro++: A three-dimensional
Voronoi cell library in C++. (2009).
http://math.lbl.gov/voro++/.

[65] K. Sakurai and K. Miyata. 2014. Modelling of
Non-Periodic Aggregates Having a Pile Structure.
Comput. Graph. Forum 33, 1 (2014), 190–198.

[66] Christian Santoni and Fabio Pellacini. 2016. gTangle: A
Grammar for the Procedural Generation of Tangle
Patterns. ACM Trans. Graph. 35, 6, Article 182 (2016),
11 pages.

[67] Reza Saputra, Craig Kaplan, and Paul Asente. 2018.
RepulsionPak: Deformation-Driven Element Packing
with Repulsion Forces. In GI 2018. 10 – 17.

[68] Reza Adhitya Saputra, Craig S. Kaplan, Paul Asente,
and Radomír Měch. 2017. FLOWPAK: Flow-based
Ornamental Element Packing. In GI ’17. 8–15.

[69] Alexander Schiftner, Mathias Höbinger, Johannes
Wallner, and Helmut Pottmann. 2009. Packing Circles
and Spheres on Surfaces. ACM Trans. Graph. 28, 5,
Article 139 (2009), 8 pages.

[70] D. Schroeder, D. Coffey, and D. Keefe. 2010. Drawing
with the Flow: A Sketch-based Interface for Illustrative
Visualization of 2D Vector Fields. In SBIM ’10. 49–56.

[71] Martin Schwarz, Tobias Isenberg, Katherine Mason, and
Sheelagh Carpendale. 2007. Modeling with Rendering
Primitives: An Interactive Non-photorealistic Canvas. In
NPAR ’07. 15–22.

[72] Maria Shugrina, Jingwan Lu, and Stephen Diverdi. 2017.
Playful Palette: An Interactive Parametric Color Mixer
for Artists. ACM Trans. Graph. 36, 4, Article 61 (2017),
10 pages.

[73] Robert W. Sumner, Johannes Schmid, and Mark Pauly.
2007. Embedded Deformation for Shape Manipulation.
ACM Trans. Graph. 26, 3, Article 80 (2007).

[74] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and
Takeo Igarashi. 2008. Lapped Solid Textures: Filling a
Model with Anisotropic Textures. ACM Trans. Graph.
27, 3, Article 53 (2008), 9 pages.

[75] Jean-Marc Thiery, Émilie Guy, and Tamy Boubekeur.
2013. Sphere-Meshes: Shape Approximation Using
Spherical Quadric Error Metrics. ACM Trans. Graph. 32,
6, Article 178 (2013), 12 pages.

[76] VideoLot. 2016. Adobe Illustrator Cs6 | Typography
Portrait | Bruno Mars. (2016).
https://www.youtube.com/watch?v=_kdhB-8tNeM.

[77] Rui Wang, Kun Zhou, John Snyder, Xinguo Liu, Hujun
Bao, Qunsheng Peng, and Baining Guo. 2006.
Variational Sphere Set Approximation for Solid Objects.
Vis. Comput. 22, 9 (2006), 612–621.

[78] Jun Xing, Rubaiat Habib Kazi, Tovi Grossman, Li-Yi
Wei, Jos Stam, and George Fitzmaurice. 2016.
Energy-Brushes: Interactive Tools for Illustrating
Stylized Elemental Dynamics. In UIST ’16. 755–766.

[79] Jie Xu and Craig S. Kaplan. 2007. Calligraphic Packing.
In GI ’07. 43–50.

[80] Jonas Zehnder, Stelian Coros, and Bernhard
Thomaszewski. 2016. Designing Structurally-sound
Ornamental Curve Networks. ACM Trans. Graph. 35, 4,
Article 99 (2016), 10 pages.

[81] Guo-Xin Zhang, Song-Pei Du, Yu-Kun Lai, Tianyun Ni,
and Shi-Min Hu. 2011. Sketch guided solid texturing.
Graphical Models 73, 3 (2011), 59–73.

[82] Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre.
2014. Topology-constrained Synthesis of Vector Patterns.
ACM Trans. Graph. 33, 6, Article 215 (2014), 11 pages.

[83] Changqing Zou, Junjie Cao, Warunika Ranaweera,
Ibraheem Alhashim, Ping Tan, Alla Sheffer, and Hao
Zhang. 2016. Legible Compact Calligrams. ACM Trans.
Graph. 35, 4, Article 122 (2016), 12 pages.

https://create.adobe.com/2019/4/2/make_it_sell_it_repe.html
https://create.adobe.com/2019/4/2/make_it_sell_it_repe.html
http://math.lbl.gov/voro++/
https://www.youtube.com/watch?v=_kdhB-8tNeM

(a) with both Ed and Ek

(b) with Ed , without Ek

(c) without Ed , with Ek

(d) with both Ed and Ek

(e) with Ed , without Ek

(f) without Ed , with Ek

(g) with both Ed and Ek

(h) with Ed , without Ek

(i) without Ed , with Ek

(j) with both Ed and Ek

(k) with Ed , without Ek

(l) without Ed , with Ek

Figure 20: Ablation study. To demonstrate the effect of our objective functions, we densely and sparsely distribute rigid and
deformable elements respectively and study the sample distribution Ed term and the conflict check Ek term in different cases.
Without Ek, anisotropic elements might overlap when the elements are distributed densely as in (b) and (h). Without Ed , the
elements do not overlap but can be distributed unevenly as in (c), (f), (i) and (l).

(a) user stroke (b) element fields from (a)

(c) full field from (a) (d) element fields from (c)

(e) user strokes (f) element fields from (e)

(g) full field from (e) (h) element fields from (g)

Figure 21: Field comparison. Our method can directly complete element fields (b) and (f) from partially user-specified strokes (a)
and (e) in a one-step automatic optimization process. As compared with (d) and (h) computed via a two-step process, which needs
to first produce full input fields (c) and (g) from (a) and (e) respectively via Laplacian interpolation and forces elements to follow,
our one-step process can more smoothly orient the elements all over the domain.

(a) user stroke (b) one-step process in different views (c) two-step process in different views

Figure 22: Domain boundary normals. Given a small user stroke (a), our one-step process can also combine the domain boundary
normals as another partial input field and generate smoother results (b) than the two-step process (c) which can cause discontinuous
element alignments. Please refer to the accompanying video for more views.

(a) input field

(b) α = 0 (c) α = 5 (d) α = 10 (e) α = 15 (f) α = 20

Figure 23: Singularity handling. Given an input field with singularities (a), by tuning α to increase the effect of field continuity,
our method can directly hide the undesired singularities without changing the underlying field. Note that the orientations of
elements near the boundary can still remain almost consistent.

(a) input field

(b) α = 0 (c) α = 1 (d) α = 2 (e) α = 3 (f) α = 4

Figure 24: Chaotic input fields. The input field (a) is generated by adding random noise to the field in Figure 23a. By increasing α

to enhance the effect of field continuity as in Figure 23, the noise effect can be reduced accordingly as well.

(a) frame 0 (b) frame 24 (c) frame 48 (d) frame 72 (e) frame 96 (f) frame 120

Figure 25: Dynamic input fields. Our formulation can also tackle dynamic input fields. The process is that we generate the
output for the first frame and take this output as the initialization for the next frame. Please refer to the supplementary video for
animations. In the video, the outputs are produced by 100 iterations for the first frame and 20 iterations for the rest of frames
respectively. We plan to more fully explore dynamic fields and believe this feature can be further extended for motion graphics
and element animations as future work.

(a) with wo, iteration 60 (b) with wo, iteration 70 (c) with wo, iteration 80 (d) with wo, iteration 90 (e) with wo, iteration 100

(f) without wo, iteration 60 (g) without wo, iteration 70 (h) without wo, iteration 80 (i) without wo, iteration 90 (j) without wo, iteration 100

Figure 26: The wo effect for the field continuity Ec term. It can be seen that with wo, the elements near the singularity (near the
heart’s center) can be better stabilized after 70 iterations, whereas without wo, the element distributions around the singularity can
still remain unsteady throughout. The supplementary video is also available for illustration.

(a) user strokes (b) 2D target (c) user strokes (d) autocomplete (e) manual brushing

(f) user strokes (g) autocomplete (h) manual brushing (i) user strokes (j) autocomplete (k) manual brushing

(l) user strokes (m) autocomplete (n) manual brushing (o) user strokes (p) autocomplete (q) manual brushing

Figure 27: Sample user study outputs for the 2D target. Each group contains the partially specified user strokes for autocomplete,
the autocomplete result computed from the user strokes, and the output created by fully manual brushing.

(a) 3D target (b) autocomplete on (c) autocomplete off

(d) autocomplete on (e) autocomplete off (f) autocomplete on (g) autocomplete off

(h) autocomplete on (i) autocomplete off (j) autocomplete on (k) autocomplete off

Figure 28: Sample user study outputs for the 3D target. Each group contains the autocomplete result with partially manual
brushing and the output created by fully manual brushing. With the autocomplete mode as in (b), (d), (f), (h) and (j), the lemons
and bananas were automatically synthesized by our system within the target. Without the autocomplete mode as in (c), (e), (g), (i)
and (k), the lemons and bananas were interactively brushed by the participants over the target.

	Introduction
	Related Works
	System Design Rationale
	User Interface
	Formulation
	Element Representation
	Element Distribution
	Element Fields

	Solver
	Implementation
	Evaluation
	User Study
	Procedure
	Outcome
	Feedback

	Other Applications
	Limitations and Future Work
	References

