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Abstract
Purpose Surgical gesture recognition has been an essential task for providing intraoperative context-aware assistance and
scheduling clinical resources. However, previous methods present limitations in catching long-range temporal information,
and many of them require additional sensors. To address these challenges, we propose a symmetric dilated network, namely
SD-Net, to jointly recognize surgical gestures and assess surgical skill levels only using RGB surgical video sequences.
Methods We utilize symmetric 1D temporal dilated convolution layers to hierarchically capture gesture clues under different
receptive fields such that features in different time span can be aggregated. In addition, a self-attention network is bridged in
the middle to calculate the global frame-to-frame relativity.
Results We evaluate our method on a robotic suturing task from the JIGSAWS dataset. The gesture recognition task largely
outperforms the state of the arts on the frame-wise accuracy up to ∼6 points and the F1@50 score ∼8 points. We also keep
the 100% predicted accuracy for the skill assessment task using LOSO validation scheme.
Conclusion The results indicate that our architecture is able to obtain representative surgical video features by extensively
considering the spatial, temporal and relational context from rawvideo input. Furthermore, the better performance inmulti-task
learning implies that surgical skill assessment has a complementary effects to gesture recognition task.

Keywords Surgical gesture recognition · Temporal convolutional network · Self-attention · Surgical skill assessment

Introduction

There has been a growing interest in building context-
aware system (CAS) utilizing available information inside
the operation room (OR) to provide clinicians with contex-
tual support. It allows various applications through the whole
patient care pathway, such as clinical resources scheduling
and report generation [15]. Among related techniques of
context-aware assistance, automatic surgical gesture recog-
nition is an essential component to understand the surgical
video content.However, the operation environment is consid-
erably complicated. For one, surgical activities share similar
environment due to the similar appearance, color and texture
of human anatomic structure. For another, surgical process
is specific to the medical condition, the surgeon and the
patient, such that the process varies significantly from one to
another.Accordingly, it is quite challenging to segment surgi-
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cal gestures with low inter-class variance and high intra-class
variance from long and untrimmed videos.

Surgical gesture recognition aims to classify the fine-
grained surgical actionswith their corresponding boundaries.
Some of the prior studies apply hidden Markov model
(HMM) and its variants [10,19] and conditional random
fields (CRFs) [16] to model the latent state transition of suc-
cessive surgical actions by transition probability. Although
the results are interpretative and promising for these prob-
abilistic graphic models, they only focus on few neighbor
frames, and it requires dense kinematic annotations, which
is not always available during a surgery. Other studies man-
ually design multiple features (intensity, color, motion, etc.)
and use machine learning models such as support vec-
tor machine (SVM) [20] to segment and predict surgical
activities. Nonetheless, handcrafted features selection is an
empirical process. Some latent and significant features could
be overlooked during the feature extraction stage.

Recently, various deep learning techniques have been pro-
posed to capture the video temporal information. Recurrent
neural network (RNN), particularly the long short-termmem-
ory (LSTM) network [3,18], is able to conserve the critical
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contextual memory while drop the unrelated information by
its gate mechanism. But the vanishing gradient during back-
propagation [17] limits its ability of capturing long-range
temporal features. Liu et al. [14] use deep reinforcement
learning algorithm tomodel the task as a sequential decision-
making process and reduce the over-segmentation error.
Every time step, the agent looks through the video sequence
or kinematic information from the beginning and gradually
learns a strategical policy to classify the frame based on
the reward. Temporal convolution networks (TCNs) [4,12]
are then proposed to hierarchically aggregate video dynam-
ics by 1-D convolutions and de-convolutions with different
sizes of receptivefield.Thepromising results demonstrate the
ability of TCNs in handling long-distance video sequence.
Moreover, Funke et al. [6] introduce a 3D convolutional neu-
ral network (CNN) to extract spatial-temporal features from
partially sample video snippets. However, due to the huge
computational cost, 3D-CNN can only works with clips [25]
rather than the whole video.

From another perspective, multi-task learning has been
demonstrated as an efficient method for surgical activities
understanding [1,13,22]. In [1], the authors present a frame-
work to simultaneously recognize the surgical gesture and
predict the surgical task progress from kinematic data. The
results prove that the multi-task architecture improves the
performance of surgical gesture recognition without any
additional human annotation. In another study, Wang et al.
[22] use 3D-CNN features to predict the skill score and seg-
ment surgical, which further demonstrates the benefits of
multi-task learning.

In this paper, we propose a symmetric dilated convo-
lutional neural network, SD-Net, for joint surgical gesture
recognition and skill assessment only using RGB videos.
Our method is designed on the top of three observations
and insights: (1) Surgical video data own high-dimensional
and representative features, and it is much easier to access
than other data format, for example, kinematic information or
motion trajectory; (2) video dynamics is as significant as spa-
tial features in a video sequence; (3) learning with auxiliary
task (skill assessment) with global features can benefit ges-
ture segmentation task. Figure 1 shows the overview of our
architecture. Rather than using video clips, we take thewhole
video sequence into consideration. The network is composed
of a symmetric dilated encoder–decoder structure to enlarge
the receptive field and catch the long-term temporal informa-
tion and an self-attention module in the middle to build the
frame-wise adjacent as well as the global relationships.

Our method has been validated on the suturing task from
the JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) [8]. This work is an extended version fromMIC-
CAI2020 conference paper [24]. The joint learning strategy
reveals complementary benefits between gesture recognition

and skill assessment, which further improves over our state-
of-the-art work in surgical gesture recognition.

Methods

In this section, we introduce the structure design of SD-Net,
which consists of three sub-components: (1) temporal dilated
convolutional encoder-decoder for capturing multi-scale
video dynamics (see Sect. Temporal dilated sonvolutional
encoder-decoder); (2) embedded self-attention for connect-
ing and representing every frame in the same sequence (see
Sect. Non-local sequence representation by self-attention);
and (3) multi-task learning for surgical gesture recognition
and skill assessment

Temporal dilated convolutional encoder-decoder

The whole encoder–decoder structure is shown in Fig. 2.
Before our method, we first obtain the frame-wise feature
vectors from [11,12] as the input. Each frame is represented
by a 128-dim vector (i.e., bottom nodes in Fig. 2). Our
encoder begins with a 1 × 1 convolution layer with a kernel
size of 128 to map the input features into f -dim ( f =128).
Then, it is followed by L layers of temporal dilated convolu-
tions. The temporal dilated convolution layer is featured with
1-D fully convolutions with a defined sliding gap across tem-
poral domain (i.e., 1-D temporal dilation). The dilation rate
sl at the l-th layer is set to sl = 2l , l = 0, 1, ..., L − 1. L=10.
With the layer number increasing, the size of receptive fields
grows exponentially that enables to capture long-range tem-
poral clues with less parameters. For each dilation layer, we
use acausal mode and set the kernel size at 3 following the
details in [4] and padding size at 1 to keep the output size
consistent with the input. A dilation layer can be formulated
as follows:

Êl = ReLU(W1 ∗ El−1 + b1) (1)

El = El−1 + W2 ∗ Êl + b2 (2)

where El is the output of the l-th dilation layer, W1 ∈
R f× f ×3 represents the weights of dilated convolutions with
f convolutional kernels,W2 ∈ R f × f ×1 denotes the weights
of a 1 × 1 convolution and b1, b2 ∈ R f are corresponding
bias vectors. Every dialed layer is followed by a non-linear
activation ReLU and then a residual connection between the
input and the output from the 1 × 1 convolution. Further-
more, we set the dilation rates sl to sl = 2l , l = 0, 1, ..., 9
such that the size of receptive field R grows exponentially,
R(l) = 2l+1 − 1, to capture the long term dependencies.
Afterward, we also deploy a max-pooling layer with a kernel
size of 4×1 as the final layer of our encoder behind the dila-
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Fig. 1 The multi-task architecture for joint surgical gesture segmentation and skill assessment

Fig. 2 The architecture of SD-Net. The network features a symmet-
ric structure that encode and decode signals with dilated convolutions
to aggregate spatial features from hierarchical temporal span. A self-

attention module is designed in the middle to bridge the global
frame-to-frame adjacency across the full temporal domain. Each node
represents a feature vector computed from previous nodes

tion blocks, which presents promising effects on alleviating
the over-segmentation issues (see our ablation study).

Symmetrically, we design a similar structure for the
dilated decoder. The only difference is that the max-pooling
layer has been replaced with a 1 × 4 unpooling layer. The
encoder–decoder architecture is designed in this way to
hierarchically accumulate the spatial features from differ-

ent temporal spans with memory-efficient dilated convolu-
tions.

Non-local sequence representation by self-attention

Previous works [4,12] have shown the robustness of TCNs
in handing long sequence in variable length. However, these
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Fig. 3 Self-attention module in SD-Net

methods are designed with a local manner that employs rela-
tional features among neighboring frames, thus limit the
ability of capturing global information. Self-attention is an
attention mechanism to represent an input sequence itself by
building one-to-all relationships for all frames. This idea is
originally frommachine translation [21] and has beenwidely
used in object segmentation [9,23], image captioning [2], etc.
Inspired by this non-local attention mechanism, we embeds
an self-attention block (see Fig. 3) between the encoder and
decoder to extract frame-to-frame global dependencies. The
essential idea behind self-attention is Scaled Dot-Product
Attention, which is computed as:

Attention(Q, K , V ) = Softmax

(
QKT

√
dk

)
V (3)

where Q stands for the queries packed as a matrix, K and V
are Key-Value pairs and dk is the dimension of queries and
keys. The input Queries, Keys and Values of self-attention
are the same, that is the output hidden state from encoder
pooling layer. After a positional encoding layer [21] to keep
the sequence order, the dot product is calculated between
queries Q and keys K to find the similarity score between
every single frame and all other frames. The result then is
divided by

√
dk to prevent exploding gradient during back-

propagation. Softmax function is applied here to normalize
the scores. Finally, we multiply each value vector in V by

the weighted similarity score and sum them up. The output
from the scaled dot-product attention layer is then fed into a
fully connected network. There are two residual connections
followed by layer normalization associating with the self-
attention and fully connected layer (see Fig. 3), respectively.

Joint surgical gesture recognition and skill
assessment

For a video sequence v ∈ V with length T : v1:T =
(v1, ..., vT ), we aim to assign the gesture label g ∈ G to each
frame: g1:T = (g1, ..., gT ) and the skill level label y ∈ Y to
the whole video V , where G has 10 categories and Y has 3
categories. Suppose DL is the decoder output from the last
dilation layer. Then we have:

Gt = Softmax(W3 ∗ DL,t + b3)

Y = Softmax(W4 ∗ DL + b4)
(4)

where W3 ∈ R f ×10 and W4 ∈ R f ×3 are network trained
weights. Their corresponding bias vectors are represented
as b3 ∈ R10 and b4 ∈ R3. We calculate the categorical
cross-entropy loss for both gesture segmentation and skill
assessment task. The multi-task loss L is the weighted com-
bination of two tasks such that L = αLgesture + βLskill .
Since skill assessment is the auxiliary task for gesture recog-
nition, we set α = 0.9 and β = 0.1.
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Results and evaluation

Experimental details

Dataset: We validate our approach on suturing task from
JIGSAWS dataset [8]. The dataset is captured using da Vinci
robotic surgical system from eight surgeons with differ-
ent levels of skill, that is expert, intermediate and novice.
They perform five repetitions for three elementary surgical
tasks on a bench-top model. An experienced surgeon man-
ually annotates 10 fine-grained surgical gestures from the
videos such as pulling suture with left hand and dropping
suture at end and moving to end points. In addition, authors
of JIGSAWS dataset define two cross-validation schemes:
leave-one-user-out (LOUO) and leave-one-supertrial-out
(LOSO). In each fold, LOUO left all the trails from the
i-th surgeon (out of eight surgeons) for testing and the
rest for training. It is efficient to verify whether a model
works for an unseen subject. We use LOUO for gesture
recognition evaluation, following the settings in [6,22].
While LOSO scheme leaves the i-th trial (out of five tri-
als) from all the eight surgeons for testing and the rest for
training. LOSO scheme is applied for validating the perfor-
mance of skill assessment task following the previous works
[5,7].
Evaluation Metrics: For surgical gesture recognition eval-
uation, we evaluate our method on both frame level and
segmental level, where the frame-wise accuracy edit score
and segmented F1 score are, respectively, used as the evalua-
tion metrics. Frame-wise accuracy calculates the percentage
of correctly classified frames. However, frame-wise accuracy
is insensitive to over-segmentation error. For this reason, we
use edit score (the normalized Levenshtein distance) and seg-
mented F1 score (the harmonic mean of precision and recall)
to measure the coherence of gesture. For the skill assess-
ment task, we calculate its averaged accuracy over five cross
validation runs.
Hyper-parameters and Training Details: We implement
our SD-Net using Pytorch and train the model on a NVIDIA
GeForce GTX 1080 graphics card. We adopt spatial CNN
featureswith 128-dimat 10FPS from [12]. For the symmetric
dilated encoder and decoder, we set the layer number L to
10 (see the supplementary material from [24] for detailed
ablation experiment) and the convolutional channel f to 128
with the kernel size at 3. For the self-attention block, we
set the dimension of queries Q and keys K to 16 and the
hidden size of fully connected layer to 512. As for the multi-
task loss function, we set the action recognition weight α

to 0.9 and skill assessment weight β to 0.1 due to their best
performance on cross-validation. The network is trainedwith
30 epochs using Adam optimizer and the learning rate is set
to 0.01.

Experimental results

We compare the performance of SD-Net with other state-
of-the-art methods under LOUO validation scheme (see
Table 1 for the results), including one kinematic data-
based reinforcement learning approach [14] and four video-
based approaches [6,12,18,22]. It can be observed that
Bi-LSTMmethod achieves the lower performance than other
approaches, which implies the limited ability of RNNmodels
in handling long sequences.RL network reaches a relatively
high segmental-level accuracy (edit score at 87.96 and F1
score at 92.0) but the low frame-wise accuracy is only at
81.43%. It indicates that the learned strategy is not able to
catch frame-to-frame similarity in global. The latest C3D-
MTL-VF model treats surgical gesture recognition as an
auxiliary task of skill score prediction by using the multi-
stage temporal convolutional network proposed in [4]. The
relatively low frame-wise (82.0%) further demonstrates that
TCNs focus on the local neighbor rather than the global
dependencies, while our SD-Net network with multi-task
learning outperforms the state-of-the-arts on all three eval-
uation metrics. The promising results prove the robustness
of our approach in both frame-level and the segmental-level
gesture recognition.

In regard to the evaluation of surgical skill assessment
task,we follow theLOSOfivefold cross-validation scheme in
consistency with other state of the arts [5,7,22]. (The reason
why we do not use LOUO scheme to evaluate the perfor-
mance of skill assessment is discussed in Sect. LOUO skill
assessment.) Comparing with other prior studies [5,7,22], we
keep the 100% accuracy score for the suturing task.

Discussion

Ablation study

In order to explore the effectiveness of each single design in
our method, we decompose our network into six configura-
tions as follows:

C0: self-attention only (baseline)
C1: dilation layers only (baseline)
C2: dilated convolutional encoder + self-attention
C3: self-attention + dilated convolutional decoder
C4: symmetric dilated convolution + self-attention
C5: symmetric dilated convolution + self-attention + pool-

ing (SD-Net)
C6: SD-Net + skill assessment branch
Every configuration runs under LOUO schemewith eight-

fold cross validation. The results are presented in Table 2 and
Fig. 4, from which we observe that:

C0 v.s. C2 and C3: The model with only self-attention
block reaches high frame-wise accuracy at 87.8% but very
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Table 1 Performance
comparison of surgical gesture
recognition on suturing task
averaged over eight
cross-validation runs under
LOUO scheme. Acc., Edit and
F1@{10, 25, 50} represent the
frame-wise accuracy, edit
distance and F1 score in
different thresholds

Suturing (LOUO) Acc. Edit F1@10 F1@25 F1@50

Bi-LSTM [18] 77.4 66.8 77.8 – –

ED-TCN [12] 80.8 84.7 89.2 - –

RL [14] 81.43 87.96 92.0 90.5 82.2

3D-CNN [6] 84.3 80.0 87.0 – –

C3D-MTL-VF [22] 82.0 86.6 90.6 89.1 80.3

SD-Net [24] 90.1 89.9 92.5 92.0 88.2

SD-Net (w. multi-task) 90.5 90.6 93.5 92.8 90.5

Bold values indicate the comparing with all the listed methods, which one reaches the highest evaluation score
of that column (evaluation metric)

Fig. 4 Visualization results from ablation study

low Edit and F1 score in different threshold. When we add
temporal dilated convolution module, the segmental-level
performance improves around 30% in each metric. It indi-
cates that dilated temporal convolution presents promising
ability in capturing long-term information.

C1 v.s. C2 and C3: Self-attention module is able to catch
non-local frame-wise information. Adding self-attention on
top of the dilation layers improves the performance over all
evaluation metrics.

C2 andC3v.s.C4: Thewhole symmetric encoder–decoder
structure further improves the segmental-level performance
comparing the single sided structure.

C4 v.s. C5: From Fig. 4 and Table 2, we observe that
the pooling strategy alleviates the over-segmentation prob-
lem that further improves the Edit and F1 scores in different
thresholds.

C5 v.s. C6: Learning with auxiliary task benefits the
segmentation of surgical gesture without decreasing the per-
formance of surgical skill assessment.

LOUO skill assessment

Although LOUO validation is efficient to test whether a
model works for a new subject, data from JIGSAWS are
insufficient to support such a validation. One reason is
because of the limited data size and imbalanced label. JIG-
SAWS only contains 8 subjects in total, including only two
experts and two intermediate-level surgeons. In one valida-
tion round, if we left one expert for testing and the other
subjects for training, then we only have one expert in the
training set. This is also the case for intermediate-level sur-
geons. On the other hand, the official dataset defined the
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Table 2 Ablation experiments
of surgical gesture recognition
on suturing task averaged over
eight cross-validation runs
under LOUO scheme. Acc., Edit
and F1@{10, 25, 50}, represent
the frame-wise accuracy, edit
distance and F1 score in
different thresholds

Suturing (LOUO) Acc. Edit F1@10 F1@25 F1@50

Self-attn only 87.8 44.0 54.8 53.5 49.0

Dilation only 90.1 76.8 81.9 81.5 78.5

Encoder dilation+ attn 90.8 76.9 82.5 81.8 79.3

Decoder dilation +attn 90.5 77.9 83.4 83.4 79.7

Symmetric dilation + attn 90.7 83.7 87.7 86.9 83.6

Symmetric dilation + attn + pooling 90.1 89.9 92.5 92.0 88.2

SD-Net (w. multi-task) 90.5 90.6 93.5 92.8 90.5

Bold values indicate the comparing with all the listed methods, which one reaches the highest evaluation score
of that column (evaluation metric)

Fig. 5 Confusion matrix of the suturing task, obtained from LOUO
evaluation

expertise level of a surgeon in accordance with the robotic
surgical experience by hours: experts have more than 100
hours experience, intermediate subjects have 10 to 100 hours
experience, and novices have less than 10 hours experience.
Nevertheless, some of the intermediate surgeons get higher
score than experts for their performance in skill annotation.

We perform the LOUO fivefold cross-validation for skill
assessment and get the average accuracy at 89.7%.We further
visualize the accumulative confusion matrix for the result as
shown in Fig. 5. It can be seen that we correctly classify
the novice sample, while there are some mis-classifications
between expert and intermediate surgeons (as mentioned
above). In the future work, the current dataset needs to be
extended with more subjects in different skill levels.

Conclusion

In this paper, we present the SD-Net for joint surgical gesture
recognition and skill assessment from untrimmed surgi-
cal videos. This network consists of a symmetric dilated
encoder–decoder structure to learn long-term video dynam-
ics and a self-attention network in the middle to extract

frame-to-frame relationship to capture global dependen-
cies. The experiments show that our joint learning approach
presents better performance than learning with single tasks.
It significantly outperforms the state of the arts on surgical
gesture recognition task while keeping the high performance
on skill assessment task. It implies that each surgical video
understanding task has a complementary effect on others that
reveals the future direction of building a context-aware sys-
tem with holistic surgical process understanding.
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