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Abstract 
 

Dietary ecology of mixed-feeding antelopes in the Omo-Turkana basin during the 

Plio-Pleistocene: a tool to investigate hominin palaeo-environments 

Lucile Crété 

To assess whether detailed studies of the dietary ecology of mixed-feeding antelope species 

could be used to investigate hominin palaeo-environments in the Omo-Turkana basin during 

the Plio-Pleistocene (3.5-1.6 Ma), a detailed study of the dietary ecology of mixed-feeding 

antelopes was proposed. This research focused on the diets of the impala (genus Aepyceros) 

and the springbok (genus Antidorcas), whose extant relatives demonstrate a high dietary 

plasticity. The dietary ecology of these taxa was evaluated through stable carbon and oxygen 

isotope, mesowear and dental microwear textural analyses.  

To provide more tools to interpret fossil evidence, predictive models were tested to study the 

relationship between land cover and dietary behaviours of modern populations. The high 

variability of stable carbon isotope values observed across modern impala specimens and the 

wide range of habitat types they were associated with showed that impalas tend to rely heavily 

on palatable grasses and forbs, suggesting a preference for herbaceous plants. The diet of 

modern impalas therefore does not always reflect the vegetation types prevailing in their 

environments, as availability of their preferred foods can be influenced by local year-round land 

cover patterns and by seasonal fluctuations in climate. However, the predictions generated for 

fossil Aepyceros samples for the Omo-Turkana basin were consistent with previous palaeo-

environmental studies for this region, demonstrating the potential of this method and the 

relevance of using these taxa as palaeo-environmental indicators. 

Significant differences in dietary ecology were observed for the studied taxa when comparing 

assemblages from different fossil localities, as well as when comparing assemblages between 

members. Results suggested the presence, across all three fossil localities of the Omo-Turkana 

basin, of long-lived mosaic habitats, which could have supported a high diversity of mammalian 

taxa with varying ecological requirements. Results confirmed previous studies which suggested 

patterns of grassland expansion and increased habitat fragmentation in the region from ~2.0 

Ma, as well as an increase in seasonal and interannual rainfall variability between 2.27 and 1.9 

Ma. Such conditions have been previously hypothesized to have influenced local faunal 

biodiversity in the region, adding selective pressures associated with seasonal changes in 

resources abundance and distribution, acting, in turn, as an additional driver of hominin 

evolution. 
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Glossary & Abbreviations 
 

General terms 

Faunal turnover: coordinated speciation and extinction event experienced by many faunal 

species within a geographical area. 

Hominin: Even if it varies depending on classifications, “a hominin is a member of the sister 

clade of the lineage leading to Pan” (Foley and Lewin, 2013). The hominin tribe usually 

includes humans (Homo), and their extinct relatives based on their shared anatomical and 

molecular characteristics when known. Any human ancestor which appeared after the 

divergence between Pan and Homo clades is a hominin. Based on molecular evidence, this 

divergence must have happened between 5 to 8 Ma (Mayr, 2001). 

Ma (abbreviation for the Latin “megaannus”): unit of time representing one million 

(years), commonly used in scientific fields such as geology or palaeontology. The 

abbreviation Myr (million years) is used for durations of millions of years.  

Phytoliths: Siliceous microscopic remains originating from plant tissues, resulting from 

biological and physical processes by which certain plants deposit solid silica in an 

intracellular or extracellular location after absorbing soluble silica from groundwater. After 

the plant’s decay, these pieces of silica are deposited in the soil as microscopic particles of 

varying sizes and shapes. They can be found in sediments, or imbedded in animal dental 

enamel or calculus as the result of plant consumption (Piperno, 2006). 

Pleistocene: geologic epoch from ~2.58 Ma to 11,700 years BP (before present). It follows 

the Pliocene epoch, and is followed by the Holocene epoch (from 11,700 BP to today). It is 

part of the Cenozoic era, and of the Quaternary period (from ~2.58 Ma to today). 
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Pliocene: geologic epoch from ~5.3 Ma to ~2.58 Ma, following the Miocene epoch (from 

~23 Ma to 5.3 Ma), and followed by the Pleistocene epoch. It is part of the Cenozoic era 

(from ~66 Ma to today), and of the Neogene period (from ~23 Ma to ~2.58 Ma). 

 

Ecology 

Biome:  complex biotic community characterized by a combination of distinctive plant and 

animal species, and maintained under the climatic conditions of the region. Biomes are 

classified based on the prevailing vegetation and the adaptations of organisms to that 

particular environment (e.g. deserts, forests, grasslands, tundra).  

Browser: herbivore that feeds primarily (>90%) on leaves, twigs, buds, flowers, and/or 

fruits (Green and Croft, 2018). 

Grazer: herbivore that feeds primarily (>90%) on grasses (Green and Croft, 2018). 

Habitat: ecological area inhabited by a given species or community, where it is natural for 

them to live and grow. 

Mixed-feeder: herbivore that feeds on a mixture of leaves, twigs, buds, and grasses (Green 

and Croft, 2018). 

Niche: In ecology, the definition of the “niche” concept is highly debated. It generally refers 

to the fit of a species living under specific environmental conditions, and its role within the 

community, based on the relationship between the organism and its environment 

(Whittaker, Levin and Root, 1973). Hutchinson (1957) defined the niche of a species as “the 

volume, in the space of environmental variables, where the species can survive indefinitely 

(the fundamental niche), or the volume, limited because of interaction with present 

competitors, where the species actually survives (the realized niche)” (Pocheville 2015, 

p.575). 
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Dental morphology 

Brachydont: Molar teeth with low crowns, well-developed roots with narrow canals (e.g. 

humans) (Hillson 2005). 

Bunodont: molar teeth with crowns in the form of rounded or conical cusps, ideal for 

crushing and grinding chewing patterns. Cups are low, rounded, separated by grooves and 

fissures, and distributed over broad occlusal surfaces (e.g. omnivorous species such as bears 

and suids). (Hillson 2005) 

Distal: Direction of the tooth surface oriented towards the gingiva beyond the tooth, away 

from the anterior midline (Nelson 2014). 

Hypsodont: High-crowned teeth with enamel extending below the gum line, typical of 

grazers with an abrasive diet (e.g. equids) (Hillson, 2005).  

Labial/buccal: Side of a tooth adjacent to - or the direction towards- the inside of the cheek, 

as opposed to “lingual”. “Buccal” technically refers only to posterior teeth (where the cheeks 

are present), while “labial” refers to anterior teeth (where the lips are present). However, 

both terms are often used interchangeably to refer to posterior and/or anterior teeth, for 

surfaces facing the cheeks or the lips. The term “vestibular” can be used to describe both 

labial and buccal surfaces (Nelson 2014). 

Lingual: Side of a tooth adjacent to -or the direction towards- the tongue (lingua, compare 

linguistics and language), as opposed to “buccal/ labial” (Nelson 2014). 

Lophodont: molar teeth with crowns with transverse ridges on the grinding surface. Cusps 

have coalesced into folds, and the long axis of the folds is mainly bucco-lingual (Hillson 

2005). 
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Mesial: Direction of the tooth surface oriented towards the anterior midline of the dental 

arch, as opposed to distal (Nelson, 2014). 

Selenodont: Molar teeth with crowns formed in crescent-shaped cusps, with crescentic 

folds running mesio-distally with the long axis (Hillson 2005). 

 

Use-wear analyses (all definitions from Green and Croft 2018). 

Abrasion: tooth wear caused by interactions between a tooth and exogenous particles. 

Attrition: tooth wear that is caused by tooth-on-tooth interactions. 

Confocal microscope: microscope using point illumination and a spatial pinhole placed at 

the confocal plane of the lens to reduce out-of-focus light, creating a three-dimensional 

image. 

Facet: a smooth, flat area of enamel on the occlusal surface of a tooth that is formed by wear. 

 

Stable isotopes (all definitions from Higgins 2018) 

Bulk-analysis: Analysis of a single sample per specimen, to obtain an average value for the 

sample that includes its entire span of formation. 

Depletion: relative term to describe a trend in the relative abundance of one isotope over 

another in a sample, often referring to a loss in the heavier isotope. 

Enrichment: relative term to describe a trend in the relative abundance of one isotope over 

another in a sample, often referring to an increase in the heavier isotope. 

Fractionation factor ():  expression of the fractionation of isotopes during reactions or 

changes of phase, such as the fractionation of carbon isotopes from food (substance A) to 

carbon isotopes found in the tooth enamel of herbivores (substance B). It is shown as:     A-

B= RA=RB 
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where  A−B is the fractionation factor from substance A (food) to substance B (tooth 

enamel); RA is the ratio of the heavier isotope of carbon (13C) to the lighter isotope of carbon 

(12C) in substance A (food); RB is the ratio of the heavier isotope of carbon (13C) to the lighter 

isotope of carbon (12C) in substance B (enamel) 

Isotopic Enrichment (*): expression of the fractionation of isotopes during reactions or 

changes of phase, such as the fractionation of carbon isotopes from food (substance A) to 

carbon isotopes found in the tooth enamel of herbivores (substance B). It is shown as: A-B* 

= ( A-B* -1) 

where A-B is the fractionation factor from substance A (food) to substance B (tooth 

enamel). 

Serial analysis: type of analysis in which fossil specimens that show incremental growth 

are sampled multiple times along the direction of growth to capture isotopic changes during 

the growth of the organism. For teeth, the term “intra-tooth” analysis if often used. 

Stable isotope: Isotopes are atoms of elements of different masses, due to variations of the 

number of neutrons in the nucleus. For some isotopes, the different number of neutrons 

makes the nucleus unstable, resulting in radioactive decay and the conversion of that atom 

to a different element. For others, no decay occurs, and the isotope is called stable. 

V-PDB: international scale used for measurement of carbon and oxygen isotopes, typically 

from carbonate. PDB refers to the Pee Dee Belemnite, which was collected from the Pee Dee 

Formation in South Carolina in the 1950s. The 13C and 18O values for the original PDB 

were assigned values of zero. The supply of the original Pee Dee Belemnite has since been 

exhausted. The more commonly available standards NBS-19 (a limestone - 13C  = +1.95‰, 

18O  = −2.20‰) and L-SVEC (a lithium carbonate - for carbon only, 13C = −46.6‰) are 

now used instead to serve as reference points for calibrating laboratory analyses to the V-

PDB scale. 

V-SMOW: international scale used for measurement of hydrogen and oxygen isotopes, 

typically from water. SMOW refers to Standard Mean Ocean Water, a presumed average of 

the isotopic values of ocean water world-wide. The international community currently uses 

defined values SMOW (2H=0‰, 18O =0‰) and SLAP (Standard Light Antarctic 

Precipitation - 2H = −427.5‰, 18O = −55.50‰) as the reference points for calibrating 

laboratory analyses to the V-SMOW scale. 
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Chapter 1: Introduction 
 

1.1 Background: Human evolution and climate change 

1.1.1 Plio-Pleistocene hominins 

 

The fragmented remains of a few early hominin individuals, and sometimes their tools and 

footprints, are the only direct traces available today to study our ancestors, their life, 

behaviour, and evolution, to which environmental elements can be added by studying past 

geology, vegetation and fauna. These fragmentary remains have revealed over time the 

existence of various hominin species between 4.5 and 1 million years ago (Ma), mostly in 

eastern and southern Africa (Potts, 2007; Spoor et al., 2007; Wood and Leakey, 2011; Leakey 

et al., 2012; Foley and Lewin, 2013; Mbua et al., 2016). Although sharing morphological 

similarities that demonstrate their taxonomic relationships, each species developed special 

traits, partly in relation to their ecology (Table 1).  

 

The oldest potential hominins - dated between 7.0 to 4.5 Ma - were found in Chad, Kenya and 

Ethiopia and belong to the genera Sahelanthropus, Orrorin, and Ardipithecus (White et al. 

1994, Senut et al. 2001, Brunet et al. 2002, Potts 2007). Orrorin and Ardipithecus appear to 

have been associated with wooded habitats, while Sahelanthropus tchadensis was associated 

to relatively open habitats (Vignaud et al., 2002). According to various studies, these species 

might be the earliest specimens demonstrating a shift from quadrupedal to bipedal 

locomotion, as well as changes in dental morphology, two of the key differences between 

Homo and Pan (Richmond and Jungers, 2008; White et al., 2009; Wood and Harrison, 2011; 

Machnicki et al., 2016). The fossil record is more substantial from 4 Ma ago onwards in East 

and South Africa, with the appearance of relatively well-represented lineages, such as 

Australopithecus sp., Paranthropus sp., and Homo sp. The Omo-Turkana basin is particularly 

rich in hominin remains dated between 4.3 and 0.5 Ma, showing a wide range of 
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morphological variation, with the three genera mentioned above being represented in this 

area (Table 1). If precise relationships between taxa are difficult to assess (Wood and 

Harrison 2011), as well as hominin diversity per se (Maxwell et al., 2018), some aspects of 

hominin evolution can be studied in detail, such as the relative taxonomic diversity that 

existed in the past between and within genus and species, and adaptive behavioural shifts 

(e.g. first stone tool technology, 3.3 Ma – Harmand et al. 2015).  

1.1.2 Plio-Pleistocene climate change and evolutionary theories  
 

Human evolution is characterised by speciation, extinction, and dispersal events, with 

numerous studies suggesting that changing landscapes and climates had an impact on 

species’ evolutionary paths (e.g. deMenocal 2004, Behrensmeyer 2006, Faith and 

Behrensmeyer 2013), although biological evolution cannot be explained solely by 

environmentally-induced processes, with other factors such as genetic drift and neutral 

mutation influencing evolutionary processes (Lande, 1976; Hartl, Dykhuizen and Dean, 

1985). Major Pliocene and Pleistocene climate transitions have been suggested to have led to 

cooling, drying trends that resulted in the spread of grasslands and the shrinking of forests 

(e.g. Demenocal 1995, Spencer 1995, Lee-Thorp et al. 2007), which were hypothesized, in 

turn, to have led to major changes in the structure and composition of local floral and faunal 

communities (e.g. Pulse Turnover Hypothesis, Vrba 1985). Such changes would then have 

triggered the major biological and behavioural changes observed within the hominin lineage 

(e.g. tool use, increase in brain size, dispersal events… etc), particularly in relation to the 

emergence of genus Homo (R A. Dart, 1925; Hopley et al., 2007). 
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Table 1: Hominin species identified in East African localities between 4.3 and 1.0 million years ago, with basic traits, main localities, dates, and ecology. In bold are the 
formations under study where remains of Aepyceros sp. and/or Antidorcas sp. were excavated. 

Species Dating Provenance Body proportions 
Cranial 
capacity 

Locomotion 
Dietary 

preferences 
References 

Australopithecus 
afarensis 

4.3 - 2.7 
Ma 

East Turkana; 
Lothagam; 

Kantis 
(Kenya) 

Size: 105 - 151 cm 
Weight: 30 - 45 kg 

400 - 550 
cm3 

Bipedal with retained 
arboreal morphologies 

C4 foods (grass, 
sedge) 

+ fruits, meat 

Wood and Leakey, 2011; 
Behrensmeyer and Reed, 
2013; Foley and Lewin, 

2013; Klein, 2013; Mbua 
et al,. 2016 

Kenyanthropus 
platyops 

3.5 Ma 
West Turkana 

(Kenya) 
Unknown 

450 - 530 
cm3 

Unknown 
C4 foods (grass, 

sedge) 

Potts, 2007; 
Behrensmeyer and Reed, 

2013 

Paranthropus 
aethiopithecus 

2.6 - 2.3 
Ma 

West Turkana 
(Kenya) 

Unknown 420 cm3 
Bipedal with retained 

arboreal morphologies 
C4 foods (grass, 

sedge) 
Wood and Leakey, 2011; 

Klein, 2013  

Homo habilis 
1.9 - 1.7 

Ma 

Koobi Fora 
(Kenya) 

 

Olduvai 
(Tanzania) 

 

Hadar; 
Shungura G, H 

(Ethiopia) 

Size: 115 - 130 cm 
Weight: 30 - 40 kg 

550 - 680 
cm3 

Bipedal with retained 
arboreal morphologies 

C4 foods (grass, 
sedge) 

Ungar et al., 2006; Spoor 
et al., 2007; Klein, 2013 

Paranthropus boisei 
2.3 - 1.4 

Ma 

Koobi Fora; 
West Turkana 

(Kenya) 

 

Olduvai 
(Tanzania) 

 

Konso; 
Shungura G 

(Ethiopia) 

Size: 124 - 137 cm 
Weight: 34 - 49 kg 

500 - 600 
cm3 

Bipedal with retained 
arboreal morphologies 

C4 foods (grass, 
sedge 

- 75 to 80% of its 
diet) 

Wood and Leakey, 2011; 
Klein, 2013  

Homo ergaster 
1.9 - 1 

Ma 

Koobi Fora; 
Ologersailie? 

(Kenya) 

Size: 155 - 170 cm 
Weight: 50 - 65 kg 

850 cm3 Bipedal 
C4 foods (grass, 

sedge) 

Spoor et al. 2007; Wood 
and Leakey, 2011; Klein, 

2013  
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The palaeo-vegetation of a given region is shaped by a combination of factors, such as climatic 

and environmental conditions, hydrological factors, geology, topography, altitude, and soil 

matrix. Evidence of past changing environments have been investigated mainly through 

sedimentary, palynological, and palaeontological studies (e.g. Vrba, 1993; Behrensmeyer et 

al., 1997; Bobe et al., 2002; Bonnefille et al., 2004; Bobe, 2006; Potts, 2013; Cerling et al., 

2015), with global and/or regional palaeo-climatic records linking major climatic events to 

important changes in ecosystems and in mammal lineages (Demenocal, 1995; Trauth et al., 

2005; Carto et al., 2009; Castañeda et al., 2009; Donges et al., 2011) (Figure 1). Most 

particularly, two major climatic events have been suggested to have had a significant impact 

on palaeo-environments and on mammal evolution across the Plio-Pleistocene transition: 

the intensification of the Northern Hemisphere Glaciation (iNHG) and African aridification at 

~2.8-2.4 Ma (Vrba, 1995; deMenocal, 2011); and the onset of the Walker Circulation at ~2.0-

1.7 Ma (Demenocal, 1995) (table 2). These major changes have been hypothesized to have 

played a predominant part in human evolution and innovations (e.g. emergence of genus 

Homo, first tools…etc), leading to several theories and studies aiming at untangling the 

complex relationships between palaeo-environmental conditions and the biological 

processes that shaped the hominin lineage (table 3). 
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Table 2: Major Plio-Pleistocene global climatic events 

Climatic event Date Description Environmental impact 

Intensification 
of Northern 
Hemisphere 

Glaciation 
(iNHG) 

3.2 - 2.5 Ma  

• Culmination of long-term high latitude cooling, 
which began with the Late Miocene glaciation of 
Greenland and the Arctic, and continued through 
to the major increases in global ice volume at 
~2.55 Ma (Maslin et al., 1998). 

• The extent of glaciation became then 
characterised by cyclic advances and retreats of 
ice sheets on a hemispherical scale (i.e. ‘glacial-
interglacial cycles’). 

• Growth and decline of large lakes between 2.7 and 
2.5 Ma in the Baringo-Bogoria Basin (Deino et al., 
2006; Kingston et al., 2007) 

• Significant increase in the amount of dust coming off 
the Sahara and Arabia, potentially indicating aridity 
in the region in response to the iNHG (Demenocal, 
1995; deMenocal, 2004). 

• For East African sites, it was suggested that the iNHG 
had less of an impact on faunal and hominin 
evolution (e.g., Behrensmeyer et al. 1997; Faith and 
Behrensmeyer 2013) than the subsequent 
development of Walker Circulation. 

Onset of the 
Walker 

Circulation 
(oWC)  

2.0 - 1.7 Ma 

• A shift in long-term records of sea surface 
temperature in the Pacific Ocean was observed at 
~2.0 Ma, with a strong east-west temperature 
gradient developing across the tropical Pacific 
Ocean (Ravelo et al., 2004; McClymont and Rosell-
Melé, 2005; Brierley et al., 2009). 

• This shift was interpreted as evidence for the 
development of a stronger Walker circulation as 
part of the gradual global cooling, with the tropics 
and sub-tropics switching to the modern mode of 
circulation with cool sub-tropical temperatures 
from ~2 Ma (Ravelo et al., 2004; Maslin and 
Christensen, 2007).   

• This strong east-west temperature gradient in the 
Pacific Ocean is thought to impact upon the 
properties of the El Nino-South Oscillation 
(ENSO) and, in turn, to be the main cause of 
interannual variability in rainfall in the region 
today (Saji et al., 1999). 

• The intensified Walker Circulation has been 
suggested to have triggered mammalian evolution 
(deMenocal 1995; Vrba 1985).  

• Stable carbon isotope data suggests that trend 
towards open-environments after 3 Ma, with a 
marked change towards open grass-dominated 
landscapes after 2 Ma (Lee-Thorp, Sponheimer and 
Luyt, 2007). 

• Re-analysis of terrestrial dust records from the 
Arabian Sea (deMenocal, 1995, 2004), the eastern 
Mediterranean Sea (Larrasoana et al., 2003) and of 
subtropical West Africa (Tiedemann, Sarnthein and 
Shackleton, 1994) suggests an increase in aridity 
and variability after ~1.9-1.5 Ma (Trauth, Larrasoañ 
and Mudelsee, 2009). 

• Evidence for large, deep, fluctuating lakes in East 
Africa (Trauth et al., 2005, 2007).  
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Table 3: Main theories discussing the relationship between environmental change and mammal evolutionary processes. 

Theory Description Evidence from previous studies 

Savannah hypothesis (Dart, 
1925)  

 
[developed further by 

several researchers such as 
Johanson et al., 1982; Vrba 

et al., 1988; Berger and 
Loutre, 1991; Demenocal, 
1995, 2004; Reed, 1997] 

• Increase in aridity and grassland-dominated 
landscapes in Pliocene and Pleistocene Africa (especially 
east of the African rift), which forced early hominin 
species to adapt from dense wooded habitats to more 
open environments. 

• Periods of enhanced aridification are hypothesized to 
have likely triggered speciation events in the hominin 
lineage (Demenocal, 1995; deMenocal, 2004). 

• Evidence of a progressive vegetation shift from C3 
plants to C4 plants during the Pliocene and 
Pleistocene, based on soil carbonates (Levin et al., 
2004; Wynn, 2004; Segalen, Lee-Thorp and Cerling, 
2007) and fossilised mammal teeth (Harris et al., 
2008; Brachert et al., 2010).  

Turnover Pulse Hypothesis 
(Vrba, 1985) 

• Major biotic turnover (speciation, extinction, and 
dispersion of mammal species) occurring in pulses, in 
line with global climatic changes [such as the 
Intensification of Northern Hemisphere Glaciation], 
which triggered changes in habitats/vegetation (Vrba, 
1985, 1993).  

• These changes are thought to occur when environmental 
changes create fragmentation of habitats, leading to 
vicariance (Potts and Behrensmeyer, 1992).  

• In the South African mammal fossil record, a 
transition from wooded environment at ~3 Ma, to 
more open grasslands at ~1.4 Ma was observed 
(Vrba, 1975). 

• Radiations in bovid species at ~2.5 Ma, as observed 
by Vrba (1985), which seems to coincide with the 
iNHG. 

• Limited evidence in East Africa, where mammalian 
evolution does not seem to correspond so closely 
with major reported ecological changes (Bibi and 
Kiessling, 2015).  

• Some studies suggested that apparent ‘pulses’ in the 
fossil record might actually be a reflection of 
preservations biases and time averaging, rather than 
a reflection of the living community (Maxwell et al., 
2018). 
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Variability Selection 
Hypothesis (Potts, 1998)  

&  
Pulsed Climate Variability 

Hypothesis (Maslin and 
Trauth, 2009) 

• Changes within lineages and increased intraspecific 
variation were not caused by any specific environmental 
condition or trend, but rather by heightened 
environmental instability and habitat heterogeneity, 
which encouraged species behavioural and ecological 
plasticity to ensure survival in variable environments 
(Potts, 1998, 2013; Potts and Faith, 2015).  

• the 'Pulsed Climate Variability Hypothesis', highlights, in 
addition to environmental instability, the role of short 
periods of extreme climate variability (specific to East 
Africa) in driving hominin evolution (Maslin and Trauth, 
2009).  

• Hominin speciation events, dispersals, and 
encephalisation, would have been driven by these 
punctuations within the long-term drying trend in East 
Africa. 

• Precession cycles shown to have triggered 
punctuated episodes of short, alternating periods of 
extreme aridity and humidity, in 400 or 800kyr 
cycles driven by the eccentricity maxima (Deino et 
al., 2006; Maslin and Trauth, 2009; Maslin, Shultz 
and Trauth, 2015). 

• Periods of extreme environmental variability have 
been documented for the eastern African Plio-
Pleistocene (Campisano and Feibel, 2007; Hopley et 
al., 2007; Kingston et al., 2007; Lepre et al., 2007; 
Trauth et al., 2007).  

• Growing body of evidence for precessional forcing of 
East African lakes, such as in the Baringo Basin 
(Central Kenyan Rift): major lacustrine episode 
(between 2.7 and 2.55 Ma) consisting of five palaeo-
lake phases separated by a precessional cyclicity of 
~23 Kyrs (Deino et al., 2006; Kingston et al., 2007). 

Mosaic Habitat Model 
(Domínguez-Rodrigo, 2014; 

Reynolds et al., 2015; Du 
and Alemseged, 2018) 

• 'Mosaic habitats' are areas comprised of multiple habitats 
scattered across the landscape, providing a diversity of 
resources that favours local biodiversity (Tews et al., 
2004).  

• The presence of mosaic habitats in east Africa during the 
Plio-Pleistocene is hypothesized to have been one of the 
environmental factors that favoured diversity in the 
hominin lineage (Domínguez-Rodrigo, 2014; Reynolds et 
al., 2015;  Du and Alemseged, 2018).  

• Mosaic patterns of vegetation associated with 
grassland expansion suggested in later hominin-
bearing localities, such as in the Koobi Fora and 
Nachukui formations, particularly between 2.4 – 
1.4 Ma (e.g. Quinn et al., 2013).  

• Yet, it is unclear whether these suggested mosaic 
habitats actually reflect alternating woodland-
dominated phases and grassland-dominated 
phases or if this habitat heterogeneity was a real, 
long-lasting, feature of the fossil record (Hopley 
and Maslin, 2010; Domínguez-Rodrigo, 2014; 
Reynolds et al., 2015; Du and Alemseged, 2018).  
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Figure 1: Comparison of eccentricity variations (Berger and Loutre, 1991), East African lake occurrence (Trauth et al., 2005, 2007; Shultz and Maslin, 2013) with 
Mediterranean dust flux (Larrasoana et al., 2003), soil carbonate carbon isotopes (Levin, 2013), with Hominin Evolution Transitions (see references in Shultz et al., 
2012) (modified from Maslin et al. 2014, figure 4, p.5), for the period ranging between 3.5 Ma and 1.5 Ma. 
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One of the main evolutionary theories is the “savannah hypothesis”, which first arose from 

Raymond Dart’s (1925) work on Australopithecus africanus and was later developed further 

by several researchers (e.g. Johanson et al. 1982, Vrba et al. 1988, Berger and Loutre 1991, 

Demenocal 1995, 2004, Reed 1997). This theory argued that an increase in aridity and 

grassland-dominated landscapes in Pliocene and Pleistocene Africa (especially east of the 

African rift) forced early hominin species to adapt from dense wooded habitats to more open 

environments by developing bipedal locomotor morphologies along with dentitions adapted 

to a more abrasive diet (more typical of open environments – Coppens 1985), with periods 

of enhanced aridification which likely triggered speciation events in the hominin lineage 

(deMenocal, 1995).  

However, since the time of Raymond Dart (1925) the role of habitat change and grassland 

expansion on human evolution has been debated (e.g. Vrba, 1974, 1975; Bobe and 

Behrensmeyer, 2004), following the discovery of evidence for wooded environments 

associated with some of the earliest species of the hominin lineage: Orrorin tugenensis 

(Pickford and Senut, 2001; Senut, 2006) and Ardipithecus ramidus (White, Suwa and Asfaw, 

1994). In addition, mosaic patterns of vegetation associated with grassland expansion have 

been suggested in later hominin-bearing localities, such as in the Koobi Fora and Nachukui 

formations, particularly between 2.4 – 1.4 Ma (e.g. Quinn et al., 2013). “Mosaic habitats” are 

areas or sites comprised of multiple habitats scattered across the landscape, providing a 

diversity of resources that is important to create or maintain local biodiversity (Tews et al., 

2004). In the fossil record, mosaic habitats tend to be defined as areas with a mixture of 

grassland and woodland associated to a water source (Reynolds, Bailey and King, 2011; 

Reynolds et al., 2015). It could be argued that the presence of mosaic habitats in east Africa 

during the Plio-Pleistocene might have been one of the environmental factors that favoured 

diversity in the hominin lineage, as mosaic habitats today enhance local biodiversity (Tews 

et al., 2004). However, it is unclear whether these suggested mosaic habitats actually reflect 

alternating woodland-dominated phases and grassland-dominated phases or if this habitat 
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heterogeneity was a real, long-lasting, feature of the fossil record (Hopley and Maslin, 2010; 

Domínguez-Rodrigo, 2014; Reynolds et al., 2015; Du and Alemseged, 2018).  

Yet, from the savannah hypothesis (Dart, 1925), to Vrba’s Pulse Turnover Hypothesis (1985), 

Potts’ Variability Selection Hypothesis (1998), and the Pulsed Climate Variability Hypothesis 

(Maslin et al., 2015), the link between climate change and faunal evolution remains debated, 

as none of these hypotheses fully explain the timing or the causes of the main evolutionary 

events observed among mammals and hominins (Maslin and Christensen, 2007; Trauth, 

Larrasoañ and Mudelsee, 2009; Potts, 2013). This might be partly due to global/regional 

palaeo-climatic records not necessarily being representative of local climates in East Africa, 

where long-term climatic change is strongly influenced by tectonics (Shultz and Maslin, 2013; 

Maslin et al., 2014).  

As a result of these diverging evolutionary theories and diverging records, studying past 

environments in hominin-bearing key locations in eastern Africa has been central to 

palaeoanthropology, as a way to provide insights into the ecological context in which our 

ancestors evolved and assess how changes in these habitats may have impacted hominin 

adaptations and behaviour (e.g. Potts et al. 1988, Alemseged 2003, Bobe and Behrensmeyer 

2004, Bobe et al. 2008, Cerling 2013, Negash et al. 2015, Plummer et al. 2015). The Omo-

Turkana basin, more particularly, has been the focus of extensive research due to the 

discovery of several hominin species in relatively rich and well-dated fossil deposits.  
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1.2 The Omo-Turkana Basin 
 

 

 

 

Figure 3: Stratigraphic sequences of the studied sites and members (stratigraphic unit) and associated 
hominins. 

Figure 2: Map of the Omo-Turkana basin, 
with the Plio-Pleistocene formations under 
study (from Bobe & Eck 2001 p.3). 
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The Plio-Pleistocene fossil deposits of the Omo-Turkana basin are represented by the 

Shungura, Mursi, Nkalabong, and Usno Formations in the lower Omo Valley, by the Koobi 

Fora Formation on the northeast side of the lake, and by the Nachukui Formation on the 

northwest side of the lake (Brown and Feibel, 1991; Harris et al., 2006) (Figure 1). The 

presence of volcanic tuffs in these formations allows cross-dating and correlations between 

the various localities of the basin to study the depositional history of the region and its 

associated evolutionary history (see chapter 2 for more detail). The present study focuses on 

the Shungura, Koobi Fora and Nachukui Formations, in members (i.e. stratigraphic units) that 

were associated with hominin remains (Figure 2).  

Previous studies have suggested that if the Omo-Turkana region was relatively humid prior 

to ~4.0 Ma, a tectonic reorganisation of the basin due to large-scale uplift events in the early 

Pliocene triggered a gradual change towards more arid conditions in the region between 

~4.0 and ~2.0 Ma (e.g. Sepulchre et al., 2006; Feibel and Smith, 2011; Fortelius et al., 2016). 

An increase in relative abundance of phylogenetic tribes of grazing herbivores such as 

Alcelaphini, Antilopini and Hippotragini near the end of the Pliocene also pointed to a general 

environmental trend towards seasonally arid grasslands or bushland, and therefore towards 

an expansion of arid environments (Bobe et al., 2007). During this interval, the region 

appears to have been drier than the rest of eastern Africa (Fortelius et al., 2016). After ~2.0 

Ma, the Turkana basin ceased being more arid than the general east African background 

(Fortelius et al., 2016), and studies have shown that climatic conditions became increasingly 

warmer and drier after 2.2 Ma (Cerling and Hay, 1986). For instance, carbon isotope studies 

from plant wax biomarkers from the Nachukui formation (West Turkana) highlighted the 

highly dynamic vegetation structure of the area (ranging from 5 to 100% of C4-vegetation; i.e. 

grassland-type habitats) between 2.3 and 1.7 Ma, with an overall shift towards more open 

grasslands after ~2.1 Ma (Uno et al., 2016).  
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1.3 State of knowledge for the Omo-Turkana Basin environmental 

sequence: contradictions between palaeo-vegetation proxies 
 

If most studies agree on the general palaeo-environmental trends presented above, more 

detailed reconstructions of habitats within each of the Omo-Turkana basin fossil localities 

have proven more complex, with individual palaeo-environmental proxies sometimes 

disagreeing for some localities during specific time-intervals. For example, while pedogenic 

carbonate data from the Burgi member in Koobi Fora suggested a predominance of C3 -

vegetation (i.e. woodland-type habitats) in the locality between 2.64 and 1.87 Ma (Cerling, 

Bowman and O’Neil, 1988), results from faunal analysis suggested grassland habitats in this 

locality during that time period (Bobe, 2011). Similar discrepancies between results from 

palaeontological data and pedogenic carbonates can be found in the literature for the 

Kalochoro member in Nachukui (2.3-1.9 Ma) and for member F in Shungura (2.32-2.27 Ma) 

(Bobe and Eck, 2001; Alemseged, 2003; Brugal, Roche and Kibunjia, 2003; Bobe, 2011; 

Cerling, Levin and Passey, 2011; Levin et al., 2011; Quinn et al., 2013). Likewise, while some 

studies have argued for relatively varied and heterogeneous local habitats in the region (i.e. 

‘mosaic habitats’) during the Plio-Pleistocene, as opposed to the more homogeneous 

grassland-dominated habitats suggested by other studies for part of the sequence, it remains 

difficult to find additional environmental proxies to assess whether such habitat 

heterogeneity was a true long-term environmental feature in the region, or a by-product of 

time-averaging or of methodological limitations (Hopley and Maslin, 2010; Domínguez-

Rodrigo, 2014; Reynolds et al., 2015; Du and Alemseged, 2018). 

Diverging conclusions between studies could relate to the limitations of each method and of 

the fossil record, but could also highlight the complexity of palaeo-habitats, each method and 

palaeo-environmental proxy contributing to refining the picture drawn of the landscapes 

inhabited by hominins. Indeed, the various proxies used in previous studies all record palaeo-

environmental information at different spatial and temporal scales, either as direct or 



14 
 

indirect evidence of palaeo-vegetation conditions, and are influenced by different biases 

inherent to the fossil record or to the approach (Table 4).  

For instance, while studies focusing on palaeobotany or on the geochemical properties of 

paleosols and plant wax biomarkers can provide direct evidence for local flora, these proxies 

can suffer greatly from diagenesis, or from the discontinuity of the deposition processes 

(Bonnefille, 1976; Scott, 2002; Breecker, Sharp and McFadden, 2009; Nguyen Tu et al., 2011). 

More particularly, studies have suggested that paleosol records might yield reconstructions 

biased towards a higher proportion of C3-vegetation compared to other proxies, due to the 

preferential formation of pedogenic carbonates in woodland floodplains or riparian 

corridors (Breecker, Sharp and McFadden, 2009; Quade et al., 2013; Du et al., 2019).   

While the palaeontological record often provides rich assemblages to help reconstruct faunal 

palaeo-communities, studies focusing on faunal composition and/or faunal diversity provide 

indirect evidence for palaeo-environments. These are based on the assumptions that palaeo-

communities can be compared faithfully to modern ecological niches, and that associated 

palaeo-habitats can be inferred from faunal composition based on comparisons with modern 

data on biomes and associated faunal communities. However, such assumptions remain 

difficult to verify, with studies suggesting that Plio-Pleistocene biodiversity differed greatly 

from modern examples, with, for example, a significant reduction in species biodiversity of 

large mammals during the past two million years, likely resulting in differing niche 

competition and niche partitioning dynamics between taxa in the present compared to the 

past (McKee, 2001).  

 



15 
 

Table 4: Summary of the main proxies used for palaeo-environmental reconstructions for the Omo-Turkana basin, with their aims, advantages, and limitations. 

Approach Aims/Advantages Limitations Examples of studies 

Palaeobotanical data Direct floral evidence of local vegetation - Records often short and discontinuous  
- Pollen assemblage reflects the essential character of the 
local flora, but not a detailed record of local vegetation  
- Scarcity of pollen sequences and poor diagnostic value of 
fossil grass pollen in light microscope analyses  
- Fossil stems and leaves are often difficult to identify 
below the family or subfamily level 

Bonnefille and 
Dechamps 1983, 
Bonnefille 1984 

Isotopic studies of 
plant wax biomarkers 

Commonly preserved in sedimentary 
organic matter, with high resistance to 
diagenetic alteration and isotope 
exchange: can be used as a local 
vegetation proxy 

Microbial processes can potentially lead to early 
diagenesis, which would alter the plant wax’s isotopic 
composition 

Uno et al. 2016; Lupien 
et al. 2018 

Pedogenic carbonates 
in paleosols 

Reflect the proportion of C3 (trees, 
bushes and cool-season grasses and 
sedges) versus C4 (warm-season grasses 
and sedges) vegetation on the local 
landscape 

- Distribution limited primarily to floodplain deposits that 
remained stable long enough for carbonates to form  
- Formation of pedogenic carbonate favoured by high 
evaporation-to-precipitation ratio: humid episodes are 
therefore poorly recorded 

Cerling et al., 1988; 
Quinn et al., 2007, 

2013; Cerling, Wynn, et 
al., 2011; Levin et al., 

2011 
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Approach Aims/Advantages Limitations Examples of studies 

Herbivore palaeodiet 
(i.e. stable carbon 
isotopes, dental 
usewear analyses) 

- Inferred dietary ecology of fossil taxa 
likely related to palaeo-environmental 
conditions  
- Can be studied at the community, tribe, 
taxon, or species level  
- No assumption on fossil dietary 
ecology based on extant relative taxa  
- Relies on dental remains, which tend to 
be well-preserved and identifiable at 
least to tribe or taxa level 

- For migrating species, dietary signal might not reflect 
local vegetation  
- Little variation in diet expected from specialist feeders 
(e.g. obligate browsing or obligate grazing taxa)  
- Biases might be introduced by grouping of taxa, or by 
focusing on specific taxa (i.e. not at the community level)  
- Palaeovegetation inferred from dietary information 
based on the assumption that a species' diet is linked to the 
physical and ecological characteristics of its habitats 

Lee-Thorp, 1989; 
Merceron et al., 2007; 

Cerling et al., 2015; 
Ungar et al., 2016; 

Bignon-lau et al., 2017; 
Blondel et al., 2018; 

Rivals et al., 2018; Uno 
et al., 2018; Sewell et 

al., 2019 

Faunal 
associations/Faunal 
abundance/ Ungulate 
mammal diversity / 
Micromammal 
studies 

- Assesses the composition of faunal 
palaeo-communities represented in 
fossil deposits in their globality 
- Takes advantages of abundant fossil 
evidence  

- Assumes similarity in ecology between fossil taxa and 
their extant relatives, and relies on comparisons with 
modern faunal communities and modern ecosystems 
- Often requires identification at the genus/species level, 
which introduces biases and reduces sample sizes 
- Potential biases related to species 
identification/preservation   

Vrba, 1974; 
Behrensmeyer, 1975; 

Wesselman, 1984; 
Harris, 1991; Bobe and 
Eck, 2001; Alemseged, 

2003; Brugal et al., 
2003; Reed, 2007, 

Bobe, 2011; O’Brien et 
al., 2020 
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Approach Aims/Advantages Limitations Examples of studies 

Ecomorphology 
(particularly bovids) 

- Functional morphology used to infer 
habitat preference based on the theory 
that an organism’s locomotor anatomy 
should have adaptations to the 
particular substrate(s) and 
environment(s) it locomotes across  
- Approach relatively independent from 
taxonomy and phylogeny (i.e. does not 
require identification to the genus or 
species level) 

- Difficulty of constructing a habitat grouping scheme that 
is both sufficiently precise and sufficiently accurate, 
especially when species use a range of habitat types. 
- Based on the assumption that characters found to be 
indicative of habitat in extant species are similarly 
indicative of habitat in fossil taxa  
- Variations in ecomorphological patterns through time 
will likely reflect changes over a longer time-scale than 
other direct proxies related to local vegetation conditions 
(i.e. slow evolutionary changes) 

Kappelman et al., 1997; 
Reed, 1997; DeGusta 

and Vrba, 2003; 
Kovarovic and 

Andrews, 2007; Barr, 
2015; Plummer et al., 

2015 

Palaeogeographic 
reconstructions 

Evaluates changes in local physical 
landscapes, providing vital information 
regarding landscape dynamics and 
hydrological conditions (e.g. changes 
related to tectonic/volcanic activities; 
fluctuations in lake levels…etc) 

Focuses on landforms, hence not providing evidence 
directly related to vegetation conditions 

Brown and Feibel, 
1991; McDougall and 

Brown, 2008 
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In addition, studies based on faunal composition (as well as on fossil pollen) rely strongly on 

species identification, which can be limited by the preservation of the assemblages, which 

greatly differs across localities and deposits due to deposition modes and taphonomical 

processes (Bonnefille, 1976; Scott, 2002; Matthews et al., 2017). In contrast, while studies 

focusing on ecomorphological characteristics of specific ungulates do not necessarily require 

identification at the genus or species levels, they record information that relates to larger 

temporal scales, as they reflect gradual evolutionary processes partly influenced by 

environmental factors (DeGusta and Vrba, 2003; Kovarovic, 2004).  

Studies of mammal palaeo-diets have been abundant over the last few decades. These studies 

benefit from the good preservation of fossil teeth, from the ability to identify dental remains 

to the tribe, genus, or species levels (in most cases), and from the multitude of techniques 

that have been developed to infer the dietary ecology of extant species (e.g. stable isotope 

analyses, dental use-wear analyses, studies of calculus phytoliths content, etc). Such studies 

have the advantage of not relying on prior assumptions regarding the studied taxa’s ecology, 

allowing to check whether or not the dietary behaviours of extinct species resembled that of 

their extant relatives. While such studies do not necessarily require identifications to the 

genus or to the species level, results might greatly differ in scope whether the entire fossil 

community is studied as a whole, or whether specific taxa are targeted for analysis upon the 

assumption that such taxa might be better environmental proxies than others (e.g. bovids; 

e.g. Merceron et al. 2013, Negash et al. 2015, Ungar et al. 2016). However, while it is often 

assumed that the dietary behaviours of faunal communities or of specific taxa are influenced 

in part by their environment and hence reflect the vegetation-conditions of their habitats, 

such assumptions have seldom been verified (Robinson et al., 2021). 

The various advantages and pitfalls associated with each of the approaches previously used 

to reconstruct palaeo-environments in the Omo-Turkana basin highlight the relevance of 

studies combining several proxies, as a way to mitigate for the limitations of the methods and 
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to improve the resolution of the proposed reconstructions. Identifying additional palaeo-

environmental proxies based on available material from the Omo-Turkana basin might 

therefore prove useful to provide supplementary information about local vegetation 

heterogeneity and help reconstruct the habitats associated with the different hominins that 

inhabited this region.  

The present study therefore proposes to take advantage of the abundance of bovid dental 

remains in the Omo-Turkana fossil deposits, and of the multiplicity of methods available for 

dietary ecology studies, to test the relevance of detailed palaeo-dietary analyses of mixed-

feeding herbivores for palaeo-environmental reconstructions. Ecological data from modern 

populations and their associated habitats are explored as well, in order to evaluate the 

strength of the relationship between the dietary behaviours of mixed-feeding herbivores and 

the vegetation conditions of their habitats. This will allow to assess what type of indirect 

evidence such dietary analyses can and cannot provide to inform on past and present 

vegetation conditions in a given area, and test whether modern data on dietary behaviour 

and habitat vegetation conditions can be reliably used for comparisons with the fossil record.  

1.4 Bovid teeth as a bio-proxy for vegetation change  
 

Herbivores are often considered faithful reflectors of prevailing vegetation types in a habitat 

and are typically more abundantly preserved than hominin remains. Indeed, as primary 

consumers dependant on local forage availability, herbivores are expected to be more likely 

to reflect local vegetation conditions than taxa occupying higher trophic levels (Kingdon, 

1997). Bovids, especially, are considered good indicators of past environments because they 

show dietary specialisations that are linked to their digestive anatomy (Janis and Fortelius, 

1988; Gagnon and Chew, 2000; Hillson, 2005). They are usually well-represented in the fossil 

record and can be studied in detail, by looking, for instance, at shifts in species abundance 

(Vrba, 1974, 1980, 1995; Harris, 1991; Kappelman et al., 1997; Bobe and Eck, 2001), or by 
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studying their feeding ecology (Brink and Lee-Thorp, 1992; Sponheimer, Lee-Thorp, et al., 

2003; Daryl Codron et al., 2007; Lüdecke et al., 2016; Blondel et al., 2018).  

  

Bobe and Eck (2001) and Greenacre and Vrba (1984) highlighted in their work the 

adaptability of the impala (genus Aepyceros), a highly successful antelope whose fossilized 

remains are found abundantly across East Africa. and that is still thriving today. Modern 

impala (Aepyceros melampus) is an abundant and widespread edge (ecotone)-species that is 

able to feed on both browse and graze according to the available vegetation and to seasonal 

variations in land cover and in niche competition (Wronski, 2002; Sponheimer, Grant, et al., 

2003; Cerling et al., 2015). They are generally found in acacia savannas and light woodlands 

close to water, and primarily graze when grasses are green and growing in the wet season, 

switching to browse on bush, fruits, foliage, forbs, seedpods and shoots when necessary, 

often in the dry season (Jarman and Jarman, 1973; Estes, 1991). Acacia tortilis and Acacia 

Figure 4 Examples of acacia 
savanna with woodland, the 
preferred habitat of Aepyceros 
melampus (Photographed at a) 
Masai Mara National Reserve, 
Kenya, b) Nairobi National Park, 
Kenya, April 2017). 
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nilotica pods seem to be particularly favoured due to their high protein content (Kingdon and 

Hoffman, 2013) (Figure 3). Because of the abundance of Aepycerotini remains in the fossil 

record of East Africa, and because of the reported dietary plasticity of modern Aepyceros 

populations, the impala was selected as the focal study taxon in this project.  

Similarly, particular attention has been given in previous work to another mixed-feeding 

herbivore, the springbok (genus Antidorcas), especially for the South African Plio-Pleistocene 

record where remains from several Antidorcas species are abundant (Brink and Lee-Thorp, 

1992; Ecker and Lee-Thorp, 2018; Sewell, 2019; Sewell et al., 2019). The springbok is an 

antelope species with a high dietary adaptability, the extant species Antidorcas marsupialis 

favouring open and semi-open habitats, and being described as a mixed-feeder with a 

preference for browse (Bigalke, 1972). Modern springbok tend to feed primarily on succulent 

shrub leaves (e.g. Acacia mellifera) and coarse/hard-stemmed grasses (e.g. Aristida, 

Eragrostis, Cynodon, Panicum and Sporobolus), but have also been observed feeding on 

karroid vegetation, tall shrubs, leaves from the ground, roots, succulents, and cucurbits (Eloff, 

1959; Van Zyl, 1965; Bigalke, 1972; Davies, Botha and Skinner, 1986; Nagy and Knight, 

1994b; Skinner and Louw, 1996; Kingdon, 1997; Cain, Krausman and Germaine, 2004).  

Extinct species A. recki, A. australis, and fossil A. marsupialis appear to have been mixed-

feeders to varying degrees, while extinct A. bondi has been suggested to have been an obligate 

grazer, based on isotopic studies and tooth morphology (Brink and Lee-Thorp, 1992; Ecker 

and Lee-Thorp, 2018). While modern springbok populations are now confined to southern 

Africa due to man-made barriers such as fences, remains of A. recki were identified in 

deposits from the Omo-Turkana basin (Harris, 1991). Data from these A. recki specimens 

were therefore collected for this research project, in order to test whether eastern African 

fossil springbok had a dietary flexibility similar to that of their extant relatives, as well as to 

allow future comparisons between Plio-Pleistocene eastern African and southern African 

Antidorcas assemblages.  
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Such flexible feeding behaviours are likely to have been a key factor in the evolutionary 

success of Aepyceros and Antidorcas species, and could provide interesting data regarding 

environmental changes in this region as the two species might have adapted their diet locally 

and/or seasonally according to the prevailing vegetation in the area. By studying mixed-

feeding herbivore species, this study seeks additional evidence for general environmental 

trends directly related to the vegetation available to the overall faunal community, an 

approach which has proven effective in the past (Vrba, 1980, 1992; Demenocal, 1995; 

Reynolds, 2005). Plio-Pleistocene antelopes did not necessarily rely on the same resources 

in the past than their extant relatives (Sponheimer and Lee-Thorp, 1999) but because mixed-

feeders can adapt to the vegetation around them, differences in their dietary behaviours are 

expected to be observed through time in relation to shifts in climate and changing vegetation 

conditions (Sewell et al., 2019).  

Even though East African hominin-bearing localities have been studied intensively, these 

formations have never been studied so far focusing specifically on ubiquitous mixed-feeding 

antelope taxa that must have witnessed and adapted to local climate changes through most 

of the stratigraphic sequence. Studying formations with well-dated continuous sequences 

from the perspective of animals that continuously inhabited the basin over time could help 

investigate local changes in vegetation cover, specifically regarding aspects of seasonality 

and spatial heterogeneity of vegetation in this area (Bobe and Eck, 2001; Patterson et al., 

2017). Because the present work also aims at evaluating if the fossil herbivore species 

studied shared identical levels of dietary flexibility with their modern counterparts, data 

from modern specimens were also collected to gauge the extent of dietary variation in extant 

impalas and springbok in various habitats.  

Checking for potential variations in diet from obligate browsers and obligate grazers (which 

usually rely heavily on browse or on graze, respectively), can also contribute to a better 

understanding of vegetation structure and resource availability, as such specialised species 
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only usually turn to other resources when preferred foods are lacking, due to environmental 

factors, or niche competition (Ramdarshan et al., 2016). Therefore, this study also uses data 

from fossil and modern specimens of selected obligate browsing (giraffids – Giraffa sp.) and 

obligate grazing (equids – Equus sp.) herbivores, as a way to evaluate the limits of the dietary 

spectrum in each locality and time period under study. This is to help calibrate the overall 

dietary spectrum of ancient herbivores through time by looking at how vegetation change 

might be reflected on specialist feeders.  

 

1.5 Aims and objectives of the project 
 

The main goal of this research project is to assess whether detailed studies of the dietary 

ecology of mixed-feeding antelope species could be used to investigate hominin palaeo-

environments in the Omo-Turkana basin during the Plio-Pleistocene. More particularly, this 

project aims to assess whether abundant and adaptable herbivores such as the impala or the 

springbok could prove to be accurate local vegetation proxies, checking upon the assumption 

that their dietary behaviours are mainly influenced by the vegetation conditions in their 

habitats. This is to work towards the following research aims and objectives:  

 

Table 5: Research aims, and their associated objectives. 

Aims Objectives 

1. Provide a new 
method to 

compare past and 
present habitats 

by testing the 
relationship 

between modern 
impala dietary 
variability and 

their habitats (i.e. 
predictive land 
cover models) 

Explore the dietary variability of selected modern impala 
populations, based on stable carbon isotope evidence 

Evaluate the diversity of habitat types inhabited by modern impala 
populations, based on land cover data, and quantify the land cover 

composition and structure of these habitats  

Assess whether relationships can be observed between specific 
habitat types and modern impala dietary patterns 

Evaluate to which types of habitat fossil impala specimens from the 
Plio-Pleistocene deposits of the Omo-Turkana basin were likely 

associated, based on stable carbon isotope data 
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Aims Objectives 

2. Study the 
dietary ecology of 

mixed-feeding 
antelope species 

in the Omo-
Turkana basin 

between 3.5-1.6 
Ma 

Assess the overall dietary signatures of each studied species (extant 
and extinct), and evaluate inter-specific variations in diet between 

species of the same taxa  
Evaluate the degree of variation in dietary patterns within each 
fossil taxon across the studied fossil localities and members to 
detect potential differences in feeding behaviours within the 

Turkana basin and/or through time 
Explore the impact of seasonal variation on the dietary patterns 

observed among Plio-Pleistocene impala populations 
Explore the complexity of the dietary behaviours of fossil 

impala/springbok populations through the use of a 
multiproxy/multi-scale approach 

Make palaeo-environmental inferences for the Plio-Pleistocene 
Omo-Turkana basin, based on the dietary patterns observed in the 

modern and fossil mixed-feeding antelope assemblages studied 
    

3. Discuss the 
palaeo-

environmental 
implications of the 

inferred dietary 
patterns, in 

relation to human 
evolutionary 

theories 

Compare results from mixed-feeding antelope dietary analyses with 
other datasets for climate and vegetation from the area 

Evaluate the pace of the changes (if any) observed through time (e.g. 
gradual, pulsed) in the dietary behaviours of mixed-feeders, and 

discuss the timing of these variations 

Evaluate the range of evidence available, from the proposed dietary 
analyses, to account for habitat heterogeneity (i.e. mosaic habitats) 

and environmental variability in the Omo-Turkana basin 

Discuss how these palaeo-environmental inferences agree/disagree 
with the main evolutionary theories proposed to explain 

mammal/human evolution 

1.6 Research questions and hypotheses 
 

To reach the aims and objectives set out for this project, the dietary behaviours of selected 

extant and extinct mixed-feeding antelopes are examined. A combination of methods is used 

to produce a comprehensive picture of these taxa’s feeding ecology and, potentially, of the 

environmental conditions they experienced throughout the Plio-Pleistocene in the Omo-

Turkana basin. This study was designed to address the following research questions and 

hypotheses:  

1) What type of evidence can dietary studies of mixed-feeding herbivores provide to 

help make inferences about the prevailing vegetation conditions of their local 

habitats? 
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a) What is the relationship between modern impala dietary variability and the 

composition/structure of their habitats (evaluated through land cover analysis of 

modern landscapes)?   

b) How do the studied taxa’s dietary patterns in the past compare to the dietary signals 

of their extant relatives? 

c) Can data from modern impala populations’ dietary behaviours and habitats be used 

to identify modern African environments that might be similar to those experienced 

by impala populations in the past, and if so, what are the main characteristics of these 

modern habitats? 

If modern Aepyceros melampus is as adaptable as hypothesized, the variation in diet observed 

for different modern populations should mirror differences in vegetation cover between 

their habitats. For instance, if modern impala does adapt its diet to prevailing vegetation 

conditions, impala populations associated with closed-wooded environments should yield 

dietary signals indicative of a preference for browse/C3-vegetation, as opposed to 

populations associated with open-grassland habitats, which should yield dietary signals 

indicative of diets dominated by graze/C4-vegetation. The degree of habitat fragmentation 

might as well be expected to have an influence on the diet of modern impala populations, 

with potentially more varied diets observed where habitats are highly fragmented and 

diverse, compared to more homogeneous habitats with less vegetation diversity. If such clear 

relationships can be established between modern impala diet and habitat vegetation-

conditions, it will suggest that dietary analyses of mixed-feeding species such as the impala 

can be used faithfully as vegetation-proxies in further studies. 

Because Plio-Pleistocene environmental conditions likely differed greatly from modern 

African climatic conditions, differences in inferred dietary patterns are expected when 

comparing modern and fossil mixed-feeding populations, albeit within the range of dietary 

variation observed today across modern populations. If similar dietary patterns can be 
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identified between specific fossil impala assemblages and specific modern impala 

populations, it might indicate that these populations were associated to analogue habitats. 

2) What additional insights into palaeo-environmental conditions in the Omo-Turkana 

basin do the inferred dietary patterns of mixed-feeding species provide, and how do 

these help to resolve apparent contradictions between other environmental proxies? 

a) How much variation in inferred dietary behaviours can be observed throughout the 

Omo-Turkana sequences, and what type of trends do these variations suggest (i.e. no 

variation through time, gradual/pulsed changes, increased variability in diet, 

browsing/grazing alternance…etc).  

b) Do the inferred dietary patterns of mixed-feeding antelope differ from one locality to 

the other across the Omo-Turkana basin (e.g. Lower Omo river valley vs East/West 

Turkana), and what do these differences (if any) could imply in terms of local 

vegetation conditions?  

c) What additional information on the taxa’s dietary ecology does combining dietary-

proxies provide, as opposed to using each dietary-proxy in isolation?  

For the dietary results of this study to confirm the long-term trend of regional aridification 

suggested by previous studies (e.g. Sepulchre et al., 2006; Feibel and Smith, 2011; Fortelius 

et al., 2016), general dietary trends for the studied mixed-feeding taxa are expected to 

demonstrate an increase in grazing signals through time. In addition, if the results of the 

present study agree with previous studies, dietary behaviours of fossil impalas and 

springbok should display an increased dietary variability through time, which might relate 

to varying degrees of habitat heterogeneity and to a gradual increase in climatic variability 

through time, as suggested by other studies (e.g. Potts, 2007 – see Chapter 2.2.2 for more 

detail). 
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For the dietary results of this study to confirm differences in local vegetation conditions 

across the Omo-Turkana basin suggested by previous studies (e.g. Bobe, Behrensmeyer, et al. 

2007, Cerling, Levin, et al. 2011, Levin et al. 2011), differences in inferred dietary behaviours 

are expected between the assemblages, with a higher variability in diet through time and a 

stronger browsing/C3-dominated diet signal in individuals from the Shungura formation, 

when compared to individuals from the Koobi Fora and Nachukui Formations. The presence 

of mosaic habitats (Domínguez-Rodrigo, 2014; Reynolds et al., 2015; Patterson et al., 2017) 

in the Omo-Turkana basin could be reflected in the dietary results of this study if mixed-

feeding signals dominate the assemblages in some localities/members, with no distinct 

preference for either graze or browse, suggesting that a wide range of food resources were 

available to these herbivores throughout the sequence and the region. 

Finally, if results from the various methods used for dietary analysis display similar patterns 

across the fossil assemblages, it will suggest that all methods are equally informative on 

dietary behaviours, and might be used in isolation without losing information or accuracy. If 

results differ between methods, it will highlight how each of these methods can complement 

each other when used in combination, by informing on different aspects of the studied 

animals’ feeding ecology (i.e. geochemical or structural food properties, seasonal variation in 

diet…etc). 

3) How do palaeo-vegetation and palaeo-climate inferences made from mixed-feeding 

antelope palaeo-dietary studies compare with the main evolutionary theories 

proposed to explain mammal/human evolution? 

a) What are the timings/rates of dietary variation observed for mixed-feeding species 

towards the sequence, and what type of vegetation/climate change do these suggest? 

b) What types of local vegetation conditions do the inferred dietary behaviours suggest 

across the basin, and do they seem to have varied seasonally? 
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Table 6: Main evolutionary theories and hypothesized results of palaeo-dietary analysis of mixed-
feeding antelopes. 

Theory Expected dietary behaviours for Aepyceros/Antidorcas 

Savannah hypothesis 
(Dart 1925)  

• Increasing abundance of grazing signals observed through 
dental use-wear analyses, and of C4-vegetation (δ13C) in the 
diet of the studied taxa throughout over the temporal range.  

• Increased aridity through time might be observable from 
the oxygen isotope content of the studied taxa (δ18O). 

Turnover Pulse 
Hypothesis (Vrba 

1985) 

• Habitat specialists are more likely to be affected by climate 
and habitat change (i.e. increased extinction rates) than 
generalists (Vrba 1988), although adaptable herbivores 
such as Aepyceros and Antidorcas might demonstrate 
variations in diet through time 

• Marked shifts in dietary behaviours at times of major 
climatic changes (i.e. iNHG at 3.2-2.5 Ma; and oWC at 2.0- 
1.7 Ma).  

Variability Selection 
Hypothesis (Potts 

1998) & Pulsed 
Climate Variability 
Hypothesis (Maslin 
and Trauth, 2009) 

• Environmental instability might be observable via 
temporarily increased intra- and inter-specific dietary 
variation (dental use-wear and stable carbon isotope 
analyses) within specific members, in addition to a gradual 
increase in grazing signals/C4-diets across the sequence. 

• Increased seasonal variability in diet in some members 
(observed through intra-tooth isotopic analyses, and 
potentially through multi-method dietary analysis) 

Mosaic Habitat 
Model (Domínguez-

Rodrigo 2014, 
Reynolds et al. 
2015a, Du and 

Alemseged 2018) 

• No clear directional change would be apparent in dietary 
signals (dental use-wear and stable carbon isotope 
analyses), with a relatively high but constant intra- and 
inter-specific dietary variability. 

• Mixed-feeding signals should dominate the assemblage, 
suggesting the availability of varied food resources  

 

For the inferred dietary behaviours to agree with the Savannah Hypothesis (Dart, 1925), a 

gradual increase in grazing/C4-dominated behaviours through time will be observed across 

the mixed-feeding assemblages (Table 6). According to the Turnover Pulse Hypothesis (Vrba, 

1985), marked changes in dietary behaviours are likely to be observed at specific points in 

time in relation to major climatic events (e.g. iNHG at 3.2-2.5 Ma; and oWC at 2.0- 1.7 Ma). If 

in agreement with the Variability Selection Hypothesis (Potts, 1998) or the Pulsed Climate 

Variability Hypothesis (Maslin and Trauth, 2009), the observed mixed-feeders’ dietary 

signals should display a gradual increase in grazing/C4-dominated signals, combined with an 

increased intra- and inter-specific dietary variation as well as increased seasonal variation in 
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diet, potentially indicative of increased environmental instability and increased seasonality. 

If mosaic habitats were a predominant feature of the Omo-Turkana basin during the Plio-

Pleistocene, as suggested by the Mosaic Habitat theories (Domínguez-Rodrigo, 2014; 

Reynolds et al., 2015; Du and Alemseged, 2018), no clear directional change would be 

apparent in the dietary signals of the studied mixed-feeders, with a relatively high but 

constant intra- and inter-specific dietary variability.  

1.7 Outline of the project method 
 

Several methods are applied to the fossil and modern datasets used in this study to provide 

information on different aspects of the dietary ecology of the studied species and produce a 

detailed record of their dietary variability (Figure 4). Use-wear analyses of molar surfaces 

are performed to provide information on the type of vegetation that the animals fed primarily 

on by looking at traces of tooth-on-tooth contacts (attrition) and tooth-on-food contacts 

(abrasion), which varies depending on the abrasiveness of the food items consumed 

(Fortelius and Solounias, 2000; Ramdarshan et al., 2016). Mesowear analysis provides 

information on the global use-wear accumulated through the life of each individual based on 

general cusp shape (Fortelius and Solounias, 2000). Dental Microwear Textural Analysis 

(DMTA) provides information on the type of foods associated with the individual’s last 

feeding events based on textural parameters (Merceron et al., 2005; Merceron, Ramdarshan, 

et al., 2016). Stable carbon isotope ratios are measured from enamel samples to investigate 

the relative proportion of C3 -C4 plants (respectively trees, bushes and cool- season grasses 

and sedges, vs. warm-season grasses and sedges) ingested during tooth enamel 

mineralisation (Sponheimer and Lee-Thorp, 1999; Balasse, 2002; Copeland et al., 2009). 

Changes in stable oxygen isotope ratios are investigated as well to identify potential changes 

in drinking patterns and local aridity conditions through time, as recorded in the enamel of 

the studied specimens from their water consumption. In addition to bulk enamel samples 

that were collected to provide average stable isotope ratios for each sampled individual, 



30 
 

intra-tooth samples were collected and studied for selected specimens to provide more 

detailed sequential stable isotope data and investigate seasonal variation in diet in fossil 

impala populations. The results obtained from these different methods are combined to 

evaluate the detailed dietary behaviours of the studied fossil species (i.e. early life, lifetime, 

last weeks prior to death), allowing to investigate the structural properties of the food items 

consumed (toughness, abrasiveness, grain size) as well as their chemical properties (isotopic 

content).  

Each of the methods used to infer palaeo-diets from fossil teeth have their own advantages 

and limitations. For instance, dental use-wear analyses provide indirect evidence of dietary 

behaviours through the observation of dental features that partly relate to known differences 

in structural properties between various foods (i.e. toughness, abrasiveness, grain 

size…)(Lucas et al., 2013; Ramdarshan et al., 2016), reflecting either the average diet of an 

individual (i.e. mesowear analysis) or the last meal of these individuals (i.e. dental microwear 

analysis). While such information can help infer the likely composition of the animal’s overall 

diet, such signal can be biased by external factors that partially over-write the dietary signal, 

such as dust or grit (Hummel et al., 2011; Ackermans et al., 2018; Ackermans, Winkler, et al., 

2020; Schulz-Kornas et al., 2020). Likewise, while stable carbon isotope analyses are 

commonly used to evaluate the relative proportion of C3-C4 foods integrated in the 

specimens’ body tissues through food consumption, indirectly allowing to make inferences 

about the consumption of browse vs. graze in extinct species, the diversity and complexity of 

vegetation types and of photosynthetic pathways (i.e. C3-grasses, CAM plants…etc) and of 

biological fractionation processes limit the ability to make inferences on palaeo-diet 

composition beyond the C3-C4 dichotomy. Results are therefore expected to vary slightly 

between each of those methods, allowing to mitigate for some of their limitations, and to 

accumulate dietary ecology evidence in terms of both geochemical and structural properties 

of the food items consumed by the studied taxa.  
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Figure 5: Summary of the rationale and methods used in this study. The list of modern habitat types depicted in this figure is non exhaustive and does not represent the full range 
of habitats associated with modern impala populations (Photographs from Kindt et al. 2014, Reynolds et al. 2015). 
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Dietary information from modern impala specimens and remote sensing of modern African 

landscapes inhabited by these populations are also used to compare with fossil data and 

evaluate in which types of landscape fossil impala species might have lived, alongside 

hominins, between 3.5 and 1.6 million years ago. To achieve this, the influence of local land 

cover patterns on the dietary behaviours of modern impalas is investigated using published 

stable carbon isotope data alongside land cover data from selected study areas in Africa. 

This data is then used to build predictive models designed to evaluate the degree to which 

some of the Omo-Turkana habitats (i.e. specific localities and members) might have 

resembled some of the studied modern-day African habitats, in terms of land cover 

composition and land cover structural heterogeneity. This is to test the feasibility of a new 

method to compare past and present habitats, by combining dietary analysis of modern 

impala populations with satellite imagery of their habitats. 

While a variety of studies have focused on the Omo-Turkana region (see chapter 2 and 

references therein), the impala and the springbok have never been studied at such a high 

level of detail before in these deposits. Because the project compares results from different 

methods applied to a same dataset, it should provide critically needed data on the strengths 

and weaknesses behind the use of combined dietary proxies for palaeo-ecological and 

palaeo-environmental reconstructions. Likewise, this study should provide the scientific 

community with new avenues to explore to reconstruct hominins’ palaeo-environmental 

contexts using modern land cover data alongside dietary data of modern herbivore 

populations. 

1.8 Thesis structure 
 

Following this introduction, a review of the Omo-Turkana basin study sites, studied taxa, as 

well as of the methods chosen for this research project is presented in chapter 2 to introduce 

the study design and rationale for this work.  
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Chapter 3 explores the dietary variability of modern impala populations, as inferred from 

published stable carbon isotope data, as well as the variability of modern impala habitats, 

as assessed through land cover analyses performed on selected modern study areas. This 

chapter evaluates the strength of the relationship between impala diet and prevailing 

vegetation conditions in their habitats, to discuss what type of information on local 

vegetation conditions can be deduced from stable carbon isotope analyses of modern 

impala populations. This modern data is then used to build models to predict the land cover 

composition and structure of palaeo-habitats from the Omo-Turkana basin and identify 

potential modern analogue habitats, using stable carbon isotope data obtained from fossil 

impala specimens.  

The following chapters focus on the inferred dietary ecology of the studied taxa in the Omo-

Turkana basin during the Plio-Pleistocene, through dental mesowear analysis (chapter 4), 

dental microwear textural analysis (chapter 5), and stable isotopes (chapter 6).  The results 

from all three methods are then combined, compared, and discussed in chapter 7, to 

evaluate the differences and similarities between the dietary patterns suggested from each 

analysis, and discuss potential palaeo-environmental implications. 

Chapter 8 presents the conclusion from this study, and discusses the main contributions of 

this work to the field of palaeo-environmental studies. Firstly, the potential of combining 

dietary analyses with land cover studies of modern mixed-feeding populations to provide 

an additional tool for palaeo-environmental reconstruction is discussed, as well as the 

differences between fossil taxa and their extant relatives. The dietary ecology of the studied 

mixed-feeding antelope species is then examined for the Omo-Turkana basin fossil record, 

summarising the trends observed for the inferred feeding behaviours, and discussing their 

potential palaeo-environmental implications. Finally, the palaeo-environmental conditions 

in the Omo-Turkana during the Plio-Pleistocene suggested from this study are discussed in 

relation to previous theories linking palaeo-environmental conditions/major shifts in 
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climate to mammalian evolutionary events, to evaluate potential implications when 

considering hominin habitats and hominin evolution.  
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Chapter 2: Reconstructing palaeo-
diets and palaeo-environments of the 
Plio-Pleistocene Omo-Turkana basin: 
literature review 

2.1 Introduction 
 

This chapter details the study design and rationale by presenting a review of the fossil 

localities, species and methods selected for this research project. Firstly, current knowledge 

on the palaeo-environments of the Omo-Turkana basin during the Plio-Pleistocene is 

reviewed. This allows to identify gaps and discrepancies in previously published palaeo-

environmental reconstructions and the need for complementary studies to strengthen the 

current understanding of this important region of Africa. Secondly, the species selected for 

study are presented and the current knowledge of their past and present ecology is 

reviewed to highlight how detailed study of these species’ dietary ecology might contribute 

to palaeo-environmental reconstructions, and which aspects of their ecology might require 

further exploration. Finally, the methods used to investigate dietary behaviours and land 

cover are introduced to highlight the strengths and weaknesses of each technique when 

used for palaeo-environmental studies, and discuss how the multi-methods approach 

chosen for this project might offer opportunities to enhance these strengths and mitigate 

for some of these weaknesses.  
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2.2 The Omo-Turkana basin 

2.2.1 Lake Turkana 

 

Lake Turkana (formerly called Lake Rudolf) is the third largest lake in Africa today. 

Although the presence of a large intermittent lake is attested to the area since about 4 Ma 

(Lonyumun Lake), modern lake Turkana only established within the last several hundred 

thousand years, with various changes in lake presence and size before that (Harris, Leakey 

and Brown, 2006). The lake takes its source from the Omo River, and seasonally from the 

Turkwel and Kerio Rivers in the south-western part of the basin. The main source of the 

Omo River is situated in the Ethiopian highlands, a region which is subjected to highly active 

tectonics. The geography of the Turkana basin therefore depends on the Ethiopian 

tectonism, in addition to local tectonic and volcanic activity within the basin (Rogers, Harris 

and Feibel, 1994).  

Previous studies have shown that the Omo River used to flow through the Turkana basin 

towards the Indian Ocean during the Pliocene but that its outflow was occasionally 

disrupted by tectonic events, leading to the formation of temporary lakes in the basin with 

fluctuating water levels (Brown and Feibel, 1991). From ~2.5 Ma, major tectonic activity 

disrupted the basin stability, with a reported shift from a mainly fluviatile system with the 

palaeo-Omo river to a lacustrine system at ~2.0 Ma (Brown and Feibel, 1991). One of the 

major palaeo-lake phases that has been identified is the period of transgression and 

regression of Palaeolake Lorenyang, which occurred between 2.17 and ~1.76 Ma when the 

basin’s outlet to the Indian Ocean closed due to volcanism and faulting (Harris, Leakey and 

Brown, 2006; Bruhn et al., 2011; Boës et al., 2019). Tectonic uplift and volcanic activity in 

the south-eastern Omo-Turkana Basin have been shown to have resulted in high lake levels 

from 2.2 to 1.7 Ma (Boës et al., 2019), and the presence of molluscs in the lake sediments up 

to 0.7 Ma suggested that before this time the waters of the lake were not as alkaline as they 

are today (Harris et al. 2006). These various changes in the hydrologic dynamics of the Omo-
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Turkana basin occurred at a time of gradual environmental change which has been reported 

to have triggered an increase in the abundance of tropical grasses in eastern African 

ecosystems between 4.0 and 1.0 Ma (Levin et al., 2011; Cerling et al., 2015; Levin, 2015). 

 

 

Figure 6: The lower Omo Valley, Ethiopia, and the northern part of Lake Turkana, Kenya, showing the 
Koobi Fora, Nachukui and Shungura Formations as shaded areas. Points indicate palaeontological 
collection areas. Localities and section names are given for the Nachukui and Shungura Formations 
(edited from McDougall and Brown, 2006, figure 1, p.186).  
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Figure 7: Formations, members and major tuffs from the Omo Group. Isotope chronology and tephra 
correlations are based on Brown et al. (1992), Katoh et al. (2000), WoldeGabriel et al. (2005), 
McDougall and Brown (2006, 2008). Tephra correlations are marked by solid lines within and between 
sections. Members of each formation are indicated in grey blocks, based on Feibel et al. (1989). The 
coloured squares represent the time interval studied and the members from which data were collected 
in this study (edited from Levin et al.,  2011, figure 2, p.771).  

 

The distribution of the Omo-Turkana Plio-Pleistocene fossil sites is closely related to the 

history of the basin, which inevitably impacted sedimentological processes in the area 

(Bruhn et al., 2011). Geological deposits in this area are part of the “Omo group”, which 

 
1 Reprinted Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R., & Cerling, T. E. (2011). Paleosol 
carbonates from the Omo Group: Isotopic records of local and regional environmental change in 
East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 307(1-4), 75-89, Copyright (2011), 
with permission from Elsevier. 
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comprises the Usno, Mursi and Shungura formations in the lower Omo river valley 

(Ethiopia), and the Koobi Fora and Nachukui formations, located East and West of Lake 

Turkana, respectively (Figure 5). This study focused on the Shungura, Koobi Fora and 

Nachukui formations, three of the richest fossil deposits of the Omo group.  

Each of these formations is divided into members, which take their names from the volcanic 

tuff deposits that lie directly underneath the sediment deposit, which can be used for cross-

dating and correlations across the basin (Figure 6) to study the depositional history of the 

region and the evolutionary history of associated habitats. Each geologic formation from the 

Omo group was dated using radiometric dating and tephra-chronology (Brown et al. 1985, 

McDougall 1985, Harris, Brown, and Leakey 1988, Feibel et al. 1989, McDougall and Brown 

2006, McDougall et al. 2012).  

 

2.2.2 Fossil study sites 
 

2.2.2.1 Koobi Fora Formation 

2.2.2.1.1 General description and chronology 

The Koobi Fora formation, located east of Lake Turkana, is one of the richest fossil deposits 

in East Africa. Excavations were initiated by the International Omo Research Expedition 

(IORE) in 1968 under the leadership of Richard Leakey and led to the discovery of several 

hominin specimens such as the Paranthropus boisei cranium KNM-ER 406, the Homo 

ergaster skull KNM-ER 3733, or the Homo rudolfensis skull KNM-ER 1470 (Leakey, 1973; 

Leakey and Leakey, 1978; Wood and Lieberman, 2001; Harris, Leakey and Brown, 2006; 

Leakey et al., 2012). 

The formation is divided into eight members spanning between around 4.35 and 0.7 Ma, 

with the oldest being Lonyumum, followed by Moiti, Lokochot, Tulu Bor, Burgi, KBS, Okote 

and Chari. The Tulu Bor Member is the oldest member to contain hominin fossils, at ~3.44 
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Ma (Reed 1997). Because of an unconformity of 0.5 million years, the Burgi Member is 

divided into a lower and upper sections (Brown and Feibel, 1991; Brown and Mcdougall, 

2011). Sediments derive mostly from fluvial deposits, but lacustrine deposits related to the 

presence of temporary lakes were found as well.  

This study focused on the Tulu Bor (3.44–2.64 Ma), Burgi (2.64–1.87 Ma), and KBS (1.87–

1.61 Ma) members (Figure 6).  

2.2.2.1.2 Summary of previous palaeo-environmental reconstructions 

 

Previous studies have reported a clear pattern of increasing open arid environments in the 

Koobi Fora formation (e.g. Bobe et al., 2007; Levin et al., 2011; Cerling et al., 2015; Levin, 

2015). Studies of the oxygen and carbon isotope composition of paleosol carbonates from 

this sequence suggested that a significant shift in vegetation conditions occurred more 

particularly at ~1.8-1.9 Ma, from C3 - to C4 - dominated landscapes (Cerling, Bowman and 

O’Neil, 1988; Quinn et al., 2007; Levin et al., 2011). Similarly, an increased abundance of 

grassland-indicative taxa and of mammal diversity in the Koobi Fora formation after ~2.2 

Ma was described from palaeontological data (Harris, 1991; Reed, 1997; Bobe and 

Behrensmeyer, 2004; Bobe, Alemseged and Behrensmeyer, 2007; Bibi and Kiessling, 2015; 

Fortelius et al., 2016). Analyses of East African aeolian deposits in ocean cores have 

suggested as well that an important climatic transition took place between 2.0 and 1.5 Ma 

(deMenocal, 2011). 

Deposits from the Tulu Bor member (3.44 – 2.64 Ma) document, according to 

palaeogeographic reconstructions (Brown and Feibel, 1991), a riverine phase of the basin 

with flooding periods. This is in agreement with palaeontological observations and analyses 

of pedogenic carbonates which described flood plain environments dominated by C3 -flora 

(Cerling, Bowman and O’Neil, 1988; Harris, 1991; Reed, 1997). While analyses of pedogenic 

carbonates suggested a dominance of C3 -flora in the Burgi member (2.64 – 1.87 Ma), some 
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analyses of faunal composition concluded that the region was likely dominated by 

grasslands during that time period (Bobe, 2011). Other faunal and pollen analyses proposed 

that this locality sustained a rather heterogeneous environment in that member, with more 

closed woodlands in the north and more open habitats in the south, providing a mixture of 

woodland and grassland areas (Harris, 1991; Reed, Fleagle and Leakey, 2007). The KBS 

member (1.87 – 1.61 Ma) appears to document a lacustrine phase of the basin (Brown and 

Feibel, 1991; McDougall and Brown, 2008), with environments dominated by C4 -plants, as 

reflected by faunal, pollen, palaeogeographic and pedogenic carbonate data, with the 

presence of more grazers possibly indicative of a grassland or shrubland environment 

(Bonnefille, 1984; Cerling, Bowman and O’Neil, 1988; Harris, 1991; Reed, 1997; Bobe, 2011; 

Levin et al., 2011) (see table_A 1 in appendix 1 for more detail). 

A recent faunal analysis of the Koobi Fora deposits between 1.98 and 1.38 Ma demonstrated 

that, when the assemblages are studied on a smaller geographic scale within the Koobi Fora 

area, shifts in faunal abundance varied across the different subregions, with an observed 

ecological shift in the Karari subregion between 1.98 and 1.38 Ma that was not reciprocated 

in the Ileret and Koobi Fora Ridge subregions (O’Brien et al., 2020). It was hypothesized that 

the Ileret and Koobi Fora Ridge subregions likely retained edaphic grassland habitats due 

to their proximity to the basin margins, while the Karari subregion, further away from the 

lake, presented mesic habitats in the Upper Burgi member but shifted to xeric wooded 

grasslands after ~1.87 Ma. This hypothesis was consistent with previous observations 

made from pedogenic carbonates showing an increase in C4 -vegetation and in habitat 

fragmentation from ~2.0 Ma, with closed savannah woodland/thicket and scrub in the 

Karari sub-region but a dominance of open low tree-shrub savannah in the Koobi Fora ridge 

subregion (Quinn et al., 2007). Such results highlight the complexity of early Pleistocene 

landscapes in the Koobi Fora formation and show that the landscape of East Turkana was 

likely composed of different dynamic ecosystems which changed variably through time 
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depending on their proximity with the lake margins and the hydrologic conditions in the 

basin. 

Overall, while most palaeo-environmental reconstructions of the Koobi Fora formation 

agree on a general trend of increased C4 -vegetation in the environment, some 

contradictions between studies can be found for the most recent members depending on 

the type of environmental proxy analysed and the geographic scale investigated. It seems 

therefore important to seek additional environmental proxies to complement previous 

studies and see if further detail on regional palaeo-vegetation heterogeneity can be 

gathered from fossil evidence.  

2.2.2.2 Nachukui Formation 

2.2.2.2.1 General description 

Excavations in the Nachukui Formation, on the western side of Lake Turkana, were initiated 

in the 1980s by John Harris and Franck Brown, leading to the discovery over the years of 

several important hominin specimens, such as the Turkana boy (also called Nariokotome 

Boy – KNM-WT 1500 – attributed to Homo ergaster) and the “Black Skull” of 

Australopithecus/Paranthropus aethiopicus (KNM-WT 1700) (Brown et al., 1985; Walker et 

al., 1986; Harris et al., 1988). 

The Nachukui Formation covers 500 km2 of discontinuous deposits which are separated 

into eight members ranging from ~4.0 to 0.6 Ma. The oldest member is the Lonuymum 

member, followed by the Kataboi, Lomekwi, Lokalalei, Kalochoro, Kaitio, Natoo and 

Nariokotome members. This sequence documents both lacustrine and fluvial environments, 

with fluvial deposits represented in most of the sequence, apart from a lacustrine phase 

observed in the middle of the Kalochoro member, associated to the transgression of 

Palaeolake Lorenyang at ~2.0 Ma (Brown and Feibel, 1991).  
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This study focused on four of these members: Lomekwi (3.44 - 2.53 Ma), Lokalalei (2.53- 

2.33 Ma), Kalochoro (2.33- 1.9 Ma) and Kaitio (1.9- 1.61 Ma). 

2.2.2.2.2 Summary of previous palaeo-environmental reconstructions 

Several studies have described the likely environments associated with most of the studied 

members. According to Bobe et al. (2007), the high proportions of Alcelaphini, Antilopini 

and Hippotragini specimens relative to other bovid tribes in the Nachukui assemblage 

suggest relatively open and arid environments in western Turkana. Work on soil carbon 

isotopes from palaeosol carbonates pointed to rapid increases in δ13C values at ~2.52 and 

~1.8 Ma, indicative of increases in C4 -plant biomass (Wynn, 2004; Levin et al., 2011). 

Similarly, plant wax biomarkers isotopic analyses indicated a highly dynamic vegetation 

structure in the region between 2.3 and 1.7 Ma, with a shift towards more C4 -vegetation in 

the landscape after ~2.1 Ma (Uno, Polissar, Kahle, et al., 2016). Results from an analysis of 

pedogenic carbonates from Nachukui by Quinn et al. (2013) proposed a slightly different 

habitat reconstruction for the region, indicating the presence of diverse habitats with a 

mosaic pattern of vegetation cover across the area. Similarly to other studies, they noted an 

overall increase in grassland after 1.61 Ma but argued that C3 -woodlands remained an 

important component of the vegetation.  

The Lomekwi member (3.44-2.53 Ma) has been described by most studies as relatively wet 

with diverse habitats associated to a large perennial river system, dominated by wooded 

vegetation with patches of wooded grassland (Behrensmeyer, 1975; Walker et al., 1986; 

Reed, 1997; Tiercelin et al., 2010; Bobe, 2011; Cerling, Wynn, et al., 2011; Quinn et al., 2013; 

Sonia Harmand et al., 2015). While some analyses of the faunal record pointed to a 

dominance of grassland in the landscape in the Kalochoro member (2.33-1.9 Ma) (Bobe, 

2011), results from other studies have suggested the presence of floodplains associated to 

a large river system, with a dominance of woodland/bushland/shrubland vegetation with 

wooded grassland (Brugal, Roche and Kibunjia, 2003; Quinn et al., 2013). The 
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predominance of woodland in the Nachukui formation has been suggested to have persisted 

in the Kaitio member as well (1.9-1.61 Ma) (Brugal, Roche and Kibunjia, 2003; Quinn et al., 

2013) (see table_A 2 in appendix A.1 for more detail).  

The West Turkana locality therefore seems to have provided rather heterogeneous habitats 

between 3.44 and 1.61 Ma, with varying proportions of grassland, bushland and woodland 

through time, but a dominance of woodland or bushland in several members. This habitat 

heterogeneity within the Nachukui members was particularly highlighted by the species 

diversity study proposed by Brugal et al. (2003), which demonstrated how faunal 

composition varied across the west Turkana sub-localities, suggesting the presence of 

different habitat types across the Nachukui formation, within the same time period (i.e. 

member). Different sites analysed for the Kaitio member, for instance, reflect differing 

environments, from large wooden biotopes close to water (in the Naiyena Engol sites) to 

more open environments (in the Kokiselei sites). These observations mirror the ones 

highlighted previously for the Koobi Fora formation, where regional landscapes were 

suggested to be highly fragmented after ~2.0 Ma.  

The different pictures painted across studies for the Nachukui palaeo-environments 

between 3.44 and 1.61 Ma demonstrate the difficulty in reconstructing palaeo-habitats. It is 

especially complex when using faunal abundance data, which can suffer taphonomic and 

identification/collection biases (e.g Maxwell et al., 2018), and are also often interpreted 

based on behavioural ecology of modern mammals, assuming that ancestral species shared 

similar behaviours with their extant relatives. These difficulties highlight the necessity to 

find environmental proxies that might suffer less from these biases, such as direct 

assessments of past dietary behaviours without a priori biases based on the dietary ecology 

of extant relatives. 
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2.2.2.3 Shungura Formation 

2.2.2.3.1 General description 

The Shungura Formation is located on the northern side of Lake Turkana, west of the lower 

Omo river valley. Over 50,000 fossil vertebrate remains were collected by the International 

Omo Research Expedition (IORE) between 1967 and 1976, and by the Omo Group Research 

Expedition (OGRE) since 2006, among which about 250 hominin specimens from at least 

four different species, and the earliest records of Homo and Paranthropus (Arambourg and 

Coppens, 1968; Coppens and Howell, 1976; Suwa, White and Howell, 1996; Wood and 

Constantino, 2007; Andrews and Bamford, 2008; Boisserie et al., 2008, 2010; Wood and 

Leakey, 2011; Souron, 2012; Villmoare et al., 2015). The hominin taxa from the Shungura 

Formation include Australopithecus sp., Paranthropus aethiopicus, Paranthropus boisei, and 

Homo sp.  

The Shungura formation contains deposits that extend over a distance of 60 km (oriented 

north-south), and a composite stratigraphic sequence of 766 m. This sequence is the most 

continuous of the Omo-Turkana basin, and is divided into twelve members: the oldest 

deposits are found in the basal member, followed by members A to L (with no member I). 

Each of these members are also sub-divided into smaller units, providing a detailed 

stratigraphy of 111 units, ranging from 3.9 to 1 Ma (Feibel and Brown, 1993; Reed, 1997). 

This sequence documents fluvial (between the basal member and G-13) and lacustrine 

(above member G13) environments, related to changes in the geography of the Turkana 

basin (Brown and Feibel, 1991). Most of the Shungura formation deposits are records of 

ancient fluvial deposition from a large meandering river, from Member A (3.6 Ma) through 

the middle of Member G (2.1 Ma), at a time when the Omo palaeo-river flowed from the 

Ethiopian Highlands south through the valley (Hakala, 2012). This was followed by a shift 

to lacustrine conditions in middle and upper Member G (2.1 to 1.9 Ma), before a return to 

fluvial conditions after 1.9 Ma (De Heinzelin, Haesaerts and Howell, 1976; De Heinzelin and 

Haesaerts, 1983).  
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The present study focused on six of these members: B (3.44- 2.91 Ma), C (2.91- 2.52 Ma), D 

(2.52- 2.4 Ma), E (2.4- 2.32 Ma), F (2.32- 2.27 Ma), and G (2.27- 1.9 Ma). 

2.2.2.3.2 Summary of previous palaeo-environmental reconstructions 

As for the other two Turkana basin formations described above, several studies have 

proposed palaeo-environmental reconstructions for the Shungura sequence. Overall, most 

studies suggest the presence of mosaic habitats ranging from forests to open woodlands 

between ~3.4 and 2.0 Ma, with a gradual increase in C4 -vegetation through time (Jaeger and 

Wesselman, 1976; Bonnefille and Dechamps, 1983; Wesselman, 1984; Bobe and Eck, 2001; 

Alemseged, 2003; Levin et al., 2011; Bibi et al., 2013; Barr, 2015; Negash et al., 2020; 

Plummer et al., 2015; Negash et al., 2015; Blondel et al., 2018; Martin et al., 2018).  

The wide range of habitats represented in the lower Omo river valley during the Plio-

Pleistocene was particularly well-documented by ecomorphological studies of bovid 

astragali (Barr, 2015; Plummer et al., 2015), which demonstrated an abundance of heavy 

cover ecomorphs in the sequence, along with an increase in open ecomorphs between 2.9 

Ma and 2.3 Ma (members C to F). The predominance of closed-wooded environments was 

suggested by several studies, such as the work undertaken by Bobe and Eck (2001) on 

faunal assemblages, which highlighted the abundance of bovid tribes associated with closed 

and wet habitats. The integrated approach to taphonomy and faunal change developed by 

Alemseged (2003) also suggested the presence of wooded habitats in the Shungura 

formation, and demonstrated continuous faunal change throughout the sequence, pointing 

to a potentially major biotic change in the area at ~2.3 Ma (i.e. base of member G) 

characterised by a change to open and edaphic grassland environments. Similarly, studies 

on the dietary ecology of tragelaphins demonstrated that some species (such as Tragelaphus 

rastafari) fed predominantly on browse before 2.9 Ma, after which they started to include 

more C4 -plants in their diet, potentially reflecting a change in the environmental conditions 

around them (Negash et al., 2015; Blondel et al., 2018). A dietary ecology study by Martin et 
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al. (2018) also showed temporal variation in the diet of terrestrial papionins (family 

Cercopithecidae, genera Papio and Theropithecus), with a suggested increase in the 

consumption of herbaceous monocots between ~2.9 Ma and ~2.53 Ma. Studies of pedogenic 

carbonate stable isotopes suggested as well environments dominated by C3 -flora, with a 

gradual increase in C4 -vegetation after 2.0 Ma (member G) (Cerling, Wynn, et al., 2011; 

Levin et al., 2011). All together, these various studies point towards palaeo-environments 

dominated by C3 -vegetation and closed-wooded habitats for a long part of the Shungura 

sequence (up to ~2.0 Ma), but suggest also mosaic habitats and variations in land cover 

through time, with a gradual and fluctuating increase in C4 -vegetation and more open 

environments throughout the sequence.  

Deposits from member B (3.44-2.9 Ma) were formed by a perennial river system with 

occasional riverine flooding which created flood plains (De Heinzelin, Haesaerts and 

Howell, 1976). Various habitat reconstructions suggested environments dominated by wet 

and relatively closed habitats associated with little open grasslands in the region during that 

time period (Jaeger and Wesselman, 1976; Bonnefille, 1984; Reed, 1997; Alemseged, 2003).  

Deposits from member C (2.9-2.52 Ma) have been previously reported to document similar 

environments to what has been observed in member B, with a bushland–woodland regime 

with a riverine forest and edaphic grasslands dominating the area (Reed, 1997; Alemseged, 

2003). Member D (2.52-2.4 Ma) was deposited on nutrient-rich flood plains (de Heinzelin 

et al. 1976), and similarly appears to have been associated with riverine forests within a 

woodland–bushland regime and with edaphic grasslands (Bonnefille, 1984; Reed, 1997; 

Alemseged, 2003). Habitats in member E (2.4-2.32 Ma) have been also described as well-

watered woodland–bushland environments with a riparian woodland or forest (Reed, 

1997; Alemseged, 2003). A change in local climatic conditions has been suggested from 

member F (2.32-2.27 Ma) onwards, with habitats dominated by areas of edaphic grasslands, 

bushlands, and more open woodlands than in older members (Jaeger and Wesselman, 1976; 

Bonnefille, 1984; Reed, 1997). Deposits from member G (2.27-1.9 Ma) were reported to 
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indicate the presence in the region of a river surrounded by open woodland, while the flood 

plain was suggested to have expanded to include edaphic grasslands during that time period 

(Reed, 1997; Alemseged, Coppens and Geraads, 2002) (see table_A 3 in appendix A.1 for 

more detail). 

The Plio-Pleistocene sequence of the Shungura formation has been widely studied and 

benefits from a rich and well-preserved fossil record associated with clearly identified and 

well-dated members that allow for detailed studies of palaeo-environmental conditions 

through time at a relatively precise temporal scale. The very rich corpus of research 

material that has been produced so far on this region provides an interesting set of studies 

to which results from the present work can be compared. More particularly, studies that 

have used similar methods (i.e. stable isotopes, dental use-wear analyses) on taxa that likely 

shared the same ecological niche as the studied fossil species (such as Tragelaphines) were 

of particular interest to compare with the results from this research and assess if temporal 

shifts in dietary patterns could be observed to the same degree in these taxa. Furthermore, 

the consistency with which palaeo-environments in the lower Omo-river valley have been 

described, regardless of the environmental proxy studied, as dominated by closed-wet 

habitats throughout most of the sequence provides an opportunity to assess the validity of 

using mixed-feeding antelopes species as palaeo-habitats indicators: if the diet of extinct 

mixed-feeding antelope species did mirror prevailing vegetation conditions, the dietary 

patterns observed for fossil impalas from the Shungura formation should indicate the 

consumption of a significant amount of C3 -vegetation in their diet, in agreement with 

previous palaeo-environmental reconstructions for Plio-Pleistocene deposits of this region. 

 

2.2.3 Rationale for this study 

 

Various palaeo-environmental proxies have been previously used to reconstruct Plio-

Pleistocene habitats in the Omo-Turkana basin and report, overall, a general trend of 
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increasing open grasslands in the environment, with a significant shift from C3- to C4- 

dominated landscapes occurring more particularly at ~1.8-1.9 Ma at the time of the 

transgression/regression of Lake Lorenyang in the basin. While more arid open habitats 

have been suggested in Koobi Fora and Nachukui, more wet closed environments were 

described for the Shungura deposits. However, some contradictions between studies could 

be found depending on the type of environmental proxy analysed and the geographic scale 

investigated, with more recent studies highlighting the complexity and spatial 

heterogeneity that likely characterised palaeo-habitats in this region. For instance, high 

habitat heterogeneity in the Omo-Turkana basin was suggested by results from a diversity 

analysis of large mammal communities by Du and Alemseged (2018), supporting the 

hypothesis that habitat heterogeneity may have influenced hominin presence and evolution 

through complex biotic interactions that necessarily impacted human foraging strategies 

and selective pressures. 

Seeking additional environmental proxies is therefore essential to gain further detail on 

regional palaeo-vegetation heterogeneity. As mentioned previously, while fossil mammals 

constitute a significant part of the fossil record and can provide valuable evidence to 

reconstruct palaeo-environments, palaeontological studies can suffer from various biases 

(e.g. taphonomy, identification, preservation, ecological assumptions based on modern-

analogue taxa). Using palaeo-environmental proxies that have not yet been studied in detail 

combined with methods that suffer less from these biases might therefore provide valuable 

information to assess the composition and heterogeneity of palaeo-habitats in the Omo-

Turkana basin between 3.5 and 1.6 Ma.  

This study proposes to complement current knowledge on the Plio-Pleistocene 

environments of the Omo-Turkana basin through a detailed assessment of the dietary 

behaviours of selected extant and extinct mixed-feeding antelopes species, using a 

combination of methods to produce a comprehensive picture of the dietary ecology of these 

species.  
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2.3 Studied species 

2.3.1 Mixed-feeders as palaeo-environmental indicators: impala and 

springbok 

2.3.1.1 Genus Aepyceros – Impala 

2.3.1.1.1 General description 

The impala (Aepyceros melampus, Lichtenstein 1812) is a large-bodied antelope (~60 kg for 

males, ~45 kg for females /  Height: males 75-92 cm, females 70-85 cm) present today in 

Botswana, Kenya, Malawi, Mozambique, Rwanda, South Africa, Swaziland, Tanzania, 

Uganda, Zambia and Zimbabwe (Figure 7). Males have long lyre-shaped horns which curve 

backwards, often with transverse ridges (Estes, 1991) (Figure 8). Their pelage is reddish-

brown on the back, with a lighter tan on the torso, white undersides, black at the tip of the 

ears, and white patches around the eyes, on the chin and on the muzzle. Both sexes have on 

the back of their hind legs patches of black hair covering metatarsal glands which are used 

for olfactory communication. They also have three distinctive black stripes on their rump: 

two on their flanks and one on the tail (Kingdon and Hoffmann, 2013; Castelló, 2016).  

2 

 
2 ©Kingdon and Hoffman, 28 Feb 2013, ‘Mammals of Africa Volume VI: Pigs, Hippopotamuses, Pigs, 
Deer, Giraffe and Bovids’, A&C Black, an imprint of Bloomsbury Publishing Plc.” 

Figure 8: Geographic distribution of 
modern common impala (A. 
melampus melampus) and black-
faced impala (A. melampus petersi) 
(from Kingdon and Hoffman, 2013 
p.481 2). 
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Most authors recognise three subspecies of impala: large-horned impala from East Africa 

(A. m. suara), common impala from the southern African regions (A. m. melampus) and a 

rare black-faced impala (A. m. petersi, Bocage, 1879) found only in northern Namibia and 

south-western Angola (Kingdon, 1997; Reynolds, 2005). Genetic studies have shown a 

decline in genetic diversity among modern impala populations towards the east of the 

African continent, suggesting that the southern impala populations might be older than 

those from eastern Africa, where extinctions might have occurred during the Pleistocene, to 

be re-populated later by populations migrating from southern Africa (Nersting and 

Arctander, 2001; Lorenzen, Arctander and Siegismund, 2006; Reynolds, 2007). 

 

 

Figure 9: Modern impalas Aepyceros melampus a), b), c) males; d) female; e) females and calves (a), d), 
e) photographed at the Nairobi National Park, Kenya, April 2017; b), c) photographed at the Rhino and 
Lion Nature Reserve, Kromdraai, South Africa, October 2017). 
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The main differences between the long-horned impala (A. m. suara) from eastern Africa and 

the common impala (A. m. melampus) from southern Africa are horn and body size 

variations (Estes 1991). The black-faced impala (A. petersi) is smaller than A. melampus, and 

its natural habitat range does not overlap with that of the common impala. It has a well-

defined black blaze on the middle of the face below the eyes, blacker on the tip of the ears 

and a longer tail. They live in small herds (3-15 individuals) and favour dense riverine 

vegetation, or moderately dense vegetation close to water (Castelló, 2016). They are 

considered very different genetically from other impala subspecies (Lorenzen and 

Siegismund, 2004). 

This study focused on Aepyceros melampus sensu lato, as none of the modern subspecies 

have been identified in the East African fossil record. 

2.3.1.1.2 Social organization and behaviour 

Common impalas (A. melampus) have a life expectancy of about 15 years, with two birthing 

peaks a year in spring and autumn. Calves are usually weaned after 4-6 months, and they 

reach sexual maturity at around one year old for males, and one-and-a-half years old for 

females. Impalas are mostly sedentary, with a home-range of about 2-6 km2. Females 

generally congregate in herds of about 15-20 individuals, which can go up to 50-100 

individuals, while bachelor male herds can count up to 200 individuals. Both groups migrate 

through the territories held by dominant males or assemble in mixed-herds outside of the 

rut season (Estes, 1991). 

Males are territorial, especially during the mating season, as they usually leave their natural 

clan by the age of 4 to move within a different herd range and avoid inbreeding (Estes, 

1991). During these periods, males invest up to 75% of their time attending the females that 

enter their territory, hence spending less time feeding and ruminating, which tends to 

impact on their physical condition and body weight. For example, studies have shown that 
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East African territorial males are often in poorer condition than their counterparts in 

bachelor herds, even when resources are abundant (Estes, 1991). 

Impalas are active throughout the day, alternating between feeding and resting, and usually 

drink at least once a day (Castelló 2016). They often rest and ruminate whilst standing in 

the shade of closed-canopy cover, due to poor thermoregulation against dry heat (Estes, 

1991; Kingdon and Hoffman, 2013). However, their activity varies seasonally, requiring 

more movements within a larger home range during the dry season, which results in less 

ruminating time (up to 3km a day against at least 0.95 km in the wet season – Estes, 1991). 

2.3.1.1.3 Dietary preferences and habitat 

Modern impalas (Aepyceros melampus) are an ecotone species (i.e. they prefer transitional 

areas between two different biomes) inhabiting acacia savannas and open woodlands close 

to water (Skinner and Smithers, 1990). Male impalas seem to have a preference for dense 

habitats, which females avoid (Estes, 1991). Impalas prefer open woodland with little 

undergrowth and grassland of low to medium height, and require access to water sources 

during the dry season. In the wet season, they can survive without access to water due to 

the vegetation moisture content, where green grass and succulents are available (Estes, 

1991; Kingdon and Hoffman, 2013). They also require an environment with firm footing and 

little relief (Estes, 1991).  

Impalas are considered mixed-feeders with a varying seasonal diet: they primarily graze 

when grasses are green and growing in the wet season, but can browse on bush, fruits, 

foliage, forbs, seedpods and shoots when necessary, often in the dry season (Jarman and 

Jarman, 1973; Estes, 1991). Acacia tortilis and Acacia nilotica pods seem to be particularly 

favoured due to their high protein content (Kingdon and Hoffman, 2013). They can 

therefore adapt their diet depending on local food availability by shifting between grazing 

and browsing (Wronski, 2002; Sponheimer, Grant, et al., 2003; Cerling et al., 2015). Studies 

have also reported that impalas also tend to switch between grass and browse in response 
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to changing resource conditions resulting from environmental factors, such as decreasing 

rainfall or fires (du Toit, 1988; Van Rooyen, 1992; Wronski, 2003; Skinner and Chimimba, 

2005).  

As a result, the dietary behaviours of impala populations tend to vary across the various 

niches they inhabit. For instance, impalas from Chobe National Park (Botswana) were 

sighted preferentially in Capparis and Combretum shrublands, where medium- to low-

height vegetation and water is available, as well as browse of acceptable quality during the 

dry season (Omphile and Powell, 2002), which echoes observations made by Dunham 

(1980) in the Sengwa Wildlife Research Area (Zimbabwe), where Capparis tomentosa and 

Combretum mossambicense were among the plants with the highest use by impalas during 

the dry season. In the Moremi Wildlife Game Reserve in the Okavango delta (Botswana), 

where a wide range of habitats are available to herbivore communities, impalas were 

observed to avoid grasslands and floodplains during the rainy season (favouring mixed-

open-woodlands), while favouring mixed-closed-woodlands and upper-floodplains during 

the dry season (Bonyongo, 2005). In the mixed-wooded-savannah environments of the 

Nylsvley Nature Reserve (South Africa), impala populations were observed to be evenly 

distributed through the different vegetation types during the wet season where they grazed 

primarily, while concentrating in areas of Acacia savanna during the dry season and shifting 

to a browse-dominated diet (Monro, 1980). 

Impala diet is made up of 45% dicotyledons, 45% monocotyledons and 10% fruit (Gagnon 

and Chew, 2000), and according to Sponheimer et al. (2003a), males graze more than 

females. Seasonal variation in feeding strategies has also been recorded, with for example a 

diet composed of 75% grass around January in Sengwa, Zimbabwe after the major rains, 

against less than 10 % in the same area during the dry season in June/July (Dunham, 1980). 

Similarly, for impalas from Natal (South Africa), browse comprised 19% of their diet during 

the wet season, as opposed to 52% in the dry season (Van Rooyen, 1992). Likewise, studies 

observed that impalas respond to reduced food abundance during the dry season by 
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selecting different plant parts and changing feeding heights, while selecting more for leaves 

than other browse parts, because of their high protein content (Dunham, 1980, 1982; Van 

Rooyen, 1992). Regional and sex-based variations in dietary content have also been 

observed by Sponheimer et al. (2003b) through carbon isotope data from Kruger Park, 

South Africa, depending mostly on forage quality and availability.  

Further investigation in the same locality by Codron et al. (2006) supports the hypothesis 

that impalas select their food depending on protein content to maintain high levels of diet 

quality. Grass would be favoured during the wet season when its quality is higher, while 

browse is preferred during the dry season due to decreasing protein content in grasses 

(Dunham, 1980; Wronski, 2003). It has also been suggested that the digestibility of food 

items influences as well the type of plants selected by impalas, with populations from the 

Associated Private Nature Reserves (adjacent to Kruger National Park, South Africa) being 

shown, for example, to avoid browsing on mopane (Colophospermum mopane) despite its 

abundance during the dry season, likely due to its high condensed tannin concentration 

(Kos et al., 2012). 

2.3.1.1.4 Fossil Aepyceros species 

2.3.1.1.4.1 Species descriptions 
 

 

According to Kingdon and Hoffman (2013), the impala is considered to be the only member 

of its tribe (Aepycerotini), based on molecular analyses, with a proposed lineage ancestry 

of about 21.5 Ma. The earliest occurrence of genus Aepyceros in the fossil record is from 

Chad at ~7.0 Ma (Geraads et al. 2009), and their remains have been found in several East 

African formations. Three main Aepyceros species have been identified in the east African 

fossil record (see appendix A.2.1 for description of each fossil species).  
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Figure 10: Aepyceros shungurae cranial remains. a) lingual view, b) buccal view and c) occlusal view of 
left maxilla (M2-M3) KNM-WT 16393(Nachukui, Lomekwi Member). d) lingual view, e) buccal view, 
and f) occlusal view of right mandible KNM-WT 16391 (Nachukui, Lomekwi Member). 
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Figure 11: Aepyceros melampus cranial remains. a) lateral view, b) superior view, c) occlusal view of 
cranium KNM-ER 1657 (Koobi Fora, Burgi Member).  d) buccal view, e) occlusal view, and f) lingual 
view of right mandible KNM-ER 467 (Koobi Fora, KBS Member). 

 

Occurrences of Aepyceros prior to the late Pleistocene are rare and uncertain in South Africa, 

apart from some specimens found in Makapansgat Limeworks and identified by Vrba 

(1987) and Reed (1997b). The fossil impala species Aepyceros premelampus (Harris, 2003) 

has been identified in Lothagam, in the  Nawata formation, as well as in the Nachukui 

formation (Apak and Kaiyumung members), with remains dated between the late Miocene 

and the middle Pliocene (i.e. 7 to 4 Ma – Reynolds, 2010). Fossil remains of Aepyceros 

shungurae (Gentry, 1985; Figure 9) have been identified in several fossil deposits of the 
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Omo-Turkana basin: Shungura formation (members B to G; 3.44 - 1.9 Ma), Usno formation 

(3-2 Ma), Koobi Fora formation (members Moiti to Tulu Bor; 3.97 - 2.64 Ma) and Nachukui 

formation (members Lomekwi to Kalochoro; 3.44 - 1.9 Ma) (Gentry, 1985, 2010; Harris et 

al., 1988; Harris, Brown and Leakey, 1988; Harris, 1991). Remains of Aepyceros melampus 

specimens (Figure 10) were found in the Koobi Fora formation (members Burgi to Okote;  

2.64 Ma - 1.38 Ma), and in the Nachukui formation (members Lokalalei to Nariokotome ; 

2.53 Ma - 0.6 Ma) (Harris, Brown and Leakey, 1988; Feibel, Brown and Mcdougall, 1989; 

Harris, 1991).  

Of these three species, only Aepyceros melampus and Aepyceros shungurae are represented 

in the fossil assemblages studied here. 

2.3.1.1.4.2 Palaeo-ecology of fossil impalas 
 

 

Plio-Pleistocene impalas may have relied more heavily on browse (Sponheimer et al., 1999) 

and inhabited more closed woodlands than they currently do (Bobe and Eck, 2001). Isotopic 

studies on Plio-Pleistocene specimens suggest that impalas prior to ~4 Ma were 

predominantly mixed-feeders (i.e. 25% were grazers, 50% were mixed-feeders, and 25% 

were browsers), while geologically younger impala specimens had a stronger grazing 

component to their diet (i.e. 53% were grazers, 47% were mixed-feeders, and none were 

browsers) (Cerling et al., 2015). 

Aepyceros shungurae is very abundant across the sequence of the Shungura Formation 

(Ethiopia – Members B to G, from 3.44 to 1.9 Ma) where detailed studies of the formation 

have shown that habitats varied from closed woodlands to a more heterogeneous habitat 

with marshy forests and open and dry savannah (Gentry and Gentry, 1978; Bonnefille and 

Dechamps, 1983; Wesselman, 1984; Bobe and Eck, 2001). Based on their morphology 

(straighter, less lyrated and more gracile horn cores, shorter and thicker limb bones), A. 

shungurae may have inhabited preferentially more closed woodland habitats than A. 

melampus (Harris, 1991; Bobe and Eck, 2001). 
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2.3.1.1.5 Rationale for using Aepyceros as an environmental proxy 

The rationale for choosing Aepycerotini as the main study-taxon in this project was two-

fold: firstly, genus Aepyceros is very well-represented in the east African fossil record, often 

as one of the most-abundant bovid tribes. This provides appropriate sample sizes to 

investigate their dietary ecology in each fossil deposit, as well as through time. Indeed, as 

described previously, Aepyceros specimens have been discovered in every member of the 

Koobi Fora, Nachukui and Shungura formations between 3.44 and 1.6 Ma. Secondly, the 

dietary plasticity of modern impala, as well as their sedentary lifestyle, allow them to adapt 

to prevailing vegetation conditions without the need to migrate. If, as it appears likely, their 

fossil counterparts were equally adaptable, then their diets could provide data on the 

prevailing vegetation conditions in the fossil localities studied.  

To ensure that fossil Aepyceros species can be used as reliable palaeo-environmental 

indicators, the relationship between the diet of modern impala populations and the land 

cover patterns of the habitats they inhabit, was investigated. Previous research has shown 

a high degree of dietary variability that could potentially relate to other ecological factors 

such as season, sex, or dietary niche partitioning. This part of the project explored modern 

impala dietary variability and to what extent their diet can inform on the land cover 

composition and structure of modern impala habitats. 

2.3.1.2 Genus Antidorcas - Springbok 

2.3.1.2.1 General description 

The springbok (Antidorcas marsupialis –Zimmerman, 1780) is an antelope species present 

today in south-west and southern Africa (north-western South Africa, Namibia, Botswana) 

(Figure 11). It is particularly well-represented in dry areas, such as the Kalahari, Karoo and 

Namib deserts, but varies in size depending on the locality. This variation has led to the 

recognition of three subspecies of springbok (A. marsupialis marsupialis, hofmeyri, 
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angolensis) (Skinner and Louw, 1996). Although generally considered sub-species, these are 

occasionally elevated to species level (Castelló, 2016). 

Springbok are medium-sized antelopes (weight: 30-59 kg for males, 20-43 kg for females / 

shoulder height: 68-90 cm) with lyre-shaped horns present in both sexes, which curve 

backwards to form a hook at the tips (Figure 12). Their coat is generally light-brown, with 

a white head with a thin brown stripe from eye to muzzle. Along their dorsal crest are two 

folds of scent-secreting skin that can be erected, probably for visual or olfactory signal 

(Kingdon, 1997; Castelló, 2016). They are endemic to southern Africa.  

The Angolan springbok (A. angolensis) is intermediate in body and horn size between South 

African and Kalahari springboks, with longer ears. It is native to Angola. The Kalahari 

springbok (A. hofmeyri) is a native species to Botswana, Namibia and South Africa. It is 

present in open, arid plains with grass or low scrub and is absent from mountains and rocky 

hills, also avoiding dense woodlands (Castelló, 2016). 

This study considered Antidorcas marsupialis sensu lato, which includes these three 

suggested subspecies. Their ancestors were also considered, which are extinct today: A. 

recki, A. australis, and A. bondi (see 2.3.1.2.4).  

 

 

Figure 12: Geographic distribution of modern 
springbok sub-species (A. m. marsupialis, A. m. 
hofmeyri and A. m. angolensis)  (modified from 
(Furstenburg, 2016), p.5). 
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Figure 13: Modern springboks Antidorcas marsupialis (Photographed at the Rhino and Lion Nature 
Reserve, Kromdraii, South Africa, October 2017). 

 

2.3.1.2.2 Social organization and behaviour 

Springboks (A. marsupialis) have a life expectancy of about 7 to 10 years in the wild (Weigl, 

2005) and can mate twice a year. Females give birth to one young per gestation (5-6 

months), often just before the beginning of the wet season, and calves are weaned after 3-4 

months, to reach sexual maturity at 11-12 months-old (Castelló, 2016; Kingdon and 

Hoffman, 2013).  

Springboks live in family groups of 5 to 100 individuals during the dry winter period but 

tend to assemble into larger mixed herds during the rainy summer season. In the dry season, 

where the distribution of their preferred vegetation is less homogenous, populations are 

more widely dispersed in smaller herds (Bigalke, 1972). They are mobile, apart from the 

dominant males which become highly territorial when entering the rut, becoming sedentary 

until their resources are exhausted (Kingdon and Hoffman, 2013). 
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Springboks have a very thin pelage to allow for efficient body thermoregulation, which 

allows them to release excessive heat when necessary (e.g. after being pursued by 

predators), but which also makes them more vulnerable to changes in temperatures: they 

quickly shiver with moderately low temperatures, and gain heat rapidly when temperatures 

are high (Skinner and Louw, 1996). Although active throughout the day, they feed mainly 

around dawn and dusk, and usually lie down or stand up to ruminate during the hottest 

hours of the day (Castelló, 2016;, Kingdon and Hoffman, 2013).  

The springbok was described as a highly mobile species up until the end of the nineteenth 

century, as it used to migrate over large distances during extended dry seasons, forced out 

of their home range only to return with the rains. However, this phenomenon called 

“trekbokken” has disappeared in modern populations due to anthropogenic influences such 

as fences and hunting practices, which prevent these animals from moving around freely 

(Bigalke, 1972; Estes, 1991; Skinner, 1993; Dewar et al., 2006). Springbok populations have 

also been largely impacted by diseases such as rinderpest (Estes, 1991), or by parasites 

(Turner et al., 2012). Most springboks in South Africa are now part of farmers’ livestock, or 

within National Park lands, living and breeding within fenced areas (Kingdon, 1997).  

2.3.1.2.3 Dietary preferences and habitat 

The springbok has a high dietary adaptability, with the extant species Antidorcas 

marsupialis favouring open and semi-open habitat, inhabiting dry grasslands, bushlands or 

shrublands, where it can eat short grass, succulents, forbs and browse (Castelló, 2016). 

Springboks are however absent from woodland savannah, probably due to the presence of 

parasites to which they are very sensitive (Kingdon and Hoffmann, 2013).  

The springbok has been described as a mixed-feeder with a preference for browse (Bigalke, 

1972), and has been observed to be primarily a summer grazer and a winter browser, 

grazing on young grasses when available, and browsing on low shrubs and succulents when 

these are no longer available (Estes, 1991). Stable carbon isotope analyses agree with such 
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classification (Sponheimer, Lee-Thorp, et al., 2003). Springbok tend to feed primarily on 

succulent shrub leaves (e.g. Acacia mellifera) and coarse/hard-stemmed grasses (e.g. 

Aristida, Eragrostis, Cynodon, Panicum and Sporobolus) (Davies, Botha and Skinner, 1986; 

Nagy and Knight, 1994a; Skinner and Louw, 1996). They have also been observed feeding 

on karroid vegetation from riverbeds and dry lake beds, tall shrubs or leaves from the 

ground, as well as roots (Eloff, 1959; Van Zyl, 1965; Bigalke, 1972; Cain, Krausman and 

Germaine, 2004), succulents, and cucurbits in the absence of surface water (Kingdon, 1997).  

The anatomy of their digestive system is well adapted to a diet of mixed forage, but the 

ability to digest highly fibrous food is limited, which forces springboks to migrate to find 

other resources once the local vegetation becomes too lignified (Hofmann, Knight and 

Skinner, 1995; Skinner and Louw, 1996). 

The springbok does not require the presence of groundwater and is therefore often present 

in very dry areas where it has less competition while foraging. It can satisfy its moisture 

requirements by feeding on succulents (e.g. leaflets of blackthorn Acacia mellifera), 

cucurbits or shallow roots (Kingdon and Hoffman, 2013; Kingdon, 1997), but will drink 

water when available (Estes, 1991; Skinner and Louw, 1996). In their study of springbok 

populations in the Kalahari, Nagy and Knight (1994) noted that springbok tend to consume 

a wider range of food resources with high water content (e.g. flowers) during the hot, dry 

season when in areas with no access to drinking water, whereas consuming less high-water-

content resources in that season in areas with access to drinking water. It suggests that 

springbok tend to adapt their diet depending on the availability of drinking water. 

The springbok dietary patterns therefore vary according to season, drinking-water 

availability, but also to sexes: in a study of the Karoo springbok, Davies et al. (1986)  

differences were observed in diet between adult males and females, with rams preferring 

more palatable shrubs. Nutritional intake is also affected by other factors, such as vigilance 

requirements, with individuals on the outskirts of a herd feeding less than those in the 

centre due to increased vigilance. Vigilance also increases when approaching trees, and 



65 
 

 

decreases in open grassland (Bednekoff and Ritter, 1994). Such flexible feeding behaviours 

are likely to have been a key factor in the evolutionary success of these species.  

2.3.1.2.4 Fossil Antidorcas species 

2.3.1.2.4.1 Species descriptions 
 

 

Fossil remains belonging to genus Antidorcas have been found within Pliocene and 

Pleistocene deposits in North, East and southern Africa (Skinner and Louw 1996). Alongside 

the extant A. marsupialis, the existence of two or three extinct species have been suggested 

from the fossil record: Antidorcas recki, Antidorcas bondi and Antidorcas australis. Based on 

cranio-dental morphology (i.e. especially horn cores), Vrba (1973) suggests that these 

species arose in East Africa 15 million-years ago from the ancestral Gazella lineage 

(Kingdon, 1997). It is possible that the modern springbok evolved from forms descended 

from Northern African populations, as some early Antidorcas fossils are known from the 

Atlas Mountains (Maghreb region, North Africa) and show that Antidorcas was already 

adapted to cool Eurasian-type habitats by 4 Ma (Kingdon, 1997). These populations could 

have migrated into South Africa through arid corridors which connected North and North-

East Africa to South Africa during most glacial ages.  

Fossil springbok specimens have been recovered in some members of the Koobi Fora and 

Nachukui formations (Harris 1991; Brugal et al. 2003), only represented by A. recki (Figure 

13), between 3.4 and 1.6 Ma. This species seems to disappear from the eastern African fossil 

record after ~ 0.8 Ma (i.e. Olduvai Bed IV - Gentry and Gentry, 1978b), with a last recorded 

appearance of the Antidorcas genus in East Africa at the site of Lainyamok between   

~392,000 - ~330,000 Ka (Potts and Deino, 1995). Despite its disappearance from East 

Africa, the Antidorcas genus remains in southern Africa, where A. recki is believed to have 

given rise to new species: A. australis and A. bondi (Brink and Lee-Thorp, 1992), and, 

eventually, to the modern springbok, A. marsupialis (Vrba, 1973). However, there is still 

debate regarding the origin of A. marsupialis, and the existence of A. australis as a separate 
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species.  Time at which migratory behaviour appears is still unknown. The chronology of 

the Antidorcas lineage and the debates around taxonomy are further described in appendix 

A.2.2.  

It must noted, however, that while A. recki specimens have been reported for the Omo-

Turkana fossil record, questions remain around the identification of this species, and 

about the similarity between the A. recki specimens identified in East Africa, compared 

to the A. recki specimens identified in the South African fossil record. While A. recki has 

been suggested to have been one of the most abundant antelope in eastern Africa (i.e. 

recorded from Olduvai Gorge, Kanjera, Peninj, Laetoli and Omo ; Gentry, 1978), it seems 

to have been less abundant in South Africa, where the classification of these specimens 

as A. recki (Vrba, 1976) has been questioned (De Ruiter, 2001). This could be due to 

issues in differential taxonomic classification, particularly with A. marsupialis, when 

working from isolated teeth only (see Table 1 in Sewell et al. 2019 for more detail on 

dental identification of Antidorcas species). This may be further complicated by sexual 

dimorphism of both species, as suggested by Adams et al. (2016). The difficulty in 

identifying fossil Antidorcas to the species level is therefore a caveat that must be taken 

into account when studying this taxon, especially for further comparisons between the 

eastern and southern fossil record. 
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Figure 14: Antidorcas recki left mandible from Koobi Fora formation (Tulu Bor Member - KNM-ER 
2764). a) b) c) KNM-ER 1657 (Koobi Fora, Burgi Member. a) lingual view, b) buccal view, c) occlusal 
view. 

 

2.3.1.2.4.2 Palaeo-ecology of fossil springbok 
 

While the extant species Antidorcas marsupialis seems to be favouring open and semi-open 

habitat and is described as a mixed-feeder with a preference for browse (Bigalke, 1972), it 

is not necessarily the case of its extinct counterparts. For instance, carbon stable isotope 

analyses on south African fossil material have suggested that A. bondi probably used to be 

predominantly a grazer, while fossil A. marsupialis and A. recki appeared to have fed 

primarily on C3 -plants (Brink and Lee-Thorp, 1992; Luyt, 2001; Lee-Thorp, Sponheimer and 

Luyt, 2007; Ecker and Lee-Thorp, 2018; Sewell et al., 2019). Seasonality of dietary 

behaviours has also been suggested among South African fossil Antidorcas species (Sewell 

et al., 2018) and Olduvai cf. A. recki specimens (Rivals et al., 2018), through combined 
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isotopic and use-wear analyses. This could reflect similar seasonal dietary behaviours 

between extinct and modern springbok species. 

Browsing diets in the South African A. recki has also been suggested through mesowear and 

microwear analyses (Sewell et al., 2018), but several studies have stressed the inclusion of 

grass within a mixed-feeding diet and a preference for habitats dominated by woodland or 

bushland, for this extinct species (Plummer and Bishop, 1994; Spencer, 1997). A study on 

cf. A. recki specimens from Olduvai Gorge (Tanzania, ~1.7 Ma) highlighted the dietary 

plasticity of this fossil springbok species, with differences in dietary patterns observed 

through time (Rivals et al., 2018). As springboks are represented only by A. recki in the Omo-

Turkana fossil record, it will be interesting to see in this study if their dietary preferences 

in the Plio-Pleistocene Turkana basin mirrored the ones observed for that species in South 

African contemporary deposits. 

2.3.1.2.4.3 Rationale for using genus Antidorcas as an environmental proxy 

 

As for genus Aepyceros, genus Antidorcas was selected as a study taxon in this project for 

both its abundance in the fossil record and its dietary plasticity, which is attested in modern 

springbok and suggested as well from previous studies on extinct Antidorcas species (Sewell 

et al., 2018). Although fossil springbok specimens are not as abundant in the Omo-Turkana 

fossil record as fossil impala specimens, representatives of the Antidorcas lineage are 

present in some members, and their dietary ecology can be compared to that of impalas, to 

see if similar patterns occur. Data from these Antidorcas specimens are therefore sought for 

this research project, to test whether eastern African fossil springbok had a dietary 

flexibility similar to that of their extant relatives.  

The collection of data from the Omo-Turkana A. recki specimens was also undertaken to 

allow future comparisons between Plio-Pleistocene eastern African and southern African 

Antidorcas assemblages. Indeed, results from the present study are directly comparable to 

results produced by  Sewell et al. (2019) on the South African fossil record, on which a 
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similar approach was used, combining use-wear analyses and stable carbon isotopes to 

investigate potential variation in dietary behaviours within the Antidorcas lineage during 

the Pleistocene (see also Sewell, 2018). This allows comparisons to be made between the 

dietary signals of eastern and southern African A. recki specimens, which are represented 

in these two African regions during the Plio-Pleistocene, while keeping in mind that 

identification of Antidorcas dental remains to species can be problematic, raising the 

question whether A. recki truly occurred as one species in both eastern and southern Africa, 

especially if drastic differences in dietary behaviours are identified for this species when 

comparing both regions.  

2.3.2 Obligate grazers and browsers to calibrate the overall dietary 

spectrum 
 

Samples from one dedicated-browser and one dedicated-grazer taxa (i.e. genera Giraffa and 

Equus, respectively) were also analysed in this study to help calibrate the overall dietary 

spectrum of ancient herbivores through time, by investigating the diet composition of 

species that are expected to rely mainly on graze or on browse. These additional studied 

taxa are described briefly in this section. 

2.3.2.1 Genus Giraffa 

 

The modern giraffe (Giraffa camelopardalis) is a browsing species which usually inhabits 

dry savannahs dominated by acacia woodland and scrublands, or open woodland habitats 

(Hutchins et al., 2003). It is native to Africa and can be found south of the Sahara to eastern 

Transvaal, Natal, and northern Botswana. Giraffes have disappeared from most of western 

Africa, except a residual population in Niger. Giraffes are ruminants with have a four-

chambered stomach, feeding on leaves, flowers, seed pods, and fruits, favouring areas rich 

in Acacia, and occasionally eating soil or dried bones for their mineral content (Hutchins et 

al., 2003). Their diet is usually constituted of 80% acacia browse, seeds, pods, fruits and 
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shoots, and 10–20% herbaceous plants (Schulz, Calandra and Kaiser, 2013). Modern 

giraffes are not water-dependent and can therefore be found far from water sources as they 

can meet most of their water requirements from the water-content of their foliage. The 

consistency in the diet of modern giraffes, as well as their low dependence on drinking 

water, have been suggested to make giraffes ideal for studies on stable isotope aridity 

indices (Levin et al., 2006). 

Fossil giraffids are represented in the Omo-Turkana basin by several species, all of them 

extinct today. These species coexisted during the Plio-Pleistocene, and present variations in 

size, and in shape and orientation of their ossicones:  Giraffa jumae, Giraffa gracilis, Giraffa 

pygmaea and Giraffa stillei (from the largest to the smallest species) (Harris, 1976; Mitchell 

and Skinner, 2003) (see appendix A.2.3 for more detail).  

According to carbon isotope data (Cerling et al., 2015), fossil Giraffa sp. from the Nachukui 

and Koobi Fora formations had a diet composition similar to that of extant giraffes, which 

can be described as obligate browsers. Their dental morphology, similarly to their modern 

counterparts’, also suggests a predominance of non-abrasive foods, with a low crown height 

and sharp apices. However, it must be noted that an isotopic study of Giraffa cf.  G. gracilis 

specimens from the Lower Awash valley (~2.8 – 2.6 Ma) has shown that some specimens 

consumed up to 40% of C4 -vegetation, which suggests perhaps a greater dietary variability 

in some extinct giraffids than is observed among modern giraffes (Rowan et al., 2017), 

although a study by Cerling et al. (2015) reported that some of their sampled modern G. 

camelopardalis specimens exhibited isotopic values typical of mixed-feeders. Similarly, 

isotopic data from specimens of G. jumae and G. stillei from Laetoli suggested a diet with 

more grass, and a stronger reliance on drinking water among these specimens, compared 

with the Turkana basin giraffids (Harris et al., 2010). 

Considering the results from these previous studies, this study aims to test whether the 

fossil Giraffa specimens analysed actually reflect a dominance of browsing signals, as 
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usually expected for representatives of this genus, or if, in fact, some degree of dietary 

variability could be observed within the Omo-Turkana Plio-Pleistocene fossil record. 

Because Giraffa individuals are usually observed to be primarily C3 -biomass feeders, 

changes from this expected pattern might reflect unknown palaeo-dietary behaviours for 

this genus, or changes in local palaeo-environments which forced giraffids to rely on 

different food resources depending on what was available in their habitats. They should, 

therefore, help to evaluate the extent of the dietary spectrum, especially when it comes to 

the availability of browse, or to potential differences in canopy cover across regions/time 

periods (reflected in differences in stable carbon isotope content).  

2.3.2.2 Genus Equus 

Within the family Equidae, the genus Equus (Equini tribe) includes horses, asses, 

and zebras, and is the only Equidae genus comprising extant species today. Modern African 

equines are represented by four species of the genus Equus: the wild ass (Equus africanus), 

Grévy's zebra or imperial zebra (Equus grevyi), the plains or Burchell's zebra (Equus quagga, 

formerly E. burchellii), and the mountain zebra (Equus zebra) (Kingdon 1997). Zebra species 

are high-density, tropical grassland equines, while asses occur in low-density, desert areas. 

Species from genus Equus have a dentition adapted for grazing, with large incisors to grab 

grass blades, and highly crowned molars (hypsodont) for grinding (Estes, 1991). Their 

digestive systems can digest tough unpalatable grasses quickly.  

African equines usually live in areas where their food and water supplies change drastically 

between seasons, which forces them to migrate where there is seasonal rainfall (Klingel, 

1972). According to carbon isotopic analyses (Cerling et al., 2015), modern Equus 

individuals are predominantly C4 -grazers. E. grevyi, for example, feeds up to 70% on long 

and dry grasses, and at least on 30% browse during times of drought or in overgrazed areas, 

as fall-back resources (Schulz et al., 2013). Although extant Equus is often described as an 

obligate grazer, some studies have indeed highlighted the ability of this genus to adapt to 
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locally available plants, and include browse in some regions during droughts (Berger et al., 

1986; Roeder, 1999; Tütken et al., 2013).  

Equines are represented in the African fossil record by E. burchellii, E. oldoywayensis and E. 

grevyi in eastern Africa, and by E. burchellii, E. zebra and E. capensis in South Africa 

(Reynolds, 2007 and references therein). E. burchellii significantly differs from the other 

three fossil equid species by the smaller size of its teeth (Churcher, 1981; Eisenmann, 1983). 

In most fossil collections, isolated equid teeth are usually only assigned to genus (i.e. Equus 

sp.), due to the difficulty in differentiating species based solely on isolated dental remains 

(Reynolds, 2005). It was the case for all specimens analysed in this study.    

 

Based on isotopic studies on the Omo-Turkana Basin fossil record, it appears that Equus has 

been a C4 -grazing genus since its first appearance in Africa during the late Pliocene (Cerling 

et al., 2015). However, the proportions of grazing/mixed-feeding/browsing specimens 

differ slightly from the extant Equus specimens, with 82% grazers/18% mixed-feeders in 

the fossil record, against 91% grazers/8% mixed-feeders/1% browsers in extant Equus 

specimens. Overall, fossil African equids are usually classified as obligate grazers, which is 

consistent with their highly hypsodont dental morphology (see Figure A-2 in appendix 

A.2.4). For this reason, and because it is represented in most of the members of the Omo-

Turkana study area, dental remains from genus Equus are used in this study as a way to 

evaluate the Plio-Pleistocene dietary behaviours of a predicted grazing taxon, which might 

vary more than expected, either due to more varied dietary behaviours, or due to 

differences in the type of graze consumed (e.g. differences in isotopic signature between 

arid and non-arid adapted grasses 
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2.4 Reconstructing palaeo-diets and palaeo-environments: review 

of the methods used in this study 
 

To provide a detailed assessment of the dietary behaviours of the different taxa selected for 

this study, several methods are used in the present study: mesowear analysis, dental 

microwear textural analysis, stable carbon and oxygen isotopes, and land cover analysis. 

The main rationale for using these methods relies on the use of dental remains, which tend 

to be well-represented in the fossil record, and have the potential to yield precious 

information on dietary behaviours, at different scales and at a different level of detail 

depending on the method used. Combining several methods of dietary analysis on a same 

assemblage offers, in addition, the potential to draw a picture as detailed as possible of the 

studied taxa’s dietary behaviours, allowing to collect indirect evidence on the structural and 

geochemical properties of the vegetation-types consumed by these animals. The rationale 

for using modern land cover data alongside dietary data is driven by the necessity to better 

understand the relationship between animal populations’ dietary behaviours and their 

habitats, to facilitate interpretations of the paleo-dietary behaviours inferred from dental 

analyses.  

This section introduces and discusses the strength and weaknesses of each of the methods 

used in this study, and how these can be used to make inferences about the dietary ecology 

of the studied taxa and, in turn, how these can be used to contribute to the current 

knowledge on Plio-Pleistocene habitats in the Omo-Turkana basin. 

2.4.1 Mesowear analysis  

2.4.1.1 General Principles 

Mesowear refers to macroscopic wear on teeth, which is the result of accumulated attrition 

and abrasion on molar teeth acquired through life or during the last months/years of an 

individual’s life (Fortelius and Solounias, 2000; Rivals et al., 2007; Louys et al., 2012; 
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Loffredo and DeSantis, 2014; Ackermans et al., 2018; Ackermans, 2020; Ackermans, Martin, 

et al., 2020). Attrition is the tooth wear caused by tooth-on-tooth contacts during 

mastication, and is the primary cause of wear in browsing herbivores that consume 

relatively soft food items such as leaves, twigs, flowers or fruits (Green and Croft, 2018). 

Attrition has been shown to result in enamel surfaces with sharp edges and well-developed 

facets. Abrasion is the type of tooth wear caused by interactions between teeth and 

exogeneous particles such as food or grit and is thought to be the primary cause of wear in 

grazing species that consume grasses or ground-level vegetation. Abrasion has been shown 

to result in enamel surfaces with round edges and obscured facets.  

This phenomenon can be observed and/or measured from the buccal outlines of specific 

teeth according to a method defined by Fortelius and Solounias (2000). By evaluating the 

relative proportion of these two types of wear on molars, one can assess whether an animal 

was predominantly grazing or browsing throughout its life (Fortelius and Solounias, 2000; 

Mihlbachler and Solounias, 2006; Rivals and Semprebon, 2006; Semprebon and Rivals, 

2007; Kaiser et al., 2009; Ackermans, Martin, et al., 2020).  As highlighted by Fortelius and 

Solounias (2000), the fact that the original study was able to identify various degrees of 

mixed-feeding behaviours suggests that the method can help evaluate the relative degree of 

dental abrasion among mixed-feeding species, as well as among grazers and browsers. 

These levels of dental abrasion are likely related to the proportion of grass or abrasive 

matters present in the food resources of the animals. A controlled-feeding experiment on 

goats demonstrated that if diets rich in phytoliths (such as grass blades) are indeed 

responsible for more rounded cups and lower occlusal relief, the most change in mesowear 

can actually be observed with diets depleted of abrasives (such as browsing habits) in 

relation to dominating attrition-wear, leading to sharper cusps and higher relief 

(Ackermans et al., 2018). This confirms that dental mesowear likely reflects the relative 

proportion of attrition-dominated and abrasion-dominated wear in an individual. A pilot 

study conducted on modern zebras by Kaiser and Schulz (2006) suggested that mesowear 
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is likely to be related to humidity and seasonality, with high ratios of round cusps and high 

relief reflecting humid environments, while high ratios of blunt cusps and low relief being 

associated with drier habitats. 

2.4.1.2 Mesowear Scoring 

Mesowear is observed with the naked eye or at low magnification (e.g. hand lens). The 

method is implemented by observing the labial edges of the paracones and metacones of 

specific molars, using two variables: occlusal relief and cusp shape (Fortelius and Solounias, 

2000). Occlusal relief (OR) is the relative difference in height between cusp tips and the 

valley between them, in lateral view. Cusp shape (CS) refers to the apex of the cusp 

(paracone or metacone) described as sharp, rounded, or blunt (see Figure 18 in chapter 3). 

This method of scoring is referred to as ‘Mesowear I’.  

A modified version of the mesowear method was proposed first by Rivals and Semprebon 

(2006) and used consequently in other studies  (Rivals et al., 2007; Semprebon and Rivals, 

2007; Rivals, Schulz and Kaiser, 2009) where a single-variable is used to score mesowear, 

combining occlusal relief and cusp height into a single categorical score ranging from zero 

(high relief and sharp cusps) to three (blunt cusps and essentially no relief). Other 

researchers have adapted the method using various numeric scales, such as one ranging 

from zero to four (Kaiser et al., 2009, 2013; Blondel et al., 2018; Sewell et al., 2019) or from 

zero to six  (Mihlbachler et al., 2011; Uno et al., 2018). 0 always represents the most 

attrition-dominated mesowear signature (suggested to represent browsing habits), while 

the highest number on the scale represents the most abrasion-dominated signature 

(suggested to represent grazing habits). A mean score can then be calculated for each 

species and/or sample based on all available dental specimens (Kaiser et al., 2013; Ozaki 

Kubo et al., 2014). This method of scoring is referred to as ‘Mesowear II’. 

A recently published review of the method has highlighted the wide range of adaptations, 

simplifications and extensions of the original mesowear method that can be found today 
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across the literature (Ackermans, 2020). While adaptations have been necessary to take 

into account specific dental morphologies and allow this method to be used beyond large-

bodied herbivores, simplifications of the method can lead to a reduced capacity to identify 

more subtle variations in diet based on mesowear. Furthermore, the existence of so many 

different mesowear methods reduces considerably comparability between studies. To 

mitigate for this latter issue, both Mesowear I and Mesowear II scoring systems were used 

to facilitate comparisons with previous and future works. 

2.4.1.3 Data acquisition 

Fortelius and Solounias (2000) designed the mesowear method for the upper second molar 

(M2) (see Figure 14 dental nomenclature). However, several papers have since attempted 

to extend the method to other tooth positions to allow for bigger sample size when applied 

to the fossil record as a minimum of ten dental specimens per sample has been advised for 

analysis. For instance, Louys et al. (2011) suggested to using the lingual side of the lower 

second molars (M2), because the lingual cusps of lower molars are functionally similar to 

the buccal cusps of the upper molars. However, their results demonstrated that using other 

teeth alongside the M2 would likely cloud the mesowear signal. The same had been observed 

by Franz-Odendaal and Kaiser (2003) when testing mesowear on the lower dentition, 

suggesting differential use-wear patterns for lower molars, which demonstrate an 

increased grazing signal. If the occlusal relief variables did not seem to differ between upper 

and lower dentition, there was however a difference regarding the cusp shape variables 

“sharp” and “rounded”, a pattern also observed by Kaiser and Solounias (2003) in plain 

zebras Equus quagga. Kaiser and Schulz (2006) and Kaiser and Solounias (2003) managed 

to extend the mesowear method successfully by including the upper tooth positions P4, M1 

and M3, for studies focusing on equids. However, when applied to other species, Franz-

Oldendaal and Kaiser (2003) observed different results, suggesting that only upper third 

molars (M3) should be used beside the M2 for accurate dietary classification. Indeed, the 
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combination M2-M3 provided consistent mesowear classifications for the species tested in 

that study. 

While it has been suggested that analyses should take into account the effect of ontogenic-

age on use-wear by examining (where possible) the age structure of fossil assemblages 

(Rivals, Mihlbachler and Solounias, 2007), Fortelius and Solounias (2000) demonstrated 

that mesowear is not sensitive to wear stages as long as very young (no wear) and very old 

individuals (enamel completed reduced by heavy wear) are excluded. Only the sharpest of 

the two cusps is scored, as sharpness is less likely to be influenced by factors other than 

diet, which is not true for roundness of the cusps. 

 

Figure 15: Example of dental nomenclature for (a) upper, and (b) lower dentitions, of Aepyceros 
melampus ((a) specimen AZ 532 and (b) specimen AZ 646, from the Ditsong Museums of South Africa, 
Pretoria).  
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2.4.1.4 Strengths and limitations of the mesowear method 

The mesowear method presents the advantages of being relatively quick, inexpensive, non-

destructive and easy to record directly on fossil material (Loffredo and DeSantis, 2014; 

Green and Croft, 2018). More importantly, one of the main strengths of this method is to be 

relatively taxon-independent because dental wear relates directly to the food items 

ingested, meaning than two individuals feeding on similar food items are likely to yield 

similar mesowear scores regardless of their taxa. This method was selected for the present 

studies because of these advantages.  

However, the mesowear method presents several limitations. One of these is the fact that 

the method can only inform on the overall degree of toughness and abrasiveness of the 

consumed food items, which does not allow palaeo-environmental interpretations of 

greater detail than the open habitat vs closed habitat dichotomy based on the general 

grazing vs browsing dietary categories. Currently, very few feeding experiments have been 

conducted on this method (Kaiser et al., 2013; Solounias et al., 2014; Ackermans et al., 2018; 

Ackermans, Martin, et al., 2020), and it remains uncertain whether mesowear can be used 

to assess diets at a greater detail. Equally, because mesowear has been shown to be the 

result of dental use-wear accumulated over years (Ackermans, Martin, et al., 2020), seasonal 

variation in diet cannot be assessed using this method.  

To maximise the strengths of this method and mitigate for its limitations, mesowear 

analysis can be combined with other methods that assess dietary behaviours in greater 

detail and/or on a different temporal scale. Because dental microwear offers insights into 

the structural properties of the food items consumed on a shorter time scale than mesowear 

(i.e. last few days/weeks before death), microwear can be used beside mesowear analysis 

to detect seasonal changes in diet (Rivals, Solounias and Mihlbachler, 2007; Rivals et al., 

2015). Stable carbon isotopes can also be combined to dental use-wear analyses to provide 

information on the geochemical properties of the vegetation ingested during the time of 
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enamel-mineralisation, and complement the data acquired from meso- or micro-wear 

studies (Sewell et al., 2019).  

2.4.2 Dental microwear textural analysis (DMTA) 

2.4.2.1 General principles 

Dental microwear is the study of microscopic tooth-wear resulting from dental use. Various 

food types have been shown to differ in resistance to structural breakdown during 

mastication, leading to differing use-wear patterns and differing marking patterns on the 

enamel surface (Walker and Teaford, 1989; Teaford, 1994). Unlike mesowear, microwear 

does not reflect a cumulative use-wear produced over months to years, but instead informs 

on the structural characteristics of the food items consumed up to two weeks before the 

animal’s death, due to the rapid turnover rate of the traces imprinted on the enamel surface 

(Kaiser and Brinkmann, 2006; Ungar, 2015; Calandra and Merceron, 2016; Bignon-lau et al., 

2017; Green and Croft, 2018).  

Many of the earliest methods focused on measuring and counting individual features on 

images of the tooth occlusal surface acquired through Light Microscopy or Scanning 

Electron Microscopy (see Ungar 2008 and Green and Croft 2018 for more detailed reviews 

of these methods). However, it was gradually recognised that these methods suffered from 

low repeatability and high inter-observer error (Grine, Ungar and Teaford, 2002; Scott, 

2012). These concerns led to the development of an automated three-dimensional 

technique: dental microwear textural analysis (MTA) (Ungar, 2002; Ungar et al., 2003; Scott 

et al., 2005). 

Dental microwear texture analysis (DMTA) is based on three-dimensional surface 

measurements taken using white-light confocal microscopy and scale-sensitive fractal 

analysis. A computer software is used to analyse the texture of a wear surface and its 

topography at various scales, as opposed to previous methods which quantified discrete 
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microscopic features such as scratches and pits. The various surface parameters produced 

with this method (see 2.4.2.3 Textural parameters) allow quantitative characterizations of 

three-dimensional surfaces that are repeatable and free of observer measurement error 

(Ungar et al., 2003; Scott et al., 2006; Green and Croft, 2018). Several studies have 

demonstrated that DMTA can be particularly efficient for performing quantitative analyses 

of intra- and inter-specific variations in diet composition among ungulates (Ungar et al., 

2003; Merceron et al., 2010; Scott, 2012; Merceron, Hofman-Kamińska and Kowalczyk, 

2014; Calandra and Merceron, 2016; Bignon-lau et al., 2017).  

To understand the nature of the relationship between microwear and diet, several studies 

have focused on living animals such as primates (e.g. Scott et al., 2005) or ungulates (e.g. 

Scott, 2012). These studies showed that use-wear is closely related to the properties of the 

consumed foods, especially its toughness and siliceous content, as it impacts the 

biomechanical chewing patterns of the animals as they adapt to access the nutrient content 

of the food items (Scott, 2012). Tooth morphology and microstructure have also been 

suggested to influence use-wear patterns and occlusal surface texture as it requires adapted 

chewing movements and biting force (Hua et al., 2015; Calandra and Merceron, 2016).  

Similarly, the differences in microwear patterns have been shown to relate to food particle 

size, with large hard particles being able to fracture enamel and cause more loss of dental 

tissue than smaller particles (Lucas et al., 2008; Ramdarshan et al., 2016). For instance, a 

controlled-food experiment on forty ewes fed on various types of food demonstrated that 

dental microwear textural analysis can provide a detailed account of the types of foods 

processed by browsers beyond the usual browser/fruit-browser dichotomy, such as 

observable variations in microwear textures according to the amount and type of seeds 

processed.  
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2.4.2.2 Data acquisition 

Microwear data for textural analysis is frequently acquired from moulds (negative 

impressions) or casts (positive impressions) of the selected specimens to facilitate studies 

of museum collections and allow easier manipulation of the sample under the microscope 

(Green and Croft, 2018). Dental-grade moulding polyvinyl-siloxane products are often used 

to produce moulds from the original specimens, such as President Jet Light Body (low 

viscosity) and President Jet Regular Body (medium viscosity), which have been shown to 

produce high quality moulds (Goodall, Darras and Purnell, 2015). It has been shown that 

data from studies using different moulding materials should not be compared directly 

(Goodall et al. 2015).  

While some researchers analyse microwear textures directly from the moulds rather than 

from casts (e.g. Schulz et al., 2010; Ramdarshan et al., 2016), casts are required (using the 

moulds made from the specimens) when using techniques that rely on light refraction or 

electron beam interaction. Scanning the original moulds rather than casts can reduce the 

risks of information loss that can arise from adding a step to the specimen replication 

process, although the degree of information lost between the original specimen and the 

mould itself has not yet been investigated in as much detail as the information loss between 

specimen and cast (Goodall, Darras and Purnell, 2015; Mihlbachler, Foy and Beatty, 2019). 
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Figure 16: Occlusal view of bovid upper (right) and lower (left) second molars, highlighting the facets 
where dental microwear will be studied (modified from Scott 20123, based on illustration by G. 
Merceron). 

 

Upper and lower molars are often used in dental microwear studies, especially when using 

fossil specimens, to ensure sufficient sample sizes. Recent experiments (Ramdarshan et al., 

2017; Ackermans, Winkler, et al., 2020) have shown that values from all permanent molars 

(M1 to M3) of the same dentition (upper or lower) are statistically similar, suggesting that 

they can be combined together in statistical analysis. However, Ramdarshan et al. (2017) 

suggested that the combination of values from upper and lower dentitions should only be 

used for specific facets. The mesio-lingual facet of the paracone, and the disto-labial facet of 

the protoconid are traditionally used in dental microwear studies (Semprebon et al., 2004; 

Merceron et al., 2012; Scott, 2012; Rivals et al., 2015) as  these were thought to share similar 

microwear patterns because they  occlude during shearing mechanisms (also called “phase 

I” shearing processes by Janis, 1979, 1990 - as opposed to “phase II” grinding mechanisms). 

However, Ramdarshan et al. (2017) observed significant differences in microwear textures 

between these two facets, suggesting that these facets should not be combined in statistical 

 
3 Republished with permission of Walter de Gruyter and Company, Scott, J. R. (2012). Dental 
microwear texture analysis of extant African Bovidae. Mammalia 76 (2012): 157–174 © 2012 by 
Walter de Gruyter • Berlin • Boston; permission conveyed through Copyright Clearance Center, Inc. 
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analyses. Nevertheless, they also demonstrated that the disto-labial facet of the protoconid 

and the mesio-lingual facet of the protocone share similar microwear patterns, which allow 

statistical analyses to be performed on these facets altogether (Figure 15). The mesio-

lingual facet of the paracone can also be used in analyses but must be plotted separately 

from the protocone and protoconid facets, due to the microwear texture differences 

mentioned above. 

While various equipment have been used to acquire dental microwear data from moulds or 

casts, confocal microscopy has been used predominantly in the most recent studies 

(Calandra and Merceron, 2016), and was used as well in the present project.  Four adjacent 

scans are produced per facet, to be subsequently digitally levelled and cleaned of artefacts 

such as dust or glue residues (Scott et al., 2006; Calandra and Merceron, 2016). A data point 

cloud is then generated and analysed with the Toothfrax (Surfact) and SFrax software 

programs designed for scale-sensitive fractal analysis (SSFA). These analyses allow to 

characterize changes in surface texture at differing scales through different textural 

parameters (Scott et al. 2006).  

 

2.4.2.3 Textural parameters 

Several ecologically significant textural parameters have been identified in previous studies 

and were shown to be reflective of animals’ feeding patterns (e.g. Merceron et al., 2012; 

Scott, 2012; Rivals et al., 2015): complexity (area scale of fractal complexity - Asfc), 

heterogeneity of complexity (heterogeneity of the area scale of fractal complexity - HAsfc), 

and textural fill volume (Tfv). These parameters and their ecological significance are 

described in Table 3 (see appendix A.3 for more detail). 
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Table 7: Value-ranges and interpretations for each variable, and associated dietary categories, based on published literature. 

Low Mid-range High

Consumption of tough and abrasive foods 

(e.g. monocots, grass blades) (e.g. obligate 

grazers, variable grazers)

Consumption of hard items like seeds 

(e.g. fruit-browsers, browsers)

Scratches in opposite directions, 

potentially coupled with pits of varying 

size (e.g. browsers and fruit-browsers, 

browser-grazer intermediates, generalists) 

= hard/brittle food items require more 

chewing force and a crushing mechanism

Surfaces that feature parallel scratches  

(e.g. obligate grazers) = tough and 

abrasive foods (e.g. monocots, grass 

blades)

Monotypic diet - low diet diversity (e.g. 

obligate grazers, variable grazers)

Polytypic diet - high diet diversity (e.g. 

browsers)

Diet involving smaller particles or relatively 

soft foods, causing relatively shallow 

scratches and/or pits (e.g. obligate grazers)

Surfaces dominated by large pits or deep 

scratches (e.g. fruit-browsers, then 

browsers, generalists) = browse create 

deeper pits (hard items)

Sources

Asfc

epLsar

Browser-grazer 

intermediates, 

generalists

Variable 

grazers

Grazers foraging tough and 

abrasive monocots display 

high anisotropy coupled with 

low complexity and less 

dispersion in dental 

microwear textural 

parameters. 

Among the mixed feeding 

taxa, browser-grazer 

intermediates had higher 

values than generalists and 

variable grazers.  

Scott 2012, 

Scott 2006, 

Ramdarshan 

et al. 2016, 

Berlioz et al. 

2017, 

Teaford and 

Runestad 

1992

Values

Among mixed feeders, 

browser-grazer intermediates 

and frugivores have higher 

values than variable grazers 

and generalists.  

Hasfc

Tfv

Surface roughness at a given 

scale. Complex wear fabrics  

appear to be consistent with high 

bite forces used to fracture hard 

objects (hard vs tough foods).

Among the mixed feeding 

taxa, generalists had higher 

values for fi ll volume than 

browser-grazer intermediates. 

Fruit-browsers, 

browser-grazer 

intermediates, 

generalists

Variable 

grazers, 

browser-grazer 

intermediates

Variable Description Additional information

Directionality of microwear: As 

striations have a greater 

coincidence of orientation, epLsar 

increases: related to the 

directionality of jaw movements 

during  mastication. These are 

related to food properties (hard 

vs tough foods).

Degree of within-facet variation 

in microwear across different 

scales: potentially related to 

factors such as the size and 

variability in wear-causing 

particles. Likely related to the 

degree of variation in diet.

Volume of square cuboids at a 

given scale that can fill a surface. 

Greater for surfaces with larger, 

deeper, and more symmetrical 

areas of wear (i.e., heavily pitted 

surfaces) as more filling elements 

are likely to fit in such areas. 

Smaller seed size can also results 

in higher Tfv values.
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2.4.2.4 Strengths and limitations of the DMTA method 

Similarly to the mesowear method, one of the main strengths of dental microwear analysis is 

to be relatively taxon-independent because dental wear relates directly to the food items 

ingested. Furthermore, the use of an automated three-dimensional technique allows to 

reduce inter-observer error and improve both accuracy and comparability of microwear 

studies when similar equipment and variables are used (Arman et al., 2016), which is why 

this method was selected for the present study, in complement to mesowear analysis. 

Dental microwear textural analysis can provide information on individual feeding behaviour 

based on the physical properties of the food items (abrasiveness, toughness, grain size) in 

greater detail and on a different temporal scale than mesowear analysis, and therefore can be 

used to evaluate variation in dietary behaviours within and between populations of a species, 

as well as seasonal and temporal changes in feeding ecology at the species, taxa or palaeo-

community-level (e.g. Rivals and Solounias, 2007; Merceron et al., 2010, 2014; Rivals et al., 

2015; Bignon-lau et al., 2017; Berlioz et al., 2018). However, because microwear reflects diet 

on short time scale, typical diets can be misrepresented if the populations sampled are not 

sufficiently representative, and if the species studied tends to change their diet seasonally or 

regionally (Kay and Covert, 1983; Rivals et al., 2010). As suggested by Green and Croft (2018), 

this issue can be minimized by pooling individuals from limited spatial and temporal intervals 

(e.g. from the same geographic regions, geological formations, or members), but also by 

combining use-wear analyses with intra-tooth stable isotope studies to confirm seasonal 

variations in diet in the studied taxa 

Other studies also investigated the potential biases related to DMTA, especially regarding the 

importance of exogenous particles (i.e. dust and grit) as a factor impacting enamel-loss and 

texture alteration during food processing. The impact of dust and grit on microwear patterns 

can be particularly relevant when studying species that feed at low-ground level and might 

therefore ingest a significant amount of exogeneous particles, more particularly in open-
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habitats with strong winds depositing a significant amount of aeolian dust on the vegetation 

(Schubert et al., 2006; Sewell, 2019). While in vivo experiments conducted by Hoffman et al. 

(2015) suggested that increasing grain size of grit significantly increases the size of 

microscopic pits on the enamel surface, Ungar et al. (2016) and Merceron et al. 

(2016) demonstrated that dental microwear textures reflect predominantly dietary 

preferences and are only minimally impacted by grit load. A recent feeding experiment 

showed diets containing small external abrasives tend to generate a polishing effect on the 

enamel surface, while diets with external abrasives of increasing size tend to increase enamel 

surface roughness (Ackermans, Martin, et al., 2020). In vitro experiments by Hua et al. (2020) 

highlighted the complexity of the relationship between microwear, food properties and 

exogenous particles by demonstrating that the effect of exogeneous grit on microwear 

texture is dependent of the material properties of the food items to which grit is adhering. 

More experiments are therefore still needed to fully understand the complex interactions 

between teeth, food, and grit. Overall, current knowledge suggests that dental microwear 

textural analysis can provide detailed information on feeding behaviours and that 

exogeneous particles only tend to significantly cloud the dietary signal by polishing dental 

facets when the dust particles ingested are particularly fine, which may be relevant to identify 

open, windswept habitats or potential aeolian dust fluctuations through time (Sewell, 2019; 

Ackermans, Winkler, et al., 2020).  
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2.4.3 Stable isotope analyses 

2.4.3.1 General principles 

Tissues such as enamel or bone can provide valuable information on past environments 

through the study of stable isotopes. Through the air they breathe, the food they eat and the 

water they drink, living organisms integrate into their hard tissues the isotopic signature of 

their environment with known or predictable fractionations (Higgins, 2018). Because the 

isotopic composition of these elements of their environment are themselves influenced by 

climate and regional topography, studying the biochemistry of fossil animal remains can 

inform on palaeo-environmental conditions (Pollard and Heron, 2013). Isotopic ratios can be 

measured using mass spectrometry to separate the different isotopes based on their mass-

to-charge ratio. 

Stable carbon isotopes can be used to understand the composition of ancient animals’ diets 

and, in turn, palaeo-habitats, as carbon is incorporated into biominerals through food 

consumption (Higgins, 2018). When studying herbivores, carbon isotopes can help 

distinguish between two major types of carbon fixation in plants (C3 - and C4 -pathways) and 

evaluate the relative proportion of plants of each type contained in the diet of the studied 

individual. Although the relationship between oxygen and the environments of the animals is 

complex, stable oxygen  isotopes have been shown to relate to precipitation, humidity, and 

temperature, as oxygen is primarily integrated into bodily tissues through the meteoric water 

drunk by the studied specimens (Higgins, 2018). Carbon and oxygen isotopes are often 

studied together for dietary reconstructions as they are directly related to the type of plants 

and the water ingested by individuals. As demonstrated by, for instance, Hopley et al. (2006) 

and Louys et al. (2012), combining stable carbon and oxygen isotopic studies of tooth enamel 

with dental use-wear analyses can provide more details on past diets than when these two 

techniques are used separately. This approach was therefore chosen for this study. 
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2.4.3.1.1 Stable isotopes and dental enamel 

Isotopic studies on bone collagen are often used in archaeology to study the average diet of 

an individual over the first years of its life. However, because collagen is generally not 

preserved in the Plio-Pleistocene palaeontogical record, isotopic studies are usually carried 

on dental remains when studying fossil deposits (Pollard and Heron, 2013).  

Enamel is composed of densely packed and relatively large hydroxyapatite crystals 

(Ca10(PO4)6(OH)2), which results in a high mineral content (Hillson 1996). The oxygen 

isotopic composition of biological apatite can be measured by targeting the oxygen derived 

from the carbonate group (CO23-), from the phosphates (PO43-) or from all oxygen-containing 

groups of the sample (carbonate, phosphate and hydroxyl groups) via laser-ablation. Carbon 

isotopic composition can be measured from the carbonate apatite present in teeth (Lee-

Thorp, Manning and Sponheimer, 1997; Pollard and Heron, 2013).  

Permanent teeth start forming before and during early life and remain unaltered once 

erupted and fully-mineralised. This absence of remodelling ensures that the isotopic 

composition of the dental material represents dietary trends over the first months/years of 

life, before the tooth is fully-formed (Pollard and Heron, 2013; Green et al., 2018). The 

isotopic signature is established in a tooth when it mineralizes (amelogenesis), and tooth 

enamel has been shown to be highly resistant to isotopic alteration compared to dentine and 

bone due to its inner structure (Lee-Thorp and van der Merwe, 1991).  

2.4.3.1.2 Carbon stable isotopes 

Because plants can be divided into three different isotopic groups based on their 

photosynthetic pathway, carbon isotopes can be used to study the relative composition of 

different types of vegetation in ancient environments (Smith and Epstein, 1971; Vogel, 1978; 

O’Leary, 1981; Higgins, 2018). 
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2.4.3.1.2.1 Plant photosynthetic pathways 

 

Most plants follow the C3 -pathway, where CO2 is converted to 3-phosphogylycerate, an 

organic compound containing three carbon atoms. C3 -plants thrive in areas with moderate 

sunlight intensity, moderate temperatures, and sufficient groundwater, and are found more 

abundantly at high latitudes and high elevation (Edwards et al., 2010). Typical C3-plants are, 

for example, cool-season grasses, trees, and shrubs.  

The C4 -photosynthetic pathway fixes carbon more efficiently during photosynthesis via the 

use of a solar-powered biochemical cycle, which allows C4 -plants to tolerate higher 

temperatures, drier conditions and lower atmospheric CO2 levels (Edwards et al., 2010). The 

δ13C value of these plants is therefore higher than that of C3 -plants. As this system requires 

more energy, C4 -plants tend to be outcompeted by C3 -plants at lower temperatures and 

higher CO2 levels (Ehleringer and Dawson, 1992; Ehleringer, Cerling and Helliker, 1997; 

Hopley, Latham and Marshall, 2006; Edwards et al., 2010; Quirk et al., 2019). Among C4 -

plants are typically found tropical grasses, rare shrubs, maize, cane sugar, certain millets, 

chenopods, sorghums and amaranths. Today, grasses using the C4 -photosynthetic pathway 

dominate savanna ecosystems, following a reported period of C4 -grassland expansion during 

the late Miocene and Early Pliocene (~8-4 Ma) (Osborne, 2008).  

The third known metabolic pathway is the Crassulean Acid Metabolism (CAM), found in very 

arid environments only and unique to succulents. This pathway relies on collecting carbon 

dioxide at night and reducing evapo-transpiration during the day by keeping the pores of the 

plant closed. This improves the plants’ photosynthetic performance in water and/or CO2 

deprived environments. Typical CAM-plants are cacti, many orchids and bromeliads in the 

tropical rainforest, as well as some aquatic angiosperms (Pollard and Heron, 2008).  
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2.4.3.1.2.1 Assessing diet composition from body tissues 
 

Carbon stable isotopes in body tissues of herbivores reflect the relative proportion of leaves 

and grasses that were integrated in their diet, as the carbon isotopic compositions of the plans 

are assimilated through ingestion, with an additional fractionation process (Lee-Thorp and 

Van der Merwe, 1987; Cerling and Harris, 1999; Cerling, Harris and Passey, 2003; Passey et 

al., 2005) (Figure 16).  

Previous studies have demonstrated that pure browsers (C3 consumers) have δ13C values 

which differ significantly from those of pure grazers (C4 consumers), and that these values 

can vary depending on the canopy cover (e.g. Lee-Thorp et al., 2007; Louys et al., 2012). For 

instance, it has been reported that C3 -plants have δ13C values ranging from -32‰ in closed 

understorey canopy conditions to -21‰ in more open environments, while C4 -plants can 

range from -21‰ to -9‰ (Cerling and Harris, 1999; Roberts et al., 2017). δ13C values of C3 -

plants in arid environments are usually slightly higher than those living under more humid 

conditions (Ehleringer and Dawson, 1992). Because atmospheric CO2 levels directly influence 

the photosynthetic pathways of terrestrial vegetation, the δ13C values of plants reflect the δ13C 

values of atmospheric CO2 at a given time. Past changes in the δ13C values of atmospheric CO2 

in turn indicate past changes in global air temperatures and mean annual precipitation.  

Similarly, previous studies have suggested that variation in δ13C values can be observed 

among C4 -plants depending on the enzyme (i.e. nicotinamide adenine dinucleotide 

phosphate-malic enzyme - NADP-ME;  phosphoenolpyruvate carboxykinase – PEPCK/PCK;  

or nicotinamide adenine dinucleotide-malic enzyme - NAD-ME) used during photosynthesis 

for the decarboxylation of the C4 acids (Hattersley, 1982; Cerling and Harris, 1999; Cerling, 

Harris and Passey, 2003; Ehleringer, 2005; Codron et al., 2005; Cerling et al., 2015; Cacefo et 

al., 2019). Plant taxa using the NADP-ME sub-pathway are mesic grasses (i.e. adapted to more 

humid environments), and have an average δ13C value of −11.8 ± 0.2‰ (Hattersley, 1982; 

Cerling and Harris, 1999; Cerling, Harris and Passey, 2003; Ehleringer, 2005; Segalen, Lee-
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Thorp and Cerling, 2007; Levin et al., 2008) (see Figure 16). Xeric savannas and bushlands 

(i.e. ecoregions where evaporation exceeds rainfall, with arid-adapted C4 -grasses) are 

dominated by plants using the NAD-ME and PCK sub-pathways, with average δ13C values of -

12.4 to -13.4‰ for NAD-ME grasses. PCK plants have average δ13C values that are 

intermediate between values for NAD-ME and NADP-ME plants and are most abundant in 

areas with intermediate rainfall. It therefore appears that C4 grasses using the NADP-me sub-

pathway are systematically enriched in 13C by ~ 1-2 ‰ compared to those using the NAD-ME 

or the PCK sub-pathways (Hattersley, 1982). While such small differences might be difficult 

to statistically identify in most datasets, it is important to consider that slight variations in 

δ13C values observed between enamel samples might, when dealing with values typical of C4 

-vegetation, reflect the consumption of C4 -plants using differing photosynthetic sub-

pathways.  

However, because the vegetation structure of a given region is shaped by a combination of 

factors, such as climatic and environmental conditions, hydrological factors, geology, 

topography, altitude, and soil matrix, and because of the complexity of the C3/C4 

photosynthetic pathways highlighted above, caution must be applied when comparing 

modern datasets from different regions of Africa. More particularly, while modern datasets 

are often from eastern or southern Africa, these two regions are characterised by very 

different landscapes, mainly due to different latitude and tectonic activity, resulting in 

differing climates, annual rainfall, landscape dynamics, soils properties, and seasonal 

patterns of climate and vegetation. All of these differences have an impact on regional 

vegetation composition and structure, and on the geochemical properties of regional plants. 

For instance, C3-plants, have been reported to yield significant variation in 13C, especially in 

hyper-arid areas or in closed-canopy forests (Ehleringer and Cooper, 1988; Van der Merwe, 

1989; Cerling et al., 2003). Such environmentally-driven variations in the isotopic 

composition of C4-and C3-plants can introduce errors when interpreting isotopic data from 

herbivore species from these two regions, since observed differences in 13C might not only 
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be due to differing diets, but also to differing vegetation types under very different 

environmental conditions (Sponheimer, Lee-Thorp, et al., 2003). 

 

Figure 17: Carbon isotope cycle for carbon-bearing materials in continental ecosystems, from 
atmospheric CO2 values (pre-industrial values) to soil carbonate values. The fractionation processes are 

indicated in italics (from Koch (2002), p.583).4 

 
4 Republished with permission of Annual Reviews, Inc., from Koch, P. L., 2002. Isotopic Reconstruction of 
Past Continental Environments. Annual Review of Earth and Planetary Sciences, 26 (1), 573–613; 
permission conveyed through Copyright Clearance Center, Inc. 
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Figure 18: Climatic and non-climatic drivers of change in C3 - C4 ecosystems, with environmental and 
ecological factors that influence shifts in the abundances of the main plant types found within grassland 
and savanna ecosystems (from Ehleringer 2005, p.228 5). 

2.4.3.1.2 Oxygen stable isotopes 

Oxygen stable isotope ratios (δ18O) can serve as palaeo-climate indicators by quantifying the 

relative amount of oxygen isotope 18O and oxygen isotope 16O present in a sample. This 

calculation is based on the difference in weight between 18O and 16O: as 18O has two more 

neutrons, it is heavier than 16O which will induce a different reaction during physico-chemical 

processes. For example, 18O will evaporate less easily, as it requires more energy than for 16O. 

For that reason, clouds tend to be richer in H216O as isotopic fractionation will tend to favour 

the lighter isotope. On the contrary, condensation (hence rain) will be richer in H218O, as well 

as oceans.  If a sample is rich in 18O, the δ18O will be high relative to SMOW (Standard Mean 

Ocean Water).  

The oxygen isotope composition (δ18O values) of mammalian body tissue is directly related 

to the composition of ingested water. Enamel bioapatite contains two ionic forms of oxygen 

 
5 Republished with permission of Springer, from Ehleringer, J. R. (2005). The influence of 
atmospheric CO 2, temperature, and water on the abundance of C 3/C 4 taxa. In A history of 
atmospheric CO2 and its effects on plants, animals, and ecosystems (pp. 214-231). Springer, New 
York, NY; permission conveyed through Copyright Clearance Center, Inc. 
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that can be used for isotopic analyses: structural carbonate (CO32–) and phosphate (PO43–), 

the latter being the most abundant in these tissues. Their oxygen isotope composition 

(respectively δ18Oc and δ18Op values) can be related to body water oxygen, which is itself 

related to the composition of ingested water at a constant body temperature (Longinelli, 

1984; Luz, Kolodny and Horowitz, 1984; Iacumin et al., 1996; Koch, 2002; Chenery et al., 

2012). The composition of ingested water can reflect, in turn, the oxygen composition of local 

meteoric water (Daniel Bryant and Froelich, 1995; Chenery et al., 2012) or can be modified 

by evaporative processes (Kohn, 1996). The δ18O values of meteoric water are believed to 

vary due to changes in air temperature, humidity and precipitation/evaporation balance 

within an ecosystem (McCrea, 1950; Dansgaard, 1964; Schmidt, LeGrande and Hoffmann, 

2007).  

As δ18O reflects local evaporation and meteoric water composition through precipitation, it 

can be used to analyse climate changes as experienced by local species during a specific time 

period. Water-dependent animals usually have δ18O values closely correlated with that of 

local precipitation (Bernard et al., 2009). Oxygen isotope analysis of herbivore tooth enamel 

can therefore help reconstruct past air temperatures based on interdependent relationships 

between the δ18O of apatite phosphate, body fluids, meteoric water and air temperatures 

(Bernard et al., 2009). 

However, temperature can be difficult to interpret from oxygen isotopes. As local 

temperature varies with season, latitude, and altitude, more positive oxygen values can 

represent either warmer or colder temperatures (Higgins, 2018). For large water-dependant 

terrestrial mammals, more positive values generally indicate warmer temperatures due to 

evaporation (Kohn, Schoeninger and Valley, 1998; Higgins and MacFadden, 2004). However, 

additional processes can complicate the interpretation of oxygen data in mammal teeth, such 

as the ‘Amount Effect’ highlighted by Higgins and MacFadden (2004) which is characterised 

by episodes of heavy rain occurring at high temperatures (>20°C) that can cause a depression 

in the oxygen isotopic curves mimicking winter-time cool temperatures. 
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Aridity (i.e. lack of precipitation in an area) can also be studied from stable oxygen isotopes 

by evaluating the difference (in mm/year) between water lost to the environment (through 

evaporation or transpiration) and the water gained through precipitation in a specific area 

(Higgins, 2018). In arid environments where more water evaporates compared to the amount 

of rainfall deceived, the δ18O values of the remaining water tend to decrease relative to the 

original source water (i.e. rain). This process allows to estimate aridity in a studied area by 

comparing the δ18O value of precipitations with that of local waters that have experienced 

evaporation (Blumenthal et al., 2017). However, as the isotopic composition of rainwater and 

meteoric water cannot be studied directly from the fossil record, methods were developed to 

estimate aridity based on the oxygen composition of past living organisms depending on their 

sensitivity to evaporation.  

According to Levin et al. (2006), the δ18O enamel values of evaporation-sensitive (ES) animals 

reflect evaporative isotope enrichment with respect to source water (which increases with 

aridity, as food-water is sensitive to evaporation), whereas the enamel δ18O values of 

evaporation-insensitive (EI) animals track local meteoric water δ18O values. Because 

evaporation enriches the remaining water in the heavy isotope 18O relative to source water, 

aridity can be evaluated by comparing one isotopic record that tracks meteoric water (EI 

taxa) with another that tracks evaporative enrichment (ES taxa). The relative enrichment 

between δ18Oenamel values from ES and EI animals (εES–EI) is therefore believed to 

represent the degree of 18O enrichment between leaf or body water and meteoric water, 

which increases with aridity. However, the use of this ‘aridity index’ remains limited to fossil 

species whose extant relatives are known to be either evaporation-sensitive (e.g. giraffids, 

tragelaphines, and hippotragines) or evaporation-insensitive (e.g. hippopotamids, 

elephantids, and rhinocerotids) (Blumenthal et al., 2017). As it remains difficult to assess 

whether modern impala and modern springbok could be safely considered as either 

evaporation-insensitive or evaporation-sensitive taxa, this approach is not used in the 

present study. 
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2.4.3.2 Data acquisition  

2.4.3.2.1 Sampling methods 

To perform stable isotope analysis from fossil enamel, samples of powdered enamel are 

collected (at least 10 mg) using a slow-speed drill with dental burrs, after cleaning the 

specimen from dirt or other residues that could contaminate the sample (Higgins, 2018).  

Bulk samples can be collected to obtain average isotopic values for the specimens by drilling 

a line perpendicular to the growth lines (if visible) along the length of the teeth. Serial samples 

(also called intra-tooth) can be collected by drilling multiple lines parallel to the dental 

growth lines to study the isotopic signals in more details and reconstruct part of the life 

history of the specimens and investigate, for instance, seasonal variations in isotopic 

composition.   

2.4.3.2.2 Tooth selected 

The choice of teeth used for isotopic sampling must be adapted to the purpose of the 

measurements and must be uniform for the ensemble of the dataset where possible. Since the 

isotopic signature of enamel is established once amelogenesis is over and does not change 

due to very little turnover in tooth composition, the stable isotope rates measured only reflect 

the individual’s diet during the duration of crown formation. The main factor to take into 

account is the chronology of dental development in the taxon under study to ensure that the 

samples represent post-weaning diet, and that they span the longest time period possible if 

seasonal trends are to be measured through serial sampling.  

For instance, the exact chronology of dental development for modern impala (Aepyceros 

melampus), which is relevant to the present study, has not been described specifically for this 

species, but the dental development of cattle and sheep have been studied in detail and can 

be used as proxies to guide the choice of teeth to sample (Brown et al., 1960) (see table_A 4 

in appendix A.4). More detail on the dental development of modern springbok (Antidorcas 
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marsupialis) has been published and show a similar crown-development pattern, although 

spread over a shorter time period (i.e. crown formation taking place before birth and until ~ 

1-year-old) (see table_A 5 in appendix A.4). 

According to Copeland et al. (2009), fourth premolar (P4) and third molars (M3) should be 

chosen primarily for sampling as these teeth form after weaning, but their study on modern 

impalas showed that there is little statistical difference between the isotopic signals yielded 

by these teeth when compared to first molars (M1) which form before weaning. However, as 

previous studies (Lee-Thorp, Manning and Sponheimer, 1997; Hobson and Sease, 1998; 

Wright and Schwarcz, 1998; Balasse, 2002) have suggested that teeth formed prior to 

weaning may yield biased isotopic results due to the suckling-signal (more negative δ13C 

values), it might be more cautious to avoid sampling first molars when the dataset allows. 

Since second and third molars (M2 and M3) require about one year each for the crown to 

develop, these teeth are more likely to provide a representative isotopic sample of the 

individual’s diet over different seasons than P4 (whose crown develops over 6 months only) 

or M1 (which develops mainly in utero and before weaning). M2 and M3 should therefore be 

targeted primarily for bulk sampling, as impalas are weaned by age 4.5 months (Copeland et 

al., 2009).  

As the crown formation time of the posterior teeth overlaps, serial sampling should be 

conducted primarily on M2 combined with either M3 or P4 in order to reconstruct a sequence 

spreading from minimum 1 month up to 2 years.  

2.4.3.2.3 Mass spectrometry 

Pre-treatment procedures can be used prior to analysis to remove all traces of organic matter 

still present in the teeth and to avoid potential contamination of the samples (Wiedemann-

Bidlack, Colman and Fogel, 2008). Mass spectrometers are then used to measure the 

abundance of specific isotopes in the samples by using atomic mass (Higgins, 2018).  
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Mass spectrometry is based on ionization and fragmentation of sample molecules in the gas 

phase. Because molecules fragment in a unique manner, the resulting ion fragmentation 

pattern can be used to obtain structural information on a given molecule. To analyse enamel 

samples and determine their isotopic composition, the enamel molecules must therefore be 

converted to a gas (carbon dioxide) by reacting the powdered sample with pure phosphoric 

acid (Higgins, 2018). The carbon dioxide produced can then be analysed for heavy carbon and 

heavy oxygen using electric and magnetic fields to measure the mass of the charged particles 

(see Higgins, 2018 for more detail). This generates raw data that can then be normalized to 

international reference scales by using standards (i.e. samples of known delta value analysed 

alongside samples of unknown delta value) calibrated to scales commonly used in research 

for carbonates: V-PDB (for carbon and oxygen) and V-SMOW (for oxygen only) (Higgins, 

2018). 

 

2.4.3.3 Strengths and limitations of isotopic studies on dental enamel  

2.4.3.3.1 Discontinuous enamel mineralisation 

While some studies have shown that enamel mineralization tend to occur from the tip of the 

tooth toward the root (Passey et al., 2002), other authors (Balasse, 2002; Zazzo, Balasse and 

Patterson, 2006; Reade et al., 2015; Green et al., 2018) have demonstrated that enamel 

mineralisation is progressive and discontinuous, as it takes place in two stages. The first stage 

involves the completion of a protein-rich matrix which gradually mineralizes. The second 

stage is maturation, where mineralisation occurs through the enamel in different directions 

and through different thicknesses along the matrix. Because of this discontinuous pattern of 

enamel mineralisation, results from isotopic analysis can be biased due to time-averaged 

samples where small changes in dietary behaviour or associated environment might not be 

detected. One way to reduce the influence of this caveat on the results from isotopic analysis 

is to sample the entire depth of the enamel and the entire length of the tooth (Reade et al. 

2015).  
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2.4.3.3.2 Contamination 

Risks of contamination from organic matter and sediment carbonate must be considered 

when working on isotopic signatures from ancient material. Work done by Schoeninger et al. 

(2003) has demonstrated that fossil enamel can be chemically altered depending on the 

archaeological layer in which it was found, potentially altered by surrounding sediments. This 

is what that study observed for instance at the site of Allia Bay, Kenya (~ 3.9 Ma), where the 

original apatite had been contaminated by silica-bearing minerals. One way to take into 

account possible contamination from surrounding environments is to sample sediments that 

might be still present on the remains and test their isotopic signature (e.g. Lee-Thorp and 

Sponheimer, 2003).  

Another way to reduce the risks of isotopic contamination of archaeological samples is 

through the use of enamel phosphates, rather than structural carbonates. Structural 

carbonates are often used predominantly to measure δ18O in enamel bioapatite, due to easier 

and cheaper analytic processes required than when analysing enamel oxygen phosphates 

(δ18Op) (see methods described in Chenery et al., 2012 for more detail). However, it has been 

suggested that the structural carbonate ion is more susceptible to diagenetic alteration due 

to weak C-O bonds (Lee-Thorp, 2002). Furthermore, the relationship between δ18O of 

structural carbonate (δ18Oc) and δ18O of drinking water (δ18Odw) is poorly understood, 

because δ18Oc values need first to be converted into δ18Op values to be interpreted. On the 

contrary, phosphate is abundant in tooth enamel, has a strong P-O bond which is able to resist 

chemical alteration (Sharp, Atudorei and Furrer, 2000), and the relationship between δ18Op 

values in bioapatite and δ18Odw is well established for some animal species, such as Equus 

quagga or Bos Taurus (Bryant and Froelich, 1995; Chenery et al., 2012). Although analysing 

enamel phosphates could present a potential solution to check for sample diagenetic 

contamination of oxygen isotope ratios, it remains, as mentioned above, more expensive and 

time-consuming, and uses more enamel than when analysing enamel structural carbonates, 

which are substantial limitations when large numbers of samples are involved in a study. 
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Other studies have explored in detail contamination in carbon isotopes. Lee-Thorp (2002) 

explored the effect of diagenesis on the preservation of biogenic carbon isotopic signals using 

bone and tooth materials from series of fauna with predictable diets, from sites with 

isotopically different depositional contexts and ages. Observations from South African sites 

ranging between about 3 Ma and 1.5 Ka BP suggest evidence for isotopic alteration in older 

deposits, increasing with age, more pronounced in bone apatite samples. This study 

concluded that using carbon isotope analysis of enamel was feasible, but advised to 

determine the isotopic values of the end-members of the dietary spectrum, using obligate 

browsers and grazers to estimate how much their carbon values deviate from their modern 

counterparts (while taking into account of the “fossil-fuel effect” on modern values). This 

approach has been used for example by Bocherens et al. (2011) in their study of late 

Pleistocene fauna from Malawi, where they observed a clear difference in carbon and oxygen 

isotopic values in the enamel carbonate signatures of obligate browsers and grazers, but did 

not observe such clear patterns in their bone and dentine samples, which appeared to have 

been affected by diagenetic alteration. This approach is also used in the present study to 

evaluate the degree of potential diagenetic alteration in carbon stable isotopes. 

2.4.3.3.3 Strengths of isotopic studies 

Regardless of the various caveats highlighted previously, stable isotopes of carbon and 

oxygen in fossil teeth have been widely used for palaeo-environmental reconstructions 

because they can offer an excellent record of past habitats and past climatic conditions, 

granted that the inferred dietary behaviours of the studied assemblages can be trusted as 

faithful reflectors of prevailing vegetation conditions.  

Since tooth enamel is heavily mineralized with little porosity, it is more likely to survive 

fossilization with minimal alteration of the original isotopic signal than other fossil materials 

such as bone (Higgins, 2018). Because the relationships between the isotopic composition of 

animals’ body tissues and their direct environment have been studied in modern populations, 
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strong scientific knowledge has been acquired over the years on these relationships as well 

as on the influence of diagenesis on the integrity of isotopic signals measured from fossil 

remains. This strong knowledge provides tools to extrapolate these known relationships into 

the past and help reconstruct palaeo-ecological conditions from faunal remains.  

One of the greatest asset of stable carbon and oxygen isotope analyses is to be able to provide 

information that cannot be obtained using dental use-wear analyses, such as information on 

drinking behaviours, palaeo-temperatures, and the relative proportions of C3 - C4 vegetation 

included in the diet of extinct animals. This is why this approach was selected in the present 

study, alongside dental use-wear analyses. 

Furthermore, serial sampling can provide a record of isotopic variation over time (Fricke and 

O’Neil, 1996; Sharp and Cerling, 1998; Reade et al., 2015) that can be studied to investigate 

ancient seasonality. Studying seasonal changes in temperature and available foods is crucial 

to the understanding of past biodiversity (Bernard et al., 2009). It has been hypothesised in 

previous studies that seasonal and interannual rainfall variability in eastern Africa increased 

at ~2.0 Ma in response to the Plio-Pleistocene intensification of the Walker Circulation 

(Ravelo et al., 2004; Blumenthal et al., 2017; Hopley et al., 2018), but climate proxy records 

of seasonal resolution are rare. To investigate this hypothesis further, one part of this project 

focuses on intra-tooth carbon and oxygen isotope evidence from fossil impala specimens in 

the Shungura Formation (Aepyceros shungurae). Bulk carbon isotope measurements of A. 

shungurae from Shungura have been reported by Negash et al. (2015) and range from -8.0 ‰ 

to +2.5 ‰ (indicating a highly flexible dietary intake), with distinct differences in median and 

range between each of the six Shungura members. The drinking habits of Aepyceros 

shungurae are currently unknown, but comparison of the intra-tooth δ18O data with modern 

and fossil relatives should aid interpretation of δ18O as a proxy for standing water δ18O and/or 

leaf-water δ18O (Souron, Balasse and Boisserie, 2012; Blumenthal, 2015) and should be 

directly comparable to climate model simulations of δ18O in Pliocene rainfall (e.g. Tindall and 

Haywood, 2015). This project expands the A. shungurae dataset by analysing the intra-tooth 
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(seasonal) variation in δ18O and δ13C of this species to investigate dietary and ecological 

change during the Plio-Pleistocene intensification of the Walker Circulation (Ravelo et al., 

2004). 

 

2.4.4 Land cover analysis: from habitats to the diet 

2.4.4.1 General principles 

Remote sensing is the science of detecting the physical characteristics of an area or an object 

by measuring its reflected and/or emitted electromagnetic radiation at a distance, using 

sensor technologies typically based on satellites or aircrafts. Because most objects in nature 

emit electromagnetic radiation as well as reflect radiation from other objects, emitted or 

reflected radiation can be studied via sensors to understand its behaviours as it passes 

through the atmosphere and interacts with objects (Campbell and Wynne, 2011). These 

behaviours will differ depending on the characteristics of the material emitting and reflecting 

radiation (e.g. vegetation, soils, rocks, water), and will be detected in different ways along the 

electromagnetic spectrum.  Similarly, different types of vegetation will have different spectral 

signatures, allowing to differentiate certain classes of vegetation from one another, and to 

identify areas of healthy or stressed vegetation (Campbell and Wynne, 2011). Remote sensing 

techniques can allow scientists to explore different aspects of modern habitats on different 

scales, including shelter, shade and forage characteristics (van Bommel et al., 2006). For 

instance, forage quality can be studied using indices such as the Normalised Difference 

Vegetation Index (NDVI), based on chlorophyll levels and vertical thickness of the vegetation, 

which can be detected through the radiation reflected by the biome, observable in optical 

spectral bands detected by Earth observation sensors. 

Remote sensing data have been previously used in many disciplines, including ecology (e.g. 

Cohen and Goward 2004, van Bommel et al. 2005, Estes et al. 2008, Winnie Jr. et al. 2008, 
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Nagendra et al. 2013) and archaeology (Wiseman and El-Baz, 2007; Parcak, 2009; Bailey, 

Reynolds and King, 2011; Lasaponara and Masini, 2012; Comer and Harrower, 2013). For 

instance, remote sensing proved to be useful to map with greater detail the geological units 

over the east side of Lake Turkana, and better understand its relation to the Omo River 

(Bruhn et al., 2011). It has also been widely utilised in landscape ecology to help with spatial 

pattern description and land-cover mapping, and can provide useful insight into landscape 

structure and function if combined with ecological field data (Newton et al., 2009). It has been 

used for example by van Bommel et al. (2006) to study the spatial and temporal habitat use 

of impalas in Botswana, by relating remotely sensed vegetation patterns to impala habitat 

preferences.  

2.4.4.2 Data acquisition 

2.4.4.2.1 Sensors and resolution 

Depending on the purpose of the study, different types of remote sensing sensors can be used. 

The first type of sensors records the solar radiation reflected from the Earth’s surface, using 

mostly energy in the visible and the near infrared parts of the spectrum (i.e. optical data; 

Campbell and Wynne, 2011). The second type records radiation emitted from the Earth’s 

surface after solar radiation was partially absorbed by the objects and then reradiated as 

thermal infrared radiation. The last type of remote sensing sensors generates its own energy, 

which is then recorded when reflected back (back scattered) by objects from the Earth’s 

surface. These are “active” sensors (such as radars and lidars) that are therefore independent 

of solar and thermal radiation, and are, as a result, effective even at night or despite cloudy 

cover. The first two types of remote sensing use “passive” sensors which do not generate 

energy themselves. For this study, land cover products using optical data were used, where 

different land cover types could be differentiated by their spectral reflectance signatures in 

the remotely sensed images.  
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The different types of remote sensing instruments that can be used vary in resolution (spatial, 

temporal, spectral and radiometric resolutions). It is essential to take this into account when 

working with remote sensing data, to ensure the right level of detail and the right type of 

information is provided by the instrument for the purpose of the study. Spectral resolution 

refers to the ability of a sensor to define fine wavelength intervals: satellite sensors able to 

detect more narrowly defined spectral regions will be able to differentiate surface materials 

more easily and in finer detail (Campbell and Wynne, 2011). Radiometric resolution refers to 

the ability of a sensor to record many levels of brightness and discriminate slight differences 

in reflected or emitted energy. Spatial resolution refers to the pixel size, and the level of 

spatial detail that can be perceived on the image (i.e. small objects can be identified on images 

with high spatial resolution). Finally, temporal resolution refers to the time it takes for the 

satellite to come back to one position (minutes to days). High temporal resolution is achieved 

by systems able to repeatedly record the same image sequence at relatively close time-

intervals, which is particularly useful for studies of time-series, to explore, for instance, short-

term changes in the landscape. High temporal resolution is also ideal for studies on seasonal 

change, as multiple images are available within each month. Because there is a trade-off 

between the different types of resolution, one type of sensor cannot provide data with the 

highest resolution for all resolution types (Campbell and Wynne, 2011). For instance, high 

spatial resolution (i.e. small pixel size) will require a longer journey of the satellite from pole 

to pole for global coverage, hence reducing temporal resolution. Similarly, high radiometric 

resolution implies lower spatial resolution: the bigger the area sampled per pixel, the more 

energy can be sensed, and fine divisions can be made. For this study, moderate spatial 

resolution was sought primarily, to be able to perceive enough spatial detail regarding 

vegetation to be able to discuss vegetation cover heterogeneity at a relatively small scale (i.e. 

spatial resolution <500 m). 
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2.4.4.2.2 Image classification 

To produce land cover maps, digital image classification must be performed by assigning 

pixels to classes to form a mosaic of uniform parcels (Campbell and Wynne, 2011). One image 

classification method is to use “point classifiers”, where each pixel is considered individually 

and assigned to a spectral class based on its brightness values measured across spectral 

bands. An alternative method is to use “neighbourhood classifiers”, where groups of pixels 

are considered together by taking into account neighbouring pixels and using both spectral 

and textural information to classify the image. Spectral classes can then be assigned to 

informational classes (by grouping several spectral classes if necessary) that can be used for 

further analyses, such as land cover mapping.   

Supervised classification procedures can be used where areas of known class are defined by 

the user to guide the classification of the rest of the image by the image processing software 

(i.e. machine learning) (Campbell and Wynne, 2011).  This approach provides the analyst 

with control over the classification process but can introduce human error and requires prior 

knowledge of the region studied (such as field observations). Unsupervised classification can 

also be used where the image processor automatically classifies the image based on natural 

groups of pixels sharing similar spectral characteristics. While this method reduces the risk 

of human error and does not require prior knowledge of the studied area, it might generate 

classes that will be difficult to assign a posteriori to informational classes that can be used by 

the user for further analyses.  

Because the various steps required to create land cover maps (i.e. images selection, pre-

processing, and classification) are time consuming and necessitate a high level of expertise, 

land cover products already available for African landscapes were used in this project.  
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2.4.4.3 Strengths and limitations of land cover analysis applied to herbivore dietary 

ecology studies 

Animal populations are distributed across the landscape in relation to their biological 

requirements, such as food resources, drinking water, shade and shelter. These features vary 

spatially and temporally, especially regarding vegetation availability and quality, in turn 

impacting the distribution of populations (Hutchinson, 1957). To better understand the 

ecology of animal species, it is therefore essential to explore their habitats, and how changes 

in these habitats might result in changes in their behaviours, including changes in their 

dietary patterns.  Land cover data can be used to quantify habitat composition, heterogeneity, 

and structure, and subsequently compare different regions to one another to identify 

differences and similarities between habitats. However, for land cover data to be relevant to 

studies aiming to characterise animal dietary behaviours in relation to their environment, 

several challenges must be overcome. 

Firstly, the data acquired to study the dietary behaviours of the studied species must include 

sufficient sample sizes, as well as sufficient information regarding the populations sampled. 

While information on population size, age-ranges, sex, and, most importantly, geographic 

location of the populations’ home-range, can be obtained when sampling directly live or 

recently culled animals for a specific project, it remains a challenge when working from 

museum collections, as is often the case in palaeontological studies. While museum 

collections can offer large sample sizes, they often lack specific information on the specimen’s 

origin (Kay and Covert, 1983). Targeting published dietary data with detailed information, or 

museum specimens associated with detailed collection information (geographic location, sex, 

age, year – and ideally season – of death) can help overcome this limitation, although it can 

result in small sample sizes as such detailed collections are usually rather limited (Green and 

Croft, 2018). 

Secondly, the land cover data used to characterise the habitats of the studied populations 

must provide sufficient spatial resolution to evaluate dominating land cover patterns, even 
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for small localities such as small, fenced wildlife research areas. The remote sensing images 

used to build these land cover products should also, ideally, have been collected within a 

reasonably similar time-range than the samples used for dietary analysis (i.e. no more than 

5-10 years) to avoid misinterpretations of the relationships between diet and habitat 

composition due to temporal changes in landscape. Indeed, several studies have highlighted, 

using remote sensing, that significant changes in land cover patterns could be observed over 

time on the African continent, whether between 1975 and 2000 (Brink and Eva, 2009) or 

between 2000 and 2015 (Midekisa et al., 2017). Similarly, if the samples collected for dietary 

analysis allow exploration of seasonal variation in diet, time-series of land cover data for the 

dry and wet seasons could be used to permit detailed interannual analyses of the 

relationships between herbivore diets and their habitats. 
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2.5 Conclusion 
 

This study proposes to examine the dietary behaviours of selected extant and extinct mixed-

feeding antelopes, using a combination of methods to produce a comprehensive picture of the 

environments experienced by these species during the Omo-Turkana basin fossil deposition.  

Mesowear, dental microwear texture, and stable isotope analyses are used to study spatial 

and chronological heterogeneity of the Omo-Turkana basin vegetation cover between 3.5 and 

1.6 million years ago, by examining the dietary preferences of the studied antelope species 

across the basin (i.e. Koobi Fora, Nachukui and Shungura formations) and through time (i.e. 

members).  

Combined, these dietary proxies can provide a thorough assessment of the dietary ecology of 

the studied species and mitigate for some of the limitations of each method, maximising the 

strengths of each proxy. Because dental microwear reflects diets at a shorter time scale than 

mesowear (i.e. last few days/weeks before death vs life-time accumulated wear), microwear 

is used beside mesowear analysis to detect seasonal changes in diet, as well as to provide 

greater detail on the structural properties of the food items consumed (Rivals, Solounias and 

Mihlbachler, 2007; Rivals et al., 2015). Stable isotopes are used alongside dental use-wear 

analyses to provide information on the geochemical properties of the food items consumed 

during the time of enamel-mineralisation, and complement the data acquired from dental 

use-wear studies by investigating drinking patterns and seasonal dietary variability. To 

further explore the relationship between land cover distribution and modern impala dietary 

behaviours in different African regions, land cover maps of selected modern African 

landscapes are used to discuss habitat heterogeneity of extant Aepyceros melampus 

populations from targeted regions for which data for dietary study was available from 

published datasets.  

It is hypothesized that if, across all dietary proxies, a predominance of diets dominated by a 

main vegetation-type (browse/ C3 or graze/ C4) was observed across taxa, this could indicate 
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a rather homogeneous vegetation cover in that area during the time span examined, forcing 

a majority of the studied specimens to feed primarily on the type of resources that was 

available to them in larger proportion. A wider range of isotopic ratios and dental microwear 

textures, indicative of a large range of resources, would likely indicate the presence of more 

heterogeneous environments and more variable aridity levels, with habitats able to support 

a greater range of species, all year round or with marked seasonal variation. However, it must 

be remembered that a wide range of values might also indicate more time/climate averaging 

for some parts of the sequence (Hopley and Maslin, 2010; Davis and Pineda Munoz, 2016). 

Little changes in dietary patterns from one locality to the other across the Omo-Turkana basin 

(East, West and North of Lake Turkana) or between members might reflect little spatial and 

temporal variation in the dietary patterns of the studied taxa, which, in turn, might reflect 

only minor degrees of change in vegetation cover/availability in the region. Each of these 

alternatives are important for understanding the evolutionary implications for the species 

inhabiting this region.  

This multiproxy approach is novel and provides valuable information to assess the 

composition and heterogeneity of palaeo-habitats in the Omo-Turkana basin between 3.5 and 

1.6 Ma, and better understand the relationship between mixed-feeding herbivores such as 

the impala, and the land cover composition and structure of their habitats.  
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Chapter 3: Testing the relationship 
between modern impala dietary 
variability and their habitats: what 
can the dietary proxies tell us about 
vegetation cover?  

 

3.1 Introduction 
 

One of the challenges in palaeo-environmental reconstructions is a lack of quantifiable 

knowledge about the existence of analogue (modern comparative) habitats in Africa today. 

The aim of this part of the project was to provide a new method to compare past and present 

habitats by testing the relationship between modern impala dietary variability and their 

habitats (i.e. predictive land cover models). To achieve this, this project combined stable 

carbon isotope analysis with land cover data to explore modern African vegetation structure 

and investigate the relationship between land cover and dietary patterns in mixed-feeding 

herbivore species such as the impala.  

Extant impalas (Aepyceros melampus) are known to be mixed-feeding animals with varied 

diets, eating both browse (C3 -vegetation) or graze (C4 -vegetation) in proportions that can 

vary with seasons and local habitat (Sponheimer, Grant, et al., 2003; Codron et al., 2005; 

Codron et al., 2005; Copeland et al., 2009). Such variation in diet could relate to the prevailing 

vegetation and potential niche competition within their home range, but could also result 

from a foraging behaviour that prioritizes vegetation-types with high protein and low fibre 

contents (Meissner, Pieterse and Potgieter, 1996; Sponheimer, Grant, et al., 2003; Codron et 

al., 2006; Copeland et al., 2009). Impalas can be found in various environments, and are 

represented today in Botswana, Kenya, Malawi, Mozambique, Rwanda, South Africa, 
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Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. These countries offer a wide range of 

different habitats, and because impalas are mixed-feeders, it can be expected that their 

overall diet will differ depending on which country, region or locality the individuals live.  

This chapter assesses the dietary variability of the modern impala as well as the variability of 

the land cover composition and structure of their habitats, to explore the relationship 

between diet and land cover in an extant mixed-feeding antelope species. Stable carbon 

isotopes are used to evaluate the degree of dietary variability that can be observed between 

and within selected samples of modern impala specimens of known provenance. Land cover 

maps derived from remote sensing for selected modern African landscapes are used to 

discuss habitat heterogeneity of modern impalas for targeted regions for which data for 

dietary study were available in published literature. By comparing case study areas using 

both land cover metrics and isotopic data, and by exploring the relationships between all of 

these variables, this project tests whether it can be possible to evaluate the types of land cover 

patterns that are associated with specific dietary patterns observed from dental samples. If 

the diet of modern Aepyceros melampus is primarily influenced by the prevailing vegetation 

conditions in their habitat, it can be hypothesized that impala individuals with high δ13C 

values would be more likely to be associated with C4 habitats, while individuals with low δ13C 

values would be more likely to be associated with C3 -vegetation. 

The material and methods (3.2) used for this analysis are presented in this chapter, followed 

by the results (3.3) obtained for each part of the analyses. Results are divided around the 

following objectives: 

1)  Explore the dietary variability of selected modern impala populations, based on 

stable carbon isotope evidence (3.3.1). 

2) Evaluate the diversity of habitat types inhabited by the studied modern impala 

populations, based on land cover data, and quantify the land cover composition and 

structure of these habitats (3.3.2). 
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3) Assess whether relationships can be observed between specific habitat types and the 

modern impala dietary patterns observed through stable carbon isotope analysis, and 

build logistic models that can be used to predict associated habitats based on impala 

dietary data (3.3.3). 

4) Evaluate to which types of habitat fossil impala specimens from the Plio-Pleistocene 

deposits of the Omo-Turkana basin were likely associated, based on stable carbon 

isotope data. This is done using the models produced from modern impala diet and 

land cover data (3.3.4).   

Results are then discussed (3.4) to assess whether some of the modern specimens’ diet and 

associated landscapes could reflect that of ancient impala populations in the Omo-Turkana 

basin between 3.5 and 1.6 million years ago, and bring new insights into Plio-Pleistocene land 

cover in this region. 
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3.2 Material and methods 

3.2.1 Case study areas  

 

Seven study areas were selected across eastern and southern Africa, based on the availability 

of land cover data and of stable carbon isotope data for impala populations from these areas. 

These case study regions are presented in Figure 19 and Table 8.  

 

 

Figure 19: Location of case study areas in Africa.  
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Table 8: Description of the case study areas and their main ecological characteristics. 

Country Locality Study area 
Elevation 

(m) 
Area 

(km2) 
Climate 

Average 
annual 
rainfall 
(mm) 

Biome Dominant vegetation 
Lithology/Soils/ Forage 

quality 
Type of water 

sources 

South 
Africa 

Kruger 
National 

Park  

North 

300 19,633 
Hot semi-

arid 
climate 

300-500 Semi-arid savanna, 
with arid bushveld 

in the north  

Homogeneous woody 
plant component  

Eastern-half dominated by  
fertile basalt lithology; 

western-half  dominated by 
less fertile granite gneiss 

and arenite bedrocks 

Sabie, Olifants, 
Crocodile, Letaba, 

Luvuvhu and 
Limpopo Rivers South 

~500-
700 

Heterogeneous 
woodland savanna  

Waterberg 
plateau 

(Limpopo 
province) 

Welgevonden 
Private Game 

Reserve 

1200-
1500 

330 
Warm and 
temperate 

>600 
Mountainous 

savanna bushveld 
Sour bushveld 

Acidic and nutrient-poor 
soils: forage of poor 
nutritional quality  

Two perennial rivers 
and several man-

made dams 

Kenya 

Athi plains 

Swara Plains 
Conservancy  

(formerly 
Hopcraft 

Game Ranch) 

~1500 ~280 Dry 800 

Open wooded 
savanna, from 

shrubland to open 
grassland  

Woody cover 
dominated by Acacia 

drepanolobium; 
grassland  dominated 

by red oat grass 
(Themeda triandra). 

/ Small rivers 

Laikipia 
plateau 

Mpala 
Research 

Centre  
1700 202 

Semi-arid 
550 

Bush grassland 

Herbaceous layer 
dominated by 

perennial tussock 
grasses; Acacia-

dominated woody 
vegetation  

High clay content (“black 
cotton soils”): poor 

drainage 
Permanent rivers 

El Karama 
ranch  

1800 57 500-700 / Rivers 

Great Rift 
Valley  

Nakuru 
National Park  

1760 ~188 Temperate  876 

Grassland, scrub 
woodland, acacia 

woodland, and 
vegetation 

characteristic of 
saline water 
ecosystems 

Very heterogeneous, 
with alkaline flats (i.e. 

seasonally flooded 
areas of high 

alkalinity), marshes, 
grassland, grass-

shrub, Arucici 
woodland 

Mostly alluvial soils 

Lake Nakuru 
(shallow, alkaline, 

40km2); fresh water 
from the Njoro and 

Nderit rivers 

 

References: Kruger National  Park (Young, 1972; Gertenbach, 1983; Redfern et al., 2003; Sponheimer, Grant, et al., 2003; Venter and Scholes, 2003; J. Codron et al., 
2005; Bucini et al., 2009); Welgevonden Private Game Reserve (Daryl Codron et al., 2005; Kilian, 2006; Mucina and Rutherford, 2006; Ramsay et al., 2013; Codron 
et al., 2016); Swara Plains Conservancy (Wesonga et al., 2006; Shema, 2019); Mpala Research Centre (Young et al., 1998; Gadd, Young and Palmer, 2001; Shorrocks, 
Cristescu and Magane, 2008; Riginos, 2009; Augustine, 2010; Sankaran, Augustine and Ratnam, 2013; Kartzinel et al., 2015); El Karama Conservancy (Trial and 
Gregory, 1981; Georgiadis, Hack and Turpin, 2003; Sundaresan et al., 2008);Nakuru National Park (Kutilek, 1974; Wirtz and Lörscher, 1983; Mwangi and Western, 
1997; Dharani et al., 2009; Thuo et al., 2015).
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3.2.2 Modern impala dietary ecology analysis 

3.2.2.1 Material  

Published stable carbon isotope data (δ13C values) were studied to evaluate the early-

years dietary signatures of Aepyceros melampus specimens from different populations. 

Differences in δ13C values are likely to reflect local differences in vegetation composition 

since the body composition of animals feeding on vegetation varies depending on the 

isotopic composition of the plant ingested, as these isotopes are integrated in different 

body tissues in proportions which vary according to metabolically induced fractionation 

of the food during digestion (Pollard and Heron, 2013).   

Stable carbon isotope data on modern specimens of the studied species were gathered 

from previously published research. Seven modern African localities were well-

represented and well-documented among the Aepyceros melampus carbon isotope 

samples (from studies by Sponheimer, Grant, et al. 2003, Codron et al. 2006, Copeland et 

al. 2009, Cerling et al. 2015), and were therefore chosen as case studies: the El Karama 

ranch (Kenya), the Swara Plains Conservancy (Kenya; formerly Hopcraft Game Range), the 

Mpala Research Centre (Laikipia county, Kenya), Nakuru National Park (Kenya), Kruger 

National Park (divided into North and South; South Africa), and Welgevonden (South 

Africa) (Table 9). These case studies allowed to test whether differences in dietary 

patterns could be observed between impalas from different localities through carbon 

stable isotopes, and whether differences in vegetation cover could be observed between 

these areas when using remotely sensed land cover data. 

Where only descriptive statistics were available for stable carbon isotopes for some of the 

studied samples (i.e. for the Kruger National Park and Welgevonden samples, in 

Sponheimer et al. 2003, Codron, Codron, Lee-Thorp, Sponheimer, and de Ruiter 2005), 

Gaussian random variables were generated for these samples prior to statistical analyses 
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that required individual values. To do so, the Box-Mueller transform method (Box and 

Muller, 1958) was used based on the information provided for each sample in the relevant 

papers (i.e. number of individuals, mean, standard deviation), using the ‘norminv()’ 

function in Excel.  

Table 9: Summary of modern Aepyceros melampus specimens with published carbon stable isotopes 
data from the selected case study areas. See appendix A.5 for detailed dataset.  

Country Locality 
Year of 

collection N Material Source 

Kenya 

Swara plains Conservancy 1999 9 

Enamel Cerling et al. (2015) Mpala research centre 2001 19 

Nakuru National Park (shoreline) 2000 3 

South 
Africa 

Kruger National Park - North 2001-2002 18 Hair Sponheimer et al., 2003 

Kruger National Park - South 2001-2002 18 Hair Sponheimer et al., 2003 

Welgevonden 2002-2003 14 Faeces Codron et al., 2005 

 

3.2.2.2 Fractionation factors and δ13C values-conversion 

Because the Aepyceros melampus carbon isotope data selected from previously published 

research (from studies by Sponheimer, Grant, et al. 2003, Codron et al. 2006, Copeland et 

al. 2009, Cerling et al. 2015) came from studies that used different materials, the dataset 

was normalized to allow comparisons between studies. The measured δ13C values were 

converted where necessary to δ13C-enamel values using different fractionation factors 

depending on the material analysed. For faeces and hair, isotopic enrichments of –15.0 ‰ 

and + 11.1‰ were assumed, respectively, following previous studies (Cerling and Harris, 

1999; Sponheimer, Grant, et al., 2003; Sponheimer, Robinson, et al., 2003). Values were 

converted to δ13C-enamel (rather than to δ13C-vegetation/δ13C-diet) to facilitate 

comparisons with fossil δ13C-enamel data without requiring further conversion of the 

fossil data, since the aim of the models was to compare directly modern and fossil data to 

predict the habitats most likely associated with the fossil samples studied. 
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3.2.2.3 Estimating the minimum percent C4 -vegetation 

To estimate the minimum percent C4 vegetation indicated by enamel, hair, or faeces  δ13C 

values, the parameters for linear equations published by Passey et al. (2009) were used, 

where   

Equation 3. 1  % C4 = 8.45998 * δ13Csample(enamel) + 87.48 

 

This equation represents a linear mixed model between the 'max C3 ' and C4 endmembers 

for modern samples (i.e. where max C3 = -24.3, and C4 = -12.6).  For this equation, individual 

enamel-δ13C values were used. 

A different dual-source linear mixed model was used at the sample level (i.e. for each 

locality) to estimate the relative proportion of C4 -plant material included in the diet of the 

selected samples and provide estimated mean and confidence intervals for each sample 

based specifically on isotopic data from modern African C3 and C4 plants. For this, the 

measured δ13C values were converted to δ13C-diet values (i.e. estimated δ13C value of the 

plant material ingested by the individuals) using different fractionation factors depending 

on the material analysed. For faeces, hair and enamel, isotopic enrichments of –0.9 ‰, 

+3.0 ‰ and + 13.5‰ were assumed, respectively, following previous studies (Cerling, 

Harris and Leakey, 1999; Balasse, 2002; Sponheimer, Grant, et al., 2003; Passey et al., 

2005). The formulae developed by Phillips and Gregg (2001) were then used for 

calculating variances, standard errors (SE), and confidence intervals for source proportion 

estimates that account for the observed variability in the isotopic signatures for the 

sources (i.e. C3 and C4 plant materials) as well as the mixture (i.e. δ13C-diet). Mean 

proportion estimates of C4 -plant material in the diet of the studied impala samples were 

calculated for each sample using the spreadsheet IsoError (version 1.04) made available 

online by the authors (Phillips and Gregg 2001). First, the mean isotopic signatures and 

standard deviations for the sources were evaluated using published isotope data on 
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African C3 - and C4 -vegetation (Table 35). For each impala sample studied, the mean δ13C-

diet value was then added to the model, along with the standard deviation and number of 

samples analysed. Estimates for the source proportions, their associated variances, 

standard errors, and 95% confidence interval limits were then automatically calculated, 

and the means, standard errors, and confidence interval limits for source proportions 

summarized. 

Table 10: Mean isotopic signature and standard deviation (s.d.) of C3 - and C4 - plant materials, based 

on published isotope data on African C3 - and C4 -vegetation (for sample details see appendix A.15 
table-A 33, and references therein). 

 

3.2.2.4 Statistical analyses 

To check for significant differences within the dataset between the studied impala 

samples, statistical analyses were performed using the software R Studio (see appendix 

A.6 for more detail).  δ13C-enamel values were tested for normality (Shapiro-Wilk test) and 

for homogeneity of variance (Levene Test), but because these assumptions were not 

upheld, the non-parametric Kruskal-Wallis test was used, followed by Dunn’s test to 

identify the significant differences between groups.  

3.2.3 Land cover analysis 

3.2.3.1 Land cover data used in this study 

To study the selected localities with the best resolution possible, part of the remote 

sensing data used in this study was based on the products generated by the Africover 

project. Although Africover land cover maps of high spatial resolution were available to 

use in this project for Kenya, no product was available for South Africa due to the project 

being interrupted before the whole African continent could be covered. To mitigate for 

Plant group N Mean s.d.

C3 1047 -26.7544 1.9767

C4 1085 -12.3535 1.1785
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this, another source of land cover data (i.e. Globcover products) was used in addition to 

the Africover products to study land cover composition and structure in the selected South 

African localities. 

3.2.3.1 The Africover products  

Africover was a project administered by the United Nations Food and Agricultural 

Organization (UN FAO) that was approved in 1994 and focused first on the East-African 

region (Burundi, Egypt, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Uganda, Tanzania, 

Uganda and Zaire) (FAO, 1997). The main aim of the project was to establish a GIS-based 

land cover database compatible with the mapping scale 1 :200,000 based on systematic 

land cover classification and uniform mapping specifications for the whole continent of 

Africa (FAO, 1997; Latham et al., 2002). For smaller countries and specific areas the 

mapping scale 1:100,000 was used (Torbick et al., 2005).  

Africover generated land cover maps using mainly Landsat-5 TM (Thematic Mapper) and 

Landsat-7 ETM (Enhanced Thematic Mapper) data that provide multispectral images with 

a 30m spatial resolution (Kalensky, 1998) (Table 11). The RADARSAT-1 standard or wide-

mode Synthetic Aperture Radar (SAR) image products (30 m pixel size) were used in areas 

with persistent cloud cover (Latham et al., 2002). Most of the satellite images used were 

acquired between 1995 and 1999 (Fritz, See and Rembold, 2010). The land cover maps 

generated were classified using the Land Cover Classification System (LCCS), which was 

developed by the UN FAO in  this project, and became a standard for land cover products 

(Gregorio, Jansen and Resources, 1998; Fritz, See and Rembold, 2010) 
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Table 11: Main divisions of the electromagnetic spectrum (based on Campbell and Wynne 2011), and 
the satellite platforms used to produce the land cover products used in this study.  

 

To compile the AFRICOVER land cover map, a multi-phase image interpretation approach 

was used by the UN FAO. First, the preliminary delineation of interpretation units of 

similar appearance by visual interpretation of Landsat TM-ETM false-colour images was 

performed. It was then followed by field validation of 0.5% to 5% of the samples of 

interpretation units which resulted in a set of diagnostic attributes, the LCCS classifiers, 

which uniquely define the land cover class in each interpretation unit.  Final interpretation 

of mapping units (land cover polygons) based on LCCS was then implemented, followed 

by an accuracy assessment of land cover classification based on a field control data set. 

The land cover layer was then finalized through editing, digitization, coding and 

geographic referencing of land cover polygons (Kalensky, 1998; Latham et al., 2002).  

3.2.3.2 The Globcover products 

The Globcover products (© ESA 2010 and UCLouvain) (Leroy et al., 2007; Bontemps et al., 

2008) were used to study the land cover patterns of the South African study localities, 

providing classified land cover data of 300 m spatial resolution for the years 2005-2006. 

A more detailed spatial analysis could have been achieved by using the ESA CCI land cover 

map of Africa 2016 based on one year of Sentinel-2A observations (ESA Climate Change 

Initiative Land Cover project; spatial resolution: 20 m), but because this map is currently 

Division Wavelenght

Gamma rays < 0.03 nm

X-rays 0.03–300 nm

Ultraviolet 0.30–0.38 µm

Visible light 0.38–0.72 µm MERIS (Envisat) Globcover Lansdat 5 (TM) & 7 (ETM) Africover

Near infrared 0.72–1.30 µm MERIS (Envisat) Globcover Lansdat 5 (TM) & 7 (ETM) Africover

Mid infrared 1.30–3.00 µm Lansdat 5 (TM) & 7 (ETM) Africover

Far infrared 7.0–1,000 µm Lansdat 5 (TM) & 7 (ETM) Africover

Microwave 1 mm–30 cm

Radio ≥ 30 cm

Electromagnetic spectrum
Satellite platform
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only a prototype that has not yet been validated, there remains some uncertainties 

regarding overall accuracy and potential errors in land cover classes (Ramoino, Pera and 

Arino, 2018). Furthermore, the period covered by the earliest Globcover product (i.e. 

2005-2006) provides land cover data more likely to reflect the environmental conditions 

experienced in the study areas by the specimens studied for dietary analysis (which were 

shot, at the latest, in 2003) than products providing more recent data.  

The Globcover project developed a processing chain (Figure 20) meant to automatically 

deliver a land cover map based on the MERIS 300m Full resolution Full Swath (FRS) 

products, using data acquired between December 2004 and June 2006 and processed at 

level 1B (i.e. calibrated top of atmosphere gridded radiance) (Leroy et al., 2007; Bontemps 

et al., 2008). MERIS is a wide field-of-view push-broom imaging spectrometer that 

measures reflected solar radiation in 15 spectral bands (between ~412.5nm and 

~900nm) (Rast, Bézy and Bruzzi, 1999). It was one of the main instruments on board the 

Envisat platform of the European Space Agency (ESA) between 2002 and 2012. A first data 

processing module processed the MERIS FRS level 1B data to produce mosaics of land 

surface reflectance through a series of pre-processing steps (Figure 59). A second data 

processing module then transformed the multispectral mosaics produced by the pre-

processing modules into a land cover map, using the UN Land Cover Classification System 

(LCCS) as a typology (Figure 21). 



123 
 

 

Figure 20: Algorithmic principle of the Globcover chain (from Bontemps et al., 2008, p.8; © ESA 2010 
and UCLouvain) . 

 

 

Figure 21: Principle of the classification algorithm starting by bi-weekly mosaics (from Bontemps et 
al., 2008, p.11; © ESA 2010 and UCLouvain) 

 

The Globcover products offer two levels of classification (Bontemps et al., 2008). First, a 

global legend was defined (level 1, with 22 classes), which was designed to be a global, 

consistent land cover map at a worldwide scale. A second more detailed regional legend 

was also defined (level 2, with 46 classes), using more accurate regional information to 
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define more land cover classifiers. Regional products were used for the South African 

study areas (i.e. for Kruger National Park and Welgevonden, South Africa) as they provide 

more detailed information on the vegetation types presents in each locality.  

3.2.3.2 Land cover types and classification 

To analyse and compare land cover patterns within and between case studies, a general 

land cover classification was defined based on the land cover classes used in the Globcover 

global and regional products (hereafter referred to as “general land cover classification”). 

From the 46 land cover classes represented in the Globcover products, 33 new classes 

were created by grouping some classes together to simplify the classification and focus on 

the level of detail required for this project (Table 12). For instance, all Globcover classes 

relating to various types of croplands were aggregated into one class because cultivated 

and managed areas are seldom used as food resources for impalas in the areas studied and 

are therefore not the primary focus of this study.  

To provide a tool to assess the composition of the land cover in terms of C3 - C4 vegetation 

and be more closely comparable with data from carbon isotope studies, a second land 

cover classification was built containing 12 classes that aggregate Globcover classes 

depending on the nature of the vegetation described by each class  (hereafter referred to 

as “C3 - C4 classification”) (Table 12). For instance, all Globcover classes relating to forests 

or shrublands were aggregated into new categories indicating the occurrence of C3 -

vegetation. Where the Globcover class labels indicated areas dominated by forest or 

shrubs only, such classes were assigned to the “C3 -vegetation (70-100%)” class, indicative 

of areas dominated by C3 -vegetation. Where the Globcover class labels indicated mosaic 

areas dominated by forest or shrubs but where other vegetation types were present (e.g. 

grasslands), such classes were assigned to the “Mixed-vegetation - Predominance C3 -

vegetation (50-70%)” class, indicative of areas of mosaic vegetation dominated by C3 -

vegetation. The same process was also applied to Globcover classes indicative of areas 
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dominated by C4 -vegetation (i.e. grasslands) at varying degrees. Land cover classes that 

could not be assigned to either C3 or C4 vegetation categories were kept as distinct classes 

(e.g. water bodies, bare areas, artificial surfaces, or cultivated and managed areas).  

These two new land cover classifications were also used for the land cover maps created 

using the Africover products, based on the land cover labels and descriptions provided in 

these products for each of the 156 classes identified in the studied areas (Table 13).  

The new classifications were then added to the Globcover legend import files to allow for 

the new classifications to be used in ArcGIS for land cover visualisation and analysis.
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Table 12: New land cover classifications (C3 - C4 classes; New LC classes: General landcover classes) in relation to the original Globcover classes. 

 

C3-C4 
class

C3-C4 label
New LC 

class
New LC Label

Glob-

cover 
class

Globcover label (regional)

GC-4 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m)

GC-5 Closed (>40%) broadleaved evergreen and/or semi-deciduous forest (>5m) 41 Closed (>40%) broadleaved evergreen and/or semi-deciduous forest (>5m)

GC-6
Open (15-40%) broadleaved semi-deciduous and/or evergreen forest with 

emergents (>5m)
42

Open (15-40%) broadleaved semi-deciduous and/or evergreen forest with 

emergents (>5m)

GC-7 Closed (>40%) broadleaved deciduous forest (>5m) 50 Closed (>40%) broadleaved deciduous forest (>5m)

GC-8 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 60 Open (15-40%) broadleaved deciduous forest/woodland (>5m)

GC-9 Closed (>40%) needleleaved evergreen forest (>5m) 70 Closed (>40%) needleleaved evergreen forest (>5m)

GC-10 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m)

GC-11 Open (15-40%) needleleaved deciduous forest (>5m) 91 Open (15-40%) needleleaved deciduous forest (>5m)

GC-12 Open (15-40%) needleleaved evergreen forest (>5m) 92 Open (15-40%) needleleaved evergreen forest (>5m)

GC-13 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)

GC-14 Closed (>40%) mixed broadleaved and needleleaved forest (>5m) 101 Closed (>40%) mixed broadleaved and needleleaved forest (>5m)

GC-17
Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 

shrubland (<5m)
130

Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 

shrubland (<5m)

GC-18 Closed to open (>15%) broadleaved or needle-leaved evergreen shrubland (<5m) 131
Closed to open (>15%) broadleaved or needle-leaved evergreen shrubland 

(<5m)

GC-19 Closed to open (>15%) broadleaved deciduous shrubland (<5m) 134 Closed to open (>15%) broadleaved deciduous shrubland (<5m)

GC-22 Sparse (<15%) vegetation 152 Sparse (<15%) shrubland

160
Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently 

or temporarily) - Fresh or brackish water

161
Closed to open broadleaved forest on (semi-)permanently flooded land - Fresh 

water

162 Closed to open broadleaved forest on temporarily flooded land - Fresh water

GC-24
Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or 

brackish water
170

Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or 

brackish water

GC-26
Closed to open (>15%) woody vegetation on regularly flooded or waterlogged soil - 

Fresh or brackish water
181

Closed to open (>15%) woody vegetation on regularly flooded or waterlogged 

soil - Fresh or brackish water

GC-3 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 32 Mosaic forest (50-70%) / cropland (20-50%) 

GC-15 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 110 Mosaic forest or shrubland (50-70%) / grassland (20-50%)

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 

31 Mosaic grassland or shrubland (50-70%) / cropland (20-50%) 

GC-22 Sparse (<15%) vegetation 150 Sparse (<15%) vegetation

GC-25
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 

waterlogged soil - Fresh, brackish or saline water
180

Closed to open (>15%) grassland or woody vegetation on regularly flooded or 

waterlogged soil - Fresh, brackish or saline water

Cplant-4
Mixed-vegetation - Predominance 

C4-vegetation (50-70%)
GC-16 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 120 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 

Cplant-1 C3-vegetation (70-100%)

Cplant-2
Mixed-vegetation - Predominance 

C3-vegetation (50-70%)

Mixed-vegetation (C3/C4 

vegetation; 50/50%)
Cplant-3

Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) GC-3

Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or 

temporarily) - Fresh or brackish water
GC-23
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Table 12 (continued) 

 

 

 

C3-C4 
class

C3-C4 label
New LC 

class
New LC Label

Glob-
cover 
class

Globcover label (regional)

GC-20
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)
140

Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)

GC-21 Closed (>40%) grassland 141 Closed (>40%) grassland

GC-22 Sparse (<15%) vegetation 151 Sparse (<15%) grassland

GC-27
Closed to open (>15%) grassland on regularly flooded or waterlogged soil - Fresh 

or brackish water
185

Closed to open (>15%) grassland on regularly flooded or waterlogged soil - 

Fresh or brackish water

11 Post-flooding or irrigated croplands (or aquatic)

12 Post-flooding or irrigated shrub or tree crops

13 Post-flooding or irrigated herbaceous crops

14 Rainfed croplands

15 Rainfed herbaceous crops

16 Rainfed shrub or tree crops (cash crops, vineyards, olive tree, orchards…)

20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

21 Mosaic cropland (50-70%) / grassland or shrubland (20-50%) 

Cplant-8
Artificial surfaces and associated 

areas (Urban areas >50%)
GC-28 Artificial surfaces and associated areas (Urban areas >50%) 190 Artificial surfaces and associated areas (Urban areas >50%)

200 Bare areas

201 Consolidated bare areas (hardpans, gravels, bare rock, stones, boulders)

202 Non-consolidated bare areas (sandy desert)

GC-32 Sand 203 Salt hardpans

Cplant-10 Water GC-30 Water bodies 210 Water bodies

Cplant-11 Snow/Ice GC-31 Permanent snow and ice 220 Permanent snow and ice

Cplant-12 No data GC-33 No data (burnt areas, clouds,…) 230 No data (burnt areas, clouds,…)

Cplant-5

Cplant-6
Cultivated and managed areas / 

Rainfed cropland

Mosaic cropland (50-70%) / 

vegetation (grassland/shrubland/ 

forest) (20-50%)

Cplant-7

Cplant-9

Cultivated and managed areas / Rainfed croplandGC-1

Bare areasGC-29

Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)GC-2

Bare areas

C4-vegetation (70-100%)
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Table 13: New land cover classifications (C3 - C4 classes; New LC classes: General landcover classes) in relation to the original Africover classes. 

 

 

C3-C4 

class
C3-C4 label

New LC 

class
New LC Label MapCode Africover - LCCOwnDescr Africover - LCCLabel

2SCJ Closed shrubs
Continuous Closed Medium To High Shrubland 

(Thicket)

2SCJ7 Closed shrubs with sparse trees Medium To High Thicket With Emergents

2WC7 Closed woody with sparse trees Closed Woody Vegetation With Emergents

GC-19
Closed to open (>15%) broadleaved deciduous shrubland 

(<5m)
2SCM2-FE Closed medium shrubs (broadleaved deciduous) - Fern

Broadleaved Deciduous Medium High Thicket / 

Floristic Aspect: Fern

4TCF Closed trees on temporarily flooded land - fresh water
Forest On Temporarily Flooded Land 

Water Quality: Fresh

4TCFF1Y
Closed trees (broadleaved evergreen) on permanently 

flooded land - brackish water

Broadleaved Evergreen Forest On Permanently 

Flooded Land  

Water Quality: Brackish

4SCF
Closed shrubs on temporarily flooded land - fresh 

water

Closed Medium To High Shrubs On Temporarily 

Flooded Land 

Water Quality: Fresh

4SCJFF1Y
Closed shrubs (broadleaved evergreen) on 

permanently flooded land  - brackish water

Broadleaved Evergreen Closed Medium To High 

Shrubs On Permanently Flooded Land  

Water Quality: Brackish

2TC8 Closed trees with shrubs Forest With Shrubs

2TC Closed Trees - Bamboo
Continuous Closed Trees

Floristic Aspect: Bamboo

2TCI177 Closed multilayered trees (broadleaved evergreen)

Multi-Layered Broadleaved Evergreen High Forest 

(With Second Layer Of Medium High Trees) With 

Emergents

2TCI8 Closed high trees with closed to open shrubs High Forest With High Shrubs

2TCL8 Closed low trees with closed to open shrubs Low Forest With High Shrubs

2TPM18 Open general medium trees with open shrubs Broadleaved Evergreen Woodland With Open Shrubs

2TV8 Very open trees with closed to open shrubs (40 - (20-10)%) Woodland With Shrubs

2TVI Very open high trees
Continuous Open (40 - (20-10)%) High Forest 

(Woodland)

GC-7 Closed (>40%) broadleaved deciduous forest (>5m) 2WC27Y
Closed woody (broadleaved deciduous) with sparse 

trees

Broadleaved Deciduous Closed Woody Vegetation 

With Medium High Emergents

2TO28
Open trees (broadleaved deciduous) with closed to 

open shrubs

Broadleaved Deciduous ((70-60) - 40%) Woodland 

With Shrubs

2TP8 Open general trees with shrubs Woodland With Shrubs

2TPM8 Open general trees with open shrubs Woodland With Open Shrubs

2TV28
Very open trees (broadleaved deciduous) with closed 

to open shrubs

Broadleaved Deciduous (40 - (20-10)%) Woodland 

With Shrubs

GC-9 Closed (>40%) needleleaved evergreen forest (>5m) 2TC3 Closed trees (needlelaved evergreen) Needleleaved Evergreen Forest

GC-8
Open (15-40%) broadleaved deciduous forest/woodland 

(>5m)

Cplant-1
C3-vegetation 

(70-100%)

GC-17
Closed to open (>15%) (broadleaved or needleleaved, 

evergreen or deciduous) shrubland (<5m)

GC-23

Closed to open (>15%) broadleaved forest regularly flooded 

(semi-permanently or temporarily) - Fresh or brackish 

water

GC-24
Closed (>40%) broadleaved forest or shrubland 

permanently flooded - Saline or brackish water

GC-5
Closed (>40%) broadleaved evergreen and/or semi-

deciduous forest (>5m)

GC-6
Open (15-40%) broadleaved semi-deciduous and/or 

evergreen forest with emergents (>5m)
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Table 13 (continued) 

 

C3-C4 

class
C3-C4 label

New LC 

class
New LC Label MapCode Africover - LCCOwnDescr Africover - LCCLabel

2SOJ67
Open shrubs with closed to open herbaceous and 

sparse trees

((70-60) - 40%) Medium To High Shrubland With Open 

Medium to Tall Herbaceous And Emergents

2SPJ67
Open general shrubs with closed to open herbaceous 

and sparse trees

Medium To High Shrubland With Short Herbaceous 

And Emergents

2SV6 Very open shrubs with closed to open herbaceous (40 - (20-10)%) Shrubland with Herbaceous

2SVJ67
Very open shrubs with closed to open herbaceous and 

sparse trees

(40 - (20-10)%) Medium To High Shrubland With 

Medium to Tall Herbaceous And Emergents

GC-15 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 2WP6 Open general woody with herbaceous Open Woody Vegetation With Herbaceous Layer

GC-17
Closed to open (>15%) (broadleaved or needleleaved, 

evergreen or deciduous) shrubland (<5m)
2SP6 Open general shrubs with closed to open herbaceous Shrubland with Herbaceous

GC-22 Sparse (<15%) vegetation 2SR6 Sparse shrubs with sparse herbaceous Sparse Shrubs and Sparse Herbaceous

4SOF6
Open shrubs with closed to open herbaceous on 

temporarily flooded land - fresh water

Open ((70-60) - 40%) Medium To High Shrubs With 

Herbaceous Vegetation On Temporarily Flooded Land 

Water Quality: Fresh

4SPF6
Open general shrubs with closed to open herbaceous 

on temporarily flooded land

Open Shrubs With Herbaceous Vegetation On 

Temporarily Flooded Land

4SVF6
Very open shrubs with closed to open herbaceous on 

temporarily flooded land - fresh water

Open (40 - (20-10)%) Medium To High Shrubs With 

Herbaceous Vegetation On Temporarily Flooded Land 

Water Quality: Fresh

4TPF6
Open general trees with closed to open herbaceous 

on temporarily flooded land - fresh water

Woodland With Closed Herbaceous Vegetation On 

Temporarily Flooded Land 

Water Quality: Fresh

4WPF6
Open general woody with closed to open herbaceous 

on temporarily flooded land

Open Woody Vegetation With Herbaceous Vegetation 

On Temporarily Flooded Land 

Water Quality: Fresh

2TO268
Open trees (broadleaved deciduous) with closed to 

open herbaceous and sparse shrubs

Broadleaved Deciduous ((70-60) - 40%) Woodland 

With Open Herbaceous Layer And Sparse Shrubs

2TOL268
Open low trees (broadleaved deciduous) with open 

herbaceous and sparse shrubs

Broadleaved Deciduous ((70-60) - 40%) Woodland 

With Open Medium to Tall Herbaceous Layer And 

Sparse Shrubs

2TV268
Very open trees (broadleaved deciduous) with closed 

to open herbaceous and sparse shrubs

Broadleaved Deciduous (40 - (20-10)%) Woodland 

With Herbaceous Layer And Sparse Shrubs

2TVL268
Very open low trees (broadleaved deciduous) with 

open herbaceous and sparse shrubs

Broadleaved Deciduous (40 - (20-10)%) Woodland 

With Open Medium to Tall Herbaceous Layer And 

Sparse Shrubs

GC-8
Open (15-40%) broadleaved deciduous forest/woodland 

(>5m)

Cplant-2

Mixed-vegetation 

- Predominance 

C3-vegetation 

(50-70%)

GC-15 Mosaic forest or shrubland (50-70%) / grassland (20-50%)

GC-25

Closed to open (>15%) grassland or woody vegetation on 

regularly flooded or waterlogged soil - Fresh, brackish or 

saline water

GC-26
Closed to open (>15%) woody vegetation on regularly 

flooded or waterlogged soil - Fresh or brackish water
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Table 13 (continued) 

 

C3-C4 
class

C3-C4 label
New LC 

class
New LC Label MapCode Africover - LCCOwnDescr Africover - LCCLabel

2H(CP)78
Closed to very open herbaceous with sparse trees and 

shrubs

Closed To Very Open Herbaceous Vegetation with 

Trees and Shrubs

2H(CP)8 Closed to very open herbaceous with sparse shrubs
Closed To Very Open Herbaceous Vegetation with 

Shrubs

GC-26
Closed to open (>15%) grassland on regularly flooded or 

waterlogged soil - Fresh or brackish water
4H(CP)F8

Closed to very open herbaceous with sparse shrubs on 

temporarily flooded land - fresh water

Closed to Very Open Herbaceous Vegetation With 

Sparse Shrubs On Temporarily Flooded Land . Fresh 

Water

GC-20
Closed to open (>15%) herbaceous vegetation (grassland, 

savannas or lichens/mosses)
2H(CP) Closed to very open herbaceous

Continuous Closed to Very Open Herbaceous 

Vegetation

GC-22 Sparse (<15%) vegetation 2HR Sparse herbaceous
Parklike Patches Of Sparse ((20-10) - 4%) Herbaceous 

Vegetation

4H(CP)FF
Closed to Open Herbaceous On Permanently Flooded 

Land

Closed to Open Herbaceous Vegetation On 

Permanently Flooded Land.Fresh Water

4HCF
Closed herbaceous on temporarily flooded land - fresh 

water

Closed Herbaceous Vegetation On Temporarily 

Flooded Land. Fresh water

4HCJF7
Closed herbaceous with sparse trees on temporarily 

flooded land - fresh water

Closed Medium To Tall Herbaceous Vegetation With 

Low Emergents On Temporarily Flooded Land. Fresh 

water

G- Cereals, Rice 

Continuous Large To Medium Sized Field(s) Of 

Graminoid Crops Dominant Crop: Cereals  - Rice 

(Oryza spp.)

H- Rainfed Herbaceous Crop(s) Rainfed Herbaceous Crop(s)

S- Rainfed Shrub Crop
Permanently Cropped Area With Rainfed Shrub 

Crop(s)

T- Forest Plantation
Permanently Cropped Area With Rainfed Tree Crop(s) 

Crop Cover:  (Plantation(s))

5A Airport
Non-Linear Built Up Area(s)  

Built-up object: Airport

5I Industrial area - general Industrial And/Or Other Area(s)

5P Port

Non-Linear Built Up Area(s)  

Built-up object: Port Area (including Docks, Shipyards, 

Locks)

5Q Quarry Extraction Site(s)

5U Urban areas (general) Urban Area(s)

5UC Refugee camp
Urban Area(s)  

Built-up object: Refugee Camp

5UR Rural settlements
Urban Area(s)  

Built-up object: Other - Rural Settlement

5UV Vegetated Urban Areas Vegetated Urban Area(s)

Cplant-8

Artificial surfaces 

and associated 

areas (Urban 

areas >50%)

GC-28 Artificial surfaces and associated areas (Urban areas >50%)

Cplant-5
C4-vegetation 

(70-100%)

GC-27
Closed to open (>15%) grassland on regularly flooded or 

waterlogged soil - Fresh or brackish water

Cplant-6

Cultivated and 

managed areas / 

Rainfed cropland

GC-1 Cultivated and managed areas / Rainfed cropland

Cplant-4

Mixed-vegetation 

- Predominance 

C4-vegetation 

(50-70%)

GC-20
Closed to open (>15%) herbaceous vegetation (grassland, 

savannas or lichens/mosses)
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Table 13 (continued) 

 

 

 

 

 

 

C3-C4 
class

C3-C4 label
New LC 

class
New LC Label MapCode Africover - LCCOwnDescr Africover - LCCLabel

6R Bare rock Bare Rock(s)

6S Bare soil Bare Soil And/Or Other Unconsolidated Material(s)

6ST2 Bare soil very stony
Very Stony Bare Soil And/Or Other Unconsolidated 

Material(s)

6SZ Salt crusts Bare Soil And/Or Other Unconsolidated Material(s)

6L Sand Loose And Shifting Sands

8WT1 Sand beaches Tidal Area (Surface Aspect: Sand)

7WP Artificial Lakes or Reservoirs Artificial Perennial Waterbodies (Standing)

7WP-Y Fish Pond Artificial Perennial Waterbodies (Standing)

8WFN1 River banks
Non-Perennial Natural Waterbodies (Flowing) 

(Surface Aspect: Sand)

8WFP River
Perennial Natural Waterbodies (Flowing)  

Salinity: Fresh, < 1000 ppm of TDS

8WN2 Lake shore
Non-Perennial Natural Waterbodies (Standing) 

(Surface Aspect: Bare Soil)

8WP Natural lakes
Perennial Natural Waterbodies (Standing)  

Salinity: Fresh, < 1000 ppm of TDS

Cplant-11
Permanent snow 

and ice
GC-31 Permanent snow and ice 8SP Snow Perennial Snow

Cplant-10 Water bodies GC-30 Water bodies

Cplant-9 Bare areas

GC-29 Bare areas

GC-32 Sand
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3.2.3.3 Land cover maps and study variables 

To produce land cover maps of the eight study areas, their boundaries were first drawn as 

polygons in ArcGIS (version 10.1) and used to create isolated maps of each locality by 

clipping the polygons onto the Globcover or Africover country maps. Different maps were 

then created using the two new classifications schemes for symbology. To facilitate 

quantitative analysis, each map was transformed using the ArcTool “Polygon to raster” 

(cell size=300 for Globcover products; cell size=30 for Africover products), which allowed 

the land cover maps to be analysed using the software FragStats (version 4.2.1) which is 

designed to compute a wide variety of landscape metrics for categorical map patterns.  

A series of variables were produced to help quantify and characterise landscape 

composition and configuration, in each studied locality. Class-level and landscape-level 

variables were computed (see Table 14). Class-level variables are metrics that are 

calculated for each land cover class observed in each studied locality (e.g. proportional 

abundance of each land cover class in the landscape, PLAND). These variables are 

therefore used as a way to assess the land cover composition of each study area. 

Landscape-level variables are metrics that help characterise the entire patch mosaic of 

each studied locality and evaluate their overall landscape structure when all land cover 

classes are considered together (e.g. for one locality, it is possible to evaluate the number 

of different patch types present, NP< or how divided/aggregated land cover patches are 

in the area, DIVISION). 
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Table 14: Class-level variables used in this study to describe landscape composition, and landscape-level variables used to describe land cover spatial configuration. 

Variable Units Description Range Comments 
 

Landscape composition (Class-level metrics)  

Percentage 
of 

Landscape 
PLAND Percent 

Sum of the areas (m2) of all 
patches of the corresponding 
patch type, divided by total 

landscape area (m2), 
multiplied by 100. 

PLAND approaches 0 when the corresponding patch 
type (class) becomes increasingly rare in the 

landscape. PLAND = 100 when the entire landscape 
consists of a single patch type. 

Percentage of landscape quantifies the 
proportional abundance of each patch 

type in the landscape. 

 

Number of 
Patches 

NP None 
Number of patches of the 
corresponding patch type 

(class). 

NP = 1 when the landscape contains only 1 patch of 
the corresponding patch type. 

   

Largest 
Patch 
Index 

LPI Percent 

Area (m2) of the largest 
patch of the corresponding 
patch type divided by total 

landscape area (m2), 
multiplied by 100. 

LPI approaches 0 when the largest patch of the 
corresponding patch type is increasingly small. LPI 
= 100 when the entire landscape consists of a single 

patch of the corresponding patch type. 

Largest patch index at the class level 
quantifies the percentage of total 

landscape area comprised by the largest 
patch. As such, it is a simple measure of 

dominance. 

 

Spatial configuration (Landscape-level metrics)  

Largest 
Patch 
Index 

LPI Percent 

Area (m2) of the largest 
patch in the landscape 

divided by total landscape 
area (m2), multiplied by 100. 

LPI approaches 0 when the largest patch in the 
landscape is increasingly small. 

LPI = 100 when the entire landscape consists of a 
single patch. 

Largest patch index quantifies the 
percentage of total landscape area 

comprised by the largest patch. As such, 
it is a simple measure of dominance. 

 

Landscape 
Division 

Index 
DIVISION Proportion 

1 minus the sum of patch 
area (m2) divided by total 

landscape area (m2), 
quantity squared, summed 

across all patches of the 
corresponding patch type. 

DIVISION = 0 when the landscape consists of single 
patch.                                                                                          

DIVISION approaches 1 when the proportion of the 
landscape comprised of the focal patch type 

decreases and as those patches decrease in size. 

Division is based on the cumulative 
patch area distribution and is 

interpreted as the probability that two 
randomly chosen pixels in the landscape 
are not situated in the same patch of the 

corresponding patch type. 

 

Simpson's 
Diversity 

Index 
SIDI None 

1 minus the sum, across all 
patch types, of the 

proportional abundance of 
each patch type squared. 

SIDI = 0 when the landscape contains only 1 patch 
(i.e., no diversity). SIDI approaches 1 as the number 

of different patch types (i.e., patch richness, PR) 
increases and the proportional distribution of area 

among patch types becomes more equitable. 

The value of Simpson's index represents 
the probability that any 2 pixels selected 

at random would be different patch 
types. 
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3.2.3.4 Evaluating the proportion of C4 -vegetation in the landscape – the C4 -Index 

To facilitate comparisons between localities for land cover composition, an additional 

landscape-level variable was calculated based on the class-level metrics extracted from 

the land cover maps produced with the C3 - C4 classification, to build an index reflecting a 

gradient from C3 - to C4 -dominated landscapes. As a way to estimate the percentage of C4 -

vegetation present in each studied locality, the new variable (C4 -Index) was calculated 

based on the PLAND values (i.e. Percentage of Landscape) of the main C3 - C4 land cover 

classes used in the maps (classes 1 to 5 - Table 15). Classes with no vegetation or with 

vegetation of unknown nature (classes 6 to 12) were excluded from the equation to focus 

only on the vegetation types identified in the landscape. As a result, the C4 -index reflects 

the relative proportion of C4 -vegetation present in the studied locality among the 

vegetation types identified. Values of PLAND for each class were converted into the 

variable rel.PLAND, to represent the proportional abundance of each patch type in the 

landscape when only classes 1 to 5 are considered (i.e. excluding all classes with no 

vegetation or with vegetation of unknown nature). A series of coefficients, from 0 to 1, 

where then applied to each rel.PLAND value to reflect the relative proportion of C4 -

vegetation included in each of these classes (with 0 representing 0%, and 1 representing 

100% of C4 -vegetation comprised in the land cover class). The sum of the output values 

for the five land cover classes was then calculated to form the C4 -Index, hence 

representing the proportional abundance of C4 -vegetation in the studied locality (in 

percent).  
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Table 15: C3 - C4 land cover classes and C4 -coefficients used to compute the C4 -Index (where 
rel.PLAND is the proportional abundance of each patch type in the landscape when only classes 1 to 5 
are considered). 

 

3.2.3.5 Cluster analysis 

Land cover data from the different study localities were used to identify clusters of 

similarity for land cover composition and/or structure, using K-means clustering analysis 

(using the software R Studio, version 1.1.453; see Appendix A.6 for details of the packages 

used). A first clustering analysis was performed using only the C4 -Index to identify clusters 

of localities with similar land cover composition, based on the maps built using the C3 -C4 

classification. A second clustering analysis was then performed using the Division Index 

(DIVISION), the Simpson’s Diversity Index (SIDI), the Largest Patch Index (LPI) and the C4 

-Index, to identify clusters of localities with similar land cover patterns when both land 

cover composition and land cover structure are considered. All variables were scaled and 

centred prior to analysis. 

The optimal number of clusters (K) to be generated from the k-means analysis (i.e. 

minimum number of clusters where the total within-cluster sum of square is minimized) 

was determined with the Elbow method, which looks at the percentage of variance 

explained as a function of the number of clusters (Thorndike, 1953; Ng, 2012). When using 

the C4 -Index variable to identify clusters among the studied localities based on land cover 

composition, the results from the Elbow method suggest 2 or 3 to be the optimal number 

Code C3-C4 land cover classes
C4-

Coefficient

Cplant-1 C3-vegetation (70-100%) 0

Cplant-2 Mixed-vegetation - Predominance C3-vegetation (50-70%) 0.25

Cplant-3 Mixed-vegetation (C3/C4 vegetation; 50/50%) 0.5

Cplant-4 Mixed-vegetation - Predominance C4-vegetation (50-70%) 0.75

Cplant-5 C4-vegetation (70-100%) 1

C4-Index = (rel.PLAND_Cplant-1*0) + (rel.PLAND_Cplant-2*0.25) +             

(rel.PLAND_Cplant-3*0.5) + (rel.PLAND_Cplant-4*0.75)+(rel.PLAND_Cplant-5*1)
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of clusters that could be generated by the K-means algorithm (see Appendix A.7 figure-A 

3). When using the variables LPI, SIDI, DIVISION and C4 -Index to identify clusters among 

the studied localities based on both land cover composition and structure, the results from 

the Elbow method suggested an optimal number of clusters of 3 (Appendix A.7 figure-A 

4).  The structural and/or compositional characteristics of each cluster were then assessed 

by observing the range of values attributed to the localities assigned to each cluster for the 

relevant variables.  

3.2.3 Relationships between diet and land cover variables: 

multinomial logistic regression models 

 

The purpose of this part of the analysis was to study the relationship between habitat type 

and the diet of modern impala, and consequently test the effect of A. melampus dietary 

signals on the identification of specific land cover patterns. To achieve this, the 

relationships between impala δ13C values and land cover composition, and general land 

cover patterns (land cover composition and structure) were explored. Land cover 

composition and structure as a function of diet (evaluated with δ13C) was evaluated using 

simple multinomial logistic regression models to see if positive or negative relationships 

could be observed between selected land cover variables and the dietary patterns of 

Aepyceros melampus specimens as assessed through stable carbon isotope analysis.  

Two models were tested: 1) Land cover composition as a function of diet; 2) Land cover 

composition and structure as a function of diet. The models were implemented using the 

clusters identified with the k-means algorithm to form the categorical dependant variables 

in each model.  

The up-sampling method was used prior to each model building to correct for class 

unbalance in the dataset. This method adds more similar data points to the minority 

classes to make class distribution equal across the dataset. This was to mitigate for small 
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sample sizes for some of the studied areas (hence for some land cover types) which relate 

more to inerrant data collection biases rather than to the actual rarity of occurrence of 

such land cover types in African landscapes. For both models, δ13Cvalues were z-

standardized prior to analysis via centering and scaling methods. The 95% confidence 

intervals (“Lower CI” and “Upper CI”) were calculated for the parameter estimates and 

odds ratios for the model. 

3.2.3.1 Land cover composition as a function of diet (model 1) 

The model took the form: 

Equation 4. 2  
𝒚𝒊 ∼ Multinom(𝝁𝒊)
𝝁𝒊 = 𝜶 + 𝜷𝟏 ∗ 𝜹𝟏𝟑C𝒊

 

 

where 𝑦𝑖 is a categorical variable denoting whether the land cover structure i is 0: C3 -

vegetation, 1: Mixed-vegetation, 2: C4 -vegetation, 𝛼 is the intercept term, 𝛽1 is the effect 

of diet on the land cover structure type, and X is the stable carbon isotope value (δ13C).  

3.2.3.2 Land cover composition AND structure as a function of diet (model 2) 

The model took the form: 

Equation 4. 3  
𝒚𝒊 ∼ Multinom(𝝁𝒊)
𝝁𝒊 = 𝜶 + 𝜷𝟏 ∗ 𝜹𝟏𝟑C𝒊

 

 

where 𝑦𝑖 is a categorical variable denoting whether the land cover structure i is 0: C3 -

Heterogeneous/intermediate-mosaic, 1: Mixed/ C4 -Heterogeneous, 2: C4 -Homogeneous, 

𝛼 is the intercept term, 𝛽1 is the effect of diet on the land cover structure type, and X is the 

stable carbon isotope value (δ13C). 
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3.2.4 Model predictions: using modern data on impala habitats and 

diet to inform on land cover composition and structure in the past 
 

For the last part of the analysis, the logistic regression models obtained after analysing the 

relationship between the diet of modern specimens and the remote sensing data from 

their region of origin were used on stable carbon isotope data on fossil impala specimens 

(genus Aepyceros) from Koobi Fora, Nachukui and Shungura. This was to evaluate to which 

land cover types these individuals were likely associated, based on stable carbon isotope 

data and predictions generated by the models produced in the study.  

3.2.4.1 Fossil assemblage 

3.2.4.1.1 Material 

Fossil dental remains of Aepyceros specimens from the Koobi Fora and the Nachukui 

formations were sampled for isotopic studies at the National Museums of Kenya (Nairobi), 

as well as Aepyceros specimens from the Shungura Formation (Fm) curated at the 

National Museum of Ethiopia (Addis-Ababa) (see detail of the samples in the 

supplementary dataset). 

3.2.4.1.2 Data collection 

Prior to sampling, selected areas of the teeth were cleaned: adhering loose matrix was 

removed using a damp cotton swab, and acetone was used locally for glue residues if 

necessary. Bulk sampling was performed on the assemblage, and consisted in the 

extraction of 7-9 mg of enamel powder from the tooth surface using a 1mm diameter 

diamond-tipped drill bit. Slow-medium drilling speed was applied to prevent local heating 

(Lee-Thorp et al. 1997). This left a light scratch on the fossil tooth. The orientation of the 

samples varied depending on the museums’ curatorial preferences (i.e. along broken 

edges at the National Museums of Kenya; following the mesio-distal width of the tooth at 
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the National Museum of Ethiopia). A total of 259 bulk samples were collected on the fossil 

assemblage.  

3.2.4.1.3 Additional data  

To increase sample size, previously published data were also used in this study, from other 

Aepyceros specimens found in the Omo-Turkana basin (Cerling et al., 2013, 2015; Negash 

et al., 2015; Du et al., 2019) (see appendix A.8).   

3.2.4.1.4 Sample pre-treatment  

 

The enamel powder collected on the studied specimens was cleaned using standard pre-

treatment methods for the removal of organic and carbonate contaminants. In addition to 

the enamel samples collected for this study, enamel samples of known isotopic 

composition were also pre-treated (FBS and LES equid, provided by P. Hopley, Birkbeck), 

to be used as internal standards during isotopic analysis, and to check for the impact of 

pre-treatment on the expected values. Powdered enamel is typically pre-treated with 

dilute sodium hypochlorite (NaOCl) or hydrogen peroxide (H2O2) to remove organic 

matter, followed by leaching with a solution of acetic acid (0.1M) to dissolve secondary 

mineral contaminants (Koch, Tuross and Fogel, 1997; Rowland, 2006). This pre-treatment 

should only leave purified structural carbonate for analysis.  

Each enamel sample therefore went through a first wash using 1ml dilute sodium 

hypochlorite (NaOCl - bleach 2%- rest for 45min), followed by 3 rinses using deionised 

water (ultra-pure), to remove organic matter. Each sample was then washed a second time 

using 0.5 ml dilute acetic acid (0.1M – rest for 15min), followed by 3 rinses using deionised 

water, to dissolve secondary mineral contaminants. The samples were centrifuged 

between each wash to facilitate the removal of the liquid elements and were dried 

overnight in a drying oven at low temperature (70°C). 
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To control for the effect of pre-treatment procedures on the samples, two internal enamel 

standards of known isotopic composition (LES and FBS standards, provided by Philip 

Hopley, UCL Birkbeck) were pre-treated and analysed alongside the studied samples. The 

LES standard controlled for the grazing end of the dietary spectrum (i.e. n = 12; 13C mean 

= 0.08‰, sd = 0.27; 18O mean = 2.00‰, sd = 0.5), while the FBS standard controlled for 

the browsing end of the spectrum (i.e. n = 15; 13C mean = -11.45‰, sd = 0.05; 18O mean 

= -4.55‰, sd = 0.12). 

3.2.4.1.5 Mass-spectrometry data acquisition 

The samples were analysed at the Stable Isotope Ratio Mass-Spectrometry (SIRMS) 

Laboratory (University of Southampton, National Oceanography Centre; procedure 

performed by Megan Spencer) using a Kiel Carbonate Device coupled to a MAT253 Isotope 

Ratio Mass Spectrometer (both Thermo Fisher Scientific, Bremen, Germany). 0.3-0.6 mg 

of each sample was weighed out into borosilicate glass vials according to their CaCO3 

concentration in order to match ~30-40 µg of pure CaCO3. During subsequent analysis, 

they reacted with 106% phosphoric acid at 90°C for 800 seconds. After cryogenic removal 

of water vapour and other gases, the resulting CO2 was measured multiple times against a 

reference gas. Following data reduction and corrections, data were normalised using a 

two-point calibration with NBS 18 and NBS 19 (IAEA, Vienna, Austria) and reported 

relative to VPDB (Vienna PeeDee Belemnite). The δ18O and δ13C values were obtained from 

these analyses using the following calculation:  

Equation 3. 1:  δx = 1000[(Rsample/Rstandard) –1]  

(where δx is either δ13C or δ18O, and R is either 13C/12C or 18O/16O.)  

In-house reference material (GS1) was used for quality assurance purposes and to report 

instrument precision (Coplen, 1994). Long-term instrument precision is 0.05‰ for δ13C 

and 0.09‰ for δ18O (Thermo Scientific, 2009). 
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3.2.4.2 Predicting land cover patterns – testing the models with fossil samples 

The multinomial logistic regression models produced using modern data on land cover 

and impala dietary behaviours in the seven study areas were tested on the stable carbon 

isotope data collected from fossil Aepyceros melampus for this study. This was to assess 

what types of land cover patterns could potentially be ’predicted’ from paleo-dietary data.  

Prior to running the analyses, modern values were corrected (following Long et al., 2005; 

Ferrio et al. 2005; Keeling et al. 2010; Bocherens et al. 2014) to take into account the “fossil 

fuel effect” (or Suess Effect) that led to a depletion of ambient atmospheric δ13C values 

compared to values from the pre-industrial era (Keeling, Mook and Tans, 1979; Marino 

and McElroy, Michael, 1991; Kingston and Harrison, 2007).  

 

3.3 Results 

3.3.1 Dietary variation in modern impala specimens: Stable carbon 

isotope evidence 
 

This section explores the dietary patterns that can be evaluated via stable carbon isotope 

studies from the extant impala (Aepyceros melampus) samples selected for each studied 

locality.  

When the selected Aepyceros melampus samples from the seven studied localities (Table 

16) were compared to stable carbon isotope data published for grazers (Equus quagga) 

and browsers (Giraffa camelopardalis) from some of the studied localities (Cerling et al., 

2015), the selected modern impala specimens were shown to yield a wide range of δ13C 

values spreading across the dietary spectrum, indicative of a large dietary breadth for this 

species, as expected for mixed-feeding herbivores (Figure 22). 
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Figure 22: Kernel density estimates for δ13C-enamel for the totality of the selected modern Aepyceros 
melampus specimens, along with values deriving from published data for Giraffa camelopardalis and 
Equus quagga specimens from some of the studied localities (Cerling et al. 2015; see Appendix A.8). 
These highlight, as expected for mixed-feeding herbivores, a large dietary breadth across all impala 
specimens. 

 

Figure 23: δ13C-enamel values for each Aepyceros melampus sample studied, per locality.
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Table 16: Descriptive statistics for stable carbon isotope samples of Aepyceros melampus specimens from each studied locality. δ13C-raw values: carbon isotope values 
measured from the sampled materials (mean, standard deviation and standard error of the mean); δ13C-enamel: measured or estimated enamel carbon isotope values 
(mean, minimum and maximum values). 

Country Locality - Year N 
δ13C (‰) - raw values δ13C-enamel (‰) Data 

Material mean s.d. s.e.m. mean min max  

Kenya 

Hopcraft Game Ranch (Swara) - 1999 9 Enamel -2.98 2.86 0.95 -2.98 -8.22 0.01 
Levin et al., 2006;  
Cerling et al., 2015 

Mpala - 2001 19 Enamel -4.52 1.17 0.27 -4.52 -6.67 -2.59 
Levin et al., 2006;  
Cerling et al., 2015 

Nakuru NP shoreline - 2000 3 Enamel -2.63 2.08 1.20 -2.63 -5.02 -1.26 
Levin et al., 2006;  
Cerling et al., 2015 

  El Karama - 1998 3 Enamel -3.15 3.27 1.89 -3.15 -6.23 0.29 
Levin et al., 2006;  
Cerling et al., 2015 

South 
Africa 

KNP-North - 2001-2002 18 Hair -17.80 2.8 / -6.70 / / Sponheimer et al., 2003 

KNP-South - 2001-2002 18 Hair -12.60 1.3 / -1.50 / / Sponheimer et al., 2003 

Welgevonden - 2002-2003  14 Faeces -19.40 4.00 / -4.40 / / Codron et al., 2005 
 

Table 17: Estimated percentage of C4 -plant material contained in the diet based on stable carbon isotope samples of Aepyceros melampus specimens from each studied 
locality (mean, lower and upper confidence intervals – 95%). δ13C-diet: estimated carbon isotope values of the plant material consumed (mean). 

Country Locality - Year N 
δ13C-

diet (‰) 
% C4-plant 

LCI mean UCI 

Kenya 

Hopcraft Game Ranch (Swara) - 1999 9 -16.48 56.07 71.34 86.61 

Mpala - 2001 19 -18.02 56.71 60.65 64.59 

Nakuru NP shoreline - 2000 3 -16.13 37.88 73.77 100.00 

  El Karama - 1998 3 -16.65 12.03 70.16 100.00 

South 
Africa 

KNP-North - 2001-2002 18 -20.80 31.66 41.35 51.03 

KNP-South - 2001-2002 18 -15.60 72.94 77.46 81.97 

Welgevonden - 2002-2003  14 -18.50 41.27 57.32 73.36 
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When evaluating the range of stable carbon isotopes values of the specimens (δ13C-

enamel) across the different modern impala samples, some degree of variation could be 

observed (Figure 23 and Table 16). The highest values were observed for the impala 

samples from KNP-South (mean δ13C-enamel = -1.5 ‰), followed by samples from Nakuru 

(mean δ13C-enamel = -2.63 ‰), Swara (mean δ13C-enamel = -2.98 ‰), and El Karama 

(mean δ13C-enamel = -3.15 ‰). The lowest δ13C-diet values were observed at Mpala 

(mean δ13C-enamel = -4.52 ‰), and for specimens from the South African localities 

Welgevonden (mean δ13C-enamel = -4.4 ‰) and KNP-North (mean δ13C-enamel = -

6.70‰).   

Table 18: Result from the Kruskal-Wallis test evaluating whether differences can be observed between 
localities based on the δ13C-enamel values of the selected A. melampus specimens. 

Kruskal-Wallis 

Chival DF Pval 

31.9717465 5 6.02E-06 
 

 

Table 19: Results from the Dunn-Test evaluating whether differences can be observed when 
comparing modern A. melampus samples per locality, based on δ13C-enamel values.  

Dunn Test 

Comparison ZVal Pval Pvaladjust 

KNP-North - KNP-South -5.317 0.000 0.000 

KNP-North - Mpala -1.772 0.076 1 

KNP-North - Nakuru -2.060 0.039 0.433 

KNP-North - Swara -3.019 0.003 0.000 

KNP-North - Welgevonden -1.885 0.059 0.594 

KNP-South - Mpala 3.616 0.000 0.004 

KNP-South - Nakuru 0.782 0.434 1.000 

KNP-South - Swara 1.322 0.186 1 

KNP-South - Welgevonden 3.088 0.002 0.026 

Mpala - Nakuru -1.130 0.259 1.000 

Mpala - Swara -1.606 0.108 0.867 

Mpala - Welgevonden -0.252 0.801 1.000 

Nakuru - Swara 0.078 0.938 1 

Nakuru - Welgevonden 0.963 0.335 1 

Swara - Welgevonden 1.313 0.189 1.000 
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Results from comparative statistics (Table 44 and Table 45) show that specimens from 

KNP-South significantly differ from KNP-North (p<0.000), from Mpala (p=0.004), and 

from Welgevonden (p=0.026) by having higher δ13C values. On the other end of the 

spectrum, specimens from KNP-North significantly differ from specimens from Swara 

(p<0.000) by having lower δ13C values. Significant differences are not found between other 

localities and either Nakuru or El Karama, potentially due to small sample size and high 

standard deviation/standard error within these samples. 

These results suggest differing dietary patterns between the studied impala samples, more 

particularly with diets rich in C4 -vegetation in the Kenyan localities and in KNP-South, and 

mixed C3 - C4 diets in some of the South African localities (KNP-North and Welgevonden). 

These differences could potentially relate to differing environmental conditions, including 

differing land cover patterns. 

 

3.3.2 Land cover data from modern impala habitats 
 

This section explores the land cover composition and land cover structure of the studied 

localities as assessed from the data acquired and analysed from the Africover products 

from 1995-1999 (from Kenyan localities) and the Globcover land cover products from 

2005-2006 (for the South African localities). Results from the land cover composition 

analysis are presented, followed by results from the clustering analyses.  

3.3.2.1 Land cover composition - Class metrics 

3.3.2.1.1 General land cover classes 

When observing landcover patterns at the class level using the Africover and Globcover 

products using the general land cover classification, various patterns could be observed 

for each locality (Table 21-21 and Figure 24). 
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3.3.2.1.1.1 Kenyan localities – El Karama, Mpala, Nakuru and Swara 
 

All localities in Kenya were shown to be dominated by closed to open (>15%) herbaceous 

vegetation (grassland, savannas, or lichens/mosses), followed by mosaic forest or 

shrubland (50-70%) / grassland (20-50%).  

Mpala: land cover dominated by medium-size patches of closed to open (>15%) 

herbaceous vegetation (grassland, savannas, or lichens/mosses) (LPI=27.85%), and 

smaller patches of mosaic forest or shrubland (50-70%) with grassland (20-50%) 

(LPI=14.1%).  

El Karama: land cover dominated by large patches of closed to open (>15%) herbaceous 

vegetation (grassland, savannas or lichens/mosses) (LPI=91.23%), and small patches of 

mosaic forest or shrubland (50-70%) / grassland (20-50%) (LPI=6.57%).  

Nakuru: land cover dominated by small-size patches of closed to open (>15%) herbaceous 

vegetation (grassland, savannas, or lichens/mosses) (LPI=7.7%), and slightly larger 

patches mosaic forest or shrubland (50-70%) / grassland (20-50%) (LPI= 12.73%).  

Swara: land cover dominated by large patches of closed to open (>15%) herbaceous 

vegetation (grassland, savannas or lichens/mosses) (LPI=80.96%), and small-size patches 

of mosaic forest or shrubland (50-70%) / grassland (20-50%) (LPI=9.97%).  

3.3.2.1.1.2 South African localities – KNP-North, KNP-South, Welgevonden 
 

All of the studied South African localities are dominated by large patches (KNP-South and 

Welgevonden with LPI>40%) or medium-size patches (KNP-North with LPI=29.92%) of 

closed to open shrubland. While this dominating shrubland is associated mainly with small 

patches (i.e. LPI<15%) of mosaic vegetation (50-70%) with cropland (20-50%) in 

Welgevonden and in KNP-North, it is associated mainly with small patches of open 

broadleaved deciduous forest/woodland in KNP-South.  
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Table 20: Class metrics summary for each studied locality (general land cover classification). 

Country Locality 
Predominant land cover 

classes (PLAND) 

Associate
d largest 

patch 
index 
(LPI) 

Associate
d number 
of patches 

(NP) 

Land cover class(es) 
with the largest 

number of patches 
(NP) 

Kenya 

El Karama 

Closed to open (>15%) 
herbaceous vegetation 
(grassland, savannas or 

lichens/mosses) (91.23 %) 

91.23 1 Mosaic forest or 
shrubland (50-70%) / 

grassland (20-50%) 
(NP=5) 

Mosaic forest or shrubland 
(50-70%) / grassland (20-

50%) (8.77 %) 
6.57 5 

Mpala 

Closed to open (>15%) 
herbaceous vegetation 
(grassland, savannas or 

lichens/mosses) (56.38 %) 

27.85 11 

Closed to open (>15%) 
herbaceous vegetation 
(grassland, savannas or 

lichens/mosses) 
(NP=11) AND Open 

(15-40%) broadleaved 
deciduous 

forest/woodland (>5m) 
(NP=11) 

Mosaic forest or shrubland 
(50-70%) / grassland (20-

50%) (28.39 %) 
14.10 7 

Nakuru 

Closed to open (>15%) 
herbaceous vegetation 
(grassland, savannas or 

lichens/mosses) (27.45 %) 

7.70 9 Cultivated and 
managed areas / 
Rainfed cropland 

(NP=19) 
Mosaic forest or shrubland 
(50-70%) / grassland (20-

50%) (27.29%) 
12.73 3 

Swara 

Closed to open (>15%) 
herbaceous vegetation 
(grassland, savannas or 

lichens/mosses) (84.02 %) 

80.96 3 Mosaic forest or 
shrubland (50-70%) / 

grassland (20-50%) 
(NP=6) 

Mosaic forest or shrubland 
(50-70%) / grassland (20-

50%) (15.39 %) 
9.97 6 

South 
Africa 

KNP-North 

Closed to open (>15%) 
(broadleaved or 

needleleaved, evergreen or 
deciduous) shrubland 

(<5m) (47.49%) 

29.92 438 Mosaic vegetation 
(grassland/shrubland/f

orest) (50-70%) / 
cropland (20-50%) 

(NP=1213) 
Mosaic vegetation 

(grassland/shrubland/fores
t) (50-70%) / cropland (20-

50%) (22.71%) 

1.9 1213 

KNP-South 

Closed to open (>15%) 
(broadleaved or 

needleleaved, evergreen or 
deciduous) shrubland 

(<5m) (47.97%) 

43.19 325 

Mosaic vegetation 
(grassland/shrubland/f

orest) (50-70%) / 
cropland (20-50%) 

(NP=724) AND Closed 
to open (>15%) mixed 

broadleaved and 
needleleaved forest 

(>5m) (NP=719) 

Open (15-40%) broadleaved 
deciduous forest/woodland 

(>5m) (21.86%) 
4.46 659 

Welgevonden 

Closed to open (>15%) 
(broadleaved or 

needleleaved, evergreen or 
deciduous) shrubland 

(<5m) (58.12%) 

52.66 17 
Closed to open (>15%) 
mixed broadleaved and 

needleleaved forest 
(>5m) (NP=43) 

Mosaic vegetation 
(grassland/shrubland/fores
t) (50-70%) / cropland (20-

50%) (24.09%) 

13.94 36 



148 
 

 

Figure 24: Land cover map (based on general land cover classes) for each studied locality. 
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Table 21: Percentage of Landscape (PLAND) values (based on general land cover classes) for each studied locality. (Note: land cover classes that were not identified in any of the 
studied localities were excluded from the table). 

 

 

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

1 Cultivated and managed areas / Rainfed cropland 0.98 0.00 0.03

3 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 22.71 11.30 24.09

5 Closed (>40%) broadleaved evergreen and/or semi-deciduous forest (>5m) 4.79

6
Open (15-40%) broadleaved semi-deciduous and/or evergreen forest with 

emergents (>5m)

7 Closed (>40%) broadleaved deciduous forest (>5m) 0.92 0.54 2.70

8 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 2.46 11.02 9.21 21.86 7.41

10 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 0.02

13 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 6.24 6.68 4.76

15 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 8.77 28.39 27.29 15.39 8.62 7.76 2.77

16 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 0.84 1.49 0.05

17
Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 

shrubland (<5m)
0.24 1.20 47.49 47.97 58.12

20
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)
91.23 56.38 27.45 84.02 0.78 0.41 0.12

21 Open (15-40%) grassland 2.72 1.74

22 Sparse (<15%) vegetation 0.00

25
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 

waterlogged soil - Fresh, brackish or saline water

26
Closed to open (>15%) woody vegetation on regularly flooded or waterlogged 

soil - Fresh or brackish water
12.53

27
Closed to open (>15%) grassland on regularly flooded or waterlogged soil - 

Fresh or brackish water
3.51 0.59

28 Artificial surfaces and associated areas (Urban areas >50%) 0.03 0.02

29 Bare areas 2.06

30 Water bodies 21.66 0.41 0.22

6291 84078 18567 28521 1290807 989442 38403

South Africa
LC Land cover class

Kenya

Total area (ha)
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Table 22: Largest Patch Index (LPI) values (based on general land cover classes) for each studied locality. (Note: land cover classes that were not identified in any of the studied 
localities were excluded from the table). 

 

 

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

1 Cultivated and managed areas / Rainfed cropland 0.74 0.00 0.01

3 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 1.90 1.41 13.94

5 Closed (>40%) broadleaved evergreen and/or semi-deciduous forest (>5m) 3.27

6
Open (15-40%) broadleaved semi-deciduous and/or evergreen forest with 

emergents (>5m)

7 Closed (>40%) broadleaved deciduous forest (>5m) 0.16 0.08 0.23

8 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 1.82 9.26 0.56 4.46 1.24

10 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 0.01

13 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 0.35 0.22 0.49

15 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 6.57 14.10 12.73 9.97 0.95 2.34 0.49

16 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 0.08 0.08 0.05

17
Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 

shrubland (<5m)
0.20 1.20 29.92 43.19 52.66

20
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)
91.23 27.85 7.70 80.96 0.05 0.06 0.09

21 Open (15-40%) grassland 1.42 0.39

22 Sparse (<15%) vegetation 0.003

25
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 

waterlogged soil - Fresh, brackish or saline water

26
Closed to open (>15%) woody vegetation on regularly flooded or waterlogged 

soil - Fresh or brackish water
8.66

27
Closed to open (>15%) grassland on regularly flooded or waterlogged soil - Fresh 

or brackish water
3.51 0.59

28 Artificial surfaces and associated areas (Urban areas >50%) 0.02 0.02

29 Bare areas 1.26

30 Water bodies 21.65 0.03 0.02

LC Land cover class
Kenya South Africa
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Table 23: Number of patches (NP) (based on general land cover classes) for each studied locality. (Note: land cover classes that were not identified in any of the studied localities 
were excluded from the table). 

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

1 Cultivated and managed areas / Rainfed cropland 19 1 7

3 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 1213 724 36

5
Open (15-40%) broadleaved semi-deciduous and/or evergreen forest with 

emergents (>5m)
2

6 Closed (>40%) broadleaved deciduous forest (>5m)

7 Closed (>40%) broadleaved deciduous forest (>5m) 111 73 28

8 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 11 6 676 659 24

10 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 3

13 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 776 719 43

15 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 5 7 3 6 673 323 22

16 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 188 198 1

17
Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 

shrubland (<5m)
3 1 438 325 17

20
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)
1 11 9 3 180 59 2

21 Open (15-40%) grassland 108 41

22 Sparse (<15%) vegetation 3

25
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 

waterlogged soil - Fresh, brackish or saline water

26
Closed to open (>15%) woody vegetation on regularly flooded or waterlogged 

soil - Fresh or brackish water
10

27
Closed to open (>15%) grassland on regularly flooded or waterlogged soil - Fresh 

or brackish water
1 1

28 Artificial surfaces and associated areas (Urban areas >50%) 11 2

29 Bare areas 2

30 Water bodies 5 74 55

LC Land cover class
Kenya South Africa
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3.3.2.1.2 C3 - C4 land cover classes 

When observing landcover patterns at the class level using the Africover and Globcover products 

with the C3 - C4 classification, various patterns could be observed for each locality (Table 24-25 

and Figure 25).  

Among the studied localities, El Karama, Mpala and Swara (Kenya) appeared to be dominated by 

mixed-vegetation with a predominance of C4 -vegetation (50-70%) (PLAND>40%), associated 

with a much smaller ‘mixed-vegetation with a predominance of C3 -vegetation (50-70%)’ 

component (PLAND<15%). 

The land cover in Nakuru (Kenya) was shown to be more heterogeneous, with a similar amount 

of ‘mixed-vegetation with a predominance of C3 -vegetation (50-70%)’ (PLAND=27.48%) and 

‘mixed-vegetation with a predominance of C4 -vegetation (50-70%)’ (PLAND=27.45%) in the 

landscape. 

The South African localities were all shown to be dominated by large patches of C3 -vegetation 

associated with small patches of mixed C3 - C4 vegetation. The largest patches of C3 -vegetation 

were observed in KNP-South, suggesting slightly less fragmented vegetation in this locality, 

especially when compared to KNP-North. The land cover patterns observed in Welgevonden 

seemed to differ slightly from those observed in the Kruger National Park when focusing on mixed 

C3 - C4 vegetation, which were represented by larger patches in Welgevonden than in the KNP 

localities. 

These differences and similarities between the studied localities were also reflected in the C4 -

index values calculated for each locality based on the class-level metrics extracted from the land 

cover maps produced with the C3 - C4 classification (see 4.2.3.4 Evaluating the proportion of C4 -

vegetation in the landscape – the C4 -Index).  
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Table 24: Class metrics summary for each studied locality (C3 - C4 classification). 

Country Locality 
Predominant land 

cover classes 
(PLAND) 

Associated 
largest 

patch index 
(LPI) 

Associated 
number of 

patches 
(NP) 

Land cover 
class(es) with the 
largest number of 

patches (NP) 

C4-
Index 

Kenya 

El Karama 

Mixed-vegetation - 
Predominance C4-

vegetation (50-70%) 
(91.23 %) 

91.23 1 
Mixed-vegetation 
- Predominance 

C3-vegetation (50-
70%) (NP=5) 

70.61 
Mixed-vegetation - 
Predominance C3-

vegetation (50-70%) 
(8.77 %) 

6.57 5 

Mpala 

Mixed-vegetation - 
Predominance C4-

vegetation (50-70%) 
(67.94 %) 

40.88 9 

C3-vegetation (70-
100%) (NP=13) 

59.08 
Mixed-vegetation - 
Predominance C3-

vegetation (50-70%) 
(28.6 %) 

14.10 8 

Nakuru 

Mixed-vegetation - 
Predominance C3-

vegetation (50-70%) 
(27.48 %) 

12.73 7 
Cultivated and 

managed areas / 
Rainfed cropland 

(NP=19) 

41.15 
Mixed-vegetation - 
Predominance C4-

vegetation (50-70%) 
(27.45 %) 

7.70 9 

Swara 

Mixed-vegetation - 
Predominance C4-

vegetation (50-70%) 
(84.02%) 

80.96 3 
Mixed-vegetation 
- Predominance 

C3-vegetation (50-
70%) (NP=6) 

67.45 
Mixed-vegetation - 
Predominance C3-

vegetation (50-70%) 
(15.39 %) 

9.97 6 

South 
Africa 

KNP-North 

C3-vegetation (70-
100%) (63.88%) 

55.41 252 Mixed-vegetation 
(C3/ C4 vegetation; 

50/50%) 
(NP=1213) 

17.73 Mixed-vegetation (C3/ 
C4 vegetation; 

50/50%) (22.71%) 
1.90 1213 

KNP-South 

C3-vegetation (70-
100%) (77.04%) 

76.24 104 
Mixed-vegetation 

(C3/ C4 vegetation; 
50/50%)(NP=724) 

10.89 Mixed-vegetation (C3/ 
C4 vegetation; 

50/50%) (11.3%) 
1.41 724 

Welgevonden 

C3-vegetation (70-
100%) (72.98%) 

67.75 13 
Mixed-vegetation 

(C3/ C4 vegetation; 
50/50%)(NP=36) 

12.89 Mixed-vegetation (C3/ 
C4 vegetation; 

50/50%) (24.09%) 
13.94 36 
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 Figure 25: Landcover map (based on C3 - C4 land cover classes) for each studied locality. 
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Table 25: Percentage of Landscape (PLAND) values (based on C3 - C4 land cover classes) for each studied locality. 

 

Table 26: Largest Patch Index (LPI) values (based on C3 - C4 land cover classes) for each studied locality. 

 

  

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

Cplant-1 C3-vegetation (70-100%) 2.49 16.82 63.88 77.04 72.98

Cplant-2 Mixed-vegetation - Predominance C3-vegetation (50-70%) 8.77 28.60 27.48 15.39 8.62 7.76 2.77

Cplant-3 Mixed-vegetation (C3/C4 vegetation; 50/50%) 22.71 11.30 24.09

Cplant-4 Mixed-vegetation - Predominance C4-vegetation (50-70%) 91.23 67.94 27.45 84.02 0.84 1.49 0.05

Cplant-5 C4-vegetation (70-100%) 0.97 3.51 0.59 3.51 2.15 0.12

Cplant-6 Cultivated and managed areas / Rainfed cropland 0.98 0.00 0.03

Cplant-7 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

Cplant-8 Artificial surfaces and associated areas (Urban areas >50%) 0.03 0.02

Cplant-9 Bare areas 2.06

Cplant-10 Water bodies 21.66 0.41 0.22

Cplant-11 Permanent snow and ice

6286 84050 18571 28472 1290807 989442 38403

70.61 59.08 41.15 67.45 17.73 10.89 12.89C4-Index

South Africa
C3-C4 code Land cover class

Kenya

Total area (ha)

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

Cplant-1 C3-vegetation (70-100%) 1.82 10.78 55.41 76.24 67.75

Cplant-2 Mixed-vegetation - Predominance C3-vegetation (50-70%) 6.57 14.10 12.73 9.97 0.95 2.34 0.49

Cplant-3 Mixed-vegetation (C3/C4 vegetation; 50/50%) 1.90 1.41 13.94

Cplant-4 Mixed-vegetation - Predominance C4-vegetation (50-70%) 91.23 40.88 7.70 80.96 0.08 0.08 0.05

Cplant-5 C4-vegetation (70-100%) 0.60 3.51 0.59 1.46 0.40 0.09

Cplant-6 Cultivated and managed areas / Rainfed cropland 0.74 0.00 0.01

Cplant-7 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

Cplant-8 Artificial surfaces and associated areas (Urban areas >50%) 0.02 0.02

Cplant-9 Bare areas 1.26

Cplant-10 Water bodies 21.65 0.03 0.02

Cplant-11 Permanent snow and ice

C3-C4 code Land cover class
Kenya South Africa
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Table 27: Number of patches (NP) (based on C3 - C4 land cover classes) for each studied locality. 

El Karama Mpala Nakuru Swara KNP-North KNP-South Welgevonden

Cplant-1 C3-vegetation (70-100%) 13 4 252 104 13

Cplant-2 Mixed-vegetation - Predominance C3-vegetation (50-70%) 5 8 7 6 673 323 22

Cplant-3 Mixed-vegetation (C3/C4 vegetation; 50/50%) 1213 724 36

Cplant-4 Mixed-vegetation - Predominance C4-vegetation (50-70%) 1 9 9 3 188 198 1

Cplant-5 C4-vegetation (70-100%) 3 1 1 256 83 2

Cplant-6 Cultivated and managed areas / Rainfed cropland 19 1 7

Cplant-7 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

Cplant-8 Artificial surfaces and associated areas (Urban areas >50%) 11 2

Cplant-9 Bare areas 2

Cplant-10 Water bodies 5 74 55

Cplant-11 Permanent snow and ice

C3-C4 code Land cover class
Kenya South Africa
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3.3.2.2 Land cover structure and composition - Landscape metrics 

3.3.2.2.1 General observations 

The various landscape metrics produced with the C3 - C4 classification allowed to compare 

more generally the composition (C4 -Index) and structure (LPI, DIVISION, SIDI) of each 

studied locality to see how these might resemble or differ from each other (Table 28).  

 

Table 28: Landscape metrics for each studied locality. Land cover structure variables (i.e. LPI, 
DIVISION and SIDI) are calculated from the general land cover classification maps. Land cover 

composition (i.e. C4 -Index) is calculated from the C3 - C4 land cover classification maps.  

Sample Fragstats 
Country Locality  LPI   DIVISION   SIDI  C4-Index 

Kenya 

El Karama 91.23 0.16 0.16 70.61 

Mpala 27.85 0.83 0.59 59.08 

Nakuru 21.65 0.90 0.79 41.15 

Swara 80.96 0.33 0.27 67.45 

South 
Africa 

KNP - North 29.92 0.90 0.70 17.73 

KNP - South 43.19 0.81 0.70 10.89 

Welgevonden 52.66 0.70 0.59 12.89 

 

3.3.2.2.1.1 Largest Patch Index (LPI) 
 

 

Figure 26: Largest Patch Index values per locality. 
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Values for the Largest Patch Index (LPI) (Figure 26) suggested landscapes mostly 

dominated by one patch type (i.e. high LPI values, LPI>70) at El Karama and Swara. On the 

contrary, the lowest LPI values (i.e. LPI<30) observed at Nakuru, Mpala, and KNP-North 

suggested landscapes composed of rather small patches, hence not dominated by large 

patches of one single vegetation type. The medium-range LPI values observed at KNP-

South and Welgevonden indicated landscapes dominated by medium-size patches.  

3.3.2.2.1.2 Landscape division index (DIVISION) 
 

 

Figure 27: Landscape Division Index values per locality. 

 

Similarly to the LPI, the Landscape Division Index (DIVISION) allowed to evaluate the 

degree of division within each locality’s focal patches, with lower values observed when 

the landscape consists of a single patch, and higher values when vegetation patch types 

are highly divided across the landscape. The lower values (DIVISION <0.35) observed in 

El Karama and Swara confirmed that these localities consist mainly of one or few focal 

patches (Figure 27).  The highest DIVISION values (DIVISION>0.7) observed for the other 

five localities suggested that in these localities the various patch types tend to be highly 

divided into single small patches. 
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3.3.2.2.1.3 Simpson's Diversity Index (SIDI) 
 

 

Figure 28: Simpson’s Diversity Index values per locality. 

 

The value of Simpson's Diversity Index (SIDI) represents the probability that any two land 

cover cells selected at random would be different patch types. Low values were expected 

for landscapes with low patch type diversity, and high values for landscapes with a higher 

number of different patch types and a more equitable proportional distribution of area 

among patch types. Low values (i.e. SIDI <0.3) were observed at El Karama and Swara 

(Figure 28). The highest values (i.e. SIDI>0.7) were found at Nakuru, KNP-North, and KNP-

South, suggesting a higher patch type diversity in these localities. Land cover analyses for 

Mpala and Welgevonden both yielded intermediate-high SIDI values (SIDI=0.59), 

indicating a moderately high patch type diversity in these localities. 

3.3.2.2.1.4 C4 -Index 

 

The value of the C4 -Index represents the relative proportion of C4 -vegetation identified in 

the landscape, as opposed to C3 -vegetation. Low values (i.e. C4-Index <20%) were 

observed at KNP-South, Welgevonden and KNP-North, indicating environments 

dominated by C3 -vegetation (Figure 29). The highest values (i.e. C4-Index >~60%) were 

found at El Karama, Swara, and Mpala, indicating habitats with a dominating C4 -
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component. The intermediate value at Nakuru (C4 -Index=41.15%) suggested a more 

heterogeneous landscape likely composed of mixed C3 - C4 vegetation with a stronger C3 -

component.  

 

Figure 29: C4 -Index values per locality. 

 

3.3.2.2.3 Clustering analysis 

To check whether some of the studied localities shared similar land cover composition or 

structure characteristics and could be grouped accordingly, clustering analyses were 

computed using the k-means algorithm and the relevant landscape variables.  

3.3.2.2.3.1 Land cover composition 
 

Results from the K-means clustering analysis using the C4 -Index as a grouping variable 

showed that Nakuru alone was attributed to cluster 1 with a low-mid-range C4 -Index value 

indicative of mixed C3 - C4 environments with a slight predominance of C3 -vegetation (C4 -

Index = 41.15%) (Table 29 and Figure 30). For further analyses, this locality was therefore 

considered as representing “mixed-habitats”. 
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Table 29: Results from K-means clustering with 3 clusters using the land cover composition variable 

C4 -Index. 

Cluster Localities 
C4-Index 
(mean) 

Habitat 
Within-cluster 
sum of squares 

1 Nakuru 41.15 
Mixed-
habitats 

0 

2 
KNP-South, KNP-North, 

Welgevonden 
13.84 C3-habitats 24.74 

3 Mpala, Swara, El Karama 65.71 C4-habitats 70.99 

between_SS / total_SS 97.70% 

 

 

Figure 30: Clusters identified by the K-means algorithm using the land cover composition variable C4 

-Index. 

 

All three South African localities were grouped in cluster 2. These localities were 

characterised by low C4 -Index values (C4 -Index < 20%) indicative of C3-dominated 

environments. For further analyses, this cluster of localities was therefore considered as 

representing “C3 -habitats”.  

The localities Mpala, Swara, El Karama were grouped into cluster 3 and were characterised 

by high C4 -Index values (C4 -Index > ~60%) indicative of C4 -dominated environments. For 
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further analyses, this cluster of localities was therefore considered as representing “C4 -

habitats”. 

The clusters identified using the C4 -Index as an indicator of land cover composition were 

used for further analysis when assessing the relationship between land cover composition 

and the diet of impalas. 

 

3.3.2.2.3.2 Land cover composition and structure 
 

The results from the K-means clustering analysis using the C4 -Index, SIDI, LPI and 

DIVISION as grouping variables showed that the localities Nakuru and Mpala were 

grouped together in cluster 1, characterised by mid-range C4 -Index mean values, mid-

range SIDI mean values, high DIVISION mean values, and low LPI mean values (Figure 31 

and Table 30). This suggested habitats with small fragmented patches of mixed vegetation, 

associated with low patch type diversity in the landscape. Based on these observations, 

this cluster of localities was considered as representing “Mixed/ C4 - heterogeneous 

habitats” in subsequent analyses. 

All three South African localities were grouped together in cluster 2. This cluster was 

characterised by localities with a low C4 -Index mean value, a mid-range SIDI mean value, 

a high DIVISION mean value, and a mid-range LPI mean value. This suggested habitats with 

a predominance of fragmented medium-size patches of C3 -vegetation, associated with a 

moderate patch type diversity in the landscape. Based on these observations, this cluster 

of localities was therefore considered as representing “C3 -heterogeneous to intermediate-

mosaic habitats” in subsequent analyses. 
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Table 30: Results from K-means clustering with 3 clusters using all landscape variables C4 -Index, LPI, 
DIVISION and SIDI. 

Cluster Localities 
C4-

Index 
(mean) 

SIDI 
(Mean) 

DIVISION 
(mean) 

LPI    
(mean) 

Habitat 

Within-
cluster 
sum of 

squares 

1 
Nakuru, 
Mpala 

50.12 0.69 0.87 24.75 
Mixed/ C4-

Heterogeneous 
0.64 

2 
KNP-North, 
KNP-South, 

Welgevonden 
13.84 0.66 0.80 41.92 

C3-
Heterogeneous/ 

intermediate-
mosaic 

0.76 

3 
Swara, El 
Karama 

69.03 0.22 0.25 86.09 
C4-

Homogeneous 
0.35 

between_SS / total_SS 92.70% 
 

 

Figure 31: Clusters identified by the K-means algorithm using the land cover pattern variables C4 -
Index, LPI, SIDI and DIVISION. 
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Finally, the localities Swara and El Karama were grouped together in cluster 3, and were 

characterised by a high C4 -Index mean value, a low SIDI mean value, a low DIVISION mean 

value, and a high LPI mean value. These suggested habitats dominated by large compact 

patches of C4 -vegetation, associated with low patch type diversity. Based on these 

observations, this cluster of localities was therefore considered as representing “C4 - 

homogeneous habitats” in subsequent analyses. 

The results from the K-means analysis performed on the studied localities using the land 

cover variables C4 -Index, SIDI, LPI and DIVISION as indicators of combined land cover 

composition and structure highlighted similarities between some of the studied localities 

and provided new clusters that can be used for further analysis when assessing the 

relationship between general land cover patterns and the diet of impalas. 

Both sets of clusters were used to assess the relationship between general land cover 

patterns and the diet of impalas, and their outcome was compared.  

3.3.3 Dietary patterns and land cover 
 

In this section, the land cover data and stable carbon isotope data are explored together 

using multinomial logistic regression to assess whether relationships could be observed 

between specific land cover types/structures and the dietary signatures from modern 

impala populations. 

3.3.3.1 Model 1: Stable carbon isotopes and land cover composition 

Results from the first model showed that a statistically significant positive relationship 

could be observed between δ13C values and habitats of mixed-vegetation (as opposed to 

C3 -vegetation) (p=0.010) (Table 31; Figure 32). This means that higher δ13C values in the 

teeth of A. melampus indicated a higher probability of living in mixed-habitats (or a lower 
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probability of living in a C3 -habitat). For every one-unit increase in δ13C, the odds of being 

associated to a mixed habitat increased by approximately 1.75 (Table 32 and Figure 33).  

No significant relationship was observed between δ13C values and habitats dominated by 

C4-vegetation (p=0.243), suggesting that that these types of habitats cannot be easily 

differentiated from habitats dominated by C3-vegetation when using the model. 

Furthermore, the overlap in confidence intervals between the mixed- and C4 -vegetation 

classes showed that although the ‘mixed-vegetation’ category could be differentiated from 

the C3-vegetation class, the mixed- and C4-vegetation classes can be difficult to 

differentiate from each other when using δ13C as a predictor (Figure 34). 

 

Figure 32: The marginal effect plot for δ13C - land composition model. 

 
Table 31: Results from the land composition model. 

  
Intercept 
estimate 

Intercept  

p-value 
Parameter 
estimate 

Parameter  

p-value 

C4 0.03137 0.8772 0.2346 0.2433 

Mixed -0.01059 0.9593 0.5562 0.009956 
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Table 32: Odds Ratios from the land composition model (CI: Confidence interval 95%). 

  Odds Ratio Lower CI Upper CI 

C4 1.264 0.8526 1.875 

Mixed 1.744 1.143 2.662 

 

 

Figure 33: Odds ratios for the effect of diet from the land cover composition model. The points 
represent the odds ratio, while the lines represent the 95% confidence intervals. 

 

Figure 34: Parameter estimates for the effect of diet from the land cover composition model. The points 
represent the estimate, while the lines represent the 95% confidence intervals. 
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3.3.3.2 Model 2: Stable carbon isotopes and general land cover patterns 

(composition and structure) 

A statistically significant positive relationship was observed between δ13C values and a C4 

-homogeneous habitats (as opposed to a C3 -heterogeneous/intermediate-mosaic habitat) 

(p<0.000) (Figure 35 and Table 33). This means that high δ13C values in impala teeth 

increased the probability of these individuals being associated with C4 -homogeneous 

habitats, relative to C3 -heterogeneous/intermediate-mosaic habitats. For every one-unit 

increase in δ13C, the odds of being associated to a C4-homogeneous habitat increased by 

approximately 2.03 (Table 34 and Figure 36). There is little overlap in confidence intervals 

between the “Mixed / C4 – Heterogeneous vegetation” and “C4 -homogeneous habitats” 

groups, suggesting that the model should be able to differentiate these two land cover 

categories when using δ13C as a predictor (Figure 37).  

However, no significant relationship was observed between δ13C values and habitats 

dominated by Mixed/C4–Heterogeneous vegetation (p=0.838), suggesting that these types 

of habitats might be difficult to differentiate from habitats dominated by C3-

heterogeneous/intermediate-mosaic habitat when using the model. 

 

Table 33: Results from the land cover model. 

  
Intercept 
estimate 

Intercept 
p-value 

Parameter 
estimate 

Parameter 
p-value 

C4 - Homogeneous -0.09137 0.6688 0.7101 0.00191 

Mixed / C4 - Heterogeneous -0.008865 0.9655 -0.04155 0.838 

 

 

Table 34: Odds Ratios from the land cover model (CI: Confidence interval 95%). 

  Odds Ratio Lower CI Upper CI 

C4 - Homogeneous 2.034 1.299 3.185 

Mixed / C4 - Heterogeneous 0.9593 0.6441 1.429 
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Figure 35: The marginal effect plot for δ13C - land cover model. 

 

 

 

Figure 36: Odds ratios for the effect of diet from the land cover model. The points represent the odds 
ratio, while the lines represent the 95% confidence intervals. 
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Figure 37: Parameter estimates for the effect of diet from the land cover model. The points represent 
the estimate, while the lines represent the 95% confidence intervals. 

 

The two multinomial logistic regression models presented above therefore appeared to be 

able to successfully help predict association to habitat land cover types based on stable 

carbon isotope data from Aepyceros melampus specimens inhabiting the selected study 

areas, but only to differentiation C3-dominated habitats from either mixed-vegetation 

habitats (model 1), or from C4-homogeneous habitats (model 2). However, both models 

struggle to differentiate some of the land cover classes, highlighting limits to the approach 

that will be discussed further in this chapter.   

These models were subsequently tested on a new dataset of stable carbon isotope data 

from impala specimens of unknown associated habitats: fossil Aepyceros specimens from 

the Plio-Pleistocene Omo-Turkana basin. 
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3.3.4 Predicting land cover type from paleo-dietary data 

 

The multinomial logistic regression models produced were tested on stable carbon 

isotope data from fossil Aepyceros melampus. This was to assess what types of land cover 

patterns could potentially be inferred from paleo-dietary data in the Omo-Turkana basin, 

based on the data collected from modern populations and their habitats. The resulting 

predictions are presented for each model, summarizing predictions for the entire fossil 

dataset (i.e. per species), and for each site and member represented in the assemblage.  

3.3.4.1 Predictions from model 1: Land cover composition model 

3.3.4.1.1 Predictions per fossil species 

The predictions from the land cover composition model suggest that fossil Aepyceros 

melampus as well as fossil Aepyceros sp. specimens tended to be associated to C3-

dominated habitats (Table 35 and Figure 38). Nearly half of the Aepyceros shungurae 

specimens were predicted to be associated to mixed-vegetation (46%), while 43.9% were 

predicted to be associated to C3 -vegetation. This suggested differences in associated 

habitats when comparing A. shungurae to A. melampus and Aepyceros sp. specimens, with 

a potentially wider habitat range for Aepyceros shungurae.  

Table 35: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimen per category) for fossil 
Aepyceros samples (per species) from the land cover composition model. 

 

 

Species n mean s.d. s.e.m. min max
C4 -

vegetation

Mixed -

vegetation

C3 -

vegetation

Aep. melampus 14 -0.25 1.31 0.35 -2.61 2.35 0 11 3

Aep. shungurae 139 -1.75 2.39 0.20 -8.00 2.61 14 64 61

Aepyceros sp. 29 -0.79 1.81 0.34 -5.90 2.30 5 17 7

δ13C (‰)Sample Land cover type (n)
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Figure 38: Land cover composition model predictions per species: Relative proportion of fossil 
Aepyceros specimens (with number of specimens in brackets) attributed to each land cover type, per 
species. 

 

While A. melampus specimens were represented in samples from the Koobi Fora and 

Nachukui formations, A. shungurae specimens were represented in samples from the 

Shungura and Nachukui (Lomekwi member only) formations. The differences in diet and 

predicted associated habitats observed between these fossil species might therefore 

reflect different dietary behaviours across the Omo-Turkana basin during the Plio-

Pleistocene for genus Aepyceros, rather than necessarily species-specific behaviours. 

These potential spatio-temporal variations in dietary patterns and predicted associated 

habitats can be explored further from the results of this model. 

However, when observing the predicted classifications for all specimens with their 

associated δ13C values (Figure 39), the range of δ13C values associated to the mixed- or the 

C4 -vegetation habitat types were contrary to expectation as they suggested that higher 

δ13C values tended to be associated to mixed-vegetation while these would have been 

expected to be associated to C4 -dominated habitats. This could relate to the limitations of 
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the model that were highlighted previously which showed that individuals associated to 

either mixed- or C4 -habitats would likely be difficult to differentiate from each other 

accurately when fitting the model to new datasets. These limitations must therefore be 

taken into account when interpreting results acquired using this model. Only predictions 

for the C3 -vegetation land cover type can be held to be accurate, as the model was shown 

previously to be able to efficiently differentiate C3 -habitats, from C4 - or mixed-habitats. 

 

Figure 39: Predicted classification for all fossil specimens, per species, and their δ13C values, based on 
the land cover composition model (model 1). 

 

Consequently, the only pattern that can be highlighted with confidence from this model is 

that most fossil Aepyceros melampus as well as fossil Aepyceros sp. specimens were 

predicted to be associated to either mixed- or C4 -vegetation dominated habitats, while 

nearly half of the Aepyceros shungurae specimens were predicted to be associated to C3 -

habitats. This would suggest a stronger reliance on C3 -vegetation for Aepyceros shungurae 

and more varied associated habitats. 
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3.3.4.1.2 Predictions for genus Aepyceros per site 

As expected from the predictions for each fossil species and the provenance of these 

specimens, the predictions from the land cover composition model suggested that fossil 

Aepyceros specimens from Koobi Fora and Nachukui tended to be associated to mixed-

vegetation habitats while the majority of specimens from Shungura were associated to 

either mixed- (44.5%) or C3 -vegetation (45.3%) (Table 36 and Figure 40). It confirmed 

that, according to this model, more fossil impalas from Shungura were more likely to be 

feeding from C3 -dominated environments than impalas from Koobi Fora and Nachukui, 

and are likely to have been associated to a wider range of habitats.  

However, as highlighted previously, because the model was likely to misclassify 

individuals from mixed- and from C4 -habitats, it remains uncertain that individuals 

predicted to be associated to mixed-habitats were classified accurately. Consequently, the 

only pattern that can be highlighted with confidence from this model is that most fossil 

Aepyceros specimens from Koobi Fora and Nachukui were predicted to be associated to 

either mixed- or C4 -vegetation dominated habitats, while nearly half of the Aepyceros 

specimens from Shungura are predicted to be associated to C3 -habitats. This would 

suggest habitats with a stronger C3 -vegetation component in the lower Omo river valley 

compared to habitats in the Turkana basin.  

 

Table 36: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimen per category) for fossil 
Aepyceros (per site) from the land cover composition model. 

 
 

Provenance n mean s.d. s.e.m. min max
C4 -

vegetation

Mixed -

vegetation

C3 -

vegetation

Koobi Fora 24 -0.82 1.83 0.37 -5.90 2.30 2 15 7

Nachukui 30 -0.61 1.49 0.27 -3.76 2.35 4 20 6

Shungura 128 -1.81 2.44 0.22 -8.00 2.61 13 57 58

δ13C (‰)Sample Land cover type (n)
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Figure 40: Land cover composition model predictions per site: Relative proportion of fossil Aepyceros 
specimens (with number of specimens in brackets) attributed to each land cover type, per site. 

 

3.3.4.1.3 Predictions for genus Aepyceros per member 

Little variation through time in associated land cover type was suggested for Aepyceros 

specimens from Koobi Fora based on the predictions from the land cover composition 

model for each member, with the predictions suggesting a predominance of mixed 

habitats in the Burgi and KBS members (2.64 Ma to 1.61 Ma) (  
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Table 37 and Figure 41). In the Nachukui sample, predictions suggest association with 

mixed habitats for most specimens, and while very few individuals were predicted to be 

associated to C3 -habitats in the Kalochoro and Kaitio members (2.33 Ma to 1.61 Ma), 28% 

of the specimens from the Lomekwi member were predicted to be associated to C3-

habitats, suggesting a stronger C3-component in the landscape of the Nachukui formation 

between 3.44 and 2.53 Ma. Similarly, the majority of the impala specimens from the 

Shungura members B and C were predicted to be associated to C3-habitats, potentially 

suggesting a stronger C3-component in the landscape of the Shungura formation between 

3.44 and 2.52 Ma.  
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Table 37: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimens per category) for fossil 
Aepyceros (per site and member) from the land cover composition model. 

 

 

Figure 41: Land cover composition model predictions per site and member: Relative proportion of 
fossil Aepyceros specimens (with number of specimens in bar) attributed to each land cover type, per 
site and member. 

 

Provenance Member Time (Ma) n mean s.d. s.e.m. min max
C4 -

vegetation

Mixed -

vegetation

C3 -

vegetation

Koobi Fora Tulu Bor 3.44-2.64 1 -1.81 / / / / 0 0 1

Burgi 2.64-1.87 12 -0.61 1.54 0.45 -3.20 2.30 2 7 3

KBS 1.87-1.61 11 -0.97 2.21 0.67 -5.90 1.70 0 8 3

Nachukui Lomekwi 3.44-2.53 18 -1.13 1.27 0.30 -3.76 0.60 3 10 5

Kalochoro 2.33-1.9 7 0.31 1.35 0.51 -1.50 2.20 1 6 0

Kaitio 1.9-1.61 5 -0.04 1.87 0.84 -2.40 2.35 0 4 1

Shungura B 3.44-2.91 21 -2.69 2.65 0.58 -7.50 2.50 0 7 14

C 2.91-2.52 23 -3.42 2.64 0.55 -8.00 1.24 2 5 16

D 2.52-2.4 24 -0.88 1.98 0.40 -5.18 1.90 4 13 7

E 2.4-2.32 13 -2.12 2.33 0.65 -6.46 1.20 3 5 5

F 2.32-2.27 24 -0.80 1.91 0.39 -4.15 2.08 0 15 9

G 2.27-1.9 23 -1.23 2.07 0.43 -4.83 2.61 4 12 7

Land cover type (n)δ13C (‰)Sample
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3.3.4.2 Predictions from model 2: General land cover model  

3.3.4.2.1 Predictions per fossil species 

The predictions from the general land cover model suggested that all fossil Aepyceros 

species tended to be associated to C3 -heterogeneous habitats (Table 38 and Figure 42). 

Few specimens were predicted to be associated with C4 -homogeneous habitats, with 8.7% 

of A. melampus specimens predicted to be associated with this habitat type, and 1.7% of A. 

shungurae specimens. No individual was predicted to be associated to mixed/ C4 -

heterogeneous habitats. This could suggest differences in associated habitats when 

comparing A. shungurae to A. melampus specimens, with a slightly stronger reliance on C3 

-vegetation for A. shungurae.  

Similarly to results from model 1, it is likely that the differences in diet and predicted 

associated habitats observed between these fossil species reflect different dietary 

behaviours across the Omo-Turkana basin during the Plio-Pleistocene for genus Aepyceros 

since A. melampus specimens were represented in samples from the Koobi Fora and 

Nachukui formations, while A. shungurae specimens were represented in samples from 

the Shungura and Nachukui (Lomekwi member only) formations.  

Table 38: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimen per category) for fossil 
Aepyceros (per species) from the general land cover model. 

 

Species n mean s.d. s.e.m. min max
C4-

Homogeneous

Mixed/C4-

Heterogeneous

C3-

Heterogeneous

Aep. melampus 14 -0.25 1.31 0.35 -2.61 2.35 0 1 2

Aep. shungurae 139 -1.75 2.39 0.20 -8.00 2.61 0 55 20

Aepyceros sp. 29 -0.79 1.81 0.34 -5.90 2.30 0 7 5

δ13C (‰)Sample Land cover type (n)
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Figure 42: General land cover model predictions per species: Relative proportion of fossil Aepyceros 
specimens (with number of specimens in brackets) attributed to each land cover type, per species.  

 

Figure 43: Predicted classification for all fossil specimens, per species, and their δ13C values, based on 
the general land cover model. 
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When observing the predicted classifications for all specimens with their associated δ13C 

values (Figure 43), the range of δ13C values associated to the mixed/ C4 -heterogeneous or 

the C4 -homogeneous habitat types were in agreement with previous research suggesting 

that higher δ13C values tend to be associated to C4 -dominated habitats. However, the δ13C 

values associated with the individuals predicted to be associated to C3-heterogeneous are 

surprising and contrary to expected patterns, with much higher values than expected for 

habitats assumed to be dominated by C3-vegetation. This could be due to the limitations 

highlighted previously for this model, which suggested that individuals associated to 

either mixed/ C4 -heterogeneous or C3-heterogeneous habitats could be misclassified 

when fitting the model to new data. Consequently, the only pattern that could be 

highlighted with confidence from this model was that most fossil Aepyceros specimens 

were predicted to be associated to either mixed/ C4-heterogeneous or to C3 -

heterogeneous habitats, with more A. melampus specimens predicted to be associated to 

C4 -homogeneous habitats than A. shungurae specimens. This could reflect a stronger 

reliance on C3 -vegetation for Aepyceros shungurae, which is in agreement with results of 

model 1, although it does not provide additional insights into associated land cover 

structure. 

3.3.4.2.2 Predictions for genus Aepyceros per site 

The predictions of model 2 suggested that while most fossil Aepyceros specimens from all 

three sites tended to be associated to C3 -heterogeneous habitats, fewer specimens were  

predicted to be associated with C4 -homogeneous habitats in the Shungura assemblage 

(1.9%), compared to the Koobi Fora (7.3%) and Nachukui (4.8%) assemblages (Table 39 

and Figure 44). It confirmed that, according to this model, more fossil impalas from 

Shungura were likely to be feeding from environments dominated by heterogeneous C3 -

vegetation or more varied habitats than impalas from Koobi Fora and Nachukui, 
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suggesting, in turn, habitats with a stronger C3 -vegetation component in the lower Omo 

river valley compared with habitats in the Turkana basin.  

Table 39: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimen per category) for fossil 
Aepyceros (per site) from the general land cover model. 

 

 

Figure 44: General land cover model predictions per site: Relative proportion of fossil Aepyceros 
specimens (with number of specimens in brackets) attributed to each land cover type, per site. 

 

With no specimen predicted to be associated to mixed/ C4 -heterogeneous habitats in any 

of the studied fossil localities, results from this model could suggest that heterogeneous 

C3-vegetation tended to dominate the landscape in the Plio-Pleistocene Omo-Turkana 

basin. However, as noted previously, the uncertainty in the degree of misclassification 

generated by this model when trying to differentiate the mixed/ C4 -heterogeneous from 

the C3-heterogeneous habitat types prevents from drawing such conclusion with 

Provenance n mean s.d. s.e.m. min max
C4-

Homogeneous

Mixed/C4-

Heterogeneous

C3-

Heterogeneous

Koobi Fora 24 -0.82 1.83 0.37 -5.90 2.30 0 5 4

Nachukui 30 -0.61 1.49 0.27 -3.76 2.35 0 6 4

Shungura 128 -1.81 2.44 0.22 -8.00 2.61 0 52 19

δ13C (‰)Sample Land cover type (n)
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confidence, although it suggests the presence of vegetation conditions rather 

heterogeneous in structure. 

3.3.4.2.3 Predictions for genus Aepyceros per member 

Little variation through time in associated land cover type could be observed for Aepyceros 

specimens from Koobi Fora and Nachukui based on the predictions from the general land 

cover model (model 2) for each member, although specimens from Burgi (2.64 – 1.87 Ma) 

and Lomekwi (3.44 – 2.64 Ma) appeared to be associated with a wider range of habitats, 

with specimens predicted to be associated to homogeneous-C4-habitats and to 

heterogeneous-C3-habitats (Table 40 and Figure 45). The majority of the impala 

specimens from the Shungura members were predicted to be associated to homogeneous- 

C4 habitats, although a relatively higher number of specimen was predicted to be 

associated with heterogeneous-C3-habitats in members D, E and G. These results could 

suggest varied environments across Shungura Fm, with a stronger C3-component and 

vegetation heterogeneity between 2.52 and 2.32 Ma and between 2.27 and 21.9 Ma. 

Table 40: δ13C values (mean, standard deviation, standard error of the mean, minimum and maximum 
value) and predicted associated land cover type (number of specimen per category) for fossil 
Aepyceros (per site and member) from the general land cover model. 

 

Provenance Member Time (Ma) n mean s.d. s.e.m. min max C4-vegetation
Mixed -

vegetation
C3-vegetation

Koobi Fora Tulu Bor 3.44-2.64 1 -1.81 / / -1.81 -1.81 0 0 1

Burgi 2.64-1.87 12 -0.61 1.54 0.45 -3.20 2.30 0 2 3

KBS 1.87-1.61 11 -0.97 2.21 0.67 -5.90 1.70 0 3 0

Nachukui Lomekwi 3.44-2.53 18 -1.13 1.27 0.30 -3.76 0.60 0 5 3

Kalochoro 2.33-1.9 7 0.31 1.35 0.51 -1.50 2.20 0 0 1

Kaitio 1.9-1.61 5 -0.04 1.87 0.84 -2.40 2.35 0 1 0

Shungura B 3.44-2.91 21 -2.69 2.65 0.58 -7.50 2.50 0 14 0

C 2.91-2.52 23 -3.42 2.64 0.55 -8.00 1.24 0 16 2

D 2.52-2.4 24 -0.88 1.98 0.40 -5.18 1.90 0 5 6

E 2.4-2.32 13 -2.12 2.33 0.65 -6.46 1.20 0 4 4

F 2.32-2.27 24 -0.80 1.91 0.39 -4.15 2.08 0 7 2

G 2.27-1.9 23 -1.23 2.07 0.43 -4.83 2.61 0 6 5

Land cover type (n)δ13C (‰)Sample
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Figure 45: General land cover model predictions per site and member: Relative proportion of fossil 
Aepyceros specimens (with number of specimens in bar) attributed to each land cover type, per site 
and member. 

 

 

3.4 Discussion 

3.4.1 Dietary variation in modern impala specimens: summary of 

findings 

 

The results from the dietary analysis of the studied modern impala populations 

highlighted differing patterns between the samples, suggesting diets rich in C4 -vegetation 

in the Kenyan localities, and mixed C3-C4 diets in some of the South African localities 

(Kruger National Park-North and Welgevonden). Within the southern African assemblage, 

significant differences were observed between KNP-South and both KNP-North and 

Welgevonden, suggesting diets richer in C4-vegetation in KNP-South, more similar to those 

of populations from the Kenyan localities.  

While these differences in stable carbon isotope content between populations could 

reflect varying proportions of C3/C4-vegetation included in the animals’ diet, it could also 



183 
 

relate to the geochemical properties of the plants themselves, which might differ between 

regions of significantly different environmental conditions. As mentioned in chapter 2, 

previous studies have shown that variation in δ13C values can be observed among C3- and 

C4 -plants depending local environmental conditions, such as soil properties and aridity 

conditions (Hattersley, 1982; Ehleringer and Dawson, 1992; Cerling and Harris, 1999; 

Cerling, Harris and Passey, 2003; Ehleringer, 2005; J. Codron et al., 2005; Cerling et al., 

2015; Cacefo et al., 2019). For instance, C4-mesic grasses (i.e. adapted to more humid 

environments) tend to be enriched in 13C by ~ 1-2 ‰ compared to arid-adapted C4-grasses 

found in xeric savannas and bushlands (i.e. ecoregions where evaporation exceeds 

rainfall) (Hattersley, 1982). While such small differences might be difficult to identify 

statistically in most datasets, it is important to consider that slight variations in δ13C values 

observed between samples might reflect the consumption of plants of differing 

composition, from one locality to the other.  

In the present case, it could mean for instance that the significant difference in δ13C values 

observed between impalas from KNP-North (South Africa) and Swara (Kenya) might not 

solely be due to differing proportions of C3-C4 plants in the animals’ diet, but also to 

differing geochemical composition of C3 and C4 plants in Kenya compared to South Africa, 

with more arid-adapted vegetation represented in eastern Africa due to drier 

environmental conditions, as opposed to the presence of more mesic grasses and 

vegetation in southern Africa, where the climate is cooler and more temperate. However, 

the significant differences highlighted between populations from KNP-South compared to 

KNP-North and Welgevonden should likely reflect differences in dietary behaviours with 

little variation in plant geochemical composition between localities, as these are located 

close to each other in the same climatic zone. 

The similarity in the range of δ13C values observed for the impala populations from KNP-

South, Nakuru, Swara, and El Karama suggest diets dominated by C4-vegetation in these 
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localities, as opposed to C3-C4 mixed diets in KNP-North. The wide range of values 

observed but relatively high mean values observed within the samples from Mpala and 

Welgevonden could suggest mixed diets with a relatively high amount of C4-vegetation in 

these localities.  

Although results for some of the studied samples suggested similar dietary behaviours 

between localities, some degree of dietary variability could be observed across all impala 

specimens, both within and between the different samples. This highlights the dietary 

plasticity of Aepyceros melampus and could reflect differing dietary behaviours between 

the various populations studied. While dietary behaviours can vary between specimens 

due to various factors (such as season, sex, niche competition), diet can also vary due to 

differences in habitats and differences in the plant resources available to each individual 

animal. To assess whether the dietary patterns observed among the selected impala 

specimens did reflect elements of their habitats, the land cover composition and structure 

of each of the studied localities must first be evaluated. 

3.4.2 Land cover data from modern impala habitats: summary of 

findings 
 

The observations made from land cover analyses were, overall, in agreement with 

previously published studies and descriptions of the studied localities. For instance, the 

dominance of shrubland observed on the Kruger National Park (KNP) land cover maps 

was consistent with mopane veld being the most dominant ecosystem in the park, taking 

the form of mopane woodland in the north-west (on granite and gneiss soils), mopane 

shrub veld in the central northern plains and in the north-east (on basalt soils), or mopane 

thickets (on ecca shales) (Pty) Ltd 2020). Vegetation in the Kruger National Park (KNP) 

was previously described as very diverse throughout the park, with predominantly 

mopane veld in the north, broadleaved trees on the southern granites, and fine-leaved tree 

species on southern basalts (Codron, Codron, Lee-Thorp, et al. 2005, p.1759). Similarly , 
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the predominance of shrubland observed on the Welgevonden land cover map was 

consistent with published studies of the area which described the area as a mountainous 

savanna ‘bushveld’ (Codron et al., 2005; Kilian, 2006; Ramsay et al., 2013). Similarly, the 

main land cover types identified from land cover data for the habitats of Nakuru National 

Park, as well as the diversity of land cover classes identified in this area, were in agreement 

with published literature on the Nakuru National Park which described habitats consisting 

of grassland, scrub woodland, acacia woodland, marshes, and vegetation characteristic of 

saline water ecosystems  (Kutilek, 1974; Thuo et al., 2015). Results from land cover 

analysis showed the Nakuru area to be dominated by land cover dominated by patches of 

closed to open herbaceous vegetation (grassland, savannas, or lichens/mosses), and of 

mosaic forest or shrubland. The results showed that modern Aepyceros melampus can 

inhabit a wide range of habitat types, ranging from heterogeneous C3 -dominated habitats 

to homogenous C4 -grassland biomes.  

When land cover composition in each locality was assessed based on the land cover C4 -

Index variable (i.e. which evaluates the relative proportion of C4 -vegetation observed in 

the studied landscape), significantly higher values were found in the Kenyan localities 

Mpala, Swara, El Karama, suggesting the predominance of C4 -vegetation in these study 

areas. On the contrary, C3-vegetation appeared to prevail in the South African localities 

where C4-Index values were the lowest. With a mid-range C4-Index value, the Kenyan 

locality Nakuru stood out from the other localities, suggesting mixed-vegetation in this 

area.  

When land cover structure was considered alongside land cover composition (i.e. using 

the C4-Index), the Largest Patch Index (LPI), the landscape Division Index (DIVISION) and 

Simpson’s Diversity Index (SIDI)) to assess the general land cover patterns of each studied 

locality, results of the clustering analyses showed that all three South African localities 

were characterised by a very heterogeneous vegetation structure dominated by C3-
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vegetation, in contrast to the more homogeneous C4-dominated vegetation conditions 

observed for the Kenyan localities Swara and El Karama. The Kenyan localities Nakuru and 

Mpala were shown to present somewhat intermediate land cover conditions, with a rather 

heterogeneous land cover structure, with either mixed-vegetation or dominated by C4-

vegetation.   

3.4.3 Dietary pattern and land cover: summary of findings 
 

If mixed-feeding herbivores such as impalas (Aepyceros melampus) adapt their diet to the 

vegetation-types prevailing in their habitat, as hypothesized in this study, it would be 

expected that the differences and similarities in dietary patterns observed via stable 

carbon isotope analysis between the studied modern impala samples (3.4.1) would be 

related, to some degree, to the differences in land cover composition and/or structure that 

were identified across the studied localities using land cover data (3.4.2). To verify this 

hypothesis, the relationship between impala δ13C data and land cover structure and/or 

composition was explored using multinomial logistic regression models to see if isotopic 

data from mixed-feeding herbivores such as impalas could help predict the type of habitats 

inhabited by the antelope individuals sampled. It was hypothesized that impala 

individuals with high δ13C values would be more likely to be associated with C4 habitats, 

while individuals with low δ13C values would be more likely to be associated with C3 -

vegetation. 

The results from the land cover composition model (model 1) showed a statistically 

significant positive relationship between δ13C values and being associated to a habitat of 

mixed-vegetation (as opposed to C3 -vegetation), but not between δ13C values and being 

associated to a habitat dominated by C4-vegetation. This is at odds with previous studies 

suggesting that increasing δ13C values tend to reflect an increase in the inclusion of C4 -

plant material in the diet relative to C3-plant material. However, results suggested that 

although the mixed- and C4 -vegetation classes could be differentiated from the C3 -
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vegetation class, these two classes could not be differentiated from each other when using 

δ13C as a predictor. The results from this model therefore suggested that land cover 

composition could be predicted using δ13C values from Aepyceros melampus specimens, 

but that individuals associated to either mixed- or C4 -habitats are likely to be difficult to 

differentiate from each other and might be misclassified. Caution must therefore be 

applied when interpreting results from predictions generated by this model. 

The results from the general land cover patterns model (model 2) showed a statistically 

significant positive relationship between δ13C values and being associated to a C4-

dominated homogeneous habitat (as opposed to a C3-heterogeneous/intermediate-mosaic 

habitat), but suggested that mixed/ C4 -heterogeneous habitats could not be differentiated 

from C3-heterogeneous habitats based on stable carbon isotope data. The direction of the 

relationships between δ13C values and the ‘C3-heterogeneous’ and ‘C4 -heterogeneous ‘ land 

cover categories were in agreement with part of the initial hypothesis, as they highlight 

that increasing δ13C values tend to reduce the probability of being associated to one of the 

different C3 -habitat types, and increase the probability of being associated to one of the 

different C4-habitat types. However, although results from this model suggested that 

general land cover patterns could be predicted using δ13C values from Aepyceros melampus 

specimens of unknown habitat when using the most conservative model, the model could 

not differentiate effectively individuals associated to C3-heterogeneous habitats from 

individuals associated to mixed/ C4 -heterogeneous habitats. The outcome of this model 

was therefore similar to the outcome of the land cover composition model (model 1), and 

caution must be applied when interpreting results from predictions generated by this 

model. 

Overall, while both models did not show statistically significant relationships between 

δ13C values and the probability of being associated to all specific land cover types, results 

from this study were in agreement with part of the initial hypothesis that impala 
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individuals with high δ13C values would be more likely to be associated to C4 -vegetation, 

while individuals with low δ13C values will be more likely to be associated to C3 -vegetation. 

Land cover structure seemed to have some degree of influence on the diet of impalas when 

studied alongside land cover composition, as illustrated by model 2, highlighting 

potentially different dietary behaviours in localities with heterogeneous vegetation 

conditions, compared to localities with homogenous vegetation structure: individuals 

with the most negative δ13C values tended to be associated to heterogeneous and highly 

fragmented C3 -habitats (i.e. habitats similar to those observed in KNP-North), while 

individuals with the least negative δ13C values were associated to homogeneous, poorly 

fragmented C4 -habitats (i.e. habitats similar to those observed in Swara and El Karama). 

This could suggest that variations in δ13C values can potentially reflect not only the relative 

proportion of C3 -C4 vegetation included in the diet, but also the structure and diversity of 

the vegetation present in the landscape.   

3.4.4 Modern impala dietary ecology and associated habitats 

3.4.4.1 Comparisons between stable carbon isotope data and land cover data 

When comparing results from the dietary analysis of the modern impala with the results 

from the land cover composition and/or structure analysis of their habitats, results were 

against expectations. While most of stable carbon isotope samples suggested diets 

dominated by C4 -vegetation, especially for the Kenyan localities, the land cover maps from 

the regions studied showed more diverse habitats, with C4-dominated environments in 

the Kenyan localities, mixed-environments in the Nakuru National Park (Kenya), and C3 -

dominated environments in the South African localities (Figure 46).  

While part of the results from dietary analysis and land cover composition analysis were 

consistent with the hypothesis of a positive relationships between the amount of C4 -

vegetation present in the landscape and the amount of C4-vegetation included in the diet 
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for localities such as Swara, El Karama, Mpala, and KNP-North, it was not the case for the 

other three localities (Nakuru, Welgevonden and KNP-South). This could suggest that the 

diet of modern impalas does not always reflect the vegetation types prevailing in their 

environments, and that other aspects of their foraging behaviour might influence the 

content of their diet. For instance, the differences in dietary behaviours between impalas 

from the north and from the south of Kruger National Park have been suggested to relate 

to a reduced availability of herbaceous forage in the north of the park compared to the 

south, associated to a preference for herbaceous forage over browse due to the higher 

protein content of C4 -vegetation (Sponheimer, Grant, et al., 2003). Similarly, the high C4 -

content observed in the diet of impalas from Nakuru National Park (Copeland et al., 2009) 

could relate to a preference for C4 -vegetation for its higher protein content that led impala 

populations to favour areas of the park where grassland is abundant, even in a rather 

diverse habitat, in a region where rich soils support grasses of high nutritional content all 

year-round. A study by Mwangi and Western (1997) observed that, in Nakuru, impalas 

were found predominantly in areas of wooded grassland and grassland, rather than in 

areas of woodland, shoreline grassland and bush grassland. This is consistent with 

previous studies that have suggested that impalas tend to favour grass over browse, 

especially during the wet season when grass nutritional quality is at its highest (Monro, 

1980; Meissner, Pieterse and Potgieter, 1996; Codron et al., 2006; Copeland et al., 2009). 

In turn, impalas would tend to include more browse in their diet when and where high-

quality grass is not available to them in their habitats in sufficient quantities.  
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Figure 46: Modern impala diet and associated habitats: summary of the modern Aepyceros melampus stable carbon isotope data and of the associated land cover types 
suggested by k-means clustering analyses, for each studied locality.  
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Consequently, it could be hypothesized that, based on previous studies and on the 

comparisons between stable carbon isotope data and land cover data from the seven 

studied localities, that while the diet of modern impalas can reflect the prevailing 

vegetation in their environment to a certain extent, it is also likely that their diet is also 

influenced by the quality of the forage available to the impala populations in their habitat. 

If impalas do prefer C4 -vegetation to C3 -vegetation due to their protein content, it could 

mean that impalas tend to feed predominantly on browse only in areas and/or seasons 

where herbaceous vegetation is scarce or of poor quality. While such results would make 

paleo-habitats reconstructions based on the diet of fossil impala individuals more 

complex, it does raise interesting points in highlighting that impalas, although considered 

mixed-feeders, are actually selective feeders that prefer C4 -vegetation and tend to switch 

to C3 -browse only when their preferred foods are not available in sufficient quantities. 

Similar foraging behaviours could potentially apply as well to fossil impala species. 

Such complex relationships between the diet of impalas and the observed land cover 

composition of their habitats could explain the difficulties encountered by the logistic 

regression models built in this study to accurately differentiate associated habitats based 

on stable carbon isotope analysis beyond the general C3 -C4 habitats dichotomy. With three 

localities (i.e. KNP-South, Nakuru and Welgevonden) used in the models training set 

where individuals were observed to prefer, overall, C4-vegetation regardless of the 

prevailing vegetation in the landscape, it is not surprising that the models could not 

identify a clear logistic relationship between the amount of C4 -vegetation likely included 

in the diet and the amount of C4 -vegetation observed in the habitat, to help identify 

intermediate habitats such as mixed-vegetation or heterogeneous-C4-habitats.  

3.4.4.2 Models limitations and biases 

While the multinomial logistic regression models were shown to be able to successful help 

predict habitat land cover types based on stable carbon isotope data from Aepyceros 
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melampus specimens inhabiting the selected study areas for some of the land cover types 

identified in the studied localities, caution should be applied when fitting these models to 

new datasets and interpreting the resulting predictions due to several potential biases 

related to the modern dataset.  

In addition to the preference of impalas for high quality grasses highlighted above that 

likely clouds the identifiable relationship between diet and habitat land cover patterns for 

this species, it is likely that the models suffer originally from the nature of the training 

dataset and potentially introduced biases and weaknesses. For instance, the efficiency of 

the models could very likely be improved by larger sample sizes for δ13C data for each 

impala population studied as well as a wider range of study areas to build the models 

based on modern data that reflects more faithfully the dietary variation of impalas as well 

as the diversity of habitats they inhabit. More study areas as well as larger stable carbon 

isotope samples would allow to avoid potential biases in the models due to class 

unbalance. Furthermore, a more uniform land cover dataset would likely improve the 

model, with land cover maps produced using the same remote sensing data and the same 

method to reduce potential bias due to remotely sensed data processing.  

 

3.4.5 Predicting Plio-Pleistocene land cover from fossil impala stable 

carbon isotope data 

3.4.5.1 Fossil species and predicted associated habitats 

Predictions from the different models built for this study suggest that, in the studied 

assemblage, fossil Aepyceros melampus specimens were predominantly associated to 

either mixed habitats (model 1), or to heterogeneous mixed/C3 habitats (model 2).  

Aepyceros shungurae specimens were predicted to be associated to a wider variety of 

habitats, either to a mixture of C3- or mixed habitats (model 1), or to heterogeneous 
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mixed/C3 habitats (model 2), suggesting more heterogeneous habitats and/or a stronger 

reliance on C3 -vegetation for species Aepyceros shungurae.  

Furthermore, results from model 1 showed that association to C3 -habitats was predicted 

for a large number of individuals, more particularly in the Shungura formation and in the 

Nachukui formation member Lomekwi, where only the species A. shungurae is 

represented. These results were in agreement with previous studies which suggested, 

based on its morphology (straighter, less lyrated and more gracile horn cores, shorter and 

thicker limb bones), that A. shungurae might have inhabited preferentially more closed 

woodland habitats than A. melampus (Harris, 1991; Bobe and Eck, 2001).  

3.4.5.2 Predicted associated habitats of the Plio-Pleistocene Omo-Turkana basin 

3.4.5.2.1 Koobi Fora and Nachukui formations 

Predictions for Aepyceros specimens per locality suggested that most specimens from 

Koobi Fora and Nachukui were likely associated to either mixed-habitats (model 1), or to 

heterogeneous mixed/C3 habitats (model 2). When comparing the range of δ13C values 

from these two fossil deposits to the range of values observed in each of the studied 

modern localities (Figure 47 and Figure 48), it could be seen that modern impala 

individuals from most localities yielded a range of δ13C values similar to fossil impala 

individuals, regardless of the variety of habitat types that the modern individuals were 

associated to (C4-homogeneous, heterogeneous mixed/C4-heterogeneous, C3-

heterogeneous). However, the ranges of stable carbon isotope ratios observed in these 

fossil assemblages differed from those observed at KNP-North (C3 -heterogeneous) and 

Welgevonden (C3 -heterogeneous) where a wider range of values was captured. This 

suggests that the diet of impalas from Koobi Fora and Nachukui were likely to reflect local 

environments similar to most of the modern localities studied where C4-vegetation is 

dominant (e.g. Swara, El Karama, Mpala), or where high quality C4-vegetation is available 
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in sufficient quantities all year-round in either mixed or C3 -dominated habitats (e.g. 

Nakuru, and KNP-South). The larger range of δ13C values observed in KNP-North and 

Welgevonden, likely reflecting a stronger reliance on C3 -vegetation, is not mirrored in 

these two fossil assemblages, suggesting the absence of C3 -dominated habitats in the 

landscape of the Koobi Fora and Nachukui formations during the Plio-Pleistocene. 

 

Figure 47: Land cover predictions, per site, based on results from the land cover composition model 
(model 1): Measured δ13C values for all fossil and modern specimens and associated habitats as 
predicted by the general land cover model (least conservative - model 4). The orange box highlights 
the range of δ13C values observed in the Koobi Fora and Nachukui formations. The green box highlights 
the range of δ13C values observed in the Shungura formation. 
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Figure 48: Land cover predictions, per site, based on results from the general land cover model (model 
2): Measured δ13C values for all fossil and modern specimens and associated habitats as predicted by 
the general land cover model (least conservative - model 4). The orange box highlights the range of 
δ13C values observed in the Koobi Fora and Nachukui formations.  The green box highlights the range 
of δ13C values observed in the Shungura formation. 

Little variation through time in predicted associated land cover types was observed across 

the members from Koobi Fora, although a slight decrease in associated habitat diversity is 

suggested between the Burgi (2.64 – 1.87 Ma) and KBS (1.87 – 1.61 Ma) members, based 

on both models (Figure 49 and Figure 50). These predictions would be in agreement with 

previous paleo-environmental reconstructions for the Burgi member which suggested 

that this locality sustained a rather heterogeneous environment between 2.64 Ma and 1.61 

Ma, with more closed woodlands in the north and more open habitats in the south 

providing a mixture of woodland and grassland areas (Harris, 1991; Reed, Fleagle and 

Leakey, 2007). KBS member has been suggested to document a lacustrine phase of the 

basin (Brown and Feibel, 1991; McDougall and Brown, 2008) with a grassland or 

shrubland environment dominated by C4-plants (Bonnefille, 1984; Cerling, Bowman and 

O’Neil, 1988; Harris, 1991; Kaye E Reed, 1997; Bobe, 2011; Levin et al., 2011). These 

previous paleo-environmental reconstructions are in agreement with the predominance 
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of homogeneous C4-dominated habitats predicted by model 2 for KBS member, although 

at odds with the predominance of mixed-habitats predicted by model 1 for this member. 

Overall, the land cover type predictions for the Nachukui formation suggesting that most 

Aepyceros specimens were predominantly associated to homogeneous C4 -habitats (model 

2) (Figure 47 and Figure 48), are consistent with the faunal composition study by  Bobe et 

al. (2007), which concluded that relatively open and arid environments prevailed in 

western Turkana during the Plio-Pleistocene. However, predictions from model 1 

suggested instead that most Aepyceros specimens from Nachukui were predominantly 

associated to mixed habitats, which would be in agreement with other studies that 

proposed more complex habitat reconstructions for West Turkana, with diverse habitats 

and a mosaic pattern of vegetation cover across the area where C3 -woodlands remained 

an important component of the vegetation throughout the sequence (Brugal, Roche and 

Kibunjia, 2003; Quinn et al., 2013). 
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Figure 49: Land cover predictions, per member, based on the land cover composition model (model 1): Measured δ13C values for all fossil and modern specimens and 
associated habitats as predicted by the general land cover model (least conservative - model 4). The orange box highlights the range of δ13C values observed in the Koobi 
Fora and Nachukui formations.  The green boxes highlight the largest ranges of δ13C values observed in the Shungura formation and in the modern localities. 
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Figure 50: Land cover predictions, per member, based on the general land cover model (model 2): Measured δ13C values for all fossil and modern specimens and associated 
habitats as predicted by the general land cover model (least conservative - model 4). The orange box highlights the range of δ13C values observed in the Koobi Fora and 
Nachukui formations.  The green boxes highlight the largest ranges of δ13C values observed in the Shungura formation and in the modern localities. 
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In the Nachukui sample, very few individuals were predicted by the land cover composition 

model (model 1) to be associated to C3 -habitats in the Kalochoro (2.33-1.9 Ma) and Kaitio 

members (1.9-1.775 Ma), but nearly 40% of the specimens in the Lomekwi member were 

predicted to be associated to C3 -habitats, suggesting a stronger reliance on C3 -vegetation in 

the Nachukui formation between 3.44 and 2.53 Ma (Figure 49 and Figure 50). Similarly, 

predictions from model 2 suggested a decreasing number of specimens likely associated to 

heterogeneous C3-habitats across the Nachukui members. Such differences in the dietary 

behaviours of fossil impalas before and after ~2.5 Ma would be consistent with paleosol 

carbonate studies that suggested a rapid increase in C4 -plant biomass in the Turkana basin 

at around 2.52 Ma (Wynn, 2004; Levin et al., 2011). 

The discrepancies between the outputs from the two models, and the dominant association 

to mixed or C4 habitats suggested for fossil impalas in both Koobi Fora and Nachukui, could 

reflect the presence of complex habitats with a strong dominance of C4-biomass but rather 

heterogeneous vegetation conditions. However, it could also reflect a preference for C4-

vegetation in heterogeneous localities even when C3 -vegetation dominates the landscape, as 

observed for modern impala populations for localities such as KNP-South and Welgevonden.  

3.4.5.2.2. Shungura formation 

Predictions for genus Aepyceros specimens in the Shungura formation suggested a stronger 

C3-vegetation component in their diet and their associated habitats (model 1), or habitats 

dominated either by heterogeneous mixed-/C4-habitats or by heterogeneous C3-habitats 

(model 2), suggesting a greater land cover diversity in the lower Omo river valley compared 

to the other studied fossil localities of the Turkana basin (Figure 47 and Figure 48). This is in 

agreement with published literature describing environments dominated by C3 -vegetation 

and closed-wooded habitats for a long part of the sequence (up to ~2.0 Ma) as well as mosaic 

habitats (Alemseged, 2003; Barr, 2015; Plummer et al., 2015).  
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Previous studies have suggested the presence of mosaic habitats ranging from forests to open 

woodlands in the Shungura formation between ~3.4 and 2 Ma, with a gradual increase in C4 

vegetation through time (Jaeger and Wesselman, 1976; Bonnefille and Dechamps, 1983; 

Wesselman, 1984; Bobe and Eck, 2001; Alemseged, 2003; Levin et al., 2011; Bibi et al., 2013; 

Barr, 2015; Plummer et al., 2015; Negash et al., 2015; Blondel et al., 2018; Martin et al., 2018). 

More particularly, according to previous studies, Member B was characterised by a 

predominance of wet and relatively closed habitats, with little open habitats (Jaeger and 

Wesselman, 1976; Bonnefille, 1984; Kaye E Reed, 1997; Alemseged, 2003). Similarly, 

Member C was described as a bushland–woodland regime with a riverine forest and edaphic 

grasslands (Reed, 1997; Alemseged, 2003). Member E is also thought to have been 

characterised by a well-watered woodland–bushland with a riparian woodland or forest. In 

contrast, a change in local climatic conditions from member F to G was observed with more 

open and drier conditions and habitats dominated by areas of edaphic grasslands, bushlands, 

and more open woodlands than in the previous members (Jaeger and Wesselman, 1976; 

Bonnefille, 1984; Reed, 1997). Results from model 1 agree with these studies, with the 

majority of the impala specimens from the Shungura members B, C and E predicted to be 

associated to C3 -habitats in relation to a stronger C3 -component in their diet between 3.44 

and 2.52 Ma and between 2.4 and 2.32 Ma (Figure 49). Similarly, predictions from model 2 

suggest a wider range of habitats associated with these members, with a predominance of 

either heterogeneous mixed-/C4-habitats or heterogeneous C3-habitats (Figure 50).  The 

range of δ13C values observed for impala specimens in these members is similar to the range 

of values observed in modern specimens from Welgevonden and KNP-North where C3 -

vegetation dominated, and less C4 -plant material was likely available to impalas in the 

landscape. A smaller range of δ13C values and less specimens predicted to be associated to C3 

-habitats or heterogeneous habitats were observed for members F and G, which is consistent 

with the more open and drier conditions suggested by previous studies for these members.  
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3.5 Conclusion and perspectives 
 

This study aimed at assessing the dietary variability of modern impala (Aepyceros melampus) 

as well as the variability of the land cover composition and structure of their habitats to 

explore the relationship between diet and land cover in an extant mixed-feeding antelope 

species. By comparing case study areas using both land cover metrics derived from remote 

sensing, and published stable carbon isotope data, this project was designed to test whether 

it could be possible to predict the types of land cover patterns that are associated with 

specific dietary patterns observed from dental samples. Despite the limitations and potential 

biases highlighted previously for the models built based on combined land cover data and 

impala stable carbon isotope data, interesting patterns were underlined in this study.  

First, the high variability in δ13C values observed among modern impala specimens and the 

wide range of habitats they inhabit highlighted that, while impalas are often considered as 

mixed-feeders and are known to be able to adapt to a wide range of habitats and food 

resources, their diet tends to rely heavily on palatable grasses and forbs, suggesting a 

preference for C4 -plants for their higher protein content. Comparisons between the dietary 

behaviour of impala populations studied and the land cover composition of their habitats 

were consistent with previous studies that observed that impala populations tend to include 

C3 -vegetation in their diet where and when high quality C4 -vegetation is not available in 

sufficient quantities in their habitats, either all-year round or seasonally. The diet of modern 

impalas therefore does not always reflect the vegetation types prevailing in their 

environments, as availability of their preferred foods can be influenced not only by local year-

round land cover patterns (which is itself influenced, for instance, by local geology, 

hydrology, and soil quality) but also by seasonal fluctuations in climate as well as potential 

niche competition with other herbivores. Future models using modern dietary ecology and 

land cover data should therefore seek to include additional information on the habitats 

inhabited by the impala populations studied to inform on aspects of their foraging behaviour 
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that might influence the content of their diet. Such variables to be included in future models 

could be: local climatic conditions (temperature and annual rainfall), soil quality, topography, 

herbivore population estimates (to estimate niche competition), or wildfire regimes (which 

have been shown to impact grass quality; Young 1972, Bouxin 1975b, Bucini et al. 2009). 

Seasonal variation in diet and in land cover patterns should also be taken into account as 

much as possible to reduce risks of biasing the models through time averaging,  

Although the models built for this study revealed some limitations, the predictions generated 

for fossil Aepyceros samples for the Omo-Turkana basin were partly consistent with previous 

paleo-environmental studies for this region, which demonstrates the potential of this 

method. Future work using a modelling approach to reconstructing paleo-environments 

from paleo-dietary data could improve the precision and relevance of the predictions by 

including in the model additional variables that can help identify patterns of dietary plasticity 

in extinct species. For instance, the dietary ecology of fossil impalas could be studied in more 

detail by combining several dietary proxies to inform on their diet throughout their life 

(mesowear), during their growth (stable isotopes) and just before death (dental microwear). 

Additionally, information on local climatic conditions (with stable oxygen isotopes), soil 

quality (through paleosol carbonates), and herbivore population estimates (through 

palaeontological studies) for the fossil localities studied could be used and integrated into a 

model to inform on the broader paleo-environmental context in which fossil impalas were 

evolving.  

Future work could therefore focus on building a strong and detailed modern dataset to 

record the dietary variability of extant impalas in carefully selected localities, ideally using 

dietary proxies that can easily be compared with data from the fossil record (i.e. stable 

isotopes, or dental use-wear). By also recording detailed information on their habitats and 

the local conditions experienced by the studied populations (climate, seasonal changes, niche 

competition, etc) combined to information on the land cover composition and structure 
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obtained through remote sensing, the models tested in this study could be improved and 

provide more accurate predictions to help evaluate in more detail what types of habitats and 

land cover patterns once characterised the landscapes of eastern Africa during the Plio-

Pleistocene.  

The use of models built on modern land cover and dietary data was a novel approach which 

showed promising results. Improved models could be used on other mammal taxa for which 

isotope data is available for both extant and extinct populations to explore how faunal 

communities directly relate to their environments and how dietary studies can inform on 

their habitats depending on their feeding ecology. More particularly, it could be interesting 

to test this method on carnivores (which might feed on more browsing or grazing herbivore 

species depending on their ecological niche) and on primates (which have varied omnivorous 

diets that vary depending on the taxon studied) to build a strong modern baseline to compare 

with the fossil record. This could allow to explore local Plio-Pleistocene environments from 

a different angle by testing if models calibrated for various groups would converge in similar 

environmental reconstructions when fitted to a same fossil depositional context. 
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Chapter 4: Dental mesowear analysis 

4.1 Introduction 
 

The Omo-Turkana basin has been widely studied over the past seventy years, with various 

studies focusing on the geologic and palaeo-environmental history of this region as a way to 

better understand the habitats and climatic conditions experienced by hominin species 

during the Plio-Pleistocene in eastern Africa (see chapter 2.2). Previous studies have 

suggested that a high diversity of habitats is likely to have been available to hominins in this 

region between 3.4 Ma and 1.6 Ma, and that several major climatic events might have had an 

important impact on the local environments, and, in turn, on the faunal communities 

inhabiting the region at the time. This chapter presents analyses that were designed to test 

these hypotheses using evidence from herbivore feeding ecology, to see if high habitat 

heterogeneity and major shifts in environmental conditions were reflected to some extent in 

the dietary patterns of selected fossil taxa in the Omo-Turkana basin during the Plio-

Pleistocene. 

For this purpose, the palaeo-dietary behaviours of two mixed-feeding antelope taxa were 

investigated using fossil teeth from the Plio-Pleistocene deposits of the Omo-Turkana basin, 

the impala (genus Aepyceros) and the springbok (genus Antidorcas), which are abundant in 

the African fossil record, and whose extant relatives are known for their high dietary 

plasticity. The dietary flexibility of these two fossil taxa could prove to be interesting 

indicators of vegetation conditions in the past, as mixed-feeders are able to adapt their diet 

according to the availability of food resources. Their diet can vary seasonally, or when facing 

niche competition or environmental change, although each taxa are likely to have had dietary 

preferences that influenced their feeding behaviours regardless of the prevailing vegetation 

conditions in their habitats (see chapter 3).  
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The palaeo-diet of these abundant, adaptable antelopes is explored in this chapter, alongside 

the palaeo-diet of fossil representatives of the giraffid (genus Giraffa) and equid (genus 

Equus) mammalian families, to help evaluate the extent of the dietary spectrum of fossil 

herbivores in the Omo-Turkana basin between 3.44 and 1.6 Ma. To evaluate the dietary 

ecology of each specimen, dental mesowear analysis was used on data collected from fossil 

specimens of the studied taxa from the Koobi Fora, Nachukui, and Shungura formations, from 

members ranging between 3.44 and 1.61 Ma, as well as from modern specimens from 

different African regions.  

Mesowear refers to macroscopic wear on teeth, which results from accumulated attrition and 

abrasion on molar teeth acquired through life or during the last months/years of an 

individual’s life (Fortelius and Solounias, 2000; Rivals et al., 2007; Louys et al., 2012; Loffredo 

and DeSantis, 2014; Ackermans et al., 2018; Ackermans, 2020; Ackermans, Martin, et al., 

2020). Mesowear is an approach derived from the observations of tooth morphology, 

occlusal height (relief), and occlusal profile (cusp shape), which can be observed and/or 

measured from the buccal outlines of specific teeth according to a method defined by 

Fortelius and Solounias (2000) (see chapter 2.4.1 for more detail on the method). By 

evaluating the relative proportion of these two types of wear on molars, one can assess 

whether an animal was predominantly grazing or browsing throughout its life (Fortelius and 

Solounias, 2000; Mihlbachler and Solounias, 2006; Rivals and Semprebon, 2006; Semprebon 

and Rivals, 2007; Kaiser et al., 2009; Ackermans, Martin, et al., 2020).  High levels of dental 

abrasion are likely related to the proportion of grass or abrasive matters present in the food 

resources of the animals, as suggested in previous studies which demonstrated that diets rich 

in phytoliths (such as grass blades) tend to result in more rounded cups and lower occlusal 

relief, as opposed to diets depleted of abrasives (such as browsing habits) that result in 

sharper cusps and higher relief (e.g. Ackermans et al., 2018).  
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Although some studies have suggested that the dietary signals recorded on the teeth can 

sometimes be blurred from external non-dietary factors, such as dust or grit, the mesowear 

method has been shown nonetheless to be able to inform on the overall degree of toughness 

and abrasiveness of the consumed food items, and to presents the advantages of being quick, 

inexpensive, non-destructive, relatively taxon-independent, and easy to record directly on 

fossil material (Loffredo and DeSantis, 2014; Green and Croft, 2018).   

The material (4.2) and methods (4.3) used for mesowear analysis are therefore presented in 

this chapter, followed by results (4.4), divided around the following objectives: 

1)  Assess the overall dietary signatures of each studied species (extant and extinct), to 

appraise whether the diet of the fossil species do or do not mirror that of their extant 

relatives, and evaluate inter-specific variations between species of the same taxa. 

2) Evaluate the degree of variation in dietary patterns within each fossil taxon (i.e. intra-

generic variation) across the studied fossil localities and members to detect potential 

differences in feeding behaviours within the Turkana basin and/or through time. 

These results are presented and briefly interpreted around these themes, before being 

summarised (4.5). They will be further interpreted and discussed in chapter 7, alongside the 

other methods for dietary analyses employed in this study. 

4.2 Material 
 

Fossil dental remains of the selected taxa (genera Aepyceros, Antidorcas, Equus and Giraffa) 

from the Koobi Fora and the Nachukui formations were studied for mesowear analysis at the 

National Museums of Kenya (Nairobi), as well as specimens from the Shungura formation, 

held at the National Museum of Ethiopia (Addis-Ababa) (Table 41). The samples were 

collected from the maximum number of specimens available/allowed for each locality and 

member under study (see appendix A.9 for the detailed database).  
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For comparison purposes, data for mesowear analysis were collected on modern dental 

specimens from the following institutions: the National Museums of Kenya (NMK), the 

Ditsong Museums of South Africa (Transvaal), Pretoria, and the Bavarian State Collection of 

Zoology (Munich, Germany) (Table 42- see appendix A.10 for the detailed database). 

Table 41: Number of fossil specimens analysed for mesowear analysis, per genus and per member. 

Provenance Member 
Dates 
(Ma) 

Number of specimens (per genus) 
Totals 

Aepyceros Antidorcas Equus Giraffa 

Koobi Fora, Kenya 
(National Museums of 

Kenya, Nairobi) 

Tulu Bor 3.44 - 2.64 0 0 0 0 

30 Burgi 2.64 - 1.87 3 1 2 1 

KBS 1.87 - 1.61 8 1 9 5 

Nachukui, Kenya 
(National Museums of 

Kenya, Nairobi) 

Lomekwi 3.44 - 2.53 6 0 0 0 

13 
Lokalalei 2.53 - 2.33 0 0 0 0 

Kalochoro 2.33 - 1.9 1 0 3 0 

Kaitio 1.9 - 1.61 2 0 1 0 

Shungura, Ethiopia 
(National Museum of 

Ethiopia, Addis-
Abeba) 

B 3.44 - 2.91 6 0 0 2 

50 

C 2.91 - 2.52 7 0 0 2 

D 2.52 - 2.4 5 0 0 2 

E 2.4 - 2.32 8 0 0 0 

F 2.32 - 2.27 10 0 0 0 

G 2.27 - 1.9 8 0 0 0 

Modern / 33 10 9 11 63 

Total 156 

 
 

Table 42: Numbers of modern specimens analysed for mesowear analysis, per species and per 
institution.  

Source 
Information 

available 

Number of specimens  

Aepyceros 
melampus 

Antidorcas 
marsupialis 

Equus 
quagga 

Giraffa 
camelopardalis 

National Museums 
of Kenya, Nairobi 

Sex; Provenance 
(Kenya) 

6 3 0 0 

Ditsong Museum, 
Pretoria, South 

Africa 

Age; Sex; 
Provenance (South 
Africa, Namibia and 
Botswana localities) 

25 7 0 0 

Bavarian State 
Collection of 

Zoology, Munich, 
Germany 

Sex; Provenance 
(Kenya, and 

Tanzania localities) 
9 0 0 0 

Royal Museum for 
Central Africa, 

Tervuren, Belgium 

Sex; Provenance 
(Congo, Kenya, 

Rwanda, Sudan and 
Tanzania localities) 

39 0 11 12 

Totals 79 10 11 12 
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4.3. Methods 

4.3.1 Selected teeth 
 

Upper molars were selected for mesowear analysis, focusing in priority on M2-M3 as advised 

in previous studies (see 2.4.1). M1 and upper molars of undetermined row were also used to 

increase sample size. Differences between molar rows were evaluated statistically before any 

further analysis to ensure the dietary signal would not be averaged by significant differences 

in mesowear scores between the different molars (see appendix A.10). Following this, all 

upper first, second and third molars were included in the analyses. A total of 93 fossil 

specimens and 63 modern specimens were selected for mesowear analysis.  

4.3.2 Mesowear Scoring 

Each tooth was scored for occlusal relief and cusp shape through visual assessment during 

data collection in each of the museums visited, following the categories described in Figure 

18. To reduce potential scoring biases for occlusal relief (and as advised by Fortelius and 

Solounias (2000) for “borderline cases”), measurements were also taken a posteriori on each 

specimen from digital photographs of the specimens, using the software program ImageJ 

(version 1.52a; Rasband 1997).  

A “relief-index” was then constructed by dividing occlusal relief (defined as the vertical 

distance between a line connecting two adjacent cusp tips and the bottom of the valley 

between them – see Figure 18) by the length of the tooth; low relief was attributed to 

specimens with an index value lower than 0.1, and high relief to index scores higher than 0.1 

(Fortelius and Solounias, 2000). The results obtained from that index were then compared 

to the scores obtained through visual assessment. When the results disagreed, the scores 

obtained quantitatively were favoured against the ones obtained qualitatively, to reduce 

potential observer bias and ensure consistency in the occlusal relief scoring. Out of the 156 

teeth scores for mesowear analysis, only 14 specimens were scored differently between the 
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two methods. A scale from 0 to 4 was used, where 0 represents the most attrition-dominated 

mesowear signature (suggested to represent browsing habits), and 4 represents the most 

abrasion-dominated signature (suggested to represent grazing habits) (Figure 51). 

 

Figure 51: Mesowear scoring of molar relief (into ‘low’ or ‘high’) and cusp shape (into ‘sharp’, ‘rounded’ 
or ‘blunt’) (specimen RMCA 3747, Giraffa camelopardalis), and examples of mesowear scores (MS). 
Specimens: (a) Equus sp. (KNM-ER 4056); (b) Equus sp. (KNM-WT 14691); (c) Equus quagga (RMCA 3607); 
(d) Antidorcas marsupialis (TM-2437); (e) Aepyceros melampus (TM-17673); (f) Aepyceros melampus 
(TM-4236); (g) Antidorcas marsupialis (TM-3140); and (h) Giraffa stillei (KNM-ER 3909); not to scale. 
From the following institutions: KNM: National Museums of Kenya, Nairobi; TM: Ditsong Museums of 
South Africa, Pretoria; RMCA: Royal Museum for Central Africa, Tervuren (Belgium). 
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4.3.2 Statistical analyses 

 

The dietary patterns were analysed for each taxon to assess if significant differences in 

dietary patterns could be observed between fossil and modern specimens of each species, 

but also to see if differences between locality and/or member could be found within each 

studied taxon. For this, a series of statistical analyses were performed using the software R 

Studio (version 1.2.1335; R version 3.6.3;  R Core Team 2013) (see appendix A.6 for detail of 

all R packages used in this study). 

Prior to analysis, the ordinal variable mesowear score was tested for normality (Shapiro-

Wilk test) and for homogeneity of variance (Levene Test for Homogeneity of Variance). 

Because the assumptions of parametric tests were not met, the Kruskal-Wallis test was used 

to assess significant differences within and between groups. Where the Kruskal–Wallis test 

was significant, post-hoc analyses were performed to determine which groups significantly 

differ from the others, using Dunn’s test with adjustments to the p-value (Holm’s correction) 

to control for familywise error rates.  

The dataset was analysed once to check for significant dietary differences within each genus 

depending on samples sorted by provenance (i.e. Koobi Fora, Nachukui and modern 

samples), and a second time to check for significant differences in dietary patterns through 

time within each fossil locality for each genus, based on subsets sorted by members 

For general comparisons between fossil and modern samples (regardless of provenance and 

member), statistical analyses were run at the species level to assess the dietary preferences 

of the studied fossil species, in comparison with those of modern specimens. Due to small 

numbers of specimens per sample for some subsets, analyses were run at the genus level (i.e. 

species from same genus altogether) when comparing samples by provenance or member, 

for more statistical power. 
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4.4 Results and interpretations 
 

Firstly, the differences and similarities in dietary patterns between fossil species and modern 

species of known diet are examined to assess the dietary preference of each studied fossil 

taxon, regardless of the provenance and dates of fossil specimens (i.e. interspecific variation) 

(4.4.1). This is to appraise whether the diet of the fossil species do or do not mirror that of 

their extant relatives, and to evaluate inter-specific variations between species of the same 

taxa. Variations in dietary patterns are then evaluated for each fossil taxon (i.e. intra-generic 

variation) across the studied fossil localities and members to detect potential differences in 

feeding behaviours within the Turkana basin and/or through time (4.4.2).  

4.4.1 Dietary variation among taxa: Interspecific comparisons 
 

To investigate the type and degree of accumulated dental use-wear for each of the studied 

taxa, and, by inference, the relative proportion of grass or of abrasive matters present in their 

food, mesowear scores of each fossil and modern species were compared (Table 43, Table 

44, and Figure 52). Results showed significant differences between species within the studied 

samples (fossil and modern).  

Table 43: Descriptive statistics for each species, for fossil and modern samples. Mean, median, standard 
deviation and standard error to the mean are represented for mesowear score, as well as the frequencies 
for each mesowear feature observed (Cusp relief: Low, High; Cusp shape: Sharp, Round, Blunt). 

 

mean median SD SEM Low High Sharp Round Blunt

Aepyceros shungurae Fossil 49 2.02 3 1.09 0.16 55.1 44.9 8.16 91.84 0

Aepyceros melampus Fossil 14 1.07 1 0.92 0.25 14.29 85.71 21.43 78.57 0

Aepyceros sp. Fossil 1 3 3 100 0 0 100 0

Aepyceros melampus Modern 33 1.91 1 1.04 0.18 51.52 48.48 3.03 96.97 0

Antidorcas recki Fossil 2 2 2 1.41 1 50 50 0 100 0

Antidorcas marsupialis Modern 10 1.7 1 1.16 0.37 40 60 10 90 0

Equus sp. Fossil 15 2.67 3 1.11 0.29 80 20 0 80 20

Equus quagga Modern 9 3.11 3 0.33 0.11 100 0 0 88.89 11.11

Giraffa gracilis Fossil 3 1.33 1 1.53 0.88 33.33 66.67 33.33 66.67 0

Giraffa pygmaea Fossil 2 2 2 1.41 1 50 50 0 100 0

Giraffa stillei Fossil 6 0.83 1 0.41 0.17 0 100 16.67 83.33 0

Giraffa sp. Fossil 1 1 1 0 100 0 100 0

Giraffa camelopardalis Modern 11 1.36 1 1.12 0.34 27.27 72.73 18.18 81.82 0

NSpecies Sample

Mesowear score (1-4) Frequencies (%)
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Table 44: Kruskal-Wallis test to explore variation in mesowear score between species (fossil and 
modern samples). DF=Degrees of freedom.  (See appendix A.12.1 table-A 14 for pairwise comparisons 
table).  

 
 

As expected, significant differences were found between Equus and Giraffa specimens. 

Mesowear scores are typical of browsing species for the Giraffa specimens, with low values 

(i.e. MS < 1.5) indicative of a poorly abrasive diet. On the contrary, mesowear scores are 

typical of grazing species for modern plain zebra specimens with high scores (Equus quagga 

mean = 3.11), and fossil equid specimens display medium-high scores which could indicate 

mixed-diets with a predominance of abrasive food items (Equus sp. mean = 2.67). This 

difference in dietary pattern between giraffids and equids is confirmed by results from Dunn 

tests, showing that there are significant differences between G. camelopardalis and E. quagga 

specimens in the modern samples (p=0.048), as well as between fossil G. stillei and modern 

E. quagga specimens (p=0.0002). No significant difference was found between fossil and 

modern species within each of these genera.  

 

Figure 52: Distribution of mesowear scores per species (mean and standard error of the mean), for 
fossil and modern samples. This figure highlights the differences between browsers (MS between 0-1) 
and grazers (MS between 3-4).  

Chi-square DF P-value

Fossil/Modern species 29.786 11 0.002
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Mesowear scores (MS) for specimens from genus Aepyceros vary depending on the species 

and the samples. While modern Aepyceros melampus specimens (mean = 1.91) and fossil 

Aepyceros shungurae specimens (mean = 2.02) demonstrate a large spread of values along 

the grazing-browsing spectrum typical of mixed-feeders, fossil A. melampus specimens 

display lower MS values (mean = 1.07), more similar to browsers. However, no significant 

difference was found between the various Aepyceros species. While no significant difference 

was identified between modern A. melampus and other modern species, fossil A. melampus 

was found to significantly differ from the modern Equus quagga sample (p=0.002) and from 

fossil Equus sp. specimens (p=0.012), with lower mean MS for fossil impalas compared to 

modern plain zebras and fossil equids. This could suggest the inclusion of a large amount of 

browse in the diet of most of the fossil A. melampus specimens, resulting in poorly abrasive 

diets, compared to grazing equids. No significant difference was found between fossil A. 

shungurae and other species.  

Similarly to modern A. melampus specimens, modern Antidorcas marsupialis (mean = 1.7) 

and fossil Antidorcas recki (mean =2) individuals demonstrate mean mesowear scores typical 

of mixed-feeders, with values spread across the dietary spectrum. Results from Dunn’s tests 

showed no significant differences between Antidorcas samples and other species.               
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4.4.2 Intra-generic spatio-temporal variation in diet in the Omo-

Turkana basin 
 

Intra-generic dietary comparisons were performed on mesowear scores at the genus level to 

assess whether spatial and/or temporal differences in dietary practices could be observed 

within each of the studied taxa (Table 45, Table 46, Figure 53, Figure 54). No significant 

difference was found between localities, or between members within each locality, for any of 

the studied taxa.  

 

Figure 53: Distribution of mesowear scores per genus (mean and standard error of the mean), for fossil 
(i.e. Koobi Fora, Nachukui and Shungura) and modern samples. Points represent individual specimen, 
squares with error bars represent the mean value and standard deviation of each sample. 
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Table 45: Descriptive statistics for each genus, for fossil and modern samples, for each studied subset 
(locality and member). Mean, median, standard deviation (S.D.) and standard error of the mean (S.E.M.) 
are represented for mesowear score, as well as the frequencies for each mesowear feature observed 
(Cusp relief: Low, High; Cusp shape: Sharp, Round, Blunt). 

 

 

Impala specimens from the Koobi Fora formation appear to have lower mesowear scores 

than specimens from both Nachukui and Shungura formations, which could suggest a 

lifetime-diet dominated by browse for most Aepyceros specimens in the Koobi Fora 

formation, as opposed to more varied dietary practices among specimens from the other two 

localities. Little variation through time can be observed within the Koobi Fora and Nachukui 

formations for this taxon, apart from a higher dietary variability among specimens from the 

KBS (represented by A. melampus) and Lomekwi (represented by A. shungurae) members, as 

Subset Member (Ma) mean median SD SEM Low High Sharp Round Blunt

Aepyceros Koobi Fora All 11 1.09 1 1.04 0.31 18.18 81.82 27.27 72.73 0

Burgi (2.68 - 1.88) 3 1 1 0 0 0 100 0 100 0

KBS (1.88 -1.6) 8 1.13 1 1.25 0.44 25 75 37.5 62.5 0

Nachukui All 9 1.78 1 0.97 0.32 44.44 55.56 11.11 88.89 0

Lomekwi (3.35 -2.5) 6 2.17 2.5 0.98 0.40 66.67 33.33 16.67 83.33 0

Kalochoro (2.35 - 1.9) 1 1 1 0 100 0 100 0

Kaitio (1.9 -1.65) 2 1 1 0 0 0 100 0 100 0

Shungura All 44 2.02 3 1.11 0.17 54.55 45.45 6.818 93.18 0

B (3.44 - 2.91) 5 2.2 3 1.10 0.49 60 40 0 100 0

B-C 1 3 3 100 0 0 100 0

C (2.91 - 2.52) 7 1.43 1 1.13 0.43 28.57 71.43 14.29 85.71 0

D (2.52 - 2.4) 5 2.60 3 0.89 0.40 80 20 0 100 0

E (2.4 - 2.32) 5 1.80 1 1.10 0.49 40 60 0 100 0

E-F 3 1.67 1 1.15 0.67 33.33 66.67 0 100 0

F (2.32 - 2.27) 10 2.10 3 1.20 0.38 60 40 10 90 0

G (2.27 - 1.9) 8 2.13 3 1.25 0.44 62.5 37.5 12.5 87.5 0

Modern / 33 1.91 1 1.04 0.18 51.52 48.48 3.03 96.97 0

Antidorcas Koobi Fora All 2 2 2 1.41 1 50 50 0 100 0

Burgi (2.68 - 1.88) 1 1 1 0 100 0 100 0

KBS (1.88 -1.6) 1 3 3 100 0 0 100 0

Modern / 10 1.70 1 1.16 0.37 40 60 10 90 0

Equus Koobi Fora All 11 2.91 3 0.70 0.21 90.91 9.091 0 90.91 9.09

Burgi (2.68 - 1.88) 2 3 3 0.00 0 100 0 0 100 0

KBS (1.88 -1.6) 9 2.89 3 0.78 0.26 88.89 11.11 0 88.89 11.11

Nachukui All 4 2 2 1.83 0.91 50 50 0 50 50

Kalochoro (2.35 - 1.9) 3 2.33 3 2.08 1.20 66.67 33.33 0 33.33 66.67

Kaitio (1.9 -1.65) 1 1 1 0 100 0 100 0

Modern / 9 3.11 3 0.33 0.11 100 0 0.00 88.89 11.11

Giraffa Koobi Fora All 6 0.83 1 0.41 0.17 0 100 16.67 83.33 0

Burgi (2.68 - 1.88) 1 0 0 0 100 100 0 0

KBS (1.88 -1.6) 5 0 0 0 0 0 100 0 100 0

Shungura All 6 1.5 1 1.22 0.5 33.33 66.67 16.67 83.33 0

B (3.44 - 2.91) 2 2 2 1.41 1 50 50 0 100 0

C (2.91 - 2.52) 2 1.5 1.5 2.12 1.5 50 50 50 50 0

D (2.52 - 2.4) 2 1 1 0 0 0 100 0 100 0

Modern / 11 1.36 1 1.12 0.34 27.27 72.73 18.18 81.82 0

Species N

Mesowear score (1-4) Frequencies (%)
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opposed to browsing signals in members Burgi, Kalochoro and Kaitio. A high dietary 

variability can also be observed between specimens from Shungura (represented by A. 

shungurae), and some degree of variation can be noticed across members, with lower mean 

mesowear scores for specimens from members C and E, suggesting a dominance of 

specimens predominantly browsing throughout their life. This could suggest variation in the 

diet of fossil impala specimens through time in the Omo-Turkana basin. However, none of 

these differences was confirmed by statistical analyses.  

Potential spatial and temporal variation in diet could not be assessed for fossil Antidorcas 

specimens, due to small sample sizes. 

Equid specimens from the Koobi Fora formation appear to have higher mesowear scores than 

specimens from the Nachukui formation, which could suggest an overall diet more typical of 

grazing herbivores in Koobi Fora, and a larger range of dietary practices in specimens from 

Nachukui, ranging between grazing and browsing. However, the small sample size available 

for the Nachukui formation does not permit to explore further this pattern, and none of these 

observations were confirmed by statistical analyses.  

Little variation in mesowear scores can be observed for the Giraffa samples, with mean 

scores typical of browsing species in all three localities, and little variation through time in 

each locality. Small sample sizes did not allow to explore further the potential dietary 

variability of fossil giraffids in the studied deposits. 

Table 46: Results from the Kruskal Wallis tests to explore variation in mesowear score within each 
genus between samples a) per locality and b) per member within each locality. DF=Degrees of freedom. 

 

Chi-square DF P-value Sample Chi-square DF P-value

a) Aepyceros 0.138057076 1 0.710 b) Aepyceros Koobi Fora 0.11 1 0.735

Antidorcas 0.128571429 1 0.720 Nachukui 3.00 2 0.223

Equus 0.679939668 1 0.410 Shungura 4.90 7 0.672

Giraffa 0.124539744 1 0.724 Antidorcas Koobi Fora 1.00 1 0.317

Equus Koobi Fora 0.00 1 1.000

Nachukui 0.20 1 0.655

Giraffa Koobi Fora 5.00 1 0.055

Shungura 0.58 2 0.747

Locality Member
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Figure 54: Distribution of mesowear scores per genus through time (mean and standard error of the 
mean), for modern and fossil (i.e. Koobi Fora and Nachukui) samples, with subsets by member.  
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4.5 Summary of findings 
 

Species-specific mesowear patterns: 

- Giraffa: low mesowear score (MS) for all species. This signal is typical of browsers. 

- Equus: high MS for modern E. quagga, but high to mid-range MS for fossil Equus. This 

might indicate more individuals with mixed-feeding behaviours in fossil equids 

compared to modern specimens. 

- Aepyceros shungurae: wide range of values for MS. This suggests varied dietary 

patterns across fossil specimens, from grazing to browsing. 

- Aepyceros melampus: wider range of values among modern specimens, compared to 

fossil specimens; lower MS score for fossil specimens, potentially indicating a 

dominance of browsing diets. 

Intra-generic variations in mesowear patterns: 

- Aepyceros: lower MS in Koobi Fora compared to other samples, which suggests less 

abrasive diets in East Turkana. Varying mesowear scores across members observed 

in Shungura, with higher mean mesowear scores for specimens from members B, D, 

F and G, where scores are more typical of mixed-feeders, while scores from the other 

members are more typical of browsing species. 

- Equus: lower MS in Nachukui compared to other samples, which could suggest mixed-

feeding patterns in West Turkana equids. 

- Giraffa: Little variation in mesowear scores was observed for the Giraffa samples, 

with mean scores typical of browsing species in Koobi Fora and Shungura, although 

the mean mesowear scores in Shungura are slightly higher.  

 

Overall, results from mesowear analysis suggest that fossil Aepyceros might have favoured 

browse in Koobi Fora, as opposed to graze in Nachukui. This could potentially reflect a 

difference in habitat composition and/or heterogeneity between East and West Turkana, 

with a more heterogeneous vegetation structure in the East compared to the West, and less 

wooded areas in the West. Indeed, the Koobi Fora samples show the presence of both grazing 
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and browsing species in the area, while the Nachukui samples suggest a prevalence of grazing 

practices, with evidence of browse consumption only between 2.5 and 1.9 Ma in Kalochoro 

member. This change in feeding preference among impalas from the Kalochoro member 

could potentially reflect a change in resource availability or in niche competition at Nachukui. 

However, the very small sample size for this member (Aepyceros n=1) does not allow for 

robust analyses and interpretations. 

Inter-generic dietary comparisons per locality and per member 

Results from mesowear analysis suggest that East Turkana Aepyceros and Antidorcas 

specimens differed in their dietary practices, with impalas including a smaller amount of 

abrasive food items in their diet compared to springboks, resulting in lower mesowear 

scores. This is especially highlighted at Koobi Fora, where they are both represented in the 

same members (i.e. while in Nachukui they are represented in different members). This could 

potentially reflect the vegetation heterogeneity of the area, providing each mixed-feeding 

taxon with a variety of food resources to choose from. The difference in dietary preference 

among the two antelope species could potentially reflect as well niche partitioning 

behaviours, with impala predominantly browsing and springbok predominantly grazing in 

the same area to reduce dietary competition, although this hypothesis cannot be confirmed. 
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Chapter 5: Dental microwear textural 
analysis 

5.1 Introduction 
 

As described in previous chapters, published studies of the Omo-Turkana basin have 

suggested that a high diversity of habitats is likely to have been available to hominins in this 

region between 3.4 and 1.6 Ma, and that several major climatic events might have had an 

important impact on the local environments, and, in turn, on the faunal communities 

inhabiting the region at the time. Alike the mesowear analyses presented in chapter 4, this 

chapter presents analyses that were designed to test these hypotheses using evidence from 

herbivore feeding ecology, to assess whether high habitat heterogeneity and major shifts in 

environmental conditions were reflected in the dietary patterns of selected fossil taxa in the 

Omo-Turkana basin during the Plio-Pleistocene. The palaeo-dietary behaviours of the mixed-

feeding antelope taxa Aepyceros (impala) and Antidorcas (springbok) are investigated, 

alongside those of fossil representatives of the giraffid (genus Giraffa) and equid (genus 

Equus) mammalian families, to help evaluate the extent of the dietary spectrum of fossil 

herbivores in the Omo-Turkana basin between 3.44 and 1.6 Ma.  

To evaluate the dietary ecology of each specimen, dental microwear textural analysis was 

used on data from fossil specimens of the studied taxa from the Koobi Fora, Nachukui and 

Shungura formations, from members ranging between 3.44 and 1.61 Ma, as well as from 

modern specimens from different African regions.  

Dental microwear refers to the microscopic tooth-wear that results from dental use, different 

food types yielding differing marking patterns on the enamel surface due to how various food 

types differ in resistance to structural breakdown during mastication (Walker and Teaford, 

1989; Teaford, 1994). Dental microwear texture analysis (DMTA) is based on three-

dimensional surface measurements taken using white-light confocal microscopy and scale-
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sensitive fractal analysis, producing surface parameters that allow quantitative 

characterizations of three-dimensional surfaces that are repeatable and free of observer 

measurement error (Ungar et al., 2003; Scott et al., 2006; Green and Croft, 2018) (see 2.4.2.3 

Textural parameters). Previous studies have showed that microwear, similarly to mesowear, 

is closely impacted by the properties of the consumed foods, especially its toughness and 

siliceous content, but also to other food properties, such as particle size (Lucas et al., 2008; 

Scott, 2012; Ramdarshan et al., 2016) (see chapter 2.4.2 for more detail). Unlike mesowear, 

microwear does not reflect a cumulative use-wear produced over months to years, but 

instead informs on the structural characteristics of the food items consumed up to two weeks 

before the animal’s death, due to the rapid turnover rate of the traces imprinted on the 

enamel surface (Kaiser and Brinkmann, 2006; Ungar, 2015; Calandra and Merceron, 2016; 

Bignon-lau et al., 2017; Green and Croft, 2018). Dental microwear textural analysis can 

therefore provide information on individual feeding behaviour in greater detail and on a 

different temporal scale than mesowear analysis, and therefore can be used to evaluate 

variation in dietary behaviours within and between populations of a species, as well as 

seasonal and temporal changes in feeding ecology at the species, taxa or palaeo-community-

level (e.g. Rivals and Solounias 2007, Merceron et al. 2010, 2014, Rivals et al. 2015, Bignon-

lau et al. 2017, Berlioz et al. 2018). 

As for mesowear analysis in chapter 4, the material (5.2) and methods (5.3) used for this 

analysis are presented in this chapter, followed by the results (5.4), divided around the 

following objectives: 

1)  Assess the overall dietary signatures of each studied species (extant and extinct), to 

appraise whether the diet of the fossil species do or do not mirror that of their extant 

relatives, and evaluate inter-specific variations between species of the same taxa. 
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2) Evaluate the degree of variation in dietary patterns within each fossil taxon (i.e. intra-

generic variation) across the studied fossil localities and members to detect potential 

differences in feeding behaviours within the Turkana basin and/or through time. 

These results are presented and briefly interpreted around these themes, before being 

summarised (5.5). They will be further interpreted and discussed in chapter 7, alongside the 

other methods for dietary analyses employed in this study. 

5.2 Material 
 

Fossil dental remains of the selected taxa (genera Aepyceros, Antidorcas, Equus and Giraffa) 

from the Koobi Fora and the Nachukui formations were moulded for microwear analysis at 

the National Museums of Kenya (Nairobi). For specimens from the Shungura formation, held 

at the National Museum of Ethiopia (Addis-Ababa), microwear data were not collected, as 

this aspect of the palaeo-ecology of the studied species was already under study by project 

collaborators (i.e. Dr. Gildas Merceron and Dr Cécile Blondel, University of Poitiers, France, 

PALEVOPRIM, UMR 7262 CNRS INEE). However, dental microwear data for Aepyceros 

specimens were kindly shared by G. Merceron to be included in this project, and allow for 

comparison with the microwear data collected for the Koobi Fora and Nachukui formations. 

The samples were collected from the maximum number of specimens available/allowed for 

each locality and member under study (Table 47 – see appendix A.9 for the detailed dataset).  

To allow for comparisons with modern specimens, moulds for microwear analysis were 

collected on modern dental specimens from the following institutions: the National Museums 

of Kenya (NMK), the Ditsong Museums of South Africa (Transvaal), Pretoria, and the Bavarian 

State Collection of Zoology (Munich, Germany). (Table 48 - see appendix A.10 for the detailed 

database).  

DMTA data from a set of modern specimens of different African bovid species, whose diets 

are known and should reflect the main dietary categories studied, was provided by project 
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collaborator G. Merceron (PALEVOPRIM, UMR CNRS 7262 - Université de Poitiers, France) 

and used for comparative analyses. Additional data for the leaf-browsing giraffe (Giraffa 

camelopardalis – 17 specimens) was provided, as well as data for the obligate grazing 

hartebeest (Alcelaphus buselaphus – 28 specimens), and the fruit-browsing yellow-backed 

duiker (Cephalophus silvicultor – 27 specimens). Among the 86 modern impala specimens 

(Aepyceros melampus) scanned for this study, 14 casts had been collected by G. Merceron’s 

team at the Natural History Museum of Berlin (Germany). 

Table 47: Number of fossil specimens analysed for dental microwear textural analysis, per genus and 
per member. 

Provenance Member Dates (Ma) 
Number of specimens (per genus) 

Aepyceros Antidorcas Equus Giraffa 

Koobi Fora, Kenya 
(National Museums 
of Kenya, Nairobi) 

Tulu Bor 3.44 - 2.64 1 3 1 3 

Burgi 2.64 - 1.87 7 9 7 6 

KBS 1.87 - 1.61 20 17 10 14 

Nachukui, Kenya 
(National Museums 
of Kenya, Nairobi) 

Lomekwi 3.44 - 2.53 20 3 0 3 

Lokalalei 2.53 - 2.33 0 2 0 0 

Kalochoro 2.33 - 1.9 3 1 4 1 

Kaitio 1.9 - 1.61 7 0 3 0 

Shungura, 
Ethiopia (National 

Museum of 
Ethiopia, Addis-

Abeba)  

B 3.44 - 2.91 15 / / / 

C 2.91 - 2.52 20 / / / 

D 2.52 - 2.4 12 / / / 

E 2.4 - 2.32 20 / / / 

F 2.32 - 2.27 46 / / / 

G 2.27 - 1.9 15 / / / 

Total / 186 35 25 27 
 

Table 48: Numbers of modern specimens for which moulds were collected for dental microwear textural 
analysis, per species and per institution.  

Source Information available 

Number of specimens  

Aepyceros 
melampus 

Antidorcas 
marsupialis 

Equus 
quagga 

Giraffa 
camelopardalis 

National Museums of 
Kenya, Nairobi 

Sex; Provenance (Kenya) 6 3 0 0 

Ditsong Museum, 
Pretoria, South Africa 

Age; Sex; Provenance (South 
Africa, Namibia and Botswana 

localities) 
25 7 0 0 

Bavarian State 
Collection of Zoology, 

Munich, Germany 

Sex; Provenance (Kenya, and 
Tanzania localities) 

9 0 0 0 

Royal Museum for 
Central Africa, 

Tervuren, Belgium 

Sex; Provenance (Congo, 
Kenya, Rwanda, Sudan and 

Tanzania localities) 
39 0 11 12 

Totals 79 10 11 12 
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5.3 Method 
 

5.3.1 Selected specimens 
 

Following previous studies (see 2.4.2) (Semprebon et al., 2004; Merceron et al., 2012; Scott, 

2012; Rivals et al., 2015; Ramdarshan et al., 2017), data for dental microwear textural 

analysis was collected preferentially on upper- and lower-second molars. Analyses focused 

on the disto-labial facet of the protoconid (or of the hypoconid, if the protoconid was broken), 

the mesio-lingual facet of the protocone and the mesio-lingual facet of the paracone (Figure 

20).  

5.3.2 Moulding and scanning protocols 
 

Data for dental microwear analysis was collected following the TRIDENT protocol used in 

similar studies (e.g. Francisco et al. 2016, Merceron, Blondel, et al. 2016, Ramdarshan et al. 

2016, Berlioz et al. 2017, Bignon-lau et al. 2017, Blondel et al. 2018) to ensure output 

comparability. First, each occlusal surface was cleaned using acetone with a toothbrush and 

a cotton swab, to remove any remaining organic material (especially for modern specimens) 

and sediment. Moulds were then made using a polyvinylsiloxane elastomer (Regular Body 

President, ref 6015 - ISO 4823, medium consistency, polyvinylsiloxane addition type; Coltene 

Whaledent) (Figure 55).  

The facets of interest were scanned at the PALEVOPRIM laboratory (UMR CNRS 7262 - 

Université de Poitiers, France) with a Leica DCM8 confocal profilometer using white light 

confocal technology with a Leica 100 objective (Numerical Aperture = 0.90; working 

distance= 0.9 mm) (Figure 56). The centre of the selected facets was preferably targeted for 

scanning, to ensure consistency and repeatability, and avoid biases related to study area 

selection (Ramdarshan et al. 2017). However, other areas of the facet had to be targeted for 

scanning when the centre of the cast was not preserved, either due to microscopic overlaying 
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sediment or organic matter that was present on the tooth surface, or due to microscopic 

bubbles formed in the silicone while casting, which can happen in regions with high altitudes, 

such as in Nairobi, Kenya (1661 m) and in Addis-Ababa, Ethiopia (2300-2600 m) (pers. Com. 

G. Merceron, May 2017). Analyses were based on the association of the protocone and the 

protoconid facets, which were the most represented facets in the assemblage. 

 

Figure 55: Dental microwear casting (April 2017). a) dental casting b) resulting mould. 

 

 

5.3.3 Textural parameters 

Following previous studies (e.g. Merceron et al. 2012, Scott 2012, Rivals et al. 2015), this 

study focused on the parameters that have proven to be the most reflective of the animal’s 

feeding patterns and are therefore relevant for dietary analysis: complexity (area scale of 

fractal complexity - Asfc), heterogeneity of complexity (heterogeneity of the area scale of  

fractal complexity - HAsfc), scale of maximum complexity (Smc), anisotropy (exact 

proportion of length scale anisotropy of relief - epLsar), and textural fill volume (Tfv) (see 

2.4.2.4 for more detail).  
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Figure 56: Dental Microwear Textural Analysis (DMTA), from data collection to scanned surfaces. Examples A and B belong to Aepyceros melampus specimens from the same 
formation and member (Koobi Fora formation, KBS member) on which the protoconid of the lower M3 was scanned and analysed using the Leica DCM8 3D Optical Surface 
Metrology System and the software ToothFrax. These two specimens demonstrate the dietary adaptability of the fossil impala, with A) suggesting a preference for grazing and B) 
a preference for browsing (based on combined DMTA parameters, such as complexity and anisotropy).  
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5.3.4 Statistical analyses 

As for mesowear analysis, the dietary patterns were analysed for each taxon to assess if 

significant differences in dietary patterns could be observed between fossil and modern 

specimens of each species, but also to see if differences between locality and/or member 

could be found within each studied taxon. For this, a series of statistical analyses were 

performed using the software R Studio (version 1.2.1335; R version 3.6.3;  R Core Team 

2013) (see appendix A.6 for detail of all R packages used). 

Prior to each analysis, each variable was tested for normality (Shapiro-Wilk test) and for 

homogeneity of variance (Levene Test for Homogeneity of Variance). Because the 

assumptions of parametric tests were not met for the dental microwear textural parameters 

studied, all data were rank-transformed (Conover and Iman, 1980, 1981) following methods 

from previous DMTA studies (Merceron, Ramdarshan, et al., 2016; Berlioz et al., 2017; 

Ramdarshan et al., 2017; Lazagabaster, 2019). Results from the Levene Test showed that 

there were equal variances between groups for each variable, allowing the use of parametric 

tests on the DMTA dataset. After rank-transforming each variable, the data were therefore 

analysed using a series of one-way analyses of variance (ANOVAs), for each textural 

parameter. Corresponding post-hoc Tukey’s Honest Significant Difference (HSD) tests were 

performed where relevant.  

The dataset was analysed once to check for significant dietary differences within each genus 

depending on samples sorted by provenance (i.e. Koobi Fora, Nachukui, Shungura, and 

modern samples), and a second time to check for significant differences in dietary patterns 

through time within each fossil locality for each genus, based on subsets sorted by members. 

For general comparisons between fossil and modern samples (regardless of provenance and 

member), statistical analyses were run at the species level to assess the dietary preferences 

of the studied fossil species, in comparison with those of modern specimens. Due to small 
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numbers of specimens per sample for some subsets, analyses were run at the genus level 

when comparing samples by provenance or member, for more statistical power. 

5.4 Results and interpretations 
 

Firstly, the differences and similarities in dietary patterns between fossil species and modern 

species of known diet are examined to assess the dietary preference of each studied fossil 

taxon, regardless of the provenance and dates of fossil specimens (i.e. interspecific variation) 

(5.4.1). This is to appraise whether the diet of the fossil species do or do not mirror that of 

their extant relatives, and to evaluate inter-specific variations between species of the same 

taxa. Variations in dietary patterns are then evaluated for each fossil taxon (i.e. intra-generic 

variation) across the studied fossil localities and members to detect potential differences in 

feeding behaviours within the Turkana basin and/or through time (5.4.2).  

5.4.1 Dietary variation among taxa: Interspecific comparisons 

To evaluate the dietary patterns of specimens from each studied fossil species during their 

last feeding events (i.e. up to two weeks prior death), statistical analyses were performed on 

each dental microwear textural parameter (Table 49 and Figure 58 - Figure 63). The results 

from the one-way ANOVAs (Table 50) and relevant post-hoc tests (appendix A12.2 table A-

15) showed that there were significant differences between species within the studied 

samples (fossil and modern), for all variables (i.e. Asfc, epLsar, HAsfc81 and Tfv).  
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Figure 58: Distribution (mean and standard error of the mean) of the fossil and modern samples for each 
studied species depending on the anisotropy (epLsar) and the complexity (Asfc) of the dental facets. 
Following Scott (2012), obligate grazers demonstrate a combination of high anisotropy and low 
complexity, while obligate browsers and fruit-browsers demonstrate a combination of low anisotropy 
and high complexity. Mid-range anisotropy associated with low complexity is found among variable 
grazers, and low anisotropy associated with mid-range complexity is found among mixed-feeders. 
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Table 49: Descriptive statistics for each genus and species for fossil and modern samples, for each DMTA variable (mean, standard deviation and standard error of the mean). 

 

N mean s.d. s.e.m mean s.d. s.e.m mean s.d. s.e.m mean s.d. s.e.m 

Aepyceros 160 2.39 1.48 0.12 0.00318 0.00200 0.00016 0.547 0.259 0.020 47042.2 11391.9 900.6

Aep. melampus 18 3.54 2.42 0.57 0.00439 0.00222 0.00052 0.664 0.489 0.115 51695.3 12757.2 3006.9

Aep. shungurae 142 2.24 1.26 0.11 0.00302 0.00192 0.00016 0.532 0.212 0.018 46452.4 11117.9 933.0

Antidorcas

Ant. recki 26 3.49 2.39 0.47 0.00355 0.00198 0.00039 0.505 0.148 0.029 47950.2 15548.2 3049.3

Equus 

Equus sp. 15 2.29 1.63 0.42 0.00385 0.00256 0.00066 0.495 0.155 0.040 47486.9 10925.4 2820.9

Giraffa 19 2.07 1.23 0.28 0.00195 0.00174 0.00040 0.427 0.121 0.028 37780.5 15156.2 3477.1

G. jumae 3 1.36 0.17 0.10 0.00151 0.00064 0.00037 0.408 0.140 0.081 31129.0 19724.7 11388.1

G. stillei 14 2.43 1.23 0.33 0.00187 0.00168 0.00045 0.425 0.128 0.034 41466.8 11938.8 3190.8

Giraffa sp. 2 0.65 0.13 0.09 0.00313 0.00370 0.00262 0.471 0.064 0.045 21953.6 26072.6 18436.1

A. buselaphus 27 1.59 0.72 0.14 0.00512 0.00168 0.00032 0.595 0.232 0.045 50576.9 8843.0 1701.8

E.quagga 9 1.65 0.51 0.17 0.00573 0.00211 0.00070 0.575 0.099 0.033 47825.0 6200.9 2067.0

Aep. melampus 84 2.11 1.80 0.20 0.00409 0.00212 0.00023 0.695 0.307 0.034 45827.2 13101.0 1429.4

Ant. marsupialis 9 2.86 1.37 0.46 0.00521 0.00270 0.00090 0.720 0.350 0.117 61649.6 16165.3 5388.4

C. silvicultor 27 3.5 2.63 0.51 0.00304 0.00173 0.00033 0.61 0.205 0.039 40349.2 9066.44 1744.84

G. camelopardalis 23 1.77 0.85 0.18 0.00304 0.00233 0.00049 0.705 0.456 0.095 27510.1 19852.9 4139.61

Fossil

Tfv

Modern

Sample
Asfc epLsar HAsfc81
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Figure 59: Mean and standard error of the mean for each species and for each DMTA variable analysed.  a) Asfc: Area scale of complexity; b) epLsar: anisotropy; 
c) HAsfc81: Heterogeneity of complexity 9x9 cells; c) Tfv: Textural fill volume. These figures particularly highlight the differences between fossil and modern Aepyceros 
species (for the variables epLsar and Asfc) and between fossil and modern Antidorcas species (for the variables epLsar, Tfv and HAsfc81). 
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Table 50: One-way ANOVA on dental microwear textural parameters to explore variations between the 
studied fossil and modern species (df: degrees of freedom; SS: Sum of Squares; MS: Mean squares; Fval: 
F-value, Pval: P-value). (See appendix A.12.2 table-A15 for pairwise comparisons table). 

 

 

 

5.4.1.1 Genus Equus 

The modern plain zebra (E. quagga) sample studied displayed values typical of grazing 

species, with low complexity (mean Asfc = 1.65), high anisotropy (mean epLsar = 0.00573), 

low heterogeneity of complexity (mean HAsfc81 = 0.575) and mid-range textural fill volume 

(mean Tfv = 47825.1µm3). These values were similar to the values displayed by the obligate 

grazer A. buselaphus. Results from the HSD test confirmed, as expected, significant differences 

in anisotropy (epLsar) between modern grazing E. quagga and modern leaf-browsing G. 

camelopardalis (p=0.050). 

Fossil equid specimens from Koobi Fora and Nachukui formations have all been identified to 

genus only. The dental microwear textures of these specimens suggest a variable grazing diet, 

with mid-range values for complexity (mean Asfc = 2.29), anisotropy (mean epLsar = 

0.00385), heterogeneity of complexity (mean HAsfc81 = 0.495), and textural fill volume 

(mean Tfv = 47486.9 µm3). Fossil equids show no significant differences for any of the 

variables when compared to the other fossil and extant species. This could indicate variable 

grazing dietary practices among fossil equids, with a preference for graze but the inclusion 

of harder food items when necessary. 

Var df SS MS Fval Pval

Asfc Species 12 733352.3 61112.7 5.173 4.60E-08

Residuals 386 4560047.7 11813.6

epLsar Species 12 824796.5 68733.0 5.937 1.62E-09

Residuals 386 4468597.0 11576.7

HAsfc81 Species 12 545900.3 45491.7 3.699 2.69E-05

Residuals 386 4747495.2 12299.2

Tfv Species 12 661855.9 55154.7 4.597 5.68E-07

Residuals 386 4631544.1 11998.8
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5.4.1.2 Genus Giraffa 

The modern giraffe sample (Giraffa camelopardalis) studied displayed values typical of soft-

leaf browsing species, with low complexity (mean Asfc = 1.77), anisotropy (mean epLsar = 

0.00304) and textural fill volume (Tfv = 27,510.1 µm3), combined with high values of 

heterogeneity of complexity (mean HAsfc81 = 0.705). As expected, modern G. camelopardalis 

has significantly lower values for anisotropy than grazing Alcelaphus buselaphus (p=0.005) 

and Equus quagga (p=0.050), with a soft-leaf diet that is poorly abrasive compared to the 

monocots eaten primarily by modern hartebeests and plain zebras. Modern giraffes are also 

shown to have significantly lower complexity values than modern fruit-browsing C. silvicultor 

(p=0.024) as well as significantly lower textural fill volume values than A. buselaphus 

(p<0.000), A. marsupialis (p<0.000) and modern A. melampus (p=0.012). This confirms diets 

dominated by soft-food items for the modern giraffe assemblage. 

Genus Giraffa is represented in the fossil dataset by three different species: Giraffa jumae, 

Giraffa stillei, and Giraffa specimens of unknown species (i.e. referred to as Giraffa sp.). Giraffa 

stillei is the most represented species in the assemblage (n=14). When looking at dental 

microwear textural parameters for fossil giraffids at the genus level (i.e. combining all three 

Giraffa samples), fossil Giraffa specimens display mean values suggesting a soft leaf-

browsing diet similar to that of modern giraffes, with low Asfc (mean = 2.07), low epLsar 

(mean = 0.00195), low HAsfc (mean HAsfc81 = 0.427) and medium-low Tfv (mean = 37780.5 

µm3). G. stillei specimens have higher Tfv values than G. jumae specimens, while Giraffa sp. 

specimens demonstrate higher epLsar values than the other two fossil giraffid samples. This 

could suggest slight differences in dietary preferences, but none of these differences were 

shown to be statistically significant following post-hoc tests (table A-14).  

Overall, the dental microwear textural patterns observed for fossil Giraffa specimens suggest 

dietary behaviours similar to those of modern giraffes. However, it is interesting to note that 

fossil Giraffa specimens, contrary to the modern G. camelopardalis specimens studied, do not 
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significantly differ in textural complexity from modern fruit-browsing C. silvicultor. This 

could suggest that fossil giraffids (more particularly G. stillei) might have included more hard 

items in their diet such as fruits and seeds than their modern counterparts, although modern 

giraffes are known to also include some hard food items in their diet such as Acacia seeds, 

fruits and pods (Schulz, Calandra and Kaiser, 2013). 

5.4.1.3 Genus Aepyceros 

The dental microwear textures of modern impalas (Aepyceros melampus) displayed values 

expected for mixed-feeders and/or generalists, with relatively high values for heterogeneity 

of complexity (mean HAsfc81 = 0.695), as well as medium values for anisotropy (mean 

epLsar = 0.00409), complexity (mean Asfc = 2.11) and textural fill volume (mean Tfv = 

45827.2 µm3). Modern impala specimens have significantly lower Asfc values (p=0.002) than 

modern fruit-browsing yellow-backed duiker (Cephalophus silvicultor), suggesting diets 

including less hard items such as seeds compared to C. silvicultor. However, modern A. 

melampus samples also significantly differed from modern leaf-browsing giraffe specimens 

(G. camelopardalis) in having higher Tfv values (p=0.012), indicative of wear surfaces 

dominated by large pits or deep scratches, such as the ones produced when ingesting hard 

food items such as seeds and browse. These results confirm mixed-feeding patterns among 

the studied modern impala specimens, with the inclusion of both graze and browse in their 

diet.  

Fossil A. melampus specimens demonstrated textural complexity values (Asfc) similar to 

those of modern fruit-browser C. silvicultor (Figure 58), and were found to have significantly 

higher Asfc values than A. buselaphus (p=0.004) and modern A. melampus (p=0.019). This 

suggests diets richer in browse in fossil A. melampus compared to modern impala and 

hartebeest. Alike modern impala specimens, fossil A. melampus specimens significantly 

differed from modern leaf-browsing giraffes in having higher Tfv values (p=0.002), 

confirming that fossil A. melampus likely included hard food items in their feeding regime.  
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When compared to the other fossil taxa studied, the fossil Aepyceros melampus sample 

significantly differed from Giraffa stillei specimens, with higher anisotropy values. This likely 

reflects more tough and abrasive foods (such as grass blades) in the diet of the antelope 

species, compared to that of fossil giraffids.  

A. shungurae demonstrated Asfc values similar to those observed in modern A. melampus. 

However, A. shungurae specimens were shown to significantly differ from modern A. 

melampus by having lower anisotropy values (epLsar; p=0.006) and lower heterogeneity of 

complexity values (HAsfc81; p=0.004). This likely suggests less varied diets and a lower 

reliance on tough abrasive food items such as grass in fossil A. shungurae specimens 

compared to their extant relatives. Indeed, A. shungurae specimens yielded epLsar values 

similar to those observed for modern browsers such as giraffes and yellow-backed duikers 

(Figure 58). These epLsar values were confirmed to be significantly lower than those 

observed in modern grazing species A. buselaphus (p<0.000) and E. quagga (p=0.017). Alike 

modern and fossil A. melampus specimens, A. shungurae specimens significantly differed 

from modern leaf-browsing giraffes in having higher Tfv values (p=0.001), suggesting that 

fossil A. shungurae likely included hard food items in their feeding regime. No significant 

difference was found between the two fossil impala species, A. melampus and A. shungurae. 

Overall, these results point towards mixed-feeding behaviours in modern and fossil impalas, 

although some differences in textural patterns were highlighted between fossil A. melampus 

and A. shungurae. While A. shungurae specimens were suggested to have had dietary patterns 

resembling those of modern impala specimens, their diet was likely less varied and included 

less graze than the diet of their extant relatives. In contrast, the dietary patterns observed for 

fossil A. melampus specimens suggest mixed-feeding habits with a stronger reliance on 

browse compared to modern impalas, with the consumption of more hard items such as 

twigs, seeds and/or fruits in addition to tough and abrasive items such as grass blades. 



236 
 

5.4.1.4 Genus Antidorcas 

The dental microwear textures of modern springbok (Antidorcas marsupialis) displayed high 

values for complexity (mean Asfc = 2.86), heterogeneity of complexity (mean HAsfc81 = 

0.720) and textural fill volume (mean Tfv = 61649.5 µm3). Values for anisotropy (mean 

epLsar = 0.00521 µm) are similar to those of grazing A. buselaphus and E. quagga samples, 

suggesting the consumption of tough and abrasive foods such as monocots. A. marsupialis 

displays significantly higher textural fill volume values than C. silvicultor (p=0.004) and G. 

camelopardalis (p=0.012), suggesting wear-surfaces dominated by larger pits and deeper 

scratches in modern springboks compared to the browsing giraffe and yellow-backed duiker. 

As previous studies have suggested that smaller seed size tend to generate higher Tfv values 

(Ramdarshan et al., 2016), the higher Tfv values observed in modern springbok compared to 

modern fruit-browsing C. silvicultor could suggest that modern springbok consume hard 

items of smaller seed-size than yellow-backed duikers do. These variables suggest a mixed-

feeding diet among modern springbok specimens, with a wide range of food items of different 

properties, both tough (i.e. grass blades) and hard (i.e. seeds/fruits) items.  

No significant difference was found between fossil A. recki and modern A. marsupialis 

specimens, nor between A. recki and the other fossil taxa. However, when considering 

anisotropy (epLsar) and complexity (Asfc) values for fossil and modern Antidorcas species, 

values for fossil A. recki were shown to be similar to the values observed the modern fruit-

browser C. silvicultor, while modern A. marsupialis displayed anisotropy values closer to the 

grazer A. buselaphus (Figure 58). Fossil A. recki displayed significantly higher complexity 

values than modern A. melampus (p=0.004), A. buselaphus (p=0.001) and G. camelopardalis 

(p=0.035). These observations suggest the inclusion of a significant amount of hard food 

items such as seeds and fruits in the diet of fossil springbok species A. recki. Similarly to 

modern springbok specimens, A. recki specimens differed from G. camelopardalis by having 

significantly higher Tfv values (p=0.012), confirming the consumption of hard food items.  
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Overall, modern Antidorcas specimens present dental microwear textural values that seem 

to fall within the range of expected values for mixed-feeders and/or generalists. The range of 

values observed for fossil Antidorcas recki suggests dietary habits more similar to those of 

fruit-browsing species, with a prevalence of fruits and/or seeds in their diet. 

5.4.1.5 Results summary  

The results from the analyses performed on dental microwear textural parameters seem to 

demonstrate, in the fossil record, a stronger browsing signal for giraffids and a stronger 

grazing signal for fossil Equus, when compared to Aepyceros and Antidorcas specimens, as 

expected. No significant difference in dietary patterns was observed between the two 

antelope taxa Aepyceros and Antidorcas, in neither the modern nor the fossil record. Both 

fossil Aepyceros and Antidorcas samples showed DMTA values suggesting mixed-feeding or 

generalist behaviours, although fossil Aepyceros melampus and Antidorcas recki displayed 

microwear textural patterns more similar to those of modern fruit-browsing species, 

highlighting the likely inclusion of large amounts of seeds and/or fruits in the diet of these 

extinct species.  

5.4.2 Intra-generic spatio-temporal variation in diet in the Omo-

Turkana basin 

 

For this part of the dietary analysis, statistical tests were performed at the genus level for 

intra-generic dietary comparisons though space and time, to assess whether spatial and/or 

temporal differences in dietary practices could be observed within each of the studied 

taxa(Table 51 - Table 53 ; appendix A12.2 tables A 16 and A 17; and  Figure 60 - Figure 61). 
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Figure 60: Distribution (mean and standard error of the mean) of each studied taxon, per locality, 
depending on the anisotropy (epLsar) and the complexity (Asfc) of the dental facets.  
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 Table 51: Descriptive statistics for each taxon studied (grouped by genus for more statistical power) for each DMTA variable (mean, standard deviation and standard 
error of the mean), per provenance (i.e. Koobi Fora, Nachukui and modern samples – fossil localities in bold) and per member (i.e. time deposits).  

 
N mean s.d. s.e.m mean s.d. s.e.m mean s.d. s.e.m mean s.d. s.e.m 

Koobi Fora 12 3.52 2.28 0.66 0.00467 0.00222 0.00064 0.549 0.224 0.065 53703.5 12725.3 3673.5

Tulu Bor 3.44-2.64 1 9.67 / / 0.00426 / / 0.661 / / 59675.4 / /

Burgi 2.64-1.87 3 3.67 1.31 0.76 0.00559 0.00425 0.00245 0.425 0.241 0.139 54255.5 19486.3 11250.4

KBS 1.87-1.61 8 2.69 1.23 0.43 0.00438 0.00144 0.00051 0.582 0.229 0.081 52750.0 11820.0 4179.0

Nachukui 20 3.20 2.16 0.48 0.00375 0.00230 0.00051 0.632 0.451 0.101 47655.9 10883.4 2433.6

Lomekwi 3.44-2.53 14 3.02 1.86 0.50 0.00372 0.00237 0.00063 0.519 0.135 0.036 47646.0 10415.5 2783.6

Kalochoro 2.33-1.9 3 1.89 0.78 0.45 0.00440 0.00280 0.00161 0.665 0.366 0.211 46970.9 18157.8 10483.4

Kaitio 1.9-1.61 3 5.31 3.40 1.96 0.00327 0.00220 0.00127 1.122 1.108 0.640 48387.2 9429.1 5443.9

Shungura 128 2.16 1.15 0.10 0.00295 0.00186 0.00016 0.533 0.219 0.019 46321.8 11223.0 992.0

B 3.44-2.91 15 2.21 1.36 0.35 0.00345 0.00230 0.00059 0.493 0.146 0.038 47212.0 5604.5 1447.1

C 2.91-2.52 20 2.50 1.27 0.28 0.00186 0.00096 0.00022 0.504 0.194 0.043 43626.8 7922.8 1771.6

D 2.52-2.4 12 2.09 1.66 0.48 0.00275 0.00195 0.00056 0.559 0.192 0.056 39892.4 13136.3 3792.1

E 2.4-2.32 20 2.12 1.18 0.26 0.00356 0.00216 0.00048 0.587 0.307 0.069 50315.8 11648.3 2604.6

F 3.32-2.27 46 2.12 0.95 0.14 0.00317 0.00185 0.00027 0.529 0.202 0.030 49017.1 10648.8 1570.1

G 2.27-1.9 15 1.85 0.83 0.21 0.00252 0.00130 0.00034 0.533 0.257 0.066 40577.8 14598.2 3769.2

Modern / 84 2.11 1.80 0.20 0.00409 0.00212 0.00023 0.695 0.307 0.034 45827.2 13101.0 1429.4

Antidorcas Koobi Fora 22 3.33 1.86 0.40 0.00351 0.00211 0.00045 0.502 0.147 0.031 48007.0 10697.0 2280.6

Tulu Bor 3.44-2.64 2 1.60 0.25 0.17 0.00299 0.00004 0.00003 0.362 0.038 0.027 45414.2 6027.9 4262.4

Burgi 2.64-1.87 6 3.35 2.08 0.85 0.00371 0.00274 0.00112 0.463 0.082 0.034 51347.2 12325.0 5031.7

KBS 1.87-1.61 14 3.57 1.84 0.49 0.00350 0.00205 0.00055 0.539 0.164 0.044 46945.8 10780.8 2881.3

Nachukui 4 4.32 4.70 2.35 0.00375 0.00127 0.00063 0.520 0.176 0.088 47638.2 34834.1 17417.1

Lomekwi 3.44-2.53 3 5.17 5.37 3.10 0.00434 0.00060 0.00034 0.540 0.210 0.121 44940.0 42147.8 24334.1

Lokalalei 2.53-2.33 1 1.78 / / 0.00200 / / 0.459 / / 55732.8 / /

Modern / 9 2.86 1.37 0.46 0.00521 0.00270 0.00090 0.720 0.350 0.117 61649.6 16165.3 5388.4

Equus Koobi Fora 12 2.54 1.66 0.48 0.00362 0.00234 0.00068 0.489 0.166 0.048 45728.5 11536.5 3330.3

Tulu Bor 3.44-2.64 1 1.72 / / 0.00178 / / 0.441 / / 31262.8 / /

Burgi 2.64-1.87 4 3.29 2.62 1.31 0.00404 0.00262 0.00131 0.457 0.157 0.078 54224.6 13755.5 6877.8

KBS 1.87-1.61 7 2.22 1.01 0.38 0.00365 0.00244 0.00092 0.513 0.191 0.072 42940.1 7571.3 2861.7

Nachukui 3 1.28 1.22 0.71 0.00476 0.00378 0.00218 0.520 0.128 0.074 54520.5 3284.0 1896.0

Kalochoro 2.33-1.9 2 0.60 0.42 0.30 0.00693 0.00051 0.00036 0.537 0.176 0.125 56416.5 18.3 13.0

Kaitio 1.9-1.61 1 2.65 / / 0.00041 / / 0.488 / / 50728.5 / /

Modern / 9 1.65 0.51 0.17 0.00573 0.00211 0.00070 0.575 0.099 0.033 47825.0 6200.9 2067.0

Giraffa Koobi Fora 17 2.24 1.19 0.29 0.00181 0.00154 0.00037 0.422 0.126 0.031 39642.5 13451.5 3262.5

Tulu Bor 3.44-2.64 1 1.26 / / 0.00212 / / 0.355 / / 38184.2 / /

Burgi 2.64-1.87 5 2.54 1.30 0.58 0.00217 0.00231 0.00103 0.468 0.145 0.065 40580.6 17291.2 7732.9

KBS 1.87-1.61 11 2.19 1.20 0.36 0.00161 0.00123 0.00037 0.408 0.123 0.037 39348.7 13006.5 3921.6

Nachukui Lomekwi 3.44-2.53 2 0.65 0.13 0.09 0.00313 0.00370 0.00262 0.471 0.064 0.045 21953.6 26072.6 18436.1

Modern / 23 1.77 0.85 0.18 0.00304 0.00233 0.00049 0.7053 0.4559 0.0951 27510.1 19852.9 4139.6

Genus Provenance Member Ma
Asfc epLsar HAsfc81 Tfv

Aepyceros
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Figure 61: Mean and standard error of the mean per taxon studied (grouped by genus) and per fossil localities, for each DMTA variable analysed.  
a) Asfc: Area scale of complexity; b) epLsar: anisotropy; c) HAsfc81: Heterogeneity of complexity 9x9 cells; c) Tfv: Textural fill volume.  
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Table 52: Results of the one-way ANOVAs performed to investigate differences within each taxon between 
samples by provenance (i.e. Koobi Fora, Nachukui and modern samples). Significant differences are 
shown in bold. (df: degrees of freedom; SS: Sum of Squares; MS: Mean squares; Fval: F-value, Pval: P-value). 
(See appendix A.12.2 table-A16 for pairwise comparisons table). 

 

 

Sample Var df SS MS Fval Pval

Aepyceros Asfc 3 215419.3 71806.4 5.646 9.39E-04

Residuals 240 3052539.0 12718.9

epLsar 3 250176.3 83392.1 7.517 7.91E-05

Residuals 240 2662583.8 11094.1

HAsfc81 3 294264.4 98088.1 7.819 5.32E-05

Residuals 240 3010835.5 12545.1

Tfv 3 48050.3 16016.8 1.271 2.85E-01

Residuals 240 3024995.6 12604.1

Antidorcas Asfc 2 1405.6 702.8 0.061 9.40E-01

Residuals 32 365893.4 11434.2

epLsar 2 35506.8 17753.4 1.188 3.18E-01

Residuals 32 478066.8 14939.6

HAsfc81 2 41797.5 20898.7 1.512 2.36E-01

Residuals 32 442337.1 13823.0

Tfv 2 63486.4 31743.2 2.527 9.57E-02

Residuals 32 401939.5 12560.6

Equus Asfc 2 40724.9 20362.4 1.990 1.62E-01

Residuals 21 214914.5 10234.0

epLsar 2 58469.4 29234.7 1.906 1.74E-01

Residuals 21 322113.9 15338.8

HAsfc81 2 23762.4 11881.2 1.341 2.83E-01

Residuals 21 185996.9 8857.0

Tfv 2 29546.4 14773.2 1.514 2.43E-01

Residuals 21 204942.9 9759.2

Giraffa Asfc 2 74018.0 37009.0 3.064 5.81E-02

Residuals 39 471050.1 12078.2

epLsar 2 52741.6 26370.8 1.919 1.60E-01

Residuals 39 535847.3 13739.7

HAsfc81 2 119849.5 59924.7 4.393 1.90E-02

Residuals 39 532021.3 13641.6

Tfv 2 26446.7 13223.4 1.026 3.68E-01

Residuals 39 502607.3 12887.4
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Table 53: Results of the one-way ANOVAs performed to investigate differences within each taxon between 
samples by member (i.e. time), within each of the studied fossil localities. Significant differences are 
shown in bold. (df: degrees of freedom; SS: Sum of Squares; MS: Mean squares; Fval: F-value, Pval: P-value). 
(See appendix A.12.2 tables-A 17 for results from the HSD test). 

Genus Provenance Var df SS MS Fval Pval

Aepyceros Shungura Asfc 5 40745.1 8149.0 0.662 6.53E-01

Residuals 122 1500742.2 12301.2

epLsar 5 124213.9 24842.8 2.430 3.88E-02

Residuals 122 1247016.8 10221.4

HAsfc81 5 16436.1 3287.2 0.245 9.42E-01

Residuals 122 1639974.4 13442.4

Tfv 5 146299.2 29259.8 2.536 3.20E-02

Residuals 122 1407339.7 11535.6

Koobi Fora Asfc 2 25490.5 12745.2 1.179 3.51E-01

Residuals 9 97267.5 10807.5

epLsar 2 27.1 13.5 0.001 9.99E-01

Residuals 9 108749.6 12083.3

HAsfc81 2 28201.6 14100.8 0.729 5.09E-01

Residuals 9 174070.7 19341.2

Tfv 2 9653.8 4826.9 0.288 7.56E-01

Residuals 9 150834.9 16759.4

Nachukui Asfc 2 30250.8 15125.4 1.302 2.98E-01

Residuals 17 197526.9 11619.2

epLsar 2 5557.3 2778.7 0.187 8.31E-01

Residuals 17 252879.9 14875.3

HAsfc81 2 10268.2 5134.1 0.394 6.80E-01

Residuals 17 221464.8 13027.3

Tfv 2 1601.1 800.5 0.053 9.48E-01

Residuals 17 254971.9 14998.3

Antidorcas Koobi Fora Asfc 2 31725.3 15862.7 1.272 3.03E-01

Residuals 19 236974.5 12472.3

epLsar 2 238.1 119.1 0.007 9.93E-01

Residuals 19 314632.7 16559.6

HAsfc81 2 33273.3 16636.7 1.676 2.14E-01

Residuals 19 188654.5 9929.2

Tfv 2 7468.5 3734.2 0.300 7.44E-01

Residuals 19 236685.3 12457.1

Nachukui Asfc 1 7105.3 7105.3 0.513 5.48E-01

Residuals 2 27716.7 13858.3

epLsar 1 14421.3 14421.3 20.770 4.49E-02

Residuals 2 1388.7 694.3

HAsfc81 1 1976.3 1976.3 0.085 7.98E-01

Residuals 2 46512.7 23256.3

Tfv 1 9576.8 9576.8 0.247 6.69E-01

Residuals 2 77618.0 38809.0

Equus Nachukui Asfc 1 48420.2 48420.2 115.149 5.92E-02

Residuals 1 420.5 420.5

epLsar 1 87362.7 87362.7 891.456 2.13E-02

Residuals 1 98.0 98.0

HAsfc81 1 433.5 433.5 0.024 9.02E-01

Residuals 1 17860.5 17860.5

Tfv 1 2440.2 2440.2 4880.333 9.11E-03

Residuals 1 0.5 0.5

Giraffa Koobi Fora Asfc 2 17192.0 8596.0 0.557 5.85E-01

Residuals 14 215996.4 15428.3

epLsar 2 5643.3 2821.7 0.296 7.48E-01

Residuals 14 133512.5 9536.6

HAsfc81 2 9067.9 4533.9 0.478 6.30E-01

Residuals 14 132881.6 9491.5

Tfv 2 2691.2 1345.6 0.094 9.11E-01

Residuals 14 200517.7 14322.7

(Kalochoro 

and Kaitio)
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5.4.2.1 Genus Equus 

When observing anisotropy (epLsar) and complexity (Asfc) values for Equus samples from 

the Koobi Fora and Nachukui formations, it appears that while equid specimens from 

Nachukui yield values similar to those of modern plain zebra (E. quagga), equid specimens 

from Koobi Fora yield mid-range values more similar to those of mixed-feeding species 

(Figure 60). This could suggest that fossil equids from East Turkana included more hard food 

items in their diet than West Turkana and modern specimens, whose DMTA values suggest 

pure grazing behaviours. However, these potential differences in dietary patterns between 

fossil equids from the Koobi Fora and Nachukui formations were not confirmed by statistical 

analyses (Table 52).  

Significant differences across members were suggested by results from one-way ANOVAs for 

Equus specimens from the Nachukui formation (Table 53), with equids from Kalochoro (2.33-

1.9 Ma) showing significantly higher epLsar and Tfv values than Equus specimens from Kaitio 

(1.9-1.61 Ma). However, because fossil Equus sp. is represented in this fossil locality by very 

small sample sizes for both members (n<3), results from statistical analyses cannot be 

interpreted further, as the small sample sizes may not accurately reflect the range of dietary 

variation in the living assemblage.   

5.4.2.2 Genus Giraffa  

Analysis of Giraffa specimens from the Koobi Fora formation showed that these specimens 

yield anisotropy values (epLsar) similar to modern giraffes, but mid-range complexity values 

(Asfc) more similar to those of modern mixed-feeding A. melampus along with mid-range 

textural fill volume values (Tfv) and heterogeneity of complexity values (HAsfc81). 

Significant differences in HAsfc81 were observed between Giraffa specimens from Koobi 

Fora and modern specimens (p=0.0014). These observations suggest browsing behaviours 

for fossil giraffids from east Turkana, with slightly less varied diets but with the inclusion of 
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more hard food items in their diet compared to modern giraffes.  No significant variation in 

diet was observed through time for giraffids from this formation (Table 53). 

The dietary patterns of Giraffa specimens from the Nachukui formation are difficult to gage 

due to a very small sample size (n=2) and a large within-sample variation for two of the 

textural parameters (i.e. epLsar and Tfv) (Table 51). Giraffids from west Turkana, therefore, 

cannot be compared to giraffids from east Turkana to assess difference in dietary behaviours 

across the Omo-Turkana for this taxon. Similarly, variations in dietary practices through time 

could not be investigated for the Nachukui formation, as the two specimens sampled from 

this locality derive from the same member (i.e. Lomekwi). 

5.4.2.3 Genus Aepyceros 

Significant differences within the Aepyceros assemblage were highlighted by statistical 

analyses (Table 52), between modern specimens and the two fossil localities, as well as 

between specimens from the Koobi Fora and the Shungura formations (Table 53 and 

appendix A12.2 table A-16).  

Aepyceros specimens from Koobi Fora and Nachukui were found to have significantly higher 

complexity values than modern A. melampus specimens (p=0.009 and p=0.012, respectively). 

This suggests that fossil impalas from these two localities included more browse in their diet 

than modern impalas, with values more similar to those observed in fruit-browsing C. 

silvicultor. These two Aepyceros samples also yield similar anisotropy values (epLsar) than 

the modern yellow-backed duiker sample (Figure 31). Although Aepyceros specimens from 

Shungura are shown to yield similar Asfc values than modern impalas, they are shown to 

differ from their extant relatives by having significantly lower epLsar values (p<0.000) and 

HAsfc81 values (P<0.000), suggesting less varied mixed-feeding behaviours with a reduced 

grazing-component compared to modern impalas. When observed epLsar and Asfc values, it 

can be noticed that impala specimens from Shungura yield values similar to those of modern 
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giraffes. Results from statistical analyses showed as well that Aepyceros specimens from the 

Koobi Fora formation had significantly higher anisotropy values than specimens from the 

Shungura formation (p=0.025), suggesting diets with a higher graze-component for impalas 

in East Turkana compared to impalas from the lower Omo-river valley.  

When observing Asfc and epLsar values across members, some degree of variation can be 

observed, more particularly for the Nachukui formation with an increase in anisotropy and a 

decrease in complexity in the Kalochoro member (2.33-1.9 Ma), compared to Asfc and epLsar 

values observed for Aepyceros in Lomekwi (3.44-2.53 Ma) and in Kaitio (1.9-1.61 Ma) (Figure 

33). However, this trend cannot be confirmed statistically as no significant difference was 

found through time for Aepyceros specimens within the Koobi Fora nor the Nachukui 

formations. The absence of significant differences across members identified between 

Aepyceros specimens from these localities could also be due to small sample sizes for most 

members (i.e. n<5).  

A wider range of variation in textural parameter values can be observed for Aepyceros 

specimens from the Shungura formation, more particularly when considering anisotropy 

(epLsar) (Figure 33). A sharp decrease in epLsar values can be observed between member B 

(3.44-2.91 Ma) and member C (2.91-2.52 Ma), followed by a gradual increase in anisotropy 

values from members D to E (2.52 to 2.32 Ma), and another gradual decrease in epLsar values 

from members F to G (2.32 to 1.9 Ma). Results from statistical analyses show that Aepyceros 

specimens from member C yield significantly lower epLsar values than specimens from 

member E (p=0.041) (appendix A12.2 table A-17). These observations and results suggest 

dietary behaviours fluctuating through time among fossil impalas from the Shungura 

formation, and more particularly temporal variations in the amount of tough and abrasive 

food items included in their diet (i.e. monocots, grass blades).  
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Figure 62: Distribution of complexity (Asfc) and anisotropy (epLsar) values (mean and standard error of 
the mean) through time for Aepyceros specimens from the Koobi Fora, Nachukui, Shungura formations. 
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5.4.2.4 Genus Antidorcas 

When observing the mean values for anisotropy and complexity (Figure 60), springbok 

specimens from Koobi Fora appear to have values similar to those found in fruit-browsing 

Cephalophus silvicultor. Although higher complexity values (Asfc) can be observed among 

Antidorcas specimens from the Nachukui formation when compared to fossil springbok from 

Koobi Fora (Figure 60), both Antidorcas samples yield similar values for the other textural 

parameters (Figure 61). No significant difference in dietary patterns between the 

assemblages from these two fossil localities was highlighted by statistical analyses (Table 

52).  

No significant difference through time was highlighted among Antidorcas specimens from 

the Koobi Fora formation, despite an apparent increase in complexity (Asfc) between the 

Tulu Bor (3.44-2.64 Ma) and Burgi (2.64-1.87 Ma) (Figure 34). This could be due, as 

mentioned previously, the small sample sizes for some of these samples.  

Results from statistical analyses suggests that temporal variation in diet can be observed 

between Antidorcas specimens from the Nachukui formation, with significantly lower 

anisotropy values for specimens from Lokalalei (2.53-2.33 Ma) compared to specimens from 

Lomekwi (3.44-2.53 Ma) (p=0.041) (Table 53 and appendix A12.2 table A-17). However, 

because Antidorcas specimens are represented in this locality by very small sample sizes for 

both members (n<4), results from statistical analyses cannot be interpreted further, as the 

small sample sizes may not accurately reflect the range of dietary variation in the living 

assemblage.   
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Figure 63:  Distribution of complexity (Asfc) and anisotropy (epLsar) values (mean and standard error 
of the mean) through time for Antidorcas specimens from the Koobi Fora and Nachukui formations. 
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5.4.2.5 Results summary 

While no or little spatio-temporal variation in dietary behaviours could be observed within 

the Omo-Turkana basin during the Plio-Pleistocene for most of the studied taxa, interesting 

patterns were highlighted when studying the fossil impala assemblages, which benefit from 

larger sample sizes and greater spatio-temporal detail. More particularly, dietary behaviours 

were shown to differ between Aepyceros specimens from the Koobi Fora and Shungura 

formations, suggesting diets with a higher graze-component for impalas in East Turkana 

compared to impalas from the lower Omo-river valley. Temporal variation in feeding 

behaviours were highlighted for fossil impalas from the Shungura formation, suggesting that, 

in the lower Omo-river valley, the relative amount of tough and abrasive food items that was 

included in the diet of fossil Aepyceros specimens fluctuated through time between 3.4 and 

1.6 Ma. 

 

5.5 Summary of results 
 

Inferred dietary behaviours of the studied taxa: 

- Aepyceros: mixed-feeding behaviours suggested in modern and fossil impalas, with 

the consumption of more hard items such as twigs, seeds and/or fruits in the diet of 

fossil impalas, more comparable to the diet of modern fruit-browsing species such as 

the yellow-backed duiker. 

- Antidorcas: modern and fossil Antidorcas specimens present DMTA values that seem 

to fall within the range of expected values for mixed-feeders and/or generalists, 

suggesting similar dietary preferences to modern and fossil impalas, with potentially 

more fruits and/or seeds in springbok’s diet.  

- Giraffa: dietary patterns dominated by soft-leaf-browsing for the modern and fossil 

Giraffa samples, although fossil G. stillei specimens might have included more seeds 

and pods in their diet than their extant relatives. 



250 
 

- Equus: variable grazing dietary practices suggested among fossil equids, with a 

preference for graze but the inclusion of harder food items in some specimens. 

The results from the analyses performed on dental microwear textural parameters seem to 

demonstrate, in the fossil record, a stronger browsing signal for giraffids and a stronger 

grazing signal for fossil Equus, when compared to Aepyceros and Antidorcas specimens, as 

expected. No significant difference in dietary patterns was observed between the two 

antelope taxa Aepyceros and Antidorcas, in neither the modern nor the fossil record. Both 

fossil Aepyceros and Antidorcas samples showed DMTA values suggesting mixed-feeding or 

generalist behaviours, although fossil Aepyceros melampus and Antidorcas recki displayed 

microwear textural patterns more similar to those of modern fruit-browsing species, 

highlighting the likely inclusion of large amounts of seeds and/or fruits in the diet of these 

extinct species.  

Intra-generic variation in inferred diet: 

While no or little spatio-temporal variation in dietary behaviours could be observed within 

the Omo-Turkana basin during the Plio-Pleistocene for most of the studied taxa, interesting 

patterns were highlighted when studying the fossil impala assemblages, which benefit from 

larger sample sizes and greater spatio-temporal detail. More particularly, dietary behaviours 

were shown to differ between Aepyceros specimens from the Koobi Fora and Shungura 

formations, suggesting diets with a higher graze-component for impalas in East Turkana 

compared to impalas from the lower Omo-river valley. Temporal variation in feeding 

behaviours were highlighted for fossil impalas from the Shungura formation, suggesting that, 

in the lower Omo-river valley, the relative amount of tough and abrasive food items that was 

included in the diet of fossil Aepyceros specimens fluctuated through time between 3.4 and 

1.6 Ma. 
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Chapter 6: Stable isotope analyses 

6.1 Introduction 
 

As described in previous chapters, the Omo-Turkana basin has been widely studied using 

multiple methods and environmental proxies, with various studies focusing on the palaeo-

environmental history of the region to better understand the habitats and climatic conditions 

experienced by hominin species during the Plio-Pleistocene in eastern Africa (see chapter 2). 

Previous studies have suggested that a high diversity of habitats is likely to have been 

available to hominins in this region between 3.4 and 1.6 Ma, related to several major climatic 

events that likely had a strong impact on local environments, and on the faunal communities 

inhabiting the region at the time. Alike the dental use-wear analyses presented in chapters 4 

and 5, this chapter presents analyses aiming to test this hypothesis, using stable isotope 

evidence to investigate the feeding ecology of mixed-feeding herbivores, whose diet might 

have been influenced by local vegetation conditions, such as high habitat heterogeneity and 

major shifts in environmental conditions.  

The palaeo-dietary behaviours of the mixed-feeding antelope taxa Aepyceros (impala) and 

Antidorcas (springbok) are therefore investigated, alongside those of fossil representatives 

of the giraffid (genus Giraffa) and equid (genus Equus) mammalian families, to help evaluate 

the extent of the dietary spectrum of fossil herbivores in the Omo-Turkana basin between 

3.44 and 1.6 Ma. This is to assess whether the studied mixed-feeding antelope taxa showed 

evidence for variations in inferred dietary behaviours, which might relate to variations in the 

availability of local food resources, either due to seasonal change, niche competition or 

environmental change. Carbon and oxygen stable isotope analyses are used on data collected 

from fossil specimens of the studied taxa from the Koobi Fora, Nachukui and Shungura 

formations, from members ranging between 3.44 and 1.61 Ma, as well as from modern 

specimens from different African regions.  
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As described in more detail in chapter 2.4.3, carbon stable isotopes in body tissues of 

herbivores are thought to reflect the relative proportion of leaves and grasses that were 

integrated in their diet, as the carbon isotopic compositions of the plans are assimilated 

through ingestion, with an additional fractionation process (Lee-Thorp and Van der Merwe, 

1987; Cerling and Harris, 1999; Cerling, Harris and Passey, 2003; Passey et al., 2005). 

Previous studies have demonstrated that pure browsers (C3 consumers) have δ13C values 

which differ significantly from those of pure grazers (C4 consumers), and that these values 

can vary depending on the canopy cover (e.g. Lee-Thorp et al. 2007, Louys et al. 2012). 

Similarly, previous studies have suggested that variation in δ13C values can be observed 

among C4-plants between mesic grasses and arid-adapted C4 -grasses (Hattersley, 1982; 

Cerling and Harris, 1999; Cerling, Harris and Passey, 2003; Ehleringer, 2005; J. Codron et al., 

2005; Cerling et al., 2015; Cacefo et al., 2019). Stable carbon isotope data is therefore thought 

in this study to help assess the relative composition of the studied taxa’s diet, in term of C3-

C4 vegetation. 

The oxygen isotope composition (δ18O values) of mammalian body tissue is directly related 

to the composition of ingested water at a constant body temperature (Longinelli, 1984; Luz, 

Kolodny and Horowitz, 1984; Iacumin et al., 1996; Koch, 2002; Chenery et al., 2012). The 

composition of ingested water can reflect, in turn, the oxygen composition of local meteoric 

water (Daniel Bryant and Froelich, 1995; Chenery et al., 2012) or can be modified by 

evaporative processes (Kohn, 1996). The δ18O values of meteoric water are believed to vary 

due to changes in air temperature, humidity and precipitation/evaporation balance within 

an ecosystem (McCrea, 1950; Dansgaard, 1964; Schmidt, LeGrande and Hoffmann, 2007). As 

δ18O reflects local evaporation and meteoric water composition through precipitation, it can 

be used to analyse climate changes as experienced by local species during a specific time 

period. Water-dependent animals usually have δ18O values closely correlated with that of 

local precipitation (Bernard et al., 2009).  
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As for the palaeo-dietary analyses presented in chapters 4 and 5, the material (6.2) and 

methods (6.3) used for this analysis are described in this chapter, followed by results (6.4), 

divided around the following objectives: 

1)  Assess the overall dietary signatures of each studied species (extant and extinct), 

to appraise whether the diet of the fossil species do or do not mirror that of their 

extant relatives, and evaluate inter-specific variations between species of the 

same taxa. 

2) Evaluate the degree of variation in dietary patterns within each fossil taxon (i.e. 

intra-generic variation) across the studied fossil localities and members to detect 

potential differences in feeding behaviours within the Turkana basin and/or 

through time. 

3) Explore the impact of seasonal variation on the dietary patterns observed among 

Plio-Pleistocene impala populations. 

As for previous data chapters, these results are presented and briefly interpreted around 

these themes, before being summarised (6.5). They will be further interpreted and discussed 

in chapter 7, alongside the other methods for dietary analyses employed in this study. 

6.2 Material 
 

Fossil dental remains of the selected taxa (genera Aepyceros, Antidorcas, Equus and Giraffa) 

from the Koobi Fora and the Nachukui formations were sampled for isotopic studies at the 

National Museums of Kenya (Nairobi). For specimens from the Shungura formation, held at 

the National Museum of Ethiopia (Addis-Ababa), data were only collected for isotopic 

analysis for the genera Aepyceros and Giraffa, as Equus specimens were already under study 

(i.e. Dr. Tiphaine Coillot, member of the Omo Group Research Expedition (OGRE)). The 
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samples were collected from the maximum number of specimens available/allowed for each 

locality and member under study (Table 54 – see appendix A.9 for the detailed dataset).  

Table 54: Number of fossil specimens sampled for isotopic analyses, per genus and per member. 

Provenance Member 
Dates 
(Ma) 

Number of specimens (per genus) 

Aepyceros Antidorcas Equus Giraffa 

Koobi Fora, 
Kenya 

(National 
Museums of 

Kenya, Nairobi) 

Tulu Bor 3.44 - 2.64 1 2 1 2 

Burgi 2.64 - 1.87 10 11 8 7 

KBS 1.87 - 1.61 20 21 10 15 

Nachukui, 
Kenya 

(National 
Museums of 

Kenya, Nairobi) 

Lomekwi 3.44 - 2.53 25 3 0 3 

Lokalalei 2.53 - 2.33 0 1 0 0 

Kalochoro 2.33 - 1.9 4 1 5 1 

Kaitio 1.9 - 1.61 8 0 3 0 

Shungura, 
Ethiopia   
(National 

Museum of 
Ethiopia, 

Addis-Abeba) 

B 3.44 - 2.91 20 (16 bulk/2 serial) 

Not 
enough 

specimens 

Already 
under 

study by 
the Omo 

Group 
Research 

Expedition 

5 

C 2.91 - 2.52 20(16 bulk/4 serial) 5 

D 2.52 - 2.4 20(16 bulk/ 5 serial) 5 

E 2.4 - 2.32 20 (16 bulk/4 serial) 5 

F 2.32 - 2.27 20 (16 bulk / 4 serial) 5 

G 2.27 - 1.9 21 (17 bulk/5 serial) 5 

Modern / 2 (serial) 0 0 2 (serial) 

 
 

Most of the modern data used for comparative analysis were drawn from published literature 

(Sponheimer, Lee-Thorp, et al. 2003, Copeland et al. 2009; see appendix A.8), as well as data 

from four modern specimens (i.e. two Aepyceros melampus specimens, and two Giraffa 

camelopardalis specimens) which were sampled for intra-tooth isotopic analysis at the Royal 

Museum for Central Africa (Tervuren, Belgium) (see appendix A.10 for the detailed dataset). 

6.3 Method 
 

6.3.1 Sampling protocols and teeth sampled 

Prior to sampling, selected areas of the teeth were cleaned: adhering loose matrix was 

removed using a damp cotton swab, and acetone was used locally for glue residues if 

necessary.  
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6.3.1.1 Bulk sampling  

Bulk sampling was the main method used in the present study, which consisted in the 

extraction of 7-9 mg of enamel powder from the tooth surface using a 1mm diameter 

diamond-tipped drill bit. Slow-medium drilling speed was applied to prevent local heating 

(Lee-Thorp et al., 1997). This left a light scratch on the fossil tooth (Figure 64 and Figure 65). 

The orientation of the samples varied depending on the museums’ curatorial preferences (i.e. 

along broken edges at the National Museums of Kenya; following the mesio-distal width of 

the tooth at the National Museum of Ethiopia). A total of 259 bulk samples were collected on 

the fossil assemblage.  

  
 
 

 

 

6.3.1.2 Intra-tooth sampling  

Intra-tooth sampling was performed on selected teeth (3-4 individuals per member where 

possible) to assess the seasonality of diet changes among these species. The sampling process 

required repeated sampling on a tooth (P4; M2-M3) or on a dental sequence (up to 7-9 times 

per tooth), to extract small bands of 7-9 mg of enamel powder from the occlusal surface to 

the enamel-dentine junction (Figure 66). The number of samples, their position and the 

amount of enamel powder collected was evaluated on a tooth-by-tooth basis with guidance 

from the curatorial team. A total of 236 serial samples were collected at the National Museum 

of Ethiopia (Addis-Ababa), from 24 Aepyceros specimens from the Shungura formation. No 

Figure 65: Enamel sampling using a hand-
held drill (National Museums of Kenya, 
Nairobi, April 2017). 

 

Figure 64: Examples of bulk sampling on an Aepyceros 
sp. specimen (OMO33 69-2029) and a Giraffa sp. 
specimen (OMO112/4 10016). 
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serial sampling was possible on the material from Koobi Fora and Nachukui, hosted at the 

National Museums of Kenya (Nairobi). 

 

The position of each sample relative to the cervix (i.e. crown-root junction) was measured 

prior analysis using ImageJ (version 1.53e) to take into account the distance between 

samples and potential time-averaging for specimens on which a limited number of intra-

tooth samples could be collected. Because the apex of tooth (i.e. top of the crown) forms 

before the cervix, the x-axis was reversed on plots to represent the relative temporal 

sequence represented by the samples, from a younger age (i.e. at the beginning of crown 

formation) to an older age (i.e. toward the end of crown formation). Where two adjacent teeth 

were sampled for intra-tooth analysis, the results were plotted next to each other to gauge 

the extent of seasonal variability on a longer time-sequence (Figure 67).  

Figure 66: Example of serial sampling performed on an Aepyceros 
sp. specimen in May 2017 (OMO11.2 67-724, National Museum of 
Ethiopia). 
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Figure 67:Intra-tooth sampling and schematic chronology of crown mineralisation in second and third 
molars (based on data for cattle from Brown 1960). When intra-tooth samples can be collected from two 
adjacent teeth for a same individual, the dietary signal that can be assessed via isotopic analyses cover a 
larger time-span than individual teeth.  

 

6.3.1.3 Additional data  

For comparison purposes, previously published data were also used in this study, from other 

fossil species represented in the Omo-Turkana basin (Cerling et al., 2013, 2015; Negash et al., 

2015; Du et al., 2019) , as well as from modern Aepyceros melampus populations 

(Sponheimer, Lee-Thorp, et al., 2003; Copeland et al., 2009) (see appendix A.8).   

When comparing fossil and modern isotopic values, modern values were corrected using 

atmospheric δ13C data for the change in isotopic ratio of atmosphere due to human activities 

(Francey et al., 1999; Ferrio et al., 2005; Long et al., 2005; Keeling et al., 2010), where the 
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δ13C1750 value for atmospheric CO2 (i.e. pre-industrial era) is taken to be -6.3‰ (e.g. δ13C 

+0.8‰ for specimens collected in 1968-1969, +1.6‰ for modern specimens collected 

between 1997-1999, and δ13C +1.7‰ for specimens collected between 2000-2003). This 

correction allows to take into account the “fossil fuel effect” (or Suess Effect) that led to a 

depletion of ambient atmospheric δ13C values compared to values from the pre-industrial era 

(Keeling, Mook and Tans, 1979; Marino and McElroy, Michael, 1991; Kingston and Harrison, 

2007; Bocherens, Grandal-d’Anglade and Hobson, 2014). This correction is essential to 

enable accurate comparison between modern and fossil isotope data. 

6.3.2 Sample pre-treatment  
 

The enamel powder collected on the studied specimens was cleaned using standard pre-

treatment methods for the removal of organic and carbonate contaminants. In addition to the 

enamel samples collected for this study, enamel samples of known isotopic composition were 

also pre-treated (FBS and LES equid, provided by P. Hopley, Birkbeck), to be used as internal 

standards during isotopic analysis, and to check for the impact of pre-treatment on the 

expected values. Powdered enamel is typically pre-treated with dilute sodium hypochlorite 

(NaOCl) or hydrogen peroxide (H2O2) to remove organic matter, followed by leaching with a 

solution of acetic acid (0.1M) to dissolve secondary mineral contaminants (Koch, Tuross and 

Fogel, 1997; Rowland, 2006). This pre-treatment should only leave purified structural 

carbonate for analysis.  

Each enamel sample therefore went through a first wash using 1ml dilute sodium 

hypochlorite (NaOCl - bleach 2%- rest for 45min), followed by 3 rinses using deionised water 

(ultra-pure), to remove organic matter. Each sample was then washed a second time using 

0.5 ml dilute acetic acid (0.1M – rest for 15min), followed by 3 rinses using deionised water, 

to dissolve secondary mineral contaminants. The samples were centrifuged between each 

wash to facilitate the removal of the liquid elements and were dried overnight in a drying 

oven at low temperature (70°C). 
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To control for the effect of pre-treatment procedures on the samples, two internal enamel 

standards of known isotopic composition (LES and FBS standards, provided by Philip Hopley, 

UCL Birkbeck; see appendix A.9) were pre-treated and analysed alongside the studied 

samples.  

6.3.2 Mass-spectrometry data acquisition 
 

Part of these samples (i.e. all bulk samples, and serial samples for modern G. camelopardalis) 

was analysed at the Stable Isotope Ratio Mass-Spectrometry (SIRMS) Laboratory (University 

of Southampton, National Oceanography Centre; procedure performed by Megan Spencer) 

using a Kiel Carbonate Device coupled to a MAT253 Isotope Ratio Mass Spectrometer (both 

Thermo Fisher Scientific, Bremen, Germany). 0.3-0.6 mg of each sample was weighed out into 

borosilicate glass vials according to their CaCO3 concentration in order to match ~30-40 µg 

of pure CaCO3. During subsequent analysis, they reacted with 106% phosphoric acid at 90°C 

for 800 seconds. After cryogenic removal of water vapour and other gases, the resulting CO2 

was measured multiple times against a reference gas. Following data reduction and 

corrections, data were normalised using a two-point calibration with NBS 18 and NBS 19 

(IAEA, Vienna, Austria) and reported relative to VPDB (Vienna PeeDee Belemnite). The δ18O 

and δ13C values were obtained from these analyses using the following calculation:  

Equation 3. 2:  δx = 1000[(Rsample/Rstandard) –1]  

(where δx is either δ13C or δ18O, and R is either 13C/12C or 18O/16O.)  

In-house reference material (GS1) was used for quality assurance purposes and to report 

instrument precision (Coplen, 1994). Long-term instrument precision is 0.05‰ for δ13C and 

0.09‰ for δ18O (Thermo Scientific, 2009). 

The second part of the samples (i.e. fossil and modern serial samples) was analysed at the 

NERC Isotope Geosciences Facilities (NIGL, British Geological Survey, Keyworth; procedure 

performed by Hilary Sloane) on an IsoPrime 100 dual inlet mass spectrometer plus Multiprep 
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device. This analysis was permitted by the collaborative support granted by the NERC 

Isotope Geosciences Facilities Steering Committee (IP-1865-1118; work in collaboration 

with Dr Angela Lamb and Hilary Sloane). Approximately 1 mg of carbonate material was 

weighed out into glass vials and sealed with septa. The automated system evacuated vials 

and delivered anhydrous phosphoric acid to the carbonate at 90oC. The evolved CO2 was 

collected for 15 minutes, cryogenically cleaned and passed to the mass spectrometer. Isotope 

values (13C, 18O) were reported as per mil (‰) deviations of the isotopic ratios (13C/12C, 

18O/16O) calculated to the VPDB scale using a within-run laboratory standard calibrated 

against NBS-19 (Coplen, 1994). 18O values were then converted to the VSMOW scale using 

the following formula: 

Equation 3. 3:  δ18O-VSMOW = 1.03091*δ18O-VPDB +30.92 ‰ 
 

The calcite-acid fractionation factor applied to the gas values was 1.00798 (Sharma and 

Clayton, 1965; Friedman and O’Neil, 1977). Due to the long run time of 21 hours, a drift 

correction was applied across the run, calculated using the standards that bracket the 

samples. The Craig correction was also applied to account for 17O (Craig, 1957). The average 

analytical reproducibility of the standard calcite (KCM) is <0.1‰ for 13C and 18O.  

For comparative purposes, δ18O values were converted from the VSMOW  standard 

(Vienna Standard Mean Ocean Water) to the VPBD standard where necessary, using the 

following formula (Brand et al., 2014): 

Equation 3. 4:  δ18O-VPDB = 0.970017 * δ18O-VSMOW – 29.98 

 

Both stable carbon and oxygen isotopes results are therefore presented in this work using 

standard δ‰ notation relative to VPDB. 
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6.3.4 Correction of intra-tooth data 
 

Due to concerns regarding higher-than-expected C and O values measured at the NIGL 

when analysing the first batches of serial samples (see appendix A.13.1), only a selected 

number of samples were analysed for this project to serve as a pilot study (i.e. 9 specimens 

out of the 25 specimens sampled for intra-tooth analysis; one modern specimen and 8 fossil 

specimens, one from each member). Future analyses will focus on the remaining 16 

specimens and the methodological concerns raised by collaborators Dr Angela Lamb and 

Hilary Sloane from the NIGL. 

Calibration issues were considered, because an offset in the C and O values measured 

for the internal enamel standards could be observed between previous analyses and analyses 

conducted at the NIGL for these standards (see appendix A.13.2). This offset appeared more 

pronounced for high C values, as reflected in the measurements retrieved from the LES-

equid standard (i.e. Previous analyses: mean C = -1.26‰, s.d.=1.20, and mean O= -

0.13‰, s.d.=1.73, n=40; NIGL analyses: mean C= 1.2‰, s.d.=1.11, and mean O= 3.23‰, 

s.d.= 2.88, n=5). 

To correct for this offset and calibrate the measurements obtained at the NIGL on the intra-

tooth samples, a two-point calibration curve was generated based on the two internal 

standards used during analyses (see appendix A.13.3 for more detail) (Jardine and Cunjak, 

2005; Debajyoti, Grzegorz and Istvan, 2007; Szpak, Metcalfe and Macdonald, 2017). This 

enabled corrected measurements for the NIGL data to be proposed using the following 

formulae: 

Equation 3. 5:  δ13C-corr = 0. 85281*δ13Csample -1.97587 

Equation 3. 6:  δ18O-corr = 0. 5428*×δ18Osample - 1.6455 

 

Both uncorrected and corrected C and O values are presented in this chapter.  
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6.3.5 Estimated percentage of C4 -vegetation included in the diet 
 

To facilitate interpretation of carbon isotope values, the dietary classification suggested by 

Lee-Thorp et al. (2007) was used on the studied dataset to estimate for each sample the 

relative proportions of C3 -browsers (δ13C < -9‰), mixed-feeders (9‰ > δ13C < -3‰) and C4 

-grazers (δ13C > -3‰).  

To estimate the minimum percent C4 -vegetation indicated by enamel δ13C values, the 

parameters for linear equations published by Passey et al. (2009) were used, with varying 

formulas depending on the age of the sample (Table 55). This equation represents a linear 

mixed model between the 'max C3 ' and C4 endmembers for each sample (see Passey et al. 

2009 for more detail). 

Table 55: Formulas used to estimate the minimum percent C4 -vegetation based on individual enamel 
δ13C values, using the parameters for linear equations from Passey et al. (2009). 

Age-range (Ma) Samples Formula (based on Passey et al. 2009) 

present Modern 8.46 *δ13C sample + 87.48 

1.5-1.99 
KBS                 

Kaitio 
8.44 * δ13C sample + 72.05 

2.0-2.49 

Burgi           
Kalochoro      
Lolakalei               

D to G 

8.44 * δ13C sample + 73.05 

2.5-2.99 

Lomekwi (upper 
and middle) 

C 
8.44 * δ13C sample + 72.45 

3.0-3.49 

Tulu Bor              
Lower Lomekwi        

B 
8.44 * δ13C sample + 72.61 

General equation: %C4 = slope * δ13C sample + intercept 
 

6.3.6 Statistical analyses 
 

The geochemical content of the studied samples was analysed for each taxon, to assess 

whether significant differences could be observed between fossil and modern specimens of 

each species, but also to see if differences between locality and/or member could be found 
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within each studied taxon. For this, a series of statistical analyses were performed using the 

software R Studio (version 1.2.1335; R version 3.6.3;  R Core Team 2013) (see appendix A.6 

for detail of all R packages used in this study). 

Prior to each analysis, each variable was tested for normality (Shapiro-Wilk test) and for 

homogeneity of variance (Levene Test for Homogeneity of Variance). Because the 

assumptions of parametric tests were not met for both carbon and oxygen isotopic data, the 

Kruskal-Wallis test was used to assess significant differences within and between groups. 

Where the Kruskal–Wallis test was significant, post-hoc analyses were performed to 

determine which groups significantly differ from the others, using Dunn’s test with 

adjustments to the p-value (Holm’s correction) to control for familywise error rates.  

As for previous dietary analyses presented in this thesis, the dataset was analysed once to 

check for significant differences in isotopic content within each genus depending on samples 

sorted by provenance (i.e. Koobi Fora, Nachukui, Shungura, and modern samples), and a 

second time to check for significant differences in dietary patterns through time within each 

fossil locality for each genus, based on subsets sorted by members. For general comparisons 

between fossil and modern samples (regardless of provenance and member), statistical 

analyses were run at the species level to assess the dietary preferences of the studied fossil 

species, in comparison with those of modern specimens. Due to small numbers of specimens 

per sample for some subsets, analyses were run at the genus level (i.e. species from same 

genus altogether) when comparing samples by provenance or member, for more statistical 

power. 

To appraise the degree of seasonal variability in diet within the specimens studied for stable 

isotope analyses, summary statistics were computed for each tooth. As serial-tooth data 

displayed non-normal distributions, correlations between intra-tooth δ18O and δ13C 

sequences was evaluated for each specimen using Spearman's coefficient.  
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6.4 Results and interpretations 
 

An overview of the stable isotope data is presented first, combining carbon and oxygen data 

(6.4.1). Results from stable carbon (6.4.2) and oxygen (6.4.3) analyses are then presented, 

focusing first on the differences and similarities in inferred dietary patterns between fossil 

species and modern species of known diet (to assess the dietary preference of each studied 

fossil taxon, regardless of the provenance and dates of fossil specimens), before evaluating 

the degree of variations in isotopic signals that can be observed for each fossil taxon (i.e. 

intra-generic variation) across the studied fossil localities and members to detect potential 

differences in feeding behaviours within the Turkana basin and/or through time. Finally, 

seasonal variation in isotopic signals is evaluated for the studied specimens, using intra-tooth 

data (6.4.4). 

6.4.1 Stable carbon and oxygen isotope analyses – overview of the data 

 

When observing the carbon and oxygen isotopic signals of all studied extinct and extant 

species, two clusters appear, likely reflecting differences in ecology (Figure 68). On one end 

of the spectrum, Giraffa specimens are shown to yield low stable carbon isotope ratios (δ13C), 

with mean values ranging between -12.44 ‰ (G. pygmaea) and -10.72 ‰ (G. stillei) for fossil 

species, and a mean value of -9.39 ‰ for modern G. camelopardalis (see Table 56 for more 

detail). These are associated with relatively high stable oxygen isotope ratios (δ18O), ca. +4 

‰ (see  

 

Table 60 for more detail). These patterns are likely indicative of browsing behaviours, as 

expected for giraffids, which tend to yield negative δ13C values due to diets rich in C3-

vegetation, and rather high δ18O values due to non-obligate drinking patterns. Indeed, 

modern giraffes are known today to be evaporation sensitive (ES), due to their independence 
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to water-sources and their ability to obtain their daily water requirements from the water 

content of the consumed plants (Levin et al., 2006; Blumenthal et al., 2017) (see 6.4.3.1 for 

more detail).  

 

Figure 68: Carbon (13C) and oxygen (18O) stable isotope values for the fossil species and the 
comparative modern species studied. Modern data corrected for fossi-fuel effect. 
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Figure 69: Carbon (13C) and oxygen (18O) stable isotope values for the fossil taxa studied from the Plio-
Pleistocene deposits of the Omo-Turkana Basin, and for the comparative modern taxa studied. Modern 
data corrected for fossi-fuel effect. 

On the other end of the spectrum, equid specimens yield the highest δ13C values, more 

particularly modern species E. grevyi (mean δ13C = +1.69 ‰) and E. quagga (mean δ13C = 

+3.03 ‰), while fossil Equus sp. specimens yield lower δ13C values than their modern 

relatives (mean δ13C = -0.04 ‰). These species are associated with a lower range of δ18O 

values, ca. +2‰. As opposed to giraffids, these patterns likely reflect grazing behaviours, 

with high δ13C values indicative of diets rich in C4-plants, potentially associated to obligate-

drinking behaviours, as freshwater sources tend to yield rather low stable oxygen isotope 

ratios.  

The mixed-feeding antelopes yield mean carbon and oxygen values resembling those 

observed amongst equids. Indeed, modern impalas (A. melampus) are shown to yield 

relatively high δ13C values (mean = -1.92 ‰), although less clearly dominated by C4-graze 
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than among modern equids, likely indicative of variable diets relatively rich in C4-plants. The 

fossil impala species show similar patterns, with carbon and oxygen stable isotope ratios 

similar to the modern populations for A. shungurae, but more similar to modern Equus grevyi 

for fossil A. melampus. Fossil springbok (A. recki) yield δ13C values similar to those of modern 

impala specimens (mean δ13C = -2.14 ‰), likely indicative of variable diets relatively rich in 

C4-plants. However, the δ18O values observed for fossil A. recki appear to have a larger spread 

and slightly higher ratios than modern equids, making it difficult to assess whether fossil 

springbok were likely obligate-drinkers (like equids) or water-independent (like giraffids), 

although their extant relatives (Antidorcas marsupialis) have been reported to be water-

independent.  

When observing the carbon and oxygen isotopic signals of all studied taxa per provenance 

(i.e. fossil sites and modern assemblage) (Figure 69), three main clusters appear, likely 

reflecting differences in taxa behavioural ecology, but also local environmental conditions, as 

oxygen isotope ratios have been previously shown to vary according to geography, altitude, 

and rainfall patterning in addition to drinking behaviour (Kohn, 1996; Sponheimer and Lee-

Thorp, 1999). While the giraffids remain separated from the other samples by yielding low 

δ13C values paired with high δ18O values regardless of the provenance of the assemblage, the 

other samples demonstrate more variation across samples, more particularly when 

considering stable oxygen isotope content. Indeed, while Aepyceros, Antidorcas, and Equus 

specimens from Nachukui are shown to yield, on average, relatively low δ18O values (ca. +0 

‰), the Aepyceros, Antidorcas, and Equus specimens from Koobi Fora are shown to yield 

much higher mean δ18O values (ca. +3-4 ‰). These patterns could relate to differences in 

local environmental conditions, as well as to differences in drinking-water sources, as 

previous studies have showed that lake waters tend to provide obligate drinkers with 

relatively higher δ18O values than river waters (Quinn, 2015). 

These observed patterns are explored further in the following sections. 
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6.4.2 Stable carbon isotopes 

6.4.2.1 Dietary variation among taxa: Interspecific comparisons 

To investigate the relative proportion of C3 - C4 plant items ingested by specimens of the 

studied taxa during the early years of their lives (i.e. during tooth formation), the stable 

carbon isotope ratios of each fossil and modern species were studied and compared (Table 

56-Table 57 and Figure 70-Figure 71). Results showed significant differences between 

species within the studied samples (fossil and modern).  

The distribution of δ13C values for the modern and fossil samples suggests slightly different 

patterns between the two assemblages (Figure 70). The modern specimens display a 

multimodal distribution with three modes that seem to correspond to the three main dietary 

categories expected for the modern species represented in the assemblage (i.e. browsers, 

mixed-feeders and grazers, from more negative to more positive values). The fossil 

specimens display a bimodal distribution that suggests the dominance of only two main 

dietary categories among the studied fossil species (i.e. browsers and grazers), although the 

mode centred around the most positive values, more typical of C4 -plant feeders, is slightly 

skewed to the left, potentially suggesting the presence of more variable grazing and/or 

mixed-feeding behaviours in the fossil assemblage compared to the modern assemblage.  
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Figure 70: Kernel density estimates (Gaussian) for fossil and modern samples of all taxa (lines), and 
density per genus (fossil and modern combined; histogram). Modern δ13C data was corrected to take 
into account the “fossil fuel effect”.    

 

When observing and interpreting the carbon isotopic mean values using the dietary 

classification suggested by Lee-Thorp et al. (2007), the Equus sp. sample shown to be 

dominated by grazing signals, with 97.56% of the fossil specimens classifying as C4 -grazers 

(Figure 71 and Table 56). The average proportion of C4 -plants included in the diet suggests 

however a diet not entirely composed of C4 -vegetation for Equus sp., with an average of only 

72.2% of C4 -plant accounted for in the diet of these specimens. At the other end of the dietary 

spectrum, fossil Giraffa specimens appear clearly dominated by C3 -browsing signals, as 

expected, with most species being classified in the browsing category for 100% of their 

specimens, with 0% of C4 -plants in their diet. Only Giraffa stillei presents more variability in 

the measured δ13C values, with 81.8% classified as browsers, and 18.2% classified as mixed-

feeders. This could suggest a slightly more varied diet for this fossil species, compared to 

other giraffid taxa. 

When observing the δ13C values measured for the studied mixed-feeding antelope species, 

Aepyceros samples appear dominated by C4 -grazing signals, for fossil Aepyceros melampus, 

Aepyceros shungurae and Aepyceros sp. samples (respectively 100%, 70.8% and 89.7% of 
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specimens classified as C4 -grazers). This differs from the modern A. melampus sample, where 

the proportion of grazers, mixed-feeders and browsers (henceforth referred to as G:MF:B) is 

42.4: 52.5: 5.1. This suggests differences in overall dietary patterns between modern and 

fossil impalas, where fossil impalas relied on more C4-vegetation than modern impalas, which 

appear to be dominantly mixed-feeders.  

The Antidorcas recki sample appears dominated by grazing signals (G:MF:B : 71.4: 23.8: 4.8). 

However, the estimated proportions of C4 -plant included in the diet appear to vary between 

species, with a higher percentage of C4 -plants in the overall diet of fossil A. melampus (70.3 

%) and Aepyceros sp. specimens (65.9 %) than in the overall diet of A. shungurae (57.7 %), A. 

recki (54.5 %) and modern A. melampus (58.3%). 

 

Figure 71: Distribution of δ13C values (mean and standard error of the mean) for all species sampled 
from the Koobi Fora, Nachukui and Shungura formations, as well as modern G. camelopardalis 
specimens. (Note: modern δ13C values were corrected for the “fossil fuel effect”). Smaller points 
represent values per individual specimen. 
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Table 56: Descriptive statistics for all species studied for stable carbon isotope analysis. Frequencies of grazers, browsers and mixed-feeders in each sample are based on Lee-

Thorp et al. (2007). The mean percentage of C4 -plant included in the diet was estimated based on the linear mixed model from Passey et al. (2002, 2009). Mean, standard 
deviation (S.D.), standard error of the mean (S.E.M), minimum value (min), maximum value (max). Modern values are corrected for fossil-fuel effect. 

 
Sample Species 

N 
δ13C ‰VPDB Mean Classification (%) Estimated min. % C4 

Mean s.d. s.e.m Min Max 
 
Grazers 

Mixed-
feeders Browsers Mean Min Max 

Fossil Aep. melampus 14 -0.25 1.31 0.35 -2.61 2.35 100.00 0.00 0.00 70.30 50.01 91.89 

Aep. shungurae 144 -1.79 2.38 0.20 -8.00 2.61 70.83 29.17 0.00 57.72 4.89 95.09 

Aepyceros sp. 29 -0.79 1.81 0.34 -5.90 2.30 89.66 10.34 0.00 65.93 22.23 92.47 

Ant. recki 21 -2.14 2.95 0.64 -9.60 1.95 71.43 23.81 4.76 54.49 0.00 88.52 

Equus sp. 41 -0.04 1.02 0.16 -3.80 2.10 97.56 2.44 0.00 72.23 40.96 89.78 
G. gracilis 20 -12.15 0.74 0.17 -13.50 -11.12 0.00 0.00 100.00 0.00 0.00 0.00 

G. jumae 7 -11.72 1.16 0.44 -13.39 -10.18 0.00 0.00 100.00 0.00 0.00 0.00 

G. pygmaea 5 -12.44 1.66 0.74 -15.10 -10.70 0.00 0.00 100.00 0.00 0.00 0.00 

G. stillei 11 -10.72 1.47 0.44 -12.20 -8.00 0.00 18.18 81.82 0.00 0.00 5.49 

Giraffa sp. 27 -11.65 1.41 0.27 -14.81 -8.60 0.00 3.70 96.30 0.00 0.00 0.42 

Modern Aep. melampus 59 -1.92 2.97 0.39 -9.70 4.90 42.37 52.54 5.08 58.29 0.00 100.00 

E. grevyi 4 1.69 1.89 0.95 -0.63 3.31 100.00 0.00 0.00 86.32 66.92 100.00 

E. quagga 68 3.03 1.29 0.16 -3.23 5.50 98.53 1.47 0.00 100.00 46.62 100.00 

G. camelopardalis 39 -9.39 1.36 0.22 -12.84 -7.00 0.00 5.13 94.87 0.00 0.00 18.28 

 

Table 57: Results from the Kruskal-Wallis test to explore variation in carbon isotopic values between a) all studied species (fossil and modern samples) and b) non-browsing 
species only (i.e. A. melampus, A. shungurae, Aepyceros sp., A. recki and Equus sp.). DF=Degrees of freedom. (See appendix A.12.3 table-A18 for pairwise comparisons table). 

a)  b)  

Chi-square DF P-value

Fossil/Modern species 355.60 13 5.14E-68

Species level - all specimens

Chi-square DF P-value

Fossil/Modern 167.52 7 8.37E-33

Species level - non-browsing species
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Results from statistical analyses (Table 57a) highlighted significant differences between 

species within the studied samples. Among fossil specimens, the Aepyceros melampus, 

Aepyceros shungurae, Antidorcas recki and Equus sp. samples all significantly differed from 

the giraffid species (i.e. Giraffa gracilis, Giraffa jumae, Giraffa pygmaea, Giraffa stillei, Giraffa 

sp., and modern Giraffa camelopardalis), with lower δ13C values. These values confirm a clear 

dichotomy between C3 -browsers (i.e. giraffids, with δ13C values > 9‰) and mixed to C4 -

grazing species (i.e. mixed-feeders with δ13C values between -9 and -3‰, and C4 grazers with 

values > -3‰). Fossil species A. shungurae, Aepyceros sp. and A. recki, as well as modern A. 

melampus specimens, demonstrated also significantly lower δ13C values than modern E. 

quagga, suggesting a diet poorer in C4 -plants among these species, compared to modern 

plain zebra.  

When statistical analyses were conducted on all species but Giraffa specimens (i.e. to account 

for potential variability in isotopic values between non-browsing species within a smaller 

range of isotopic values; Table 57b), significant differences were found for δ13C values 

between several species. In this test, A. shungurae, Aepyceros sp., A. recki and modern A. 

melampus specimens were found once more to have significantly lower δ13C values than 

modern E. quagga. Fossil A. shungurae and modern A. melampus differed also from fossil 

Equus sp. in having lower δ13C values. Within genus Aepyceros, modern A. melampus was 

shown to have significantly lower δ13C values than fossil A. melampus and Aepyceros sp.. 

These results could suggest that both modern A. melampus and A. shungurae specimens had 

a diet less heavily dominated by C4 -plants than fossil Equus sp., Aepyceros sp. and fossil A. 

melampus specimens, potentially reflecting more mixed-feeding behaviours. This is in 

agreement with the proportion of C4 -plants in the diet evaluated above for these species. 
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6.4.2.2 Intra-generic spatio-temporal variation in diet in the Omo-Turkana basin 

To assess whether spatial and/or temporal differences in dietary practices could be observed 

within each of the studied taxa, δ13C values were studied depending on the locality and the 

members the specimens came from (Table 58). Significant differences were found between 

samples per locality for the Aepyceros, Equus and Giraffa assemblages (Table 59). Significant 

differences between members were found only for genus Aepyceros from the Shungura 

formation (appendix A.12.3 table-A 19).  

 

Figure 72: Distribution of δ13C values for the studied taxa from the Koobi Fora, Nachukui and Shungura 
formations, as well as from modern specimens (previously published data and samples from the present 
study combined; modern δ13C values corrected for the “fossil fuel effect”). Points represent individual 
specimen; squares represent the mean value of each sample. 

 

Statistical analyses revealed significant differences in δ13C values between fossil Equus 

specimens and modern E. quagga, but no significant difference could be found between 

equids from Koobi Fora and Nachukui, or between the various members represented (Table 

59). The overall dietary signal of Equus specimens is dominated by grazing signals in all 

samples. While Giraffa specimens are clearly dominated by browsing signals across all 

samples, the δ13C values of specimens from the Koobi Fora formation were found to have 
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significantly higher values than specimens from Shungura. No significant difference in δ13C 

values was found between members for Giraffa specimens.  

Table 58: Descriptive statistics for carbon stable isotopes, for all taxa studied, per locality and per 
member. Frequencies of grazers, browsers and mixed-feeders in each sample are based on Lee-Thorp et 

al. (2007). The mean percentage of C4 -plant included in the diet was estimated based on the linear 
mixed model from Passey et al. (2002, 2009). Mean, standard deviation (S.D.), standard error of the 
mean (S.E.M), minimum value (min), maximum value (max). 

Estimated

Taxon Mean s.d. s.e.m Min Max % Grazers % Mixed-feeders % Browsers % C4

Aepyceros Koobi Fora All 24 -0.82 1.83 0.37 -5.90 2.30 87.50 12.50 0.00 65.62

Tulu Bor 1 -1.81 -1.81 -1.81 100.00 0.00 0.00 57.32

Burgi 12 -0.61 1.54 0.45 -3.20 2.30 91.67 8.33 0.00 67.90

KBS 11 -0.97 2.21 0.67 -5.90 1.70 81.82 18.18 0.00 63.90

Nachukui All 30 -0.61 1.49 0.27 -3.76 2.35 96.67 3.33 0.00 67.39

Lomekwi 18 -1.13 1.27 0.30 -3.76 0.60 94.44 5.56 0.00 62.96

Kalochoro 7 0.31 1.35 0.51 -1.50 2.20 100.00 0.00 0.00 75.69

Kaitio 5 -0.04 1.87 0.84 -2.40 2.35 100.00 0.00 0.00 71.71

Shungura All 133 -1.85 2.43 0.21 -8.00 2.61 69.17 30.83 0.00 57.23

B 21 -2.69 2.65 0.58 -7.50 2.50 57.14 42.86 0.00 49.92

B-C 1 -5.84 -5.84 -5.84 0.00 100.00 0.00 23.13

B-D 1 -3.63 -3.63 -3.63 0.00 100.00 0.00 41.79

C 23 -3.42 2.64 0.55 -8.00 1.24 52.17 47.83 0.00 43.61

D 24 -0.88 1.98 0.40 -5.18 1.90 83.33 16.67 0.00 65.62

E 13 -2.12 2.33 0.65 -6.46 1.20 76.92 23.08 0.00 55.13

E-F 3 -1.89 1.50 0.87 -3.02 -0.19 66.67 33.33 0.00 57.09

F 24 -0.80 1.91 0.39 -4.15 2.08 79.17 20.83 0.00 66.29

G 23 -1.23 2.07 0.43 -4.83 2.61 73.91 26.09 0.00 62.68

Antidorcas Koobi Fora All 18 -1.60 2.52 0.59 -7.90 1.95 77.78 22.22 0.00 59.03

Tulu Bor 1 -2.98 -2.98 -2.98 100.00 0.00 0.00 47.44

Burgi 8 -3.04 2.74 0.97 -7.90 0.03 50.00 50.00 0.00 47.34

KBS 9 -0.16 1.49 0.50 -2.68 1.95 100.00 0.00 0.00 70.70

Nachukui All 3 -5.40 3.86 2.23 -9.60 -2.01 33.33 33.33 33.33 27.24

Lomekwi 1 -2.01 -2.01 -2.01 100.00 0.00 0.00 55.48

Lokalalei 1 -9.60 -9.60 -9.60 0.00 0.00 100.00 0.00

Kalochoro 1 -4.59 -4.59 -4.59 0.00 100.00 0.00 34.28

Equus Koobi Fora All 37 0.02 1.02 0.17 -3.80 2.10 97.30 2.70 0.00 72.79

Tulu Bor 1 -0.79 -0.79 -0.79 100.00 0.00 0.00 65.94

Burgi 19 -0.02 1.21 0.28 -3.80 1.70 94.74 5.26 0.00 72.85

KBS 17 0.13 0.81 0.20 -1.50 2.10 100.00 0.00 0.00 73.12

Nachukui All 4 -0.68 0.77 0.39 -1.75 0.10 100.00 0.00 0.00 67.08

Kalochoro 3 -0.32 0.36 0.21 -0.56 0.10 100.00 0.00 0.00 70.35

Kaitio 1 -1.75 -1.75 -1.75 100.00 0.00 0.00 57.27

Giraffa Koobi Fora All 32 -11.09 1.20 0.21 -12.90 -8.00 0.00 9.38 90.63 0.00

Tulu Bor 2 -11.71 0.20 0.14 -11.85 -11.57 0.00 0.00 100.00 0.00

Burgi 13 -10.94 1.46 0.40 -12.90 -8.00 0.00 15.38 84.62 0.00

KBS 17 -11.13 1.06 0.26 -12.60 -8.39 0.00 5.88 94.12 0.00

Nachukui All 9 -11.81 1.55 0.52 -14.24 -9.30 0.00 0.00 100.00 0.00

Lomekwi 8 -11.64 1.56 0.55 -14.24 -9.30 0.00 0.00 100.00 0.00

Kalochoro 1 -13.19 -13.19 -13.19 0.00 0.00 100.00 0.00

Shungura All 29 -12.36 1.07 0.20 -15.10 -10.16 0.00 0.00 100.00 0.00

B 5 -12.27 1.79 0.80 -14.81 -10.16 0.00 0.00 100.00 0.00

C 5 -12.26 0.78 0.35 -13.42 -11.28 0.00 0.00 100.00 0.00

D 5 -12.70 1.62 0.73 -15.10 -11.12 0.00 0.00 100.00 0.00

E 4 -12.64 0.71 0.35 -13.50 -11.78 0.00 0.00 100.00 0.00

F 5 -12.12 0.62 0.28 -12.79 -11.43 0.00 0.00 100.00 0.00

G 5 -12.22 0.74 0.33 -13.08 -11.23 0.00 0.00 100.00 0.00

Sample Member
N

δ13C ‰VPDB Mean Classification (Lee-thorp et al. 2007)
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Table 59: Results from the Kruskal-Wallis tests to explore variation in carbon isotopic values within 
each taxon between samples a) per locality and b) per member in each locality. DF=Degrees of freedom. 
(See appendix A.12.3 tables-A 19 and A 20 for pairwise comparisons tables). 

 

 

No significant difference in δ13C values was found between localities or members for 

Antidorcas specimens, although analyses were limited by small sample sizes for some 

members. For instance, the Nachukui sample is only represented by three specimens with 

highly different δ13C values across members: although this variability could be an interesting 

feature of the dietary ecology of fossil springbok in this locality, the small sample size is not 

sufficient to allow further interpretation. Variation in δ13C values across members can be 

however observed among the Antidorcas specimens from the Koobi Fora formation, where 

δ13C values appear higher in KBS (G: MF: B = 100: 0: 0) when compared to Burgi (G: MF: B = 

50: 50: 0), suggesting a predominance of mixed-feeding patterns in springbok specimens 

from Burgi (2.64 – 1.87 Ma), which contrasts with the grazing signal suggested by the average 

δ13C values of springbok specimens from KBS (1.87 – 1.61 Ma). These differences were 

however not confirmed by statistical analyses.  

a) Chi-square DF P-value b) Sample Chi-square DF P-value

Aepyceros 27.94 3 3.73E-06 Aepyceros Nachukui 5.04 2 0.080

Antidorcas 3.46 1 6.29E-02 Shungura 22.63 8 0.004

Equus 37.71 2 6.46E-09 Antidorcas Koobi Fora 5.98 2 0.050

Giraffa 21.78 3 7.23E-05 Nachukui 2.00 2 0.368

Equus Koobi Fora 1.52 2 0.468

Nachukui 1.80 1 0.180

Giraffa Koobi Fora 0.61 2 0.738

Nachukui 1.36 1 0.243

Shungura 0.98 5 0.964

MemberLocality
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Figure 73: Distribution of δ13C values (mean and standard error of the mean) for the studied taxa for the 
Koobi Fora, Nachukui, Shungura and modern samples, for each member. (Note: modern δ13C values 
corrected for the “fossil fuel effect”). 

 

While the diet of fossil impala specimens appears dominated by C4-vegetation and grazing 

patterns in the Koobi Fora and the Nachukui formation, the average δ13C value for specimens 

from the Shungura formation suggest more varied dietary patterns in that locality. The 

relative proportion of individuals classified as grazers, mixed-feeders and browsers (G: MF: 

B) in each sample is 87.5: 12.5: 0 for Koobi Fora, 96.7: 3.3: 0 for Nachukui and 69.2: 30.8: 0 

for Shungura. Results from the statistical analyses confirmed that δ13C values from Aepyceros 

specimens from the Shungura formation are significantly lower than δ13C values from the 

Nachukui formation. Although variations in δ13C values can be observed between members 

within each locality, significant differences were only highlighted by statistical tests for 

impala specimens from the Shungura formation (Table 59 and Figure 73).  

When exploring carbon isotopic values across members, the Aepyceros assemblages from 

members D (G: MF: B = 83.3: 16.7: 0) and F (G: MF: B = 79.2: 20.8: 0) have the strongest C4 -
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grazing signals within the Shungura formation. In contrast, Aepyceros specimens from 

member C appear to be predominantly mixed-feeding individuals (G: MF: B = 52.2: 47.8: 0), 

with an average diet composed of only 43.6% of C4 -plants at minimum in this member. These 

results could suggest a diet richer in C4 -plants for impalas between 2.53 and 2.4 Ma in 

Member D, compared to older fossil impala specimens, as well as for impalas between 2.32 

and 2.27 Ma (member F), compared to older fossil specimens. These observations were 

confirmed statistically, with significantly lower δ13C values for Aepyceros specimens from 

members B and C (3.44-2.52 Ma) compared to members D (2.52-2.4 Ma) and F (2.32-2.27 

Ma) (appendix A.12.3 table-A 20). Similarly, significantly lower δ13C values could be observed 

between impala specimens from member C compared to specimens from member G (2.27-

1.9 Ma). This suggests a significant increase in the consumption of C4 -plants for impala 

populations from the Shungura formation from ~2.32 Ma.  

Overall, these results highlight the dietary adaptability of the Aepyceros species in the studied 

assemblages, with varying degrees of grazing and mixed-feedings habits found through time 

and throughout the Turkana basin. Impala specimens from the Shungura formation, in the 

Lower Omo river valley, appear to differ from East and West Turkana specimens, with a 

higher dietary variability and a stronger mixed-feeding signal, although the assemblage 

remains dominated by grazing individuals. However, this grazing signal in Shungura varies 

greatly through time in the Shungura formation: while mixed-diets prevail among impala 

specimens between 2.91–2.5 Ma in Member C, a clear pattern of increased C4-grazing 

behaviours can be observed for this genus from member D, at ~2.32 Ma. 
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6.4.3 Stable oxygen isotopes 

6.4.3.1 Dietary variation among taxa: Interspecific comparisons 

To investigate the aridity conditions experienced by the studied specimens during the early 

years of their lives, the stable oxygen isotope ratios of each fossil and modern species were 

studied and compared ( 

 

Table 60-  



280 
 

Table 61 and Figure 74-Figure 75). Results showed significant differences between species 

within the studied samples (fossil and modern).  

 

Figure 74: Kernel density estimates (Gaussian) for fossil and modern samples of all taxa (lines), and 
density per genus (fossil and modern combined; histogram).  

 

The distribution of δ18O values for the modern and fossil samples suggests broadly similar 

patterns between the two assemblages (Figure 74). Both distributions are unimodal, 

although the fossil distribution appears more symmetrical than the modern distribution. This 

difference in distribution might relate to varying aridity conditions reflected in the modern 

individuals, which come from different localities across Africa between 1900 and 2011. 

Indeed, previous studies have suggested that oxygen isotope patterns in mammals vary from 

region to region (Estes, 1991; Sponheimer and Lee-Thorp, 1999). When observing the range 

δ18O values yielded by the analyses for each studied species (Figure 75), most samples 

demonstrate a large range of values, most particularly within the modern Aepyceros 

melampus sample. 
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Figure 75: Distribution of δ18O values (mean and standard error of the mean) for all taxa sampled from 
the Koobi Fora, Nachukui and Shungura formations, as well as modern G. camelopardalis specimens. 
Smaller points represent values per individual specimen. 

 

 

Table 60: Descriptive statistics for all species studied for stable oxygen isotope analysis. Mean, standard 
deviation (S.D.), standard error of the mean (S.E.M), minimum value (min), maximum value (max). 

 

  

Mean s.d. s.e.m Min Max

Aep. melampus 13 2.97 2.77 0.77 -2.03 8.54

Aep. shungurae 99 2.65 1.91 0.19 -3.22 7.02

Ant. recki 21 3.22 3.08 0.67 -3.08 7.09

Equus sp. 16 2.32 1.79 0.45 -1.67 5.05

G. gracilis 20 3.84 3.53 0.79 -3.00 10.12

G. jumae 7 4.03 1.78 0.67 1.04 6.70

G. pygmaea 5 4.47 2.88 1.29 2.10 8.68

G. stillei 10 4.47 2.46 0.78 1.50 8.85

Giraffa sp. 5 5.69 0.97 0.43 4.28 6.90

Aep. melampus 56 2.21 2.93 0.39 -3.69 7.80

E. grevyi 6 6.58 3.13 1.28 1.80 9.90

E. quagga 85 2.04 2.14 0.23 -3.00 6.50

G. camelopardalis 57 3.87 2.10 0.28 -0.20 11.00

δ18O ‰VPDB Mean

Modern

Fossil

Sample Species
N
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Table 61: Results from the Kruskal-Wallis test to explore variation in δ18O values between all studied 
species (fossil and modern samples). DF=Degrees of freedom. (See appendix A.12.4 table-A 21 for 
pairwise comparisons table). 

 
 

Specimens from fossil Giraffa sp, modern G. camelopardalis and modern E. grevyi were all 

found to have significantly higher δ18O values than modern E. quagga specimens (p=0.037, 

p=0.00, and p=0.044, respectively).  These differences could be related to differing biological 

processes between taxa. 

Indeed, the δ18O values of the food ingested and the mode of water vapour loss (i.e. panting 

vs sweating) have been shown in previous studies to significantly impact the δ18O values of 

mammalian body water (Wong et al., 1988; Sponheimer and Lee-Thorp, 1999). Modern 

giraffes are known today to be evaporation sensitive (ES), due to their independence to 

water-sources and their ability to obtain their daily water requirements from the water 

content of the consumed plants (Levin et al., 2006; Blumenthal et al., 2017). Equids are 

sometimes considered as evaporation-insensitive (EI) (e.g. Bedaso et al., 2013), as they are 

water-dependant. The enamel oxygen isotopic composition of ES animals has been suggested 

to reflect local aridity conditions, while the δ18O of EI species tends to reflect that of meteoric 

water. The significantly higher δ18O values observed in this study in fossil Giraffa sp, modern 

G. camelopardalis and modern E. grevyi specimens when compared to modern E. quagga 

specimens could therefore potentially reflect differing animal biologics and differences in the 

main sources of their body-water, with obligate-drinking EI species on one end (here E. 

quagga) and non-obligate drinking ES species on another end (here Giraffa sp., G. 

camelopardalis and E. grevyi). The difference between modern E. quagga and E. grevyi could 

be related to the small sample size for E. grevyi specimens, or to differences in ecology, with 

previous studies suggesting niche partitioning and differences in the type of plants eaten 

between the two species (e.g. Kartzinel et al., 2015). 

Chi-square DF P-value

47.03627159 12 4.59E-06
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Following this hypothesis, the δ18O values observed for the Aepyceros species (extinct and 

extant), being similar to the range of values observed for Equus quagga, could suggest 

obligate-drinking behaviours for this taxon. If that was the case, the δ18O values observed in 

fossil impala samples will likely reflect the δ18O composition of local meteoric water at the 

time. Antidorcas recki yielded a large range of δ18O values which overlaps with all other 

species, making it difficult to assess the drinking patterns of this species.  

6.4.3.2 Intra-generic spatio-temporal variation in diet in the Omo-Turkana basin 

To assess whether spatial and/or temporal differences in the δ18O values of the body water 

of the studied specimens could be observed within each of the studied taxa, δ18O values were 

studied depending on the locality and the members the specimens came from (Table 62-

Table 63; Figure 76 -Figure 77). Significant differences were found between samples per 

locality (i.e. Koobi Fora, Nachukui, Shungura and moderns) for Aepyceros only. No significant 

difference in δ18O was found through time for any of the other studied taxa.  

 

Figure 76: Distribution of δ18O values for the studied taxa from the Koobi Fora, Nachukui and Shungura 
formations, as well as from modern specimens (previously published data and samples from the present 
study combined). Points represent individual specimen; Squares represent the mean value of each 
sample.  
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Table 62: Descriptive statistics for oxygen stable isotopes, for all taxa studied, per locality and per 
member. Mean, standard deviation (S.D.), standard error of the mean (S.E.M), minimum value (min), 
maximum value (max), 

Taxon Mean s.d. s.e.m Min Max

Aepyceros Koobi Fora All 10 3.71 2.48 0.78 1.09 8.54

Tulu Bor 1 5.22 5.22 5.22

Burgi 3 2.94 2.35 1.36 1.09 5.59

KBS 6 3.83 2.83 1.16 1.11 8.54

Nachukui All 9 0.37 2.16 0.72 -3.22 3.16

Lomekwi 6 0.29 2.18 0.89 -3.22 3.05

Kalochoro 1 3.16 3.16 3.16

Kaitio 2 -0.79 1.76 1.25 -2.03 0.46

Shungura All 93 2.80 1.80 0.19 -1.66 7.02

B 13 3.23 1.49 0.41 0.65 5.67

B-C 1 4.23 4.23 4.23

B-D 1 6.69 6.69 6.69

C 15 2.17 1.74 0.45 -0.69 4.63

D 16 3.00 2.19 0.55 -1.66 6.75

E 13 3.13 1.52 0.42 0.66 7.02

E-F 3 1.87 0.73 0.42 1.10 2.56

F 16 3.06 1.87 0.47 -0.46 6.63

G 15 2.14 1.63 0.42 -0.04 5.04

Antidorcas Koobi Fora All 18 3.76 2.92 0.69 -3.08 7.09

Tulu Bor 1 1.11 1.11 1.11

Burgi 8 4.90 3.42 1.21 -3.08 7.09

KBS 9 3.04 2.27 0.76 -0.52 6.56

Nachukui All 3 0.03 2.15 1.24 -2.45 1.41

Lomekwi 1 1.41 1.41 1.41

Lokalalei 1 -2.45 -2.45 -2.45

Kalochoro 1 1.12 1.12 1.12

Equus Koobi Fora All 13 2.82 1.37 0.38 0.38 5.05

Tulu Bor 1 3.81 3.81 3.81

Burgi 5 2.11 1.65 0.74 0.38 4.17

KBS 7 3.18 1.10 0.42 1.99 5.05

Nachukui All 3 0.19 2.06 1.19 -1.67 2.40

Kalochoro 2 0.37 2.88 2.04 -1.67 2.40

Kaitio 1 -0.17 -0.17 -0.17

Giraffa Koobi Fora All 16 3.98 2.19 0.55 1.04 8.85

Tulu Bor 2 3.69 0.67 0.48 3.21 4.16

Burgi 4 4.85 2.52 1.26 1.50 7.60

KBS 10 3.70 2.32 0.73 1.04 8.85

Nachukui All 2 5.64 0.47 0.33 5.31 5.97

Lomekwi 1 5.31 5.31 5.31

Kalochoro 1 5.97 5.97 5.97

Shungura All 29 4.33 3.19 0.59 -3.00 10.12

B 5 6.18 1.71 0.76 4.28 8.68

C 5 3.85 2.23 1.00 1.98 7.36

D 5 6.11 1.03 0.46 4.64 7.35

E 4 2.71 2.87 1.44 -0.49 5.78

F 5 3.89 2.05 0.92 1.94 6.08

G 5 2.89 6.17 2.76 -3.00 10.12

Sample Member N

δ18O ‰VPDB Mean
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Table 63: Results from the Kruskal-Wallis tests to explore variation in oxygen isotopic values within 
each taxon between samples a) per locality and b) per member for each locality. DF=Degrees of 
freedom. (See appendix A.12.4 table-A 22 for pairwise comparisons table). 

 

 

 

Significant differences within the Aepyceros sample were highlighted for δ18O between 

specimens from the Nachukui formation and specimens from the other two fossil localities: 

Koobi Fora and Shungura.  Fossil impalas from West Turkana demonstrate lower δ18O values 

than impalas from East Turkana and the lower Omo river valley. Similarly, Equus and 

Antidorcas specimens from Koobi Fora appear to have higher δ18O values in average than 

Equus and Antidorcas specimens from Nachukui, although these differences were not 

confirmed statistically. No significant difference was found for Giraffa specimens between 

sites or members. Following the hypothesis stated above in which fossil Equus and Aepyceros 

species were likely to have been obligate-drinkers, the variations in δ18O values observed 

across the Omo-Turkana basin for these taxa could highlight differing local meteoric water 

composition between Nachukui and Koobi Fora/Shungura, and, in turn, differing 

environmental conditions across the basin. 

When observing oxygen isotope patterns through time (Figure 77), the patterns of variation 

in δ18O values differ between Equus, Antidorcas and Aepyceros, especially when comparing 

the Antidorcas assemblage with the Aepyceros and Equus assemblages. More particularly, a 

similar pattern of variation in δ18O values can be observed between genera Aepyceros and 

Equus in the Koobi Fora formation, with δ18O values decreasing between ~3.0 and ~2.0 Ma, 

a) Chi-square DF P-value b) Sample Chi-square DF P-value

Aepyceros 9.01 3 0.029 Aepyceros Koobi Fora 0.76 2 0.683

Antidorcas 3.27 1 0.070 Nachukui 2.76 2 0.252

Equus 4.02 2 0.134 Shungura 10.29 8 0.245

Giraffa 3.19 3 0.364 Antidorcas Koobi Fora 4.58 2 0.101

Nachukui 2.00 2 0.368

Equus Koobi Fora 1.39 2 0.499

Nachukui 0.00 1 1.000

Giraffa Koobi Fora 0.99 2 0.610

Nachukui 1.00 1 0.317

Shungura 5.78 5 0.329

Locality Member
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and increasing between ~2.0 and ~1.75 Ma. In the Nachukui assemblage, δ18O values for 

Aepyceros appear to increase between ~3.25 and ~2.5 Ma, and decrease between ~2.0 and 

~1.75 Ma. Because fewer specimens were available for genus Equus in this formation, the 

analyses only provide data for a small time-span and show a slight decrease in δ18O values 

between ~2.0 and 1.75 Ma. Data for Aepyceros specimens in the Shungura formation suggest 

an increase in δ18O values between ~3.25 and ~3.0 Ma and a decrease in values between 

~3.0 and ~2.5 Ma, followed by an alternation of slight increases and decreases in values up 

to ~2.0 Ma. These patterns could suggest a high temporal variability in the isotopic 

composition of the water ingested by these taxa in the three studied localities, which might 

relate to changing environmental conditions in the region during the time period studied. 

 

Figure 77: Distribution of δ18O values (mean and standard error of the mean) for the studied taxa for 
the Koobi Fora, Nachukui, Shungura through time. 
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6.4.4 Intra-tooth stable isotope analysis: Seasonal variation in diet 
 

To appraise the degree of seasonal variability in diet within fossil impala populations, intra-

tooth variability was assessed for selected Aepyceros shungurae specimens analysed 

following serial sampling for stable isotope analyses (Figure 78-Figure 81). Intra-tooth 

variability was also assessed for modern Aepyceros melampus and Giraffa camelopardalis 

specimens. Some specimens displayed intra-tooth variations in both δ13C and δ18O values, 

and a positive correlation between carbon and oxygen stable isotope ratios (Table 64).  

As predicted, little variation was observed in stable carbon isotope ratios (δ13C) across the 

intra-tooth sequence of the modern giraffe specimens (δ13Cmax - δ13Cmin < 1‰), with values 

typical of browsing species (Figure 78). One G. camelopardalis specimen showed little 

variation in δ18O as well (δ13Cmax - δ13Cmin < 1‰), while the other displayed a wider range of 

δ18O values (δ13Cmax - δ13Cmin = 2.7 ‰). A wider range of δ13C values was observed within the 

intra-tooth sequence of the modern impala specimens (δ13Cmax - δ13Cmin = 1.3 to 1.6‰). For 

both A. melampus specimens, the lowest δ13C values recorded fell within the range of δ13C 

values usually observed in mixed-feeders. While the highest δ13C value observed for RMCA-

2193 remained within the range of values associated with mixed-feeders, the highest value 

observed for the individuals I4 from Copeland et al.’s study (2009) fell within the range of 

δ13C values usually observed in grazers (-2.4‰). These results indicate mixed-feeding 

behaviours for both specimens, but a stronger seasonal dietary variability in the I4 specimen 

(specimen originating from Akagera National Park, Rwanda; Copeland et al. 2009) compared 

to RMCA-2193 (specimen originating from Kenya). Some degree of variation in δ18O was 

observed across the sequences of both impala specimen as well (i.e. δ18Omax - δ18Omin = 1.28 

to 2.72 ‰), but only the values observed for the impala specimen RMCA-2193 demonstrated 

a significant positive correlation between δ18O and δ13C (tau=1; p=0.001) (Table 64).  
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Figure 78: Intra-tooth variation in δ18O and δ13C values for two modern impala specimens (Aepyceros 
melampus) and, for comparison, two modern giraffe specimens (Giraffa camelopardalis). All data from 
the Royal Museum for Central Africa (i.e. RMCA numbers) was collected for the present study. Data for 
the impala specimen I4, used for comparison, originates from Copeland et al., 2009. Points and lines in 
grey represent non-corrected NIGL data. 
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Table 64: Summary statistics for all specimens studied for stable carbon and oxygen isotope intra-tooth analyses, and results from Kendall rank coefficient tests (i.e. Kendall’s 
tau) to evaluate the association between δ18O and δ13C within each intra-tooth sequence. Mean, standard deviation (S.D.), standard error of the mean (S.E.M), minimum value 
(min), maximum value (max), Kendall correlation coefficient (estimate (tau), significance level (p-value). Corrected values are used for samples analysed at NIGL. See Appendix 
A-11.5 for detailed results.  

 

 

Mean S.D. S.E.M Min Max Max-Min Mean S.D. S.E.M Min Max Max-Min Estimate (tau) p-value

OMO3.0 72-14 B12 UM3 10 -0.25 0.78 0.25 -0.98 +1.55 2.52 +3.47 1.58 0.50 +1.24 +6.47 5.23 0.56 0.029

L279-10012 C6 UM2 8 -1.76 0.84 0.30 -3.42 -0.82 2.60 +6.62 1.58 0.56 +5.00 +9.76 4.75

UM3 10 -2.80 1.07 0.34 -4.81 -1.16 3.65 +3.85 2.71 0.86 +0.63 +8.34 7.71

OMO11.2 67-730 D1 UM3 16 +1.76 0.69 0.17 -0.13 +2.54 2.67 +5.62 1.18 0.29 +4.22 +8.41 4.19 0.44 0.017

L147-45 E4 LM1-2 13 -2.16 1.96 0.54 -4.84 +0.80 5.65 +7.91 2.51 0.70 +4.14 +13.70 9.56 0.36 0.100

L28-7x F1 LM1-2 10 +1.45 0.63 0.20 +0.92 +3.12 2.20 +5.84 1.15 0.36 +3.82 +7.46 3.64 0.64 0.009

L66-1b F3 UM 10 +2.79 0.86 0.27 +1.44 +4.09 2.65 +3.72 1.10 0.35 +1.92 +5.47 3.55 0.20 0.484

F165-18 G13 UM 15 +1.57 1.18 0.31 -0.22 +3.43 3.65 +5.11 1.49 0.38 +3.00 +7.55 4.56 0.52 0.006

Omo50 68-2389 G3-13 LM2 13 -0.27 2.32 0.64 -3.08 +5.21 8.29 +3.17 2.46 0.68 +0.26 +8.77 8.51

LM3 12 -1.58 2.57 0.74 -6.48 +1.90 8.37 +2.49 1.71 0.49 -0.83 +4.86 5.69

Omo100 70-2260 G28-29 LM3 15 -0.48 1.99 0.51 -3.88 +2.24 6.11 +2.61 2.32 0.60 -1.31 +5.75 7.07 0.64 0.001

RMCA-2193 Modern LM1 7 -4.70 0.59 0.22 -5.40 -4.02 1.37 -0.04 0.53 0.20 -0.64 +0.63 1.28 1.00 0.000

Copeland et al. 2009 -I4 Modern M1 9 -3.36 0.52 0.17 -4.00 -2.40 1.60 -1.03 0.98 0.33 -2.14 +0.58 2.72 0.35 0.200

RMCA-2128 Modern M2 4 -11.91 0.12 0.06 -12.03 -11.77 0.26 +3.57 0.34 0.17 +3.10 +3.90 0.80 0.33 0.750

RMCA-767 Modern M2 6 -13.84 0.26 0.11 -14.28 -13.52 0.76 +4.50 1.01 0.41 +2.74 +5.44 2.70 0.55 0.126

Aepyceros 

melampus

Aepyceros 

shungurae

Giraffa 

camelopardalis

0.000

Kendall's tau
Species MemberSpecimen

δ13C (‰) VPDB δ18O (‰)VPDB
NTooth

0.65

0.0000.67
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More significant ranges of intra-tooth variation were observed within the sequences 

analysed for fossil Aepyceros specimens from the Shungura formation, for both carbon and 

oxygen isotopic ratios (Figure 79-Figure 81). A difference of around 2-4 ‰ was found 

between the minimum and maximum δ13C values for impala specimens from members B, C, 

D and F, while a much larger amplitude of δ13C values was found for most individuals from 

members E and G (i.e. 5‰ < δ13Cmax - δ13Cmin < 9‰) (Table 64). The mean δ13C values 

calculated suggest, overall, diets dominated by C4 -vegetation for all specimens, although 

specimens from members C, E and G displayed a range of values suggesting at least one shift 

to a mixed C3 - C4 diet within the dietary sequence recorded for these individuals.  

A wide range of δ18O values was observed for most specimens (i.e. 4‰ < δ18Omax - δ18Omin < 

10‰), with one or more peaks in values across each sequence. The highest δ18O values were 

observed in specimens from members C and E. A significant positive correlation between 

δ18O and δ13C was found for most fossil specimens, highlighting synchronous increases and 

decreases in both carbon and oxygen isotopic ratios throughout the intra-tooth sequences 

studied.  

The observed patterns of intra-tooth variation in δ13C and δ18O values are consistent with the 

patterns predicted for mixed-feeding herbivores that vary their diet throughout the year.  
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Figure 79: Intra-tooth variation in δ18O and δ13C values for Aepyceros specimens from the Shungura 
formation (members B to F; 3.4-2.32 Ma) that were analysed using a single tooth. The error-bars 
represent the mean and standard error of the mean for samples for which replicates were analysed. 
Points and lines in grey represent non-corrected NIGL data. 
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Figure 80: Intra-tooth variation in δ18O and δ13C values for Aepyceros specimens from the Shungura 
formation (members F to G; 2.32-1.9 Ma) that were analysed using a single tooth. The error-bars 
represent the mean and standard error of the mean for samples for which replicates were analysed. 
Points and lines in grey represent non-corrected NIGL data. 
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Figure 81: Intra-tooth variation in δ18O and δ13C values for Aepyceros specimens from the Shungura 
formation that were analysed using a combination of two adjacent teeth. The error-bars represent the 
mean and standard error of the mean for samples for which replicates were analysed. Points and lines 
in grey represent non-corrected NIGL data. 
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6.5 Summary of results 
 

Stable carbon isotopes – Interspecific variation in inferred dietary signals:  

- Aepyceros: samples dominated by C4-grazing signals, for fossil Aepyceros melampus, 

Aepyceros shungurae and Aepyceros sp. samples (respectively 100%, 70.8% and 

89.7% of specimens classified as C4-grazers). This differs from the modern A. 

melampus sample, where the proportion of grazers, mixed-feeders and browsers 

(G:MF:B) is 42.4: 52.5: 5.1. This suggests differences in overall dietary patterns 

between modern and fossil impalas, where fossil impalas rely on more C4-vegetation 

than modern impalas, which are dominantly mixed-feeders. 

- Antidorcas: Antidorcas recki sample dominated by C4- signals (G:MF:B : 71.4: 23.8: 

4.8). 

- Giraffa: Giraffa specimens dominated by C3-browsing signals. Only Giraffa stillei 

presents more variability in the measured δ13C values, with 81.8% classified as 

browsers, and 18.2% classified as mixed-feeders. This could suggest a slightly more 

varied diet for this fossil species, compared to other giraffid taxa. 

- Equus: Equus sp. specimens dominated by grazing signals, with 97.56% of the fossil 

specimens classifying as C4-grazers. 

 

Stable carbon isotopes – Intra-generic variation in inferred dietary signals 

(Aepyceros):  

Overall, these results highlight the dietary adaptability of the Aepyceros species in the studied 

assemblages, with varying degrees of grazing and mixed-feedings habits found through time 

and throughout the Turkana basin. Impala specimens from the Shungura formation, in the 

Lower Omo river valley, appear to differ from East and West Turkana specimens, with a 

higher dietary variability and a stronger mixed-feeding signal, although the assemblage 

remains dominated by C4-grazing individuals. However, this grazing signal in Shungura 

varies greatly through time in the Shungura formation: while mixed-diets prevail among 

impala specimens between 2.91–2.5 Ma in Member C, a clear pattern of increased C4-grazing 

behaviours can be observed for this genus from member D, at ~2.32 Ma. 
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Stable oxygen isotopes – species-specific patterns and variations across the Omo-

Turkana basin: 

While Aepyceros, Antidorcas, and Equus specimens from Nachukui were shown to yield, on 

average, relatively low δ18O values (ca. +0 ‰), the Aepyceros, Antidorcas, and Equus 

specimens from Koobi Fora were shown to yield much higher mean δ18O values (ca. +3-4 ‰). 

These patterns could relate to differences in local environmental conditions, as well as to 

differences in drinking-water sources, as previous studies have showed that lake waters tend 

to provide obligate drinkers with relatively higher δ18O values than river waters (Quinn, 

2015). Significant differences within the Aepyceros sample were indeed highlighted for δ18O 

between specimens from the Nachukui formation and specimens from the other two fossil 

localities: Koobi Fora and Shungura, with fossil impalas from West Turkana demonstrating 

lower δ18O values than impalas from East Turkana and the lower Omo river valley. It was 

hypothesized that, due to the similarity in their stable isotope content, fossil Equus and 

Aepyceros species were likely to have been both obligate-drinkers, suggesting that the 

variations in δ18O values observed across the Omo-Turkana basin for these taxa could 

potentially reflect differing local meteoric water composition between Nachukui and Koobi 

Fora/Shungura, and, in turn, differing environmental conditions across the basin. 

Intra-tooth analyses and seasonal variation in diet: 

Large ranges of intra-tooth variation were observed for the fossil Aepyceros specimens from 

the Shungura formation studied, for both carbon and oxygen isotopic ratios, with a 

particularly large amplitude of δ13C values observed for most individuals from members E 

and G. These large ranges might reflect high seasonal variation in diet, more particularly 

between 2.4 Ma and 2.32 Ma, and between 2.27 Ma and 1.9 Ma. The mean δ13C values 

calculated suggest, overall, diets dominated by C4 -vegetation for all specimens, although 

specimens from members C, E and G displayed a range of values suggesting at least one shift 

to a mixed C3 - C4 diet within the dietary sequence recorded for these individuals.   
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Chapter 7: Multiproxy analysis 

7.1 Introduction 
 

Following previous chapters which assessed the dietary variability of the studied taxa across 

the Plio-Pleistocene deposits of the Omo-Turkana basin, inferred from dental mesowear 

analysis (chapter 4), dental textural microwear analysis (chapter 5), and stable isotope 

analyses (chapter 6), this chapter seeks to combine the data acquired from these dietary-

proxies to test whether a detailed picture of the taxa’s feeding ecology can be draw to help 

make inferences about palaeo-environmental conditions. As in previous chapters, the palaeo-

dietary behaviours of the mixed-feeding impala (genus Aepyceros) and springbok (genus 

Antidorcas) are the focus of the analyses, hypothesizing that the dietary flexibility of these 

two fossil taxa might provide relevant information on the vegetation conditions experienced 

by hominins in the past, as modern mixed-feeders are able to adapt their diet according to 

the availability of food resources.  

To explore in more detail the dietary patterns inferred from the studied specimens, the data 

acquired from dental use-wear and stable isotope analyses are therefore combined and 

assessed for each taxon in a multiscale (or multiproxy) approach. As previously mentioned 

in chapter 2, the use of a multiscale approach can provide detailed information on the dietary 

behaviours of the studied specimens at different moments of their life, from their early years 

to the last weeks before their death, and mitigate for some of the limitations of each method. 

In addition, the use of multiscale approach can help reduce interpretation biases related to 

sample- and time-averaging by assessing inter-individual dietary variability within each 

sample. 

Indeed, biases such as sample-averaging must be taken into account, as it is one of the main 

caveats that are inherent to the fossil record. When taxa are analysed using samples per 

locality or per member, datasets combine information from specimens that likely belonged 
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to different populations, and from populations that potentially lived at varying time periods, 

resulting in averaged dietary patterns. For instance, what might be interpreted, based on the 

mean value of a sample, as mixed-feeding patterns related to mosaic habitats or seasonal 

variation in vegetation cover, could actually be the product of sample-averaging if the sample 

contained obligate-grazing and obligate-browsing individuals that might have lived at 

different times, during periods of alternating long-lived open- and closed-canopy habitats. 

When members span over several hundred thousand years, sample-averaging is likely to lead 

to climate-averaging, as studies have shown that climate varies significantly through time 

following various events, which can be stepwise (e.g. volcanic eruptions, tectonism, ocean 

circulation) or cyclical (e.g. orbital forcing, El Niño/La Niña cycles) (e.g. Bobe et al., 2007; 

Maslin and Christensen, 2007; Hopley and Maslin, 2010). One way to reduce interpretation 

biases related to sample- and time-averaging is to assess the inter-individual variability 

within each sample to evaluate the degree of within-sample variation in dietary patterns. 

Sample- or time-averaging can be assessed more efficiently for specimens that were analysed 

with at least two different methods, as the multi-scale approach allows to appraise the degree 

of dietary variation experienced by each individual through life. Individual dietary patterns 

and intra-sample variability were therefore assessed in this study for the specimens that 

could be analysed using multiple methods.   

The material and methods (7.2) used for this analysis are presented in this chapter, followed 

by the results obtained when combining all proxies together, for each taxon (7.3). These 

results are interpreted and discussed alongside previously published research (7.4), to 

answer the following research aims:  

1) Assess the overall dietary signatures of each studied species (extant and 

extinct), to appraise whether the diet of the fossil species do or do not mirror 

that of their extant relatives, and evaluate inter-specific variations between 

species of the same taxa. 
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2) Evaluate the degree of variation in dietary patterns within each fossil taxon 

(i.e. intra-generic variation) across the studied fossil localities and members 

to detect potential differences in feeding behaviours within the Turkana basin 

and/or through time. 

3) Explore the impact of seasonal variation on the dietary patterns observed 

among Plio-Pleistocene impala populations. 

7.2 Material and method 
 

7.2.1 Fossil specimens 
 

Fossil dental remains of the selected taxa (genera Aepyceros, Antidorcas, Equus and Giraffa) 

from the Koobi Fora and the Nachukui formations were studied for mesowear analysis, 

moulded for microwear analysis, and sampled for isotopic studies at the National Museums 

of Kenya (Nairobi) (see chapters 4, 5 and 6 for details about data collection). Where possible, 

data were collected for all three methods on each specimen, but due to poor preservation of 

some part of the teeth, or due to curatorial limitations, it could not be achieved for all 

specimens. The samples were collected from the maximum number of specimens 

available/allowed for each locality and member under study (see appendix A.9 for the 

detailed database).  

7.2.2 Modern specimens 
 

 

Data for mesowear analysis and moulds for microwear analysis were collected on dental 

specimens from the following institutions: the National Museums of Kenya (NMK), the 

Ditsong Museums of South Africa (Transvaal), Pretoria, and the Bavarian State Collection of 

Zoology (Munich, Germany). No isotopic sampling was allowed on these specimens. 

Mesowear data and dental moulds were also collected at the Royal Museum for Central Africa 

(Tervuren, Belgium), as well as samples from four modern specimens (i.e. two Aepyceros 
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melampus specimens, and two Giraffa camelopardalis specimens) for intra-tooth isotopic 

analysis. (Table 65 - see appendix A.10 for the detailed database). 

Table 65: Numbers of modern specimens analysed for mesowear, microwear and isotopic analyses, per 
species and per institution.  

 

   

7.2.5 Multi-scale dietary analysis 

 

Potential discrepancies observed between results from different proxies could be 

informative as they might relate to the different temporal scales on which each proxy 

provides information on the dietary behaviour of the studied individuals. Indeed, comparing 

diets across several temporal scales can help assess how much the diet of the studied 

individuals changed throughout their lifetime, and inform on their overall and seasonal 

dietary variability (Davis and Pineda Munoz, 2016). Multi-scale estimates of diet can be 

obtained by comparing results from dental mesowear analysis (lifetime dietary signal), 

dental microwear analysis (“last supper effect”) and stable isotope analyses (early life dietary 

signal). 

Aepyceros 

melampus

Antidorcas 

marsupialis

Equus 

quagga

Giraffa 

camelo-

pardalis

Mesowear Microwear
Stable 

Isotopes

National 

Museums of 

Kenya, Nairobi

Sex; Provenance 

(Kenya)
6 3 0 0 ✓ ✓  9

Ditsong 

Museum, 

Pretoria, South 

Africa

Age; Sex; 

Provenance (South 

Africa, Namibia and 

Botswana localities)

25 7 0 0 ✓ ✓  32

Bavarian State 

Collection of 

Zoology, 

Munich, 

Germany

Sex; Provenance 

(Kenya, and Tanzania 

localities)

9 0 0 0 ✓ ✓  9

Royal Museum 

for Central 

Africa, 

Tervuren, 

Belgium

Sex; Provenance 

(Congo, Kenya, 

Rwanda, Sudan and 

Tanzania localities)

39 0 11 12 ✓ ✓ ✓ 62

79 10 11 12Totals 112

Totals
Information 

available
Source

Number of specimens Analysed for:
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A first step in combining the information gathered from all dietary proxies used in this study 

to conduct a multi-scale dietary was to compare the general trends observed across the 

studied samples with each method. For this, the frequencies of individuals associated with 

specific diets (i.e. browsing, grazing or mixed-feeding) were compared for each dietary proxy 

and each sample. The overall dietary preferences of specimens in each sample was estimated, 

for stable carbon isotopes, based on the dietary classification suggested by Lee-Thorp et al. 

(2007) with C3 -browsers (δ13C < -9‰), mixed-feeders (9‰ > δ13C < -3‰) and C4 -grazers 

(δ13C > -3‰). For dental microwear textural analysis, browsing-behaviours were identified 

by high complexity values (Asfc>2.0) and grazing-behaviours by high anisotropy values 

(epLsar >0.005). Finally, for mesowear analysis, browsers were identified by high cusp relief, 

and grazers by low cusp relief. This allowed to pinpoint where several proxies indicate 

similar dietary patterns for some samples, but also where discrepancies between methods 

could be observed.  

To mitigate for the sample-averaging likely to occur when analysing dietary patterns at the 

sample-level, multi-scale dietary analysis was also conducted on targeted individuals for 

which data was available for all of the studied dietary proxies (n=35). For this, the 

relationships between the various dietary proxies were tested using Kendall's rank-order 

correlation coefficient (tau) to identify correlations between dietary proxies (Croux and 

Dehon, 2010). This allowed to identify variables that can successfully be used together to 

explore the complexity of individual dietary behaviours in the fossil assemblage available in 

this study and potentially identify multi-scale dietary behaviours specific to the studied taxa 

(i.e. species or genus level) or to their spatio-temporal origin (i.e. provenance and/or 

member).  
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7.3 Results 
 

7.3.1 Multi-scale dietary analysis: general overview for the studied 

species 

Overall, results from the analyses conducted using several dietary proxies showed, as 

expected, dietary behaviours typical of browsing herbivores for all of the Giraffa species 

studied, across all proxies (Table 66 and Figure 82). Similarly, modern plain zebra specimens 

(Equus quagga) demonstrated, across all proxies, dietary behaviours typical of grazing 

species (Figure 83). Analysis of fossil equid specimens suggested diets typical of grazing 

species throughout most of their life, although mixed-feeding behaviours just before death 

were suggested based on dental microwear textural analysis.  

Table 66: Summary table of multiproxy dietary interpretations for all studied species:  mesowear scores 
(MS), dental microwear textural analysis (DMTA), stable carbon isotopes (δ13C), and stable oxygen 
isotopes (δ18O). 

Species Sample MS score DMTA δ13C δ18O
Gagnon and 

Chew 2000

Fossil Browser
Mixed-feeder 

/fruit-browser
C4-diet

Water-

dependant
/

Modern Mixed-feeder Mixed-feeder C3-C4 diet
Water-

dependant

Browser-grazer 

intermediate

Aepyceros 

shungurae
Fossil Mixed-feeder Mixed-feeder

C4 to C3-C4 

diets

Water-

dependant
/

Antidorcas recki Fossil Mixed-feeder
Fruit-browser/ 

generalist
C4-diet ? /

Antidorcas 

marsupialis
Modern Mixed-feeder

Fruit-browser/ 

generalist
/ ?

Browser-grazer 

intermediate

Equus sp. Fossil Variable grazer Mixed-feeder C4-diet
Water-

dependant
/

Equus quagga Modern Grazer Grazer C4-diet
Water-

dependant
Obligate grazer

Giraffa jumae Fossil /
Soft leaf-

browser
C3-diet

Non-water 

dependant
/

Giraffa gracilis Fossil Browser / C3-diet
Non-water 

dependant
/

Giraffa 

pygmaea
Fossil Mixed-feeder / C3-diet

Non-water 

dependant
/

Giraffa stillei Fossil Browser
Soft leaf-

browser
C3-diet

Non-water 

dependant
/

Giraffa sp. Fossil Browser / C3-diet
Non-water 

dependant
/

Giraffa 

camelopardalis
Modern Browser

Soft leaf-

browser
C3-diet

Non-water 

dependant
Leaf-browser

Aepyceros 

melampus
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Figure 82: Multi-scale dietary summary for modern and fossil giraffid species (genus Giraffa). The frequencies of individuals associated with specific diets (i.e. browsing, grazing 

or mixed-feeding) are presented for each dietary proxy. Stable isotopes: frequencies based on  dietary classification suggested by Lee-Thorp et al. (2007) with C3 -browsers 

(δ13C < -9‰), mixed-feeders (9‰ > δ13C < -3‰) and C4 -grazers (δ13C > -3‰); DMTA: browsers identified by high complexity values (Asfc>2.0) and grazers by high anisotropy 
values (epLsar >0.005); Mesowear: browsers identified by high cusp relief, and grazers by low cusp relief. 
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Figure 83: Multi-scale dietary summary for modern and fossil equid species (genus Equus). The 
frequencies of individuals associated with specific diets (i.e. browsing, grazing or mixed-feeding) are 
presented for each dietary proxy. (See Figure 82 for description of the variables used to evaluate dietary 
preferences). 

 

While the modern antelope species Antidorcas marsupialis and Aepyceros melampus 

demonstrated mixed-feeding behaviours throughout all proxies as expected, more variability 

in feeding practices was suggested for their extinct relatives.  

Results from analyses on the Antidorcas recki assemblage suggested variable dietary 

behaviours throughout their life, with early-life diets dominated by C4 -vegetation, last meals 

before death dominated by mixed-diets, and an overall mildly abrasive lifetime diet 

suggesting a predominance of mixed-feeding behaviours throughout their life (Figure 84). 

This likely highlights the dietary plasticity of this fossil springbok species, as well as potential 

seasonal variation in diet. 
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Figure 84: Multi-scale dietary summary for modern and fossil springbok species (genus Antidorcas). The 
frequencies of individuals associated with specific diets (i.e. browsing, grazing or mixed-feeding) are 
presented for each dietary proxy. (See Figure 82 for description of the variables used to evaluate dietary 
preferences). 

 

Mixed-feeding diets were suggested for most Aepyceros shungurae specimens across all 

proxies, similar to modern impalas (Figure 85). The wide range of stable isotope values 

observed for individual specimens studied through intra-tooth analysis indicated significant 

seasonal variation in diet for this fossil species. Analysis of the fossil Aepyceros melampus 

assemblage suggested lifetime variability in dietary behaviours, with early-life diets 

dominated by C4 -vegetation, last meals before death dominated by mixed-diets containing a 

significant amount of fruits and/or seeds, and, overall, a poorly abrasive lifetime diet 

suggesting a predominance of browsing behaviours throughout their life. Similarly to the 

Antidorcas assemblage, this likely highlights varied diets through life as well as a potentially 
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marked seasonal variation in diet for this fossil species. Results from stable oxygen isotope 

analyses suggested obligate-drinking patterns for all Aepyceros species.  

Multiproxy results highlight the clear dichotomy in lifetime dietary behaviours between 

browsing and grazing species which tend to have relatively homogenous diet behaviours 

throughout their lives, and the dietary plasticity of mixed-feeding species such as impala and 

springbok which tend to vary their diet throughout their life. The same patterns were 

highlighted when investigating individual dietary patterns for selected specimens.   
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Figure 85: Multi-scale dietary summary for modern and fossil impala species (genus Aepyceros). The frequencies of individuals associated with specific diets (i.e. browsing, 
grazing or mixed-feeding) are presented for each dietary proxy. (See Figure 82 for description of the variables used to evaluate dietary preferences).
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When analysing specimens for which data was available for all dietary proxies, correlations 

could be observed between several proxies (Figure 86). More particularly, correlations were 

observed between the DMTA variable epLsar (i.e. anisotropy) and mesowear score (tau 

coefficient: +0.25, p=0.0018), and between epLsar and δ13C (tau coefficient: +0.19, 

p=0.0042). Correlations were also observed between mesowear score and textural fill 

volume (Tfv; tau coefficient: +0.18; p=0.022), as well as between mesowear score and δ13C 

(tau coefficient: +0.26; p=0.011). Finally, correlations were observed between δ13C and δ18O 

(tau coefficient: -0.15, p=0.011). The relationships between dietary variables highlighted by 

these results suggest that as mesowear scores increase, epLsar, Tfv and δ13C values increase 

as well. On the contrary, as δ13C values increase, δ18O values tend to decrease.  

 

Figure 86: Correlogram showing correlations between dietary proxies, with Kendall’s tau coefficient 
estimates for each paired-variables in the upper panel. 

 

Following these results, the variables epLsar, mesowear score and δ13C were therefore 

combined to further explore the fossil assemblage and assess multi-scale dietary behaviours 

of the studied taxa (Figure 87). The multiproxy dietary patterns observed when combining 

these three variables confirm the clear dichotomy in lifetime dietary behaviours highlighted 

above between browsing and grazing species which demonstrate, on an individual-scale, 
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relatively consistent dietary behaviours through life (i.e. Equus: high epLsar values combined 

with high mesowear scores and high δ13C values; Giraffa: low epLsar values combined with 

low mesowear scores and low δ13C values), although some variations in microwear patterns 

could be observed, likely suggesting some degree of seasonal variation in diet and differing 

seasons of death.  

 

Figure 87: Distribution of anisotropy (epLsar), stable carbon isotope ratios (δ13C) and mesowear score 
(MS) values for individuals studied for multi-scale dietary analysis, per genus. The assemblage is 
composed of 27 fossil Aepyceros, 6 fossil Equus, 3 fossil Giraffa and 1 modern Giraffa specimens.  

 

As predicted for mixed-feeding taxa, the Aepyceros specimens present a large range of values 

for all three variables with various combinations of dietary patterns suggested throughout 

their life. Some of these lifetime dietary patterns overlap with those of grazing Equus 

specimens, while combined epLsar/MS/ δ13C values for most specimens suggest 

intermediate dietary behaviours, confirming the dietary plasticity of fossil impala species and 

suggesting seasonal variation in diet through life.  
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7.3.2 Multi-scale dietary analysis per taxon 

7.3.2.1 Genus Giraffa and genus Equus 

As expected, mesowear scores, DMTA results as well as stable isotopes ratios observed for 

Giraffa specimens all suggest that, overall, fossil giraffids had browsing/leaf-browsing 

dietary habits, with no significant change through time and throughout the Omo-Turkana 

basin when larger samples were considered (i.e. n>3) (Table 67 and Figure 88). When 

specimens that were studied with two or more methods were assessed individually, the 

majority of the Giraffa specimens presented mesowear, DMTA and carbon isotope results 

consistent with diets dominated by C3 -browsing behaviours through life and before death 

(appendix A.14 Table-A30). Two specimens from the Shungura formation yielded mesowear 

patterns suggesting relatively abrasive diets associated with C3 -dominated diets during the 

early years of their life.  

Table 67: Summary table of multiproxy dietary interpretations for genus Giraffa (samples per 
provenance and per member: mesowear scores (MS), dental microwear textural analysis (DMTA), stable 
carbon isotopes (δ13C). 

 

Genus Subset Member (Ma) MS score (n) DMTA (n) δ13C (n)

Koobi Fora All Browser Leaf-browser C3-diet

Tulu Bor (3.44- 2.64) / Leaf-browser (2) C3-diet (2)

Burgi (2.64- 1.87) Browser (1) Leaf-browser (5) C3-diet (13)

KBS (1.87 -1.61) Browser (5) Leaf-browser (11) C3-diet (17)

Nachukui All / Leaf-browser C3-diet

Lomekwi (3.44 -2.53) / Leaf-browser? (2) C3-diet (8)

Kalochoro (2.33 - 1.9) / / C3-diet (1)

Shungura All Browser / C3-diet

B (3.44 - 2.91) Mixed-feeder (2) / C3-diet (5)

C (2.91 - 2.52) Mixed-feeder (2) / C3-diet (5)

D (2.52 - 2.4) Browser (2) / C3-diet (5)

E (2.4 - 2.32) / / C3-diet (4)

F (2.32 - 2.27) / / C3-diet (5)

G (2.27 - 1.9) / / C3-diet (5)

Modern / Browser (11) Leaf-browser (23) C3-diet (39)
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Figure 88: Equus (points) and Giraffa (triangles) dietary variability though time, as assessed by (from left to right) dental microwear textural analysis (anisotropy and 
complexity), mesowear analysis (mesowear score), carbon stable isotope analysis (δ13C) and oxygen stable isotope analysis (δ18O). 
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Mean δ13C values for Giraffa specimens were slightly lower in the Shungura formation than 

in the Koobi Fora formation. δ18O values from the Shungura formation showed a large range 

of variation through time, with a gradual decrease in values through time, but peaks of 18O-

enriched values in members B (~3.44-2.91 Ma) and D (~2.52-2.4 Ma). Mesowear scores were 

higher for Giraffa specimens in Shungura formation for members B and C, suggesting mixed-

feeding habits for these specimens dating between ~3.44 and 2.52 Ma. δ18O values for giraffid 

specimens were consistently higher than the δ18O values observed for equid specimens in 

the Omo-Turkana basin, probably reflecting the differences in main water-source between 

the two taxa, with fossil Giraffa likely obtaining most of their body water from plant moisture, 

alike their modern relatives.  

Table 68: Summary table of multiproxy dietary interpretations for genus Equus (samples per 
provenance and per member: mesowear scores (MS), dental microwear textural analysis (DMTA), stable 
carbon isotopes (δ13C). 

 
 

Mesowear scores for fossil Equus sp. showed, overall, a cumulative use-wear typical of 

grazing species in the Koobi Fora formation, but scores more typical of mixed-feeders in the 

Nachukui formation (Figure 89 and Table 66). Stable carbon isotope ratios suggested a pure 

C4 -plant based diet among all specimens of this taxon, with very little spatial or temporal 

variation across the samples. However, according to DMTA, fossil Equus specimens from the 

Koobi Fora formation demonstrated dietary habits closer to those of mixed-feeders, with 

anisotropy and complexity values close to those observed among mixed-feeding antelopes, 

Genus Subset Member (Ma) MS score (n) DMTA (n) δ13C (n)

Koobi Fora All Grazer Mixed-feeder C4-diet

Tulu Bor (3.44- 2.64) / / C4-diet (1)

Burgi (2.64- 1.87) Grazer (2) Mixed-feeder (4) C4-diet (19)

KBS (1.87 -1.61) Grazer (9) Mixed-feeder (8) C4-diet (17)

Nachukui All Mixed-feeder Grazer C4-diet

Kalochoro (2.33 - 1.9) Mixed-feeder(3) Grazer (2) C4-diet (3)

Kaitio (1.9 -1.61) Browser (1) Grazer (1) C4-diet (1)

Modern / Grazer (9) Grazer (10) C4-diet (68)
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and distant from both grazing A. buselaphus and fruit-browsing C. silvicultor samples. This 

was more particularly highlighted by the DMTA results for Koobi Fora equids from the Burgi 

member (~2.64-1.87 Ma).  

When specimens that were studied with two or more methods were assessed individually, 

the majority of Equus specimens from Koobi Fora presented mesowear and δ13C values 

suggesting life-time diets dominated by abrasive C4 -food items, associated with either 

grazing, browsing or mixed-feeding behaviours before death (appendix A.14 Table-A 31). 

The differences observed between mesowear scores, carbon isotope ratios and DMTA results 

for the majority of the Koobi Fora Equus specimens could reflect differences in the timescales 

represented by each method, with fossil equid specimens eating primarily graze in during 

their growth as well as throughout their lives but having a more varied food intake with graze 

and browse during the last few days/weeks before their death. This could potentially be 

related to seasonal variation in diet and individuals dying across different seasons, but also 

to the consumption of fall-back foods during periods of graze-shortage, since mixed-feeding 

practices were only highlighted in this study by microwear patterns, which only reflect the 

last few days or weeks before death.  

The dietary patterns of fossil equids from the Nachukui formation remain difficult to 

interpret, due to small samples sizes. Specimens from this locality demonstrated anisotropy 

and complexity values closer to those of modern grazing A. buselaphus, δ13C values typical of 

grazing species, and mesowear scores suggesting mixed-feeding to browsing behaviours. 

δ18O values for equids in the Nachukui formation were much lower than the δ18O values 

observed for equids in the Koobi Fora formation compared to specimens from Nachukui, 

suggesting differing local groundwater composition and local environmental conditions 

between East and western West Turkana. However, all interpretations for the Nachukui 

formation should remain cautious, as genus Equus was only represented by three specimens 

in this locality. 
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7.3.2.2 Genus Aepyceros 

When comparing results from stable isotopes, dental microwear textural analysis and 

mesowear analysis for impala samples using mean values, discrepancies were observed 

between methods regarding the dietary behaviours suggested for this taxon (Table 69 and 

Figure 89; appendix A.14 Table-A 32).  

Table 69: Summary table of multiproxy dietary interpretations for genus Aepyceros (samples per 
provenance and per member: mesowear scores (MS), dental microwear textural analysis (DMTA), stable 
carbon isotopes (δ13C). 

Genus Subset Member (Ma) MS score (n) DMTA (n) δ13C (n)

Koobi Fora
All Browser

Mixed-feeder/Fruit-

browser
C4-diet

Tulu Bor (3.44- 2.64) / Browser (1) C4-diet (1)

Burgi (2.64- 1.87) Browser (3) Mixed-feeder (3) C4-diet (12)

KBS (1.87 -1.61) Browser (8) Mixed-feeder (8) C4-diet (11)

Nachukui All Mixed-feeder Fruit-browser C4-diet

Lomekwi (3.44 -2.53) Mixed-feeder (6)
Mixed-feeder/ Fruit-

browser (14)
C4-diet (18)

Kalochoro (2.33 - 1.9) Browser (1) Mixed-feeder (3) C4-diet (7)

Kaitio (1.9 -1.61) Browser (2) Fruit-browser (3) C4-diet (5)

Shungura All Mixed-feeder Leaf-browser C4-diet / C3-C4-diet

B (3.44 - 2.91) Mixed-feeder (5)
Mixed-

feeder/Browsing ()

C4-diet / C3-C4-diet 

(21)

C (2.91 - 2.52) Browser/Mixed (7) Browsing () C3-C4-diet (23)

D (2.52 - 2.4) Mixed-feeder (5) Mixed-feeder () C4-diet (24)

E (2.4 - 2.32) Browser/Mixed (5) Mixed-feeder () C4-diet (13)

F (2.32 - 2.27) Mixed-feeder (10) Mixed-feeder () C4-diet (24)

G (2.27 - 1.9) Mixed-feeder (8)
Mixed-feeder/ 

Grazer (15)
C4-diet (23)

Modern All Mixed-feeder (33) Mixed-feeder (86) C3-C4-diet (59)
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Figure 89: Aepyceros dietary variability though time, as assessed by (from left to right) dental microwear textural analysis (anisotropy and complexity), mesowear analysis 
(mesowear score), carbon stable isotope analysis (δ13C) and oxygen stable isotope analysis (δ18O). 
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At Koobi Fora, across all members, while mesowear analysis suggested browsing habits, 

dental microwear textural analysis (DMTA) suggested mixed-feedings behaviours, and 

carbon stable isotopes indicated a dominance of C4 -plants in the diet of fossil impalas. Out of 

the nine Aepyceros individuals analysed in this formation with two or more methods, only 

two individuals yielded dietary signals suggesting diets dominated by abrasive C4 -vegetation 

through life and before death, both in KBS member (appendix A.14 Table-A 32). All other 

specimens presented differences between use-wear and isotopic signatures, suggesting 

varying dietary behaviours throughout their lives. The mixed-feeding behaviours indicated 

by the results from DMTA could indicate a more varied diet during the few weeks before the 

death of the individuals. Little variation through time was observed in the dietary patterns of 

fossil impalas for the Koobi Fora formation, apart from a gradual decrease in complexity 

through time that could reflect a gradual increase in the consumption of tough and abrasive 

food items (such as monocots) before death (Figure 89).  

Discrepancies between dietary proxies arose as well within the Nachukui impala assemblage, 

with some degree of variation across members. Impalas from the Lomekwi member (~3.44-

2.53 Ma) appear to have had a moderately abrasive diet through life with a high proportion 

of C4 -plants during early years and mixed-feeding/fruit-browsing habits before death. 

Impala specimens from the Kalochoro (~2.33-1.9 Ma) and Kaitio (~1.9-1.61 Ma) members 

also had a diet dominated by C4 -plants during their growth but with a lifetime diet dominated 

by soft food-items, and mixed-feeding or fruit-browsing habits just before death.  Potential 

variations through time were therefore suggested by the results from each sample from the 

Nachukui formation, with a slight increase in the amount of C4 -vegetation consumed after 

~2.8 Ma (i.e. between the Lower/Middle Lomekwi and the Upper Lomekwi members), and a 

reduction of the abrasiveness of the food items consumed after ~2.33 Ma (i.e. in the 

Kalochoro and Kaitio members) (Figure 89). Although results from DMTA suggest mixed-

feeding to fruit-browsing practices before death for most specimens, an increase in mean 

complexity values between the Kalochoro and Kaitio members could reflect an increase in 



317 
 

the consumption of hard food items such as browse after ~1.9 Ma. This is consistent with the 

results suggested by mesowear analysis for these two members. However, it must be noted 

that samples from this locality and this taxon are relatively small, especially for Kalochoro 

and Kaitio members (i.e. n<5), for which interpretations must remain cautious. 

At Shungura, differences in dietary behaviours were observed through time among Aepyceros 

specimens when considering all proxies (Figure 89). Based on the low mesowear scores, low 

anisotropy values and the relatively low δ13C values observed among specimens from 

members C (2.91-2.52 Ma) and E (3.32-2.27 Ma), it appears that impalas from these members 

had, overall, mixed-feeding diets with a preference for browse, dominated by mixed C3 - C4 

plants in member C, and by C4 -plants in member E. Of the specimens studied through intra-

tooth isotopic analysis, the specimens from these two members yielded a range of δ13C values 

indicative of varied diets alternating between C4 -dominated diets and mixed C3 - C4 diets. A 

stronger reliance on graze was suggested from both mean mesowear score and δ13C values 

for specimens from members B (3.44-2.91 Ma), D (2.52-2.4 Ma), F (2.32-2.27 Ma) and G 

(2.27-1.9 Ma). Similar patterns were observed through microwear analysis with higher 

epLsar values in members B and F, indicative of more abrasive diets before death. These 

results suggest lifetime diets dominated by moderately abrasive dietary behaviours among 

fossil impalas in these Shungura members (although more abrasive in member D), 

comprising mostly C4 -resources. This pattern of rather high mesowear score combined to 

high δ13C values was observed for most of the individuals analysed with these two methods 

from members D, F and G, while most individuals from member B demonstrated mesowear 

and δ13C values more typical of mixed-feeders, with a varied dietary intake through life. Of 

the specimens studied through intra-tooth isotopic analysis, although all specimens showed 

evidence of dietary variability during their early years, the specimens from members B, D 

and F yielded a smaller range of values than the specimens analysed from other members, 

indicative of less variable diets in which C4 -vegetation was predominant. On the contrary, a 

very large range of carbon and isotope values was observed for two of the specimens 
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analysed for intra-tooth variation in diet in member G, suggesting significant seasonal shifts 

between mixed and C4 -dominated vegetation. Overall, mean δ13C values, although showing 

slight fluctuations through time from a member to the next, appear to have increased 

gradually through time after member C (i.e. after ~2.52 Ma), suggesting diets increasingly 

dominated by C4 -vegetation among fossil Aepyceros specimens from Shungura.  

7.3.2.3 Genus Antidorcas 

Similarly to the Aepyceros assemblage, discrepancies appeared when comparing dietary 

analyses from each method for Antidorcas specimens (Figure 90 and Table 70).  

In Koobi Fora, Antidorcas individuals appear to have had, overall, a diet dominated by C4 -

plants during their growth, as suggested by carbon isotope analyses, although mean δ13C 

values suggested an increase in the amount of C4 -plants included in the diet of springbok 

specimens in KBS member compared to specimens from Tulu Bor and Burgi. According to 

dental microwear analyses, their diets were more varied just before death, with mixed-

feeding to fruit-browsing behaviours. While anisotropy did not appear to vary through time, 

an increase in complexity could be observed in the Burgi and KBS members, suggesting diets 

that included more browse for these specimens than for individuals from Tulu Bor. Very few 

specimens could be analysed for mesowear score. When specimens that were studied with 

two or more methods were assessed individually, most of the specimens from Tulu Bor and 

Burgi presented δ13C values more typical of mixed C3 - C4 diets, combined with varying dietary 

signals before death (i.e. DMTA) covering the entire dietary spectrum from grazing to 

browsing (appendix A.14 Table-A 32). Specimens from KBS all yielded δ13C values typical of 

C4 -dominated diets, combined with mixed-feeding or browsing signals before death. The 

differences observed between results for isotopic analyses and DMTA could reflect seasonal 

variation in dietary practices, particularly in the KBS member (1.87-1.61 Ma). Springbok 

specimens from Tulu Bor (~3.44-2.64 Ma) and Burgi (~2.64-1.87 Ma) appear to have had a 

mixed C3 - C4 diet through life, as suggested by both carbon stable isotopes and DMTA. δ18O 
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values in the Burgi and KBS members suggest relatively 18O-enriched diets for the studied 

specimens. δ18O values were much lower for the Tulu Bor member, but because of small sizes 

(n=1), it remains difficult to assess whether these values could reflect shifts in habitat 

conditions.  

Table 70: Summary table of multiproxy dietary interpretations for genus Antidorcas (samples per 
provenance and per member: mesowear scores (MS), dental microwear textural analysis (DMTA), stable 
carbon isotopes (δ13C). 

 

 

In Nachukui, carbon and oxygen stable isotope ratios showed a large range of values, from 

grazing to browsing. Because of sample size (i.e. n=3), potential changes in dietary practices 

through time could not be explored for this locality. Temporal variation in microwear 

patterns could not be assessed either due to sample size but results from DMTA suggested 

mixed-feeding behaviours. Overall, it appears that in West Turkana, the studied springbok 

individuals had a varied diet during their growth as well as just before their death. 

 

Genus Subset Member (Ma) MS score (n) DMTA (n) δ13C (n)

Koobi Fora All Mixed-feeder Fruit-browser C4-diet

Tulu Bor (3.44- 2.64) / Mixed-feeder (2)
C4-diet / C3-C4-

diet (1)

Burgi (2.64- 1.87) Browser (1)
Mixed-feeder/ Fruit-

browser (6)

C4-diet / C3-C4-

diet (8)

KBS (1.87 -1.61) Grazer (1)
Mixed-feeder/ Fruit-

browser (15)
C4-diet (9)

Nachukui All / Fruit-browser C3-C4-diet

Lomekwi (3.44 -2.53) / Mixed-feeder (3) C4-diet (1)

Lokalalei (2.53 - 2.33) / Browser (1) C3-diet (1)

Kalochoro (2.33 - 1.9) / / C3-C4-diet (1)

Modern / Mixed-feeder (10) Mixed-feeder (10) /
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Figure 90: Antidorcas dietary variability though time, as assessed by (from left to right) dental microwear textural analysis (anisotropy and complexity), mesowear analysis 

(mesowear score), carbon stable isotope analysis (δ13C) and oxygen stable isotope analysis (δ18O). 
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7.4 Discussion 
 

7.4.1 Palaeo-ecology of the studied taxa 

7.4.1.1. Obligate-grazers and obligate browsers 

Samples from one dedicated-browser taxon (genus Giraffa) and one dedicated-grazer taxon 

(genus Equus) were analysed in this study to help calibrate the overall dietary spectrum of 

ancient herbivores through time and investigate the diet composition of species that are 

usually assumed to rely mainly on graze or on browse. While a clear dichotomy between 

browsing and grazing species was highlighted in the present study, some degree of dietary 

variability was observed among fossil equid specimens.  

Overall, results from the analyses conducted using several dietary proxies showed, as 

expected, dietary behaviours typical of browsing herbivores for all of the Giraffa species 

studied. Dietary patterns dominated by soft-leaf-browsing were observed for the modern 

and fossil Giraffa samples, although fossil G. stillei specimens were suggested to have 

included more seeds and pods in their diet than their modern counterparts. The results 

highlighted by stable oxygen isotope analyses suggested as well that fossil giraffids, like their 

extant relatives, were likely water-independent and that potential variations in δ18O values 

across the Omo-Turkana basin would therefore likely reflect variations in local aridity 

conditions. Results from the analyses performed on fossil giraffid specimens for this project 

are therefore in agreement with previous studies on extinct giraffids (Merceron et al., 2018). 

Indeed, although Giraffa stillei and Giraffa jumae differed morphologically in some aspects 

(Dietrich, 1942), they both have been described as a dedicated-browsers based on isotopic 

studies (Cerling et al., 2015).  

Similarly, analyses of fossil equid specimens suggested diets typical of grazing species 

throughout most of their life. This agrees with previously published isotopic data on equids 

from the Koobi Fora and Nachukui formation, which indicated a C4 -based diet for fossil 
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equids, reflecting grazing feeding habits (Cerling, Dearing and Ehleringer, 2005; Cerling et al., 

2015). However, mixed-feeding behaviours just before death were identified for a significant 

number of studied fossil equid specimens based on dental microwear textural analysis. This 

suggests slightly more variable dietary behaviours among fossil equids than initially 

predicted, although their overall lifetime dietary signals remain indicative of a strong 

reliance on graze. In contrast with fossil giraffids, results from stable oxygen isotope analyses 

suggested that fossil equids were likely water-dependent, hence suggesting that potential 

variations in δ18O values across the Omo-Turkana basin would likely reflect variations in the 

isotopic composition of local groundwater.  

Following these results, fossil giraffids and equids can therefore be used as indicators of the 

browsing-grazing end-members of the dietary spectrum, and as evaporation-sensitive (ES) 

and evaporation-insensitive (EI) baseline taxa, to which the studied mixed-feeding antelope 

species can be compared. 

7.4.1.2 Mixed-feeding taxa 

While the modern antelope species Antidorcas marsupialis and Aepyceros melampus 

demonstrated mixed-feeding behaviours throughout all proxies as predicted, more 

variability in feeding practices was suggested for their extinct relatives.  

Results from analyses of the Antidorcas recki assemblage suggested variable dietary 

behaviours throughout their life, with early-life diets dominated by C4 -vegetation, last meals 

before death dominated by mixed-diets, and a mildly abrasive lifetime diet suggesting a 

predominance of mixed-feeding behaviours throughout their life and likely seasonal 

variation in diet. These results contrast with previous observations made on fossil A. recki 

specimens from the South African fossil record, where mixed-feeding habits with a 

preference for browse were identified (Luyt, 2001; Lee-Thorp, Sponheimer and Luyt, 2007; 

Sewell et al., 2019). However, the high dietary plasticity of this fossil springbok species with 
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an important C4 -component in the diet, as well as feeding behaviours influenced by 

seasonality, have been suggested previously for Pleistocene cf. A. recki specimens from 

Olduvai (Tanzania) at ~1.7 Ma, based on multiproxy paleo-dietary analysis (Rivals et al., 

2018). These differences in palaeo-ecological reconstructions of Antidorcas recki dietary 

behaviours between the eastern and the southern African fossil records could potentially 

highlight different palaeo-environmental conditions between the two regions. However, 

these differences could also be due to species mis-identification, as previous studies have 

pointed out the difficulty to identify Antidorcas specimens at the species-level based on 

dental remains only, with previous attributions of South African specimens to A. recki having 

been called into question (Vrba, 1976; De Ruiter, 2001; Adams et al., 2016). The marked 

difference in inferred dietary signals between A. recki specimens from eastern Africa and 

South Africa could indicate that these assemblages actually contained different Antidorcas 

species, raising once more the question whether A. recki truly occurred as one species in both 

eastern and southern Africa. 

Results from the analysis of the fossil Aepyceros melampus assemblage suggested lifetime 

variability in dietary behaviours, with early-life diets dominated by C4 -vegetation, last meals 

before death dominated by mixed-diets containing a significant amount of fruits and/or 

seeds, and a poorly abrasive lifetime diet suggesting a predominance of browsing behaviours 

throughout their life. This likely highlighted strong seasonal variation in diet for this fossil 

species. Evidence for seasonal variation was also highlighted by results from intra-tooth 

isotopic analyses of fossil impala specimens from the Shungura formation, although the 

stable carbon isotope ratios observed indicated, overall, a predominance of grazing 

behaviours throughout the year in the diet of these specimens (see 7.4.3 for further 

discussion on seasonal variability). These results contrast with previous studies that have 

suggested that Plio-Pleistocene impalas may have relied more heavily on browsing 

(Sponheimer, Reed and Lee-Thorp, 1999), but remain in agreement with published isotopic 

analyses that showed that Aepyceros specimens from fossil deposits younger than ~4.0 Ma 
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had a strong grazing component in their diet (Cerling et al., 2015). Based on their morphology 

(straighter, less lyrated and more gracile horn cores, shorter and thicker limb bones), 

previous studies suggested that A. shungurae might have inhabited preferentially more 

closed woodland habitats than A. melampus (Harris, 1991; Bobe and Eck, 2001). This is in 

relation to the palaeo-environmental reconstructions that were proposed for the Shungura 

formation, where this impala species was abundant during the Plio-Pleistocene. The varied 

diets suggested for A. shungurae in the present study, across all proxies, are consistent with 

such hypothesis, especially when considering the stronger C4 -component that was suggested 

for the diet of fossil A. melampus specimens in comparison to A. shungurae.  

Results from stable oxygen isotope analyses suggested that fossil Aepyceros species were, 

similarly to modern Aepyceros melampus (Faith, 2018), likely water-dependent (i.e. 

evaporation-insensitive), with lower δ18O values than those observed in fossil giraffes. 

Indeed, obligate drinkers are usually expected to have δ18O values depleted in 18O compared 

to mammals that derive most of their water from fruits or leaves (Cerling, Hart and Hart, 

2004). Consequently, potential variations in δ18O values for Aepyceros specimens across the 

Omo-Turkana basin likely reflect variations in the composition of local groundwater and 

could potentially be used alongside data from evaporation-sensitive taxa such as giraffids to 

evaluate aridity conditions in the fossil record. 

7.4.2 Spatial and temporal variability in feeding patterns: palaeo-

environmental interpretations per fossil locality 

 

This section discusses the palaeo-environmental implications of the various paleo-dietary 

patterns observed across the studied taxa for each fossil locality, comparing results from this 

study with previous work on palaeo-environmental reconstructions for the Plio-Pleistocene 

deposits of the Omo-Turkana basin.  
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7.4.2.1 Koobi Fora formation, East Turkana  

While Giraffa individuals from Koobi Fora formation consistently classified as a leaf-

browsers/ C3 -browsers across all dietary proxies, a wider dietary variability was suggested 

for the other three taxa studied, with evidence for grazing, browsing and mixed-feeding 

practices (Table 71). Although the year-round dietary patterns of Equus specimens appear 

dominated by C4 -grazing signals in all members, occasional mixed-feeding behaviours were 

also highlighted for this taxon via dental microwear analysis (DMTA). 

The palaeo-dietary analysis of the impala specimens from Burgi (2.64- 1.87 Ma) and KBS 

(1.87 -1.61 Ma) and from the springbok specimens from the Burgi member suggested for 

both taxa a poorly abrasive diet through life with high proportion of C4 -plants during early 

years and mixed-feeding habits before death, in association to open-canopy habitat. These 

similarities could relate to similar environments and similar foraging strategies from both 

Aepyceros and Antidorcas individuals in east Turkana at the time. The analyses of the 

springbok specimens suggest an increase in C4 -plants after 1.87 Ma (in KBS member) 

combined with rather high oxygen isotope ratios. For both antelope taxa, dental DMTA 

suggested mixed-feeding and/or fruit-browsing behaviours before death. These results could 

suggest, because of the high dietary plasticity of these mixed-feeding antelopes, high seasonal 

variation in food availability and climatic conditions in eastern Turkana, or alternatively high 

vegetation heterogeneity in the area, which allowed these antelope species to adapt their diet 

depending on seasonal food availability, or when facing potential niche competition in food 

resources. 

When specimens from the genera Aepyceros, Antidorcas and Equus are considered all 

together, a variety of dietary patterns are suggested through DMTA, suggesting individuals 

with varying diets before death, covering the entire dietary spectrum. This could be 

interpreted as further evidence for seasonal variations in vegetation availability or high 

vegetation heterogeneity in the area. Carbon isotope values also showed a large range of food 
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items consumed by individuals from these three taxa, with individuals with C4 -dominated 

diets, but also individuals with mixed C3 - C4 diets. The assemblage is dominated by C4 -diets 

in the Tulu Bor (~3.44-2.64 Ma) and KBS (1.87-1.61 Ma) members, while individuals with C3 

- C4 diets are found in Burgi member (~2.64-1.87 Ma), mostly for genus Antidorcas. A wide 

range of oxygen stable isotope ratios was also observed in this locality suggesting varied 

aridity conditions, potentially in relation to a mixture of closed- and open-canopy habitats. 

This wide range of dietary practices observed across methods for three of the studied taxa in 

the Koobi Fora formation could reflect, once more, high vegetation heterogeneity in the area 

or high seasonality in dietary patterns, related to seasonal plant availability, and/or to 

seasonal niche competition.  
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Table 71: Summary table of multiproxy dietary interpretations for all studied taxa, for each member of the Koobi Fora formation. 

Subset Member (Ma) Aepyceros Antidorcas Equus Giraffa

All

Poorly abrasive diet through life 

but high proportion of C4-plants 

during early years  and fruit-

browsing-feeding habits before 

death

Moderately abrasive diet through 

life with high proportion of C4-

plants during early years and fruit-

browsing habits before death

Grazing habits dominated by C4-

plants through life and mixed-

feeding behaviours before death

Poorly abrasive diet through life 

with leaf-browsing/browsing 

habits dominated by C3-plants 

though life and before death

Tulu Bor (3.44- 2.64)

High proportion of C4-plants during 

early years and browsing habits 

before death (n=1)

Relatively high proportion of C4-

plants during early years and mixed-

feeding habits before death

Grazing habits dominated by C4-

plants during early years

Leaf-browsing/browsing habits 

dominated by C3-plants though life 

and before death

Burgi (2.64- 1.87)

Poorly abrasive diet through life 

with high proportion of C4-plants 

during early years and mixed-

feeding habits before death

Poorly abrasive diet through life 

with relatively high proportion of 

C4-plants during early years in 

some specimens, and mixed-

feeding/fruit-browsing habits 

before death

Grazing habits dominated by C4-

plants through life and during early 

years, and mixed-feeding 

behaviours before death

Poorly abrasive diet through life 

with leaf-browsing/browsing habits 

dominated by C3-plants though life 

and before death

KBS (1.87 -1.61)

Poorly abrasive diet through life 

with high proportion of C4-plants 

during early years and mixed-

feeding habits before death

Abrasive diet and high proportion 

of C4-plants through life but mixed-

feeding/fruit-browsing habits 

before death

Grazing habits dominated by C4-

plants through life and during early 

years, and mixed-feeding 

behaviours before death

Poorly abrasive diet through life 

with leaf-browsing/browsing habits 

dominated by C3-plants though life 

and before death
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Interestingly, previous studies of faunal composition have shown that, while each member of 

the Koobi Fora formation was dominated by the Reduncini tribe (potentially indicative of C4 

-mesic environments), the second most abundant tribe differs across members, with 

Tragelaphini being well-represented in Tulu Bor and Burgi members, but outnumbered by 

Alcelaphini specimens in KBS member. This could suggest a shift from habitats with a wide 

change of C4 and C3 resources (as preferred by tragelaphins) to habitats dominated by C4 -

dominated environments (as preferred by alcelaphins), at ~1.87 Ma. This is in agreement 

with the increase in δ13C values observed for the Antidorcas recki specimens analysed in this 

study, and with the gradual increase in consumption of tough and abrasive food items before 

death observed for Aepyceros and Giraffa specimens via dental microwear textural analysis 

(i.e. decrease in complexity, Asfc).  

The apparent increase in δ18O values observed between the Burgi and KBS members for 

Aepyceros and Equus specimens could also reflect an increase in aridity conditions in this 

locality after ~ 1.87 Ma. A shift from C3 -dominated to C4 -dominated environments has been 

suggested in other studies, such as from paleosol carbonates and palaeontological studies 

(Cerling, Bowman and O’Neil, 1988; Harris, 1991; Reed, 1997; Bobe et al., 2007; Quinn et al., 

2007; Levin et al., 2011). Such changes in environmental conditions could relate to the 

transition from a river system in Tulu Bor and Burgi members to a lacustrine phase in KBS, 

as suggested by palaeo-geographic reconstructions (Brown and Feibel, 1991; McDougall and 

Brown, 2008). Furthermore, several studies suggested that environments were likely more 

heterogeneous in the Burgi member, with more closed woodlands in the north and more 

open habitats in the south, providing a mixture of woodland and grassland areas (Harris, 

1991; Reed, Fleagle and Leakey, 2007). Such habitat conditions could explain the higher 

number of individuals demonstrating mixed C3 - C4 dietary signals in samples from Koobi 

Fora dating between 2.64 and 1.87 Ma and the wide range of δ18O values observed in the 

Burgi and KBS members.  
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Overall, the dietary patterns observed across the studied taxa from the Koobi Fora formation 

likely suggest rather heterogeneous habitats in this locality during the Plio-Pleistocene, with 

a gradual increase in the proportions of C4 -resources in the landscape, which could relate to 

an increase in aridity conditions, especially after ~1.87 Ma. Similarly to the stable carbon 

isotope ratios observed across the Koobi Fora sequence, isotopic studies of fossil 

hippotamids, suids and elephantids have suggested an increase in C4 -vegetation included in 

the diet of these taxa in the Upper Burgi member, compared to the Tulu Bor member  (Cerling 

et al., 2010; Souron, Balasse and Boisserie, 2012).  

The highly variable dietary signals observed among Aepyceros, Antidorcas and Equus 

specimens via dental microwear textural analysis suggest variable dietary behaviours during 

the few weeks before the death of the individuals, which could reflect the presence of a large 

range of resources, either all year round or seasonally, which allowed the individuals to vary 

their diet if necessary when facing a shortage of their “preferred” food resources due to 

seasonal variation in vegetation availability, or to niche competition. Indeed, seasonal 

variation in food availability could explain the high dietary variability observed in these 

specimens, especially when discrepancies were observed at the individual-scale between 

life-time dietary patterns (assessed via mesowear and/or stable isotope analyses) and short-

term dietary signals (assessed via DMTA, i.e. last supper effect).  

7.4.2.2 Nachukui formation, West Turkana 

Similarly to specimens from Koobi Fora, Giraffa specimens from the Nachukui formation 

were classified as browsers across all methods (Table 72). Results for Equus specimens were 

also consistent across methods, suggesting a prevalence of grazing habits.  

Results for Aepyceros individuals in this locality suggested varied dietary patterns through 

time, potentially suggesting seasonal variations in diet, with evidence for grazing, browsing 

and mixed-feeding to fruit-browsing practices. Results for Antidorcas individuals suggested 
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some degree of dietary variation as well, with grazing, browsing and mixed-feeding signals, 

although results remain difficult to interpret with confidence due to very small sample sizes 

for this taxon in this locality (i.e. n<4). Both mixed-feeding antelope taxa demonstrated a 

prevalence of fruit-browsing behaviours during the few weeks before their death (i.e. via 

DMTA), associated to either C4 -dominated or mixed C3 - C4 early years diets (i.e. via stable 

carbon isotopes). Such results could reflect seasonal variation in food availability, either due 

to seasonal changes in land cover, local habitat heterogeneity, and/or to niche competition 

with other species.  
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Table 72: Summary table of multiproxy dietary interpretations for all studied taxa, for each member of the Nachukui formation. 

Subset Member (Ma) Aepyceros Antidorcas Equus Giraffa

All

Moderately abrasive diet through 

life with high proportion of C4-

plants during early years and fruit-

browsing habits before death

Mixed-feeding habits with mixed 

C3-C4 plants during early years 

and fruit-browsing habits before 

death

Moderately abrasive diet through 

life but high proportion of C4-

plants during early years and 

abrasive diet before death

Leaf-browsing habits dominated 

by C3-plants during early years 

and before death

Lomekwi (3.44 -2.53)

Moderately abrasive diet through 

life with high proportion of C4-

plants during early years and mixed-

feeding/fruit-browsing habits 

before death

High proportion of C4-plants during 

early years and mixed-feeding 

habits before death

/

Leaf-browsing habits dominated by 

C3-plants during early years and 

before death

Lokalalei (2.53 - 2.33)

Poorly abrasive diet through life 

with high proportion of C4-plants 

during early years and mixed-

feeding habits before death

C3-diet during early years and 

browsing behaviour before death 

(n=1)

/ /

Kalochoro (2.33 - 1.9) /

Mixed-feeding habits with mixed 

C3-C4 plants during early years 

(n=1)

Moderately abrasive diet through 

life with high proportion of C4-

plants during early years and 

abrasive diet before death

Browsing habits dominated by C3-

plants during early years (n=1)

Kaitio (1.9 -1.61)

Poorly abrasive diet through life 

with high proportion of C4-plants 

during early years and fruit-

browsing habits before death

/

Poorly abrasive diet through life 

with high proportion of C4-plants 

during early years and abrasive diet 

before death (n=1)

/
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Potential evidence for dietary variation through time was found for impala samples from the 

Nachukui formation, with stable carbon isotopes suggesting a slight increase in the amount 

of C4 -vegetation included in their diet after ~2.8 Ma, and use-wear analyses pointing to a 

reduction of the abrasiveness of the food items consumed after ~2.33 Ma and an increase in 

the consumption of hard food items such as fruits and seeds after ~1.9 Ma. This could relate 

to changing vegetation conditions in West Turkana throughout the Plio-Pleistocene, with a 

gradual increase in the presence of open-grassland habitat from ~2.8 Ma onwards but with 

varied habitats that retain a significant proportion of woody vegetation available to the 

impalas, especially after ~2.33 Ma. The large range of complexity values (Asfc) observed for 

impala specimens from the Kaitio member could reflect an increased temporal variability of 

vegetation composition (either seasonal or in relation to longer-scale climatic variations 

within the member) after ~1.9 Ma, with individuals feeding on a varying amount of browse 

before death depending on the season/period in which they died.  

According to previous studies focusing on the faunal composition of the Nachukui fossil 

deposits, the faunal assemblage was dominated, overall, by the Alcelaphini and Reduncini 

tribes, usually both considered as dedicated-grazers. Alcelaphines were the most abundant 

specimens in the Lower-Middle Lomekwi member, while reduncins were most abundant in 

the upper Lomekwi, Lokalalei and Kalochoro members. Although alcelaphins were well-

represented as well in Kaitio member, the Tragelaphini tribe dominates the assemblage from 

this member. These patterns of faunal abundance suggest a rather high competition for C4 -

monocot resources between ~3.44 and 1.9 Ma, when both Alcelaphines and reduncins 

dominated the assemblage.  

Previous palaeo-environmental reconstruction for the Nachukui formation have suggested 

the presence of diverse habitats with a mosaic pattern of vegetation cover across the area, 

relatively wet with the presence of a perennial water source, and dominated by woodland 

and wooded-grassland (Reed, 1997; Brugal, Roche and Kibunjia, 2003; Tiercelin et al., 2010; 
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Quinn et al., 2013). These studies suggest as well an overall increase in grassland after 1.61 

Ma, although C3 -woodlands remained an important vegetation component. Similar patterns 

were observed in the present study, first through the wide range of δ18O values found in this 

locality, potentially reflecting a wide range of aridity conditions with open- to close-canopy 

habitats, dominated by lower δ18O values suggesting a dominance of relatively closed-canopy 

habitats, especially after ~1.9 Ma (i.e. Kaitio member). A gradual increase in C4 -resources in 

the environment of the Nachukui formation is also suggested from the present study, with a 

slight increase in δ13C values for Aepyceros specimens from ~2.8 Ma (i.e. upper Lomekwi). 

High vegetation heterogeneity was also suggested from the mixed-feeding behaviours of the 

studied antelope species before death (i.e. DMTA), which could reflect the presence of various 

food resources in the area able to sustain a wide range of dietary requirements.  

All of these results suggest the presence, in west Turkana, of a rather heterogeneous 

environment able to provide a sufficient amount of graze for fossil equid, springbok and 

impala populations (and other grazers such as reduncins and alcelaphins), as well as browse 

for fossil giraffids and mixed-feeding species such as impalas, springboks and other 

competitors such as tragelaphins.  

7.4.2.3 Shungura formation, Lower Omo river valley 

The palaeo-dietary analyses performed on Aepyceros and Giraffa specimens from the 

Shungura formation highlighted, overall, typical C3 -browsing behaviours through life for 

fossil giraffids, and moderately abrasive yearly diets typical of mixed-feeders among most 

impala specimens, with proportions of C3 and C4 resources in their diet that varied depending 

on the member studied (Table 73). The mean δ13C values recorded for Giraffa specimens 

were slightly lower in the Shungura formation compared to the Koobi Fora formation, likely 

reflecting the presence of denser closed-canopy habitats in the Lower Omo river valley 

compared to East Turkana, as expected from previous studies. Similarly, the δ18O values 

measured from Giraffa specimens from this locality showed a large range of variation 
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through time, with a gradual decrease in values through time, but peaks of 18O-enriched 

values in members B (~3.44-2.91 Ma) and D (~2.52-2.4 Ma), which might relate to peaks in 

aridity in the region during these periods.  
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Table 73: Summary table of multiproxy dietary interpretations for all studied taxa, for each member of the Shungura formation. 

Subset Member (Ma) Aepyceros Giraffa

All

Moderately abrasive diet through life with relatively high 

proportion of C4-plants during early years and leaf-

browsing habits before death

Poorly abrasive diet through life, dominated by C3-plants 

during early years

B (3.44 - 2.91)

Moderately abrasive diet through life with high proportion of 

C4-plants tduring early years in some specimens (as well as 

individuals with mixed C3-C4 diets) and mixed-

feeding/browsing habits before death

Moderately abrasive diets through life dominated by C3-

plants during early years

C (2.91 - 2.52)

Poorly or moderately abrasive diets through life with with 

mixed C3-C4 plants during early years and browsing habits 

before death

Moderately abrasive diets through life dominated by C3-

plants during early years

D (2.52 - 2.4)

Moderately abrasive diet through life with high proportion of 

C4-plants during early years and mixed-feeding habits before 

death

Poorly abrasive diets through life dominated by C3-plants 

during early years

E (2.4 - 2.32)

Moderately abrasive diet through life with high proportion of 

C4-plants during early years and mixed-feeding habits before 

death

C3-dominated diets during early years

F (2.32 - 2.27)

Moderately abrasive diet through life with high proportion of 

C4-plants during early years and mixed-feeding habits before 

death

C3-dominated diets during early years

G (2.27 - 1.9)

Moderately abrasive diet through life with high proportion of 

C4-plants during early years and mixed-feeding/grazing habits 

before death

C3-dominated diets during early years
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Evidence for dietary variation through time was observed more distinctly for impalas from 

the Shungura formation across all dietary proxies, with alternating shifts between mixed 

diets and diets dominated by C4 -graze. A predominance of mixed diets was highlighted for 

specimens from members B and C (3.44-2.52 Ma), with most individuals from member B 

demonstrating mesowear patterns and δ13C values more typical of mixed-feeders, and 

individuals from member C yielding the lowest values recorded in the assemblage for all 

proxies, indicating a significantly higher proportion of browse included in the diet compared 

to other members. Both Giraffa and Aepyceros presented a decrease in mean mesowear 

scores between member B and C, potentially suggesting a less abrasive life-time diet between 

~2.91-2.52 Ma, compared to individuals living between ~3.44-2.91 Ma, which could reflect 

habitats with higher proportions of soft-food items such as leaves. Similarly, both taxa have 

lower δ18O values in member C, which could indicate wetter, less arid environments during 

that time period.  

A significant shift towards diets dominated by more abrasive C4 -food items was observed for 

impala specimens from members post-dating ~2.52 Ma, suggesting a stronger reliance on 

graze for these specimens, although a shift back to slightly less abrasive/ C4 -dominated diets 

was suggested for individuals from member E (2.4-2.32 Ma). Results from stable oxygen 

isotope analyses also suggested a shift towards slightly more mesic habitats in member E, 

when compared to geologically older members (i.e. prior 2.4 Ma). The gradual increase in 

grazing practices observed through time from ~2.52 Ma (i.e. member D) for impalas from the 

Lower Omo-river valley could relate to a gradual increase in graze availability in the region 

as a result of seasonal change, climate change or niche competition.  

This is consistent with previous studies of bovid abundance and palaeo-diet which suggested 

that a change occurred at ~2.52 Ma onwards (from member D) from palaeo-environments 

dominated by woodlands, riverine forests and mesic grasslands in members B and C to an 

environments with an increased presence of C4 -vegetation (Bobe and Eck, 2001; Negash et 
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al., 2015). Similarly, previous studies of faunal abundance in the Shungura formation 

highlighted a gradual decline in representation of tragelaphins in the fossil deposits after 

~2.32 Ma, suggesting a gradual increase in C4 -dominated environments from that period. 

This trend suggested in previous studies is in agreement with the shift in dietary practices 

observed in this study for Aepyceros specimens when using carbon stable isotopes. 

Despite the gradual increase in C4 -environments observed across the fossil record, it is 

interesting to note that the mean δ13C values observed for Aepyceros specimens from 

member E are slightly lower than the values observed in members D, F and G, suggesting the 

inclusion of slightly more C3 -vegetation in the impalas’ diet between ~2.4-2.32 Na. Similarly, 

mesowear scores from Aepyceros specimens from member E are slightly lower than for 

specimens from members D, F and G, suggesting a poorly abrasive diet, likely dominated by 

soft browse. The environment of member E has been described previously as likely 

characterised by well-watered woodland–bushland with a riparian woodland or forest 

(Reed, 1997; Alemseged, 2003). Such conditions could explain the lower mesowear scores 

and δ13C values observed for fossil impalas in this member, compared to members F and G, 

and point to shifting environmental conditions in the lower Omo river valley during the Plio-

Pleistocene, with a gradual increase in C4 -dominated habitats, but with a persisting presence 

of woodland and closed-canopy habitats, more or less developed depending on the time 

period.   

Overall, mesowear and microwear analyses of the Aepyceros assemblage indicated, overall, 

lifetime diets dominated by mixed-feeding patterns throughout most of the sequence after 

~2.52 Ma, suggesting a high variation in diet (either seasonally and all-year round) and 

associated habitats with a large range of food resources available to impala populations in 

the region. In line with this hypothesis, previous palaeo-environmental reconstructions for 

the Shungura formation have suggested the presence of mosaic habitats ranging from forests 

to open woodlands between ~3.4 and 2.0 Ma (Jaeger and Wesselman, 1976; Bonnefille and 
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Dechamps, 1983; Wesselman, 1984; Bobe and Eck, 2001; Alemseged, 2003; Levin et al., 2011; 

Bibi et al., 2013; Barr, 2015; Plummer et al., 2015; Negash et al., 2015; Blondel et al., 2018; 

Martin et al., 2018). For instance, studies of faunal abundance showed that the Shungura 

formation was inhabited during the Plio-Pleistocene by large number of bovids, among which 

the Reduncini, Tragelaphini and Aepycerotini tribes dominate. The dominance in the habitat 

of grazing, browsing and mixed-feeding species suggests the presence of a wide range of 

resources in the area, able to sustain various species with different dietary requirements. 
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7.4.3 Stable oxygen isotopes and aridity  

 

In addition to the other proxies studied to reconstruct the palaeo-dietary behaviours of fossil 

Aepyceros specimens, stable oxygen isotope data were sought to analyse climate changes as 

experienced by local species, since δ18O values in mammalian tissues are believed to vary due 

to changes in air temperature, humidity and precipitation/evaporation balance within an 

ecosystem (McCrea, 1950; Dansgaard, 1964; Schmidt, LeGrande and Hoffmann, 2007). This 

section discusses varying aridity conditions in the Plio-Pleistocene Omo-Turkana basin as 

assessed through stable oxygen isotope analyses of fossil impala specimens (genus 

Aepyceros). Variations in aridity conditions are first considered on a longer time-scale (i.e. 

across members), before being assessed at seasonal scale (i.e. intra-tooth analyses).  

7.4.3.1 Habitat types and long-term aridity conditions: data from bulk analysis 

As suggested when δ18O values were compared between fossil and modern species 

previously in this chapter, a dichotomy was observed between Giraffa specimens and 

specimens from the other three taxa, which could be related to differing biological processes 

between taxa (i.e. evaporation sensitive (ES) vs. evaporation-insensitive (EI) species). If this 

previous hypothesis is correct, the spatial and temporal patterns observed in δ18O values 

likely reflect patterns of local aridity conditions when observing values from ES species (here 

Giraffa), and patterns of meteoric water 18O composition when observing values from EI 

species (here Equus, Antidorcas and Aepyceros). The fact that specimens from Equus, 

Antidorcas and Aepyceros assemblages appear to follow a similar pattern of δ18O values 

across localities (i.e. high values in Koobi Fora, low values in Nachukui, and mid-range values 

in modern specimens; see Figure 76) suggest that these three taxa likely shared similar 

biologics and water-requirements and, hence, might all reflect the same aspect of their 

palaeo-environments: the δ18O composition of meteoric water. If this was the case, the results 

presented for oxygen isotopes suggest local meteoric waters that were relatively depleted in 
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18O in Nachukui and, in comparison, local meteoric waters that were relatively enriched in 

18O in Koobi Fora. Because previous studies have suggested that species foraging in open 

landscapes tend to have 18O-enriched isotopic signals compared to species feeding in 

forested/closed-canopy habitats due to higher evaporation rates in open-canopy landscapes 

(Quade et al., 1995; Ehleringer, 2005; Merceron et al., 2013), these results could suggest more 

open habitats in the Koobi Fora formation and more closed habitats in the Nachukui 

formation during the Plio-Pleistocene.  

However, when oxygen isotope patterns were observed through time (see Figure 77) the 

patterns of variation in δ18O values differed between Equus, Antidorcas and Aepyceros, 

especially when comparing the Antidorcas assemblage with the Aepyceros and Equus 

assemblages. This could suggest differing drinking patterns between Antidorcas and 

Aepyceros/Equus fossil specimens. If fossil Antidorcas species had a similar dietary ecology 

than their extant relatives, this taxon is unlikely to be a faithful proxy for local meteoric water, 

as it is not water-dependant and might obtain most of its body water from plant-water. On 

the contrary, modern zebras and impalas are water-dependant, which could suggest that the 

ancestral species belonging to these genera could have been similarly highly water-

dependant and therefore have obtained most of their body water from meteoric water. 

Genera Aepyceros and Equus might therefore be better indicators of variation in local 

meteoric water composition through time.  

7.4.3.2 Seasonal variation in aridity conditions: data from intra-tooth analysis 

As suggested by previous studies (e.g. deMenocal, 2004; Potts, 2013; Maslin et al., 2014; 

Quinn, 2015), changes in species δ18O mean values and increased intra-tooth variance in δ18O 

values through time may correspond to climatic shifts due to heightened aridity or humidity 

and to changes in climatic variability, respectively. Higher δ18O values would be expected 

under arid conditions, as increased aridity produces more evaporative conditions impacting 

both surface and leaf waters. Lower δ18O values would be expected under more humid 
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conditions, either seasonally or on the longer term (i.e. humid climatic pulses). Subsequently, 

intra-tooth δ18O variance in the studied impala specimens may reflect periods of relatively 

high and low climatic variability, with larger ranges of δ18O values observed in specimens 

living at a time of relatively high climatic instability. 

The analysis of intra-tooth sequences showed, overall, a strong positive correlation between 

δ13C and δ18O values with synchronous peaks and decreases in both carbon and oxygen 

isotopic ratios throughout the intra-tooth sequences studied. These observations contrast 

with the results obtained from the modern impala specimens sampled by Copeland et al. 

(2009) in the Akagera National Park (Rwanda), where decreases in δ13C values appear to 

have been, for most specimens, synchronous with increases in δ18O values. This could 

potentially be explained by the dietary patterns observed in this impala population in which 

individuals fed preferentially on graze during the wet season (i.e. higher δ13C due to C4 -

dominated diets, associated to lower δ18O due to lower evaporation rates) and on browse 

during the dry season (i.e. lower δ13C due to mixed C3 - C4 diets, associated to higher δ18O due 

to higher evaporation rates). In contrast, the strong correlations observed between δ13C and 

δ18O values in fossil Aepyceros shungurae specimens could suggest that fossil impala 

specimens did adapt their diet with seasonally changing conditions, feeding preferentially on 

graze during the dry season (i.e. higher δ13C due to C4 -dominated diets, associated to higher 

δ18O due to high evaporation rates) and on mixed C3 - C4 diets during the wet season (i.e. 

lower δ13C due to mixed C3 - C4 diets, associated to lower δ18O due to lower evaporation rates). 

Such dietary patterns would then suggest that fossil mixed-feeding species such as fossil 

impalas could indeed be good environmental proxies, as they tend to adapt their diet to 

changing aridity and local vegetation conditions.  

However, seasonal variation in local environmental conditions are not the only possible 

explanation for the variations in stable oxygen isotope ratios observed among fossil impala 

specimens. For instance, because meteoric water δ18O values vary geographically due to 
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different climates and source rains (e.g., Dutton et al., 2005), the high variability of δ18O 

values observed within the intra-tooth sequence could potentially reflect as well migratory 

behaviours that led to changing drinking water sources throughout the lives of the 

individuals. Although modern impala populations do not migrate over long distances and 

remain sedentary (Estes, 1991), it cannot be ruled out that fossil impala populations did 

migrate seasonally. Another potential explanation for intra-tooth variation in δ18O values 

could be the inclusion, seasonally, of wetland sedges, fruits, and/or underground storage 

organs, which tend to yield relatively low δ18O values (Lee-Thorp, 2011; Grine et al., 2012). 

The strong correlations observed between δ18O and δ13C values across the intra-tooth 

sequences studied for fossil Aepyceros shungurae specimens could suggest a strong 

relationship between diet and body water content, hence arguing for the seasonal inclusion 

of a significant amount of moisture rich food-materials, such as fruits, leaves, sedges, and 

perhaps succulents.  

Overall, the wide range of intra-tooth δ18O values observed for Aepyceros shungurae 

specimens from the Shungura formation suggest seasonal shifts in the isotopic content of the 

ingested water. These variations of the impala body water-δ18O values likely resulted from 

seasonal environmental changes that modified the isotopic composition of the local meteoric 

water from which the specimens were acquiring most of their body water, or to seasonal 

dietary shifts that lead to a seasonal increase in the amount of body water acquired from 

moisture rich food-materials (e.g. fruits, leaves, sedges, succulents). 

Similarly to previously published results from intra-tooth analysis of hippopotamid remains 

from the Shungura formation (Souron, Balasse and Boisserie, 2012), an increase in the 

amplitude of variation of δ18O values was observed between impala specimens from member 

B and member C (from 5.23‰ to 7.71‰, respectively). This could suggest an increased 

seasonality of rainfall amount in the lower Omo-river valley between 3.44 and 2.52 Ma, as 

suggested as well from the results of Souron et al. (2012). The smaller amplitudes of δ18O 
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values observed in the specimens studied from members D and F (~4‰) could therefore 

imply a reduced seasonality in rainfall amount between 2.52 and 2.27 Ma. In turn, the 

significantly larger ranges of δ18O values observed in specimens from members G could 

suggest that these individuals lived at a time of relatively high climatic variability associated 

with high seasonal variations in rainfall amount between 2.27 and 1.9 Ma. This hypothesis 

would agree with previous research that hypothesized that seasonal and interannual rainfall 

variability in eastern Africa increased at ~2.0 Ma in response to the Plio-Pleistocene 

intensification of the Walker Circulation (Ravelo et al., 2004; Blumenthal et al., 2017; Hopley 

et al., 2018). However, future analysis of additional impala specimens for these members will 

be required to confirm such trend. 
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7.4.4 Dietary plasticity of mixed-feeding antelope taxa as a proxy for 

palaeo-environmental change 

7.4.4.1 Spatial and temporal variability in feeding patterns of fossil Aepyceros 

As illustrated by the results from this study summarised in 3.5.2, highly variable dietary 

patterns could be observed for fossil impala specimens (genus Aepyceros), as predicted based 

on previous studies of their extant relatives. While little difference in feeding behaviours 

could be observed for the obligate-grazing (genus Equus) and obligate-browsing (genus 

Giraffa) taxa, significant differences could be observed between Aepyceros samples across 

the three Omo-Turkana formations considered when assessing intra-generic variation in 

dietary patterns. The main differences that arose, when considering the dietary patterns of 

fossil impala specimens across the Omo-Turkana basin, were between specimens from the 

Shungura formation, in the Lower Omo river valley, and specimens from the Koobi Fora and 

Nachukui formations, more particularly (Figure 92). Indeed, stable carbon isotope analyses 

suggested diets with a stronger C4 -component for Aepyceros specimens from the Koobi Fora 

and Nachukui formations compared to specimens from the Shungura formation, which could 

potentially relate to drier, more open environments East and West of the basin in comparison 

to wetter, more varied environments in the Lower Omo-river valley. Similarly, results from 

dental microwear textural analysis suggested, for fossil impala specimens, poorly abrasive 

diets before death in Shungura, similar to the diets of leaf-browsing species, in contrast with 

the mixed/fruit-browsing feeding behaviours observed in most specimens from Koobi Fora 

and Nachukui. This could indicate the availability, in the Lower Omo-river valley, of softer 

food items, such as leaves, than in the other two studied localities.
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Figure 91: Aepyceros dietary variability though time, as assessed by (from left to right) dental microwear textural analysis (anisotropy and complexity), mesowear analysis 
(mesowear score), carbon stable isotope analysis (δ13C), oxygen stable isotope analysis (δ18O), and fraction of woody canopy cover (based on pedogenic carbonate data from Levin 
et al. 2011, converted following the equation developed by Cerling et al., 2011). 
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These patterns of dietary variation among fossil Aepyceros populations, and the inferred 

palaeo-environmental conditions, are consistent with previous studies which have 

suggested, based on other proxies, that more arid open habitats characterised Plio-

Pleistocene habitats in Koobi Fora and Nachukui, while more wet closed environments 

characterised habitats in the Shungura deposits (see 2.2.2). For instance, a similar pattern 

has been previously observed from paleosol carbonates data, which suggested a prevalence 

of closed-canopy habitats in the Lower Omo river valley, as opposed to prevailing open-

canopy habitats in east and west Turkana (Levin et al., 2011) (see also Figure 91).  

While δ13C values were very similar between Koobi Fora and Nachukui for Aepyceros 

specimens, δ13C values were slightly higher for specimens from west Turkana, suggesting a 

stronger reliance on C4 -vegetation in that locality compared to east Turkana. A similar 

pattern was observed, to a lesser extent, in the dental microwear textural patterns of this 

taxon which demonstrated, overall, lower complexity and higher anisotropy values in 

Nachukui compared to Koobi Fora, implying the consumption of more tough and abrasive 

food items (such as C4 -monocots) before death among specimens from west Turkana. This 

could relate to environments more clearly dominated by more open C4 -grassland habitats 

and more arid in the Nachukui formation, compared to Koobi Fora. These observations would 

agree with previous studies of faunal abundance and diversity which suggested that the 

Nachukui formation documents deposits from more open and drier habitats in the basin, as 

opposed to more complex habitats in the Koobi Fora formation (Bobe et al., 2007). Such 

differing patterns between East and West Turkana could relate to the complex configuration 

of the Turkana basin highlighted by palaeo-geographical studies, with the environments 

sampled in the Nachukui formation likely located more marginally away from the course of 

the palaeo-Omo river than the environments sampled in the Koobi Fora formation (Feibel, 

Harris and Brown, 1991).  
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However, recent studies highlighted as well the complexity and spatial heterogeneity that 

likely characterised paleo-habitats in this region (e.g. Du and Alemseged, 2018), with 

fragmented habitats that differed depending on their proximity to the lake margins, 

especially in the Koobi Fora deposits  (Quinn et al., 2007; O’Brien et al., 2020). Similarly, 

previous studies of the Nachukui deposits have suggested that the west Turkana area likely 

supported rather heterogeneous habitats during the Plio-Pleistocene, with varying 

proportions of grassland, bushland and woodland through time (Brugal, Roche and Kibunjia, 

2003; Quinn et al., 2013). For both localities, regional landscapes were suggested to be highly 

fragmented, more particularly, after ~2.0 Ma. For the Shungura formation, most studies 

suggested the presence of mosaic habitats throughout the sequence (e.g. Bobe and Eck, 2001; 

Alemseged, 2003; Levin et al., 2011; Negash et al., 2015; Blondel et al., 2018), which is 

consistent with the results obtained in this study from both mesowear and carbon isotope 

analyses of fossil Aepyceros specimens, for which the dietary signals observed were typical 

of species with mixed-feeding behaviours. The multi-scale dietary variability observed 

among the Aepyceros specimens studied for the Koobi Fora and Nachukui localities could 

relate to some degree of habitat heterogeneity in these two localities. However, it remains 

difficult to assess whether these varied diets were related to seasonal changes in local 

vegetation conditions, or to the presence of year-round mosaic habitats on the eastern and 

western margins of the basin.  

When considering temporal variations in the dietary patterns of fossil impala populations 

throughout the Plio-Pleistocene sequence, interesting patterns could be observed, as 

described previously for each of the Omo-Turkana fossil localities (3.5.2) and as summarised 

in Figure 91. Overall, the differences in dietary patterns observed for fossil Aepyceros 

specimens when comparing assemblages from different members appeared to coincide with 

environmental shifts indicated by previous studies based on other types of fossil evidence. 

Most particularly, the suggested shifts in dietary behaviours observed through time for 

impala specimens from the Shungura formation were shown to be consistent throughout all 
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of the dietary proxies used in this study, and to compare well with other paleo-environmental 

proxies such as paleosol carbonates (Levin et al., 2011; see also Figure 91) or paleo-dietary 

analyses of other adaptable herbivore species (e.g. Blondel et al., 2018).  

The varied dietary behaviours observed for genus Aepyceros across the Omo-Turkana basin 

during the Plio-Pleistocene and the consistence with which these observations compare well 

with previous palaeo-environmental reconstructions demonstrate that abundant fossil 

herbivore species can potentially be useful indicators of palaeo-vegetation conditions in the 

past, most particularly when focusing on species of high dietary plasticity.  

7.4.4.2 Seasonal variability in feeding patterns of fossil Aepyceros 

In addition to the high spatial and temporal variability in feeding behaviours observed across 

the studied assemblage for fossil impala specimens (genus Aepyceros), results from this study 

showed, in the Plio-Pleistocene fossil record, a high degree of seasonal dietary variability for 

all of the Aepyceros shungurae specimens sampled for intra-tooth isotopic analysis. The 

stable carbon isotope ratios observed suggested, overall, diets dominated by C4 -vegetation, 

with shifts to mixed C3 - C4 diets for some of the specimens. These results would suggest that 

fossil Aepyceros shungurae specimens did vary their diet seasonally, but favoured C4 -

vegetation, similarly to their extant relatives. 

Evidence for seasonality in diet had been only assessed for impala, so far, in modern 

populations (Wronski, 2002; Sponheimer, Grant, et al., 2003; Botha and Stock, 2005; Codron 

et al., 2006; D. Codron et al., 2007; Copeland et al., 2009; Cerling et al., 2015). Indeed, previous 

studies have suggested that modern impalas tend to select their food depending on protein 

content to maintain high levels of diet quality, favouring grass during the wet season when 

its quality is higher, and browse during the dry season due to decreasing protein content in 

grasses (Dunham, 1980; Wronski, 2003; Codron et al., 2006). If fossil impalas, similarly to 

their modern counterparts, varied their diet seasonally to maximize forage quality, intra-
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tooth variation in stable carbon isotope ratios was expected, with lower δ13C values 

corresponding to browsing/mixed-feeding intervals (likely during the dry season) and 

higher δ13C values corresponding to grazing intervals (likely during the wet season).  

As previously mentioned (3.5.1.2), the intra-tooth data collected for this study confirmed the 

likely seasonal variation in diet of fossil impala species but suggested a stronger reliance of 

C4 -food resources in fossil Aepyceros shungurae individuals compared to modern impala 

populations. Indeed, intra-tooth isotopic evidence revealed seasonally varied diets for most 

specimens from the Shungura formation. A. shungurae specimens from members C (2.91-

2.52 Ma), E (2.4-2.32 Ma), and G (2.27-1.9 Ma) were shown to yield large ranges of stable 

carbon isotope values (i.e. ~ -6.5‰ < δ13C < ~ +2‰), indicative of varied diets alternating 

between C4 -material and mixed vegetation, although the isotopic data suggested an 

important C4 -component in the year-round diet of all specimens.  

Smaller ranges of δ13C values were observed for the specimens analysed from members B 

(3.44-2.91 Ma), D (2.52-2.4 Ma), and F (2.32-2.27 Ma), indicative of less variable diets in 

which C4 -vegetation was clearly predominant (i.e. ~ -1‰ < δ13C < ~ +4‰). The range of δ13C 

values observed in these specimens remained within the range of δ13C values usually 

observed in relation to pure grazing behaviours. Yet, despite diets clearly dominated by C4 -

vegetation, each of these specimens displayed an amplitude of δ13C values of ~2-3‰. This 

could indicate the consumption of a wide range of C4 -plant types of differing isotopic 

composition throughout the year, such as arid-adapted NAD-ME grasses typical of xeric 

savannah and bushland, mesic NADP-ME grasses more typical of humid environments, or 

even succulent CAM-plants which tend to mimic the δ13C values yielded by C4 -plants 

(Mooney et al., 1977). Indeed, previous research reported, in the modern Turkana basin area, 

that the carbon isotope ratios of hyper-grazers feeding on arid-adapted grasses tend to yield 

more negative δ13C values (i.e. +1 to +2 ‰) than grazers feeding in more mesic regions (i.e. 

+2 to +4 ‰) (Cerling et al., 2003, 2010). The higher δ13C values (i.e. >3‰) observed in the 
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intra-tooth sequence of the specimens from members E to G could reflect the presence of 

mesic grasslands in the region after ~2.52 Ma. This would be in agreement with previous 

palaeo-environmental reconstructions for these members (e.g. Bobe and Eck, 2001; 

Alemseged, 2003; Negash et al., 2015). These results suggest therefore the presence of a wide 

range of C4 -resources in the Lower Omo-river valley, either all year-round in rather 

heterogeneous habitats, or in quantities varying seasonally due to climatic variations. 

Overall, the intra-tooth data gathered in this study confirm the likely seasonal variation in 

diet of fossil impala species but suggest a stronger reliance of C4 -food resources in fossil 

Aepyceros individuals compared to what was previously recorded among modern Aepyceros 

melampus populations. Such a strong reliance on C4 - (and potential CAM) -vegetation could 

indicate a taxon-specific dietary preference for C4 -vegetation among fossil Aepyceros species. 

However, it could also reflect associated habitats where C4 -vegetation was the vegetation-

type most available to impalas, either due to climatic conditions or to competition for C3 -

resources with other species within the niche. Similarly, the seasonal fluctuation in enamel 

carbon isotope values observed in most of the Aepyceros shungurae specimens studied could 

suggest, when high δ13C values dominate the entire intra-tooth sequence, a seasonal 

alternance between arid-adapted and mesic grasses. This could reflect seasonally changing 

vegetation availability, or the availability of a large range of C4 -resources all year-round from 

which impala populations could alternate seasonally to maximise nutritional content or to 

compensate for seasonal dietary niche competition.  

The highly seasonally variable dietary behaviours observed for genus Aepyceros across the 

Shungura sequence illustrate once more the potential provided by detailed palaeo-dietary 

studies of highly adaptable herbivores species, as they can inform on the diversity of food 

resources that were available to extant species at a given time, not only on a large geological 

scale, but also in finer detail at the seasonal scale.  
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7.5 Conclusion 
 

By assessing in detail the palaeo-dietary behaviours of mixed-feeding herbivores such as the 

impala (genus Aepyceros) and the springbok (genus Antidorcas), this study revealed 

interesting trends of varying feeding behaviours across the Omo-Turkana basin. Significant 

differences in dietary ecology could be observed for these taxa when comparing assemblages 

from different fossil localities, as well as when comparing assemblages between members, 

suggesting significant changes in dietary behaviours through time. This was more 

particularly the case for the fossil Aepyceros assemblage, which benefits from large sample 

sizes due to the abundance of this taxon in the East African fossil record. While the Antidorcas 

recki assemblage from the Omo-Turkana basin was less extensive than that of Aepyceros, 

interesting dietary trends were observed for this taxon, more particularly when compared 

with previous palaeo-ecological studies of A. recki specimens from the South African fossil 

record. Indeed, the predominance of grazing behaviours observed among A. recki specimens 

from eastern Africa contrast with the browsing behaviours suggested for this species in 

South Africa during the Plio-Pleistocene (Luyt, 2001; Lee-Thorp, Sponheimer and Luyt, 2007; 

Sewell et al., 2019). This could relate to differing environmental conditions between these 

two regions, as can be expected due differing latitudinal position and varying degrees of 

volcanic and tectonic activity (King and Bailey, 2006; Reynolds, 2007; Bailey and King, 2011; 

Bailey, Reynolds and King, 2011). However, these differences could also be due to species 

mis-identification, as previous studies have pointed out the difficulty to identify Antidorcas 

specimens at the species-level based on dental remains only, with previous attributions of 

South African specimens to A. recki having been called into question (Vrba, 1976; De Ruiter, 

2001; Adams et al., 2016). The marked difference in inferred dietary signals between A. recki 

specimens from eastern Africa and South Africa could indicate that these assemblages 

actually contained different Antidorcas species, raising once more the question whether A. 

recki truly occurred as one species in both eastern and southern Africa. 
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Most of the palaeo-environmental interpretations drawn from the detailed assessment of 

these mixed-feeding antelope species were shown to be in agreement with previous palaeo-

environmental proxies, highlighting the great dietary plasticity of fossil impala and springbok 

species. As predicted based on the ecology of their extant relatives, impalas and springbok 

were shown to have a great dietary plasticity and to have significantly varied their diet 

depending on the local habitats these species were inhabiting. Results from this study 

therefore suggest that fossil mixed-feeding herbivore species can be excellent indicators of 

past environments, most particularly when they can be studied in detail through various 

proxies. 

The multi-scale approach used in this study allowed to investigate the dietary ecology of 

fossil herbivore to a great detail and to identify variations in dietary behaviours through the 

lifetime of the studied individuals. This allowed to make inferences on habitat heterogeneity 

and seasonal variation in diet in the past, which can seldom be achieved when using a single 

dietary proxy.  

The use of intra-tooth stable isotope analysis in addition to use-wear and bulk isotopic 

analyses provided much needed insights into the seasonality of the dietary patterns observed 

from Aepyceros specimens from the Shungura formation, complementing previously 

published research using this method on other taxa from this fossil formation. More 

specifically, the ranges and patterns of δ18O values observed in the studied assemblage 

suggested a time of relatively high climatic variability associated with high seasonal 

variations in rainfall amount between 2.27 and 1.9 Ma, which would agree with previous 

research that hypothesized that seasonal and interannual rainfall variability in eastern Africa 

increased at ~2.0 Ma in response to the Plio-Pleistocene intensification of the Walker 

Circulation (Ravelo et al., 2004; Blumenthal et al., 2017; Hopley et al., 2018). However, future 

analysis of additional impala specimens for these members will be required to confirm such 

trend. In addition, seasonal variability in diet could not be assessed for the other two 
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localities using this method. It could be interesting, in future work, to attempt comparing the 

degree of seasonality in diet observed through intra-tooth analysis for Aepyceros specimens 

from Shungura, Koobi Fora and Nachukui. This would allow to assess whether the high 

degree of seasonal dietary variation observed for impalas from the lower Omo-river valley 

was mirrored in impalas living further away from the river, closer to the lake margins, where 

palaeo-vegetation conditions differed drastically, as illustrated in this work and in previous 

studies.  

Similarly, future work could focus on assessing the range of impala dietary patterns in more 

spatial detail within each of these fossil localities to tackle questions around within-sites 

habitat diversity. However, due to small sample sizes for most members and most sub-

localities as well as time-averaging issues, it might remain difficult to observe trends in 

dietary behaviours that can be reliably interpreted. 

While results from this study have shown the high potential of using palaeo-dietary data from 

fossil mixed-feeding antelopes to help assess palaeo-vegetation conditions, it remains 

difficult to evaluate, when observing evidence for dietary plasticity and mixed-feeding 

behaviours, whether such behaviours were likely associated to seasonal variation in 

vegetation composition or to year-round locally heterogeneous habitats. To attempt 

providing more tools to interpret fossil evidence, the relationship between land cover and 

dietary behaviours of modern impala populations is explored in the next chapter.  
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Chapter 8: Discussion and conclusion 

 

The Plio-Pleistocene of eastern Africa saw the emergence and disappearance of several 

hominin species, such as Australopithecus afarensis, Homo habilis, Paranthropus boisei, and 

Homo ergaster.  This period and region also saw the advent of stone tool technologies (e.g. 

Lomekwian, at ~3.3 Ma; Harmand et al., 2015), as well as other associated behavioural 

advancements, such as the controlled use of fire (James et al., 1989). Because of the 

abundance of fossil evidence preserved alongside these fossil hominid remains, the region 

and period have been extensively studied in the past to better understand the context of 

human evolution, and theorise about the factors that likely influenced speciation, extinction, 

dispersal events, as well as favoured the technological advancements observed throughout 

the human lineage. As previously mentioned in chapters 1 and 2, major Pliocene and 

Pleistocene climate transitions have been suggested to have led to cooling, drying trends that 

resulted in the spread of grasslands and the shrinking of forests (e.g. Demenocal, 1995; 

Spencer, 1995;, Lee-Thorp et al., 2007), and which were hypothesized, in turn, to have led to 

major changes in the structure and composition of local floral and faunal communities (e.g. 

Vrba 1985). Such changes potentially triggered some of the major biological and behavioural 

changes observed within the hominin clade (e.g. tool use, increase in brain size, dispersal 

events… etc), particularly in relation to the emergence of the genus Homo (Dart, 1925; Hopley 

et al., 2007). 

The Omo-Turkana basin (Ethiopia/Kenya), in particular, has been the focus of many studies 

due to the discovery of several hominin species in relatively rich and well-dated fossil 

deposits. Distinct changes in palaeo-environmental condition in this region were indicated 

by several studies, suggesting a trend of gradual change towards more arid conditions in the 

region between ~4.0 and ~2.0 Ma (e.g. Sepulchre et al., 2006; Feibel and Smith, 2011; 

Fortelius et al., 2016), with increasingly warmer and drier conditions after 2.2 Ma (Cerling 
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and Hay, 1986; Uno, Polissar, Jackson, et al., 2016). However, if most studies agree on the 

general palaeo-environmental trends presented above, more detailed reconstructions of 

habitats within each of the Omo-Turkana basin fossil localities have proven more complex, 

with individual palaeo-environmental proxies sometimes disagreeing for some localities 

during specific time-intervals, more particularly regarding the degree of habitat 

heterogeneity and the amount of C3-vegetation present at the time (e.g. Bobe and Eck, 2001; 

Alemseged, 2003; Brugal, Roche and Kibunjia, 2003; Bobe, 2011; Cerling, Mbua, et al., 2011; 

Levin et al., 2011; Quinn et al., 2013; Domínguez-Rodrigo, 2014; Du and Alemseged, 2018). 

Diverging conclusions between studies could relate to the limitations of each method and of 

the fossil record, but could also highlight the complexity of palaeo-habitats, with each method 

and palaeo-environmental proxy contributing to refining the picture drawn of the landscapes 

inhabited by hominins. 

This research project proposed to take advantage of the abundance of bovid dental remains 

in the Omo-Turkana fossil deposits, and of the multiplicity of methods available for dietary 

ecology studies, to test the relevance of detailed palaeo-dietary analyses of mixed-feeding 

herbivores for palaeo-environmental reconstructions. Ecological data from modern 

populations and their associated habitats were explored as well, to evaluate the strength of 

the relationship between the dietary behaviours of mixed-feeding herbivores, as inferred 

from the isotopic content of their teeth, and the vegetation conditions of their habitats.  

Indeed, while herbivores, especially bovids, are often considered faithful reflectors of 

vegetation conditions in their habitat, and have often been a focus of research (e.g. Vrba, 

1995, 1974, 1980; Harris, 1991; Brink and Lee-Thorp, 1992; Kappelman et al., 1997; Bobe 

and Eck, 2001; Sponheimer, Lee-Thorp, et al., 2003; Lee-Thorp, Sponheimer and Luyt, 2007; 

Lüdecke et al., 2016; Blondel et al., 2018), mixed-feeding species, which tend to have very 

variable diets, have seldom been the focal point of details studies (e.g. Sewell, 2019; Sewell 

et al., 2019). Yet, flexible feeding behaviours could potentially provide interesting data 
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regarding environmental conditions in a studied region, as mixed-feeding species are able to 

adapt their diet locally and/or seasonally according to the prevailing vegetation in the area. 

Because of the abundance of Aepycerotini remains (i.e. the impala, genus Aepyceros) in the 

fossil record of East Africa, and due to the reported dietary plasticity of their extant relatives, 

the impala was selected as the focal study taxon in this project. Similarly, because particular 

attention has been given in previous work, especially for the South African Plio-Pleistocene, 

to another mixed-feeding species, the springbok (genus Antidorcas), the dietary ecology of 

fossil springbok specimens from the Omo-Turkana basin was also studied, to compare with 

that of fossil impala specimens, but primarily to allow future comparisons with datasets from 

South Africa (e.g. Sewell, 2019; Sewell et al., 2019). 

The dietary ecology of these taxa was evaluated through stable carbon and oxygen isotope, 

mesowear and dental microwear textural analyses. The results obtained from these 

complementary methods were combined to evaluate the detailed dietary behaviours of the 

studied fossil species (i.e. early life, lifetime, last weeks prior to death), enabling the 

investigation of the structural properties of the food items consumed (toughness, 

abrasiveness, grain size) as well as their chemical properties (isotopic content). To provide 

more tools to interpret fossil evidence, the influence of local land cover patterns on the 

dietary behaviours of modern impalas was investigated using published stable carbon 

isotope data alongside land cover data from selected study areas in Africa. This data was then 

used to build predictive models designed to evaluate the degree to which some of the Omo-

Turkana habitats (i.e. specific localities and members) might have resembled some of the 

studied modern-day African habitats, in terms of land cover composition and land cover 

structure. 

This project therefore examined the dietary behaviours of selected extant and extinct mixed-

feeding antelopes, using a combination of methods to assess whether detailed studies of the 

dietary ecology of mixed-feeding antelope species could be used to investigate hominin 
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palaeo-environments in the Omo-Turkana basin during the Plio-Pleistocene. More 

particularly, this research aimed to assess whether abundant and adaptable herbivores such 

as the impala or the springbok could prove to be accurate local vegetation proxies, checking 

upon the assumption that their dietary behaviours are mainly influenced by the vegetation 

conditions in their habitats. This was to work towards the following research aims: 

o Provide a new method to compare past and present habitats by testing the relationship 

between modern impala dietary variability and their habitats (i.e. predictive land cover 

models) 

o Study the dietary ecology of mixed-feeding antelope species in the Omo-Turkana basin 

between 3.5-1.6 Ma  

o Discuss the palaeo-environmental implications of the inferred dietary patterns, in 

relation to human evolutionary theories 

 

This chapter discusses the results obtained throughout this study, and how these answer the 

initial research questions set out for this work. Firstly, the potential of combining dietary 

analyses with land cover studies of modern mixed-feeding populations to provide an 

additional tool for palaeo-environmental reconstruction is discussed, as well as the 

differences between fossil taxa and their extant relatives (8.1). Secondly, the dietary ecology 

of the studied mixed-feeding antelope species is examined for the Omo-Turkana basin fossil 

record, summarising the trends observed for the inferred feeding behaviours, and discussing 

their potential palaeo-environmental implications (8.2). Finally, the palaeo-environmental 

conditions in the Omo-Turkana during the Plio-Pleistocene suggested from this study are 

discussed in relation to previous theories linking palaeo-environmental conditions/major 

shifts in climate to mammalian evolutionary events, to evaluate the potential implications of 

results from this study when considering hominin habitats and hominin evolution (8.3). 
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8.1 Mixed-feeding herbivore diets as a palaeo-vegetation proxy 

81.1 Initial research questions 
 

With fossil mammals constituting a significant part of the fossil record in the field of 

palaeontological studies, palaeo-environmental reconstructions are often proposed based on 

in-depth studies of faunal assemblages. The composition of the faunal record as well as the 

relative abundance of specific taxa are often used, for instance, to assess the type of habitats 

that likely provided the optimal environmental conditions for the biodiversity observed from 

the fossil evidence  (e.g. Harris, 1991; Vrba, 1995; Kappelman et al., 1997; Bobe and Eck, 

2001). Herbivores, more particularly, are often considered as faithful reflectors of prevailing 

vegetation types in a habitat because of the various dietary specialisations that are known 

from extant populations, and which can be deducted for extinct species based on specific 

traits such as dental morphology (Janis and Fortelius, 1988; Gagnon and Chew, 2000; Hillson, 

2005). 

Although faunal remains can provide valuable evidence to reconstruct palaeo-environments, 

palaeontological studies can suffer from various biases. For instance, analyses focusing on  

faunal abundance data can suffer from taphonomic and identification/collection biases (e.g. 

Maxwell et al., 2018). These can cloud the palaeo-environmental signal as part of the 

ecological niche sampled might be missing or mis-represented in the assemblage. Another 

bias that can significantly impact palaeo-environmental reconstructions is the fact that 

reconstructions focusing on presence/absence of specific taxa strongly rely on knowledge of 

the behavioural ecology of modern mammals, assuming that ancestral species shared similar 

behaviours with their extant relatives. This bias can be reduced by complementing faunal 

composition studies with palaeo-dietary analyses to check, in addition to morphological 

studies, if the diet of extinct species compares well with that of their extant relatives. 
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In the case of mixed-feeding species such as the impala (genus Aepyceros), however, 

assuming association to a specific habitat type based on their presence in an assemblage may 

be only tentative, as their extant relatives have been described as highly adaptable. Detailed 

studies of modern impala populations, for instance, have shown that these antelopes are 

mixed-feeders with a varying seasonal diet, which can adapt their diet depending on local 

food availability by shifting between grazing and browsing (Wronski, 2002; Sponheimer, 

Grant, et al., 2003; Cerling et al., 2015). Regional variations in dietary content were observed 

in modern populations in several studies (Sponheimer, Grant, et al., 2003; Wronski, 2003; 

Codron et al., 2006; Copeland et al., 2009), suggesting dietary behaviours strongly influenced 

by  forage quality and availability.  

Because forage quality and availability are strongly dependant on local vegetation, climate, 

and soil conditions, it was hypothesized for this research project that the detailed study of 

the diet of impalas might act as a good indicator of local vegetation conditions, in both the 

present and in the past. To test this hypothesis, the relationship between local land cover 

patterns and modern impala dietary behaviours was studied using land cover maps of 

selected modern African landscapes and published stable carbon isotope data. This was to 

test whether modern impala dietary variability could be positively correlated with specific 

habitats and climatic conditions, and assess if such relationship could be used to help 

interpret dietary patterns identified from the fossil record. In addition, the dietary patterns 

of fossil impala and springbok specimens from the Plio-Pleistocene were analysed and 

compared with modern dietary data. This was to evaluate how different the inferred feeding 

behaviours of the studied species were in the past, compared to modern days.  

This section therefore explores the first main research question set out for this project: What 

type of evidence can dietary studies of mixed-feeding herbivores provide to help make 

inferences about the prevailing vegetation conditions of their local habitats? 
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8.1.2 Outcome of this research 

 

What is the relationship between modern impala dietary variability and the 

composition/structure of their habitats (evaluated through land cover analysis of 

modern landscapes)?   

It was hypothesized that, if modern Aepyceros melampus truly adapts its diet to prevailing 

vegetation conditions, the variation in diet observed for different modern populations should 

mirror differences in vegetation cover between their habitats. For instance, if modern impala 

does adapt its diet to prevailing vegetation conditions, impala populations associated with 

closed-wooded environments should yield dietary signals indicative of a preference for 

browse/C3-vegetation, as opposed to populations associated with open-grassland habitats, 

which should yield dietary signals indicative of diets dominated by graze/C4-vegetation. It 

was also hypothesized that the degree of habitat fragmentation might also have an influence 

on the diet of modern impala populations, with more varied diets observed where habitats 

are highly fragmented and diverse, when compared to more homogeneous habitats with less 

vegetation diversity. If such clear relationships could be established between modern impala 

diet and habitat vegetation-conditions, it would suggest that dietary analyses of mixed-

feeding species such as the impala can be used faithfully as vegetation-proxies in further 

studies. 

The high variability in stable carbon isotope ratios observed in this study among modern 

impala populations, and the wide range of habitats these were associated to according to land 

cover data, highlighted that modern impalas tend to rely heavily on palatable grasses and 

forbs, suggesting a preference for C4-plants for their higher protein content. These results 

were in agreement with previous studies that observed that impala populations include C3-

vegetation in their diet where and when high quality C4-vegetation is not available in 

sufficient quantities in their habitats, either all-year round or seasonally.  
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Results from the models testing the relationship between land cover and stable carbon 

isotopes were partly in agreement with the initial hypothesis that impala individuals with 

high δ13C values would be more likely associated to C4 -habitats, while individuals with low 

δ13C values will be more likely associated to C3 -habitats. This positive relationship between 

the amount of C4-vegetation present in the landscape and the amount of C4-vegetation 

included in the diet was clearly observed for four of the seven localities studied (i.e. Swara, 

El Karama, Mpala, and KNP-North), but not for the other three localities (Nakuru, 

Welgevonden and KNP-South). Because of this, the models computed tended to struggle to 

differentiate either mixed from C4-dominated habitats, or heterogeneous C3-habitats from 

heterogeneous mixed/C4-habitats. This could suggest that the diet of modern impalas do not 

always reflect the vegetation types prevailing in their environments. Indeed, it can be 

hypothesized that if high quality C4-vegetation is available all year-round in their habitat, 

impalas will only include a limited amount of C3 -plant material in their diet, even if that 

vegetation-type is available to them. Such case was illustrated by the impala populations 

from the South of Kruger National Park (KNP, South Africa) whose diets indicated a strong 

reliance on C4 -vegetation despite a predominance of C3 -vegetation in the area. In contrast, 

impalas from the north of the park were shown to include a larger amount of C3 -vegetation 

in their diet, which could be explained by the reduced availability of herbaceous forage in the 

north of the park compared to the south, as described in previous studies (Sponheimer, 

Grant, et al., 2003). Such cases suggest that while impala diets dominated by C4-plants 

indicate the presence of herbaceous monocots in the landscape, it does not necessarily 

indicate the absence of C3 -vegetation in their habitat. 

Interestingly, results from the general landcover model (model 2) showed that individuals 

with the most negative δ13C values tended to be associated to heterogeneous and highly 

fragmented C3-habitats or heterogeneous mixed/C4-habitats (i.e. habitats similar to those 

observed in KNP-North or Nakuru), while individuals with the least negative δ13C values 

were associated to homogeneous C4 -habitats (i.e. habitats similar to those observed in Swara 
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and El Karama). This could suggest that heterogeneous and fragmented habitats tend to be 

associated with more varied diets for impalas, as initially hypothesized, and that variations 

in δ13C values can potentially reflect not only the relative proportion of C3-C4 vegetation 

included in the diet, but also the structure and diversity of the vegetation present in the 

landscape. 

Based on these results, it appears that impala could serve as a vegetation proxy in future 

studies, although a more detailed study of the dietary behaviours of modern impalas could 

help improve our understanding of the relationship between diet and land cover, and 

improve the accuracy of this approach. More particularly, a study including a larger number 

of samples and populations from a larger variety of habitat types, as well as data on seasonal 

variation in diet and land cover, could provide a clearer picture of the diversity of habitats 

inhabited by modern Aepyceros and the dietary strategies employed by each population to 

thrive in these habitats.  

Although the models built for this study revealed some limitations, the predictions generated 

for fossil Aepyceros samples for the Omo-Turkana basin based on modern land cover and 

stable isotope data were consistent with some of the previous palaeo-environmental studies 

published for this region. This showed the potential of this method, as well as the potential 

for dietary analyses of mixed-feeding taxa to be used as an additional tool for palaeo-

environmental reconstructions, albeit with room for the method to be developed further to 

test and improve accuracy. 

How do the studied taxa’s dietary patterns in the past compare to the dietary signals 

of their extant relatives? 

Because Plio-Pleistocene environmental conditions likely differed greatly from modern 

African climatic conditions, differences in inferred dietary patterns were expected when 

comparing modern and fossil mixed-feeding populations. While the dietary analyses 
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performed on the obligate grazing (genus Equus) and obligate browsing (genus Giraffa) taxa 

indicated similar dietary ecology between modern populations and their extinct relatives, 

more differences were observed when comparing extant and extinct species for genera 

Aepyceros (impala) and Antidorcas (springbok), as expected.  

Results from analyses of the Antidorcas recki assemblage suggested diets that differed greatly 

from extant Antidorcas marsupialis, with, overall, mixed-diets with a preference for graze in 

the fossil assemblage, contrasting with the mixed-diets with a preference for browse 

described for modern springbok (Bigalke, 1972; Estes, 1991; Sponheimer, Lee-Thorp, et al., 

2003). These results are consistent with previous studies that highlighted the wide range of 

dietary behaviours that existed in the fossil record across the different fossil Antidorcas 

species (Brink and Lee-Thorp, 1992; Luyt, 2001; Lee-Thorp, Sponheimer and Luyt, 2007; 

Ecker and Lee-Thorp, 2018; Sewell et al., 2019). Most interestingly, the dietary patterns 

observed for the Omo-Turkana basin A. recki assemblage were in contrast with the patterns 

observed in previous studies of A. recki assemblages from the South African fossil record, 

which indicated mixed-feeding habits with a preference for browse for this species (Luyt, 

2001; Lee-Thorp, Sponheimer and Luyt, 2007; Sewell et al., 2019). However, the high dietary 

plasticity of this fossil springbok species and the importance of C4-plant resources to its diet 

highlighted in the present study were suggested as well for Pleistocene cf. A. recki specimens 

from Olduvai (Tanzania) (Rivals et al., 2018). These differences in palaeo-ecological 

reconstructions of Antidorcas recki dietary behaviours between the eastern and the southern 

African fossil records could potentially highlight different palaeo-vegetation conditions 

between the two regions. Such differences would be expected due to the difference in 

latitudinal position between these regions, which results in climatic conditions favouring C3-

vegetation at higher latitudes, as opposed to landscapes closer to the Equator where C4-

vegetation is often dominant. However, these differences could also be due to species mis-

identification and to the difficulty if identifying Antidorcas specimens at the species-level 

based on dental remains only. Indeed, some South African specimens previously attributed 
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to A. recki, have since been questioned (Vrba, 1976; De Ruiter, 2001; Adams et al., 2016; 

Sewell, 2019). The marked difference in inferred dietary signals between A. recki specimens 

from eastern Africa and South Africa could indicate that these assemblages actually 

contained different Antidorcas species, raising once more the question whether A. recki truly 

occurred as one species in both eastern and southern Africa. 

Analyses of the impala assemblage suggested that extant and extinct Aepyceros species might 

have differed in their dietary ecology. Aepyceros shungurae yielded similar dietary patterns 

than modern Aepyceros melampus, but the diet of fossil Aepyceros melampus specimens 

differed by a stronger grazing/C4-component in their diet. Predictions from the different 

models built for this study suggest that, in the studied assemblage, most fossil Aepyceros 

melampus specimens were associated to either mixed habitats (model 1), or to 

heterogeneous mixed/C3 habitats (model 2). Most Aepyceros shungurae specimens were 

predicted to be associated to a wider variety of habitats, either to a mixture of C3- or mixed 

habitats (model 1), or to heterogeneous mixed/C3 habitats (model 2), suggesting more 

heterogeneous habitats and/or a stronger reliance on C3 -vegetation for species Aepyceros 

shungurae. The difference in dietary signals observed between these Aepyceros species was 

interpreted as possible evidence for differing local habitats, as Aepyceros shungurae was 

found in the Shungura formation and in the Nachukui formation member Lomekwi, while A. 

melampus specimens were represented in samples from the Koobi Fora and Nachukui 

formations. These results were in agreement with previous studies which suggested, based 

on its morphology (straighter, less lyrated and more gracile horn cores, shorter and thicker 

limb bones), that A. shungurae might have inhabited preferentially more closed woodland 

habitats than A. melampus (Harris, 1991; Bobe and Eck, 2001).  

Overall, the results obtained from the analysis of mixed-feeding antelope species showed that 

the dietary ecology of fossil herbivore species do not always mirror that of their extant 

relatives, especially when studying bovid taxa that are known today to be able to survive on 
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various types of food resources. These results are in line with those of the palaeo-dietary 

study undertaken by Blondel et al. (2018) which highlighted the significant intra-tribal 

dietary variability of tragelaphines in the fossil record (i.e. from predominantly C3 browsing 

to C4 grazing) (Bedaso et al., 2013; Bibi et al., 2013; Negash et al., 2015), which contrasted 

with the diet of their extant relatives, known to subsist mainly on browse. This demonstrates 

the importance of palaeo-dietary studies to assess the likely dietary behaviours of extinct 

species, as a way to improve the accuracy of palaeo-environmental reconstructions based 

faunal association data.  

Can data from modern impala populations’ dietary behaviours and habitats be used to 

identify modern African environments that might be similar to those experienced by 

impala populations in the past, and if so, what are the main characteristics of these 

modern habitats? 

It was hypothesised that, if similar dietary patterns can be identified between selected fossil 

impala assemblages and specific modern impala populations, it might indicate that these 

populations were associated to similar habitats. 

The predictions from the land cover models presented in chapter 3 suggested that vegetation 

conditions in the Koobi Fora and Nachukui formations during the Plio-Pleistocene resembled 

mixed- or C4 -vegetation dominated habitats, likely reflecting local environments similar to 

most of the modern localities studied where open-grassland conditions prevailed (e.g. Swara, 

El Karama, Mpala) or where high quality C4 -vegetation was available in sufficient quantities 

all year-round in either mixed or C3 -dominated habitats (e.g. Nakuru and KNP-South) (see 

Figure 92 for illustrations). 
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Figure 92: Examples of land cover types associated with the modern impala populations studied. Photo 
credits: ©Ross Donihue (for Nakuru National Park), © Steppes Travel 2021(for El Karama), Copyright © 
2021 African Safari Group (for Welgevonden), © 2021 The Mawazo Institute (for Mpala Research 
Centre),photo by Allison McCarthy @2019 Intrepid Travel (for Kruger National Park), ©Kjersti 
Holmang, https://iallverden.no/ (for Swara Plains). 
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The range of δ13C values observed for impala specimens from the Shungura formation 

suggested more varied vegetation conditions throughout the sequence. Vegetation 

conditions between 3.44 and 2.52 Ma and between 2.4 and 2.32 Ma were suggested to be 

similar to the land cover conditions observed in Welgevonden and in the north of Kruger 

National Park (KNP), where vegetation is relatively heterogeneous but dominated by 

woodland-type habitats (i.e. C3 -vegetation). In contrast, the local habitats suggested for the 

Lower Omo-river valley between 2.52 and 2.4 Ma and between 3.32 and 1.9 Ma were similar 

to those experienced by impalas from Koobi Fora and Nachukui. 

5.1.3 Perspectives for future research 

 

Future work using a modelling approach to reconstructing palaeo-environments from 

palaeo-dietary data could improve the precision and relevance of the predictions by 

including in the model additional variables that can help identify patterns of dietary plasticity 

in extinct species. More particularly, future work could focus on building a strong and 

detailed modern dataset to record the dietary variability of extant impalas in carefully 

selected localities, ideally using dietary proxies that can easily be compared with data from 

the fossil record (i.e. stable isotopes, or dental use-wear). By also recording detailed 

information on their habitats and the local conditions experienced by the studied populations 

(climate, seasonal changes, niche competition, etc), the models tested in this study could be 

improved and provide more accurate predictions to help evaluate in more detail what types 

of habitats and land cover patterns once characterised the landscapes of eastern Africa 

during the Plio-Pleistocene.  

In addition, improved models could be used on other mammal taxa for which isotope data is 

available for both extant and extinct population. This would allow to explore how different 

faunal communities directly relate to their environments and how dietary studies can inform 

on their habitats depending on their feeding ecology. Building a strong modern baseline for 
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various mammals to compare with the fossil record could help explore local Plio-Pleistocene 

environments from a different angle by testing if models calibrated for various groups would 

converge in similar environmental reconstructions when fitted to a same fossil depositional 

context. 

8.2 Dietary ecology of mixed-feeding antelopes in the Omo-

Turkana basin between 3.5 Ma and 1.6 Ma 
 

8.2.1 Initial research questions 

 

Various palaeo-environmental proxies have been previously used to reconstruct Plio-

Pleistocene habitats in the Omo-Turkana basin. These reported, overall, a general trend of 

increasing open grasslands in the environment, with a significant shift from C3 - to C4-

dominated landscapes occurring more particularly at ~1.8-1.9 Ma at the time of the 

transgression/regression of Lake Lorenyang in the basin. While more arid open habitats have 

been suggested in Koobi Fora and Nachukui, more wet closed environments were described 

for the Shungura deposits. However, more recent studies focusing on habitat diversity within 

each of the Omo-Turkana basin formations proposed more complex land cover patterns than 

those described in previous studies, suggesting that a high degree of spatial heterogeneity 

likely characterised the palaeo-habitats of this region (e.g. Du and Alemseged, 2018). Such 

results led to hypothesize that habitat heterogeneity may have influenced hominin presence 

and evolution through complex biotic interactions that necessarily impacted human foraging 

strategies and selective pressures. 

This study proposed to examine the dietary behaviours of selected extinct mixed-feeding 

antelopes, using a combination of methods to produce a comprehensive picture of the 

environments experienced by these species during the Omo-Turkana basin fossil deposition.  

It was hypothesized that if, across all dietary proxies, a predominance of diets dominated by 

a main vegetation-type (browse/C3 or graze/C4) was observed across taxa, this could indicate 
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a rather homogeneous vegetation cover in that area during the time span examined, forcing 

a majority of the studied specimens to feed primarily on the type of resources that was 

available to them in larger proportions. A wider range of isotopic ratios and dental 

microwear textures, indicative of a large range of resources, would likely indicate the 

presence of more heterogeneous environments and more variable aridity levels, with 

habitats able to support a greater range of species. 

The results obtained from both palaeo-dietary analyses and predictive models are 

summarised in this section and are discussed to evaluate the potential palaeo-environmental 

implications of these observations, and propose inferences about vegetation cover 

conditions in the Omo-Turkana basin between 3.5 and 1.6 Ma. Basin-wide habitat 

composition is discussed as well as smaller-scale habitat heterogeneity (East, West and North 

of Lake Turkana) and variations through time. Results from this study are compared with 

previous research to assess whether impala and springbok dietary proxies agreed with other 

datasets for climate and vegetation from the area, and to answer the following research 

question: what additional insights into palaeo-environmental conditions in the Omo-

Turkana basin do the inferred dietary patterns of mixed-feeding species provide, and 

how do these help to resolve apparent contradictions between other environmental 

proxies? 

8.2.2 Outcome of this research 

 

Do the inferred dietary patterns of mixed-feeding antelope differ from one locality to 

the other across the Omo-Turkana basin (e.g. Lower Omo river valley vs East/West 

Turkana), and what do these differences (if any) could imply in terms of local 

vegetation conditions?  

For the dietary results of this study to confirm differences in local vegetation conditions 

across the Omo-Turkana basin suggested by previous studies (e.g. Bobe et al., 2007; Cerling, 
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Levin and Passey, 2011; Levin et al., 2011), differences in inferred dietary behaviours were 

expected between the assemblages, with a higher variability in diet through time and a 

stronger browsing/C3-dominated diet signal in individuals from the Shungura formation, 

when compared to individuals from the Koobi Fora and Nachukui Formations. The presence 

of mosaic habitats (Domínguez-Rodrigo, 2014; Reynolds et al., 2015; Patterson et al., 2017) 

in the Omo-Turkana basin were hypothesized to be potentially reflected in the dietary results 

of this study if mixed-feeding signals could be shown to dominate the assemblages in some 

localities/members, with no distinct preference for either graze or browse, suggesting that a 

wide range of food resources were available to these herbivores throughout the sequence 

and the region. 

When assessing the palaeo-dietary behaviours of the impala (genus Aepyceros), significant 

differences in dietary ecology were observed when comparing assemblages from different 

fossil localities. The patterns of dietary variation among fossil Aepyceros populations were (if 

reflective of local vegetation conditions as initially hypothesized) consistent with previous 

studies which suggested more arid open habitats in Koobi Fora and Nachukui, while more 

wet closed habitats prevailed in the Shungura deposits (e.g. pedogenic carbonates data, 

Levin et al., 2011). Indeed, although stable carbon isotopes indicated a prevalence of C4 -

vegetation in the diet of most impala specimens, multi-proxy analyses highlighted clear 

differences between fossil impala specimens from these regions.   

Specimens from the Lower Omo-river valley were suggested to have diets that included a 

larger amount of softer food items and C3 -vegetation, compared to the diet of specimens from 

the other two fossil localities. The predictions that were generated from the land cover 

models suggested a stronger C3-vegetation component in the habitats associated with 

impalas from the Shungura formation as well as a greater land cover diversity, compared to 

habitats in the rest of the Turkana basin. The strong C4 -component that was identified in the 

diet of impalas from the Shungura formation could potentially be explained if fossil impalas 
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had a preference for C4-vegetation similar to that of their extant relatives, as suggested from 

the present analyses of modern impala populations. This would suggest that environments 

in the Shungura formation were indeed more mesic and wooded than environments in the 

Koobi Fora and Nachukui formation, but that vegetation in the lower Omo-river valley 

included a significant amount of C4 -resources that fossil impalas could rely on preferentially, 

at least seasonally. Results from intra-tooth stable isotope analyses confirmed that most of 

the impala specimens studied varied their diet throughout the year, switching from C4-

dominated to mixed-diets seasonally. 

In contrast, results from stable carbon isotope analysis suggested drier habitats with a 

stronger C4-grassland component in Koobi Fora and Nachukui, compared to habitats in 

Shungura. However, the mixed/fruit-browsing feeding behaviours observed through use-

wear analyses for most specimens from these two localities likely indicated the presence of 

a wide range of resources within these two regions during the Plio-Pleistocene. Similarly, 

results from multi-scale dietary analysis of Aepyceros specimens from East and West Turkana 

highlighted varied dietary patterns through life for most individuals, suggesting seasonal 

variation in food availability, either due to seasonal changes in land cover or local habitat 

heterogeneity. In line with these observations, predictions suggested that most Aepyceros 

specimens from Koobi Fora and Nachukui were likely associated to either mixed-habitats 

(model 1), or to heterogeneous mixed/C3 habitats (model 2). 

These interpretations of the dietary patterns inferred from a multi-method analysis of mixed-

feeding antelope taxa from the Omo-Turkana basin therefore align with studies which argued 

for high spatial heterogeneity and the presence of highly fragmented habitats across the 

basin, with varying degrees of vegetation heterogeneity depending on proximity to the lake 

margins (e.g. Quinn et al. 2007, O’Brien et al. 2020). For instance, previous studies of the 

Nachukui deposits suggested that the west Turkana area likely supported rather 

heterogeneous habitats during the Plio-Pleistocene, with varying proportions of grassland, 
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bushland and woodland through time (Brugal, Roche and Kibunjia, 2003; Quinn et al., 2013), 

while most studies of the Shungura Fm suggested the presence of mosaic habitats throughout 

the sequence (e.g. Bobe and Eck, 2001; Alemseged, 2003; Levin et al., 2011; Negash et al., 

2015; Blondel et al., 2018). Interpretations from the present study are therefore consistent 

with these previous analyses using other palaeo-environmental proxies, the multi-scale 

dietary variability observed among the Aepyceros specimens studied for the Koobi Fora and 

Nachukui localities potentially reflecting some degree of habitat heterogeneity in these two 

localities, although it remains difficult to assess whether these varied diets were related to 

seasonal changes in local vegetation conditions, or to the presence of year-round mosaic 

habitats on the eastern and western margins of the basin.  

How much variation in inferred dietary behaviours can be observed throughout the 

Omo-Turkana sequences, and what type of trends do these variations suggest (i.e. no 

variation through time, gradual/pulsed changes, increased variability in diet, 

browsing/grazing alternance…etc).  

For the dietary results of this study to confirm the long-term trend of regional aridification 

suggested by previous studies (e.g. Sepulchre et al., 2006; Feibel and Smith, 2011; Fortelius 

et al., 2016)(Sepulchre et al., 2006; Feibel and Smith, 2011; Fortelius et al., 2016), general 

dietary trends for the studied mixed-feeding taxa were expected to demonstrate an increase 

in grazing signals through time. In addition, for the results of the present study to agree with 

previous studies, dietary behaviours of fossil impalas and springbok were expected to display 

an increased dietary variability through time, which might relate to varying degrees of 

habitat heterogeneity and to a gradual increase in climatic variability through time, as 

suggested by other studies (e.g. Potts, 2007). 

When assessing the palaeo-dietary behaviours of the impala (genus Aepyceros), significant 

differences in dietary ecology could be inferred when comparing assemblages from different 
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members within the studied fossil localities, suggesting significant changes in dietary 

behaviours through time.  

Overall, the dietary patterns observed across the studied taxa from the Koobi Fora Fm likely 

suggested rather varied diets (potentially reflecting heterogeneous habitats in this locality 

during the Plio-Pleistocene), with a gradual increase in the proportions of C4-resources in the 

diet (potentially reflecting an increase in the proportions of C4 grasses and sedges in the 

landscape). This pattern could relate to an increase in aridity conditions, especially after 

~1.87 Ma. Similar dietary patterns were inferred for the specimens from the Nachukui Fm, 

suggesting a high vegetation heterogeneity associated to a slight gradual increase in C4 -

resources in the environment from ~2.8 Ma was suggested for the Nachukui formation. 

However, if fossil impalas had a preference for C4-vegetation similar to that of their extant 

relatives, an observed increase of their grazing signals through time might not necessarily 

reflect a decrease in woody vegetation but might relate, more simply, to a greater availability 

of high quality C4-vegetation in landscapes that retained a significant amount of C3-

vegetation. This would agree with previous studies which suggested that C3-woodlands 

remained an important component of the vegetation in the Nachukui formation despite a 

gradual grassland expansion, resulting in highly fragmented regional landscapes in the 

region, more particularly after ~2.0 Ma (Brugal, Roche and Kibunjia, 2003; Quinn et al., 

2013). A similar pattern of grassland expansion and increased habitat fragmentation from 

~2.0 Ma was suggested as well for the Koobi Fora formation (Quinn et al., 2007). 

The range of δ13C values observed for impala specimens from the Shungura formation in 

members B, C and E were similar to the range of values observed in modern specimens from 

Welgevonden and the north of Kruger National Park (KNP) where C3 -vegetation dominated, 

and where less C4 -plant material was likely available to impalas in the landscape. This 

suggested that local habitats were likely dominated by closed wooded C3-environments 

between 3.44 and 2.52 Ma and between 2.4 and 2.32 Ma. These predictions were consistent 



375 
 

with previous palaeo-environmental reconstructions which described environments 

dominated by C3 -vegetation and closed-wooded habitats for a long part of the Shungura 

sequence (up to ~2.0 Ma), alongside mosaic habitats (Alemseged, 2003; Barr, 2015; Plummer 

et al., 2015). In contrast, the local habitats suggested for the Lower Omo-river valley between 

2.52 and 2.4 Ma and between 3.32 and 1.9 Ma were similar to those experienced by impalas 

from Koobi Fora and Nachukui, likely reflecting environments were C4-grassland was 

dominant or represented in the landscape all year- round. 

What additional information on the taxa’s dietary ecology does combining dietary-

proxies provide, as opposed to using each dietary-proxy in isolation?  

As discussed in chapter 2, each of the dietary proxies used in this study suffer from 

limitations that are inherent to the method used and the part of the dental remains that is 

analysed. For instance, the mesowear method can only inform on the overall degree of 

toughness and abrasiveness of the consumed food items though life, which does not allow 

palaeo-environmental interpretations of greater detail than the open habitat vs closed 

habitat dichotomy based on the general grazing vs browsing dietary categories. On the 

contrary, while dental microwear textural analysis (DMTA) can provide information on 

individual feeding behaviours in relation to the physical properties of the food items in 

greater detail than mesowear analysis, this method can only identify dietary patterns on a 

short time scale (few days/weeks before death), due to the rapid turnover rate of the traces 

imprinted on the enamel surface (Kaiser and Brinkmann, 2006; Ungar, 2015; Calandra and 

Merceron, 2016). These limitations have led previous researchers to combine these two 

dental use-wear analysis methods, using microwear and mesowear analysis together to 

assess dietary behaviours in greater detail and on a different temporal scale, allowing to 

potentially detect seasonal changes in diet (Rivals, Solounias and Mihlbachler, 2007; Rivals 

et al., 2015). Stable carbon and oxygen isotopes can also be combined to dental use-wear 

analyses to provide information on the diets recorded during the time of enamel-
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mineralisation. They can complement the data acquired from use-wear studies with 

information on the relative proportions of C3-C4 vegetation (i.e. browse vs graze) included in 

the diet of animals, and on aridity levels (Sewell et al., 2019).  

It was therefore hypothesized for this study that, combined, these dietary proxies could 

provide a thorough assessment of the dietary ecology of the studied species and mitigate for 

some of the limitations of each method, maximising the strengths of each proxy. More 

particularly, the combination of dietary proxies on the same assemblages was sought to allow 

a multi-scale dietary analysis in which diets were compared across several temporal scales 

to assess how much the diet of the studied individuals changed throughout their lifetime, and 

inform on their overall and seasonal dietary variability (Davis and Pineda Munoz, 2016). It 

was postulated that, if results from the various methods used for dietary analysis display 

similar patterns across the fossil assemblages, it would suggest that all methods are equally 

informative on dietary behaviours, and can be used in isolation without losing information 

or accuracy. Contrastingly, if results differed between methods, it was hypothesized that this 

would likely highlight how each of these methods can complement each other when used in 

combination, by informing on different aspects of the studied animals’ feeding ecology (i.e. 

geochemical or structural food properties, seasonal variation in diet…etc). 

The multi-scale approach used in this study allowed, as hypothesized, to identify variations 

in dietary behaviours through the lifetime of the studied individuals, more particularly when 

focusing on the mixed-feeding antelope species. As predicted, little variation in dietary signal 

was observed across dietary proxies for the obligate-grazing and obligate-browsing species 

(i.e. genus Equus and genus Giraffa, respectively), confirming consistent dietary behaviours 

through life for these taxa, from their early years to their death. It must be noted, however, 

that results from dental microwear analysis highlighted mixed-feeding behaviours just 

before death for most of the fossil Equus specimens, suggesting slightly more variation in diet 
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than expected for this taxa. This pattern would not have been identifiable if the assemblage 

had been studied using only mesowear and/or stable isotopes.  

In contrast, discrepancies were observed between results from stable isotopes, dental 

microwear textural analysis and mesowear analysis for all impala (genus Aepyceros) and 

springbok (genus Antidorcas) samples, indicative of mixed-feeding dietary behaviours that 

likely varied significantly through life. Seasonal variation in diet was also confirmed for the 

fossil impala species Aepyceros shungurae through intra-tooth stable isotope analysis. 

Multiproxy results therefore highlighted the clear dichotomy between the relatively 

homogenous lifetime dietary behaviours of browsing and grazing species and the dietary 

plasticity of mixed-feeding species such as impala and springbok, which tend to vary their 

diet throughout their life. 

Despite the high lifetime dietary variability observed within the mixed-feeder assemblages, 

differences in overall dietary patterns could be identified between modern and fossil 

specimens, as well as when comparing fossil samples from different sites or from different 

time periods. This was hypothesized to likely relate to the habitats and climate conditions 

experienced by the studied individuals, allowing to make inferences about local habitat 

heterogeneity and seasonal variation in diet in the past. This can seldom be achieved when 

using a single dietary proxy.  

Results from this study therefore confirmed that the combination of multiple dietary proxies 

can help investigate the dietary ecology of fossil species to a greater level of detail than when 

these proxies are used in isolation. However, several limitations remain when using such 

approach, more particularly when attempting to reconstruct the dietary ecology of adaptable 

mixed-feeding species to make inferences about local palaeo-vegetation conditions. These 

limitations are discussed in the following section. 
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8.2.3 Perspectives for future research 

  

The accuracy of multi-scale interpretations could be improved by in-depth studies of the 

relationship between the different proxies, based on modern populations of known diet or 

on experimental designs.  Alike previous feeding experiments that investigated the impact of 

different food properties on use-wear signals (e.g. Hoffman, Fraser and Clementz, 2015; 

Ackermans, 2016; Merceron, Blondel, et al., 2016; Ramdarshan et al., 2016; Ackermans, 

Winkler, et al., 2020)(Hoffman, Fraser and Clementz, 2015; Ackermans, 2016; Merceron, 

Ramdarshan, et al., 2016; Ramdarshan et al., 2016; Ackermans, Martin, et al., 2020), it would 

be beneficial to evaluate more precisely, at the individual-scale, how lifetime variation in diet 

is reflected differently across each of the proxies that can be used in palaeo-dietary 

reconstructions. This would ensure a better understanding of the complex relationships 

between food properties, feeding habits, and seasonal variation in diet.  

In addition, future palaeo-environmental reconstructions could be refined by using multi-

scale experimental dietary analyses to provide the scientific community with means to 

identify in greater detail the vegetation-types present in eastern Africa during the Plio-

Pleistocene. For instance, future studies could focus on evaluating the contribution of 

succulent plants to the diet of herbivore species as a way to evaluate the relative aridity of 

local habitats, as these plants generally occur in very arid environments. The majority 

of succulents adopt the CAM photosynthetic pathway, and CAM plants are known to develop 

strong defences against herbivory (Sewell, 2019). Such defences could potentially yield 

dental microwear patterns similar to those of browsing species while mimicking carbon 

isotope ratios similar to those of herbaceous C4-plants. However, because CAM-plants are 

typically restricted to arid conditions, high levels of dust/grit and related abrasion could also 

yield to highly abraded use-wear patterns. It would therefore be interesting to gauge as 

well the impact of the consumption of succulent/CAM-plants to the lifetime use-wear 
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patterns observed through mesowear analysis, which in turn would refine palaeo-

environmental reconstructions for the Omo-Turkana basin.   

Similarly, testing if the consumption of a large amount of C4 -dicots would results in specific 

use-wear patterns could help evaluate, when use-wear analyses are used alongside stable 

carbon isotopes, the relative proportion of C4 -monocots/ C4 -dicots included in the diet of 

fossil animals. Previous studies have hypothesized that C4 -dicots thrive in conditions of 

extremely low atmospheric CO2 values such as during full glacial conditions (Ehleringer, 

Cerling and Helliker, 1997; Cerling, 1999). The higher abundance of C4 -dicots in the Plio-

Pleistocene eastern African record after ~2.6 Ma by palynological studies (i.e. 

Amaranthaceae family, Bonnefille and Dechamps 1983; Bonnefille 2010), could hence be 

related to the onset of the Northern Hemisphere glaciation (ONHG) between ~3.0 and 2.5 Ma 

suggested by marine-core records (Flesche Kleiven et al., 2002; deMenocal. 2004; 

Behrensmeyer, 2006 and references therein), which could have favoured the development 

of C4 -dicots in the area. Finding a method to evaluate the contribution of C4-dicots to the diets 

of fossil herbivore populations could provide further insights into Plio-Pleistocene palaeo-

environmental conditions, and provide further evidence for the increased abundance of C4 -

dicots in the Omo-Turkana basin landscapes after ~3.0 M.  in relation to global climatic events 

such as the onset of the Northern Hemisphere glaciation. 

Finally, it could be highly beneficial to assess, in the fossil record, if the studied species were 

migratory or sedentary. Indeed, while modern impalas are known to be sedentary (Estes, 

1991), their extinct relatives might have exploited a wider range of habitats in the vicinity of 

the Omo-Turkana basin, by migrating during periods of food shortage. Such behaviours 

would likely lead to biased palaeo-environmental reconstructions relying on palaeo-dietary 

data, as most of the dietary proxies would then potentially record information from the 

various habitats exploited by migrating individuals throughout their life, and not solely 

information on the local habitats where the remains were found. To mitigate for this potential 
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bias, it could be interesting to analyse the strontium (87Sr/86Sr) isotopic signatures in fossil 

impala enamel samples, as a way to reconstruct the mobility patterns of selected individuals 

from this taxon (Copeland et al., 2011; Slovak and Paytan, 2011). 
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8.3 Inferred palaeo-diets and palaeo-vegetation conditions in the 

Omo-Turkana in the Plio-Pleistocene: potential implications for 

hominin evolution 
 

8.3.1 Initial research questions 

 

Previous studies have suggested that major climatic events triggered important changes in 

ecosystems through speciation, extinction and migratory events (e.g. Vrba, 1993; 

Behrensmeyer et al., 1997; Bobe, Behrensmeyer and Chapman, 2002; Bonnefille et al., 2004; 

Bobe, 2006; Potts, 2013; Cerling et al., 2015)(Vrba, 1993; Behrensmeyer et al., 1997; Bobe, 

Behrensmeyer and Chapman, 2002; Bonnefille et al., 2004; Bobe, 2006; Potts, 2013; Cerling 

et al., 2015) , and that these changes likely played a predominant part in human evolution. 

More particularly, some researchers hypothesized that an increase in aridity and grassland-

dominated landscapes in Pliocene and Pleistocene Africa likely forced early hominin species 

to adapt from dense wooded habitats to more open environments, with periods of enhanced 

aridification which likely triggered speciation events in the hominin lineage (Dart, 1925; 

Coppens, 1985; Demenocal, 1995). Alternatively, other researchers argued that the presence 

of mosaic habitats in east Africa during the Plio-Pleistocene might have been a key 

environmental factor to the hominin lineage diversity (Hopley and Maslin, 2010; Domínguez-

Rodrigo, 2014; Reynolds et al., 2015; Du and Alemseged, 2018), with mosaic patterns of 

vegetation associated with grassland expansion suggested in hominin-bearing localities, 

particularly between 2.4 – 1.4 Ma (e.g. Quinn et al., 2013). However, debate remained around 

the characteristics of these mosaic habitats, most particularly to identify whether these 

mosaic habitats suggested from palaeo-environmental studies actually reflected alternating 

woodland-dominated phases and grassland-dominated phases or if habitat heterogeneity 

was a real, long-lasting, feature of the fossil record.  
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Many theories have used the evidence available from the various palaeo-environmental 

proxies available to help pin-point the timings and main characteristics of climatic events and 

environmental features that characterised the African Plio-Pleistocene: from the savannah 

hypothesis (Dart, 1925), to Vrba’s Pulse Turnover Hypothesis (1985), Potts’ Variability 

Selection Hypothesis (1998), and the Pulsed Climate Variability Hypothesis (Maslin, Shultz 

and Trauth, 2015), the link between climate change and faunal evolution remains debated. 

Indeed, not all palaeo-environmental proxies agree on the timings of the environmental 

changes postulated to have triggered the main evolutionary events observed among 

mammals and hominins, nor do they fully agree on the main environmental features that 

characterised the fossil localities investigated (Maslin and Christensen, 2007; Trauth, 

Larrasoañ and Mudelsee, 2009; Potts, 2013) (see chapter 1.1.2, table 2, for details of these 

theories). 

This section attempts to answer the following research question, postulated at the beginning 

of this thesis: how do palaeo-vegetation and palaeo-climate inferences made from 

mixed-feeding antelope palaeo-dietary studies compare with the main evolutionary 

theories proposed to explain mammal/human evolution? 

It was hypothesized that, for the dietary behaviours inferred in this study to agree with the 

Savannah Hypothesis (Dart, 1925), a gradual increase in grazing/C4-dominated behaviours 

through time should be observed across the mixed-feeding assemblages (see Table 6 chapter 

1.6). If following the temporal patterns of global environmental change suggested by the 

Turnover Pulse Hypothesis (Vrba, 1985), marked changes in dietary behaviours were 

anticipated to be observed at specific points in time in relation to major climatic events (e.g. 

iNHG at 3.2-2.5 Ma; and oWC at 2.0- 1.7 Ma). If in agreement with the Variability Selection 

Hypothesis (Potts, 1998) or the Pulsed Climate Variability Hypothesis (Maslin and Trauth, 

2009), the observed mixed-feeders’ dietary signals were expected to display a gradual 

increase in grazing/C4-dominated signals, combined with an increased intra- and inter-
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specific dietary variation as well as increased seasonal variation in diet, potentially indicative 

of increased environmental instability and increased seasonality. If mosaic habitats were a 

predominant feature of the Omo-Turkana basin during the Plio-Pleistocene, as suggested by 

Mosaic Habitat theories (e.g. Domínguez-Rodrigo, 2014; Reynolds et al., 2015; Du and 

Alemseged, 2019), no clear directional change was expected to be visible in the dietary 

signals of the studied mixed-feeders, with a relatively high but constant intra- and inter-

specific dietary variability.  

8.3.2 Outcome of this research 

 

What are the timings/rates of dietary variation observed for mixed-feeding species 

towards the sequence, and what type of vegetation/climate change do these suggest? 

The general dietary trends observed for the studied mixed-feeding antelope taxa indicated 

an increase in grazing signals in all three Omo-Turkana fossil localities, although more 

pronounced in the Shungura formation, potentially reflecting a gradual grassland expansion 

in the region, as suggested in most theories (e.g. Savannah Hypothesis, Dart, 1925; Variability 

Selection Hypothesis, Potts, 1998) (Table 74). This trend of expanding grassland has been 

confirmed by many other proxies, such as soil carbonates (Levin et al., 2004; Wynn, 2004; 

Segalen, Lee-Thorp and Cerling, 2007) and fossilised mammal teeth (Harris et al., 2008; 

Brachert et al., 2010), and is often accepted as the main climatic change experienced by 

terrestrial mammals throughout the Plio-Pleistocene. The trends observed from the multiple 

dietary-proxies used in the present study confirmed this suspected environmental 

background of increasingly arid and open vegetation conditions, especially after ~2.5 Ma.  

However, results from this study also suggested the presence of highly diverse habitats with 

high vegetation heterogeneity in most deposits, reflected in a wider dietary breadth and 

more marked mixed-feeding behaviours in some localities, and in some members. Overall, 

the differences in dietary patterns observed for fossil Aepyceros specimens when comparing 
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assemblages from different members appeared to coincide with environmental shifts 

indicated by previous studies based on other types of fossil evidence. Most particularly, the 

suggested shifts in dietary behaviours observed through time for impala specimens from the 

Shungura formation were shown to be consistent throughout all of the dietary proxies used 

in this study, and compare well with other paleo-environmental proxies such as paleosol 

carbonates (Levin et al., 2011) or paleo-dietary analyses of other adaptable herbivore species 

(e.g. Blondel et al., 2018). The timing of these changes appears to coincide with some of the 

major global climatic events suggested to have influenced mammalian evolution (i.e. 

Turnover Pulse Hypothesis, Vrba, 1985; Pulsed Climate Variability Hypothesis, Maslin and 

Trauth, 2009), namely the Intensification of Northern Hemisphere Glaciation (iNHG) (at ~ 

2.75 Ma), which marked the installation of ‘glacial-interglacial cycles’, and the Onset of the 

Walker Circulation (oWC) (at ~2.0 Ma), which has been suggested to have triggered an 

increase in aridity and variability after ~1.9-1.5 Ma (Trauth et al., 2009) (see chapter 1.1.2, 

table 2 for more detail on these climatic events). This could suggest that the palaeo-dietary 

trends inferred from the fossil Aepyceros dental material from the Plio-Pleistocene Omo-

Turkana basin mirror the patterns initially expected under the Pulsed Climate Variability 

Hypothesis, which argued for heightened environmental instability and habitat 

heterogeneity as a driver of mammalian evolution, with short periods of extreme climate 

variability (i.e. pulses/punctuations) within the long-term drying trend in East Africa (Maslin 

and Trauth, 2009). 

 

Table 74: Main evolutionary theories, hypothesized results of palaeo-dietary analysis of mixed-feeding 
antelopes, and outcomes of this research project (i.e. inferred dietary patterns). 

Theory 
Expected dietary behaviours for 

Aepyceros/Antidorcas 
Inferred dietary behaviours for 

Aepyceros/Antidorcas from this study 

Savannah 
hypothesis 
(Dart 1925)  

• Increasing abundance of grazing 
signals observed through dental use-
wear analyses, and of C4-vegetation 
(δ13C) in the diet of the studied taxa 
throughout over the temporal range.  

• Increasing abundance of grazing 
signals (dental use-wear analyses), 
and of C4-vegetation (δ13C) observed 
in the diet of fossil Aepyceros 
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• Increased aridity through time might 
be observable from the oxygen 
isotope content of the studied taxa 
(δ18O). 

• Oxygen isotope content δ18O) 
fluctuating through time – no clear 
increasing trend. 

Turnover 
Pulse 

Hypothesis 
(Vrba 1985) 

• Habitat specialists are more likely to 
be affected by climate and habitat 
change (i.e. increased extinction rates) 
than generalists (Vrba 1988), 
although adaptable herbivores such as 
Aepyceros and Antidorcas might 
demonstrate variations in diet 
through time 

 
• Marked shifts in dietary behaviours at 

times of major climatic changes (i.e. 
iNHG at 3.2-2.5 Ma; and oWC at 2.0- 
1.7 Ma).  

• Variations through time observed 
for Aepyceros, more particularly for 
the Shungura Fm (i.e. larger sample 
sizes, better time-resolution than 
Koobi Fora and Nachukui Fms). 

• Aepyceros intra-tooth stable isotope 
data (Shungura) point to periods of 
relatively high climatic variability 
associated with high seasonal 
variations in rainfall amount, more 
particularly between 2.27 and 1.9 
Ma 

Variability 
Selection 

Hypothesis 
(Potts 1998)  

 
&  
 

Pulsed 
Climate 

Variability 
Hypothesis 
(Maslin and 

Trauth, 2009) 

• Environmental instability might be 
observable via temporarily increased 
intra- and inter-specific dietary 
variation (dental use-wear and stable 
carbon isotope analyses) within 
specific members, in addition to a 
gradual increase in grazing signals/C4-
diets across the sequence. 

• Increased seasonal variability in diet 
in some members (observed through 
intra-tooth isotopic analyses, and 
potentially through multi-method 
dietary analysis) 

• Variations through time in the 
dietary breadth inferred from 
Aepyceros material (i.e. varying 
abundance of mixed-feeding signals 
depending in member/locality) 

• Abundance of grazing signals (dental 
use-wear analyses), and of C4-
vegetation (δ13C) observed in the 
diet of fossil Aepyceros 

• Aepyceros intra-tooth stable isotope 
data (Shungura) point to periods of 
relatively high climatic variability 
associated with high seasonal 
variations in rainfall amount, more 
particularly between 2.27 and 1.9 
Ma 

Mosaic 
Habitat 
Model 

(Domínguez-
Rodrigo 

2014, 
Reynolds et 

al. 2015a, Du 
and 

Alemseged 
2018) 

• No clear directional change would be 
apparent in dietary signals (dental 
use-wear and stable carbon isotope 
analyses), with a relatively high but 
constant intra- and inter-specific 
dietary variability. 

• Mixed-feeding signals should 
dominate the assemblage, suggesting 
the availability of varied food 
resources  

• Varied diets suggested among 
impalas from the Koobi Fora and 
Nachukui Fms, with little evidence 
for significant temporal changes: 
regions of long-lived mosaic 
vegetation? 

• More variable dietary patterns 
suggested for impalas from the 
Shungura Fm, with variation through 
time: local mosaic habitats in the 
Lower Omo-river valley, with a more 
marked fluctuation through time 
between woodland-dominated and 
grassland-dominated phases? 

 

 

In addition to the results from palaeo-dietary analysis and predictive models which 

suggested habitats of high vegetation heterogeneity throughout the Omo-Turkana basin 
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during the Plio-Pleistocene, intra-tooth stable isotope data pointed to periods of relatively 

high climatic variability associated with high seasonal variations in rainfall amount, more 

particularly between 2.27 and 1.9 Ma. Similarly, recent findings based on intra-tooth isotopic 

records in equid teeth from early Pleistocene deposits in the Homa Peninsula (Kenya, ~2.0-

1.0 Ma) suggested seasonally variable environments in the tropics, to an extent similar to 

present-day eastern African climates (Blumenthal et al., 2019). This is in agreement with 

previous research that hypothesized that seasonal and interannual rainfall variability in 

eastern Africa increased at ~2.0 Ma in response to the Plio-Pleistocene intensification of the 

Walker Circulation (Ravelo et al., 2004; Blumenthal et al., 2017; Hopley et al., 2018). The 

increasingly variable seasonal dietary patterns observed in the Shungura Fm would 

therefore be additional evidence in favour of the Plio-Pleistocene environmental dynamics 

proposed by the Pulsed Climate Variability Hypothesis (Maslin and Trauth, 2009), in which 

evolutionary events were triggered by increasingly variable climatic and vegetation 

conditions against a backdrop of increasingly arid conditions, with short periods of extreme 

climate variability (specific to East Africa) which potentially drove hominin evolution. 

 

What types of local vegetation conditions do the inferred dietary behaviours suggest 

across the basin, and do they seem to have varied seasonally? 

The varied diets observed among impalas from the Koobi Fora and Nachukui formations, 

along with little evidence for significant temporal changes in these dietary patterns, could 

suggest two regions of long-lived mosaic vegetation, where a wide range of food resources 

were available to these herbivores throughout the sequence and the region. In contrast, the 

more variable dietary patterns observed for impalas from the Shungura formation, which 

varied through time depending on the member studied, could suggest local mosaic habitats 

in the Lower Omo-river valley with a more marked fluctuation through time between 

woodland-dominated and grassland-dominated phases. While these differences in local 
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patterns of vegetation heterogeneity could be artefacts of the fossil record due to the larger 

faunal sample sizes available for analysis and a better time-resolution of the Shungura 

deposits compared to those of Koobi Fora and Nachukui, these results could also highlight 

the presence of micro-habitats within the Omo-Turkana basin, and differing palaeo-

vegetation dynamics between the Lower Omo-river valley and the rest of the basin.  

Nonetheless, evidence from this research suggest the presence, across all three fossil 

localities of the Omo-Turkana basin, of long-lived mosaic habitats, which could have 

supported a high diversity of mammalian taxa with varying ecological requirements, 

including hominins, providing a wide range of habitats to species of differing morphological 

adaptations. In addition, the strong seasonality in rainfall patterns and vegetation availability 

suggested for the Shungura formation, and potentially mirrored in the rest of the Basin, 

would likely have influenced as well local vegetation and faunal biodiversity in the region, 

adding selective pressures associated with seasonal changes in resources abundance and 

distribution, acting as an additional driver of hominin evolution (Kingston et al., 2007; Trauth 

et al., 2007; Potts and Faith, 2015; Blumenthal et al., 2019). This is consistent with previous 

research which proposed that climate variability and environmental stability/instability 

cycles were important features of past African environments, and therefore important 

drivers of human evolution, with seasonal cycles playing an important part in shaping local 

environments on a short-time scale, in relation and addition to longer-time scale global 

climatic changes related to suborbital and orbital insolation cycles (Milankovitch, 1941; 

Kingston and Harrison, 2007; Joordens et al., 2011; Potts, 2013; Levin, 2015; Potts and Faith, 

2015).  

8.3.4 Perspectives for future research  

 

To investigate further habitat heterogeneity during the Plio-Pleistocene and how habitat 

heterogeneity and/or increase in aridity conditions might have had a significant impact on 
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hominin diversity and evolution, it would be interesting to compare the results from this 

study, focused on the Eastern African fossil record, with material from other key hominin-

bearing regions in Africa, and more particularly in comparison with the Cradle of Humankind, 

in South Africa (Gauteng Province). Numerous hominin species have been discovered from 

South African fossil deposits (i.e. Australopithecus sediba, Berger et al., 2010; 

Australopithecus africanus, Dart, 1925, Clarke, 2008; Paranthropus robustus, Broom, 1938; 

Homo habilis ,Hughes and Tobias, 1977; and Homo ergaster, Leakey, 1960, Kuman and Clarke, 

2000, Anton et al., 2014), suggesting a potentially high diversity of that lineage in that region, 

alike East Africa and the Omo-Turkana basin for a similar time interval.  

Similarly to East African fossil sites, reconstructions of palaeo-environmental contexts have 

been proposed for the Cradle of Humankind, using various methods such as macro- and 

micro-faunal associations, palaeo-botanical studies, and speleothem isotopic studies (e.g. 

Vrba, 1974, 1975; Avery, 2001; deMenocal, 2004; Hopley, Latham and Marshall, 2006; 

Hopley et al., 2007). These studies have suggested a climatic trend similar to that of East 

Africa during the Plio-Pleistocene, with increasing aridity and grassland expansion. 

Furthermore, studies have highlighted fluctuating proportions of C3 and C4 vegetation 

through time, with increasing grassland-dominated habitats after ~1.7 Ma, potentially 

related to African aridity caused by the onset of the Walker Circulation in the Pacific Ocean 

at around that time (Hopley et al., 2007).  

Previous research pointed out differing environmental dynamics between East and South 

Africa, which might have been driven by differences in latitudinal position, and varying 

degrees of volcanic and tectonic activity, with East Africa being more affected by Earth 

dynamics than South Africa (King and Bailey, 2006; Reynolds, 2007; Bailey and King, 2011; 

Bailey, Reynolds and King, 2011). Tectonic uplifts in southern Africa are believed to have 

been less significant than in East Africa, resulting in a smaller impact on local environmental 

conditions, and less temporal variations (Partridge, Wood and DeMenocal, 1995).  
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To investigate further the differences and similarities in vegetation structure between East 

and South African hominin-bearing localities and test the hypothesis of differing landscape 

dynamics between the two regions, results from this study could be compared with the 

results produced for South African localities by Sewell and collaborators (Sewell, 2019; 

Sewell et al., 2019) which used a similar methodological approach using fossil springbok 

remains (genus Antidorcas).  

8.4 Conclusion of this study 
 

As demonstrated throughout this thesis, and highlighted more particularly in the present 

discussion chapter, this research project examined the dietary behaviours of selected extant 

and extinct mixed-feeding antelopes, using a combination of complementary methods to 

assess whether detailed studies of the dietary ecology of mixed-feeding antelope species 

could be used to investigate hominin palaeo-environments in the Omo-Turkana basin during 

the Plio-Pleistocene. More particularly, this research aimed to assess whether abundant and 

adaptable herbivores such as the impala or the springbok could reliably be used as accurate 

local vegetation proxies, checking upon the assumption that their dietary behaviours are 

mainly influenced by the vegetation conditions in their habitats.  

Firstly, this work evaluated what type of evidence dietary studies of mixed-feeding 

herbivores can provide to help make inferences about the prevailing vegetation 

conditions of their local habitats. This work demonstrated that, while the fossil record has 

been studied extensively to propose palaeo-environmental reconstructions of African 

regions key to the understanding of hominin evolution, new methods can be employed to 

gain further insights into palaeo-vegetation conditions. Indeed, this research proposed a 

novel approach to palaeo-environmental studies, which consisted of building models based 

on land cover and dietary data from modern populations. This was to test whether modern 

impala dietary variability could be positively correlated with specific habitats and climatic 



390 
 

conditions, and assess if such relationship could be used to help interpret dietary patterns 

identified from the fossil record. Although the models built for this study revealed some 

limitations, the predictions generated for fossil Aepyceros samples for the Omo-Turkana 

basin based on modern land cover and stable isotope data were partly consistent with 

previous palaeo-environmental studies for this region. Improved models could be used on 

other mammal taxa for which isotope data is available for both extant and extinct 

populations, to explore how faunal communities directly relate to their environments and 

how dietary studies can inform on their habitats depending on their feeding ecology without 

prior assumptions of the similarity in ecology between fossil taxa and their extant relatives. 

In addition, this study showed that detailed studies of the palaeo-diets of mixed-feeding 

herbivore species can provide useful information regarding palaeo-vegetation conditions, 

most particularly when evaluating differences between local habitats in one region, or 

potential changes in environmental conditions through time. Mixed-feeding species were 

shown to remain highly adaptable to changing vegetation conditions, although likely 

retaining dietary preferences when and where possible. While mixed-feeding taxa such as 

the impala (genus Aepyceros) are abundant in the fossil record, they had rarely been studied 

in such detail before. This study therefore demonstrated that mixed-feeding herbivores can 

be used as palaeo-vegetation proxies in future studies for fossil assemblages where they are 

abundant, and can be used alongside other palaeo-environmental proxies to investigate 

vegetation conditions in the past. This highlights the potential of this approach, as well as the 

potential for dietary analyses of mixed-feeding taxa to be used as an additional tool for 

palaeo-environmental reconstructions, although further studies could improve the accuracy 

of this approach with larger modern datasets for comparative studies, and with more 

experimental work to better understand the relationship between the various dietary-

proxies (dental use-wear, stable isotopes), and specific plant-types/local environments.  
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Secondly, this project explored what additional insights into palaeo-environmental 

conditions in the Omo-Turkana basin the inferred dietary patterns of mixed-feeding 

species could provide, and how these could potentially help resolve apparent 

contradictions between other environmental proxies. The outcome of this study 

highlighted the great potential of multi-proxy dietary analyses, showing that the combination 

of multiple methods can help assess the dietary ecology of modern or fossil species to a 

greater level of detail than when these methods are used in isolation. More particularly, this 

approach allowed to perform a multi-scale dietary analysis in which diets were compared 

across several temporal scales to assess how much the diet of the studied individuals changed 

throughout their lifetime. This allowed to inform on the seasonal dietary variability of the 

studied taxa and, which might reflect seasonal variability of vegetation conditions in the past 

when studying flexible mixed-feeding taxa.  

The interpretation of the dietary patterns inferred from mixed-feeder dental remains from 

the Omo-Turkana deposits aligned with previous studies which, using other paleo-

environmental proxies, pointed to differences across the basin, with more arid open 

habitats in Koobi Fora and Nachukui, compared to more wet closed habitats described in the 

Lower Omo river valley (i.e. Shungura Fm). Similarly, the variations in inferred dietary 

behaviours observed through time for the mixed-feeding antelope studied, which suggested 

a gradual increase in the proportions of C4-resources in the diet (potentially reflecting an 

increase in the proportions of C4 grasses and sedges in the landscape), were consistent with 

observations made from other proxies which suggested an increase in aridity conditions and 

a gradual spread of open-grassland habitats. However, where previous studies have 

disagreed regarding the degree of habitat heterogeneity and the amount of C3-vegetation 

present in the Omo-Turkana region during the Plio-Pleistocene, results from this study 

argued in favour of high spatial heterogeneity, suggesting the presence of highly fragmented 

habitats across the basin. This was based on the varied diets observed across the multiple 

dietary-proxies studied, potentially reflecting some degree of habitat heterogeneity and 
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vegetation diversity in the region during the Plio-Pleistocene, although it remains difficult to 

assess whether these varied diets were related to seasonal changes in local vegetation 

conditions, or to the presence of consistently present mosaic habitats on the eastern and 

western margins of the basin. 

Based on these observations and interpretations, and on comparisons with previous studies, 

this study then discussed how the palaeo-vegetation and palaeo-climate inferences 

made from mixed-feeding antelope palaeo-dietary studies compared with the main 

evolutionary theories proposed to explain mammal/human evolution. Indeed, the 

inferred dietary patterns observed across the mixed-feeding assemblages from the Omo-

Turkana basin, allowed the brief discussion of the palaeo-ecological and palaeo-climatic 

contexts that shaped the evolution of the human lineage, by comparing the trends observed 

in this study with previous hypotheses formulated based on other environmental-proxies. As 

mentioned above, results from this study indicated an increase in grazing signals in all three 

Omo-Turkana fossil localities, although more pronounced in the Shungura formation, 

potentially reflecting a gradual grassland expansion in the region throughout the Plio-

Pleistocene, as suggested in most theories (e.g. Savannah Hypothesis, Dart, 1925; Variability 

Selection Hypothesis, Potts, 1998). Interestingly, the suggested shifts in dietary behaviours 

observed through time for impala specimens from the Shungura formation appear to 

compare well with other paleo-environmental proxies (such as paleosol carbonates or paleo-

dietary analyses), the timing of these changes coinciding with some of the major global 

climatic events suggested to have influenced mammalian evolution (i.e. Turnover Pulse 

Hypothesis, Vrba, 1985; Pulsed Climate Variability Hypothesis, Maslin and Trauth, 2009), 

such as the Intensification of Northern Hemisphere Glaciation (iNHG) (at ~ 2.75 Ma) (which 

marked the installation of ‘glacial-interglacial cycles’), and the Onset of the Walker 

Circulation (oWC) (at ~2.0 Ma) (which has been suggested to have triggered an increase in 

aridity and variability after ~1.9-1.5 Ma ; Trauth et al., 2009).  
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The varied diets observed among impalas from the Koobi Fora and Nachukui formations, 

along with little evidence for significant temporal changes in these dietary patterns, could 

suggest two regions of long-lived mosaic vegetation, where a wide range of food resources 

were available to these herbivores (and to hominins) throughout the sequence and the 

region. In contrast, the more variable dietary patterns observed for impalas from the 

Shungura formation, which varied through time depending on the member studied, could 

suggest local mosaic habitats in the Lower Omo-river valley with a more marked fluctuation 

through time between woodland-dominated and grassland-dominated phases. In any case, 

the presence, across all three fossil localities of the Omo-Turkana basin, of long-lived mosaic 

habitats, could have supported a high diversity of mammalian taxa with varying ecological 

requirements, including hominins, providing a wide range of habitats to species of differing 

morphological adaptations, as suggested by ‘Mosaic Habitat’ theories, which argue for the 

importance of mosaic habitats in east Africa during the Plio-Pleistocene in promoting local 

biodiversity (Domínguez-Rodrigo, 2014; Reynolds et al., 2015; Du and Alemseged, 2018). 

In addition, intra-tooth stable isotope data pointed to periods of relatively high climatic 

variability associated with high seasonal variations in rainfall amount, more particularly 

between 2.27 and 1.9 Ma. This was in agreement with previous research that hypothesized 

that seasonal and interannual rainfall variability in eastern Africa increased at ~2.0 Ma in 

response to the Plio-Pleistocene intensification of the Walker Circulation (Ravelo et al., 2004; 

Blumenthal et al., 2017; Hopley et al., 2018). The increasingly variable seasonal dietary 

patterns observed in the Shungura Fm would therefore be additional evidence in favour of 

the Plio-Pleistocene environmental dynamics proposed by the Pulsed Climate Variability 

Hypothesis (Maslin and Trauth, 2009). 

Overall, the conclusions drawn from the present study of the paleo-dietary ecology of mixed-

feeding antelopes from the Omo-Turkana basin appear to agree with the palaeo-

environmental dynamics proposed by the Pulsed Climate Variability Hypothesis to explain 
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patterns of faunal evolution in eastern Africa: heightened environmental instability and 

heightened habitat heterogeneity were suggested as one of the main drivers of mammalian 

evolution, with short periods of extreme climate variability (i.e. pulses/punctuations) within 

the long-term drying trend in East Africa (Maslin and Trauth, 2009). Such conditions have 

been previously hypothesized to have influenced local vegetation and faunal biodiversity in 

the region, adding selective pressures associated with seasonal changes in resources 

abundance and distribution, acting as an additional driver of hominin evolution. 
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