
Sketch-based Retrieval of
Images and 3D Shapes

Yu Xia

A thesis submitted in partial fulfilment of the requirements

of Bournemouth University for the degree of

Doctor of Philosophy

October 26, 2021



Copyright statement

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognize that its copyright rests with its

author and due acknowledgment must always be made of any material

contained in, or derived from, this thesis.

i



Abstract

With the ubiquitous proliferation of touch screens in consumer electron-

ics such as mobile phones and tablet PCs, the demand of consumers

for more convenient product search methods is rising. Since sketching

meets this need as a form to better express visual intentions, sketch-based

retrieval techniques get increasing attention in the computer vision com-

munity. Currently, sketch-based retrieval techniques mainly focus on

image and 3D shape retrieval, and some issues such as single- and multi-

colour sketch based image retrieval and 3D shape retrieval able to deal

with a big domain discrepancy between 2D sketches and 3D shapes have

not been well investigated. This thesis will address these issues.

For the image retrieval, a single-colour sketch based image retrieval

(SCSBIR) approach using RGB and HSV colour features is investigated.

Previous methods only consider black-and-white sketches and ignore

colour matching between sketches and images, which induce a low re-

trieval precision. To address this problem, the SCSBIR approach is

proposed to consider both shape matching and colour matching with

a novel ranking method. Since existing methods cannot effectively dis-

tinguish images of the same type but different colours, SCSBIR is further

extended to multi-colour sketch based image retrieval (MCSBIR) using

a two-stage network architecture, in which a new feature embedding for

explicably describing the shape and colour information is proposed and a

triplet loss function based on a new Euclidean distance, which separates

the shape and colour features, is developed. For the 3D shape retrieval, a

teacher-student guided and sketch-based 3D shape retrieval (TSS3DSR)

approach is presented to tackle the big domain discrepancy between 2D

sketches and 3D shapes. The pre-learned semantic features of 3D shapes
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are first extracted from the teacher network and then used to guide the

feature learning of 2D sketches in the student network.

A series of experiments have been carried out to demonstrate the ef-

fectiveness of the proposed methods in both the image and 3D shape

retrieval. A user interface is also developed to facilitate practical appli-

cations of the developed colour sketch-based image retrieval and sketch-

based 3D shape retrieval in this thesis.
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Chapter 1

Introduction

Retrieval is an important data analytics problem in online shopping and

design industries. In the online shopping industry, a report by the Centre

for Retail Research indicates that Britain had the largest online retail

sector in Western Europe, whose total online retail sales reached £99.308

billion in 2020 [Centre for Retail Research 2020]. It shows that online

shopping has already become a new way of shopping in our daily life.

To keep and improve the prosperity of online shopping, a good retrieval

strategy is very important in helping not only sellers to sell more goods

but also customers to find what they want. In the design industry, with

the development of the Internet and storage technologies, designers no

longer need to start the product design from scratch, and they can di-

rectly search the whole or parts of existing products through support

retrieval tools to generate new designs, which greatly shortens the de-

sign cycle. Therefore, how to allow users to accurately retrieve desired

targets plays an important role in online shopping and design industries.

Existing retrieval methods rely on the texts or exemplar images, which
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have many limitations including low accuracy and efficiency, poor person-

alized demand and unfriendly to vulnerable groups such as people with

low intelligence and poor description skills. With the ubiquitous prolif-

eration of touch screens in consumer electronics such as mobile phones

and tablet PCs, the sketch-based retrieval is a solution to the above lim-

itations and provides a more convenient and user-friendly search method

based on data-driven analysis. It can also perform accurate retrieval

results based on the user’s input since the sketch can better express vi-

sual intentions and has more detailed information. Figure 1.1 illustrates

an example of using the free-hand sketch for image retrieval compared

with using the text. When users want to search for their desired female

heels online, it is difficult to describe the details and style of the heels

by words. The retrieval results are usually category-level, which roughly

include all shoes from the category of female heels. In contrast, a sketch

of the heels can be easily drawn through touch screens, which can de-

scribe the details and style of the desired heels. The retrieval results by

the sketch are instance-level, which only include the most similar heels

as well as the right one.

Thanks to the great progress of the computer performance and the

deep learning approach, the sketch-based retrieval techniques get increas-

ing attention as new computer vision problems. Currently, many re-

searchers have studied several retrieval problems based on the sketch,

including sketch-based image retrieval [Eitz et al. 2010b; Hu & Collo-

mosse 2013; Yu et al. 2016; Bui & Collomosse 2015] and sketch-based 3D

shape retrieval [Wang et al. 2015; Qi et al. 2018; Daras & Axenopoulos

2010; Eitz et al. 2012b]. However, some issues such as single- and multi-

colour sketch based image retrieval, 3D shape retrieval able to deal with

2



Figure 1.1: An example of using the free-hand sketch for image retrieval

compared with using the text.

a big domain discrepancy between 2D sketches and 3D shapes, and a

user-friendly interface to facilitate sketch-based retrieval have not been

well investigated. This thesis will address these issues.

1.1 Colour sketch-based image retrieval

In the field of sketch-based image retrieval, fine-grained matching be-

tween sketches and retrieved images attracts an increased attention. Cur-

rently, researchers who study fine-grained sketch-based image retrieval
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use black-and-white sketches as input, but such input is divorced from

practical applications because objects in real life are coloured. Inspired

by the work of [Bui & Collomosse 2015], one of the aims of this thesis is to

solve the problem of fine-grained image retrieval based on colour sketch,

and make the retrieval results consider both shape detail matching and

accurate colour matching. Solving this problem is particularly impor-

tant in commercial applications such as searching a specific item on an

online shopping platform by colour finger-sketching using a touchscreen

device. For example, when users search a red female heeled boot using

the black-and-white sketch-based image retrieval method, the black-and-

white sketch may find the image of a black female heeled boot because

their shapes are matched only during the retrieval process. If there is a

colour matching in the process, the red female heeled boot can be found

using the red sketch, as shown in Figure 1.2. Therefore, the study of

colour sketch-based image retrieval has a more important commercial

application value.

Figure 1.2: An example of image retrieval using a black-and-white

sketch and a colour sketch.
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Achieving colour sketch-based image retrieval has many challenges.

First, there is no publicly available dataset of colour sketches. The exist-

ing publicly available sketch datasets consist of black-and-white sketches,

and cannot meet the needs of colour sketch-based image retrieval. Thus,

creating a new colour sketch dataset is necessary. Second, since colour

sketches are very different from images in appearance, the colour sketch-

based image retrieval is a cross-domain retrieval problem, as shown in

Figure 1.3. It is required to find a joint feature embedding space to nar-

row the large domain gap. Third, human sketches are very abstract and

somewhat distorted. Unlike image edge extraction, the sketch does not

completely fit the object contour in the image, which increases the dif-

ficulty of retrieval. Fourth, it is difficult to obtain retrieval results with

correct shapes and colours effectively based on colour sketches. How to

determine which result is more matched with the query colour sketch

is a big problem. An advanced sorting algorithm should be developed

to make the final retrieval results optimal in both shape matching and

colour matching. Last but not the least, the retrieval method should dis-

tinguish images of the same type but different colours, which can greatly

improve the retrieval accuracy.

Figure 1.3: Some examples of colour sketches and corresponding im-

ages.

In this thesis, in order to tackle the problems of colour sketch-based
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image retrieval, a single-colour sketch based image retrieval (SCSBIR)

method is first proposed and then a multi-colour sketch based image

retrieval (MCSBIR) method is developed.

SCSBIR A novel SCSBIR method is proposed based on the multi-

branch deep convolutional neural network (CNN). The network consists

of three identical branches, one of which takes colour sketches as input

and the other two take images as input during training. With the net-

work, not only the objects with fine-grained similarity to the sketch are

obtained, but also the similarity of colour is considered. For achieving

the optimal performance of the neural networks, a lot of training data

is needed. Since the deep FG-SBIR model [Song et al. 2017] provides

a suitable CNN foundation for black-and-white sketch-based image re-

trieval, a pre-training model is built based on the deep FG-SBIR model

and a dataset of single-colour sketch-image pairs for SCSBIR is created

based on the Shoe and Chair Datasets from [Yu et al. 2016] and the

Handbag Dataset from [Song et al. 2017].

MCSBIR Since most retrieved objects contain multi-colours and the

single-colour cannot completely represent their colour information, a

MCSBIR method is further proposed to tackle this problem. First, a

MCSBIR dataset is created based on UT Zappos50K [Yu & Grauman

2014] and a new feature embedding is designed to clearly and explicably

describe the shape and colour information within a single feature vector.

Then, a triplet loss function based on a new Euclidean distance is de-

veloped, which separates the shape and colour features, and a two-stage

network architecture is designed to learn the proposed feature embed-

ding. In order to demonstrate the effectiveness of the proposed method,
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two baselines are also designed to compare with the proposed MCSBIR

method and the influence of different hyper-parameters and stages on

the retrieval performance is further analyzed.

1.2 Sketch-based 3D shape retrieval

The virtual 3D shape plays an increasingly important role in our daily

lives due to the rapid development of digitalization techniques, such as

visual effects, medical imaging and 3D printing. How to retrieve a desired

3D shape among a great number of 3D shapes is a popular research topic

in many years [Chen et al. 2003; Shih et al. 2007; Shao et al. 2011; Li et al.

2014a]. Compared to using texts as queries, sketches can more intuitively

describe 3D shapes and are also convenient for humans to use. In design

industry, designer can draw sketches to retrieve desired 3D shapes for fast

3D modeling and scene generation, as shown in Figure 1.4, which can

speed up their design process and help their creation work. Therefore,

sketch-based 3D shape retrieval has attracted considerable attention in

the community of computer vision and graphics [Li et al. 2013a, 2014b].

The main challenge for sketch-based 3D shape retrieval is the big do-

main discrepancies [Qi et al. 2018]. First, sketches are represented in

a 2D space while 3D shapes are embodied in a 3D space, so their het-

erogenous data structures make it extremely difficult to directly retrieve

3D shapes from a query sketch. Second, sketches are abstract free-hand

drawings, which usually consist of several simple lines and contain very

limited information. Conversely, 3D shapes are surface-represented ge-

ometric objects and have many details of their shape characteristics.

Third, sketches are presented with only one view of 3D shapes, and it is

very hard to find the best or most similar view of 3D shapes according
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Figure 1.4: A 3D scene generation with objects retrieved using sketches

to query sketches. Figure 1.5 gives some examples of sketches and cor-

responding 3D shapes from the same class, and shows the large domain

gap between them. In order to tackle the aforementioned challenge of

Figure 1.5: Some examples of sketches and corresponding 3D shapes.

sketch-based 3D shape retrieval, a variety of research efforts have been

dedicated to this task, and their main purpose is to improve the retrieval

accuracy. There are mainly two ways to achieve the accuracy improve-

ment: 1) learning robust features representations for both sketches and

3D shapes [Chen & Fang 2018; Xie et al. 2017; Tasse & Dodgson 2016],

and 2) developing effective ranking or distance metrics between sketches
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and 3D shapes [Qi et al. 2018; Wang et al. 2015; Dai et al. 2017]. Due to

the great success of deep CNNs applied in the image feature extraction

in recent years, all state-of-the-art methods have used deep metric learn-

ing for sketch-based 3D shape retrieval and achieved a better retrieval

accuracy compared with traditional methods [Chen et al. 2019]. How-

ever, these studies have two weaknesses. First, they address the domain

discrepancy problem by mapping sketches and 3D shapes into a joint fea-

ture embedding space, where the similarity is measured using a shared

loss function. It is difficult to effectively reduce the domain discrepancy

because sketches and 3D shapes cannot be aligned perfectly within the

same embedding space. Second, they have two different network struc-

tures to extract features of sketches and 3D shapes, respectively, and the

parameters of the two networks are unshared and updated simultane-

ously during the training process, which leads to a high computational

cost.

In this thesis, a novel semantic similarity metric learning method

named as teacher-student guided and sketch-based 3D shape retrieval

(TSS3DSR) is proposed to overcome the above-mentioned disadvantages

of recent studies. Note that the aim of sketch-based 3D shape retrieval is

to find 3D shapes belonging to the class labels of query sketches, so their

label spaces are shared and can be used as a semantic embedding space.

In such a semantic space, sketches and 3D shapes are aligned perfectly

[Qi et al. 2018]. Inspired by the knowledge distillation technique, which

uses a large teacher network to guide a small student network [Hinton

et al. 2015], a teacher-student strategy is adopted to obtain efficient net-

works for learning semantic similarity between sketches and 3D shapes.

It can not only reduce the computational burden but also make the se-
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mantic features alignment easier. In the proposed TSS3DSR method,

the proposed metric learning network consists of a teacher network and

a student network. The teacher network is a pre-trained classification

network based on MVCNN [Su et al. 2015] to extract the semantic fea-

tures of 3D shapes and the student network is a transfer network based

on ResNet-50 [He et al. 2016] to learn the semantic features of sketches.

The transfer network is trained by the guide of a new similarity loss

for optimizing the semantic feature distance between sketches and 3D

shapes.

In order to facilitate practical applications of the developed colour

sketch-based image retrieval and sketch-based 3D shape retrieval, a user

interface, which integrates sketch-based retrieval functions for images

and 3D shapes, is developed. Users can freely choose different retrieval

modes, use a brush with different colours and sizes for sketching, and

search similar images or 3D shapes. The user interface not only acts as

a demo to visually present the research on sketch-based retrieval, but

also provides an effective tool to release the potential of the developed

techniques for future commercial applications.

1.3 Aims and objectives

The research aim of this thesis is to develop a sketch-based retrieval sys-

tem for images and 3D shapes. For the sketch-based image retrieval, the

colour sketch is focused on making the retrieval results consider both

shape matching and colour matching as well as improve the retrieval

performance. For the sketch-based 3D shape retrieval, the alignment of

semantic features is focused on solving the cross-domain retrieval prob-

lem. According to the research aims, there are three primary research
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questions that need to be addressed.

• How to match the shape and colour information between

sketches and images? The stroke pixels of a black-and-white

sketch indicate the shape information, which can be recognized and

mapped to hand-designed or deep features. However, the stroke

pixels of a colour sketch contain not only shape information but

also colour information. It is difficult to compare the similarities

between colour sketches and images.

• How to construct the embedding features of multi-colour

sketches? Since an image usually contains different colours, a

multi-colour sketch can better describe the image. However, the

major difficulty is to construct the embedding feature of the multi-

colour information as well as shape information. In addition, in

different retrieval preferences, the focus may be inclined to the

shape or the colour. How to reflect this characteristic in the feature

embedding is a challenge.

• How to reduce cross-domain discrepancies between sketches

and 3D shapes? Since sketches and 3D shapes are represented

in different dimensional spaces, it is unprocurable to directly com-

pare their similarity. The primary difficulty is to find a feature

embedding space for both sketches and 3D shapes.

To answer the above questions, this thesis aims to achieve three main

objectives:

• The first objective is to make the retrieval results consider both the

shape detail matching and the accurate colour matching. There

are two ways to achieve this objective. The first is to separate
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the matching processes of the shape and colour, which is discussed

in Chapter 3, and the second is to match the shapes and colours

simultaneously, which is discussed in Chapter 4.

• The second objective is to construct embedding features of multi-

colour sketches. This objective focuses on finding a single feature

that can describe the shape and colour information together. In

particular, the constructed feature should be explicable, i. e., the

colour and shape information are unmixed, so that the similarity

between sketches and images can be measured. This objective is

discussed in Chapter 4.

• The third objective is to find a feature embedding for both sketches

and 3D shapes and reduce their cross-domain discrepancies. Since

the sketches and 3D shapes share the same semantic information,

the key is to find 3D shapes belonging to the same class labels of

query sketches, which is discussed in Chapter 5.

1.4 Contributions

The main contributions of the work in colour sketch-based image retrieval

are listed as follows:

For SCSBIR:

• A single-colour sketch-image dataset is created, which contains

three categories, i. e., 419 sketch-image pairs of shoes, 297 sketch-

image pairs of chairs and 568 sketch-image pairs of handbags.

• A dominant colour extraction method is proposed to detect the

most attractive colour of an image and help to colour the black-
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and-white sketches.

• A deep learning approach is developed to achieve image retrieval

based on single-colour sketch, and the generalization of this ap-

proach is verified in different categories.

• Two colour similarity comparison methods, in RGB colour space

with Hellinger distance and HSV colour space with Bhattacharyya

distance, are proposed to rank retrieval images after the shape

matching process.

For MCSBIR:

• A multi-colour sketch-image dataset containing 232 sketch-image

pairs of shoes is created by using the k-means clustering algorithm

to extract a set of quantized colours from images and generate the

multi-colour sketches.

• A novel feature embedding for explicably describing the shape and

colour information within a single feature vector is proposed.

• A triplet loss function based on a new Euclidean distance, which

separates the shape and colour features, is developed.

• A two-stage network architecture is designed, which consists of a

classification stage and a retrieval stage.

The main contributions of the work in sketch-based 3D shape retrieval

are listed as follows:

• A metric learning network using the teacher-student strategy is

proposed to conduct sketch-based 3D shape retrieval in a joint

semantic embedding space.
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• A similarity loss function is developed to optimize the semantic

feature distance between sketches and 3D shapes.

• Several experiments are carried out on a large benchmark dataset

of sketch-based 3D shape retrieval and show that the proposed

TSS3DSR method outperforms other state-of-the-art methods.

1.5 List of publications

Relevant publications

[1] Xia, Y., Wang, S., You, L. and Zhang, J., 2021, June. Semantic

Similarity Metric Learning for Sketch-Based 3D Shape Retrieval.

In International Conference on Computational Science (pp. 59-69).

Springer, Cham.

[2] Xia, Y., Wang, S., Li, Y., You, L., Yang, X. and Zhang, J.J.,

2020. Single Color Sketch-Based Image Retrieval in HSV Color

Space. In Transactions on Computational Science XXXVII (pp.

77-90). Springer, Berlin, Heidelberg.

[3] Xia, Y., Wang, S., Li, Y., You, L., Yang, X. and Zhang, J.J., 2019,

June. Fine-grained color sketch-based image retrieval. In Com-

puter Graphics International Conference (pp. 424-430). Springer,

Cham.

[4] Xia, Y., Wang, S., You, L., Yang, X. and Zhang, J.J., A explicable

feature embedding for multi-color sketch-based image retrieval, to
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Co-authored publications

[5] Wang, S., Xiang, N., Xia, Y., You, L. and Zhang, J., 2021. Real-
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time surface manipulation with C1 continuity through simple and

efficient physics-based deformations. The Visual Computer, pp.1-

13.

[6] Wang, S., Wang, R., Xia, Y., Sun, Z., You, L. and Zhang, J., 2021.

Multi-objective aerodynamic optimization of high-speed train heads

based on the PDE parametric modeling. Structural and Multidis-

ciplinary Optimization, pp.1-20.

[7] Wang, S., Xia, Y., You, L. and Zhang, J., 2020. Reconstruction

of Curve Networks from Unorganized Spatial Points. Journal of

Universal Computer Science (J. UCS), 26(9), pp.1265-1280.

[8] Wang, S., Xia, Y., Wang, R., You, L. and Zhang, J., 2019. Op-

timal NURBS conversion of PDE surface-represented high-speed

train heads. Optimization and Engineering, 20(3), pp.907-928.

Contributions in co-authored publications For paper [5], the

author has conducted the experiments and tested the user interface. For

paper [6], the author has designed the whole optimization flow of high-

speed train heads. For paper [7], the author has contributed to the 3D

curve network model design and created a test dataset. For paper [8], the

author has contributed to the visualization of PDE surfaces and NURBS

surfaces.

1.6 Structure of the following chapters

The following part of this thesis contains six more chapters:

• Chapter 2 reviews related research topics, including sketch recog-

nition, sketch-based image retrieval and sketch-based 3D shape re-
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trieval.

• Chapter 3 presents a SCSBIR method to retrieve images by single-

colour sketches with a ranking method combined with the shape

similarity matching and colour similarity matching, which improves

the retrieval accuracy.

• Chapter 4 presents a MCSBIR method to retrieve images by multi-

colour sketches, which is not only able to distinguish the images

with the same shape but different colours, but also has higher re-

trieval accuracy compared with baselines.

• Chapter 5 presents a TSS3DSR method to retrieve 3D shapes by

sketches and compares it with state-of-the-art methods using dif-

ferent evaluation metrics.

• Chapter 6 presents a user interface integrating the proposed MCS-

BIR and TSS3DSR methods to demonstrate the potential applica-

tion of sketch-based retrieval.

• Chapter 7 concludes the thesis and discusses future work.
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Chapter 2

Literature Review

This thesis mainly investigates sketch-based retrieval in two aspects, i.

e., colour sketch-based image retrieval and sketch-based 3D shape re-

trieval. Therefore, this chapter reviews the most related works to these

two parts. Since modern sketch-based retrieval is closely related to sketch

recognition [Radenovic et al. 2018], an overview of sketch recognition will

be presented in Section 2.1, and then the methods of sketch-based image

and 3D shape retrieval will be reviewed in Sections 2.2and 2.3, respec-

tively.

2.1 Sketch recognition

Sketch recognition is inseparable from sketch-based retrieval because

both of them are looking for a feature embedding which can exactly

describe the sketch features. Moreover, their benchmark dataset over-

laps. The sketch recognition dataset provides free-hand sketch resources

for the establishment of the sketch-based retrieval dataset. Therefore, it

is necessary to first review the related works of sketch recognition.
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The purpose of sketch recognition is to predict an appropriate classifi-

cation for the input sketch. A demonstration of sketch recognition using

TU-Berlin dataset [Eitz et al. 2012a] is shown in Figure 2.1. It is one of

the most fundamental studies in the field of computer vision. According

to the different classification algorithms used in sketch recognition, exist-

ing studies can be roughly divided into two parts, i. e., sketch recognition

using hand-designed features and sketch recognition using deep features.

Figure 2.1: A demonstration of sketch recognition using TU-Berlin

dataset [Eitz et al. 2012a].

2.1.1 Sketch recognition using hand-designed fea-

tures

Sketch recognition was studied by Herot [1976] in the early stage. An

interactive system for graphical input was reported, which involved the

user’s interactive design in the recognition process. In their experiments,

the sketching was proved to be a viable medium for human-computer

interaction. Sezgin et al. [2007] built a system, which could recognize

simple freehand sketches consisting of straight lines and curves. This

system allowed a single stroke to draw arbitrary shapes and detected

feature points automatically. It did not need users to switch modes

when drawing different geometric object classes, which gave the user a

more natural feeling during the sketching process. After that, various
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algorithms were proposed in order to achieve the recognition function of

more complex sketches.

LaViola Jr & Zeleznik [2006] built a system named MathPad2 to im-

plement rapid visualization of mathematical formulations. A gestural

user interface was designed to associate handwritten mathematical ex-

pressions with free-hand diagrams, which supported some computational

functions, such as graphing, solving, simplifying and factoring, on rec-

ognized mathematical expressions. Ouyang & Davis [2011] developed

a system named ChemInk to recognize hand-drawn chemical diagrams

in real time, which addressed graphics and text to generate a complete

molecular structure. The recognition accuracy of this system achieved

97.4% on a chemical diagrams dataset. A learning-based corner detec-

tion approach was also presented which achieved over 99% accuracy in

the chemical domain. However, these studies have some limitations.

They are only applicable to some certain tasks and do not work well for

identifying other types of sketches.

Since Eitz et al. [2012a] created the TU-Berlin dataset which is a

benchmark for sketch recognition, the sketch recognition community has

been developed rapidly in recent years. TU-Berlin dataset is the first

large scale dataset of human freehand sketches, which is exhaustive,

recognizable and specific. It has a total of 20,000 sketches containing

250 categories with 80 sketches for each category. With the TU-Berlin

dataset, a bag-of-features sketch representation [Sivic & Zisserman 2003]

and multi-class support vector machines Schölkopf et al. [2002] were em-

ployed by Eitz et al. [2012a] to classify sketches. The accuracy of com-

puter recognition was 56%, while the accuracy of human performance

was 73.1%. Since then, a lot of research studies focused on trying to
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beat the human performance on the TU-Berlin dataset.

Li et al. [2013b] presented an ensemble matching method based on

star graphs, which can encode the geometrical structures information

of sketches, including holistic structures and local features. Extensive

comparative experiments were carried out using the TU-Berlin dataset

and showed that the star graphs based approach was superior to the

method used by Eitz et al. [2012a] in sketch recognition. They further

studied the structured representation of sketches and proposed a multi-

kernel feature learning framework to fuse several features of sketches and

overcome the visual sparse problem [Li et al. 2015]. The performance of

this method on the TU-Berlin dataset is 65.81%. In the meanwhile,

Schneider & Tuytelaars [2014] introduced a Fisher vectors based sketch

recognition approach, which improved the recognition performance to

68.9% on TU-Berlin dataset. Overall, these sketch recognition methods

using hand-designed features fail to meet human performance.

2.1.2 Sketch recognition using deep features

With the development of deep learning approaches, many deep models

have been proposed in the field of sketch recognition. Yu et al. [2015]

proposed Sketch-a-Net, the first deep neural network dedicated to sketch

recognition. This network fused multi-scale networks via joint Bayesian

fusion [Chen et al. 2012], which was used to obtain the abstraction of

sketch and the sequential ordering of strokes. The recognition perfor-

mance of Sketch-a-Net on the benchmark TU-Berlin dataset is 74.9%,

which surpasses human performance for the first time. After that, Yu

et al. [2017] extended their previous work and proposed two data argu-

mentation strategies to increase the volume and diversity of sketches in
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the training set. The improved Sketch-a-Net had a better performance

than the original Sketch-a-Net. Sarvadevabhatla & Babu [2015] also ex-

plored the application of deep features for freehand sketch recognition

and proposed a deep feature based framework by using the ImageNet

CNN [Krizhevsky et al. 2012] and LeNet CNN [LeCun et al. 1998; Jia

et al. 2014]. In the further study, [Sarvadevabhatla & Kundu 2016] pro-

posed a deep recurrent neural network, which considered the inherently

sequential and cumulative nature when people draw sketches in a nat-

ural state. Deep features obtained by this network contained long-term

sequential and structural regularities in stroke data. Zhang et al. [2016]

proposed a novel deep convolutional neural network SketchNet to carry

out the sketch recognition task and took a triplet as input, which con-

sists of a sketch, a positive image and a negative image. SketchNet

contains three sub-networks, i. e., R-NET for extracting image features,

S-NET for extracting sketch features and C-NET for discovering the

common structures of sketches and images. In the field of sketch recog-

nition, abundant research studies based on deep features indicate that

their recognition performance is far better than that of using traditional

hand-designed features.

In summary, sketch recognition can be regarded as a base for sketch-

based image and 3D shape retrievals. The sketch recognition using hand-

designed features has a low recognition performance and is gradually re-

placed by deep features since deep networks perform better in recognizing

sketches. Therefore, in this thesis, deep features are used to describe the

sketches.
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2.2 Sketch-based image retrieval

The techniques on sketch-based image retrieval to be proposed in this

thesis are related to category-level sketch-based image retrieval (Sec-

tion 2.2.1), fine-grained sketch-based image retrieval (Section 2.2.2) and

colour sketch-based image retrieval (Section 2.2.3). In this section, the

most related work in these three fields is briefly reviewed.

2.2.1 Category-level sketch-based image retrieval

Category-level sketch-based image retrieval is to retrieve images from the

same category as the query sketch. Some typical examples are illustrated

in Figure 2.2. Many existing researches focused on category-level sketch-

based image retrieval and employed hand-designed features or deep fea-

tures to represent sketches and images. In the early stage, hand-designed

features are frequently used to solve this problem. Eitz et al. [2010a] pre-

sented an interactive system for sketch-based image retrieval and created

43 sketch-image pairs to evaluate and compare the retrieval performance

of 27 descriptor variants. They also developed bag-of-features descrip-

tors (BOF) and created a new dataset for category-level sketch-based

image retrieval including 31 sketches and 40 images associated with each

sketch [Eitz et al. 2010b]. Based on the BOF codebook, Hu & Collomosse

[2013]; Hu et al. [2010, 2011] introduced Gradient Field HoG (GF-HOG)

as a depiction invariant image descriptor to improve retrieval accuracy.

Novel processing schemes for large-scale databases were also proposed in

[Cao et al. 2011, 2010] to calculate the similarity between a query sketch

and images. The limitation of hand-designed features is that the subtle

detail information cannot be well noticed.

Thanks to deep learning technology and the release of large scale free-
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Figure 2.2: Some examples of category-level sketch-based image re-

trieval [Eitz et al. 2010b]. c©[2010] IEEE.

hand sketch datasets, such as TU-Berlin dataset [Eitz et al. 2012a] and

Sketchy database [Sangkloy et al. 2016], deep features have been used

to solve the problem of category-level sketch-based image retrieval in

recent years. Qi et al. [2016] proposed a Siamese convolutional neural

network for sketch-based image retrieval, which can reduce the Euclidean

distance between the output feature vectors of an input sketch and a sim-

ilar image and increase the Euclidean distance between an input sketch

and an irrelevant image. Subsequently, Bui et al. [2017] presented a

triplet convolutional neural network whose weights were half-shared for

sketch-based image retrieval. The network consisted of an anchor net-

work which took a sketch as input, a positive network which took an

image from the same category as input and a negative network which

took an image from any other category as input. With this network,

they employed a modified triplet loss function to minimize the distance

between the sketch and the same-category image and maximize the dis-

tance between the sketch and the different-category image. Seddati et al.

[2017] proposed a quadruplet network for sketch-based image retrieval,

which enabled the output features to contain more global and local in-

formation. The input of the quadruplet network consisted of four parts,

i. e., sketches, similar images, dissimilar images from the same category
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and dissimilar images from a different category. These methods, how-

ever, belong to the category-level, which cannot distinguish fine-grained

subtle differences well between retrieved images in the same category.

2.2.2 Fine-grained sketch-based image retrieval

Fine-grained sketch-based image retrieval requires instance-level search

precision, which means that an image is considered to be the match of

the query sketch only when they are similar in shape, pose, viewpoint,

iconic pattern, etc. [Yu et al. 2016; Song et al. 2017]. Some examples of

fine-grained sketch-based image retrieval are shown in Figure 2.3, which

can distinguish the subtle differences of images and further find the cor-

rect top 1 match. The concept of fine-grained retrieval was first proposed

in [Li et al. 2014c] in 2014 to further leverage the descriptive power of

sketches. Some researchers employed deep learning approaches to ad-

dress the fine-grained sketch-based image retrieval problems. Yu et al.

[2016] created a dataset including two categories of shoes and chairs and

used a triplet ranking homogeneous network with a triplet ranking loss to

train model parameters for shoes and chairs, respectively. Subsequently,

Song et al. [2017] improved the method in [Yu et al. 2016] by introducing

the shortcut connection architecture of ResNet and the attention mod-

eling, which was mainly applied in the NLP field. They added a new

handbag category and proposed a novel loss function named HOLEF,

which was an improved version based on the classic triplet ranking loss.

Sangkloy et al. [2016] did a similar study on fine-grained sketch-based im-

age retrieval. Their main contribution was a Sketchy database with 125

categories and a triplet ranking heterogeneous network with the classical

triplet ranking loss for training model parameters, which can be applied

in a multi-category retrieval. Although some previous studies have been
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done on the fine-grained retrieval, all of them retrieve images based on

black-and-white sketches, and there is no precedent considering colour

sketches.

Figure 2.3: Some examples of fine-grained sketch-based image retrieval

[Song et al. 2017]. The correct matches are highlighted in yellow squares.

c©[2017] IEEE.

2.2.3 Colour sketch-based image retrieval

Recent existing colour sketch-based image retrieval methods mainly fo-

cus on the extraction and comparison of hand-designed features of colour

sketches and images based on gradients [Eitz et al. 2010b; Hu & Collo-

mosse 2013]. These methods have some limitations and cannot preserve

the subtle details of sketches and images well. Therefore, their retrieval

results cannot meet the requirements of the fine-grained retrieval, such

as good matching in the posture, direction and details of objects. Reddy

et al. [2014] used the HSV colour space to extract colour features and a

gray-level co-occurrence matrix to extract texture features of free-hand

colour sketches and images separately. Then, the Euclidean distances of

colour and texture features between query sketches and target images

were calculated to obtain the similarities. The paper mainly focuses on

the category-level search, but ignores the subtle details and directions of

the retrieved instances. Moreover, the query sketch is not the abstract
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hand-drawn colour line sketch, but the photo edge extraction sketch

with colour blocks, which is easier to retrieve images compared with

hand-drawn sketches. Bui & Collomosse [2015] first used line-art query

sketches and presented a gradient field HoG based on mathematical for-

mulas for colour sketch-based image retrieval. They converted colour

sketches and images into GF-HoG descriptors separately and then made

subsequent comparisons.

Up to now, deep learning methods were rarely applied in colour sketch-

based image retrieval. Cheng et al. [2016] used a CNN to address a pedes-

trian colour naming problem. Their work is to obtain accurate colour

descriptions of real world pedestrian images without paying attention to

the extraction of subtle detailed features of sketches or images, which is

quite different from what to be solved in this thesis. Fuentes & Saavedra

[2021] proposed a quadruplet-based convnet architecture to deal with a

colour sketch-based image retrieval problem. In order to represent shape

and colour information in one model, they used a quadruplet, consisting

of a colour sketch, a positive image with the same class and colour as

the sketch, a neutral image with the same class but a different colour

and a negative image with a different class and colour, to generate a fea-

ture space that can discriminate different colours. However, most of the

sketch data they used are sketches with colour blocks rather than colour

lines, and their feature space cannot clearly and explicably describe the

shape and colour information.

In summary, the development of sketch-based image retrieval is from

the category-level, which retrieves images of the same category to the

instance-level, which retrieves the most similar images. With the appli-

cation of deep learning approaches, the retrieval performance is greatly
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improved. However, most studies focus on the image retrieval based

on black-and-white sketches and a few studies try to deal with colour

sketches. There are three main challenges for achieving colour sketch-

based image retrieval, i. e., creation of a colour sketch dataset, an accu-

rate colour matching method between sketches and images, and a feature

embedding to represent both shape and colour information. All these

three challenges will be addressed in this thesis.

2.3 Sketch-based 3D shape retrieval

The proposed TSS3DSR method is related to sketch-based 3D shape

retrieval (Section 2.3.1) and a teacher-student strategy in metric learning

(Section 2.3.2). In this section, the most related work in these two fields

is briefly reviewed.

2.3.1 Retrieval methods

In the early stage, most sketch-based 3D shape retrieval methods relied

on the handcrafted features for describing sketches and 3D shapes [Li

et al. 2014a, 2013a]. With the rapid growth of CNNs, learning-based

methods have been developed in recent years. Wang et al. [2015] used

two projection views to characterize 3D shapes, defined a loss function

on the within-domain and the cross-domain similarities, and applied a

Siamese network to learn a joint embedding space for sketches and 3D

shapes. Some typical sketch-based 3D shape retrieval examples are il-

lustrated in Figure 2.4. In order to reduce cross-domain discrepancies

between sketches and 3D shapes, Zhu et al. [2016] developed pyramid

cross-domain neural networks by cooperating with a hierarchical struc-

ture, and they trained a neural network pair for sketches and 3D shapes,
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respectively, by allocating identical representations at the target layer for

instances of the same class. To address the same problem, Chen & Fang

[2018] proposed a cross-modality adaptation model for sketch-based 3D

shape retrieval. They employed an importance-aware metric learning to

learn modality-specific discriminative features and developed a transfor-

mation network, which transferred the sketch features into the feature

embedding space of 3D shapes, to remove the cross-modality discrep-

ancy between sketches and 3D shapes. Chen et al. [2019] developed a

deep sketch-shape hashing framework for sketch-based 3D shape retrieval

with a stochastic sampling strategy for 3D shapes and a binary coding

strategy for learning discriminative binary codes.

Figure 2.4: The sketch-based 3D shape retrieval examples [Wang et al.

2015]. The retrieved 3D shape with a smaller distance is more similar

to the query sketch.
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Unlike above projection-based methods, Dai et al. [2017] presented

a deep correlated metric learning method to mitigate the discrepancy

by directly extracting the features of 3D shapes. They extracted the

3D scale-invariant feature transform (3DSIFT) features for 3D shapes

and further encoded these features by locality-constrained linear cod-

ing (LLC) to get a global shape description. In order to learn a joint

semantic embedding space, Qi et al. [2018] developed a deep neural net-

work consisting of heterogeneous branches for the sketch and 3D shape

domains, respectively, and they used a PointNet network to extract 3D

shape features due to its strong classification performance.

2.3.2 Teacher-student strategy in metric learning

Since Hinton et al. [2015] showed that a complex and powerful teacher

model can guide the training of a small student network, which can

decrease the inference time and improve its generalization ability, the

teacher-student strategy has received attention in the field of metric

learning. Chen et al. [2018] proposed cross sample similarities for knowl-

edge transfer in deep metric learning, and modified the classical list-wise

rank loss to bridge teacher networks and student networks. Yu et al.

[2019] presented a network distillation to compute image embeddings

with small networks and developed two loss functions to communicate

teacher and student networks. For the sketch-based 3D shape retrieval,

Dai & Liang [2020] proposed a cross-modal guidance network by using

teacher-student strategy and used pre-learned features of 3D shapes to

guide feature learning of 2D sketches.

In summary, compared with image retrieval, sketch-based 3D shape

retrieval is more normative because some popular benchmarks such as
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SHREC’13 [Li et al. 2013a] and SHREC’14 Li et al. [2014b] are built very

early, which give a guide to test different retrieval methods. Therefore,

the main purpose of recent studies is to improve a retrieval score in these

benchmarks. Similar to image retrieval, the application of deep learn-

ing approaches also greatly improves the accuracy of sketch-based 3D

shape retrieval. However, most of these retrieval methods have two op-

erative networks, which cause a high computational cost. Besides, since

they directly map features into a joint embedding space, it is difficult to

effectively reduce the domain discrepancy and minimize between-class

similarity as well as maximize within-class similarity. In this thesis, the

above limitations will be overcome, and a high-effective method will be

developed to retrieve 3D shapes based on sketches.

2.4 Summary

In this chapter, the related works of sketch-based retrieval for images

and 3D shapes are reviewed. As discussed in previous sections, existing

retrieval methods cannot retrieve images using colour sketches and are

difficult to find an applicable feature embedding space of sketches and

3D shapes. In particular, the challenges mentioned in Sections 1.1 and

1.2 are unsolved and the question posed in Section 1.3 cannot be well

answered by existing works. In the following chapters, the challenges and

questions will be addressed, and the single-colour sketch based image

retrieval, multi-colour sketch based image retrieval and sketch-based 3D

shape retrieval will be presented in Chapters 3, 4 and 5, respectively.
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Chapter 3

Single-colour sketch based

image retrieval

Up to now, almost all production retrieval applications of online shopping

platforms are based on semantic retrieval. Since semantics cannot accu-

rately describe the detailed shape and colour of a product, users may not

easily obtain desired retrieval results by using semantic retrieval. This

chapter will aim to solve this problem and propose a retrieval method

based on single-colour sketches. The colour sketch has enough appear-

ance information of a retrieval target, which can be used to retrieve

products and obtain optimal retrieval results. Since a deep CNN is used

to extract features of colour sketches and images in this chapter, a single-

colour sketch-image dataset is needed to train the network parameters

for better feature representation. In Section 3.1, the method of building

the single-colour sketch based image retrieval (SCSBIR) dataset is pre-

sented. The proposed deep CNN method and two new colour similarity

comparison methods are described in Section 3.2. The experimental re-
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sults and analysis are presented in Section 3.3, and finally the summary

is drawn in Section 3.4.

3.1 SCSBIR dataset

A dominant colour extraction method for creating SCSBIR dataset is

developed in Section 3.1.1 and then some experiments and comparisons

are carried out to verify the effectiveness of the proposed dominant colour

extraction method in Section 3.1.2. The details of SCSBIR dataset are

presented in Section 3.1.3.

3.1.1 The extraction method of the dominant colour

In order to create the dataset of single-colour sketches, it is required

to first extract the dominant colour from the corresponding image of

each sketch, and then add the dominant colour to the black-and-white

sketch. Colour extraction from images plays an important role in the

field of graphic art and design [Lin & Hanrahan 2013]. Commonly used

extraction methods, such as clustering and histogram-based approaches,

are usually used to find a set of colours from an image [Ciocca et al.

2019]. In this task, the goal is to extract a dominant colour rather than

a set of colours. Although the above methods can be applied to generate

a set of colours and choose the colour with the largest proportion in the

set as a dominant colour, it is difficult to get accurate results, as shown

in Figure 3.3.

Generally, for fashion goods like shoes and bags, a dominant colour

should be the most attractive colour of the goods, as shown in Figure

3.1. Thus, in order to obtain a dominant colour, the key is to extract the

colour, which is the human’s visual focus. In a colour space, the HSV
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Figure 3.1: Examples of dominant colours of images.

model correlates well with human colour sensation and the saturation

component S represents colour purity, i. e., how much the real colour

is diluted by white [Smith 1978]. Therefore, the saturation can describe

the vividness of the colour, which is the visual focus of an image. Here,

a method is presented to extract a dominant colour using the saturation.

The saturation S can be converted from RGB colour space and ex-

pressed as [Smith 1978]

S =


V−X
V , if V 6= 0

0, otherwise

(3.1)

where V = max(R,G,B) and X = min(R,G,B).

For each pixel of an image, its score of saturation is calculated. If the

score of one pixel is the maximum, the colour of the pixel is regarded as

the dominant colour. The score is defined as

score =

max[(S + α)M ], L < 0.9

0, L ≥ 0.9

(3.2)
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where

L =
0.3R + 0.59G+ 0.11B

255
(3.3)

In Eq. (3.2), S = {S1, S2, ..., SN} and M = {M1,M2, ...,MN}. Si is

the saturation of the ith pixel of an image and Mi is the amount of pixels

which have the same RGB colour as the ith pixel. N is the total number

of pixels. Since the saturation of the grayscale is zero, a threshold value

α is added to avoid ignoring the pixel with grayscale. The influence of α

on the dominant colour is discussed in the next subsection. In addition,

L represents the brightness. In order to avoid the influence of brightness

on the image, the score of the pixel with a high brightness (L ≥ 0.9) is

defined as zero in Eq. (3.2). The brightness can be acquired from the L

component of HSL colour space and converted from RGB colour directly

using Eq. (3.3) [Smith 1978].

3.1.2 Experiments

According to (3.2), assuming α is a predetermined constant, the score

of a colour in an image depends on its saturation and pixel count. For

example, if a colour has a higher saturation and a larger number of

related pixels compared with other colours, it will get the highest score.

As a result, the colour with the highest score can be regarded as the

dominant colour because it expresses more intensity among other colours

in the image. However, to judge the dominant colour of the same image,

different people may have different answers because of their intuitive

preference. In order to avoid artificial disturbances, Eq. (3.2) is adapted

to decide the dominant colours of images in this chapter.

In order to investigate the influence of α in Eq. (3.2) on the dominant
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colours of images, different values of α, i. e., α=0, 0.01, 0.05, 0.1, 0.15

and 0.2, were tested on different shoe images, and six examples are shown

in Figure 3.2. The results show that α has no effect on highly saturated

images (The first two rows) but impacts the dominant colour of lowly

saturated images (The last four rows). The reason is that α can increase

the score in Eq. (3.2) when S is small and help to extract the correct

dominant colour of lowly saturated images. According to the test results,

α = 0.05 and α = 0.1 perform better in finding the dominant colours

of different images. For the lowly saturated images, they can recognize

colours with low saturation and have less influence on calculating the

score. In this chapter, α is set to 0.1.

The effectiveness of the method proposed above is further illustrated

by comparing it with the popular k-means method, as shown in Figure

3.3. The results show that the dominant colour extracted by the method

proposed above is more accurate than the k-means method. Although a

colour similar to the dominant colour can be found in the colour set of

the k-means method, it is difficult to pick it out. In contrast, the method

proposed above is more effective.

3.1.3 SCSBIR dataset

With the dominant colour extraction method, a SCSBIR dataset was

created based on the Shoe Dataset [Yu et al. 2016] , Chair Dataset [Yu

et al. 2016] and Handbag Dataset [Song et al. 2017] specifically to meet

the requirements of the proposed SCSBIR method. It contains 419, 297

and 568 single-colour sketch-image pairs of shoes, chairs and handbags,

respectively. The edge maps extraction method [Zitnick & Dollár 2014]

was used to extract the corresponding single-colour edge maps from im-
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Figure 3.2: The influence of α on the dominant colour. (a) Input

images. (b) α = 0. (c) α = 0.01. (d) α = 0.05. (e) α = 0.1. (f)

α = 0.15. (g) α = 0.2.

ages with the dominant colours and they were taken as the input of the

image branches during model training.

Similarly, the colour sketch corresponding to each image is obtained by

using the dominant colour of the image to colour the original black-and-

white sketch. Figure 3.4 shows some examples of single-colour sketch-

image pairs in the SCSBIR dataset. Although the created SCSBIR

dataset is not very large, it fully meets the needs of fine-tuning and

testing of the proposed SCSBIR model (see Section 3.3).
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Figure 3.3: Comparison between k-means and the method proposed in

Subsection 3.1.1. (a) Input images. (b) The sets of k-means colours

(k = 4) of images. (c) The dominant colours with the largest proportion

in the sets of k-means colours. (d) The dominant colours of images using

the method proposed in Subsection 3.1.1.

3.2 SCSBIR method

The proposed SCSBIR method includes two stages, i. e., shape matching

and colour matching. In the shape matching stage, a homogeneous triplet

network is applied, which is an improved version of the Siamese network,

to extract shape features of single-colour sketches and images, and a soft

attention model and two shortcut connection architectures are adopted

to improve retrieval precision of the network. In the colour matching

stage, two popular colour models, i. e., RGB and HSV, are adopted

to estimate the colour similarity between single-colour sketches and the

retrieved images from the shape matching stage. The details of the two

stages are introduced in the following subsections.
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Figure 3.4: Examples of the SCSBIR dataset.

3.2.1 Shape matching

In this stage, a deep triplet network is used to learn shape feature imbed-

ding of sketches and images, and a triplet loss is adopted as the opti-

mization objective to train the deep triplet network.

Network architecture

The triplet network is composed of three CNN branches, and it needs a

triplet for each training process. Since the inputs of the second and third

branches belong to the same domain, these two branches share a set of

parameters. If the first branch shares the same set of parameters with the

second and third branches, the network is a homogeneous triplet network,
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as shown in Figure 3.5 where q is a query sketch , p+ is a similar image

and p− is a dissimilar image. Note that there is only one CNN model

and the three CNNs in the figure are the same. If the parameters of the

first branch are different from those of the second and third branches and

have an independent set of weights, the network is a heterogeneous triplet

network. The limitation of the homogeneous triplet network is that the

three inputs in a triplet should have small domain differences, otherwise

it is difficult to train the network and find the joint feature embedding

space for the three inputs. Since the training dataset created by this

work is not enough for training needs, in order to avoid the overfitting

problem and alleviate the domain discrepancy, the homogeneous network

is selected and the dataset is processed by extracting colour edge maps,

which are used as inputs of the second and third branches instead of

images.

Figure 3.5: The homogeneous triplet network.

Since the Sketch-a-Net [Yu et al. 2015] is specifically designed for

sketch recognition, it is used as the base net of CNNs in the triplet net-

work. Inspired by the work of [Song et al. 2017], a soft attention model is
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implemented to improve the retrieval accuracy of the SCSBIR. The vec-

tor distribution of the soft attention output is a kind of soft distribution,

which means that an attention distribution probability of any region in

the input image is given. Bahdanau et al. [2014] first proposed the soft

attention model and applied it to the field of machine translation. In

this chapter, the soft attention model is adopted in each branch of the

triplet homogeneous network. In addition, the shortcut connection ar-

chitectures [He et al. 2016] are employed to solve the problem of gradient

disappearance in deep networks. The final CNN structure in the triplet

network is the same as [Song et al. 2017], as shown in Figure 3.6.

Triplet loss

In the shape matching stage, the goal is to find the images, which have

similar shapes to a query sketch. The shape similarity between sketches

and images can be described by a Euclidean distance [Yu et al. 2015]. A

small value of distance means the sketch and image are similar, whereas

a large value indicates the dissimilarity. Given a triplet of a query sketch

q, a similar image p+ and a dissimilar image p−, two Euclidean distances

can be obtained simultaneously using the homogeneous triplet networkd(q, p+) =
∥∥fθ(q)− fθ(p+)

∥∥2
2

d(q, p−) =
∥∥fθ(q)− fθ(p−)

∥∥2
2

(3.4)

where d(·) is the Euclidean distance, fθ(·) is the feature embedding of

the branch, which maps the three inputs to a joint feature embedding

space, respectively.

In order to make the triplet network learn to decrease the distance

between the query sketch and the similar image, i. e., d(q, p+), while
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Figure 3.6: The CNN structure.

increase the distance between the query sketch and the dissimilar image,

i. e., d(q, p−), the triplet network needs to satisfy

d(q, p+)− d(q, p−) + λ ≤ 0 (3.5)

where λ is a margin, which means the distance between d(q, p+) and

d(q, p−). Eq. (3.5) is to make d(q, p−) larger than the sum of λ and

d(q, p+).
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To achieve this goal, a triplet loss is defined as

L(q, p+, p−) = max[d(q, p+)− d(q, p−) + λ, 0] (3.6)

where L(q, p+, p−) is the maximum value between d(q, p+)−d(q, p−)+λ

and 0. When L(q, p+, p−)) = 0, Eq. (3.5) is constantly satisfied.

Considering all triplets in the dataset, the ultimate optimization goal

is

min
θ

N∑
i=1

L(qi, p
+
i , p

−
i ) (3.7)

where N is the total number of triplets and θ represents the parameters

of the sketch and image input branches.

By minimizing Eq. (3.7), the distance between q and p+ will be

narrowed while the distance between q and p− will be widened. The

triplet network can acquire the feature representations of inputs with

colour information if there are sufficient triplet annotations.

To achieve single-colour sketch based image retrieval, the triplet net-

work with the triplet loss is applied to carry out shape matching between

a single-colour sketch and images. The final retrieval results are obtained

by calculating the colour similarity values between the input single-colour

sketch and the top ten retrieval results of shape matching.

3.2.2 Colour matching

In the colour matching stage, two popular colour models, i. e., the RGB

model and the HSV model, are separately used to describe the colour

features of single-colour sketches and edge maps of images
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RGB model

The RGB model is a three-colour model, which is the most commonly

used colour model for hardware devices [Chernov et al. 2015]. It is a

kind of additive colour scheme which adds different intensities of red,

green and blue lights to produce different visible colours. The main

disadvantage of the RGB model is that it is not intuitive for humans.

It is difficult to know the cognitive attributes of the colour represented

by the values of R, G and B, so that the RGB model does not conform

to human’s colour perception. In addition, the RGB colour space is

nonuniform, and the perceptual difference between two colours cannot

be represented by the Euclidean distance between two colour points in

the colour space.

Histograms are used to describe the three RGB channels of a single-

colour sketch and an image, respectively, and then Hellinger distance is

applied to calculate the colour similarity between the histograms of the

single-colour sketch and the image. Hellinger distance is widely used

to study the convergence of likelihood ratios between two distributions

[Le Cam & Yang 2012], which is expressed as

Hk(D
k, Ek) =

1√
2

 n∑
i=1

(√
Dk
i∑n

j=1D
k
j

−

√
Eki∑n
j=1E

k
j

)2


1
2

(3.8)

where Dk and Ek are the histogram vectors of k (k is R, G or B) channel

of the colour sketch and the image, respectively, and Dk
i and Eki are the

ith bin in Dk and Ek, respectively. Eq. 3.8 can be simplified into

Hk(D
k, Ek) =

[
1− Fk(Dk, Ek)

] 1
2 (3.9)
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where Fk(D
k, Ek) is the Bhattacharya coefficient of Dk and Ek, which

is defined as

Fk(D
k, Ek) =

n∑
i=1

√
Dk
i E

k
i

(
∑n

j=1D
k
j )(
∑n

j=1E
k
j )

(3.10)

Note that Eq. 3.9 is also known as Bhattacharyya distance. The Hellinger

distance of three RGB channels is defined as

dist =
1

3
[HR(DR, ER) +HG(DG, EG) +HB(DB, EB)] (3.11)

HSV model

Compared with the RGB model, the HSV model is closer to the human’s

colour perception. In this model, H (hue) stands for true colours, S

(saturation) for colour purity, and V (value) for brightness [Chernov

et al. 2015]. The HSV model has correlated and uniform coordinates

matching the human perception of colour and its histogram is easy to

extract [Ortega et al. 1998]. Since the V coordinate in the HSV colour

space is easily affected by the lighting condition, the H-S coordinates are

used to form 2D histograms of the single-colour sketch and the image,

respectively, and then the same form of Hellinger distance in Eq. 3.9 is

applied to calculate the colour similarity between the 2D histograms of

the single-colour sketch and the image, which is expressed as

dist(S, I) =

[
1−

n∑
i=1

√
SiIi

(
∑n

j=1 Sj)(
∑n

j=1 Ij)

] 1
2

(3.12)

where S and I are the 2D histograms of the single-colour sketch and the

image, and Si and Ii are the ith bin in S and I, respectively.
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3.2.3 Pipeline

After obtaining the SCSBIR model trained by the training set of SCSBIR

dataset, it is applied to the testing set to verify the retrieval accuracy of

the proposed SCSBIR method. Taking shoes as an example, the pipeline

of the proposed SCSBIR method is illustrated in Figure 3.7.

Figure 3.7: Pipeline of the SCSBIR method.

In the pipeline of the SCSBIR method, all shoe images in the test-

ing set have obtained their feature vector representations through pre-

processing to improve the speed of real-time retrieval. The SCSBIR
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method includes three steps. First, the user inputs a single-colour sketch

of a shoe as a probe into the SCSBIR model and gets its feature vector

representation in real time. Second, the shape matching is applied to

estimate shape similarity between the sketch feature vector and all the

image feature vectors and find the top ten retrieval results, which are

most similar to the shoe sketch in the dataset. Third, colour matching

is used to estimate the colour similarity between the single-colour sketch

and the top ten results of shape matching, and reorder the ten results ac-

cording to the colour similarity. Note that the proposed colour matching

has two methods based on the RGB model and the HSV model, respec-

tively. As shown in Figure 3.7, the first retrieval result in the final ten

results is the most similar shoe to the input single-colour sketch in the

shape and colour.

3.3 Experiments

3.3.1 Experiment settings

The SCSBIR model employs the Sketch-a-Net [Yu et al. 2015] as the

basic model and is pre-trained in three steps [Yu et al. 2016]. First, the

basic network is trained to recognize 1,000 categories of the ImageNet

dataset [Deng et al. 2009] with the edge maps extracted from images.

Then, the model is fine-tuned to recognize the 250 categories of TU-

Berlin 20,000 sketch dataset [Eitz et al. 2012a]. At last, fine-grained

retrieval ability of the model is obtained by retraining the model with

the dataset consisting of 187 sketch-image categories selected from the

TU-Berlin dataset and the ImageNet dataset separately.

After pre-training, the pre-trained model is fine-tuned using the cre-
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ated SCSBIR dataset. The SCSBIR dataset contains three categories:

shoe, chair, and handbag. Each category is split into two parts. Follow-

ing the same splits in [Yu et al. 2016] and [Song et al. 2017], 304 pairs,

200 pairs and 400 pairs are used for fine-tuning training, respectively, and

115 pairs, 97 pairs and 168 pairs are used for testing, respectively. The

training set of each category is used to fine-tune the model specifically

for the target category. In the fine-tuning process, the initial learning

rate is set to 0.001 and the mini-batch size is set to 128. The attention

module consists of 2 convolutional layers with kernel size 1×1. The pro-

posed SCSBIR method is implemented on TensorFlow with a NVIDIA

Titan XP GPU.

3.3.2 Results

The proposed SCSBIR method is compared with other two fine-grained

sketch-based image retrieval methods, i.e., DTRM [Yu et al. 2016] and

FG-SBIR [Song et al. 2017], which apply deep CNN for feature extrac-

tion. The DTRM is the first to use deep CNN for fine-grained sketch-

based image retrieval. To improve the retrieval accuracy, the FG-SBIR

applies a soft attention model and shortcut connection architectures

based on DTRM. The method developed in this chapter, DTRM, and

FGSBIR are tested on the SCSBIR testing set and the retrieval accu-

racies within top K (K = 1, 2, ..., 10) retrieval results are calculated.

Precision @ K is used to describe the retrieval accuracy, which is the

percentage of the amount of times when the true-match image of a single-

colour sketch is ranked in the top K retrieval results.

Since two colour matching algorithms, one in the RGB colour space

and the other in the HSV colour space, are used, the results of using
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different colour matching algorithms are presented, respectively. The

results of the comparison for K = 1 to 10 are shown in Figure 3.8. Com-

pared with the DTRM and FG-SBIR methods, the proposed SCSBIR

method has better retrieval accuracy within top K (K = 1, 2, ..., 10) on

all three categories except for top 10 on the chair category. Moreover,

three cases: K = 1, K = 3 and K = 5 are chosen to compare the re-

trieval accuracy of DTRM, FG-SBIR and the proposed SCSBIR method,

which are shown in Table 3.1. The results show that the retrieval accu-

racy of the proposed SCSBIR method in the HSV colour space averagely

increase around 33.90% and 29.83% at K = 1, 16.45% and 12.19% at

K = 3, and 7.54% and 5.62% at K = 5 compared with DTRM and

FG-SBIR, and the retrieval accuracy of the proposed SCSBIR method

in the RGB colour space averagely increase around 35.92% and 31.85%

at K = 1, 16.55% and 12.39% at K = 3, and 7.54% and 5.62% at K = 5

compared with DTRM and FG-SBIR. The results indicate that the pro-

posed SCSBIR method in both RGB and HSV colour spaces has a better

performance than other two models in fine-grained single-colour sketch

based image retrieval.

3.3.3 Visualizing retrieval results

Part of the retrieval results is visualized to show the better retrieval

accuracy of the proposed SCSBIR method compared with the DTRM

and FG-SBIR. In Figure 3.9, the first row is the retrieval results of the

proposed SCSBIR method in the HSV colour space with query colour

sketch, the second row is the retrieval results of the proposed SCSBIR

method in the RGB colour space with query colour sketch, the third row

is the retrieval results of DTRM with black-and-white sketch, which has

the same contour lines as the colour sketch, and the fourth row is the
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Table 3.1: Comparison of retrieval accuracy at K = 1, K = 3 and

K = 5

Dataset-Shoe K = 1 K = 3 K = 5

DTRM 53.04% 73.91% 83.48%

FG-SBIR 57.39% 77.39% 85.22%

SCSBIR method (HSV) 91.30% 93.04% 93.04%

SCSBIR method (RGB) 92.17% 93.04% 93.04%

Dataset-Chair K = 1 K = 3 K = 5

DTRM 72.16% 85.57% 93.81%

FG-SBIR 75.26% 90.72% 94.85%

SCSBIR method (HSV) 96.91% 97.94% 97.94%

SCSBIR method (RGB) 97.94% 97.94% 97.94%

Dataset-Handbag K = 1 K = 3 K = 5

DTRM 39.29% 64.29% 73.81%

FG-SBIR 44.05% 68.45% 76.79%

SCSBIR method (HSV) 77.98% 82.14% 82.74%

SCSBIR method (RGB) 82.14% 82.74% 82.74%

retrieval results of FG-SBIR using the same black-and-white sketch.

By comparing the visual retrieval results, the proposed SCSBIR method

performs better in appearance matching including shape matching and

colour matching. Unlike DTRM and FG-SBIR, the proposed SCSBIR

model can move the image with similar colour up to the top of the re-

trieval results. For example, on the top shoe example in the right column,

since the input single-colour sketch is a brown boot sketch, the brown

boots are moved up to the top while the boots of other colours are moved

behind.
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3.4 Summary

In this chapter, a fine-grained SCSBIR method based on multi-branch

deep CNNs is proposed, and a triplet homogeneous network is used to

solve the fine-grained SCSBIR problem on three categories. In addi-

tion, a SCSBIR dataset of single-colour sketch-image pairs is created

and a new ranking method combined with the shape similarity matching

and colour similarity matching is proposed, which makes the retrieval

results get better matching in appearance. Extensive experiments are

implemented to demonstrate the effectiveness and verify better retrieval

performance of the proposed SCSBIR approach.
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Figure 3.8: Retrieval precision @ K for K = 1 to 10 of DTRM, FG-

SBIR and the proposed SCSBIR method in the chair, shoes and handbag

datasets.
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Figure 3.9: The top five retrieval results by the proposed SCSBIR

method in the HSV (the first row) and RBG (the second row) colour

spaces, DTRM (the third row) and FG-SBIR (the fourth row). The true

matches are highlighted in red..
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Chapter 4

Multi-colour sketch based

image retrieval

Generally, sketch-based image retrieval is to search similar colour images

based on a query sketch. When the retrieval objective is the goods,

such as clothes and shoes, one style of them usually contains several

different colours, as shown in Figure 4.1. Therefore, the retrieval methods

only considering the shape matching cannot provide sufficient retrieval

performance because they cannot distinguish the images which have the

same shape but different colours. A few research studies try to retrieve

images using colour sketches [Bui & Collomosse 2015; Xia et al. 2019;

Fuentes & Saavedra 2021], but there are still some unsolved issues. First,

there is no suitable dataset for MCSBIR, which contains not only multi-

colour sketches but also images with the same shape but different colours.

Second, there is no explicable feature representation method to describe

the shape and colour information of an image together. In this chapter,

the first multi-colour sketch dataset (Section 4.1) will be created and a

53



novel MCSBIR method (Section 4.2) will be proposed to solve the above

issues. At the end, several experiments are presented to demonstrate the

effectiveness of the proposed MCSBIR method (Section 4.3).

4.1 Multi-colour sketch-image dataset

In order to deal with the task of MCSBIR, the dataset of multi-colour

sketches is indispensable in the proposed MCSBIR method. Although

there are many popular sketch datasets, such as TU-Berlin [Eitz et al.

2012a] and QuickDraw [Ha & Eck 2017], which are usually used for

sketch recognition and sketch retrieval, all of them are black-and-while

without any colour information. In addition, since the goal of this work

is to apply colour sketches to retrieve the most similar images of goods

in both shapes and colours, the complex image background will have

extra information to affect the retrieval accuracy. Although matching

the goods with a complex image background is an interesting research

issue, the work here only focuses on the goods themselves.

Based on the above discussion, there are two requirements for building

a multi-colour sketch-image dataset. First, the sketch and its correspond-

ing image should be multi-colour and the image background should be

clean. Second, there should be more than two images, which have the

same shape but different colours. In Chapter 3, the SCSBIR method

has been introduced, which uses the shoes as one category of its dataset.

The shoes are ideal retrieval targets because the shape styles of shoes

are various and they always have different colours for the same style, as

shown in Figure 4.1. Therefore, shoe images are used as the retrieval

targets.
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The created dataset consists of two parts, i. e., images and sketches.

Since the UT Zappos50K [Yu & Grauman 2014] is a large shoe dataset

consisting of over 50 thousand images, 71 different styles of shoe images

are selected from the shoe dataset. Each of the selected styles has 2-5

images with different colours and there are 232 images in total. Figure

4.1 shows some image examples of the created dataset.

Figure 4.1: Some image examples of the created dataset.

In order to create the sketches of each style of shoes, three volunteers

are invited to manually draw multi-colour sketches of the 232 shoe im-

ages. The image examples shown in Figure 4.1 indicate that the colour

information of an image is complex. The image has a big colour range

variation and it is very difficult to describe the variation by using sketch

lines with single colours. More importantly, it is time-consuming for

volunteers to draw sketches with many different colours. Therefore, it

is required to reduce the number of colours in the image but also keep

the visual appearance of the image intact. This process is also known as
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colour quantization [Celebi 2011].

One of the most widely used methods for colour quantization is the

k-means clustering algorithm. In order to reduce the number of colours

and find the main colours of an image, the classical k-means clustering

algorithm is applied to cluster the colours. Given an image data set

X = {x1, x2, ..., xN} where xi is the RGB colour vector of the ith pixel,

the objective of k-means clustering is to separate X into K clusters

C = {C1, C2, ..., CK} and minimize the sum of the squared distances

between each pixel colour and its closest center. The objective function

can be described as [Celebi 2011]

E =

K∑
j=0

∑
xi∈Cj

‖xi − µj‖22 (4.1)

where ‖·‖2 denotes the Euclidean norm and µj is the center of cluster

Cj calculated as the mean of all colour vectors in this cluster which is

defined as

µj =
1

|Cj |
∑
xi∈Cj

xi (4.2)

By using the k-means clustering algorithm, quantized images are ob-

tained, which have few numbers of colours once K is set to a small

number. In this chapter, K is set to 3 and the corresponding multi-

colour sketches are created according to the quantized images. Figure

4.2 shows some examples of multi-colour sketches, quantized images and

original images.

Based on the 232 selected shoe images, 232 corresponding multi-colour

sketches are created and the MCSBIR dataset is built.
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Figure 4.2: Examples of created multi-colour sketches (the left column),

quantized images (the medium column) and original images (the right

column).

4.2 MCSBIR method

For a given query colour sketch q and a set of candidate images P , the

retrieval task is to compute the similarity between q and each image

p ∈ P and rank all candidate images based on their similarities in the

hope that the true image can be found, which matches the shape and

colour of the query sketch and ranks at the top. However, there are

two challenges: (1) finding a joint feature embedding space of the multi-

colour sketches and images, and (2) describing the features of the shape

and colour of both sketches and images. To address the two challenges,

a novel feature embedding is first proposed to describe the shape and

colour information together and then a triplet loss function is developed

to learn the feature embedding with a two-stage network architecture.
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4.2.1 Feature embedding

Feature embedding is to use a feature vector to represent the information

of input data. In previous related studies, the shape and colour informa-

tion are usually represented by two different features, respectively [Bui

& Collomosse 2015; Xia et al. 2019] or mixed into a single feature like

a ‘black box’ without manual interventions [Fuentes & Saavedra 2021].

In this chapter, a new feature embedding fsc(·) is proposed to clearly

and explicably describe the shape and colour information within a single

feature vector named Shape-Colour (SC) feature, as shown in Figure 4.3.

The SC feature includes a front vector with Ns elements, which repre-

sents the shape information and a back vector with Nc elements, which

represents the colour information.

Figure 4.3: Feature embedding of the MCSBIR.

Shape information

Generally, the images in different categories have different shapes. Most

retrieval studies distinguish different image shapes by utilizing classifi-

cation tasks in their pre-train stages [Bui & Collomosse 2015; Xia et al.
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2019; Fuentes & Saavedra 2021]. Therefore, the same strategy is applied

to describe the shape information in the SC feature. According to the

UT Zappos50K dataset, the dataset can be roughly classified into 17

(Ns = 17) categories, i. e., heel shoes, flat shoes, ankle boots, etc. Since

a shoe image can only belong to one category, the number of categories

can be adopted as the size of the front vector, i. e., 1×17., and each vec-

tor element corresponds to one category. In the data labelling process,

a one-hot encoding is used to generate labels, i. e., the corresponding

element in the front vector is set to be 1 and the rests are set to be

0, as shown in Figure 4.3. In the training process, the feature embed-

ding is optimized to generate the front vector in which the corresponding

element of the input has the highest possibility compared with other el-

ements according to the given labels. For example, in Figure 4.3, since

the input is a flat shoe, the corresponding element in the front vector

has the highest possibility presented in green colour.

Colour information

There are thousands of categories of colour according to different RGB

values. It is difficult to describe all colours in the feature embedding as

well as label them. To address this problem, colours are visually classified

into several groups according to colour ranges. Since the luminance and

chrominance properties of the RGB colour are not separated, the colour

differences cannot be correctly captured [Chernov et al. 2015]. Therefore,

the HSL colour model is used for the colour classification task in this

chapter.

The hue (H) of HSL represents a true colour and it is a colour portion,

which can be expressed as a number from 0 to 360 degrees: 0◦ or 360◦
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is red, 60◦ is yellow, 120◦ is green, 180◦ is cyan, 240◦ is blue, and 300◦

is magenta [Chernov et al. 2015], as shown in Figure 4.4.

Figure 4.4: The hue from 0 to 360 degrees.

Thus, the hue can be applied to classify colours into several groups.

The hue can be calculated by [Smith 1978]

H =



5 + b, if R = V,G = X

1− g, if R = V,G 6= X

1 + r, if G = V,B = X

3− b, if G = V,B 6= X

3 + g, if B = V,R = X

5− r, if B = V,R 6= X

(4.3)

where H := H × 60, V = max(R,G,B), X = min(R,G,B), and

r =
V −R
V −X

, g =
V −G
V −X

, b =
V −B
V −X

(4.4)

Since the hue cannot deal with the grey-scale colour, the saturation

(S) and brightness (L) of the HSL colour model are applied to recognize

the black, grey and white colours. The saturation and brightness can

be obtained from Eqs (3.1) and (3.3), respectively. By using the HSL

colour, 10 colours for SC feature embedding, i. e., Nc = 10, are defined.

For each pixel in the input image, its brightness is first judged, then its
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saturation is checked, and finally its hue is calculated. Table 4.1 shows

the classification standard for the 10 colours.

Table 4.1: The classification standard for the 10 colours.

Colour Classification standard

Red 0 < H ≤ 20, 310 < H ≤ 360

Orange 20 < H ≤ 50

Yellow 50 < H ≤ 68

Green 68 < H ≤ 154

Cyan 154 < H ≤ 198

Blue 198 < H ≤ 248

Magenta 248 < H ≤ 310

Black L < 0.2

White L > 0.8

Grey S < 0.25

4.2.2 Loss function

Since the feature embedding fsc(·) is defined to extract the SC feature of

input data in Section 4.2.1, the similarity between the sketch q and the

image p can be measured by using Euclidean distance between fsc(q) and

fsc(p), i. e., D(q, p) = ‖fsc(q)− fsc(p)‖22. However, in the e-commerce

application, the shape of the retrieved image is the most important be-

cause if the image shape is different to the query sketch, the image just

belongs to other goods even though their colours are the same. Therefore,

the Euclidean distance D(q, p) should pay more attention to the shape

information. Here, a new Euclidean distance is presented to separate the

shape and colour information

D(q, p) = β ‖fsc(q)s − fsc(p)s‖22 + (1− β) ‖fsc(q)c − fsc(p)c‖22 (4.5)
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where fsc(·)s and fsc(·)c represent the front vector with the shape in-

formation and the back vector with the colour information of the SC

feature, respectively. β is a trade-off parameter between 0 and 1 which

indicates the proportion of the shape similarity in Eq. (4.5). β > 0.5 is

chosen to make the shape information more important in the distance

function.

In order to learn this feature embedding fsc(·), the annotated triplet

T is used as input training data which is defined as

T = (q, p+, p−) (4.6)

where q is a query colour sketch, p+ is a positive image with the same

shape as q, and p− is a negative image with a different shape from q.

The goal here is to learn the feature embedding fsc(·) that maps

sketches and images into a joint feature embedding space, in which the

similarity between the query sketch and the image with the same shape

and colour is high and the similarity between the query sketch and the

image with different shapes and colours is low, which means that the

distance between query q and positive p+ should be smaller than the

distance between query q and negative p−, i. e., D(q, p+) < D(q, p−). A

schematic illustration of how the joint feature embedding space should

behave is shown in Figure 4.5.

Given a mini-batch with sizeN , there areN triplets Ti (i = 1, 2, ..., N).

To achieve the goal of learning the feature embedding, a triplet loss func-

tion is formulated as

Loss =
1

N

N∑
i=1

max[D(qi, p
+
i )−D(qi, p

−
i ) + λ, 0] (4.7)
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Figure 4.5: The joint feature embedding space.

where λ is a margin betweenD(q, p+) andD(q, p−), which makesD(q, p+)

smaller than D(q, p−) by at least a margin λ.

Substituting Eq. (4.5) into (4.7), the smooth similarity loss function

is obtained

Loss =
1

N

N∑
i=1

log{1 + exp{β[
∥∥fsc(qi)s − fsc(p+i )s

∥∥2
2

−
∥∥fsc(qi)s − fsc(p−i )s

∥∥2
2
] + (1− β)[

∥∥fsc(qi)c − fsc(p+i )c
∥∥2
2

−
∥∥fsc(qi)c − fsc(p−i )c

∥∥2
2
] + λ}}

(4.8)

4.2.3 Network architecture

There is a big domain discrepancy between the query sketches and the

retrieved images because the sketches are abstract free-hand drawings,

which consist of several simple lines with very limited information. To

address this problem, some previous studies apply a heterogeneous net-

work which has two separate CNN branches for sketches and images,

respectively [Fuentes & Saavedra 2021; Bui et al. 2018], and other stud-
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ies first extract the edge maps of images and then use a homogeneous

network to train the edge maps and sketches with shared weights [Xia

et al. 2019; Yu et al. 2016]. The edge map is similar to the sketch, so

they have a small domain discrepancy and their CNN branches can share

the same weights.

As discussed in Section 3.2.1, since the training data in the MCSBIR

dataset is sparse, the homogeneous triplet network is selected to achieve

the retrieval task. The network architecture of the proposed MCSBIR

method is described in Figure 4.6, which consists of two stages: one for a

classification task and the other for the retrieval task. In both stages, the

same CNN is used to learn the feature embedding fsc(·) and the last fc

layer of the CNN is set to be the SC feature layer with (Ns+Nc) neurons.

The CNN in Stage 1 is first pre-trained, and then the pre-trained CNN

is used to the three branches in Stage 2, which share weights to learn a

joint feature embedding space. The training procedure is introduced in

the next subsection.

Figure 4.6: The two-stage network architecture.
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In the run-time process, all test sketches and images are passed through

the trained CNN model to generate their SC features. For each test

sketch, the distances between the SC feature of the sketch and the SC

features of all images are calculated and sorted from the smallest to the

largest. The image with the smallest distance is the best retrieval result

according to the test sketch.

In this chapter, the CNN structure applies ResNet50 [He et al. 2016],

as shown in Figure 4.7. The rectangle block indicates the convolutional

layer, in which the notation (k × k, n) denotes a filter of size k and n

channels. The number on the top of the rectangle block represents the

repetition of each unit, and the annotation on the bottom represents the

layer name.

Figure 4.7: The ResNet50 structure.

4.2.4 Training procedure

Before inputting some images into the network, it is required to transfer

the images into edge maps. Although there are many mature edge de-

tection methods such as canny edge [Canny 1986] and gPb-OWT-UCM

[Arbelaez et al. 2010], most of them cannot extract colours. Here, a

simple method to extract colour edge maps from images is presented.

First, quantized images are generated by Eq. (4.1), and then the canny

edge detection method [Canny 1986] is used to extract black-and-white

edge maps from the grey-scales of the quantized images. Given the RGB
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matrix [Q] of the quantized images and the matrix [E] of the black-

and-white edge maps, the colour edge maps [C] can be obtained by

[C] = [Q] � [E] where � denotes component-wise multiplication. Some

examples of colour edge maps are shown in Figure 4.8.

Figure 4.8: Examples of colour edge maps.

In this chaper, the coloured edge is used to desribe the colour infor-

mation of an image. Taking a different approach, previous work usually

generates the coloured sketch by colouring different local regions [Cheng

et al. 2016; Fuentes & Saavedra 2021]. This kind of sketch is more in-

tuitive than the sketch with coloured edges because the colours of an

practical image are originally distributed in different regions rather than

edges. However, the sketch with coloured regions cannot effectively find

the feature embedding space. There are two reasons. First, it is difficult

to judge whether the coloured region indicates the colour information

only or both colour and shape information. For the sketch with coloured

edges, there is no such ambiguity because the colour only exists on the

edge. Second, strictly speaking, the sketch with coloured regions is not a

sketch which consists of several strokes, and it is more like an image. The

domain discrepancy between this type of sketch and image is very small,

and it is not a difficult retreival problem compared with the challenges

mentioned in Section 1.1.
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The training procedures of the two stages are introduced as follows:

Stage 1 This stage is to pre-train the CNN before it is plugged into

Stage 2. The UT Zappos50K [Yu & Grauman 2014] dataset is used as

the pre-training data, which contains over 50 thousand shoe images with

4 major categories, i. e., shoes, sandals, slippers, and boots. They are

further subdivided into 17 classes with different styles and a one-hot

encoding is used to generate labels including the information of the class

(Ns = 17) and the colours (Nc = 10). There are 44,995 training images

and 4,988 testing images in total. After generating the edge maps from

images, the CNN is trained for a classification task with the classical

binary cross entropy loss function, which is formulated as

LBCE = − 1

N

N∑
i=1

{yi log σ(f isc) + (1− yi) log[1− σ(f isc)]} (4.9)

where f isc and yi are the ith SC feature and corresponding label in the

mini-batch N , respectively, and σ(f isc) is the Sigmoid probability defined

as

σ(f isc) =
1

1 + exp(−f isc)
(4.10)

Stage 2 This stage is to fine-tune the pre-trained CNN from Stage 1

using the created MCSBIR dataset. There are 232 pairs of sketches and

images in the dataset. 168 pairs in the dataset are used for training

and the rest are used for testing. In order to increase the number of

training triplets, two triplet groups, i. e., easy triplets and hard triplets,

are constructed. In the easy triplets, the image with the same shape and

colour as the query sketch q is selected to be p+ and the rest images are

p−. In the hard triplets, the image with the same shape and different
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colours is selected to be p+ and the images with different shapes are p−.

As a result, 99,574 training triplets are generated. After generating the

edge maps from images, the triplets are inputted into Stage 2, and the

pre-trained CNN from Stage1 is fine-tuned for the retrieval task with the

triplet loss function in Eq. (4.8).

4.3 Experiments

In this section, several experiments are conducted to demonstrate the

effectiveness of the proposed MCSBIR method. First, the implemen-

tation details are introduced, and then two baselines are designed to

compare with the proposed MCSBIR method. Finally, the results of the

comparison and further analysis on the proposed MCSBIR method are

presented.

4.3.1 Implementation details

The proposed MCSBIR method is implemented on Pytorch with a NVIDIA

GeForce GTX 2080 Ti GPU, and the following experimental settings are

used.

• ResNet50 [He et al. 2016] is applied as the CNN structure in Stage 1

and Stage 2 and the sketches and images (edge maps) are uniformly

resized into a resolution of 136× 136× 3. The Adam optimizer is

employed for both stages and the weight decay is set to 0.

• In Stage 1, the learning rate is 1× 10−5, the batch size is 16, and

the number of training epochs is set to 10.

• In Stage 2, the learning rate and batch size are 1 × 10−5 and 64,

respectively, and the number of training epochs is 25. Moreover,
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the margin λ and the trade-off parameter β are set to be 0.1 and

0.7, respectively.

The test dataset has 64 pairs of sketches and images. To evaluate the

performance of the proposed MCSBIR method in the test dataset, the

following two evaluation metrics are adopted.

• Precision-at-K (Prec @ K): It quantifies the cumulative match-

ing accuracy at various ranks and shows the percentage of query

sketches whose true-match images are ranked at the top K [Yu

et al. 2016].

• Mean Reciprocal Rank (MRR): It is a relative score that calcu-

lates the mean of the inverse rank of the correct retrieved images

[Fuentes & Saavedra 2021]. MRR can be represented as [Burges

et al. 2006]

MRR =
1

Nq

Nq∑
i=1

1

ri
(4.11)

where Nq is the number of query sketches and ri is the rank position

in the retrieval results of the ith query sketch.

4.3.2 Baselines

Recently, there have been a few studies dealing with colour sketches for

the image retrieval. In order to indicate the effectiveness of the proposed

MCSBIR method, two baselines are implemented to compare with the

proposed MCSBIR method.

Baseline 1 This baseline uses the SCSBIR method [Xia et al. 2019],

which retrieves the images by first matching the shapes of black-and-

white images (edge maps) and then re-ranking them by calculating their
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colour similarities. In the shape matching process, the training dataset is

UT Zappos50K, which is the same data resource as the created MCSBIR

dataset. Therefore, their deep network for the shape feature embedding

can be directly used in MCSBIR dataset. In the colour matching process,

three different baseline solutions are used: (1) the RGB colour matching

method using Eq. (3.11) (Baseline 1-RGB), (2) the HSV colour matching

method using Eq. (3.12) (Baseline 1-HSV), and (3) no colour matching

(Baseline 1-NoColour).

Baseline 2 This baseline applies the Sketch-Qnet [Fuentes & Saavedra

2021], which represents the shape and colour information in one CNN

model. Since the Sketch-Qnet adopts the heterogeneous network, which

cannot be directly compared with the proposed MCSBIR method, their

core algorithm, i. e., the quadruplet loss, instead of the proposed loss

function is used in Stage 2. The quadruplet loss is defined as

Lossbaseline2 = CEq + CEp+ + CEp+− + CEp− + β(Lt1 + Lt2) (4.12)

where β = 2, which is increased by 0.5 each epoch, CEi is the cross-

entropy loss of input i, q is a query sketch, p+ is an image with the same

shape and colour as q, p+− is an image with the same shape as q but has

a different colour, and p− is an image with a different shape as q. Lt1

and Lt2 are two triplet losses [Fuentes & Saavedra 2021]:

Lt1 = max[0, D+ −D+− + αλ]

Lt2 = max[0, D+− −D− + (1− α)λ]
(4.13)

where Di is the Euclidean distance between q and pi, and α and λ are

a trade-off parameter and a margin, respectively. α is set to 0.1 and λ
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is set to 1.5 by trial and error, which can generate a better result than

other values.

4.3.3 Results

Comparisons against baselines

First, the performance of the proposed MCSBIR method and the two

baselines is illustrated. Figure 4.9 shows the results for cumulative re-

trieval accuracy at top 1 to 10. The following observations are obtained.

(1) The proposed MCSBIR method has better performance than other

baselines at top K (K = 1, 2, . . . , 10). (2) The baseline 1-NoColour, RGB

and HSV have the same precision at top 10 because they are based on the

same top 10 results from the shape matching. (3) The baseline 2 presents

a better result at top 1 and 2 compared with baseline 1-NoColour. In

addition, the MRR for the proposed MCSBIR method and the two base-

lines is calculated, as shown in Table 4.2, which indicates the MRR score

of the proposed MCSBIR method is better than others. As a result, the

two comparisons indicate that the proposed MCSBIR method is effective

in retrieving the corresponding images of the query sketches.

Table 4.2: MRR results of the proposed MCSBIR method and the two

baselines.

Method MRR

Baseline 1-NoColour 0.4330

Baseline 1-RGB 0.6047

Baseline 1-HSV 0.8324

Baseline 2 0.5459

MCSBIR method 0.8766

Some examples of the retrieval results of the proposed MCSBIR method

and the two baselines are shown in Figure 4.10. The top 6 retrieved im-
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Figure 4.9: Prec @ K for K = 1 to 10 of two baselines and the proposed

MCSBIR method.

ages are ranked from the left to the right. The red square indicates the

correct result with the same shape and colour and the blue square in-

dicates the result with the same shape but different colours. It can be

seen that the proposed MCSBIR method is more capable of not only

retrieving the correct image but also finding other images with the same

shape as the correct one.

Further analysis on the proposed MCSBIR method

As described in Section 4.2.2, the loss function of the proposed MCSBIR

method contains two hyper-parameters, i. e., the margin λ and the trade-

off parameter β. For the margin λ, a larger value can make a stronger

distinguishability between D(q, p+) and D(q, p−) but a harder training

process. For the parameter β, a larger value can train the network to

be easier to recognize different shapes but harder to distinguish different

colours. In order to investigate the influences of λ and β on the retrieval

precision, an experiment by varying different values of the two hyper-
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Figure 4.10: Some examples of the retrieval results of the proposed

MCSBIR method and the two baselines.

parameters is conducted. In Figure 4.11, (a) shows the MRR scores with

different λ, i. e., λ=0, 0.1, 0.25, 0.5, 0.75 and 1 when β=0.7, and (b)

shows the MRR scores with β=0.5, 0.6, 0.7, 0.8, 0.9 and 1 when λ=0.1.

The results indicate that the trend of the MRR score increases initially

and follows by a fall when the values of λ and β increase. Therefore,

setting λ=0.1 and β=0.7 leads to the best performance.

In addition, the contribution of each stage of the proposed MCSBIR

method is investigated. Table 4.3 shows the retrieval precision at top 1,

top 5 and top 10 and the MRR score of the proposed MCSBIR method

using Stage 1 only, Stage 2 only and Stages 1+2, respectively. The results

indicate that Stages 1 and 2 are effective and both of them are necessary
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Figure 4.11: The MRR scores with different values of λ (a) and β (b).

in improving the retrieval performance of the proposed MCSBIR method.

Table 4.3: Contributions of different stages.

Top 1 Top 5 Top 10 MRR

Stage 1 0.2656 0.7031 0.9063 0.4514

Stage 2 0.3750 0.8594 0.9531 0.5849

Stage 1+2 0.7969 0.9531 0.9844 0.8766

4.4 Summary

In this chapter, a multi-colour sketch based image retrieval method is

proposed. First, a MCSBIR dataset is created, and a new feature em-

bedding is designed to clearly describe the shape and colour information

within a single feature vector. Then, a triplet loss function based on a

new Euclidean distance is developed, which separates shape and colour

features, and a two-stage network architecture is designed to learn the

proposed feature embedding. The experiments show that the proposed

MCSBIR method has a better retrieval performance compared with two

baselines and the further analysis also indicates the effectiveness of the

proposed MCSBIR method.

74



Chapter 5

Sketch-based 3D shape

retrieval

Sketch-based 3D shape retrieval is one of the most important research

topics in the field of the sketch-based retrieval since the domain discrep-

ancy between sketches and 3D shapes is much larger than that of sketches

and images. The big challenge is how to find a joint feature embedding

space of sketches and 3D shapes, and improve the retrieval accuracy. In

this chapter, this challenge is addressed, and a semantic similarity metric

learning is proposed for sketch-based 3D shape retrieval. The proposed

teacher-student guided and sketch-based 3D shape retrieval (TSS3DSR)

method is described in Section 5.1 and the experimental results and anal-

ysis are presented in Section 5.2, and finally the summary is drawn in

Section 5.3.
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5.1 TSS3DSR method

5.1.1 Network architecture

The network architecture of the proposed TSS3DSR method is described

in Figure 5.1, which consists of a teacher network and a student network.

Since sketches are abstract simple lines with limited information and 3D

shapes are surface-represented geometric objects with more details, 3D

shapes are selected as the input of the teacher network and the semantic

features are extracted from them to guide the training of the student

network that takes sketches as input. By using the similarity loss to

measure the cosine distance between sketches and 3D shapes, the features

of sketches are optimized and gradually close to the pre-learned semantic

features of 3D shapes during the training process of the student network.

Figure 5.1: The network architecture of the proposed TSS3DSR method.

Teacher network
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In the teacher network, the MVCNN [Su et al. 2015] architecture is

applied, including CNN1 and CNN2, which are connected by a view-

pooling layer, to represent multi-views of 3D shapes and extract the

semantic features. There are three steps to generate the features of 3D

shapes in the teacher network.

The first step is to render the 3D shape to 2D images in different

views. The rendering strategy in [Su et al. 2015] is adopted. Assuming

the input 3D shape is upright oriented along the Z axis in the XYZ

coordinate system. 12 virtual cameras are placed around the 3D shape

every 30 degrees. These cameras are elevated 30 degrees from the XY

plane and the directions of these cameras are aimed at the centroid of

the 3D shape. After rendering the 3D shape, 12 2D images with different

views are generated, as shown in Figure 5.1.

The second step is to extract edge maps of the rendered images. Since

there is still a big domain discrepancy between rendered images and

sketches, it is difficult to find a joint feature embedding space. In order

to reduce the domain discrepancy, the classic canny edge detector [Canny

1986] is adopted to extract the edges of rendered images, which are

similar to the sketch lines.

The third step is to generate features for the 3D shapes. After obtain-

ing the edge images of 3D shapes, these edge images are passed through

CNN1 separately to obtain view based features. Note that all branches

of CNN1 share the same parameters. In order to synthesize the infor-

mation from all views into a single, element-wise maximum operation is

used across the views in the view-pooling layer. Finally, these pooled

feature maps are passed through CNN2 to obtain the shape features.
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CNN1 and CNN2 apply VGG11 structure [Simonyan & Zisserman

2014], as shown in Figure 5.2 . The VGG11 consists of five convolutional

layers and three fully connected layers (The last layer is also the output).

Each convolutional layer is followed by a 2× 2 max-pooling with stride

2 and the notation (k × k, n) denotes a filter of size k and n channels.

Note that CNN1 and CNN2 are not a completed VGG11 structure.

CNN1 only contains five convolutional layers while CNN2 only contains

three fully connected layers. The view-pooling layer is adopted between

CNN1 and CNN2. The view-pooling process is similar to the max-

pooling which is to calculate the maximum value for patches of a feature

map. The difference is that the view-pooling calculates the maximum

value for the elements at the same position of the feature maps from the

12 view branches.

Figure 5.2: The VGG11 structure.

After finishing training the teacher network, all data of 3D shapes

pass through the teacher network, and the pre-learned semantic features

of 3D shapes are obtained.

Student network

In the student network, a transfer network CNN3 is adopted to learn

the semantic features of sketches. The input sketches are directly passed

through CNN3 to obtain the features. Note that the input sketches

are black-and-white without any colour. The student network is trained

according to the optimization objective function, i. e., the similarity loss,

which is guided by the pre-learned semantic features of 3D shapes.
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CNN3 applies ResNet50 structure [He et al. 2016], as shown in Figure

4.7 which is introduced in 4.2.3. Since the input sketches are black-

and-white, they can be regarded as gray scale images which have only

one input channel for the Conv1 layer. In the run-time process, all

test sketches are passed through the trained CNN3 model to generate

features. For each test sketch, the distances between its feature and all

pre-learned features of 3D shapes are calculated, respectively, to find the

most similar 3D shape according to the sketch. The calculation of the

distance is introduced in next section.

5.1.2 Similarity loss

In order to find the desired 3D shape, it is always wanted that the ex-

tracted feature of the sketch is more similar to that of the same-class 3D

shape and more dissimilar to that of the different-class 3D shape, i. e.,

maximizing the within-class similarity and minimizing the between-class

similarity. However, a query sketch usually has tens or hundreds related

3D shapes with the same class label, and it is difficult to tell which 3D

shape is more similar or dissimilar to the query sketch. Note that the aim

here is to find 3D shapes belonging to the class labels of query sketches

rather than find the most similar 3D shapes. Therefore, the focus is on

extracting the class features rather than the individual features of 3D

shapes. The class feature is the mean value of the pre-learned features

of the 3D shapes in the same class. Cosine similarity is used to measure

the distance between a sketch and a 3D shape, which is defined as

s =
fs · fc

‖fs‖2 ‖fc‖2
(5.1)

where fs is the sketch feature and fc is the class feature of the 3D shape.
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In a mini-batch with size N , we have N sketches and Nc pre-learned

class features of 3D shapes. For each sketch i in the mini-batch, we

calculate its cosine similarity with the class features of all 3D shapes.

We denote the cosine similarity between the sketch and the class feature

of the same-class 3D shape by sip, i. e., the positive pair, and the cosine

similarity between the sketch and the rest class features of 3D shapes by

sin = {s1, s2, . . . , sNc−1}, i. e., the negative pairs. In order to maximize

the similarity score of the positive pair and minimize the similarity score

of the negative pair, the similarity loss function is defined as:

L =
1

N

N∑
i=1

[max(sin)− sip + λ]+ (5.2)

where []+ is a ramp function and λ is a margin for a better similarity

separation between positive and negative pairs.

The reason why to choose the maximum similarity score from the

group of sin to represent the negative pair in Eq. (5.2) is that it can

ensure the scores of all negative pairs are smaller than the positive pair

and also increase the difficulty of learning as the same effect of λ. Since it

is difficult to optimize Eq. (5.2), a smooth approximation is adopted by

using a modified LogSumExp function to replace max(sin) and a softplus

function to replace [·]+, which can be formulated as

max(sin) = log

 Nc∑
n=1,n6=p

exp(rsin)

 (5.3)

[·]+ = log[1 + exp(·)] (5.4)

where r is a scale factor.
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Substituting Eqs. (5.3) and (5.4) into (5.2), the smooth similarity loss

function is obtained as

Lsmooth =
1

N

N∑
i=1

log

{
1 + exp

[
log

(∑Nc

n=1,n6=p
exp(rsin)

)
− sip + λ

]}
(5.5)

By training the student network with Lsmooth, the sketch feature fs

is gradually close to the pre-learned class feature fc of the same-class

3D shapes and keeps away from that of the different-class 3D shapes

simultaneously.

5.2 Experiments

5.2.1 Datasets

The proposed TSS3DSR method is evaluated on a frequently-used bench-

mark dataset, i. e., SHREC’13 [Li et al. 2013a], for sketch-based 3D

shape retrieval. Some examples of sketches and corresponding 3D shapes

in the dataset are shown in Figure 1.5. The dataset is built by collect-

ing large-scale hand-drawn sketches from TU-Berlin sketch dataset [Eitz

et al. 2012a] and 3D shapes from Princeton Shape Benchmark [Shilane

et al. 2004], which consists of 90 classes including 7,200 sketches and

1,258 shapes. In each class, there are a total of 80 sketches, and 50 of

which are for the training and the rest are for the test. The number of

3D shapes varies in different classes. For example, the largest class is

‘airplane’, which has 184 3D shapes, and there are 12 classes containing

only 4 3D shapes.
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5.2.2 Implementation details

The proposed TSS3DSR method is implemented on Pytorch with two

NVIDIA GeForce GTX 2080 Ti GPUs.

Network structure The structure is illustrated in Figure 5.1. The

teacher network adopts the MVCNN [Su et al. 2015] architecture and

the CNN1 and CNN2 use the VGG-11 network [Simonyan & Zisserman

2014]. In the student network, CNN3 utilizes the ResNet-50 network

[He et al. 2016].

Prepossessing The prepossessing includes the network pre-training

and data processing. The teacher network is pre-trained on ImageNet

[Deng et al. 2009] with 1k categories, and then fine-tuned on all edge

images of the 3D shapes. The student network is first pre-trained for

the classification task based on a part of QuickDraw dataset [Ha & Eck

2017] with 3.45 million sketches in 345 categories, and then fine-tuned

on the training dataset of sketches according to minimize Eq. (5.5). For

the data processing, the sketch images and the edge images of 3D shapes

are uniformly resized into a resolution of 224× 224× 1.

Parameter settings In the teacher network, the learning rate and

batch size are 5 × 10−5 and 8, respectively, and the number of training

epochs is set to 20. In the student network, the learning rate and batch

size are 1×10−4 and 48, respectively, and the number of training epochs

is 10. Moreover, the margin λ and the scale factor r are set to be 0.15

and 64, respectively. The Adam is employed as an optimizer for both

networks and the weight decay is set to 0.
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5.2.3 Experimental results

Some retrieval results on the SHREC’13 dataset are shown in Figure

5.3. The query sketches are listed on the left including the class of chair,

bicycle, piano, table, palm tree and sea turtle, and the retrieved top 8 3D

shapes are listed on the right according to the ranking of similarity scores.

In Figure 5.3, the proposed TSS3DSR method is effective in retrieving

the corresponding 3D shapes of the query sketches. The reasons for

generating incorrect results are the limited number of 3D shapes (e.

g., the classes of bicycle and sea turtle, which only contain 7 and 6

3D shapes in the dataset, respectively) and the high similarity score of

similar shapes from different classes (e. g., the couch and bench shapes,

which get high similarity scores according to the query sketch of piano).

Figure 5.3: Some examples of retrieval results. The left column is the

query sketches and the right columns are the top 8 retrieved 3D shapes,

and the wrong results are highlighted by red dashed squares.

In order to demonstrate the effectiveness of the proposed TSS3DSR
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method, it is compared with several state-of-the-art methods, including

SBR-VC [Li et al. 2013a], Siamese [Wang et al. 2015], Shape2Vec [Tasse

& Dodgson 2016], DCML [Dai et al. 2017], LWBR [Xie et al. 2017], DCA

[Chen & Fang 2018], SEM [Qi et al. 2018] and DSSH [Chen et al. 2019].

In addition, the widely-used evaluation metrics for the sketch-based 3D

shape retrieval, including the nearest neighbor (NN), first tier (FT),

second tier (ST), E-measure (E), discounted cumulated gain (DCG) and

mean average precision (mAP) are adopted, which are introduced below

[Li et al. 2014a]

• NN: It measures the accuracy of the top 1 retrieval list.

• FT: Assume there are C relevant 3D shapes in the dataset, FT

is the recall of the top C − 1 retrieval list. The benchmark of

SHREC’13 sets C to be 20.

• ST: Similarly, ST is the recall of the top 2(C − 1) retrieval list.

• E: It is a composite measure of the precision P and recall R for the

first 32 of retrieved results, which is defined as E = 2/(1/P +1/R).

• DCG: It is defined as the normalized summed weighted value re-

lated to the positions of the relevant 3D shapes:

DCG =
DCGn

1 +
∑C

j=2 log2 j
(5.6)

where n and C represent the total number of 3D shapes in the

dataset and the relevant class, respectively, and

DCGi =

G1, i = 1

DCGi−1 + Gi

log2 i
, i = 2, 3, ..., n

(5.7)
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where Gi = 1 if the ith retrieved 3D shape belongs to the same

class as the query sketch, otherwise Gi = 0.

• mAP: It is to find the average precision for each query sketch and

compute the mean of average precisions over all query sketches.

Table 5.1 shows the quantitative comparison of the proposed TSS3DSR

method with the state-of-the-art methods on the SHREC’13 dataset. Ex-

cept for the DSSH, it is clear to see that the proposed TSS3DSR method

achieves the best performance than the state-of-the-art methods for all

the evaluation metrics. Compared to the latest method DSSH, the pro-

posed TSS3DSR method performs better or equally in the NN, E and

DCG metrics.

Table 5.1: The comparison of our method and the state-of-the-art meth-

ods on the SHREC’13 dataset.

Method NN FT ST E DCG mAP

SBR-VC 0.164 0.097 0.149 0.085 0.348 0.114

Siamese 0.405 0.403 0.548 0.287 0.607 0.469

Shape2Vec 0.620 0.628 0.684 0.354 0.741 0.650

DCML 0.650 0.634 0.719 0.348 0.766 0.674

LWBR 0.712 0.725 0.785 0.369 0.814 0.752

DCA 0.783 0.796 0.829 0.376 0.856 0.813

SEM 0.823 0.828 0.860 0.403 0.884 0.843

DSSH 0.831 0.844 0.886 0.411 0.893 0.858

TSS3DSR method 0.836 0.833 0.883 0.411 0.896 0.853

The proposed TSS3DSR method is also visually compared with DSSH

to show its advantages. As shown in Figure 5.4, for the hand and horse

sketch examples, the retrieved 3D shapes with the proposed TSS3DSR

method are more accurate than DSSH. First, the retrieved 3D shapes

with mismatched details have a low-ranking in the proposed TSS3DSR

method. For example, an unextended hand is ranked last in the pro-
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posed TSS3DSR method but ranked second in DSSH, and a horse with

a lifted leg is ranked fourth in the proposed TSS3DSR method but ranked

second in DSSH. Second, the incorrect dog models retrieved by the pro-

posed TSS3DSR method have a similar shape to the correct horse model.

However, the incorrect guitar models retrieved by DSSH have an extraor-

dinarily different shape to the correct horse models.

Figure 5.4: The comparison of the proposed TSS3DSR method and

DSSH [Chen et al. 2019] in two retrieval examples. The blue and gray

colours denote the retrieval results of the proposed TSS3DSR method

and DSSH, respectively, and the wrong results and mismatched details

are highlighted by red dashed squares and circles, respectively.

5.3 Summary

In this chapter, a novel semantic similarity metric learning method is pro-

posed for sketch-based 3D shape retrieval, and a teacher-student strat-

egy is used to obtain efficient networks for learning semantic similarity

between sketches and 3D shapes. First, the pre-trained classification

network is adopted as the teacher network to extract the semantic fea-

tures of 3D shapes. Then, the student network is trained by using the

pre-learned features of 3D shapes with a similarity loss function. Finally,

86



the semantic features of sketches are learnt. As a result, the proposed

TSS3DSR method effectively maximizes the within-class similarity and

minimizes the between-class similarity. The experiments show that the

proposed TSS3DSR method performs better than the state-of-the-art

methods.
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Chapter 6

User interface

In order to visually present the developed colour sketch-based image

retrieval and sketch-based 3D shape retrieval techniques and promote the

potential commercial applications of them, a user interface is developed

in which users can draw sketches and retrieve images and 3D shapes.

Since the proposed sketch-based retrieval techniques use the Pytorch

library based on the Python programming language, the user interface

also needs to be developed using the same programming language. PyQt5

is a popular library, which allows users to write graphical user interface

(GUI) applications using Python [Summerfield 2007]. Therefore, PyQt5

is applied to design the user interface. In this chapter, the functions

of the user interface are introduced in Section 6.1, and the operation

procedure is presented in Section 6.2.

6.1 Functions of the user interface

The user interface consists of five parts, i. e., Function Selection, Dataset,

Mode Selection, Drawing Options, and Input and Output zones, as
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Figure 6.1: The user interface.

shown in Figure 6.1. The function of each part is introduced below.

Function Selection Two function types are provided for sketch-based

retrieval, which are “Colour Sketch-based Image Retrieval” and “Sketch-

based 3D Shape Retrieval”. Users can choose different function types to

retrieve images or 3D shapes. The techniques behind the two functions

are introduced in Chapters 4 and 5, respectively.

Dataset The combo box in this part includes two items, i. e., Shoes

and SHREC-13, as shown in Figure 6.2(a). The Shoes dataset is the

MCSBIR dataset from Chapter 4 and it is prepared for the function

“Colour Sketch-based Image Retrieval”. The SHREC-13 datasets are

created from [Li et al. 2013a], which are prepared for the function “Sketch-

based 3D Shape Retrieval”
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Figure 6.2: The combo boxes of Dataset and Mode Selection.

Mode Selection The combo box includes two items, i. e., Random

Generation and Draw by Myself, as shown in Figure 6.2(b). Random

Generation is to randomly select a sketch from the chosen dataset, and

Draw by Myself is to draw the sketch by users themselves.

Drawing Options For users to draw different colour sketches by them-

selves, four sub-functions, i. e., Brush Colour, Canvas Colour, Brush Size

and Current Colour are designed. The Brush Colour is to set the colour

of the brush, which is black by default, the Canvas Colour is to set the

colour of the canvas in the input area, which is white by default, and the

Brush Size decides the thickness of the drawing line, which is set to 3 by

default. The range of the size is from 1 to 20. By clicking the button

Brush Colour or Canvas Colour, a colour palette will be displayed and

any desired colour can be selected as the brush colour or canvas colour,

as shown in Figure 6.3. The Current Colour is a place to predictively dis-

play the selected colours before drawing, in which the background colour

represents the canvas colour and the font colour represents the brush

colour. Some examples with different brush colours, canvas colours and
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brush sizes are shown in Figure 6.4.

Figure 6.3: The colour palette.

Figure 6.4: Some examples with different brush colours, canvas colours

and brush sizes. (a) The brush is red, the canvas is blue, and the brush

size is 3. (b) The brush is yellow, the canvas is red, and the brush size is

3. (c) The brush is green, the canvas is white, and the brush size is 15.

Draw and Generation Zone This zone includes the input display

area, the output display area and three function buttons, i. e., Random

Generation, Clear and Run. The input display area is a square place

to draw and display the sketch. The output display area is a place to

show the top six retrieved results as well as their names. The function of
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Random Generation is to randomly generate a sketch from the selected

dataset and display it in the input area, and the function of Run is to

generate the top six results and display them in the output area. The

button Clear can clean the content in the input and output display areas

simultaneously.

6.2 Operation procedure

The procedure of using the user interface is mainly divided into six steps:

• Step 1: Select the function of the sketch-based retrieval. If the user

would like to retrieve images, they can choose the Colour Sketch-

based Image Retrieval. Sketch-based 3D Shape Retrieval is the

choice for retrieving 3D shapes.

• Step 2: Select the retrieval dataset. Once the dataset is selected,

the random sketches and retrieval results will be generated from

this dataset. If “Colour Sketch-based Image Retrieval” is chosen

in Step 1, users can only select the Shoes dataset. If “Sketch-based

3D Shape Retrieval” is chosen, users can only select the SHREC-

13 dataset. Although there are only two datasets for now, more

datasets will be involved in the user interface in the future.

• Step 3: Select the drawing mode in Mode Selection. If users would

like to draw their desired sketches, they can choose Draw by Myself.

If Random Generation is chosen, Step 4 can be skipped.

• Step 4: Select the desired colours for the drawing brush and canvas,

and select the desired size of the brush.

• Step 5: If Random Generation is chosen in Step 3, users can click
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the function button Random Generation, and the system will au-

tomatically generate a sketch from the selected dataset and display

it in the input area. Otherwise, users need to draw by themselves

on the canvas in the input area. The way of drawing is to press the

left mouse button and move the mouse on the canvas. During the

drawing process, users can change the brush colour at any time to

create multi-colour sketches, and they can clean the input display

area by clicking the function button Clear and redraw the sketch.

• Step 6: After finishing the sketch in the input area, users can click

the button Run to retrieve similar images or 3D shapes according

to the selected function type. The top six results with their names

from the selected dataset in Step 2 will be displayed in the output

display area. Figures 6.5 and 6.6 show the retrieved top six results

of “Colour Sketch-based Image Retrieval” and “Sketch-based 3D

Shape Retrieval” functions according to the input sketches, respec-

tively.
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Figure 6.5: Retrieved top six results of the “Colour Sketch-based Image

Retrieval” function. In the first two rows, the two query sketches are

randomly generated from the Shoes dataset. In the last two rows, the two

query sketches are drawn in real time.
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Figure 6.6: Retrieved top six results of the “Sketch-based 3D shape

Retrieval” function. In the first two rows, the two query sketches are

randomly generated from the SHREC-13 dataset. In the last two rows,

the two query sketches are drawn in real time.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The sketch can better describe what humans see and provide more in-

formation for the retrieval task compared with the text. Due to the

practical availability of large-scale sketch datasets and the development

of computer performance and deep learning approaches, sketch-based

retrieval techniques have flourished in recent years. In this thesis, the

challenges of colour sketch-based image retrieval and sketch-based 3D

shape retrieval have been tackled.

In order to consider the colour information in the retrieval task, the

single-colour sketch based image retrieval method has been first proposed

in Chapter 3. A single-colour sketch-image dataset has been created

based on the proposed dominant colour extraction method, and a rank-

ing method combined with the shape similarity matching and colour sim-

ilarity matching has been developed, which makes the retrieval results

get better matching in appearance. Compared with previous retrieval
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methods based on black-and-white sketches, the proposed method has

better retrieval accuracy. However, practical images are usually multi-

coloured and the single-colour sketch cannot completely and accurately

represent the colour information of an image. Therefore, the multi-colour

sketch based image retrieval method has been further developed to tackle

the description of multiple colours in the sketch in Chapter 4. The first

multi-colour sketch-image dataset has been built and the two-stage net-

work architecture has been designed. A novel feature embedding for

explicably describing the shape and colour information and a triplet loss

function with separated shape and colour features have been proposed

to generate an end-to-end solution for the MCSBIR task. In the experi-

ments, two baselines have been designed to compare with the proposed

method, and the results have shown that the proposed method performs

better in retrieving images.

Since the domain discrepancy between sketches and 3D shapes is much

bigger than that of sketches and images, Chapter 5 has focused on the so-

lution for reducing the domain discrepancy. The sketch-based 3D shape

retrieval has been solved by a novel metric learning network using the

teacher-student strategy, which is capable of reducing computational cost

and improving efficiency. A similarity loss function has been developed to

optimize the semantic feature distance between sketches and 3D shapes.

Experiment results based on a large benchmark dataset have demon-

strated the effectiveness of the proposed TSS3DSR method. To visually

present the developed colour sketch-based image retrieval and sketch-

based 3D shape retrieval, a user interface has been developed in Chapter

6, which can be used to promote the potential commercial applications

of the techniques developed in this thesis.
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In this thesis, the challenges mentioned in 1.1 have been addressed

and the research objectives have been achieved, but there are still some

limitations. First, although the sketch is convenient and user-friendly for

users to draw on touch screens, drawing a clear and well-expressed sketch

still needs drawing skills to some extent. If the sketch is disorganized

to describe users’ desired object, it is difficult to retrieve the correct

images or 3D shapes no matter how accurate the retrieval method is.

This limitation inherently exists in the drawing process of sketch, which

cannot be solved in the retrieval method. In order to help users to draw

sketches well, some supplementary means are necessary such as the shake

correction of drawing and the provision of exemplar sketches. Another

limitation is that the developed sketch-based retrieval techniques are

constrained by the datasets, which means the proposed retrieval methods

are not generative for different retrieval tasks. For example, the proposed

MCSBIR method is designed for retrieving shoe images, which cannot

retrieve bags, clothes or other kinds of images. In order to develop a

generative model, a comprehensive and large-scale dataset needs to be

created.

7.2 Future work

This thesis has investigated sketch-based retrieval, and developed a few

novel methods to achieve colour sketch-based image retrieval and sketch-

based 3D shape retrieval. Some further possible work can be considered

in the future.

• The benchmark of the colour sketch-based image retrieval: Al-

though the proposed SCSBIR and MCSBIR methods as well as

a few studies [Bui & Collomosse 2015; Fuentes & Saavedra 2021]
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tried to deal with image retrieval based on colour sketches, there is

no general evaluation metric to judge the similarity of shapes and

colours. For example, in the situation where one retrieved image

has a similar shape to and same colour as the query sketch and an-

other image has the same shape as and similar colour to the query

sketch, an evaluation metric to evaluate which one has a higher

score of the similarity has not been proposed. Therefore, how to

figure out the benchmark of colour sketch-based image retrieval

is an unsolved problem. One solution under consideration is to

adopt a large-scale user survey to analyze the human’s sensitivity

for slightly different shapes and colours, and design a reasonable

tolerance range for shape and colour differences in sketch-based

retrieval.

• Retrieving the images with complex content: In this thesis, the

proposed SCSBIR and MCSBIR methods as well as other studies

[Yu et al. 2016; Song et al. 2017; Fuentes & Saavedra 2021] only

retrieve the images with one object in the pure white background.

In practice, many images have complex content such as the worn

shoe images or several objects in a single image. In order to make

the proposed MCSBIR retrieval method more suitable for prac-

tical applications, the following work is to develop an improved

MCSBIR method based on a pixel-level segmentation. The feature

embedding will include not only the shape and colour information,

but also the information of the position, category and size of all

objects in the image.

• Descriptor of 3D shapes: Most of sketch-based 3D shape retrieval

methods [Wang et al. 2015; Zhu et al. 2016; Chen & Fang 2018;
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Chen et al. 2019] including the proposed TSS3DSR method de-

scribe the feature of a 3D shape by using the projected 2D images

with different degrees. However, this projection will lose some in-

formation of the 3D shape and cause errors in the retrieval process.

To improve the retrieval accuracy, a direct descriptor for 3D shapes

should be investigated. Since the 3D shapes in the popular datasets

like SHREC’13 [Li et al. 2013a] are triangle meshes, the latest work

SubdivNet [Hu et al. 2021], which develops a CNN framework for

3D triangle meshes, provides a good idea to extract features from

3D shapes without projecting them into 2D images. This requires

further investigation.
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