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Abstract

Due to its advantages in creating complicated 3D models with small data,

good continuities, and physics-based deformations for better realism etc.,

partial differential equation (PDE)-based modelling provides a powerful

technique of creating, manipulating, and animating 3D models, and has

been attracting considerable attention in the community of computer

graphics in the last three decades.

Various PDE-based approaches have been proposed for surface mod-

elling. However, the following challenges have not been addressed. First,

since PDE is a non-industry standard in CAD, CAM and CAE systems

and lacks effective boundary control methods, the numerical solution for

PDE-based surface modelling has few engineering applications. Second,

there is no unified framework for solving different modelling problems.

Existing research studies use special PDE-based mathematical models for

specific applications, which cannot be applied on other occasions. Third,

previous surface manipulation methods cannot deform shapes within

arbitrary boundaries and usually involve heavy numerical calculations

due to the use of numerical solutions. This thesis aims to address these

challenges.

For the first challenge, a numerical solution using the finite difference

method to a fourth-order PDE was presented. Based on this solution,

an optimal conversion of PDE surfaces representing high-speed train

heads into NURBS surfaces was developed, and a novel multi-objective

aerodynamic optimization method of high-speed train heads was proposed,

which is the first pipeline of using the PDE-based approach to optimize

shapes in the CFD simulation. For the second challenge, a unified PDE

mathematical model for surface modelling using analytical 2-, 3- and

4- sided PDE patches with Cn continuity was proposed. Based on the

analytical solution, a PDE-based surface reconstruction method was

proposed to generate optimal surfaces under the constraints of the feature

curves in automotive styling design, and a PDE-based 3D modelling plug-

in was developed for Blender. For the third challenge, a physics-based

method was presented to interactively manipulate surface shapes of 3D
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models using the approximate analytical solution of a fourth-order PDE

with C1 continuity, and an interactive user interface was developed as a

plug-in of Maya to facilitate surface manipulation.
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Chapter 1

Introduction

1.1 Background

Surface modelling is to apply mathematical methods to represent solid-

appearing objects for computer graphics and computer aided design. It

is widely applied in creative and industrial sectors, especially in the

computer animation and game industry, to produce 3D geometric models.

Up to the date of July 4, 2019, the output value of the global animation

industry has reached approximately USD 250 billion and animation-

related derivatives have as much as USD 500 billion [PRNewswire 2019b].

In addition, the global 3D mapping and modelling market is expected to

grow at a compound average growth rate of around 13% during 2019-2024

[PRNewswire 2019a]. Surface modelling is one of the core techniques

not only in the animation industry but also in the manufacturing and

medical sectors, such as automobile design, simulation and virtual surgical

guidance.

Partial differential equations (PDEs) were introduced into surface mod-

elling about three decades ago to develop PDE-based surface modelling

[Bloor & Wilson 1990]. Before that, they had already been applied in

engineering and scientific calculations to describe the underlying physics.

For example, a fourth-order PDE can be used to describe the underlying

physics of bending deformations of a thin elastic plate subjected to lateral

loads, and a wave equation, which is a second-order PDE, can be used
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to describe the underlying physics of transverse vibrations of a tensed

string [Epstein 2017]. Due to this nature, PDE-based surface modelling is

physics-based and has the potential to create more realistic appearances

of 3D models and 3D deformations.

The basic mechanism of PDE-based surface modelling is to create

surfaces by the solution to a PDE with shape control parameters sub-

jected to exact satisfaction of boundary conditions. It mainly has three

advantages [Castro et al. 2008]. (1) Small data: complicated and detailed

shapes can be described with few PDE surface patches. (2) Efficient shape

deformation: applying shape control parameters can accurately control

surface shapes with more degrees of freedom. (3) Good continuities:

any high-order continuity between two adjacent PDE surface patches is

readily achieved and naturally maintained. Due to these virtues, PDE-

based surface modelling has been attracting considerable attention in the

community of computer graphics in the last three decades.

Various PDE-based approaches have been proposed for surface mod-

elling. According to different expression forms of PDE, there are fourth-

order PDE with one shape control parameter [Ugail et al. 1999; Athana-

sopoulos et al. 2009; Sheng et al. 2010], fourth-order PDE with three shape

control parameters [You et al. 2004b; Zhang & You 2002] and sixth-order

PDE [Kubiesa et al. 2004; Zhang & You 2004]. Higher-order PDE is easier

to generate surfaces with different shapes and satisfy higher continuous

boundary conditions, but it is usually more difficult to find a solution.

According to different boundary conditions, there are position (C0) conti-

nuity [Sheng et al. 2010; Bloor & Wilson 1989b], position and tangent

(C1) continuities [Ugail et al. 1999; Athanasopoulos et al. 2009; Zhang &

You 2002], and position, tangent and curvature (C2) continuities [Kubiesa

et al. 2004; Zhang & You 2004; You et al. 2004a]. Current PDE-based

approaches investigate C0, C1, and C2 continuities with second-order,

fourth-order, and sixth-order PDEs, respectively. However, Cn (n > 2)

continuities have not been investigated. The existing PDE approaches

have found a lot of applications including pharmaceutical tablet design

[Ahmat et al. 2014], facial geometry parameterisation [Sheng et al. 2011],

cyclic animation [Castro et al. 2010], aircraft design [Athanasopoulos
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et al. 2009], mesh compression [Shen et al. 2018], and CT data visual-

ization [Chen et al. 2017]. Although these research studies make great

contributions to the development of PDE-based surface modelling in the

community of computer graphics, the challenges highlighted in Section

1.2 have not been addressed.

1.2 Main challenges

The main challenges for PDE-based surface modelling are numerical PDE

surface patches with engineering applications, a unified framework able

to deal with 2-, 3- and 4-sided surface patches with Cn continuities and

interactive surface manipulation as discussed below.

Numerical PDE surface patches with engineering applications

Since it is difficult to analytically solve complex boundary conditions of

PDE, most existing studies only developed analytical methods of creating

2-sided PDE surface patches. Numerical methods are more powerful in

dealing with PDE with complex boundary conditions [Brown et al. 1998;

Du & Qin 2005a]. However, numerical PDE surface patches are rarely used

in engineering applications due to two reasons. First, PDE-based surface

modelling has not become an industrial standard in computer-aided

design (CAD), computer-aided manufacturing (CAM) and computer-

aided engineering (CAE), which limits its engineering applications. In

contrast, NURBS is an industry standard for the representation, design,

and data exchange of geometric information processed by computers [Piegl

& Tiller 2012]. Automatically converting PDE-based 3D models into

NURBS representations will greatly promote engineering applications of

PDE-based modelling. Second, a complex PDE 3D model usually consists

of several PDE surface patches, and how to control the boundaries of all

patches and then control the whole shape of the 3D model is a challenging

issue. Unlike the shape of a 2-sided PDE surface patch that is controlled

by two curves, the numerical method, which is used to deal with the PDE

surface patches with complex boundary conditions, such as 4-sided PDE

surface patches, is more difficult to control their boundaries.
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Unified PDE-based surface modelling framework In the last

three decades, most research studies of PDE-based modelling used spe-

cific PDE-based mathematical models for specific applications, which

cannot be applied on other occasions. For example, Zhang & You [2002]

constructed specific boundary conditions consisting of sine and cosine

functions for the vase design, and Ahmat et al. [2014] developed a higher

dimension version of a particular Biharmonic equation [Bloor & Wilson

1989b] for pharmaceutical tablet design. It is very challenging to build a

unified PDE-based surface modelling framework. Here, ‘unified’ means

the PDE and boundary conditions used to define the surface modelling

framework are applicable to all the situations including different numbers

of boundaries and/or different orders of continuities. There are two main

reasons. First, boundary conditions for different occasions are quite differ-

ent. For example, the boundary conditions of vase design are two closed

curves [Zhang & You 2002], while those of face modelling are two open

curves [Sheng et al. 2011]. Since two boundary curves can only generate

a 2-sided surface patch and have less power to create various surface

shapes, more complex boundary conditions are required to create these

surface shapes such as 3- and 4-sided PDE surface patches. Unfortunately,

most existing research studies can only generate 2-sided surface patches,

and it is challenging to unify various boundary conditions such as 2-, 3-

and 4-sided PDE surface patches. In addition, how to achieve 3- and

4-sided boundary constraints is an unsolved problem. Second, different

surface continuities are required in different applications. For example,

C1 continuity is adequate for 3D character modelling [You et al. 2020]

but an automobile surface usually requires a continuous curvature, i. e.,

C3 or G3 continuity [Hosaka 2012]. It is difficult to construct a unified

continuity condition that satisfies not only position, tangent and curva-

ture continuities but also higher-order continuities, i. e. Cn continuity.

To sum up, how to analytically represent 2-, 3- and 4-sided PDE surface

patches with high-order continuities for creating complicated PDE-based

3D models is a challenging task.

Interactive PDE-based surface manipulation Since PDE surfaces

are controlled by underlying physical laws, they are natural and close
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to the real world and have a potential to make the created shapes more

realistic. In order to generate realistic shapes, some research studies try

to manipulate surface shapes combined with PDE-based technologies

[Du & Qin 2005a; You et al. 2006; Haixia et al. 2008]. However, current

PDE-based surface manipulation methods have two limitations. First,

they cannot deform a surface shape within a region with arbitrary bound-

ary shapes. Second, since physics-based methods are difficult to find

analytical solutions, numerical methods such as the finite element method,

are commonly used to resolve their mathematical models. As a result,

they usually involve heavy numerical calculations and slow responding

time, which are not suitable for real-time and interactive applications.

Therefore, it is challenging to develop interactive PDE-based surface ma-

nipulation with analytical deformation representations and tackle complex

deformation regions with arbitrary boundary shapes.

1.3 Research aims and objectives

The aim of this thesis is to develop PDE-based surface modelling tech-

niques for not only releasing its potential in engineering applications

but also proposing new mathematical methods in both the creation and

manipulation of surfaces. According to the aims and existing challenges,

there are four main research questions that need to be addressed.

• How to convert PDE surfaces into NURBS surfaces? Since

a PDE-based surface model usually consists of several PDE sur-

face patches, the main difficulty of the conversion is to keep the

continuities between different patches as well as reduce data size.

• How to control PDE surface patches? The shape of a surface

patch is determined by the boundary curves and control parameters

in PDE. In order to find an optimal shape, it is necessary to control

the boundaries and parameters of all patches.

• How to construct the unified framework of PDE? According

to different numbers of the boundary curves or different degrees

of continuities, the PDE surface patch can be 2-sided, 3-sided and
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4-sided or C0, C1, C2, . . . , Cn continuities. It is challenging to

unify different forms of PDE surface patches.

• How to analytically deform shapes within arbitrary bound-

aries? In order to find the analytical solution of PDE for deforming

shapes, the boundary conditions should be carefully defined at first.

The condition of arbitrary boundaries increases the difficulty of

solving PDE.

Based on the above questions, this thesis aims to achieve four main

objectives:

• The first objective is to convert PDE surfaces into NURBS surfaces

as well as keep the continuities and reduce the data size. The key is

to develop an optimization method to minimize the error between

PDE surfaces and NURBS surfaces and reduce the design variables

to easily obtain the optimal results, which is discussed in Section

3.2 in Chapter 3.

• The second objective is to effectively control PDE surface patches.

Since the shape of a single patch is defined by control parameters in

PDE and boundary curves, the key is to explore a control method

for both of them so that the PDE surface model can be applied to

engineering applications such as the aerodynamic optimization of

the shape, which is discussed in Section 3.3 in Chapter 3.

• The third objective is to develop a unified PDE-based surface

modelling framework. Since PDE and boundary conditions can have

different forms, it is unattainable to unify all of them. This objective

assumes the PDE form is fixed and focuses on achieving unified

boundary conditions including different numbers of boundaries and

different orders of continuities, which is discussed in Chapter 4.

• The fourth objective is to manipulate surface shapes within arbitrary

boundaries. In order to satisfy arbitrary boundaries, this objective

concentrates on mapping arbitrary boundaries into an invariable

boundary form and explores an effective mathematical model to

generate deformations, which is discussed in Chapter 5.
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1.4 Contributions

To fulfil the research aims, this thesis has made several major contributions

which are listed as follows.

Numerical PDE surface patches with engineering applications:

• A numerical solution for a fourth-order PDE with three control

parameters is presented, and the finite difference method is applied

to solve 4-sided boundary conditions of a PDE surface patch.

• Based on the obtained numerical solution, an optimal conversion

of PDE surfaces representing high-speed train heads into NURBS

surfaces is developed. The least squares fitting and the genetic

algorithm are combined to obtain the optimal conversion between

PDE surfaces and NURBS surfaces.

• Based on the same numerical solution, a multi-objective aerody-

namic optimization method of high-speed train heads is proposed

to optimize the head shape. The high-speed train head is described

by the developed numerical PDE surface patches with more details

and fewer design variables, and the global and local optimization

methods are developed to optimize both global and local shapes.

Unified PDE-based surface modelling framework:

• A unified PDE mathematical model for surface modelling with

analytical 2-, 3- and 4-sided PDE surface patches is proposed, and

boundary conditions defining Cn continuity are formulated.

• Based on the unified model, PDE-based surface reconstruction is

proposed to generate optimal surfaces with Cn continuity under

the constraints of two feature curves in automotive styling design.

• A user interface of PDE-based surface modelling is developed as

a plug-in in the 3D animation and modelling software Blender. It

can create 2-, 3- and 4-sided PDE surface patches from two, three

and four 3D curves, respectively, and generate complete 3D models

from input curve networks.
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Interactive PDE-based surface manipulation:

• A physics-based surface manipulation method with a fourth-order

PDE involving a sculpting force is proposed to achieve surface

deformations and C1 continuity.

• A mapping method, which maps a deformation region from a

3D space to a 2D parametric plane, is developed to simplify the

resolution of the PDE originating from the bending deformation of

a thin elastic plate.

• An interactive user interface of the proposed surface manipulation

method is developed, which has been integrated into the software

package Maya as a plug-in and can be used to achieve physics-

based surface manipulation in deformation regions with arbitrarily

complicated boundary shapes.

1.5 List of publications
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[2] Wang, S., Wang, R., Xia, Y., Sun, Z., You, L. and Zhang, J.,

2021. Multi-objective aerodynamic optimization of high-speed train

heads based on the PDE parametric modeling. Structural and
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[3] Wang, S., Xia, Y., Wang, R., You, L. and Zhang, J., 2019. Optimal
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Similarity Metric Learning for Sketch-Based 3D Shape Retrieval.
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1.6 Thesis structure

The following part of this thesis contains five more chapters:

• Chapter 2 presents a literature review on the related research top-

ics, including PDE-based modelling, surface manipulation, surface

representation conversion, aerodynamic optimization and surface

reconstruction.

• Chapter 3 presents a numerical solution of a fourth-order PDE to

create 4-sided surface patches, and applies it in optimal conversion

of PDE surfaces representing high-speed train heads into NURBS

surfaces and multi-objective aerodynamic optimization of high-

speed train heads.

• Chapter 4 presents a novel unified PDE mathematical model defin-

ing analytical 2-, 3- and 4-sided surface patches with Cn continuity,

and applies it in automotive styling design and development of a
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user interface as a plug-in in Blender.

• Chapter 5 presents a physics-based method using PDE to interac-

tively manipulate surface shapes of 3D models with C1 continuity

and a user interface as a plug-in in Maya

• Chapter 6 concludes the thesis and discusses the future work.
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Chapter 2

Literature Review

In this chapter, the related works on the key techniques of the thesis in-

cluding PDE-based modelling and surface manipulation are first discussed.

Then, other related works of some applications of the proposed methods

such as surface representation conversion, aerodynamic optimization and

surface reconstruction are also reviewed.

2.1 PDE-based modelling

Physics-based surface modelling can create more realistic 3D models.

There are various physics-based surface modelling methods such as the

finite element method, finite difference method and mass-spring systems.

However, these physics-based surface modelling methods involve heavy

numerical calculations and are not applicable to the situations where

real-time performance is required. PDE-based modelling is physics-based

and can be solved analytically. This thesis focuses on PDE-based surface

modelling. In what follows, only the references related to PDE-based

surface modelling will be reviewed.

PDEs were introduced in surface modelling by Bloor and Wilson about

three decades ago [Bloor & Wilson 1990]. After that, PDE-based surface

modelling attracts a lot of research attention. Various numerical, accurate

analytical and approximate analytical solutions have been developed

to promote their applications. The biggest problem for PDE-based
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surface modelling is how to solve PDEs. In the main challenges of the

thesis, the key is to create the surface by solving PDEs, and different

solutions produce different modelling processes, which impact the surface

precision and computational cost. Existing solution methods of PDEs,

i. e., numerical methods, accurate analytical methods and approximate

analytical methods, will be briefly reviewed below.

2.1.1 Numerical methods

Numerical methods are most effective in solving PDEs for surface mod-

elling applications. Popular numerical methods are the finite element

method, finite difference method, and direct discretization of polygonal

models using a discrete Laplace-Beltrami operator. Since there are many

publications on numerical PDE-based surface modelling, it is impossible

to review all of them. In what follows, only some of them are reviewed.

A B-spline finite element method was proposed in [Brown et al. 1998]

and used to approximate PDE surfaces. A bivariant B-spline finite element

method was developed in [Du & Qin 2005a] and applied to tackle dynamic

PDE surface modelling. By considering Laplacian and Laplacian gradient

energies leading to biharmonic and triharmonic equations, respectively,

and viewing the discretization of biharmonic and triharmonic equations as

transformation of a mixed element discretization, a mixed finite element

method was investigated in [Jacobson et al. 2010] to solve the biharmonic

and triharmonic equations and address variational surface modelling.

Through presenting a novel technique to evaluate the finite element basis

functions and coupling the finite element method with a hybrid loop and

Catmull-Clark subdivision algorithm, a numerical simulation method was

examined in [Pan et al. 2014] for hybrid subdivision surface design using

geometric PDEs.

By solving a Euler-Lagrange equation with the finite difference method,

the smoothing properties were achieved by reducing the amplitude of

various high frequency Fourier harmonics in surfaces [Bloor et al. 1995].

Using the finite difference method to discretize a general sixth-order geo-

metric PDE, the problems of surface processing and modelling including
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creation of high-order continuous surfaces are efficiently solved in [Liu &

Xu 2007]. Employing the finite difference discretization and variational

interpolating approach with the localized iterative solver, an implicit

fourth-order PDE and an implicit second-order PDE were numerically

integrated in [Du & Qin 2005b] to achieve shape design of solid models.

Except for using the finite element method, Du & Qin [2005a] also applied

the finite difference method to the framework of dynamic PDE-based

surface design and achieved real-time performance. In order to develop

facial animation, You et al. [2009] presented an adaptive finite difference

method to solve a fourth-order PDE and limit the surface regions where

significant deformations exist.

Using the umbrella operator to linearly approximate the Laplacian

operator at each vertex of polygon models and numerically integrating a

diffusion equation involving the Laplacian and the second Laplacian, rough

features from irregular data are rapidly removed to portray a smooth

surface [Desbrun et al. 1999]. In order to smooth arbitrary triangle meshes

while satisfying G1 boundary conditions, a new algorithm was presented in

[Schneider & Kobbelt 2001] to numerically solve a PDE with the discrete

Laplace-Beltrami operator and 1-neighborhood based discretization of

the mean curvature normal at a vertex. The discrete Laplace-Beltrami

operator was also used to obtain variational minimization for surface

deformations in [Botsch & Sorkine 2008], estimate surface normal in [Park

et al. 2015], and perform surface reconstruction in [Stanko et al. 2016].

2.1.2 Accurate analytical methods

Accurate analytical methods exactly satisfy both PDEs and boundary

conditions. It is very difficult or even impossible to obtain accurate

analytical solutions of PDEs when boundary conditions are complicated.

Therefore, the existing work only developed accurate analytical solutions

for 2-sided PDE patches subjected to some simple boundary conditions.

Treating blending design as a boundary value problem and considering

some simple boundary functions, the accurate analytical solutions for

x and y components were obtained from a second-order PDE and the
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accurate analytical solution for z component was obtained from a fourth-

order PDE to create parametric surfaces [Bloor & Wilson 1989a]. For

primary surfaces represented with a combination of hyperbolic sine and

cosine functions, some accurate analytical solutions were presented to

blend the primary surfaces together in [Bloor & Wilson 1989b]. By

mapping a unit cube in (u, v, w) parameter space to a hexahedral solid in

physical space, the accurate analytical solutions to a second-order PDE

with three parametric variables were obtained in [Bloor & Wilson 1993] to

investigate the functionality in solids. The accurate closed form solutions

for the boundary conditions represented with triangular functions are

investigated in [Zhang & You 2002] for vase design.

2.1.3 Approximate analytical methods

Approximate analytical solutions cannot exactly satisfy both PDEs and

boundary conditions. Many existing approximate analytical solutions first

exactly satisfy boundary conditions and then minimize the error of PDEs

to find an optimal surface. Fourier series-based approximate analytical

solution was proposed in [Bloor & Wilson 1990] to generate free-form

surfaces for the designs of hull of yacht-like boat, propeller blade, phone

handset, and ship hull. The Fourier series-based approximate analytical

solution was used to solve a fourth-order PDE for the interactive surface

design in [Ugail et al. 1999] and parametric design of aircraft geometry

in [Athanasopoulos et al. 2009]. It was also extended to obtain an

approximate analytical solution to a sixth-order PDE for surface modelling

in [Kubiesa et al. 2004]. A weighted residual method was presented to

approximately solve a time-dependent fourth-order PDE for creation of

deformable moving surfaces in [You & Zhang 2003], a time-independent

fourth-order PDE in [You et al. 2004b] for C1 continuous surface blending,

and a time-independent sixth-order PDE for surface modelling in [Zhang

& You 2004] and C2 continuous surface blending in [You et al. 2004a].

To sum up, numerical methods are most effective in solving various

PDEs but with discrete representations, a large amount of data, and high

computational costs. Accurate analytical solutions are only applicable to
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some simple surface modelling tasks. And existing approximate analytical

solutions can deal with more complicated surface modelling than accurate

analytical solutions, but most studies focus on 2-sided PDE patches.

How to develop explicit representations of analytical 3- and 4-sided PDE

patches has not been well investigated. In addition, there is no unified

PDE-based modelling framework to deal with 2-, 3- and 4-sided PDE

patches and satisfy arbitrary continuity requirements, which limits the

application of PDE-based surface modelling on different occasions. The

work described in this thesis will present a numerical solution for 4-

sided PDE patches, apply it to solve practical engineering problems,

and propose a unified PDE mathematical model of analytical 2-, 3- and

4-sided PDE patches with Cn continuity to make PDE-based surface

modelling technique applicable to different occasions.

2.2 Surface manipulation

Surface manipulation, also known as surface or mesh editing, is a funda-

mental research topic in geometric modelling and computer-aided design.

Depending on whether physics of the model deformation is introduced

or not, surface manipulation can be roughly divided into two categories:

purely geometric and physics-based [Zheng et al. 2003].

2.2.1 Purely geometric surface manipulation

There is rich literature on the topic of purely geometric surface manip-

ulation. Here, some studies with mature practical applications will be

briefly introduced.

One of the most representative purely geometric surface manipulation

methods is free-form deformation (FFD), the idea of which was first

introduced by [Barr 1987] and then further developed by [Sederberg &

Parry 1986]. This method embeds an object in a lattice and achieves the

deformations of the object by deforming the lattice. By using the initial

lattice points to define an arbitrary trivariate Bézier volume, and allowing

the combination of many lattices to form arbitrarily shaped spaces,
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Coquillart [1990] introduced extended FFD. In order to provide a better

control of the deformation and a more intuitive interface, Hsu et al. [1992]

proposed a direct manipulation method of FFD. Based on FFD technique,

several space deformation models such as rational FFD [Kalra et al. 1992],

NURBS-based FFD [Lamousin & Waggenspack 1994], volume-preserving

FFD [Hirota et al. 2000], T-spline FFD [Song & Yang 2005] and Proxy-

driven FFD [Zhang et al. 2020] have been developed. Although FFD

is very popular and supported in many 3D modelling software packages

such as 3DS Max and Maya, it has several drawbacks. For example, in

order to achieve a small and local deformation, the lattice grids need to

be subdivided so that one lattice point can control the target deformation

region without impact other regions. However, the subdivision will result

in crowded or even messy lattice grids which not only block the view of the

deformed shape but also cause inconvenience for interactive manipulation

[Zhang et al. 2020]. In addition, the FFD method is difficult to achieve

exact shape deformation because the deformed shape does not follow the

lattice points exactly, so that it is unclear which lattice points should be

moved and how transformation will affect the deformation of the model

[Zheng et al. 2003].

The Laplacian coordinate is another successful surface deformation

technique and a variant of [Sorkine et al. 2004]. It has been integrated

into the software Blender. The potential of the Laplacian coordinate for

local mesh morphing and deformation is introduced by [Alexa 2003]. By

solving a linear least squares system, Lipman et al. [2004] reconstructed

the surface from discrete Laplacians of the mesh functions and spatial

boundary conditions. In order to make Laplacian coordinates invariant

to rotation and isotropic scaling, Sorkine et al. [2004] proposed a Lapla-

cian surface editing method which implicitly transforms the differential

coordinates. Based on the idea of the Laplacian coordinate, Zhou et al.

[2005] used the volumetric graph Laplacian to solve the problem of large

deformations. Since the Laplacian method needs to define anchor ver-

tices first and then move some of them to achieve the deformation of

non-anchor vertices, it is not intuitive and convenient to deform complex

shapes, e. g., multiple deformations within a surface.

16



Unlike FFD and Laplacian methods that deform the surface by adding

extra lattice points or anchors, the Delta Mush method [Mancewicz et al.

2014] is to directly manipulate the polygonal meshes by moving mesh

vertices. Its basic idea is to smooth the deformed shapes of the polygonal

meshes. Delta Mush is also regarded as a surface deformation method

and widely applied in 3D software packages such as Maya and Houdini.

To sum up, purely geometric surface manipulation methods do not

consider any underlying physical laws so that the quality and aesthetics

of deformed shapes mainly depend on the users’ perception and skills.

2.2.2 Physics-based surface manipulation

Physics-based methods are to deform surface shapes by incorporating

physical characteristics such as forces, torques and strain energies. They

have been widely embraced by the computer graphics community [Nealen

et al. 2006]. Terzopoulos et al. [1987] and Terzopoulos & Fleischer [1988a]

introduced dynamic differential equations for flexible materials such as

rubber, cloth and paper by employing elasticity theory. After that, they

extended their work from elasticity to viscoelasticity, plasticity and frac-

ture [Terzopoulos & Fleischer 1988b]. By minimizing an energy function

with user controlled geometric constraints and loads, Celniker & Gossard

[1991] developed a curve and surface finite element method for free-form

shape design. Güdükbay & Özgüç [1994] described a physically based

modelling system based on a primal formulation and a hybrid formulation

derived from elasticity theory. By using the theory of plate bending in

elasticity, You et al. [2006] developed a mathematical model of physically

based elastic deformations. Considering non-homogeneous material prop-

erties and conducting finite element simulations of deformable objects in

local frames, McDonnell & Qin [2007] presented a modelling technique

for physically based deformation.

Involving physics laws in traditional control point-based deformation

methods is also a popular research topic. Terzopoulos & Qin [1994]

developed a dynamic NURBS to deal with mass distributions, internal

deformation energies, and other physical quantities of shape manipulation
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of NURBS. After that, they further investigated the surfaces with symme-

tries and topological variability and developed a dynamic NURBS swung

surface [Qin & Terzopoulos 1995]. By enhancing the power of triangular

spline models and using Lagrangian mechanics, Qin & Terzopoulos [1997]

developed the dynamic triangular NURBS and manipulated the surfaces

defined over arbitrary, nonrectangular domains through the finite element

solution of its mathematical model. Applying sculpting forces on a surface

and formulating and minimizing the energy functional of the surface,

Vassilev [1997] proposed a method to manipulate deformable B-spline

surfaces.

Since physics-based methods are difficult to find analytical solutions,

numerical methods such as the finite element method, are commonly

used to resolve the mathematical models in the above studies. Therefore,

physics-based methods usually require a high computational cost and

long computing time, which do not meet the demand of interactive

surface manipulation. In this thesis, an interactive PDE-based surface

manipulation method will be developed with analytical solutions.

2.3 Surface representation conversion

In this thesis, one of the developed applications is optimal conversion

from PDE surfaces to NURBS surfaces. Therefore, the review focuses on

the main related work of NURBS surface representation conversion.

NURBS originates from B-spline technology and plays an important

role in the CAD, CAM and CAE world. The description of NURBS

was first given by [Versprille 1975], which extended B-splines to rational

B-splines. By understanding the advantages of NURBS for geometry

representation and design, Boeing proposed it as part of the standard

to the 1981 International Graphics Exchange Standard meeting, and

many companies, such as Structural Dynamics Research Corporation and

Intergraph Corporation, started to develop modellers and systems based

on NURBS in the 1980s [Piegl 1991]. Because of the useful geometric

properties, NURBS become part of many national and international

standards such as IGES [Kennicott 1996], PHIGS [ISO 1997] and STEP
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[ISO 2003] for the representation, design, and data exchange of geometric

information.

Converting other types of surfaces into NURBS surfaces is most often

required since NURBS has become an industrial standard in CAD, CAM

and CAE, especially in the field of reverse engineering. The key issue in

the conversion is to solve NRUBS fitting. In general, fitting is usually

achieved with polynomial approximation, which involves the minimization

of an error at discrete data points. Depending on the application domain

and the expected type of error, different norms can be selected for the

minimization process, such as l1, l2 and l3 norms [Heidrich et al. 1996].

The least-square (l2 norm) is usually applied in NURBS fitting. Ma &

Kruth [1998] presented an algorithm for NURBS curves and surfaces

fitting from free-form objects based on least squares fitting. The basic

idea is to identify weights of the control points by applying symmetric

eigenvalue decomposition techniques and then establish control points

in a similar way. Based on this identified method of weights, Saini &

Kumar [2014] proposed a method to reconstruct surfaces from arbitrary

perspective images using a NURBS model, and Kruth & Kerstens [1998]

described NURBS surface fitting from a cloud of points subject to incor-

poration of sufficient boundary conditions. Through determining the knot

vectors, selecting the degrees, calculating the weights, and constructing

an initial NURBS surface, Yin [2004] provided a new algorithm for fitting

NURBS surfaces to scattered points using minimization of deviation un-

der boundary constraints. By letting ordered measured points be control

points and using least squares minimization, Dan & Lancheng [2006]

developed a new conversion method which modified a constructed surface

to obtain a desired fitted surface.

NURBS consists of multi-parameters: control points, knots and weights,

which make the conversion task become a multi-variable nonlinear op-

timization problem involving large amount of data. In order to find a

good NURBS model from large amount of data, Ulker [2012] applied the

heuristic of artificial immune system for global optimization to find a

smooth curve and the optimization of NURBS weights and knot vectors.

Jing et al. [2009] used a simulated annealing method to optimize weights
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and knot parameters of NURBS for curve and surface fitting. Genetic

algorithm (GA) is a common multi-variables optimization method. Li-

maiem et al. [1996] applied GA to obtain control point and knot value

optimization, and proposed a new method for curve and surface approxi-

mation from scanned data points. Similarly, Yoshimoto et al. [1999] and

Sarfraz [2004] applied GA to optimize both knots and weights of control

points for curves and surfaces.

To sum up, although there has been much work investigating conversion

methods from different surface types to NURBS surfaces, no reports which

convert PDE surfaces into NURBS surfaces were found. In addition, most

prior conversion methods focus on a single surface patch or an object

with a simple shape. Thus, the data sizes of origin surfaces and converted

surfaces are small and there is no need to minimize the data sizes in

the process of conversion and further applications such as aerodynamic

simulation-based optimization. However, for a complicated and large-

scale object such as high-speed train heads investigated in this thesis, it

involves a large amount of data. This thesis will present an application of

optimal conversion of PDE surfaces representing high-speed train heads

into NURBS surfaces with required accuracy and small data amount by

using numerical 4-sided PDE surface patches.

2.4 Aerodynamic optimization design of the

high-speed train

Aerodynamic optimization design is to find a set of parameters which can

construct the optimal shape of the parametric model based on the required

aerodynamic characteristics. It mainly includes parametric modelling

and aerodynamic analysis processes.

2.4.1 Parametric modelling

Parametric modeling methods of describing the head shape of high-speed

trains can be roughly grouped into two categories, i.e., the framework

modeling and shape deformation methods. The framework modeling
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method is to directly construct the whole framework of high-speed train

heads and obtain the surface model by filling surface patches into the

framework [Suzuki & Nakade 2013; Yao et al. 2016]. However, this method

is not ideal in accurately describing train heads because the local shape

in surface patches is uncontrollable and has no ability to deform if the

framework remains unchanged. Moreover, the tangential continuity at

the joint of two adjacent surface patches cannot be guaranteed because

the two adjacent patches are only constrained by the position coordinates

of the framework. In order to optimize local shapes instead of the

whole shape of a train head and deform the surface smoothly, various

shape deformation methods have attracted considerable attention such

as the free-form deformation [Li et al. 2016; Zhang et al. 2018] and the

arbitrary shape deformation [Sun et al. 2010; Yao et al. 2014]. The shape

deformation method can focus on improving specified local shapes, but its

global shape is non-optimized. Besides, these shape deformation methods

usually use one parameter to control the shape change of a local region

which limits the diversity of the deformation shape.

2.4.2 Aerodynamic analysis

In early stages, researchers usually focused on studying the aerodynamic

performance of a given high-speed train using experimental methods such

as the wind tunnel test and moving model test [Schetz 2001]. Maeda et al.

[1989] presented a method to estimate the aerodynamic drag of trains and

evaluated the accuracy of the results by measuring the total resistances

in the open air and in a tunnel. De Wolf & Demmenie [1997] developed

a train tunnel test facility which can launch models up to 500 km/h to

measure the interacting pressure waves and their reduction in tunnels for

high-speed trains. Cheli et al. [2010] presented an aerodynamic analysis

on two different versions of the high-speed train EMUV250 to study the

cross wind behavior by a combined use of wind tunnel investigations and

numerical CFD simulations. However, the experiment method, greatly

depending on engineering experience of researchers to seek the optimal

solution, is limited by some disadvantages such as expensive testbed and

high cost of time.
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With the development of computer technology and increase of the

computational power, numerical simulations have been widely applied in

the optimization design of high-speed train heads and usually combined

with surrogate models to accelerate optimization process. Kwon et al.

[2001] used the response surface methodology and the axisymmetric com-

pressible Euler equations to optimize the nose shape and introduced the

Hicks-Henne shape functions to define the design space. Ku et al. [2010]

employed the vehicle modeling function for multi-objective optimization

of the high-speed train nose and performed a multi-step design optimiza-

tion using the BFGS algorithm with a response surface model. Lee &

Kim [2008] adopted the Hicks-Henne shape functions to parameterize the

high-speed train nose and presented an approximate optimization method

to reduce the micro-pressure wave by using an SVM-based metamodel

and sequential quadratic programming. Sun et al. [2010] proposed an

optimization approach to improve the aerodynamic drag of a CRH3 high-

speed train head by combining CFD analysis with the genetic algorithm

and introduced an arbitrary shape deformation technology. These meth-

ods, however, focus on studying single-objective optimization problems

which are inadequate to find optimal solutions.

The multi-objective optimization of high-speed train heads has been

much investigated in recent decade. The task of multi-objective opti-

mization is to find a set of solutions, i. e., Pareto-optimal solutions,

which represent a trade-off among objective functions [Deb 1999]. Suzuki

& Nakade [2013] developed a multi-objective optimization method of

high-speed train heads using an evolutionary algorithm to estimate the

aerodynamic drag and pressure variation, and parameterized the train

head shape by B-spline curves and Coons patches. Li et al. [2016] opti-

mized the aerodynamic drag and lift forces of a CRH2 high-speed train

head using NSGA-II based on the Kriging model and applied five design

variables to control the local shapes of the train head with a free-form

deformation method. By using the similar modeling and analysis methods

in [Li et al. 2016], Zhang et al. [2018] studied the aerodynamic drag, lift

and side forces of a high-speed train running on an embankment under

crosswinds. Muñoz-Paniagua et al. [2014] defined the geometrical parame-
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terization of the nose shape of a high-speed train by three design variables,

and adopted the genetic algorithm with a radial basis function network

to minimize the maximum pressure gradient and aerodynamic drag of

the high-speed train entering a tunnel. Yao et al. [2014] constructed a

multi-objective optimization process of a high-speed train head using the

modeling method of arbitrary shape deformation and the optimization

method of NSGA-II based on a Kriging model. They also studied a

multi-objective particle swarm algorithm with a SVM regression model

for the aerodynamic optimization of high-speed train heads [Yao et al.

2016].

To sum up, the existing optimization methods of high-speed train

heads perform unsatisfactorily in optimizing both global and local shapes.

Especially, the parametric modelling algorithms used in the existing

optimization methods cannot accurately and completely describe the

global shape and local details of high-speed train heads. In order to

address this problem, a multi-objective aerodynamic optimization design

method of high-speed train heads is developed by using the numerical

solution of 4-sided PDE surface patches.

2.5 Surface reconstruction

As an application of the proposed unified PDE-based modelling framework

in Chapter 4, a surface reconstruct method from 3D data points using

2-sided PDE surface patches is developed. The focus is on the surface

reconstruction under the constraint of the feature curves in automotive

style design. The automotive surface reconstruction methods mainly

include parametric surfaces and CAD-generated surfaces, which will be

reviewed below.

2.5.1 Parametric surfaces

Surface reconstruction from 3D data points has been investigated inten-

sively. Parametric surfaces [Piegl & Tiller 2012], such as Bézier, B-splines

and NURBS surfaces, are widely applied in CAD systems. Gálvez et al.
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[2008] proposed a particle swarm optimization method to reconstruct

a Bézier surface from a set of 3D data. With the similar scheme, they

further proposed an evolutionary-based NURBS surface reconstruction

method [Gálvez & Iglesias 2012] and a GA-based B-spline surface recon-

struction method [Gálvez et al. 2012] from clouds of 3D data points. Ma

& Kruth [1995] presented a parameterization method to randomly dis-

tribute points for performing least squares fitting of B-spline curves and

surfaces. He & Qin [2004] reconstructed a triangular B-spline surface with

the user-specified n degree from a set of scanned 3D points. Park et al.

[1999] proposed a NURBS surface fitting technique from scattered and

unorganized range data using hierarchical graph representation. These

parametric surfaces, however, are free-from and their boundary curves

cannot fully represent feature curves in the automotive styling design.

2.5.2 CAD-generated surfaces

The CAD-generated surfaces [Chang 2014], such as loft and sweep surfaces,

are popularly used in surface reconstruction. Lin et al. [1997] proposed

a surface lofting method for the reverse engineering of complex shapes

from the measurement data. Ueng et al. [1998] developed a sweep-

surface reconstruction method from 3D measured data by using nonlinear

least-squares minimization. Since the sweep surface shape depends on

the profile curve and path curve, the sweeping method is similar to

the practical claying process which is applied in automotive styling

design [Hosaka 2012]. Tsuchie [2017] proposed a sweep-based method

for reconstructing an underlying surface from scanned data of styling

design objects with less torsion on the line of curvature. With the same

scheme, the intersecting underlying surfaces with C0 continuity were

further developed by applying sweep-based method [Tsuchie 2019]. In

automotive styling design, the feature curves are used as profile curves

to reconstruct sweep or loft surfaces, which preserve feature curves and

guarantee aesthetics. These methods, however, are essentially control

point-based, which involve excessive control points, long computing time

in the reconstruction process, and low order of continuity between adjacent

surfaces.
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To sum up, existing surface reconstruction methods have several limi-

tations in automotive styling design, such as non-preservation of feature

curves, long computing time, excessive control points and poor continuity

between adjacent surfaces. To tackle this problem, the developed ana-

lytical solution of the unified framework of PDE-based modelling will

be adopted to achieve Cn continuous surface reconstruction with high

efficiency and accuracy in automotive styling design.
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Chapter 3

Numerical PDE surface

patches with engineering

applications

Numerical methods are effective in generating PDE surface patches with

complex boundary conditions [Brown et al. 1998; Du & Qin 2005a]. Com-

pared with an analytical 2-sided surface patch defined by two boundary

curves, a numerical 4-sided PDE surface patch is more powerful in describ-

ing the details of surfaces. Moreover, by using the boundary conditions

and the control parameters in PDE, the shape of a numerical 4-sided

PDE surface patch is easier to be modified. With these advantages,

the PDE-based modelling can be adopted in engineering applications

such as shape optimization of high-speed train heads [Wang et al. 2018].

The reasons why they are rarely used in engineering applications mainly

include non-industrial standards in CAD, CAM and CAE systems and

the difficulty of controlling the boundaries to modify the shape.

In this chapter, a numerical solution to a fourth-order PDE with three

control parameters will be presented. Specifically, a finite difference

method will be applied to solve 4-sided boundary conditions of a PDE

surface patch in Section 3.1. Based on the obtained solution, a new

method will be developed to achieve optimal conversion of PDE surfaces

representing high-speed train heads into NURBS surfaces in Section
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3.2 and a novel multi-objective aerodynamic optimization method of

high-speed train heads will be proposed in Section 3.3, which is the first

pipeline of using the PDE-based approach to optimize shapes in CFD

simulation.

3.1 Numerical solution of PDE

The mathematical model of PDE-based parametric modelling can take

several forms due to different orders, i.e., the second, fourth and sixth

orders [Castro et al. 2008]. Since a second-order PDE cannot guarantee

the tangent continuity between two adjacent PDE surface patches, and a

sixth-order PDE is difficult to be solved and has low calculation efficiency

[Zhang & You 2004], a fourth-order PDE is selected as the mathematical

model of surface patches of the train head which well balances performance

and efficiency. The vector-valued fourth-order PDE is defined as

(a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4
)f(u, v) = 0 (3.1)

where f(u, v) = [x(u, v), y(u, v), z(u, v)]T is a vector-valued position func-

tion which represents the generated parametric surface, a1, a2 and a3 are

three shape control parameters, and u and v are the parametric variables

of describing the parametric location of a point (x, y, z) on a PDE surface

patch which are defined by u ∈ [0, 1] and v ∈ [0, 1].

The methods of solving a PDE can be analytical or numerical. Analyti-

cal methods represent a PDE surface patch by a vector-valued continuous

function which can be calculated rapidly and precisely. However, an-

alytical methods are usually applicable to a low-order or simple PDE

and difficult to solve the PDE for the surface patches defined by four

boundaries. Compared with analytical methods, numerical methods are

more powerful in solving a high-order PDE and can deal with various

complicated surface modelling problems although numerical methods are

computationally more complicated and expensive. Therefore, numeri-

cal methods are more suitable in solving the PDE shown in Eq. (3.1).

One popular numerical method is the finite difference method due to its
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simplicity, intuitiveness, and high efficiency in solving a vector-valued

fourth-order PDE to create surface patches with four boundaries.

The finite difference method is to discretize the parametric region of a

surface into I × J regularly and uniformly distributed nodes as shown in

Fig. 3.1. The small dots, squares and triangles represent the unknown

inner nodes, the known boundary nodes and the virtual nodes beyond the

boundaries of a PDE surface patch, respectively. The virtual nodes will

be involved in the finite difference equations for the inner nodes next to

boundary curves and will be determined with the first partial derivatives

on the boundaries, which are used to guarantee the boundary tangent

continuity.

Figure 3.1: The I × J finite difference grid

In Fig. 3.1, fi,j = f(ui, vj) (i = 2, 3, . . . , I − 1, j = 2, 3, . . . , J − 1)

represents an arbitrary inner node (i, j) on the finite difference grid.

Based on the Taylor series expansion of the function f(u, v), the central
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difference approximation of
∂fi,j
∂u

and
∂fi,j
∂v

can be derived as follow

∂fi,j
∂u

=
1

2h
(fi+1,j − fi−1,j) (3.2)

∂fi,j
∂v

=
1

2h
(fi,j+1 − fi,j−1) (3.3)

where h denotes the grid interval.

The central difference approximations of the fourth partial derivatives

derived from Eqs. (3.2) and (3.3) can be expressed as:

∂4fi,j
∂u4

=
1

h4
[6fi,j − 4(fi−1,j + fi+1,j) + (fi−2,j + fi+2,j)] (3.4)

∂4fi,j
∂v4

=
1

h4
[6fi,j − 4(fi,j−1 + fi,j+1) + (fi,j−2 + fi,j+2)] (3.5)

∂4fi,j
∂u2∂v2

=
1

h4
[4fi,j − 2(fi−1,j + fi+1,j + fi,j−1 + fi,j+1)

+ (fi−1,j+1 + fi−1,j−1 + fi+1,j+1 + fi+1,j−1)]

(3.6)

After substituting Eqs. (3.4), (3.5) and (3.6) into (3.1), the following

linear algebra equation at the inner node (i, j) is obtained.

(6a1 + 4a2 + 6a3)fi,j − (4a3 + 2a2)fi,j+1 − (2a2 + 4a1)fi+1,j

−(4a3 + 2a2)fi,j−1 − (2a2 + 4a1)fi−1,j + a2fi−1,j+1 + a2fi+1,j+1

+a2fi+1,j−1 + a2fi−1,j−1 + a3fi,j+2 + a1fi+2,j + a3fi,j−2 + a1fi−2,j = 0

(3.7)

According to the central difference approximations defined by Eqs. (3.4),

(3.5) and (3.6), the finite difference equations at the inner nodes next

to the four boundaries of the grid involve the boundary nodes and the

virtual nodes. All the boundary nodes are known. The virtual nodes can

be determined from the known boundary tangents, i. e., the first partial

derivatives of the function f(u, v) with respect to the parametric variable

u or v on the four boundaries of the PDE surface patch. In Fig. 3.1,

assuming i = 2 and the tangent at the boundary node f1,j is T1,j, the

virtual node f0,j next to the boundary node f1,j can be represented by
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f2,j −T1,j. Therefore, the errors brought in by the virtual nodes depend

on directions and sizes of given tangents. After merging these boundary

conditions into the finite difference equations, Eq. (3.7) can be written in

a following matrix form

[A] {Q} = {E} (3.8)

where [A] is an I × J by I × J square and nonsingular coefficient matrix.

{Q} is a column vector of the discrete points of the PDE surface patch.

{E} is a known column vector involving boundary nodes and boundary

tangents. When i = 2, i = I − 1, j = 2 or j = J − 1, the corresponding

element in {E} consists of a boundary node and a tangent. When i = 3,

i = I − 2, j = 3 or j = J − 2, the corresponding element in {E} is

a boundary node. When i = 4, 5, ..., I − 3 or j = 4, 5, ...J − 3, the

corresponding element in {E} is 0.

The PDE surface patch can be obtained directly by matrix inversion.

{Q} = [A]−1 {E} (3.9)

3.2 PDE-based surface conversion

PDE-based surface modelling has not become an industrial standard for

the applications in CAD, CAM and CAE. In contrast, NURBS is an

industry standard for the representation, design, and data exchange of

geometric information processed by computers [Piegl & Tiller 2012]. Auto-

matically converting PDE-based 3D models into NURBS representations

will greatly promote engineering applications of PDE-based modelling.

However, for a complicated and large-scale object such as high-speed train

heads, it involves a large amount of data which causes two main problems.

First, the conversion process will cost a lot of computational time and

raise the computational cost. Second, after achieving the conversion, the

NURBS representation involves plenty of control points, which is difficult

to achieve subsequent engineering applications such as shape redesign

and aerodynamic simulation. In order to tackle the two problems, the
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conversion method should not only achieve good conversion accuracy, but

also minimize the amount of the data representing the converted NURBS

surfaces.

In this section, 4-sided PDE surface patches obtained with the above

finite difference method are used to represent a high-speed train head

model. The continuity between adjacent PDE surface patches is C1

continuity. Based on the 4-sided PDE surface patches, a new method is

developed to achieve optimal conversion of PDE surfaces representing

high-speed train heads into NURBS surfaces.

3.2.1 Overview for PDE-based surface conversion

For complicated and large-scale objects such as high-speed train heads

to be considered in this work, plenty of control points are required to

describe its shape. This will introduce many design variables and increase

the need of storage capacity. If the weights of control points are also

involved in the optimization calculations, independent design variables

will be significantly increased. Too many control points and weights

will lead to a large search space, greatly reduce computational efficiency,

increase the difficulty in finding optimal converted NURBS surfaces. In

the following applications of aerodynamic simulation-based optimization,

they will also cause heavy calculations and make the optimal shape

hard to obtain. Therefore, the aim of the optimal conversion from PDE

surface-represented train heads to NURBS surface-represented train heads

should look for the minimum design variables and weights while satisfying

the required conversion accuracy ε. Two new ideas are introduced to

achieve this aim. First, a lot of weights are approximated with a weight

deformation discussed in Subsection 3.2.4 to noticeably reduce the number

of weights. Second, the number of control points is minimized to decrease

total control points while still satisfying the required conversion accuracy

ε.

Including the weight deformation and the number and positions of

control points in the same optimization objective function will greatly

increase the computational complexity of the optimal conversion. When
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the total number of control points is known, the errors between PDE

surfaces and NURBS surfaces can be minimized with the least square

method to obtain the optimal positions of control points. Therefore, the

complicated optimal conversion problem can be converted into two simple

interlinking sub-problems: 1) obtaining the minimum number of control

points and optimal weight deformation, and 2) determining the optimal

positions of control points. The genetic algorithm (GA) is commonly used

to generate high-quality solutions to optimization and search problems.

In this section, GA is employed to determine the minimum number

of control points and the optimal weight deformation and combined

with the least squares method to obtain the optimal conversion from

PDE surface-represented train heads to NURBS surface-represented train

heads.

As shown in Fig. 3.2, the proposed method can be divided into three

steps: 1) PDE surface-based train head modelling, 2) NURBS surface

formulation, and 3) GA-based optimal conversion. In 1) PDE surface-

based train head modelling, a complicated train head (Fig. 3.2: the left

image of the top row) is first decomposed into a number of simple parts

(the second image from the left in top row), each part is described with a

PDE surface patch (the third image from the left in top row) obtained

from the finite difference solution of a vector-valued PDE (3.1), and

all the PDE surface patches are automatically and smoothly stitched

together to represent the whole train head model (the right image in top

row). In 2) NURBS surface formulation, the discrete vertices of each

PDE surface patch are extracted, the number of control points and weight

deformation obtained from the GA are input to define a NURBS surface

with unknown control points, and the least square method is introduced

to minimize the errors between the PDE surface and NURBS surface

and determine the optimal positions of control points. In 3) GA-based

optimal conversion, the maximum error between the PDE surface and the

corresponding NURBS surface obtained from the least squares method is

first calculated. If the maximum error satisfies the required conversion

accuracy ε, i. e., maximum error≤ ε, the optimal NURBS-represented

train head is obtained for further applications in CAD, CAM and CAE
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Figure 3.2: Framework of the proposed method

and the optimization calculations terminate. If the maximum error is

larger than ε, the GA will find a new number of control points and

weight deformation and replace the previous input variables with them

in the second step. The new variables are input into the least squares

minimization to determine the new positions of control points.

3.2.2 NURBS method

Non-uniform rational B-splines (NURBS) are commonly supported by

CAD, CAM, and CAE systems and have already become part of numerous

industry wide standards. A NURBS surface of degree p in the u direction

and degree q in the v direction can be expressed as [Piegl & Tiller 2012]:

S(u, v) =
n∑
i=0

m∑
j=0

Ri,j(u, v)Pi,j (0 ≤ u ≤ 1, 0 ≤ v ≤ 1) (3.10)

33



where Pi,j are (m+ 1)× (n+ 1) control points of the NURBS surface, and

Ri,j(u, v) are piecewise rational basis functions, which are defined as:

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

ī=0

∑m
j̄=0 Nī,p(u)Nj̄,q(v)wī,j̄

(3.11)

In the above equation, wi,j and wī,j̄ are the weights, andNi,p(u), Nj,q(v),

Nī,p(u) and Nj̄,q(v) are the non-rational B-spline functions defined on the

knot vector

U = {0, · · · , 0︸ ︷︷ ︸
p+1

, up+1, · · · , ur−p−1, 1, · · · , 1︸ ︷︷ ︸
p+1

} (3.12)

V = {0, · · · , 0︸ ︷︷ ︸
q+1

, vq+1, · · · , vs−q−1, 1, · · · , 1︸ ︷︷ ︸
q+1

} (3.13)

where r = n+ p+ 1 and s = m+ q + 1.

Taking the parametric variables u and v to be the same values as those

at the finite difference nodes, i. e., u = uk and v = vk with k = (i−1)J+j

where i and j are shown in Fig. 3.1, Rkl (k = 1, 2, ..., K; l = 1, 2, ..., L)

is used to represent Ri,j(uk, vk) with K = I × J to be the total number

of the finite difference nodes and L to be the total number of control

points, i. e., L = (m+ 1)× (n+ 1). After replacing the control point Pi,j

(i = 0, 1, 2, ..., n; j = 0, 1, 2, ...,m) in Eq. (3.10) with the symbol Pl, Eq.

(3.10) can be written in a matrix form as follows:
S1

S2

...

SK

 =


R11 R12 · · · R1L

R21 R22 · · · R2L

...
...

. . .
...

RK1 RK2 · · · RKL




P1

P2

...

PL

 (3.14)

or

{S} = [R]{P} (3.15)
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3.2.3 Least squares fitting

The least squares method is a standard approach in regression analysis

which is used to find the best fit to a dataset. It is widely applied in reverse

engineering. With the least squares method, the sum of the squared

errors between a PDE surface patch and its corresponding NURBS surface

patch at the finite difference nodes can be written as

f =
K∑
k=1

|Qk − Sk|2 (3.16)

where Qk and Sk are kth element of the column vector {Q} and {S}
which represents the kth discrete vertex of a PDE surface patch and a

NURBS surface patch, respectively.

Introducing Eq. (3.9) and Eq. (3.15) into the above equation, Eq.

(3.16) is transformed into the following form:

f =
K∑
k=1

∣∣[A]−1
k {E} − [R]k{P}

∣∣2 (3.17)

where [A]−1
k is the kth row of the matrix [A]−1, {E} is the column vector

given in Eq. (3.9), [R]k is the kth row of the matrix [R], and {P} is the

column vector given in Eq. (3.15).

According to the least squares method, ∂f
∂Pl

= 0 (l = 1, 2, ..., L), which

converts Eq. (3.17) into the following normal equation.

[R]T [A]−1{E} = [R]T [R]{P} (3.18)

Solving the above equation, the positions of all the unknown control

points of the NURBS surface patch are obtained.

3.2.4 Genetic algorithm

The accuracy of the converted NURBS surface depends on the number of

control points: more control points will lead to more accurate calculations

which makes the converted NURBS surface closer to the PDE surface.
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Therefore, it is required to find enough control points, which make the

converted NURBS surface satisfy the required conversion accuracy. Since

increasing control points will introduce more design variables, cause more

storage capacity, and raise the computational cost in both conversion

process and following applications, it is important to find the least control

points which not only minimize the number of design variables but also

satisfy the required conversion accuracy ε.

In addition to control points, weights of a NURBS surface also affect

the conversion accuracy. As shown in Eq. (3.10) and Eq. (3.11), one

control point has one weight. If all the weights are taken to be design

variables, the optimization calculation cost will greatly increase and the

optimal conversion will be more difficult to obtain. To tackle this problem,

a curve deformation algorithm is proposed to change all the weights into

a single weight deformation.

GA is very efficient in random search to solve unclear and complex

problems. This thesis uses it to find the minimum number of control

points and the optimal weight deformation and combines it with the least

squares method to determine the most suitable positions of control points

for the optimally converted NURBS surface. The basic structure of the

GA is shown in Fig. 3.3.

Design variables

As discussed above, the number of control points and weight deformation

are chosen to be design variables. Inspired by the algorithm of deforming

a curve discussed in [Yu et al. 2013], a new weight deformation algorithm

is proposed to deform a surface. It transforms multiple weight variables

into a single weight deformation, makes the deformation bigger and bigger

when moving from the boundaries to the centre of a NURBS surface,

and has no effects on the four boundaries of a NURBS surface patch to

ensure the continuity between adjacent NURBS surface patches. The

deformation algorithm is given by

wi,j = w̄i,j(1 + dw
(i− 1)(n− i)

(i− 1)2 + (n− i)2
× (j − 1)(m− j)

(j − 1)2 + (m− j)2
) (3.19)
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Compute initial population
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is fulfilled?
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NO
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Eventually mutate some individuals

Compute new generation

Figure 3.3: The basic structure of the genetic algorithm
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0=dw

3-=dw

15=dw

Figure 3.4: Effects of the weight deformation on a NURBS surface

where w̄i,j and wi,j are original and new weights, respectively, n + 1

and m+ 1 are the number of weights in the u direction and v direction

respectively, and dw is the weight deformation.

Figure 3.4 shows an example how the weight deformation changes the

shape of a NURBS surface. When dw is 0, the weights of all control

points are equal to 1 (wi,j = 1). It means the NURBS surface becomes a

B-spline surface. Therefore, the geometric meaning of weight deformation

is to adjust the convexity of a B-spline surface.

The least number of control points of a NURBS surface is related to

the degree p in the u direction and degree q in the v direction. For a

NURBS surface of the degree p with n+1 control points in the u direction,

its knot vector has n+ p+ 2 knots. Since the knot vector is non-periodic

and the first and last knots have multiplicity p+ 1, the number of control

points must satisfy n + 1 ≥ p + 1. Similarly, in the v direction, the

number of control points must satisfy m+ 1 ≥ q+ 1. Thus, for a NURBS

surface, the least number of control points is (p+ 1)× (q+ 1). In addition,

the maximum number of control points is equal to K, which is the total

number of discrete vertices of NURBS surface. Therefore, the input range

of the number of control points is between (p+ 1)× (q + 1) and K.

There is no strict limitation for the range of weight deformation,

except that it needs to include the value of zero. A wider range of weight

deformation produces more precise results but causes more computing

time. On the other side, when the value of weight deformation is very

large or small, the shape of surface is nearly unchanged. Therefore, after

a dozen experiments, a suitable range of weight deformation is found to
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be [−4, 30].

After the ranges of the number of control points and weight deformation

have been specified, they are represented by a set of strings coded in

binary.

Objective function

Since Eq. (3.9) determines a PDE surface patch represented by the column

vector {Q} and Eq. (3.15) describes the corresponding NURBS surface

patch represented by the column vector {S}, the difference between

the two surface patches is obtained by calculating the errors of the two

surface patches at the finite difference nodes i (i = 1, 2, 3, · · · , K) which

can be defined by the Euclidean distances d(Qi, Si) where Qi is the ith

element of the column vector {Q} and Si is the ith element of the column

vector {S}. The optimization objective function is to find the minimum

number of control points and the optimal weight deformation, which

minimizes the maximum error between the PDE surface patch and its

corresponding NURBS surface patch. Once the maximum error satisfies

the required conversion accuracy ε, the GA terminates and the optimal

NURBS surface patch is obtained. Therefore, the optimization objective

function can be formulated as

arg min
cp,dw

|εmax(cp, dw)− ε|

subject to εmax(cp, dw) ≤ ε

(3.20)

where

εmax(cp, dw) = max
1≤i≤K

{ 1

L s
d(Qi, Si)} (3.21)

where cp and dw are design variables that are the number of control points

and the weight deformation, respectively, and Ls is the grid interval of

the PDE surface. The reason why choosing the shortest distance is to

measure the distance between the PDE surface patch and the NURBS

surface patch under the same order of magnitude of the PDE surface.
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Genetic operators

The basic structure of the GA is shown in Fig. 3.3. The transition

from one generation to the next one consists of four basic components

[Bodenhofer 2003]:

1) Selection: The selection process selects individuals for reproduction

according to their fitness. In this work, the individuals are the

binary strings of the number of control points and the weight

deformation, and the fitness is the objective function value.

2) Crossover: Crossover is a probabilistic process that merges the

genetic information of two selected individuals and produces next

generation.

3) Mutation: Mutation is a random deformation of the strings with

a certain probability. It mutates a bit position (genes) of binary

representation of chromosomes by simply flipping its value at ran-

dom. The positive effect is preservation of genetic diversity and

avoidance of local maximum.

4) Sampling: The sampling process computes a new generation from

the previous one and its offspring.

3.2.5 Applications

As a demonstration of the proposed method, an example of convert-

ing the PDE surface patches of a simplified high-speed train head into

optimal NURBS surface patches is presented here. To obtain the NURBS-

represented train head, the first step is to represent a high-speed train

head with a number of PDE-based surface patches. The PDE surface

patches are reconstructed according to the scanned data of an actual

high-speed train head by ignoring bogies and other auxiliary structures.

The reconstruction from the scanned data is not the research objective

of this chapter. Hence the reconstruction process will not be discussed

here. Since the high-speed train head is a symmetrical structure, there

is no need to represent the shape of whole train head using PDE-based

surface patches. Thus, the half of train head is created by PDE-based
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The PDE surface-represented train head PDE surface patch
NURBS surface patch

with control points

Conversion

The NURBS surface-represented train head

Figure 3.5: Process of conversion

surface patches, and then the whole shape of the PDE-based train head

is obtained by symmetry. The patches of the half of the train head are

then converted to optimal NURBS surface patches, which are assembled

to represent a complete NURBS surface-represented train head. The

conversion process is shown in Fig. 3.5.

For illustrative purposes, the half of a high-speed train head is divided

into 22 surface patches according to shape changes. The whole train

head includes 44 surface patches, which are shown in Fig. 3.5. The 22

surface patches are converted to optimal NURBS surface patches by the

proposed method. The flowchart of the optimal conversion is shown in

Fig. 3.6.

The flowchart includes three steps. First, the coordinate values and u

and v values of the 22 PDE surface patches of the train head at the finite

difference nodes together with a required conversion accuracy and GA

variables (the number of control points and weight deformation) are input

to the algorithm of least squares surface fitting to determine the optimal

positions of the converted NURBS surface patches. Second, the GA is

applied to minimize the objective function and obtain the new number

of control points and weight deformation. Third, whether the maximum

error is smaller than the required conversion accuracy is checked. If yes,

the optimal NURBS surface patches are obtained and the GA terminates.

Otherwise, the new number of control points and weight deformation are

input to the algorithm of least squares surface fitting to determine new

optimal positions of control points.

In this example, the required conversion accuracy ε is taken to be 1%

(ε = 1%). Note that the value of ε is user-defined and can be any other
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Figure 3.6: Flowchart of the optimal conversion
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Table 3.1: Optimal number of control points and weight deformation
(ε = 1%)

Patch index Number of control points Weight deformation

1 121 -3.9969
2 121 0.7452
3 110 -3.9913
4 100 -3.2886
5 90 2.9158
6 72 1.7053
7 77 2.8173
8 48 0.7253
9 96 2.6475
10 99 3.8784
11 80 -3.2496
12 80 8.3377
13 48 2.8943
14 64 9.5815
15 56 0.3618
16 110 16.3041
17 70 -3.2187
18 90 30.0000
19 99 18.3193
20 120 3.2596
21 88 -3.2854
22 100 14.9994

value. It depends on user’s acceptable maximum error. The optimal

number of control points and weight deformation for the 22 NURBS

surface patches of the high-speed train head are given in Table 3.1. In

order to visualize the errors between the PDE surface patches and the

obtained optimal NURBS surface patches, the errors are represented with

different colors in Fig. 3.7. In the figure, the lighter colors mean smaller

errors whereas the darker colors mean bigger errors.

Since ε is set to 1%, the minimized maximum errors should be between

0 and 1%, i. e., 0% ≤ εmax(cp, dw) ≤ 1% . Fig. 3.7 indicates that all the

errors are in the range. Among them, the maximum errors of patches 4, 8,

11, 12, 17, and 21 reach the upper limit of the range which is 1%, and the

maximum errors of patches 13 and 20 are 0.38% and 0.32%, respectively,
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Maximum error: 1.00%

(17)
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(21)

Maximum error: 0.73%

(22)

Color bar

Figure 3.7: Visualization of the errors between the PDE surface patches
and NURBS surface patches
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Table 3.2: Computation time of each surface patch

Patch index Time (s) Patch index Time (s)

1 154 2 176
3 151 4 118
5 135 6 101
7 65 8 90
9 101 10 85
11 73 12 80
13 59 14 60
15 64 16 112
17 78 18 95
19 102 20 117
21 104 22 106

Figure 3.8: Computational complexity

which are minimal.

The computation time of each surface patch is shown in Table 3.2.

The maximum and minimum computation time are patch 1 and patch

13, respectively, and the average time is 101 seconds. In order to explore

the computational complexity of the proposed method, patch 18 is used

as an example to calculate the computation time of different numbers

of nodes, i. e., 12 × 12, 23 × 23, 34 × 34, 45 × 45 and 56 × 56, and

evaluate the relationship between the computation time and the number

of nodes, as shown in Fig. 3.8. The result indicates the computation

time is approximately linear with respect to the number of nodes.
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(a) (b) (c)

Figure 3.9: Error comparison between the original PDE surface-
represented (a) and NURBS surface-represented (b) high-speed train head
where (c) uses different colors to visualize the errors between them

For the whole train head, the errors between the PDE representation

and NURBS representation are visualised in Fig. 3.9. In this figure,

(a) is the original PDE surface-represented train head, (b) is optimally

converted NURBS surface-represented train head, and (c) uses different

colors to visualize the errors between the original PDE surface-represented

train head and the optimally converted NURBS surface-represented train

head. The images given in the figure clearly show the errors for all the

surface patches are not more than 1%.

The above discussions indicate that the developed method is very

effective in obtaining the optimal conversion from the PDE surface-

represented train head to the NURBS surface-represented train head.

In order to investigate the effects of the required conversion accuracy ε

and weight deformation, ε is set to 0%, 1%, 2%, 5% and 10%, respectively,

and two cases are considered: one with fixed weights wi,j = 1 [Brujic

et al. 2002; Xiao & Li 2005], and another with the weight deformation.

The obtained results are depicted in Fig. 3.10 where the blue curve is

from the optimal conversion with the fixed weights, and the pink curve is

from the optimal conversion with the weight deformation.

Figure 3.10 shows that the total number of control points for the 44

NURBS patches of the half of the train head linearly decreases with

the increase of the required conversion accuracy for both cases. The

linear decrease when the required conversion accuracy is less than 1% is

larger than the linear decrease when the required conversion accuracy

is more than 1%. When the required conversion accuracy ε is 0%, 1%,

2%, 5% and 10%, the minimum control points for the optimal conversion
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Figure 3.10: Effects of the required conversion accuracy and weight
deformation

with fixed weights are 2956, 2060, 1635, 1239 and 903, respectively,

and the minimum control points for the optimal conversion with weight

deformation are 2956, 1939, 1559, 1172 and 848, respectively, indicating

the application of the weight deformation can decrease the number of

control points to some extent. Compared to the minimum control points

obtained by the optimal conversion with the fixed weights, the optimal

conversion with the optimal weight deformation reduces the minimum

control points by 0%, 5.87%, 4.65%, 5.41% and 6.09%, respectively. When

ε = 0%, the errors at the finite difference nodes between the PDE surface

patches and the corresponding NURBS surface patches are zero, and Eq.

(3.17) becomes [A]−1
k {E} − [R]k{P} = 0 (k = 1, 2, 3, · · · , K). That is,

the K equations are solved to determine K control points. Therefore,

the number of control points is always K whether the fixed weights or

the weight deformation are considered. When the required conversion

accuracy increases from 0% to 1%, 2%, 5% and 10%, the total control

points are reduced by 34.40%, 47.26%, 60.35% and 71.31% for the optimal

conversion with the optimal weight deformation, which indicates setting

the required conversion accuracy to a high value will greatly decrease

the number of control points. Therefore, proper selection of the required

conversion accuracy is very important for reducing the number of control

points.
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3.2.6 Summary

With the numerical solution of the 4-sided PDE surface patch, a novel

method of converting a PDE surface-represented high-speed train head

into optimal NURBS surfaces is developed, and a weight deformation

method is proposed to transform many weights into a single weight

deformation for reduction of design variables. The least squares fitting

method and GA are combined to optimally convert PDE surface patches to

NURBS surface patches, which satisfies the required conversion accuracy

with minimum control points. The proposed method is demonstrated by

presenting an example of converting PDE surfaces of a high-speed train

head into NURBS surfaces. The example indicates that the developed

method is able to obtain the optimal NURBS surface-represented high-

speed train head with high accuracy and minimum control points.

The influences of the required conversion accuracy and weight deforma-

tion on the optimal conversion are also investigated. Since a high value

of the required conversion accuracy can greatly reduce control points, it

is very important to properly specify the required conversion accuracy

to minimize control points. By comparing the optimal conversion with

fixed weights and that with the optimal weight deformation, it can be

concluded that introduction of the weight deformation can further lower

the number of control points.

3.3 PDE-based multi-objective aerodynamic

optimization

With the increasing running speed, the aerodynamic issues of high-speed

trains are being raised and impact the running stability and energy

efficiency. The optimization design of the head shape is significantly

important in improving the aerodynamic performance of high-speed

trains. Existing aerodynamic optimization methods are limited by the

parametric surface modelling methods of train heads which are unable

to accurately and completely parameterize both global shapes and local

details [Li et al. 2016; Zhang et al. 2018; Muñoz-Paniagua et al. 2014;
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Yao et al. 2016, 2014]. Due to this reason, they cannot optimize both

global and local shapes of train heads.

In this work, the developed numerical 4-sided PDE surface patches

are used to develop a novel multi-objective aerodynamic optimization

method of high-speed train heads. With this method, the half of a train

head is parameterized with 17 PDE surface patches, which describe global

shapes and local details and keep the surface smooth. The aerodynamic

drag and lift are adopted as optimization objectives, and the optimization

design process is divided into two stages: global optimization and local

optimization. In the first stage, the non-dominated sorting genetic algo-

rithm (NSGA-II) is adopted to obtain the framework of the train head

with an optimized global shape. In the second stage, Latin hypercube

sampling (LHS) is applied in the local shape optimization of the PDE

surface patches determined by the optimized framework to improve local

details.

3.3.1 Overview for aerodynamic optimization

As shown in Fig. 3.11., the design flow of the proposed method can be

basically divided into three parts: 1) PDE-based parametric modeling, 2)

global optimization, and 3) local optimization.

Figure 3.11: Overall design flow.

In the first part, i. e., PDE-based parametric modeling, the half of
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a high-speed train head is first decomposed into 17 simple parts and

the boundaries of each part are represented by 10 contour lines. After

initializing the design variables, which control the shape of contour lines,

the framework of the train head is obtained as shown in Fig. 3.12(a).

Then, each part is described by a PDE surface patch generated from the

finite difference solution of a vector-valued fourth-order PDE given in

Eq. (3.1). Since any two adjacent PDE surface patches share the same

boundary conditions, all the PDE surface patches are automatically and

smoothly stitched together to represent the PDE surface model of the

high-speed train head.

The second part is the global optimization process, which contains the

first part. By inputting the PDE surface model of the train head into

the CFD simulation, the aerodynamic drag coefficient of the whole train

(Cd) and lift coefficient of the train tail (Cl) are obtained, which are two

optimization objectives in NSGA-II. The objective function of NSGA-II is

to minimize the Cd and |Cl|. There are 10 design variables which control

the shapes of contour lines of the train head. The criterion of the global

optimization convergence is that the mean error of the non-dominated

front F1 between two successive generations is less than or equal to a

threshold value ε. If the global optimization does not converge, the values

of the design variables will be updated and inputted into the first part

to create a new framework of the train head. Otherwise, the globally

optimized solution, i. e., the optimized framework of the train head, is

obtained.

Based on the optimized framework of the train head from the second

part, the third part is to optimize local shapes of all PDE surface patches

in the CFD simulation. In the local optimization process, only one PDE

surface patch is selected and optimized each time. Therefore, only three

shape control parameters of the PDE surface patch are taken to be the

design variables and set to some initial values. By using the LHS method,

125 sample sets are created to generate various shapes of the PDE surface

patch. Then, the corresponding train heads with these shapes of the PDE

surface patch are inputted into the CFD simulation. If the aerodynamic

performance of Cd and Cl are improved, the PDE surface patch will be
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replaced by the new shape. Otherwise, the original shape of the PDE

surface patch will be kept.

Since there are 17 PDE surface patches of the train head, the above

calculations are repeated 17 times until all the PDE surface patches have

been optimized, and then the locally optimized solution, i. e., the final

optimized shape of the train head, is obtained.

The global and local optimizations can be conducted simultaneously.

However, the design variables of the simultaneous optimization will include

10 parameters of the contour lines and 3 control parameters of 17 PDE

surface patches. The total number of design variables is 61, which cannot

be simultaneously computed due to the limited computational resources,

and it is also more difficult to find optimal results. Due to this reason, the

global and local optimizations are conducted respectively in this work.

3.3.2 Parametric modelling method

By using the numerical PDE-based surface modelling method in Section

3.1, an original simplified high-speed train head model is built according

to some practical constraints, such as the appropriate slenderness ratio,

the appropriate space in driving cab, the good driver’s perspective, etc.

According to the shape changes, half of the high-speed train head is

divided into 17 parts as shown in Fig. 3.12(a). Each part is represented by

one PDE surface patch as shown in Fig. 3.12(b). All PDE surface patches

are generated by Eq. (3.9) and controlled by boundary curves, boundary

tangents and three shape control parameters while the numerical solution

(3.9) of Eq. (3.1) gives the approximated values of the grid nodes for

every PDE surface patch.

Global deformation controlled by ten design parameters

First, the whole shape of the high-speed train head is optimized by

proposing a global deformation method. In order to achieve high efficiency

of shape optimization of the high-speed train head, ten contour lines,

i. e., Ã1A6, B̃1B6, C̃1C6, D̃1D6, Ã2D2, Ã3D3, Ã4D4, Ã5D5, C̃1D1 and

Ã1E1C1, are chosen to define half of the high speed train head as shown
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in Fig. 3.12(a) and reduce the design variables. Each of the contour lines

consists of some line segments and each line segment is between two

adjacent joint vertices. For example, the contour line Ã4D4 consists of

three line segments Ã4B4, B̃4C4 and C̃4D4. Since the two contour lines

Ã1C1 and Ã6D6 decide the key position information of the train nose

cone and coach, respectively, their shapes are fixed to ensure a smooth

transition between different train parts.

Figure 3.12: The half of the high-speed train head model. (a) Contour
lines. (b) PDE surface patches

In order to further reduce the number of the total design variables

in the optimization process, a design parameter is used to describe the

shape of one contour line through the following equation:

Lin = L̄in

[
1 +

δi(n− 1)(Ni − n)

(n− 1)2 + (Ni − n)2

]
(n = 1, 2, ..., Ni; i = 1, 2, ..., 10)

(3.22)

where the subscript i indicates the ith contour line, Ni indicates the

number of the total points on the ith contour line, L̄in and Lin are the

vector-valued positions of the nth point on the ith contour line before and

after the deformation, and δi is the design parameter, which controls the

shape of the ith contour line.

By applying Eq. (3.22) to deform a contour line, the deformation

becomes bigger and bigger when moving from two end vertices to the

center of the contour line, such as the red contour line Ã1A6 shown in

Fig. 3.13(a). Since each of the contour lines of the train head model is

connected to some other line segments, the deformation of each of the

contour lines will impact the shapes of these line segments. For example,

when Ã1A6 in Fig. 3.13(a) is deformed, the line segments Ã2B2, Ã3B3,
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Ã4B4 and Ã5B5, which are connected to Ã1A6, are deformed accordingly.

The following deformation algorithm is used to describe the deformation

of each connected line segment

Lcjm = L̄cjm + ∆Ljcos(
π(m− 1)

2(Mj − 1)
) (m = 1, 2, ...,Mj) (3.23)

where the subscript j indicates any one line segment connected to a

deformed contour line, m and Mj represent the mth point and the number

of the total points on the jth line segment, respectively, m = 1 is the joint

vertex where the jth line segment is connected to a deformed contour

line, m = Mj is another joint vertex on the jth line segment, L̄cjm and

Lcjm are the vector-valued positions of the mth point on the jth line

segment before and after the deformation, and ∆Lj = Lin − L̄in is the

vector-valued deformation at the joint vertex between the deformed jth

contour line and the connected jth line segment.

Here, the contour lines Ã1A6 and Ã1E1C1 are taken to be an example

to show the effect of the contour line deformation on the shape of the high-

speed train head depicted in Fig. 3.13. In Fig. 3.13(a), the contour lines

in black and red present the original and deformed shapes, respectively.

In Fig. 3.13(b), the blue meshes represent the PDE surface model of

the original half train head and the transparent surface represents the

deformed shape after adjusting Ã1A6 and Ã1E1C1 by using Eqs. (3.22)

and (3.23).

Figure 3.13: The effect of the contour line deformation on the shape of

the half train head. (a) The deformations of the contour lines Ã1A6 and

Ã1E1C1 and their connected contour lines; (b) The PDE surface models
before and after adjusting the two contour lines.
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Table 3.3 shows ten design parameters, the corresponding contour

lines and deformation directions. By adjusting the values of ten design

parameters, the purpose of controlling the global deformation of the whole

high-speed train head model with fewer design parameters is achieved.

Table 3.3: The design parameters and deformation directions of ten
contour lines.

Design parameter Contour line Deformation direction

δ1 Ã1A6 Y axis

δ2 B̃1B6 Y axis

δ3 C̃1C6 Z axis

δ4 D̃1D6 Z axis

δ5 Ã2D2 Y axis

δ6 Ã3D3 Y axis

δ7 Ã4D4 Y axis

δ8 Ã5D5 Y axis

δ9 Ã1E1C1 X axis

δ10 C̃1D1 Y axis

The process of the global deformation consists of five steps. First, ten

design parameters δ1, δ2, . . . , δ10 are generated randomly within their

design spaces. Second, one contour line is randomly selected and its

deformation is determined by introducing the design parameter of the

selected contour line into Eq. (3.22). Third, the deformations of all the

line segments connected to the deformed contour line are determined

by Eq. (3.23). Fourth, the shapes of all contour lines are updated with

the deformations obtained in the second and third steps. Fifth, another

contour line is selected and the second, third and fourth steps are repeated

until all the ten contour lines are deformed.

Using the ten design parameters to control the global deformation of

the high-speed train head greatly improves the efficiency in the first stage

of the multi-objective optimization process of the high-speed train head.

After optimizing the two optimization objectives, i. e., aerodynamic drag

and aerodynamic lift, the optimized values of the ten design parameters

are found and the globally optimized framework of the high-speed train
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head is obtained.

Local deformation controlled by three shape control parameters

After obtaining the optimized framework of the high-speed train head, its

surface model can be generated using Eq. (3.9) by filling 17 PDE surface

patches into the framework as shown in Fig. 3.12(b). For acquiring a

better hydro-mechanical property, the shape of the high-speed train head

will be further adjusted by deforming the local shapes of PDE surface

patches in the second stage. As explained previously, the shape of each

PDE surface patch is controlled by the three shape control parameters in

PDE (3.1), i. e., a1, a2 and a3. With different values of the three shape

control parameters, different surface shapes are obtained. For example,

setting the three shape control parameters a1, a2 and a3 for the PDE

surface patch A3A4B4B3 to two groups of different values: a1 = −2.49,

a2 = −2.49, a3 = −1.68 and a1 = −0.13, a2 = −0.13, a3 = −1.68 gives

different surface shapes shown in Fig. 3.14.

Figure 3.14: The influence of the three shape control parameters on the
shape deformation of the PDE surface patch A3A4B4B3. (a) The PDE
surface patch obtained from a1 = −2.49, a2 = −2.49, a3 = −1.68; (b) The
PDE surface patch obtained from a1 = −0.13, a2 = −0.13, a3 = −1.68;
(c) Shape comparison between (a) and (b).

Using the three shape control parameters in PDE (3.1) to control

the deformation of all PDE surface patches, the local shape of the high-

speed train head can be further adjusted, which improves the surface

quality and optimization results in the second stage. After the local shape

optimization, the ultimate optimized shape of the high-speed train head

is obtained.
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3.3.3 Optimization algorithm

NSGA-II

In the first stage of the multi-objective optimization design process,

NSGA-II is applied to obtain the optimized framework of the high-speed

train head. NSGA-II is an evolutionary multi-objective optimization

algorithm and it is proposed by [Deb et al. 2002]. This algorithm is

suitable for solving complex multi-objective optimization problems and

has fast and accurate search performance. Fast non-dominated sorting

approach with elite strategy is used in NSGA-II, which greatly improves

the sorting speed. Moreover, the use of the elite strategy ensures that

the good solution will not be discarded. The implementation process of

NSGA-II is shown in Fig. 3.15.

Figure 3.15: The implementation process of NSGA-II.
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The NSGA-II algorithm includes five steps. First, the initial population

Pt with a size N is randomly generated and non-dominated sorting is

performed. Second, the selection, crossover, and mutation operations are

applied on population Pt to generate an offspring population Qt with the

same size N . Third, the two populations Pt and Qt are combined to form

a new population Rt with a size 2N . Then, the combined population

Rt is sorted based on the non-dominated sorting approach to get non-

dominated front Fi (i = 1, 2, 3, . . . ). Meanwhile, the crowding distance

of each individual in Fi is calculated. Fourth, according to the order of

i from small to large, Fi is added into the next generation population

P̄t. When the addition of a certain Fi causes the size of P̄t to exceed the

population size N , individuals in the Fi will be added into P̄t according to

the crowding distance in descending order instead of adding the whole Fi

into P̄t. Fifth, if the termination condition, i. e, the number of iterations,

reaches its maximum, the procedure ends. Otherwise, the P̄t is set as the

initial population and the first step is restarted.

Latin hypercube sampling

In the second stage of the multi-objective aerodynamic optimization

process, the local optimization is obtained by adjusting the three shape

control parameters in PDE (3.1) to improve the local shapes of PDE

surface patches of the high-speed train head. In order to obtain the

applicable values of the three shape control parameters, LHS method is

applied to initialize them in the defined design space. LHS is a stratified

sampling technology to approximate the random sampling from multiple

parameter distributions [McKay et al. 2000], and it is the generalization

of Latin square to multi-dimensions and each axis-aligned hyperplane

contains only one sample, which ensures all portions of the sample space

are sampled and improves the sampling accuracy.

The three shape control parameters in PDE (3.1) are taken as three

different input variables in the LHS process. In order to avoid an overlarge

deformation of the PDE surface patch, the design space of each variable

is defined as [−3, 0.1] after a dozen experiments. The range of each

variable is divided into 5 intervals with equal marginal probability, and
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a sample is randomly selected from each interval. Since each variable

generates 5 samples, totally 125 combinations of the three variables are

obtained. Each combination including a sample set of a1, a2 and a3 can

construct a different shape of the PDE surface patch, which results in a

different high-speed train head. Therefore, 125 high-speed train models

are automatically generated and applied to the CFD simulation in the

local optimization process. The LHS result of the three shape control

parameters is shown in Fig. 3.16.

Figure 3.16: LHS for three shape control parameters a1, a2 and a3.

3.3.4 CFD simulation method

In this work, the CFD simulation is conducted by using two software

products: ICEM and FLUENT. ICEM is used to divide the whole high-

speed train and the computational domain into aerodynamic meshes as

shown in Fig. 3.18, and FLUENT is applied to carry out the subsequent

fluid dynamics analysis for the high-speed train. To achieve automation

of the optimization design, the process of the mesh generation and the

aerodynamic calculation of the high-speed train are executed automat-

ically by invoking the script files of ICEM and FLUENT respectively.

These script files can be performed by batch commands.
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The model and the computational domain

In order to evaluate the practical aerodynamic performance of the high-

speed train head, a whole train model is constructed by adding a middle

coach and a tail (same as the head) to the train head. Since the real

high-speed train has a complex shape, which may greatly increase the

time consumption of the parametric modeling, mesh generation and CFD

simulation in the optimization process, only the relationship between

the shape of the train head and the aerodynamic drag and lift forces is

investigated, and the constructed high-speed train model is simplified by

ignoring bogies and other auxiliary structures, as shown in Fig. 3.17(a).

In this work, the generated high-speed train model is on the same scale

of a real high-speed train, which runs at the speed of 300km/h in the

open air without a crosswind.

First, a computational domain is constructed to simulate the flow

field around the high-speed train. The train length is indicated with the

symbol L (L = 78 m) and taken to be a characteristic length. The height

and width of the train are 0.04435L and 0.04470L, respectively. Then,

the size of the computational domain is determined according to the

characteristic length L. As shown in Fig. 3.17(b), the distance between

the entrance of the computational domain and the nose cone of the train

head is 1L, and the distance between the nose cone of the train tail and

the exit of the computational domain is 1.5L. The distance from the

ground to the top boundary of the computational domain is 0.5L, and

the distance from the train center to the boundary on both sides of the

computational domain is 0.5L. The distance between the train wheel and

the ground is 0.00235L, which represents the height of rail tracks.

CFD simulation

The software FLUENT is adopted to carry out the CFD simulation after

obtaining the mesh file generated from the ICEM, and calculate the

coefficients of aerodynamic drag and lift of the high-speed train model.

Since the wind tunnel or real vehicle experiments have not yet been

conducted by this research, there is no experimental data available. In
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Figure 3.17: The simplified model and the computational domain of the
high-speed train. (a) The simplified model of the whole train. (b) The
computational domain.

order to ensure that the simulation results are reliable, the strategy of

the simulation setup makes reference to previous similar work [Li et al.

2016; Zhang et al. 2018; Morden et al. 2015; Yao et al. 2014; Cheli et al.

2010], which has indicated that the CFD computation is able to predict

the flow correctly.

Governing equations of fluid flows The Navier-Stokes (N-S) equa-

tions are the governing equations of fluid flows and have different forms

for incompressible and compressible flows [Cebeci et al. 2005]. In this

work, the flow around the high-speed train is considered to be an incom-

pressible flow in the CFD simulation based on the following reasons. 1)

The speed of the high-speed train is 300 km/h and the resultant Mach

number is 0.245. 2) When the high-speed train is in the open air without

passing other trains or going through a tunnel, the impact of the air

density on the flow can be ignored. 3) The numerical simulation using

an incompressible flow solver is accurate compared with experimental

data [Cheli et al. 2010; Morden et al. 2015]. 4) The incompressible flow

solver is commonly used in the studies of the aerodynamic optimization

of high-speed train heads [Sun et al. 2010; Li et al. 2016; Zhang et al.

2018]. The incompressible N-S equations take the following tensor forms:

∂ui
∂xi

= 0 (3.24)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj
(v
∂ui
∂xj

) (3.25)
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where ui is the velocity components in the i direction, ρ is the density, p

is the pressure, and v is the fluid kinematic viscosity.

Approximate approaches for N-S equations The high-speed train

has a large Reynolds number so that the flow of the high-speed train

is highly turbulent [Wang et al. 2017]. Since the high turbulent flow

has fluctuations of pressure, temperature and velocity over a wide range

of frequencies, solving the incompressible N-S equations is a formidable

challenge [Cebeci et al. 2005]. The commonly used approximate com-

putational approaches include direct numerical simulation (DNS), large

eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS)

equations. Due to three reasons, the RANS approach is adopted in

this work. These three reasons are: (1) Compared with DNS and LES,

RANS has lower computational cost. (2) RANS is good at accurately

predicting the pressure distribution and the frictional resistance [Bensow

et al. 2006]. (3) The research here focuses on studying the drag and

lift of the high-speed train, not the flow details. The RANS equations

apply the Reynolds decomposition on the instantaneous incompressible

N-S equations (3.24) and (3.25), which splits the flow into its mean and

fluctuating components [Morden et al. 2015]. The incompressible RANS

equations are defined as:
∂ūi
∂xi

= 0 (3.26)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj
(v
∂ūi
∂xj

) +
1

ρ

∂τij
∂xi

(3.27)

where τij = uiuj is the Reynolds stress tensor which cannot be formally

expressed in terms of mean flow variables and thus a turbulent model is

used to close the equations.

Turbulent model The frequently used turbulent models include k− ε,
k − ω, and shear stress transport (SST) k − ω models. The SST k − ω
model is selected in this research due to the following reasons. (1) The

SST k−ω model blends the advantages of classical k−ω and k−ε models,

and can better model flows on the smooth surfaces of a high-speed train

[Wang et al. 2017]. (2) The SST k − ω model is recommended as the
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optimal RANS model based on experimental verifications [Morden et al.

2015]. (3) The SST k − ω model is commonly selected as the turbulence

model in the studies of aerodynamic optimization of high-speed train

heads [Yao et al. 2014, 2016; Zhang et al. 2018]

Wall function Since the gradients of velocity near the wall are steep,

a large number of thin meshes should be used to accurately capture the

gradients. However, these thin meshes will result in poor mesh quality

and high computational cost. In order to solve this problem, a single

large mesh instead of many thin meshes plus a nonlinear function called

the wall function is used to simulate the gradient variation. In this work,

the standard wall function is adopted because it works reasonably well

for a broad range of wall-bounded flows [ANSYS 2009] and has been most

widely used in the CFD simulation of high-speed train heads [Yao et al.

2014; Muñoz-Paniagua et al. 2014; Yao et al. 2015; Li et al. 2016; Zhang

et al. 2018]. The standard wall function is defined as [ANSYS 2009]:

U∗ =

y∗, y∗ < 11.225

1
κ

ln(Ey∗), y∗ > 11.225
(3.28)

where U∗ is the dimensionless velocity, y∗ is the dimensionless wall

distance, κ = 0.4187 is the von Kármán constant, and E = 9.793 is the

empirical constant.

Other CFD setup strategies The pressure-based segregated solver

is used, and the SIMPLE scheme is introduced to couple the pressure and

velocity. In the spatial discretization scheme,the least squares cell based

gradient with the second order interpolation such as the second order

pressure and the second order upwind momentum is applied. As shown in

Fig. 3.17(b), the left and right sides of the computational domain are set

as the velocity inlet and pressure outlet boundaries, respectively, and the

two sides and the top are set as the symmetric boundary. The high-speed

train surface is set as the non-slip wall boundary conditions, and the

ground is set as the slip wall boundary conditions to simulate the ground

effect and the slip velocity is equal to the speed of the train. In addition,
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the far-field pressure is set to 1 atm, the temperature is set to 288 k, and

the reference area is taken to be the maximum cross-sectional area of the

train, which is 12.0638 m2.

In previous aerodynamic research work of high-speed trains, Cheli et al.

[2010] and Morden et al. [2015] have conducted wind tunnel tests to verify

their CFD simulation results. For example, Cheli et al. [2010] studied the

static aerodynamic coefficients of a high-speed train with different wind

angles, and showed the lateral and vertical force coefficients from the

simulation and experiment are very close when the wind angle is below 20◦.

In the work of Morden et al. [2015], the Cd and Cl from simulation and

experiment results are 0.14 against 0.13 and 0.17 against 0.23, respectively,

which show a good agreement. The CFD setup strategies of their verified

simulation models give us a solid reference. Therefore, the CFD setup

strategies adopted in this thesis are similar to their work as shown in

Table 3.4, and they ensure that the obtained results are as reliable as

possible, though there is no experiment data support.

3.3.5 Mesh generation

When conducting a specific division of spatial meshes in ICEM, the quality

and quantity of meshes have a significant influence on the computational

efficiency, astringency and precision of the CFD simulation results.

Hexahedral meshes are used to divide the whole computational domain

and prism meshes are distributed in the area around the body of the

high-speed train. Since the train head bears most of the aerodynamic

drag in simulation process, the mesh division around the train head is

refined for improving the computational accuracy. In addition, in order

to reduce computational cost, the mesh size of the middle coach is slightly

larger than that of the train head and tail. The area around the body

of the whole train utilizes five layers of fine prism meshes to accurately

simulate the flow field around the train body. The y+ is non-dimensional

wall distance of the first cell from the wall based on the fluid local velocity.

The range of the y+ values obtained around the train body is from 5.99

to 77.91. Since it is difficult to get all surfaces of the train model to

63



T
a
b

le
3
.4

:
C

om
pa

ri
so

n
of

C
F

D
se

tu
p

st
ra

te
gi

es
of

ve
ri

fi
ed

si
m

u
la

ti
on

m
od

el
s

C
h
el

i
et

al
.

[2
01

0]
M

or
d
en

et
al

.
[2

01
5]

T
h
e

p
ro

p
os

ed
m

et
h
o
d

C
om

p
u
ta

ti
on

al
ap

-
p
ro

ac
h

In
co

m
p
re

ss
ib

le
R

A
N

S
eq

u
at

io
n
s

In
co

m
p
re

ss
ib

le
R

A
N

S
eq

u
at

io
n
s

In
co

m
p
re

ss
ib

le
R

A
N

S
eq

u
at

io
n
s

T
u
rb

u
le

n
ce

m
o
d
el

k
−
ε

S
S
T
k
−
ω

S
S
T
k
−
ω

P
re

ss
u
re

–v
el

o
ci

ty
co

u
-

p
li
n
g

al
go

ri
th

m
S
IM

P
L

E
S
IM

P
L

E
S
IM

P
L

E

D
is

cr
et

iz
at

io
n

sc
h
em

e
S
ec

on
d
-o

rd
er

u
p
w

in
d

S
ec

on
d
-o

rd
er

u
p
w

in
d

S
ec

on
d
-o

rd
er

u
p
w

in
d

S
ol

ve
r

S
eg

re
ga

te
d

so
lv

er
P

ot
en

ti
al

fl
ow

so
lv

er
S
eg

re
ga

te
d

so
lv

er

64



have the desired y+ value exactly, the majority of y+ are made within

the recommended ranges. Note that the y∗ in Eq. (3.28) plays the same

role as y+ in measuring the dimensionless distance. The difference is that

the velocity scale of y∗ is based on the turbulent kinetic energy and the

velocity scale of y+ is based on the wall shear stress [ANSYS 2009]. The

number of cell volumes within the boundary layer region around the train

body is about 2.1 million. The mesh details are shown in Fig. 3.18.

Figure 3.18: The meshes for CFD simulation. (a) The surface meshes
of the train head. (b) The longitudinal section of the train head in the
computational domain. (c) The longitudinal section of the whole train
in the computational domain. (d) The closer view of the nose cone and
front spoiler of the train head.

Since too many meshes will increase the simulation time and too few

meshes will reduce the computational accuracy in CFD simulation process,

it is important to generate a proper number of meshes [Yao et al. 2016].

Four sets of meshes with different mesh quantities, i. e., 7.2 million, 9.8

million, 14.3 million, and 22.2 million, are built to evaluate the influence

of different meshes on the aerodynamic drag and lift. Table 3.5 shows

the results of Cd and |Cl| of the four sets of meshes. The values of Cd

and |Cl| obtained from the second set of meshes are 10.04%, 9.49% larger

and 5.99%, 9.25% smaller than those obtained from the third and fourth

sets of meshes, respectively. Due to the high number of simulations
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needed to be carried out for the optimization algorithm, which require a

large amount of computational cost, a compromise is made between the

accuracy and the computational cost, and a discrepancy of approximated

10% is accepted. With these considerations, the second set of meshes

with 9.8 million meshes is adopted for all flow field calculations in this

work.

Table 3.5: Computational results of the four sets of meshes.

Sets of meshes 1 2 3 4

Mesh quantity (million) 7.2 9.8 14.3 22.2
Cd 0.1688 0.1557 0.1415 0.1422
|Cl| 0.0052 0.0157 0.0167 0.0173

A small scale computation is also carried out for 22.2 million meshes

following the same optimization flow of 9.8 million meshes. The optimized

train head with 22.2 million meshes has a smaller drag and a larger lift

compared with 9.8 million meshes, which is in accordance with Table 3.5,

and the error of optimized Cd between 9.8 and 22.2 million meshes is

within 10%, which indicates that the acceptable error of 10% covers the

error caused by 9.8 million meshes.

3.3.6 Results and discussion

The multi-objective optimization process of the high-speed train head

includes the global optimization and local optimization stages. The

research first gets the optimized framework of the train head in the global

optimization stage, then optimizes the local shape of PDE surface patches

on the train head with the framework and obtains the optimized shape

of the train head in the local optimization stage, and finally compares

and analyses the aerodynamic performance of the train head in different

stages.

Global optimization

In NSGA-II, Cd and Cl are set as the two optimization objectives. The

population size is set to be 40 (N = 40) and the number of generations is
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set to be 10. Moreover, the crossover and mutation probabilities are set as

0.9 and 0.1, respectively. The threshold value of the convergence criterion

is set as ε = 0.01. The ranges of the ten design variables controlling the

deformation of the train head framework are shown in Table 3.6. In order

to avoid the distortion of the train head shape, the suitable lower and

upper bounds of each design variable are found after a dozen experiments.

Table 3.6: The ranges of the ten design variables.

Design variable Lower bound Upper bound

δ1 -0.15 0.20
δ2 -0.10 0.15
δ3 -0.20 0.10
δ4 -0.15 0.15
δ5 -0.15 0.15
δ6 -0.10 0.10
δ7 -0.10 0.10
δ8 -0.10 0.10
δ9 -0.05 0.10
δ10 -0.30 0.25

By using NSGA-II, 400 solutions are obtained in which there are 13

Pareto-optimal solutions constructing a Pareto-optimal front as shown

in Fig. 3.19. In order to find the most satisfactory solution among

Pareto-optimal solutions and inspired by the minimum distance algorithm

discussed in Li et al. [2016], a cost function is proposed, which assigns

a proper weight to each objective and aggregates all of the objectives

together. The cost function is defined by

D = min {D1, D2, ..., DS}

Di =

√
(1− ωc)(

fCd
(i)

min fCd

− 1)2 + ωc(
|fCl

(i)|
min |fCl

|
− 1)2 (i = 1, 2, ..., S)

(3.29)

where i represents the ith Pareto-optimal solution, S is the total number of

Pareto-optimal solutions, fCd
(i) and fCl

(i) are Cd and Cl of the ith Pareto-

optimal solution, respectively, min fCd
= min {fCd

(1), fCd
(2), ..., fCd

(S)},
min |fCl

| = min {|fCl
(1)|, |fCl

(2)|, ..., |fCl
(S)|}, and ωc is the user-defined

weight.
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Figure 3.19: The Pareto-optimal front in the global optimization stage.

By applying different values of ωc, different global optimized results

are obtained from the 13 Pareto-optimal solutions. Since Cd plays a

more important role in reducing the air resistance to the forward motion

of a train compared with Cl, ωc is set to 0.001 so that Cd is the main

contributor based on previous work [Brockie & Baker 1990; Schetz 2001].

The final solution corresponding to the minimum D is selected as the

global optimization result, which is shown as the red star marker in

Fig. 3.19. The ten design parameters of the global solution construct the

optimized framework of the high-speed train head, which will be used in

the next local optimization stage.

Local optimization

In order to demonstrate the process of the local optimization, the patch

A3A4B4B3 is taken to be an example. The design variables are the

three shape control parameters of the patch A3A4B4B3. Same as the

global optimization, the optimization objectives for the local optimization

are Cd and Cl. LHS is employed to sample the design variables into

125 sample sets and use a dominated sorting to select the acceptable

solutions whose Cd and Cl are not both dominated by the results of the

optimized framework of the high-speed train head. In addition, Eq. (3.29)
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is employed to determine the final solution from the sample sets. Since

Cd is the main contributor in the global optimization stage, the influence

of Cl in the local optimization stage is enhanced by setting ωc=0.5. The

final solution is shown as the red star marker in Fig. 3.20.

Figure 3.20: The optimization results in the local optimization stage.

Discussion

Since the proposed multi-objective optimization method based on the

PDE parametric modeling includes global and local optimization stages,

the results from the two stages are compared to discuss the advantages

of the proposed method.

Fig. 3.21 shows the original (a), the globally optimized (b) and the

locally optimized (c) high-speed train head models. After the global

optimization, there are distinct deformations on the train head comparing

(b) with (a). For example, the height of the cab decreases and the

nose cone and the front spoiler move forward, as shown in (d). The

local optimization further optimizes PDE surface patches and the locally

optimized train head is shown in (c). It can be seen clearly from (d) that

the locally optimized shape of the patch A3A4B4B3 representing the cab

window on the train head becomes concave.
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Figure 3.21: Comparison of the high-speed train head models. (a) The
original model. (b) The globally optimized model. (c) The locally optimized
model. (d) The cross-sections of the three models (the blue, grey and red
lines represent original, globally optimized and locally optimized models,
respectively).

The results of the optimization objectives Cd and Cl of the original, the

globally optimized and the locally optimized high-speed trains are shown

in Table 3.7. Compared with the original train, the Cd and |Cl| of the

globally optimized train are reduced by 7.58% and 16.56%, respectively.

After the local optimization of the globally optimized train head, the two

optimization objectives are further reduced. Compared with the original

train, the Cd and |Cl| of the locally optimized train are reduced by 7.90%

and 38.85%, respectively.

Table 3.7: Aerodynamic drag and lift coefficients of the original, globally
optimized (GO) and locally optimized (LO) trains.

Original GO Reduction LO Reduction

Cd 0.1557 0.1439 7.58% 0.1434 7.90%
|Cl| 0.0157 0.0131 16.56% 0.0096 38.85%

Aerodynamic drag and lift forces are mainly caused by the pressure

force, which mainly exists on the surface of train head and tail. The

shape deformation of the train head has a direct impact on the pressure

distributions [Li et al. 2016]. In order to discuss the aerodynamic perfor-
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mance of the train before and after the multi-objective optimization, the

pressure distributions of the train head and tail are presented in Fig. 3.22.

Since the scales of the pressure distribution of the train head and tail are

different, two color bars in different scales are used for the train head and

tail to clearly indicate the changes before and after the optimization.

Figure 3.22: Comparison of the pressure distributions of the original
(a), globally optimized (b) and locally optimized (c) high-speed train heads
(the left column) and tails (the right column).

The left column in Fig. 3.22 shows the pressure distributions of the

original, globally optimized and locally optimized train heads. There

are mainly three high-pressure zones, near the nose cone, cab window

and roof, respectively, which are indicated by the circle of red dashed

lines. After the global optimization, the pressure near the cab window

significantly decreases and the pressure variation near the roof, i. e.,

a negative pressure followed by a positive pressure, almost disappears,
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but the pressure near the nose cone is a little larger than that of the

original train head. After the local optimization, the pressure near the

nose cone is reduced in addition to further decrease of the pressure

near the cab window. Similarly, the right column in Fig. 3.22 shows

the pressure distributions of train tails. After the global optimization,

the high-pressure zone in front of the nose cone is larger than that of

the original train, which gives the train tail a forward and an upward

push. Moreover, the pressure near the cab window is decreased in both

global and local optimizations, and the region with negative pressure

near the roof is significantly reduced after the global optimization and

slight improved after the local optimization. Through the multi-objective

optimization process with the global and local optimization stages, the

final optimized shape of the high-speed train head is obtained, which has

an improved pressure distribution and small aerodynamic drag and lift

forces.

Fig. 3.23 shows the streamlines around the high-speed train before

and after the multi-objective optimization. From the overall views and

the closer views of the train heads and tails, the streamlines are smooth

near the train heads, and a flow separation occurs near the front spoiler

of the train tail, which produces a trailing wake vortex as shown in (a).

After global and local optimizations, the wake vortex is reduced and the

streamlines around the train tail become smoother, which enlarge the

high-pressure zone in front of the nose cone and give a forward push to

reduce the drag, as shown in Fig. 3.22. The shape of the high-speed train

head has a significant effect on the drag. By optimizing the shape, the

air flow around the train can be smoother and the drag can be reduced.

In order to demonstrate the advantages of the proposed method, the

comparison is made between the proposed method and the current shape

optimization methods of high-speed train heads in term of the optimizing

objectives Cd and Cl, as shown in Table 3.8. Note that the results

obtianed from the proposed method in Table 3.8 are based on the choice

of ωc in Eq. (3.29), i. e., ωc=0.001 in the global optimization and ωc=0.5

in the local optimization, and different choices of ωc will produce different

values of Cd and Cl as well as their reduction ratios. The high-speed
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Figure 3.23: Comparison of the streamlines around the original (a),
globally optimized (b) and locally optimized (c) train heads (the left col-
umn), whole trains (the middle column) and train tails (the right column).

trains in different studies are under the same running conditions, i. e.,

the high-speed train is in the open air without passing each other or

going through a tunnel and the running speed is 300 km/h. The data in

Table 3.8 indicate that although the original model used in this research

already has good aerodynamic performance, i. e., the smallest values of Cd

and |Cl| in comparison with existing optimization studies, the proposed

method can still achieve the maximum reduction rates 7.9% and 38.85%

of Cd and |Cl| among all the optimization methods and improve the drag

and lift further. Therefore, the proposed method is more effective in

improving the aerodynamic performance of high-speed train heads.
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3.3.7 Summary

In this section, a novel multi-objective aerodynamic optimization design

process of a high-speed train head is proposed. The PDE-based parametric

modeling method is applied to construct the parametric model of the

high-speed train head, which can describe the complicated shape in detail

with few design variables and keep the surface smooth. NSGA-II is

adopted to obtain Pareto-optimal solutions in the global optimization

stage of the high-speed train head and take the aerodynamic drag of the

whole train and the aerodynamic lift of the train tail as the optimization

objectives. Then, an optimized framework of the high-speed train head is

selected from the Pareto-optimal solutions using an improved minimum

distance algorithm. Based on the obtained optimized framework, LHS is

introduced into the local optimization stage to obtain the final optimized

shape of the train head by generating various sample sets of the three

shape control parameters of PDE surface patches and optimizing the

shape of each patch.

The proposed optimization method is demonstrated by analysing the

aerodynamic characteristics, pressure distributions and streamlines of

the optimization solutions in both global and local optimization stages

compared with the original high-speed train head, and evaluating the

drag and lift coefficients compared with other optimization methods. The

analysis results indicate that the proposed method is able to optimize

both global and local shapes and significantly improve the aerodynamic

performance of the high-speed train head.

3.4 Summary

In this chapter, the engineering applications of numerical PDE surface

patches are explored. The numerical PDE surface patch is first con-

structed using the finite difference method to solve 4-sided boundary

conditions of a fourth-order PDE, and then the automatic and opti-

mal conversion of numerical PDE surfaces representing high-speed train

heads into NURBS surfaces is developed. Through this conversion, the

PDE-based approach can be used in CAD, CAM and CAE systems.
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The numerical PDE surface patch is also used to develop a novel multi-

objective aerodynamic optimization method of high-speed train heads,

which is the first pipeline of using the PDE-based approach to optimize

shapes in the CFD simulation and indicates the powerful ability of the

PDE-based approach in engineering applications.

Although the numerical solution of PDE-based surface modelling is

applied in this chapter to explore the potential of PDE-based modelling

in engineering applications, analytical solutions can also play the same

role but at a lower computational cost. Since this chapter focuses on

engineering applications rather than developing new solution methods, a

numerical solution is adopted. It is no doubt that once the mathematical

model of the analytical solution of PDE is built, it will be more effective

than the numerical solution in engineering applications because of its

low computational cost. For this reason, the analytical solution will be

discussed in the next chapter and a unified PDE-based surface modelling

framework will be developed, which will further improve engineering

applications of the PDE-based modelling.
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Chapter 4

Unified PDE-based surface

modelling framework

Up to now, the existing research studies on analytical PDE surfaces

focus on 2-sided PDE patches, i. e., creating a PDE surface patch

from boundary conditions on two opposite boundaries. Various accurate

and approximate analytical solutions of 2-sided PDE patches have been

developed [Bloor & Wilson 1990; Zhang & You 2004; Ugail et al. 1999;

Athanasopoulos et al. 2009; Bloor & Wilson 1989b; You et al. 2004b; You

& Zhang 2003; Kubiesa et al. 2004; You et al. 2004a; Bloor & Wilson

2005; Zhang & You 2002]. Using analytical 2-sided PDE patches only

is not applicable to all 3D modelling tasks. For example, 2-sided PDE

patches are incapable in creating branched models. Here, a branched

model is a 3D model with branching structures that are connected to

but not part of the central body of the model, such as the trunk of a

tree with branches and a human body with limbs. In order to release

the potential of PDE-based surface modelling, analytical 3- and 4-sided

patches with different continuity requirements should be developed.

In this chapter, a novel unified PDE mathematical model with analyt-

ical 2-, 3- and 4-sided surface patches will be proposed and the boundary

conditions of Cn continuity between adjacent PDE surface patches will be

formulated. By using the unified model, a PDE-based surface reconstruc-

tion method will be developed to analytically generate optimal surfaces
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with Cn continuity under the constraint of the feature curves in automo-

tive styling design, and a user interface of PDE-based surface modelling

will be developed as a plug-in in the 3D animation and modelling software

Blender, which demonstrates the potential of the developed technique for

future commercial applications.

4.1 Unified PDE mathematical model

The PDE mathematical model usually chooses an elliptic PDE to solve

the surface generation problem because the elliptic PDE is regarded as

an averaging process throughout the entire surface [Castro et al. 2008].

Due to different orders and numbers of control parameters involved in a

PDE, the PDE mathematical model has several forms. In this chapter,

the target is to generate PDE surface patches with Cn continuity. In

practice, the C0, C1 and C2 are frequently used continuities and C3 is

only required in some high-level surfaces designs such an automobile

exterior [Hosaka 2012]. A higher degree of continuities, i. e., Cn (n > 3),

are rarely used in surface modelling. Therefore, the symbol n of Cn

continuity is defined up to 4.

Since a fourth-order PDE is sufficient in achieving Cn (n = 0, 1, 2, 3, 4)

continuities as discussed below, the proposed unified mathematical model

uses a vector-valued fourth-order PDE combined with three shape control

parameters that offer enough degrees of freedom to satisfy arbitrary order

of continuity. The vector-valued fourth-order PDE is defined as

(a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4
)S(u, v) = 0 (4.1)

where S(u, v) = [x(u, v), y(u, v), z(u, v)]T is a vector-valued position func-

tion which represents the generated parametric surface, a1, a2 and a3 are

three shape control parameters, and u and v are the parametric variables

defined by u ∈ [0, 1] and v ∈ [0, 1].
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4.1.1 The boundary conditions

In order to obtain a unified PDE mathematical model, the constructed

boundary conditions should involve 2-, 3- and 4-sided PDE surface patches,

as shown in Fig. 4.1

Figure 4.1: 2-, 3- and 4-sided PDE surface patches.

The boundary conditions of a 4-sided PDE surface patch are first

constructed and then the boundary conditions of 2- and 3-sided PDE

surface patches can be defined according to the 4-sided PDE surface patch.

The 4-sided PDE surface patch has four boundary curves, as shown in

Fig. 4.1(a), and the position, tangent, curvature and higher-order (Cn)

constraints at the boundaries lead to the following boundary conditions

u = 0, S = G0
0(v),

∂S

∂u
= G1

0(v),
∂2S

∂u2
= G2

0(v), ...,
∂nS

∂un
= Gn

0 (v)

u = 1, S = G0
1(v),

∂S

∂u
= G1

1(v),
∂2S

∂u2
= G2

1(v), ...,
∂nS

∂un
= Gn

1 (v)

v = 0, S = G0
2(u),

∂S

∂v
= G1

2(u),
∂2S

∂v2
= G2

2(u), ...,
∂nS

∂vn
= Gn

2 (u)

v = 1, S = G0
3(u),

∂S

∂v
= G1

3(u),
∂2S

∂v2
= G2

3(u), ...,
∂nS

∂vn
= Gn

3 (u)

(4.2)

where G0
i , G1

i , G2
i and Gn

i (i = 0, 1, 2, 3) are boundary curves and the

first, second, and nth partial derivatives on the boundary curves, which

are used to guarantee position, tangent, curvature, and Cn continuities

on the boundary curves, respectively.

The boundary conditions in Eq. 4.2 can be decomposed into a linearly

independent combination of some basic functions, such as exponential

functions, trigonometric functions, power functions, logarithmic functions

and the constant 1 [Zhang & You 2004]. After the decomposition, the
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boundary conditions in Eq. 4.2 can be rewritten as

u = 0, S =
J∑
j=0

b0jsj(v),
∂S

∂u
=

J∑
j=0

b1jsj(v),

∂2S

∂u2
=

J∑
j=0

b2jsj(v), ...,
∂nS

∂un
=

J∑
j=0

bnjsj(v)

u = 1, S =
J∑
j=0

c0jsj(v),
∂S

∂u
=

J∑
j=0

c1jsj(v),

∂2S

∂u2
=

J∑
j=0

c2jsj(v), ...,
∂nS

∂un
=

J∑
j=0

cnjsj(v)

v = 0, S =
M∑
m=0

d0mgm(u),
∂S

∂v
=

M∑
m=0

d1mgm(u),

∂2S

∂v2
=

M∑
m=0

d2mgm(u), ...,
∂nS

∂vn
=

M∑
m=0

dnmgm(u)

v = 1, S =
M∑
m=0

e0mgm(u),
∂S

∂v
=

M∑
m=0

e1mgm(u),

∂2S

∂v2
=

M∑
m=0

e2mgm(u), ...,
∂nS

∂vn
=

M∑
m=0

enmgm(u)

(4.3)

where sj(v) and gm(u) are the linearly independent basic functions, bij,

cij, dim and eim (i = 0, 1, 2, . . . , n) are known constants, n is the order

of parametric continuity, and J and M represent the number of the basic

functions.

For the 3-sided patch shown in Fig. 4.1(b), the curve at u = 1 becomes

a point, which is the intersecting point of the curve at v = 0 and the

curve at v = 1. In this case, the boundary conditions at u = 1 of Eq.

4.3 are not required. For the 2-sided PDE surface patch defined by two

boundary curves as shown in Figure 4.1(c), its boundary constraints only

contain u = 0 and u = 1.

4.1.2 Solutions

Normally, it is extremely difficult to obtain the analytical solution of

Eq. 4.1 subject to boundary conditions in Eq. 4.3. To effectively solve
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this PDE mathematical model, an approximate analytical solution in a

composite form to represent the PDE surface S is proposed, which has

the form of

S(u, v) =
J∑
j=0

M∑
m=0

rjmu
msj(v) (4.4)

where rjm are the unknown constants to be determined.

The approximate analytical solution combines the basic functions

of variable v and the power functions of variable u. Substituting the

approximate analytical solution in Eq. 4.4 into the first two boundary

constraints of Eq. 4.3 and solving for the unknown constants rjm, the

approximate analytical solution is changed into

S(u, v) =
J∑
j=0

{
n∑
k=0

1

k!
bkju

k +
2n+1∑
l=n+1

rjlu
l +

M∑
m=2n+2

rjmu
m

}
sj(v) (4.5)

where

rjl = ϕl(bij, cij) +
M∑

m=2n+2

γl(m)rjm (i = 0, 1, 2, ..., n) (4.6)

In Eq. 4.6, ϕl(bij, cij) is a function consisting of bij and cij , and γl(m)

is a function of m. With the different values of the order n, the forms

of ϕl(bij, cij) and γl(m) are different. An application example of Eq.

4.5 for the 2-sided PDE surface patch is introduced in Section 4.2. By

substituting Eq. 4.5 into Eq. 4.1, the PDE mathematical model can be

effectively solved.

Since the PDE (4.1) is not an accuracy solution for S(u, v), E(u, v),

which represents the left-hand side terms of PDE (4.1), is introduced

below to describe the error of the PDE

E(u, v) = (a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4
)S(u, v) (4.7)

For the 3- and 4-sided PDE patches, when M = 2n+1 and J = 2n+1,

all the unknown constants rjm can be obtained by using the boundary

constraints at v = 0 and v = 1 of Eq. (4.3). When M ≥ 2n+ 2 and J ≥

81



2n+2, the amount of rest unknown constants is (J−2n−1)×(M−2n−1),

and the rest unknown constants are determined by

∂

∂rjm

[
J∑

j=2n+2

M∑
m=2n+2

E2(u, v)

]
= 0 (4.8)

For a 2-sided PDE patch, its boundary constraints are at u = 0 and

u = 1 of Eq. (4.3). When M = 2n+1, all the unknown constants rjm can

be obtained. When M ≥ 2n+ 2, the amount of rest unknown constants

is (J + 1)× (M −2n−1), and the rest unknown constants are determined

by

∂

∂rjm

[
J∑
j=0

M∑
m=2n+2

E2(u, v)

]
= 0 (4.9)

4.1.3 Cn continuity

For 2-, 3- and 4-sided PDE surface patches, the Cn continuity needs to

be satisfied when two adjacent surface patches whose boundary curves

are connected at the same points. In order to meet the Cn continuity

requirement, the adjacent 4-sided PDE surface patches S and S̄ meet

at their common boundary curve ÃB, as shown in Fig. 4.2. The Cn

continuity between two adjacent surface patches can be achieved in the

u or v direction. Here, only the Cn continuity in the v direction is

introduced below. The Cn continuity in the u direction can follow the

similar strategy.

Figure 4.2: Two adjacent PDE surface patches.

At the joint vertices A and B, the PDE surface patches S and S̄ should

satisfy up to Cn continuity with respect to the parametric variable v

82



which gives

J∑
j=0

bij
∂isj(v = 1)

∂vi
=

J̄∑
j=0

b̄ij
∂is̄j(v = 0)

∂vi

J∑
j=0

cij
∂isj(v = 1)

∂vi
=

J̄∑
j=0

c̄ij
∂is̄j(v = 0)

∂vi

(i = 0, 1, 2, ..., n)

(4.10)

where bij, cij and b̄ij, c̄ij are the constants in the boundary conditions

of the PDE surface patches S and S̄, respectively, and i is the order of

partial derivatives, which represents the order of continuities.

Except the joint vertices A and B, the PDE surface patches S and

S̄ on the boundary curve ÃB should also satisfy up to Cn continuity.

These up to Cn continuities with respect to parametric variable v at the

boundary curve ÃB are found to be

J∑
j=0

rjm
∂isj(v = 1)

∂vi
=

J̄∑
j=0

r̄jm
∂is̄j(v = 0)

∂vi
(i = 0, 1, 2, ..., n) (4.11)

Although only the Cn continuity of 4-sided PDE surface patches is

presented here, Eqs. (4.10) and (4.11) are also applicable to 2- and 3-sided

PDE surface patches.

4.2 PDE-based automotive styling design

In order to demonstrate the effectiveness of the proposed unified PDE

mathematical model (Eq. 4.1)) and the developed approximate analyt-

ical solution (Eq. 4.5), this section investigates the application of the

proposed approximate analytical solution. The unified model is adopted

to reconstruct surfaces from scanned data for automotive styling design.

Since the feature curve of an automobile plays an important role in styling

design, which determines the main shape of the automobile body and

produces aesthetically pleasing forms [Tovey 1997], as shown in Fig. 4.3,

the research will focus on surface reconstruction from two opposite feature
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curves in this section.

Figure 4.3: The feature curves in the styling design. The images taken
from [Ford Media 2013; Jaguar 2017] show automotive clay models with
black tapes, which represent feature curves.

The 2-sided PDE surface patch is adopted as the type of the recon-

structed surface, which has the C1 continuity in the u direction and Cn

continuity in the v direction. Hence, Eqs. (4.5) and (4.6) become

S(u, v) =
J∑
j=0

{
b0j + b1ju+

3∑
l=2

rjlu
l +

M∑
m=4

rjmu
m

}
sj(v) (4.12)

rjl = ϕl(bij, cij) +
M∑
m=4

γl(m)rjm (i = 0, 1) (4.13)

where

ϕ2(bij, cij) = −3b0j − 2b1j + 3c0j − c1j

γ2(m) = m− 3

ϕ3(bij, cij) = 2b0j + b1j − 2c0j + c1j

γ3(m) = m− 2

(4.14)

By substituting Eq. (4.12) into Eq.( 4.1) and using Eq. (4.9) if M ≥ 4,

the 2-sided PDE surface patch S is obtained. For a PDE surface patch

S̄ which is adjacent to S in the v direction, the Cn continuity between

them can be guaranteed using Eqs. (4.10) and (4.11).
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4.2.1 Optimization

Given a set of data points P = {pi}
Ip
i=0, the reconstructed surface S =

{si}Isi=0 is usually compared to P according to some error measure methods,

such as the point-wise Euclidean distance. However, for a set of scanned

data, the distribution of point positions is irregular, and it is also difficult

to make the number of the points in S exactly the same as P, i. e., Is = Ip,

even though Ip is known. In constrast, Hausdorff distance provides

a measure of dissimilarity between two arbitrary point sets without

determining the one-to-one correspondence between them [Aspert et al.

2002]. The classic Hausdorff distance will be taken to be the objective

function H, which needs to be minimized during the optimization process

through the following equation

min
a1,a2,a3

H = max
s∈S

(min
p∈P
‖s− p‖) (4.15)

where a1, a2 and a3 are shape control parameters in the PDE (4.1).

Note that Eq. (4.15) is a one-sided distance. Since P is a set of

scanned data points that usually contains some noise points, the one-

sided distance only considers the closest point in P for each point in S,

which can effectively avoid the influence of noise points from P. Therefore,

the one-sided distance is applied in Eq. (4.15).

The surface reconstruction procedure contains the following steps:

1. Input. A set of scanned data points P = {pi}
Ip
i=0 representing a

part of the automotive body and two opposite feature curves G0
0(v)

and G0
1(v) defined by scanning the tapes’ position, or section curve

from scanned data or discretized CAD curve, etc.

2. Setup of boundary conditions. The feature curves G0
0(v) and G0

1(v)

are regarded as the boundary curves, and the boundary tangents

G1
0(v) and G1

1(v) are two functions of the tangent vectors along the

unconstrained boundaries of the scanned data. By decomposing

G0
0(v), G0

1(v), G1
0(v) and G1

1(v) into linearly independent combi-

nations of basic functions sj(v), the boundary conditions (4.3) at

u = 0 and u = 1 are obtained. Note that for achieving up to
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Cn continuity between two adjacent surface patches S and S̄, the

known constants bij, cij and b̄ij, c̄ij and unknown constants rjm

and r̄jm must satisfy Eq. 4.10 and Eq. 4.11, respectively.

3. Surface generation. After initializing the three shape control pa-

rameters a1, a2 and a3 in Eq. 4.1, the unknown constants rjm can

be obtained by substituting Eq. 4.12 into Eq. (4.1) to obtain Eq.

4.9 and solving Eq. (4.9), and then the PDE surface patch S is

generated using Eq. 4.4.

4. Optimization. The surface shape is changed to find the optimal

surface through minimizing the objective function H in Eq. (4.15)

with respect to the three design variables, i. e., the shape control

parameters a1, a2 and a3.

5. Surface conversion. Since the optimized PDE surface cannot be

directly used in CAD systems for downstream engineering and man-

ufacturing operations, the PDE surface is converted into NURBS

format by applying the optimal NURBS conversion method pre-

sented in Chapter 3.

4.2.2 Experiments

In this experiment, power functions are used as the linearly independent

basic functions to construct the boundary conditions, i. e., fj(v) = vj , the

number of the basic functions is set to J = 4, and the terms of the power

series are set to M = 4. To solve the nonlinear optimization problem,

the classic genetic algorithm (GA) [Goldberg 1989] is used because it is a

good solution to find a global minimum for highly nonlinear problems. In

this research, the range of input design variables a1, a2 and a3 is set to

[−10, 10], and the convergence criterion is: the change in H is less than

the specified tolerance 10−6. The proposed method is implemented using

MATLAB and runs on a desktop computer with Intel/Xeon E5-1650 (3.5

GHz) CPU.

For evaluating the quality of reconstructed surfaces with the proposed

method, the three visual surface analysis tools listed below are used in
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the following figures.

• Color map of error: For evaluating the similarity between the

obtained results and input data, the surface error is measured with

respect to the bounding box diagonal, which is evaluated with

Metro tool [Cignoni et al. 1998]. Green and blue colors are used to

represent the maximum and minimum errors, respectively.

• Zebra map: It is used to visualize curvature on surfaces and under-

stand the shape and quality of surfaces especially check the C0, C1,

and C2 continuities at the join of two adjacent surfaces.

• Curvature combs: Since C2 and C3 continuities have similar zebra

map, the curvature comb can help evaluate high-order continuities

because it displays the curvature value at a given point.

Reconstruction of single surfaces

Single surface reconstruction experiments are conducted by using two

examples of input meshes, each of which represents a part of the hood

of two automotive exteriors, respectively, and their feature curves are

specified upfront by power functions. Figures 4.4 and 4.5 show the two

resulting surfaces for Examples 1 and 2. For each example, the evaluation

of the reconstruction accuracy is achieved by error analysis with a color

map and a zebra map, which indicates the difference between the resulting

surface and input mesh data.

Compared with the input data in (b) of Fig. 4.4, the maximum error,

mean error and root mean square error (RMSE) of the reconstructed

surface in (c) are 1.25×10−2, 1.94×10−3 and 2.59×10−3, respectively. In

Fig. 4.5, the maximum error, mean error and RMSE of the reconstructed

surface in (c) are 2.90× 10−3, 6.44× 10−4 and 8.44× 10−4, respectively.

From these errors and Figs. 4.4 and 4.5, the following observations are

obtained. (1) The reconstructed surface, especially at the position of

feature curves, has high quality and accuracy. (2) The zebra maps of the

reconstructed surface and input mesh data are almost identical. They

indicate that the proposed method not only matches the requirement of

feature curves’ preservation but also leads to reconstructed surfaces with
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Figure 4.4: Reconstructed surface and surface analysis for Example 1.
(a) Input mesh of a car hood. (b) The part used for reconstruction from
(a) with two feature curves (red curve). (c) Reconstructed surface. (d)
Color map of error. (e) The zebra map of (b). (f) The zebra map of (c).

a good curvature flow.

Reconstruction of adjacent surfaces with Cn continuity

In order to demonstrate the effectiveness of the proposed method in

achieving Cn continuity between two adjacent surfaces in styling design,

two mesh examples (Examples 3 and 4) from two automotive exteriors

are presented as shown in Figs. 4.6(a) and 4.7(a). Each example consists

of two adjacent parts, i. e, two roof meshes in Example 3 shown in Fig.

4.6(a) and a roof mesh and a rear window mesh in Example 4 shown

in Fig. 4.7(a). The part in light grey with the yellow feature curves is

named as Part 1 and the part in dark grey with the red feature curves

is named as Part 2. In this experiment, the results with different orders

of the continuity from C0 to C3 are shown in Figs. 4.6 (b)-(e) and 4.7

(b)-(e). Different from single surface reconstruction, the curvature combs

on each part are used to evaluate the continuity between two adjacent

reconstructed surfaces except the color map and zebra map. The values of

three control parameters (CP) a1, a2 and a3 in the PDE (4.1), computing

time (CT), the maximum error (MaxE), mean error (MeanE) and RMSE

of the reconstructed C0, C1, C2 and C3 surfaces of Examples 3 and 4 are

summarized in Table 4.1.
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Figure 4.5: Reconstructed surface and surface analysis for Example 2.
(a) Input mesh of a car hood. (b) The part used for reconstruction from
(a) with three feature curves (red curve). (c) Reconstructed surface. (d)
Color map of error. (e) The zebra map of (b). (f) The zebra map of (c).

In Table 4.1, the range of the computing time is from 20 to 29 seconds,

and the order of magnitude of the maximum error is from 10−3 to 10−2

and the order of magnitude of the mean error and RMSE are both 10−3.

These results indicate that the proposed method can reconstruct surfaces

with high precision in fitting the input data in a short time. From

Figs. 4.6 and 4.7, the following observations are obtained. (1) In Figs.

4.6(b) and 4.7(b), the curvature combs of the two surfaces are at an

angle without connection, and the zebra stripes do not line up due to

C0 continuity. (2) In Figs. 4.6(c) and 4.7(c), the curvature combs of

the two surfaces are aligned but the curvature values are different at

the join, and the zebra stripes line up but they turn sharply caused by

C1 continuity. (3) In Figs. 4.6(d) and 4.7(d), the curvature combs of

the two surfaces are aligned and the curvature values are the same at

the join, and the zebra stripes line up and flow smoothly created by C2

continuity. (4) In Figs. 4.6(e) and 4.7(e), although the zebra stripes have

no obvious difference compared with Figs. 4.6(d) and 4.7(d) at the join,

the outline of curvature combs has tangential continuity at the join due to

C3 continuity. These observations indicate that the proposed method can

achieve Cn continuity at the join of two adjacent reconstructed surfaces.
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Figure 4.6: Reconstructed surfaces with C0, C1, C2 and C3 continuities
and their surface analysis for Example 3. (a) Input mesh data, two parts
for reconstruction and original zebra map. (b) Reconstructed C0 surfaces
with curvature combs, color map of error (the error range: 0−7.59×10−3)
and zebra map. (c) Reconstructed C1 surfaces with curvature combs, color
map of error (the error range: 0 − 7.56 × 10−3) and zebra map. (d)
Reconstructed C2 surfaces with curvature combs, color map of error (the
error range: 0−1.02×10−2) and zebra map. (e) Reconstructed C3 surfaces
with curvature combs, color map of error (the error range: 0−1.35×10−3)
and zebra map. (The detail of curvature combs is shown in the red circle
in the first row, and the blue and green colors in the second row represent
the minimum and maximum errors respectively).

4.2.3 Comparison with existing methods

In order to demonstrate the advantages of the proposed method, a

comparison with the existing methods is made. Since traditional sweeping

and lofting methods generate surfaces from profile curves which can be

regarded as feature curves, the proposed method is first compared with

sweeping and lofting methods. Figure 4.8 shows loft (b), sweep (c) and

PDE (d) surfaces reconstructed from input mesh data (a) with feature

curves. The values of the maximum error, mean error and RMSE are

listed in Table 4.2.

Table 4.2: Statistical data of loft, sweep and PDE surfaces

Method Maximum error Mean error RMSE
Lofting 2.42× 10−2 1.36× 10−2 1.59× 10−2

Sweeping 2.74× 10−2 5.46× 10−3 7.54× 10−3

The proposed method 8.21× 10−3 1.99× 10−3 2.53× 10−3

In Fig. 4.8, the lofting method can preserve feature curves but cause
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Figure 4.7: Reconstructed surfaces with C0, C1, C2 and C3 continuities
and their surface analysis for Example 4. (a) Input mesh data, two parts
for reconstruction and original zebra map. (b) Reconstructed C0 surfaces
with curvature combs, color map of error (the error range: 0−2.15×10−2)
and zebra map. (c) Reconstructed C1 surfaces with curvature combs, color
map of error (the error range: 0 − 2.32 × 10−2) and zebra map. (d)
Reconstructed C2 surfaces with curvature combs, color map of error (the
error range: 0−1.91×10−2) and zebra map. (e) Reconstructed C3 surfaces
with curvature combs, color map of error (the error range: 0−3.21×10−2)
and zebra map. (The detail of curvature combs is shown in the red circle
in the first row, and the blue and green colors in the second row represent
the minimum and maximum errors respectively).

big error in the middle of the reconstructed surface because there are

no design variables to guarantee the surface quality. Although sweeping

method can produce less error in the middle of the reconstructed surface,

it can only preserve one feature curve and needs the extra help of a

backbone curve. In contrast, the proposed method can preserve two

feature curves as well as guarantee the surface quality by using the

shape control parameters in PDE. Moreover, from the data in Table

4.2, the reconstruction error of the proposed method is small especially

the maximum error which is one order of magnitude smaller than other

methods. These results manifest that the proposed method generates

surfaces with higher accuracy than lofting and sweeping methods.

The proposed method is also compared with the improved sweep-based

method presented in [Tsuchie 2019] in automotive styling design. Since

both methods use the data of external surfaces from real automobiles

and focus on the reconstruction work of automotive hoods and roofs,
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Figure 4.8: Reconstructed loft, sweep and PDE surfaces with error
analysis. (a) Input mesh data. (b) The loft surface with two feature curves
(red curve) and color map of error (the error range: 0− 2.42× 10−2). (c)
The sweep surface with one feature curve (red curve) and a backbone curve
(purple curve), and color map of error (the error range: 0− 2.74× 10−2).
(d) The PDE surface with two feature curves (red curve) and color map
of error (the error range: 0− 8.21× 10−3). (The blue and green colors in
the second row represent the minimum and maximum errors respectively)

the differences between both methods can be better demonstrated by

comparing the statistical data of the reconstruction results from both

methods, which are shown in Table 4.3. The order of magnitude of

maximum errors with respect to the bounding box diagonal is used for a

fair comparison. From the results in Table 4.3, it can be observed that

the proposed method has obvious advantages such as a much smaller

number of design variables, shorter computing time and higher order of

surface continuity. Moreover, the reconstructed surfaces by using the

improved sweep-based method need to be trimmed and remove redundant

parts before stitching them together, whereas the surfaces generated by

the proposed method can be directly applied in the next styling stage.

In this section, the comparison experiment only considers the CAD-

generated surfaces rather than the parametric surfaces such as Bézier,

B-splines and NURBS surfaces. The resaon is that these surfaces are

free-from, which cannot be constrained by feature curves. The aim in

this research is to reconstruct surfaces whose boundaries exactly meet

the feature curves. Therefore, it is fair to conduct the experiment with

CAD-generated surfaces only.

To sum up, all above experiments have demonstrated the effectiveness
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Table 4.3: Comparison of the proposed method with another surface
reconstruction method.

Improved sweep-
based method

The proposed
method

Number of design
variables

30 control points 3 control parame-
ters

Maximum error ≥ 10−3 10−3 − 10−2

Computing time (s) 29− 315 20− 29
Surface continuity C0 Cn

Need a trim? Yes No

of the proposed method. It is the first one able to reconstruct parametric

surfaces with Cn continuity as well as preserve feature curves. Further-

more, the shape of reconstructed surface is dependent on the three control

parameters in PDE, which greatly reduces the number of design variables

in the optimization process and shortens the calculation time.

4.3 User interface

In order to further release the potential of the proposed unified PDE-based

surface modelling framework and its approximate analytical solutions,

a user interface named PDE Panel is developed as a plug-in in Blender.

Blender is a widely known 3D animation and modelling software. It

is free and open-source for creating 3D models, animated films, visual

effects, art, motion graphics, interactive 3D applications, and computer

games. With the powerful 3D interactive capability and a huge user base,

Blender provides a good platform for the proposed PDE-based surface

modelling technique to be used by worldwide artists.

PDE Panel consists of three functions, i. e., Single Patch Creator,

Multi-Patch Creator and Surface Modification, as shown in Fig. 4.9. The

developed user interface is a prototype version of the proposed analytical

solution of the unified PDE-based surface modelling technique. In this

prototype version, 2-, 3- and 4-sided PDE surface patches with C0 and

C1 continuities are implemented in Single Patch Creator and 4-sided

PDE surface patches with C0 continuity are implemented in Multi-Patch

Creator. Each part will be introduced in the following subsections.
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Figure 4.9: PDE Panel in Blender.

4.3.1 Single Patch Creator

The function of Single Patch Creator is to create a single 2-, 3- or 4-sided

PDE surface patch from the curve network of two, three or four Bézier

curves, respectively, as shown in Fig. 4.10. The curve fitting is applied

to convert the Bézier curve into the baisc functions in Eq. (4.3).

There are three steps for creating PDE surface patches.

(1) Create Bézier curves Choose the Bézier option in the Create

menu in Blender, and adjust the position and shape of the Bézier curve by

moving its two endpoints, and make the endpoints approach or coincide

with other curve’s endpoints. Then, subdivide the Bézier curve to have at

least five control points. In order to correctly parameterize Bézier curves

for creating a PDE surface patch, the Bézier curve needs at least five

control points, as shown in Fig. 4.11.

(2) Create a single PDE surface patch Select and activate a Bézier

curve (right mouse click), and then click the ‘Add Curve in Patch’ button

in the PDE panel to mark the selected curve as the boundary curve of

the surface patch. Then, add the rest Bézier curves to the patch in the
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Figure 4.10: 2- 3- and 4-sided PDE surface patches.

Figure 4.11: Bézier curves (The left has 2 control points and the right
has 5 control points).

same way. Finally, after all curves are added, click the ‘Create Single

Patch’ button in the PDE panel, and a surface patch will be generated

quickly. For example, Figure 4.12 shows a 4-sided surface patch which is

created from the curve network of four Bézier curves.

(3) Create adjacent surface patches A curve network can consist

of many two, three and four Bézier curves. Once the curve network is

created, the 2-, 3- and 4-sided surface patches will be generated one by

one, as shown in Fig. 4.13. Note that if the curve network has both three

and four Bézier curves, the 4-sided patch needs to be created first for
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Figure 4.12: The process of creating a 4-sided surface patch. (a)-(d)
indicate the first, second, third and fourth selected curves. (e) is the
generated PDE surface patch.

ensuring the continuity between the two patches.

Figure 4.13: The curve network and the generated adjacent surface
patches.

4.3.2 Multi-Patch Creator

The function of Multi-Patch Creator is to create a complete 3D surface

model which consists of multiple surface patches generated from existing

curve networks. This type of curve network can be a wireframe OBJ file.

Figure 4.14 shows the curve network of a hat which is imported from the

local OBJ file to Blender. In this prototype version, the imported curve

networks should only be consisted of four closed curves.

The process of creating PDE surface patches from the imported curve

network has only two steps. Users can first choose and activate the curve

network model by clicking the right mouse, and then click the ‘Add

Multi-Patch’ button in the PDE panel. A complete surface model will be

generated quickly. Two examples of imported curve networks and created
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Figure 4.14: The imported curve network of a hat.

surface models are shown in Fig. 4.15.

4.3.3 Surface Modification

Since the three control parameters, i. e., a1, a2 and a3 in the PDE (4.1),

define the shape of a PDE surface patch, the surface shape can be easily

modified by changing the values of the three control parameters. The

PDE Panel provides three input boxes for a1, a2 and a3 which are set to

1 by default. The shape of any PDE surface patch can be modified no

matter whether it is generated by Single Patch Creator or Multi-Patch

Creator. As shown in Fig. 4.16, the modification process includes three

steps:

• Choose and activate a single surface patch. The patch can be the

generated patch from Bézier curves or imported curve networks.

• Modify the values of control parameters through the three input

boxes.

• Click the ‘Deform Surface Patch’ button in the PDE panel, and the

modified surface is generated as shown in Fig. 4.17.
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Figure 4.15: Two examples of imported curve networks and created
surface models (The top is a hat model, and the bottom is body model).

4.4 Summary

In this chapter, the unified PDE-based surface modelling framework is

presented, which can not only generate analytical 2-, 3- and 4-sided

surface patches but also achieve Cn continuity between adjacent surface

patches. In order to demonstrate the effectiveness of the unified model,

the 2-sided PDE surface patches are applied to reconstruct surfaces

under the constraints of the feature curves in automotive styling design

which indicates the ability of PDE-based surface modelling in engineering

applications. Besides, a user interface of PDE-based surface modelling

is developed as a plug-in in the 3D animation and modelling software

Blender, which can create 2-, 3- and 4-sided PDE surface patches. The

user interface shows the potential of the developed technique for future
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Figure 4.16: The process of surface modification.

Figure 4.17: The modified surface patch.

commercial applications.

Except for creating surfaces from scratch, surface manipulation is also

an important topic in surface modelling. It is to deform the surface

shape depending on users’ intention, which should not be limited by

the position and region of deformation. Since the unified PDE-based

surface modelling framework is designed for addressing frequently-used

surface patches, i. e., 2-, 3- and 4-sided surface patches, it cannot deal

with arbitrary boundaries. Therefore, an effective PDE-based surface

manipulation method should be developed to tackle complex deformation
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regions, which will be discussed in the next chapter.
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Chapter 5

Physics-based surface

manipulation using PDE

Physics-based surface manipulation, aiming to deform 3D surfaces fol-

lowing underlying physical laws and create more realistic shapes, has

attracted considerable attention in the community of geometric mod-

elling. Various existing methods have been proposed for physics-based

surface manipulation [Du & Qin 2005a; You et al. 2006; Haixia et al.

2008; McDonnell & Qin 2007; Terzopoulos & Qin 1994]. Nevertheless,

two challenges remain. One is how to deform a surface within a local

region with an arbitrary boundary shape, and the other is how to find an-

alytical solutions for reducing calculation costs and achieving interactive

applications.

To tackle the two challenges, a novel but simple physics-based method

using PDE technique will be presented to interactively manipulate surface

shapes of 3D models with C1 continuity. First, a deformation region

on a surface in a 3D coordinate space is selected, and the boundary of

the deformation region is mapped to a unit circle on a 2D parametric

plane. Then a unit circle is defined as a thin elastic plate and the bending

deformation of the plate under a sculpting force is simulated. To obtain

the deformation, an approximate analytical solution of a fourth-order

PDE subjected to the sculpting force and the boundary conditions of the

circle is derived for x, y and z components. A length-based method is

102



used to determine the corresponding relationship between the vertices

within the boundary of the deformation region and those within the

circle. After obtaining the deformation of the unit circle, the coordinate

values of all vertices within the deformation region are renewed to create

a new surface shape according to the deformed values of corresponding

points on the parametric plane. Finally, an interactive user interface is

developed as a plug-in of the 3D modelling software package Maya to

achieve surface manipulation.

5.1 Method

5.1.1 Theory of plate bending

The deformations of a surface can be simulated through those of elas-

tic bending of a thin plate. When subjected to a lateral load q, the

bending deformation of the plate in the xy plane can be described with

the following fourth-order partial differential equation [Timoshenko &

Woinowsky-Krieger 1959]

D∇4w = q (5.1)

where w is the deflection of the plate in the z direction, and the symbol

∇4 is a biharmonic differential operator defined by the following equation

∇4w =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
(5.2)

and the symbol D is called the bending rigidity, which is defined by

D =
Eh3

12(1− µ2)
(5.3)

In Eq. 5.3, E and µ are Young’s modulus and Poisson’s ratio of the

plate, respectively, which are two material properties of the plate and

reflect the capacity of the plate against bending deformations. The

parameter h is the thickness of the plate.

Besides the applied load, material properties, geometric parameters,
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and the boundary constraints of the plate also affect its bending de-

formations. In surface modeling applications, positional and tangential

continuities are usually required. Therefore, in this research, the boundary

constraints maintaining such continuities will be considered.

Assuming that the boundary of the plate is indicated by ∂Ω, the fixed

support boundary constraints in the plate bending can be written as

w = 0,
∂w

∂x
= 0,

∂w

∂y
= 0 on ∂Ω (5.4)

Solving Eq. 5.1 subjected to boundary constraints (5.4), the bending

deflection w for each point (x, y) within the plate is determined by

resolving the function of the geometric position (x, y), i. e., w = f(x, y).

5.1.2 Mathematical model

Based on the theory of plate bending, the mathematical model of surface

deformation can be developed. The two variables x, y and the deflection

w in Eq. 5.1 form a three-dimensional space. When using a parametric

representation to describe a three-dimensional surface, two parametric

variables u and v and each component of the coordinate variables x, y

and z also form a three-dimensional space. If the relationship between

each component of coordinate variables x, y and z and the parametric

variables u and v is defined with the same function as that of the plate

bending, the deformations of a parametric surface can be determined

through Eqs. (5.1-5.4).

Using the variable ξ to stand for each of x, y and z, the equations

governing surface deformations become

Dξ∇4ξ = qξ (ξ = x, y, z) (5.5)

where the load qξ is called the sculpting force, and

∇4ξ =
∂4ξ

∂u4
+ 2

∂4ξ

∂u2∂v2
+
∂4ξ

∂v4
(5.6)
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Accordingly, boundary constraints (5.4) are changed into

ξ = 0,
∂ξ

∂u
= 0,

∂ξ

∂v
= 0 on ∂Ω (5.7)

From boundary constraints (5.7), it is known that both the displace-

ments and the rotations of the deformed surface relative to the unde-

formed surface at the boundary are zero. Therefore, the deformed surface

obtained from Eqs. 5.6 and 5.7 keeps both positional and tangential

continuities at the boundary ∂Ω. The continuity defined by Eq. 5.7 is

C1 continuity, which is more stringent than positional and tangential

continuities on the boundary ∂Ω. In the following subsection, how to

solve Eq. 5.5 subjected to boundary constraints (5.7) will be investigated.

5.1.3 Solution

It is known from the theory of plate bending that the analytical solution of

Eq. (5.1) subjected to the constraints of an elliptic boundary is obtainable.

Since parametric variables u and v are often defined within 0 and 1, i.

e., 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, in the mathematical representation of

parametric surfaces, the boundary defined by parametric variables u and

v can be taken to be a unit circle, i. e.,

u2 + v2 − 1 = 0 (5.8)

It should be pointed out that although the boundary defined by parametric

variables u and v is a circle, the corresponding boundary in the coordinate

system defined by the coordinate variables x, y and z can be a very

complicated shape including triangles, rectangles and three-dimensional

curves etc., as shown in Fig. 5.1.

For the deformation which has both positional and tangential continuity

at the boundary (5.8), it is assumed that the function relationships

between each component of coordinate variables x, y and z and parametric

variables u and v are

ξ = mξ(u
2 + v2 − 1)2 (ξ = x, y, z) (5.9)
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Figure 5.1: The boundary of a deformation region. (a) the xyz geometric
coordinate system. (b) the uv parametric coordinate system. (Point C is
the centroid of the deformation region)

where mξ is an unknown constant.

On the boundary u2 + v2 − 1 = 0, the deformation disappears, i. e.,

ξ = mξ(u
2 + v2 − 1)2 = 0. Therefore, the first of Eq. 5.7 is satisfied

and the positional continuity is guaranteed. Differentiating Eq. 5.9 with

respect to the parametric variables u and v, respectively, gives

∂ξ

∂u
= 4mξu(u2 + v2 − 1) = 0

∂ξ

∂v
= 4mξv(u2 + v2 − 1) = 0

(5.10)

Eq. 5.10 indicates that the last two of Eq. 5.7 are also met and the

tangential continuity is achieved on boundary u2 + v2 − 1 = 0.

Substituting Eq. 5.9 into 5.5 and solving for the unknown constant

mξ, the following equation is obtained.

mξ =
qξ

64Dξ

(5.11)

Introducing Eq. 5.11 back into Eq. (5.9), the deformation of the surface

within boundary u2 + v2 − 1 = 0 is found to be

ξ =
qξ

64Dξ

(u2 + v2 − 1)2 (5.12)
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Eq. (5.12) indicates that after applying a sculpting force qξ in the

region within the boundary u2 + v2− 1 = 0, the deformation in the region

can be determined analytically.

5.2 Interaction design

In this section, a user interface based on the proposed surface manipulation

method is developed so that users can directly apply the proposed method

to interactively manipulate surface shapes. The core algorithm of the

user interface, i. e., the deformation algorithm, is introduced in Section

5.1, and the remaining algorithms behind the user interface include the

projective transformation, boundary extraction and mapping relationship.

In order to use Eq. 5.12 to create surface deformations, a deformation

region on a 3D surface defined by coordinate variables x, y and z must

be mapped to a circle in a 2D coordinate system defined by parametric

variables u and v. However, it is difficult to directly find the mapping

relationship between the two spaces. Instead, three steps are adopted

to achieve this goal. First, all vertices within the deformation region

are projected to a local 2D plane, and then the boundary curve of the

projective deformation region is extracted. Finally, a length-based method

is applied on the boundary curve to find the mapping relationship between

the projective deformation region and parametric plane. The details are

described in the following subsections.

5.2.1 Projective transformation

When users select the deformation region on the surface of a 3D model, it

is assumed that the equation of users’ view plane is ax+ by + cz + d = 0,

as shown in Fig. 5.2(a). For each vertex p = [px py pz]
T within the

deformation region, its projective vertex on the view plane is defined as

p̄1 = [p̄x p̄y p̄z]
T , which can be obtained through following projective

transformation:

p̄1 = −apx + bpx + cpz + d

a2 + b2 + c2
n + p (5.13)
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Figure 5.2: Projective transformation of the deformation region. (a)
the global xyz coordinate system. (b) the local x′y′z′ coordinate system.

where n = [a b c]T is the normal vector of the view plane.

The projective vertex p̄1 is located in the global xyz coordinate system,

and this coordinate system is transformed to a local x′y′z′ coordinate

system by using a translation matrix [T] and a rotation matrix [R], as

shown in Fig. 5.2(b). The origin of the local coordinate is ō = [ōx ōy ōz]
T

and its unit vectors along x′, y′ and z′ axes are vx = [vxx vxy vxz]
T , vy =

[vyx vyy vyz]
T and vz = [vzx vzy vzz]

T , respectively. The transformation

equation can be written as

p̄′ = p̄2 [T] [R] (5.14)

where p̄′ = [p̄′x p̄
′
y p̄
′
z 1] and p̄2 = [p̄x p̄y p̄z 1], and

[T] =


1 0 0 0

0 1 0 0

0 0 1 0

−ōx −ōy −ōz 1

 , [R] =


vxx vyx vzx 0

vxy vyy vzy 0

vxz vyz vzz 0

0 0 0 1

 (5.15)

Since all transformed vertices are on the x′y′ plane, the final projective

vertex p̄′ = [p̄′x p̄
′
y] within the deformation region is obtained by removing

the z′ component.
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5.2.2 Boundary extraction

In order to define the mapping relationship between boundary curve on

the x′y′ plane and the circle on the 2D parametric plane, the key step

is to extract the boundary curve of the deformation region. The alpha

shape (α-shape) method is adopted to extract the boundary curve, which

is to generate the convex hull of a finite set of points [Edelsbrunner et al.

1983]. The boundary extraction process is shown in Fig. 5.3. Given a

set P of vertices p̄′i (i = 1, 2, . . . , N) from the projective deformation

region, a Voronoi diagram is constructed as a set of cells (Fig. 5.3(a)),

which is defined by

Vi =
{
p ∈ R2| ‖p− p̄′i‖ ≤

∥∥p− p̄′j
∥∥ , ∀j 6= i

}
(5.16)

where Vi is the locus of the p closer to p̄′i than any other vertices.

Since the Delaunay triangulation is the dual shape of the Voronoi

diagram, the Delaunay triangulation can be obtained by connecting all

the vertices in P that share common Voronoi faces, as shown in Fig. 5.3(b).

Then, by giving the parameter α = dPα0 where dP is the distance between

two closest vertices in P and α0 is the threshold value, if the length of

any edge of a triangle is larger than 2α, this triangle is removed. After

that, the circles of radius α containing two end vertices of edges of the

rest triangles are constructed. If a circle contains no vertices from P in

its interior, this edge is regarded as a valid boundary edge. Finally, all

valid boundary edges form the boundary curve, as shown in Fig. 5.3(c).

Figure 5.3: Extraction of boundary curve. (a) Voronoi diagram for a
set of vertices. (b) Delaunay triangulation. (c) The boundary curve of
α-shape.
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5.2.3 Mapping relationship

The mapping, in computer graphics, is the key to achieve the parametriza-

tion [Sheffer et al. 2006]. Commonly used mapping methods include min-

imizing angle distortions (the conformal mapping) and area distortions

(the equiareal mapping) [Fong 2015]. However, in this research, the goal

is to make the surface deformation in the 3D space as similar as possible

to the deformation in the 2D parametric space as well as keep the original

shape information, rather than reduce the angle or area distortions. In

order to achieve this goal, the one-to-one mapping between the projective

vertices on the x′y′ plane and the parametric points on the parametric

plane is necessary and the elastic deformation value of each parametric

point needs to be exactly exerted on the corresponding original vertex.

Through the one-to-one mapping, the physic-based deformation in the

parametric space can be accurately and smoothly reconstructed in the

3D space.

In the parametric space, after generating physic-based deformation

within the circle, the deformed shape becomes bigger when moving from

the circle to the center, as shown in Fig. 5.7. For reconstructing the

deformation in the 3D space, the distance from the point to the center of

the circle on the parametric plane should be consistent with the distance

from the projective vertex to the centroid on the x′y′ plane. The radial

mapping [Fong 2015] has the similar idea which makes points only move

along radial lines from the center of the disc. However, this method can

only deal with the mapping between a square and a disc. Here, a simple

and effective length-based mapping method is proposed to achieve the

research goal.

The deformation region on the x′y′ plane has N vertices. As shown in

Fig. 5.4(a), it is defined that the vertices on the boundary curve are Ai

(i = 1, 2, . . . , M) and the rest vertices within the boundary curve are

Bj (j = 1, 2, . . . , N −M). The centroid of the deformation region is

C, and the point Dj is the intersecting point of the line AiAi+1 and the

extended line of CBj.

The corresponding points Ãi, B̃j, C̃ and D̃j of Ai, Bj, C and Dj on
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Figure 5.4: The mapping relationship. (a) The x′y′ plane. (b) The uv
plane.

uv plane are shown in Fig. 5.4(b). All the points on the boundary curves

can be mapped to the unit circle with the method below. Here, the point

D̃j is taken as an example to discuss how to determine its position on

the unit circle.

The total arc length of the boundary curve is Lsum = LA1A2 + ... +

LAiAi+1
+ ...+ LAMA1 . The arc length from the starting point A1 to the

point Dj is LA1Dj
= LA1A2 + LA2A3 + ... + LAiDj

. The perimeter of the

unit circle is Lcircle = 2π. And the arc length from the starting point Ã1

to the point D̃j is assumed to be LÃ1D̃j
. Since LA1Dj

/Lsum should be

equal to LÃ1D̃j
/(2π), LÃ1D̃j

= 2πLA1Dj
/Lsum is obtained.

Having determined the position of the point D̃j on the circle, its

parametric values uD̃j
and vD̃j

can be calculated. The parametric values

of the point C̃ are uC̃ = 0 and vC̃ = 0. The coordinate values x′Dj
and y′Dj

of the point Dj on the boundary curve are determined by the intersection

of the line AiAi+1 and the extended line of CBj, and the coordinate

values x′C and y′C of the point C and the coordinate values x′Bj
and y′Bj

of the point Bj are known. Assuming the parametric values of the point

B̃j are uB̃j
and vB̃j

, (uB̃j
− uC̃)/(uD̃j

− uC̃) = (x′Bj
− x′C)/(x′Dj

− x′C) and
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(vB̃j
− vC̃)/(vD̃j

− vC̃) = (y′Bj
− y′C)/(y′Dj

− y′C) are obtained, which give

uB̃j
= uD̃j

x′Bj
− x′C

x′Dj
− x′C

vB̃j
= vD̃j

y′Bj
− y′C

y′Dj
− y′C

(5.17)

Substituting Eq. (5.17) into (5.12), the deformation values of the

original vertex of Bj in the global xyz coordinate system can be calculated,

and finally a new surface shape can be obtained after solving all vertices

within the boundary curve.

5.2.4 User interface

By integrating the above algorithms, a user interface is developed as a

plug-in of the popular 3D modelling software Maya, as shown in Fig. 5.5.

Users can select their desired deformation regions on the surface of a 3D

model and generate new shapes using the interface in Maya.

Figure 5.5: The user interface.

Since directly inputting the value of the sculpting force to manipulate

surface shapes is not intuitive for users, a cursor (a visual cube) is applied

to achieve deformations, as shown in Fig. 5.6. In order to control the

deformation direction, only the moving direction of the cursor needs to
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Figure 5.6: The surface manipulation process of the user interface.

be controlled. There are two ways to control the cursor. First, the cursor

can be moved by using the move tool in Maya. Once the move tool is

activated, the cursor can be directly dragged on the current view plane

of the user. Second, the moving values in x, y and z directions can be

input into the attributes editor of the cursor in Maya. In Fig. 5.5, there

are three input parameters for the cursor on the interface, i. e., cursor

size, cursor distance and sensitivity. Cursor size is used to control the

size of the cursor and avoid that the cursor is much larger or smaller

than the target object. Cursor distance is a parameter to change the

initial position of the cursor, and sensitivity is a scale factor to control

the magnitude of the sculpting force. The sculpting force in Eq. (5.12)

can be obtained by qξ = sdξ (ξ = x, y, z) where dξ is the moving vector

of the cursor and s is the sensitivity. Fig. 5.7 illustrates the influence of

the moving direction and sensitivity of the cursor on the surface shape.

Except the three input parameters, two options, i. e. Mouse Direction

and Real-time, are also provided in the user interface. 1) Mouse Direction:

its function is to make the deformation direction the same as the moving
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Figure 5.7: The influence of the moving direction and sensitivity of
the cursor on the surface shape. (a) The deformation region and the
initial position of the cursor. (b)-(c) The deformed shapes with the same
sensitivity and different moving directions (the red dotted arrow) of the
cursor (the red dotted square is the initial position of the cursor). (d)-
(f) The deformed shapes with the same moving direction and different
sensitivities of the cursor. (The sensitivities are 40, 70 and 110 in (d),
(e) and (f), respectively)

direction of the cursor. If it is turned off, the deformation direction is the

normal of the selected region. 2) Real-time: since the user’s view cannot

be moved or rotated during moving the cursor, sometimes users have

difficulties to estimate whether the cursor arrives at the desired position.

Thus, the option of Real-time is provided to turn off the real-time function

so that the shape cannot be deformed in real time unless clicking the

Run Deformation button.

As shown in Fig. 5.6, the surface manipulation process through the

user interface has six steps. 1) Users select the deformation region by

using the lasso tool to draw freeform curves around target vertices. 2)

The selected vertices are activated with yellow colour. 3) After inputting

three parameters of the cursor, users click the Confirm Vertices button

to generate the cursor. 4) Users can move the cursor to any position

and the deformation will follow the moving direction if the option of

Mouse Direction is ticked. Otherwise, the deformation direction is in

the normal direction. 5) If the option of real-time is ticked, the surface
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shape is automatically deformed in the fourth step once the cursor moves.

Otherwise, users need to click the Run Deformation button to deform

the surface shape. 6) After obtaining the final new surface shape or in

any previous steps, users can click the Clear Cache button to stop this

manipulation process.

Figure 5.8: Test results of four basic 3D models with different deforma-
tion regions surrounded by red curves.

5.3 Results and comparison

In the user interface, the basic parameters of Eq. (5.3) are taken to be:

the material properties E = 106 and v = 0.5 according to the material

rubber, and the geometric thickness h = 0.1. The threshold value α0 is

set to 0.86 because this value is applicable for accurately extracting the

boundary curve of different deformation regions by trial and error. The

user interface has been tested on four basic 3D models in Maya, i. e.,

the polygon sphere, cube, cylinder and cone, with different deformation

regions, as shown in Fig. 5.8. Different deformations on each model are
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obtained by moving the cursor with different directions and positions to

generate various shapes. These results indicate that the proposed method

is effective and convenient to create various surface shapes.

The meshes of above basic 3D models are smooth and uniformly

distributed. In order to further test the proposed method, scanned 3D

models such as Stanford Bunny, Dragon and Nefertiti are used as the

deformation objects. These scanned 3D models are frequently used as

test models in the computer graphics community and have non-uniformly

distributed vertices. Fig. 5.9 shows the test results. They indicate that

the proposed method is also suitable to manipulate the surface shapes of

scanned 3D models.

Figure 5.9: Test results of three scanned 3D models with different
deformation regions surrounded by red curves.

In order to demonstrate the effectiveness of the proposed method,

an experiment is made to compare it with commonly used deformation

methods, i. e., Delta Mush [Mancewicz et al. 2014] and Laplacian

Deformer [Sorkine et al. 2004]. Two examples of deforming the shapes of

the square and the pentagram along the normal direction are given in

Fig. 5.10. The first and third rows present deformed shapes and the second

and fourth rows are contour maps of the deformed shapes in the first

and third rows, respectively. As shown in Fig. 5.10, the deformed shape

using the proposed method is strictly constrained by the boundary shape
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compared with other methods. For example, the shapes of the contour

lines with different heights of the square using the proposed method stay

the same as the boundary, while contour lines using Delta Mush and

Laplacian Deformer gradually become a circle. Therefore, compared with

Delta Mush and Laplacian Deformer, the proposed method is better at

creating the surface shape which well keeps the features of the boundary

shape.

Figure 5.10: The comparison between different deformation methods.
(a) The proposed method. (b) Delta Mush [Mancewicz et al. 2014]. (c)
Laplacian Deformer [Sorkine et al. 2004]. (The first and third rows are
deformed shapes, and the second and fourth rows are contour maps)

Since the proposed method is physics-based, it can create more realistic

shapes compared with purely geometric methods. The finite element

analysis (FEA) is the most accurate and popular numerical method widely

applied in scientific research and engineering calculations. Especially, it

has been widely used to accurately predict elastic and inelastic deforma-
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tions of various objects and structures in engineering fields. Therefore,

FEA is used to obtain deformed shapes as ground truth and compared

them with the proposed method, Delta Mush and Laplacian Deformer

in Fig. 5.11. The left and right columns in the figure present the side

view of deformed shapes of a triangle and a rectangle, respectively. The

results indicate that the deformed shapes using the proposed method are

the closest to the ground truth ones and the most realistic among the

three deformation methods used to obtain the deformed shapes shown in

the figure. In addition, in order to manipulate the shape as similar as

possible to the ground truth, Delta Mush needs to try different values

of two parameters, i. e., the number of smoothing iterations and step

lengths, which causes extra time, and Laplacian Deformer needs to find

appropriate anchor vertices because different anchor vertices may lead to

different shapes. In contrast, the proposed method can directly create

realistic deformed shapes once the deformation region is selected.

Figure 5.11: The realism comparison of deformed shapes in the side
view. (a) Ground truth. (b) The proposed method. (c) Delta Mush
[Mancewicz et al. 2014]. (d) Laplacian Deformer [Sorkine et al. 2004].
(The left and right columns are deformed shapes of a triangle and a
rectangle, respectively)

5.4 Summary

In this chapter, a simple approximate analytical solution of the PDE-

based mathematical model defining the underlying physics of surface

deformations has been proposed to develop a physics-based deformation
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method and used to implement a user interface as a plug-in of the 3D

modelling software Maya to interactively manipulate surface shapes of

3D models with C1 continuity. The validity of the proposed method has

been demonstrated by testing different surface deformations on several

3D models. Compared with purely geometric methods, the proposed

method is stricter to constrain the deformed shape according to boundary

shapes and can generate more realistic shapes.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In the community of computer graphics, PDE-based surface modelling

has attracted considerable attention in recent decades due to its excellent

advantages such as small data, efficient shape deformation, good conti-

nuities and physics-based nature. In this thesis, the challenges of using

numerical PDE surface patches in engineering applications, constructing

and solving a unified PDE-based modelling framework and manipulating

surface shapes using an analytical PDE have been tackled.

To use numerical PDE surface patches in engineering applications, the

numerical solution of a fourth-order PDE with three control parameters

has been presented by using the finite difference method to solve the

4-sided surface patches with C1 continuity. Then, with the numerical

PDE surface patch, an application for the optimal conversion of PDE

surfaces representing high-speed train heads into NURBS surfaces has

been developed. Through this conversion, the numerical 4-sided PDE

surface patch can be used in CAD, CAM and CAE systems. With

the same numerical solution, another application for the multi-objective

aerodynamic optimization of high-speed train heads has been developed,

in which the CFD simulation has been applied to optimize the PDE surface

shape of the train head according to the aerodynamic performance, i. e.,

the aerodynamic drag and lift forces. The proposed method has given
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the first pipeline of using the control parameters in PDE and patch

boundaries to deform and optimize the shape of the model which consists

of several numerical 4-sided PDE surface patches.

Since the numerical solution has a high computational cost and existing

accurate and approximate analytical solutions cannot deal with creating

complex surfaces on different occasions, the unified PDE mathematical

model has been proposed. A novel composite form has been presented to

solve the unified model for creating the 2-, 3- and 4-sided PDE surface

patches with Cn continuity. With the analytical solution, an application

of the surface reconstruction from scanned points has been proposed for

automotive styling design, in which the optimal PDE surface patch with

Cn continuity under the constraints of the two feature curves has been

generated. Several experiments and comparisons with other methods

have indicated the potential of the PDE technique in the styling design

field. In addition, a user interface of the analytical solution of the unified

PDE mathematical model has been developed as a plug-in in Blender.

It can create 2-, 3- and 4-sided PDE surface patches from two, three

and four 3D curves, respectively, and generate complete 3D models from

input curve networks.

The unified PDE-based surface modelling framework can address 2-, 3-

and 4-sided surface patches but cannot deal with arbitrary boundaries. In

order to manipulate surface shape within arbitrary boundaries and achieve

C1 continuity, a novel but simple physics-based surface manipulation

method with a fourth-order PDE involving a sculpting force has been

proposed. A mapping method has been presented to map a deformation

region from a 3D space to a 2D parametric plane, which can simplify the

resolution of the PDE originating from the bending deformation of a thin

elastic plate. An interactive user interface has been developed as a plug-in

of Maya to achieve surface manipulation. The effectiveness, easiness and

better realism of the proposed method have been demonstrated by testing

surface deformations on several 3D models and comparing with other

methods and ground-truth deformations.

Although this thesis has dealt with the main challenges of PDE-based
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surface modelling which have been listed in Section 1.2, there are still

some limitations. The most important one is the rule of effecting surface

shape by changing the three control parameters in PDE. Although the

control parameters have been used as design variables to optimize the

surface shape in applications in Chapter 3 and 4, the geometric meaning

of the control parameters are still unclear. Since the control parameters

are mixed with boundary constraints in the solution process, it is very

difficult to quantitatively analyze the influence of each control parameter

on the solution result. Another limitation is a general issue of PDE-based

surface modelling. Unlike NURBS or Bézier surfaces which are intuitive

for users to deform surface shapes by only moving control points, PDE-

based surface modelling needs to define the boundary conditions and

it is hard to know how to change the conditions, such as tangents and

curvatures, to obtain the desired shape in advance if the sculpting force

(the right-hand side term) is not used to deform surface shapes.

6.2 Future work

There is some work in this thesis that can be further improved in the

future.

• Numerical solution at irregular grids In chapter 3, the finite

differential method has been adopted as the numerical solution

for the 4-sided PDE surface patches. Since the finite difference

method is typically defined on a regular grid, it cannot be used

for the patches with irregular boundaries, such as the round and

pentagram patches. Future work will investigate the finite difference

method at irregular grids.

• Higher order continuity To construct the unified PDE-based

surface modelling framework, the fourth-order PDE has been taken

as the PDE mathematical model in Chapter 4. The continuity

between adjacent surface patches is up to fourth-order, i. e., C4

continuity. For a higher continuity requirement, a higher-order PDE

such as a PDE mathematical model based on a sixth-order PDE

[Zhang & You 2004] will be investigated.
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• Irregular boundary condition The unified PDE-based surface

modelling framework is developed to create 2-, 3-and 4-sided PDE

surface patches. n-sided PDE surface patches (n > 4) such as

5- and 6-sided PDE surface patches or other irregular boundaries

have not been investigated in this thesis. n-sided patches can be

decomposed into 3- and 4- sided patches. For an irregular boundary,

one solution is to resample it into a unified 4-sided boundary and

solve it with the solution of a 4-sided PDE surface patch. However,

this process will involve a big error. In Chapter 5, the proposed

surface manipulation is used to deform a local shape within an

arbitrary irregular boundary by mapping the boundary in the 3D

space into a unit circle on the 2D plane. This mapping method can

also be applied to create surface patches with irregular boundaries,

which will be investigated in the future.

• Surface manipulation In Chapter 5, since the proposed method

needs to project the surface from a 3D space to a 2D plane, the

surface can only be manipulated without overlapping parts. Simple

overlapping parts within the deformation region can be avoided

by changing the user view before confirming vertices. Besides,

the proposed method cannot address the deformation region if its

centroid is located outside of its boundaries. One way to solve

this limitation is to divide the deformation region into several

sub-regions and then construct the mapping relationship of each

sub-region independently, which requires further investigation.
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