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Abstract—Emerging edge computing (EC) systems are cur-
rently exploiting attaching portable edge devices on drones for
data processing close to the sources, to achieve high performance,
fast response times and real-time insights. To this end, existing EC
research has proposed several multiple drone-based edge deploy-
ments for various purposes, such as data caching, task offloading,
real-time video analytics, and computer vision. However, none of
them consider the ability of seamlessly integrating edge resources
running across multiple drones in a single pool, to holistically
manage and control these resources as well as to eliminate vendor
lock-in situations. This paper presents an intelligent resource
scheduling solution for a federated aerial EC system, called
AirEdge, which jointly considers task dependencies, heteroge-
neous resource demand and drones’ flight time. We propose a
multi-task execution time estimation and a dispatching policy, to
select the closest drone deployment having congruent flight time
and resource availability to execute ready tasks at any given time.
For the utilization of the drones’ attached edge resources, we pro-
pose a variant bin-packing optimization approach through gang-
scheduling of multi-dependent tasks that co-locates tasks tightly
on nodes to fully utilize available resources. Experiments on real-
world data-trace from Alibaba cluster trace with information on
task dependencies (about 12,207,703 dependencies) and resource
demands show the effectiveness, fast executions, and resource
efficiency of our approach.

Index Terms—Edge computing, Aerial computing,
Dependency-aware, Application container, Execution time,
Resource efficiency

I. INTRODUCTION

EDGE computing (EC) is an innovative distributed com-
puting paradigm that brings computation and data storage

closer to the location where they are needed, to improve
response times and save bandwidth. Instead of housing these
critical resources in a big data-center that could be hundreds
or thousands of miles away from the data source, this enabling
architecture deploys them at the edge of the network, and
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(b) Federated Aerial Computing
Fig. 1. (a) The architecture of multiple aerial edge computing system, and
(b) the architecture of a federated aerial edge computing system. The latter
requires a holistic approach to multiple aerial edge resource management.

even beyond the edge of the network [1]. Emerging latency-
sensitive technologies, such as connected and autonomous
vehicles (CAVs) [2], healthcare IoT systems [3], real-time
augmented reality [4], smart cities [5], Industry 4.0 [6], etc,
rely on heterogeneous edge resources in close proximity, to
offload their computational intensive tasks, improve response
times and save bandwidth. To further improve latency, the
low altitude platform (LAP) unmanned aerial vehicles (UAVs)
or drones are currently being exploited by EC systems to
execute complex resource-hungry use cases [7]–[10]. Drones
can fly to the target locations with nearly no constraint due to
their mobility, flexibility and adaptive altitude, to deliver faster
execution closer to data source. However, a typical drone has a
limited flight time due to power factor which can lead to loss of
job if it is not taking into consideration [11]. The critical issue
is how to optimize both the drones’ flight time and application
execution on the attached edge device(s) in a timely manner,
without jeopardizing application performance.

Consequently, existing researches on EC has proposed
several multiple drone-based edge deployments to cater for
wide range of end devices [12]–[17]. However, none of them
considers the ability of seamlessly integrating edge resources
and service entities running across multi-drone deployments
in a single pool, such that these resources can be holistically
managed and controlled from a single federated plane, ap-
plications can be deployed dynamically across the resources,
and vendor lock-in situations can be eliminated. Moreover,
efficient orchestration of complex dependencies among tasks
in such independent aerial deployments is challenging due
to constrained resource capabilities, mobility and availability
factors, etc. For example, Fig. 1 (a) shows a multiple aerial
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Fig. 2. The directed acyclic graph (DAG) of a video processing (VP) job.

computing system without any cooperation. Such an approach
can result in resource overloaded and longer queuing delay for
tasks due to insufficient resource availability, and hence it is
not suitable for latency-sensitive edge workloads.

Aerial edge federation makes it easier to manage multiple
drone deployments by synchronizing resources across multiple
drones, enabling flexible tasks execution and preventing lock-
in situations. Having a federated edge minimizes latency by
serving users from the edge that is the closest to them [18],
[19]. A recent lightweight Kubernetes-based edge tool, called
Kubermatic1, can deploy and manage multiple edge resources
running across multi-drones with a single management inter-
face, as shown in Fig. 1 (b). In a federated edge clusters setup,
the federation control plane (FCP) is deployed in one of the
clusters which serves as the host cluster. Participating
edge deployments can be added or removed from the FCP.
Nevertheless, to offload complex applications, e.g., a video
processing application shown in Fig. 2, which consists of
a large number of inter-dependent applications and requires
substantial resources for execution, present several challenges.
First, given a federated edge resources running across multi-
drone, where each drone is attached with one or more edge
devices, how to automatically decide where a job or multi-
task should be executed is a tricky task. Previous works [20]–
[22] assume that each edge deployment can only execute one
task or job at any time and schedule each task individually,
which results in high communication overhead. Second, the
existing container schedulers deploy tasks randomly on nodes
with sufficient resource availability without considering inter-
task dependencies, which results in longer execution time,
resource wastage through underutilized nodes, and a reduction
in the number of tasks that can be executed, given the available
resources. These schedulers do not pack tasks tightly on nodes
to achieve high resource utilization.

In this paper, we show that machine learning (ML) tech-
niques [23], [24] can help federated aerial edge systems
to achieve effective dispatching strategy and to cope with
stochastic service request arrivals. We propose AirEdge,
which extends the state-of-the-arts by providing an intelli-
gent dependency-aware multi-task dispatching and co-location

1https://www.kubermatic.com/products/kubermatic/

scheme to achieve high resource utilization and fast execution
of tasks in a federated autonomous aerial (drone-based) EC
system. For a multi-task dispatch, a major issue is the com-
plexity of federated aerial edge network, which consists several
drones attached with edge devices and heterogeneous resource
request from end users. A decentralized approach [25], [26],
which interacts with individual member cluster, would exhibit
high computation complexity and is far from trivial to realize.
Therefore, we adopt an FCP to holistically obtain an update
state from all participating drones, in terms of location, flight
time availability and resource availability, through a single
application programming interface (API), such that optimal
multi-task dispatching is achieved. By contrast, if multi-tasks
are scheduled naively, e.g., in an edge deployment which can
only execute one task or job at any time, each task is sched-
uled individually [20]–[22], federated aerial edge can become
unproductive. Hence, an efficient multi-task orchestration is
needed to achieve optimal performance in federated aerial
computing. With limited edge resources and drones’ flight
time, it is necessary to consider task dependencies in drone-
based EC task offloading, by jointly optimizing the drones’
flight time and resource availability such that all the tasks can
be fast executed with minimum resources before the drone
has to return for recharging. Hence, our aim is to schedule and
execute all the tasks by considering dependencies and resource
demands, such that the actual scheduling and execution time
is minimized, and is much less than the drones’ flight time. In
summary, to achieve our AirEdge implementation, we address
the following critical areas:
• We propose an intelligent scheduling through the joint

optimization of the set of tasks packaged in lightweight
containers, the drones’ flight time and the cluster re-
sources, that packs or co-locates the tasks tightly on nodes
to fully utilize available resources.

• Specifically, we derive a multi-task ML based execution
time estimation and a dispatching policy, called closest,
to select the closest drone deployment having congruent
flight time and resource availability to execute ready
tasks at any given time and to autonomously deploy the
selected drone to the needed location.

• To fully utilize the available drones’ attached edge re-
sources, we further propose a variant bin-packing op-
timization approach through gang-scheduling of multi-
dependent tasks, to co-locate tasks tightly on nodes. The
drone returns to its box after completing its mission.

• We show that the proposed AirEdge can minimize the ac-
tual completion time of tasks using minimum resources,
such that the actual completion time is much less than
the drones’ flight time.

• We conduct extensive experiments and comparisons with
real-world data-trace from Alibaba cluster trace2, which
provides information on task dependencies and resource
demands, on federated aerial edge deployments.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we present some

2https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace-2018.md
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TABLE I
RECENTLY INTRODUCED DRONE-BASED EDGE DEVICES

Edge Devices Weight Storage Capacity GPU/vCPU Capacity Memory Capacity Onboard Computing
AWS Snowcone 2.1Kkg 8 TB 2 vCPUs 4 GiB AWS IoT Greengrass
Acer aiSage 357g 32 GB eMMC 6 vCPUs + GPU 2 GiB AI Inferencing
Huawei AR502H Series 1.1kg Up to 250 GB 4 vCPUs 2 GiB DDR4 Docker
Lenovo ThinkSystem SE350 3.75kg Up to 500 GB Up to 16 vCPU Up to 256 GiB Lenovo XClarity
Dell Edge Gateway 3000s 1kg Up to 64 GB 2 vCPUs Up to 2 GiB EDM
Dell Edge Gateway 5000s 1kg Up to 512 GB 2 vCPUs Up to 8 GiB EDM
HPE Edgeline EL300 4.91kg Up to 256 GB Up to 4 vCPUs Up to 8 GiB HPE Edgeline IoT
INTELLIEDGE G700 5.45kg Up to 512 GB Up to 8 vCPUs Up to 16 GiB FUJITSU IoT Solution
Google Edge TPU 39g 8 GB eMMC 4 vCPUs 2 GiB AI/ML Inferencing
Azure Stack Edge mini 3.17kg 1 TB 16 vCPUs 48 GiB AI/ML Inferencing
HIVECELL 1.36kg 500 GB 6 vCPUs + GPU 8 GiB AI/ML Inferencing
dynaEdge DE-100 309g Up to 512 GB 2 vCPUs Up to 16 GiB DynaBook Vision
NVIDIA Jetson Xavier NX 47g Up to 512 GB 6 vCPUs + GPU 8 GiB AI/ML Inferencing

preliminaries on task dependency-awareness and discuss our
motivation. In Section IV, we detail our proposed AirEdge
for achieving high resource utilization and minimizing the
execution times of applications deployed on federated aerial
edge resources. In Section V, we compare the performance
of our proposed AirEdge against those of several state-of-
the-art approaches through extensive experiments. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

To support a wider implementation of drone-based edge
deployment, cloud computing providers, i.e., Amazon Web
Services (AWS), Microsoft Azure, etc., have recently intro-
duced various drone-based edge computing devices and begun
offering edge/cloud computing services directly on these de-
vices. Table I lists some of the recently introduced drone-based
edge devices. A typical drone-based edge deployment can
attach one or more or different combination of these devices,
depending on the drones’ load capacity.

Multiple UAVs/drones can be deployed to provide EC
services for IoT and other end devices. The authors of [12]
proposed a multi-UAV-aided mobile-edge computing (MEC)
system, where multiple UAVs act as MEC nodes to provide
computing offloading services for ground IoT nodes of limited
local computing capabilities. The work [13] proposed a multi-
UAV-enabled MEC system, where edge servers are equipped
on multiple UAVs to provide flexible computation assistance
to IoT devices with hard deadlines. In [14], a two-layer
optimization method was presented for jointly optimizing
the deployment of UAVs and task scheduling to minimize
system energy consumption. The work [15] formulated a
computation efficiency maximization problem in a multi-UAV
assisted MEC system, where both computation bits and energy
consumption were considered. In [16] a multi-UAV enabled
MEC system was introduced, where the energy consumption
for ground users is minimized by jointly optimizing the
UAV task scheduling, bit allocation, and UAV trajectory. The
authors of [17] proposed a cluster of multi-UAVs to provide
computing task offloading and resource allocation services to
IoT devices. They further proposed a multi-agent deep rein-
forcement learning (MADRL)-based approach to minimize the
overall network computation cost while ensuring the quality
of service (QoS) requirements of IoT devices.

Contrary to on-premise edge deployments and cloud com-
puting, drone-based edge resources are limited, and therefore
managing resources is one of the key challenges in aerial
edge deployment [10]. Task co-location of different workloads
on the same computing cluster has gained popularity as
a heuristic solution for improving resource utilization and
system throughput in both cloud and edge computing. A
workload co-location mechanism was proposed in [27]–[30]
to maximize the resource utilization. Our work in this paper
differs substantially from the previous works [29], [30], which
focused on workload co-location in cloud environment. To fur-
ther improve edge resources, a resource management scheme
which seamlessly integrates or federates resources across
multiple edge, such that the resources are holistically managed
has been proposed in [18], [19], [25], [26]. Our recent work
[19] considered a dependency-aware task dispatching and co-
location in a federated edge system. Dependency usually exists
among the tasks of a job. A task cannot start running until its
dependent tasks have been completed. Modern applications
are complex and consist of a large number of inter-dependent
applications. The problem of task scheduling based on task
dependency was investigated in [31]–[34]. The goal of these
approaches is to identify task scheduling decision that mini-
mizes the average completion time of multiple applications.

The aforementioned schemes on multiple drone-based task
offloading and execution however do not consider the ability
of seamlessly integrating edge resources and service entities
running across multi-drone deployments in a single pool, such
that these resources can be holistically managed and controlled
from a single federated plane, applications can be deployed
dynamically across the resources, and vendor lock-in situations
can be eliminated. They do not consider tasks dependencies
and assume that each UAV can only execute a task. In addition,
they do not consider drones’ flight time, and assume that a
drone can fly for unlimited amount of time. It is important to
note that such an approach is impractical, except for tethered
drone systems which have limited navigation. Therefore, an
effective completion time estimation of ready applications is
needed to produce a dispatching plan in a federated aerial
EC system, such that these applications can be offloaded to a
drone having sufficient flight time and resources to execute
the applications. To this end, research on other types of
EC systems has proposed several methods of predicting or
estimating tasks execution time, based on ML [23], [24] and
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Fig. 3. Dependency depth of randomly selected Alibaba cluster jobs.

incremental learning [35], as well as of scheduling [36]–[39].

III. PRELIMINARIES AND OUR MOTIVATION

In the light of the prior research, we first present some
preliminaries and discuss our motivation.

A. Preliminaries

Dependency-awareness is critical for achieving efficient
multi-task dispatching and co-location. Most of the batch
workloads of Alibaba cluster trace for example are directed
acyclic graphs (DAGs), and only some of them are inde-
pendent. Fig. 3 plots the dependency depth of 20 randomly
selected jobs from Alibaba cluster trace. It can be seen that
the average job has a depth of 10. A job is typically consisted
of several tasks whose dependencies are expressed by DAG.
Clearly, if a task A is depending on task B, then task A cannot
start until all the instances of task B are completed. The DAG
of the tasks in a job can be deduced from the Task_Name
field of all the tasks of this job. For example, the DAG of a
video processing (VP) job is shown in Fig. 2, where multi-
dependent tasks together complete the video classification
computation. The job consists of inter-task dependency depth
γ of 12, i.e., (P1, P2,. . . ,P12). The DAGs of the 12 tasks are
expressed with their Task_Names. Task ‘P1’ means that P1
is an independent task and can be started without waiting for
any other task. Task ‘P4_1’ indicates that task P4 depends
on the completion of task P1. Similarly, ‘P10_6_7_8’ means
that task P10 depends on the finishing of tasks P6, P7 and
P8. A task is characterized by the type ε, data size δ, resource
requirements in terms of CPU 〈c〉 and memory 〈m〉. The com-
plex inter-task dependency with multidimensional resource
demands, i.e., various amounts of CPU and memory resources,
and communication requirements, make resource management
in such an EC system very challenging. Knowledge about task
characteristics, such as resource demands and dependencies,
is necessary to pack or co-locate tasks effectively in a node or
cluster, ultimately to minimize the response times and improve
resource utilization [29], [30], [40]. Hence a key objective is
to reduce the execution time of such tasks and to improve
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Fig. 4. The example of scheduling strategies.

resource utilization by considering the inter-task dependency
and resource demands.

B. Our Motivation

To illustrate the advantage of AirEdge, we show a moti-
vating example in Fig. 4. The upper part shows each task of
a video processing job, with its actual execution time Eexi
and resource demand (CPU and memory 〈c,m〉). Our aim
is to deploy the job in a drone edge with requisite available
resources, such that dependent tasks can communicate faster
to make applications more interactive, compared to other
deployments across different drones [10]. Here, we assume
that the selected drone has the requisite fight time and available
resources to accommodate all the tasks, i.e., 〈8, 5〉. The lower
part show the scheduling of AirEdge together with three other
state-of-the-art approaches, namely, Spear [40], Graphene [41]
and Tetris [42], as well as the random approach. Our AirEdge
achieves the lowest execution time of

∑n
i=1Eexi/n (n is

the number of tasks), due to the following reasons: (i) our
approach utilizes gang scheduling [36], which co-schedules
all the tasks at a time, and (ii) our packing strategy explores
the available nodes to find the best one which has requisite
available resources (CPU and memory) to execute all the tasks
by packing them tightly on the node. By contrast, Spear and
Tetris deploy the same tasks individually or in parts, resulting
in execution times of

∑n
y=1Eexy+

∑m
z=1

∑k
i=1Eexiz/k and∑m

z=1

∑n
i=1Eexiz/n, respectively. In particular, Spear picks

tasks along the critical path (CP) in the DAG. The CP of a
task is the longest path from the task to the output. As an
example, given a job with 100 DAGs, Spear deploys about
15% of the tasks at a time. Tetris on the other hand does
not consider the task dependencies. It deploys at least 50%
of any given tasks at a time and focuses on packing tasks
on nodes to achieve high resource utilization. Graphene, a
state-of-the-art dependency-aware scheduler, considers both
task dependencies and resource packing. It first co-schedules
some tasks identified as troublesome tasks and then places
the rest of the tasks afterward, resulting in an execution time
of
∑n
x=1Eexx+

∑m
z=1

∑k
i=1Eexiz/k. The random approach

deploys a task randomly to any available node, and assumes
a node can only execute a task at a time, resulting in an
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execution time of
∑n
i=1Eexi . Generally, delay in scheduling

dependent tasks directly impacts job completion time, and
utilizing gang scheduling is beneficial for overall performance.

IV. PROPOSED AIREDGE

In this section, we detail our proposed AirEdge for achiev-
ing high resource utilization and minimizing the execution
times of applications deployed on federated aerial edge re-
sources. Our system model is depicted in Fig. 5.

A. System Model

The most important feature of EC is the ability to provide
storage and computing resources close to where it is needed,
so that applications can process data and return results with
a minimum time. One of the advantages of using federated
edge system is the ability to synchronize core data across
all edge deployments, such that same high efficiency can be
achieved wherever it is needed. For example, a CAV moving
within a road segment at a constant speed v should be able
to access the closest edge deployment and react immediately
to changing road conditions, without first offloading its core
data which could lead to an increased latency. Therefore,
data synchronization is a best-fit solution for CAVs to fully
exploit EC. Another example is IQ Smart City solution3,
which implements an artificial intelligence (AI) based multi-
sensory analytic system for video (face recognition, license
plate recognition, behavior analysis, etc.), sound and smell
analytics in 60 countries. Assuming that all the sensor devices
and their locations Dl

i are federated with the edge, such that
their data can be synchronized among the participating edge
deployments, then any closest available drone deployment can
fly autonomously to the needed location Dl

i to execute tasks
without the need of prior data offloading. Autonomous drones
have tools onboard to help them move around and plan paths,
as well as to estimate their fight time f li from their locations

3https://iomni.ai/

li to any needed location Dl
i. For applications with small data

sizes, it is possible to package the applications and database in
containers, and then to deploy it to the closest edge whenever it
is needed. For such applications, let 〈δ, c,m〉 represent the size
of data input, CPU and memory requirements, respectively.
The advantage of using containers to host applications at the
edge is that these applications can be executed in any edge
deployment regardless of the resource type, configuration or
vendor/provider. All the recently introduced edge devices in
Table I are made of container-instances (container optimized
nodes), which provide an efficient route to application execu-
tion within a lightweight, isolated and well-defined execution
environment, where each container can run within its specified
resource demand 〈δ, c,m〉. For instance, a class of AWS
EC2 instances under the family name snc1, i.e., snc1.micro,
snc1.small and snc1.medium can be provisioned on AWS
Snowcone edge device.

Given a federated aerial EC deployment EDGE, where each
participating edge deployment Dedgei is a drone or cluster
of container-instances i.e., edge device(s) with virtualized
container-optimized nodes, an update state from the FCP
which include each drones’ fight time availability fi, location
li and total resource capacity or availability D〈δ,c,m〉edgei

is needed
to dispatch ready applications, C, to the closest drone deploy-
ment Dedgei? with minimum flight time f li from its location li
to the end device(s) location Dl

i, having sufficient flight time
fi and resource capacity or availability D〈δ,c,m〉edgei

to execute the
tasks, such that the tasks are dispatched concurrently, namely,

C⇒ Dedgei? , (1)

where

Dedgei?=arg min
Dedgei∈EDGE

{
f li : f li <fi, D

〈δ,c,m〉
edgei

sufficient
}
. (2)

Existing works on multi-UAV or drone-based task offload-
ing and execution in EC systems [10], [12]–[17] do not
consider drones’ flight time and assume a drone can fly for
unlimited amount of time, which can lead to loss of job due
to drones’ limited flight time [11]. Some researches [43],
[44] have proposed a greedy approach to deploy a job to an
edge which brings the least increase to the response time.
But this approach can lead to job waiting at the server due
to insufficient resource availability, which is not suitable for
latency-sensitive jobs. Hence an execution time estimation,
tasks resource demands, edge resource availability and drone’s
flight time should be jointly considered in a drone-enabled
EC system. Therefore, given a federated drone-based edge de-
ployment EDGE and a set C of inter-dependent containerized
applications, where each application Ti ∈ C serves as a task
with its resource demand denoted as T 〈c,m〉i , our goal is to
use the predicted or estimated execution time of all the tasks
to select a drone having congruent flight time and resource
availability, such that we can intelligently schedule the tasks
to minimize the actual execution time as well as to achieve
high resource utilization efficiency.

As multi-dependent containerized applications are admitted
into the system, their execution times are estimated using
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linear regression model. The multi-task features fmt, including
type (number) of tasks ε, dependency depth γ, resource
demand 〈c,m〉 and data size δ, are feed into the ML model
Θ to estimate the values of their execution times, i.e.,

fmt ·Θ =
[
Ẽex1

Ẽex2
· · · Ẽexε

]
. (3)

Assuming that fmt∈R1×d is a d-dimensional vector (tensor),
then Θ is a (d×ε)-dimensional parameter matrix. To build this
predictor Θ, we train it using historical data from previously
executed tasks/jobs based on Keras4. Keras is a library which
wraps TensorFlow5 complexity into simple and user-friendly
API. The dataset D = {(xi,yi)}ni=1 contain d-dimensional
tensors of data features xi ∈R1×d and ε-dimensional tensors
of labels (actual execution times) yi ∈ R1×ε. The learning
problem is to solve the following optimization:

Θ? = arg min
Θ∈Rd×ε

1

2n

n∑
i=1

‖xiΘ− yi‖22 +
λ

2
‖Θ‖2F , (4)

where λ is the regularization parameter and ‖ · ‖F denotes
the Frobenius norm. The optimization (4) is solved using
gradient-descent, where the model is updated iteratively until
convergence, i.e., Θt+1 =Θt−η

(
1
ng(Θt)+λΘl

)
, in which η is

the learning rate, g(Θ)= 1
nX

T
(
XΘ−Y

)
denotes the gradient

of the loss function, X=
[
xT

1 · · ·xT
n

]T
and Y =

[
yT

1 · · ·yT
n

]T
are the feature set and label set, respectively.

Note that the dispatcher only has the value of Ẽexi , instead
of the actual execution time, when making a decision to select
a drone. Also it is important to note that existing researches
[23], [24], [35], [37]–[39] do not consider the scheduling
strategy when estimating execution time of tasks. However,
since the scheduling actually influences the job execution
time, it should be taken into consideration when estimating
the execution time. We show that with this estimation of job
execution time, AirEdge can minimize the actual execution
time of multi-dependent tasks and achieve high resource
utilization in a federated aerial edge system.

For a task T , let Es and Ec denote its actual starting
time and completion time, respectively. Therefore, the actual
execution time of T is:

Eex = Ec − Es. (5)

AirEdge utilizes the gang scheduling [36] strategy to co-
schedule all ready applications at a time. Hence the aggregate
execution time of a multi (n)-task C is given as

∑n
i=1

Eexi
n .

The federated edge system EDGE consists of all N partici-
pating individual edge deployments Dedgei , 1 ≤ i ≤ N , i.e.,

EDGE =
∑N

i=1
Dedgei . (6)

Given a cluster of container-instances or nodes I in each
deployment Dedgei , let I〈c,m〉i denote each node’s resource
capacity or availability. For the purpose of simplicity, we will
focus on the CPU and memory requirements/capacity of all
tasks and resources. That is, the storage is sufficient for the

4https://keras.io/
5https://www.tensorflow.org/

size of data input δ, and hence the requirement 〈δ, c,m〉 is
simplified as 〈c,m〉. The resource demands of k containerized
applications to be orchestrated,

∑k
i=1 Ti

〈c,m〉, the update state
of the EDGE clusters, i.e., the resources availability D〈c,m〉edgei

,
drones’ flight time fi and location li, are important information
needed in order to make informed decision on where to
deploy ready applications C at time t. Our strategy chooses
the closest drone having requisite capacity D

〈c,m〉
edgei

and fight
time fi. In real scenario where multi-users u ∈ U offload
multi-tasks with multi-dependency at t, these applications are
deployed as a multi-Job J, where each Job J is a collection
of each user’s multi-tasks, with collective resource demand
denoted as

∑k
i=1T

〈c,m〉
i =T 〈c,m〉′, and the aggregate execution

time estimation as
∑k
i=1Ẽexi = Ẽex′. We can dispatch all

users’ Jobs with dependency on the same cluster by jointly
considering

∑
J∈J T

〈c,m〉′, D
〈c,m〉
edgei

,
∑
J∈J Ẽex′ and fi. Hence

the aggregate of the actual execution time of a multi-job J is
given as: ∑

J∈J

k∑
i=1

Eexi
k

= Eex′, (7)

and we can dispatch a multi-job to the closest edge, such that:

J⇒ Dedgei? . (8)

The resource utilization of the cluster for multi-job deployment
is thus

ρ
〈c,m〉
C =

∑
J∈J T

〈c,m〉′

D
〈c,m〉
edgei

. (9)

B. Problem Formulation
The basic notations adopted are described in Table II.

AirEdge includes an intelligent scheduling, which packs tasks

TABLE II
COMMON NOTATIONS

Notation Description
EDGE Federated edge deployments
T Individual application or task
〈δ, c,m〉 Storage, CPU and memory resources
C A set of containerized applications
T 〈c,m〉 Application or task resource requirements
Dedgei Individual edge deployment or cluster
Dedgei?

Closest edge deployment or cluster
Ii Container-instance or node in a cluster
I
〈c,m〉
i Resource capacity or availability of a node
D

〈c,m〉
edgei

Resource capacity/availability in an edge

D
〈c,m〉
edgeiU

Resources used for execution

D
〈c,m〉
edgeiARU Actual resources usage of jobs

Es, Ec Application/task start, completion time
Eex Application or task execution time
Ẽex Application or task execution time estimation
li Drones’ location
Dl

i End device location
fi Drones’ flight time
f li Drones’ flight time from its box to location
ρ
〈c,m〉
C Cluster resource utilization
ρ
〈c〉
C , ρ〈m〉

C Cluster CPU, memory resource utilization
γJ Dependency depth of a job
fmt Set of multi-task runtime parameters
J , J A Job, A set of Jobs
u, U A User, A set of Users
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tightly on nodes to fully utilize available resources at edge
clusters, while considering task dependencies. Our objectives
are to maximize the cluster resource utilization, ρ〈c,m〉C of (9),
and to minimize the overall actual execution time of tasks,
Eex′ of (7), subject to certain constraints.

Constraints: First, the collective resource demand or request
of a multi-job J or multi-task at any given time t cannot exceed
the collective resource capacity or available in the cluster:∑

J∈J
T 〈c,m〉′ ≤ D〈c,m〉edgei

, ∀c,m. (10)

Second, the aggregate execution time estimation of a multi-
job J or multi-task at any given time t cannot exceed the flight
time availability of any selected drone:∑

J∈J
Ẽex′ ≤ fi, ∀Dedgei∈EDGE. (11)

Third, unused or inactive container-instance or node Ii ∈
Dedgei in the cluster would be shut down. All the nodes are
in one of the two states: Active and Inactive. An Active node
is a node that is ready to accept jobs or has at least a job
being started, executing or completing. An Inactive node is a
node that is not ready to accept jobs and not having at least a
job that is being started, executing or completing. These two
states can be expressed as follows:

∀c,m β (Ii) =

{
1, Active if Ji ∈ [Es, Ec, Eex],
0, Inactive if Ji /∈ [Es, Ec, Eex],

(12)

where the indicator β (Ii) = 1 indicates that the node Ii is
ready to accept new jobs, and at least a job Ji is being
started, executing or completing, i.e., Ji ∈ [Es,Ec, Eex], on
Ii; otherwise β (Ii)=0.

Optimization formulation: Hence, maximizing utilization of
a cluster depends on application orchestration:

Maximize ρ
〈c,m〉
C =

∑
J∈J T

〈c,m〉′

D
〈c,m〉
edgei

, (13)

subject to J⇒ Dedgei? , ∃, (14)∑
J∈J

Ẽex′ ≤ fi, ∀Dedgei∈EDGE, ∃, (15)∑
J∈J

T 〈c,m〉′ ≤ D〈c,m〉edgei
, ∀c,m, (16)

β (Ii)∈ {0, 1}, ∃. (17)

The constraint (14) indicates the dispatching of multi-job to
the closest edge. We shall discuss the details of our dispatching
policy in Subsection IV-C and in Algorithm 2. Constraint (15)
indicates that the overall execution time estimation of the
multi-job should be congruent to the flight time availability
of the selected drone. The constraint (16) indicates that the
collective resource demand of a multi-job cannot exceed the
resource availability of the selected drone, while the condition
(17) indicates that active nodes (β (Ii)=1) should be used for
execution, and inactive nodes (β (Ii)=0) should be shut down.
Hence, our aim is to minimize the number of active nodes
used for execution by co-locating or packing tasks tightly on
each node in order to maximize resource utilization. We shall
discuss the details of our packing strategy in Subsection IV-C
and in Algorithm 3.

On the other hand, the overall actual execution time can be
minimized depending on orchestration:

Minimize
∑
J∈J

k∑
i=1

Eexi
k

= Eex′, (18)

subject to J⇒ Dedgei? , ∀c,m. (19)

The constraint (19) indicates the dispatching of multi-job to the
closest edge. The execution time of multi-dependent tasks can
be minimized by executing them on the same cluster, i.e., by
enabling the inter-dependent tasks to communicate faster. The
details of our dispatching policy are given in Subsection IV-C
and in Algorithm 2.

C. Algorithm

Our AirEdge solution consists of three components: the
execution time estimation, dispatching, and packing. These
components aim at finding the optimal solution for the problem
formulation in (13) and the formulation in (18). The execution
time for multi-job required by the dispatcher is first estimated.
Our dispatching strategy is based on the orchestration of
ready tasks to the closest cluster or drone deployment with
the minimum flight time f li to arrive at location Dl

i, and
having requisite available resources to accommodate the tasks,
while our packing strategy involves packing these tasks tightly
on nodes or container-instances to fully utilize the available
resources. Below we detail the procedures of the execution
time estimation, dispatching, and co-location or packing.

Execution time estimation: When the set of multi-dependent
tasks C are ready to be deployed, the collective execution
time Ẽex′ is first estimated. We train a ML regression model
with historical data for this prediction task. The input to the
prediction model is the set of runtime parameters fmt, such
as task dependency depth γ, resource demands T 〈c,m〉′, data
size δ and type of task ε, and the output is the execution
time estimation Ẽex′. Algorithm 1 describes the execution time
estimation for multi-job. Once the execution time estimation
value is extracted, it is used in the dispatching stage.

Algorithm 1 AirEdge: Execution Time Estimation
Input: Multi-Job J released at time t in location Dl

i, set of
runtime parameters fmt

Output: Execution time estimation
∑
J∈J Ẽex′ of a multi-job

1: for Ji ∈ J do
2: Data size of Ji = δJi
3: Dependency depth of Ji = γJi
4: for Ti ∈ Ji do
5: Ti = 〈c,m〉, i.e., resource demand
6: ML

(
fmt

)
Ti

= ẼexTi
7: end for
8: ẼexJi = ẼexJi + ẼexTi
9: end for

Dispatching: Our policy is to dispatch a set of tasks to the
closest edge Dedgei? with the congruent resource capacity or
availability and flight time availability, i.e., T 〈c,m〉′ ∼= D

〈c,m〉
edgei?

and Ẽex′ ∼= fi? , respectively. For the rationale of this strategy,
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again consider the smart city solution, IQ Smart City, which
provides an AI based multi-sensory analytic systems for video,
sound and smell analytics, integrated with a V2X platform, i.e.,
Ericsson Connected Vehicle Platform (CVP)6, to serve about
4.5 million active vehicles across more than 130 countries.
Assume that there are updates from a given set of vehicles
and sensors at location Dl

i and time t. Then it is better to
deploy a closest drone having congruent resource and flight
time availability to serve these vehicles and sensors at the same
time, i.e., J⇒ Dedgei? .

Our strategy utilizes the closest heuristic to minimize the
overall response time. This is based on the orchestration
of ready tasks to the closest drone deployment or cluster
(i.e., with the smallest flight time to the needed location)
having requisite flight time and available resources to execute
the tasks. Closest is a widely adopted heuristic or principle
in distributed systems, since mobile devices often need to
communicate only with the closest or nearest edge-clouds.
Most of the works on edge-clouds, e.g., [29], [30], [43], [44],
adopt the closest principle as the task offloading policy.

Algorithm 2 AirEdge: Dispatching Policy
Input: Multi-Job J released at time t within location Dl

i,
execution time estimation

∑
J∈J Ẽex′, and federated edge-

drone deployments Dedgei ∈EDGE update state
Output: Closest drone with congruent flight time and resource
availability, such that J⇒ Dedgei?

1: for Dedgei ∈ EDGE do
2: if

∑
J∈J T

〈c,m〉′ ∼= D
〈c,m〉
edgei

and
∑
J∈J Ẽex′ ∼= fi then

3: if Dedgei? = arg min
Dedgei∈EDGE

(
f li
)

then

4: J⇒ Dedgei?

5: else
6: Dispatch J to next closest edge
7: end if
8: end if
9: end for

Algorithm 2 describes the dispatching procedure in 3 steps.
First, it captures the collective resource demand of ready multi-
task/job and location of users, and updates the state of EDGE
resources. Second, it selects the closest edge having congruent
resources (line 3). Lastly, it dispatches the multi-task/job to the
selected cluster (line 4). If the closest edge does not have the
required resources, the selection procedure is repeated until the
next closest edge having congruent resources is found, and the
multi-task/job is dispatched to the next closest edge (line 6).

Packing: At the edge cluster, we develop a new packing
algorithm which uses the cluster resource capacity or availabil-
ity and multi-job resource requirement information to provide
better packing, such that more efficient resource utilization
is achieved in the federated system. Specifically, the gang
scheduling is adopted to co-schedule all the multi-jobs at
a time, while the variable-sized multi-capacity bin-packing
(VSMCBP) algorithm [45] places the jobs on nodes by co-
locating jobs tightly on each node. As multi-jobs arrive at the

6https://www.ericsson.com/en/internet-of-things/automotive/connected-
vehicle-cloud

Algorithm 3 AirEdge: Multi-job packing
Input: Multi-Job J dispatched to closest edge cluster Dedge? ,
resource capacity or availability I〈c,m〉i of all nodes Ii∈Dedge?

Output: Multi-Job co-location through packing, such that
fewer container-instances or nodes are used in full utilization,
i.e., Minimize

∑
Ii∈Dedge?

Ii

1: for Ii ∈ Dedge? do
2: if β (Ii)= 1 then
3: I

〈c,m〉
i = 〈c,m〉, i.e., resource availability

4: for J ∈ J do
5: if Γ [J, Ii] = 1 then
6: J ⇒ Ii
7: I

〈c,m〉
i = I

〈c,m〉
i + T 〈c,m〉′

8: end if
9: end for

10: if I〈c,m〉i ≥ 〈c,m〉 then
11: i = i+ 1
12: end if
13: end if
14: end for

cluster Dedge? , the VSMCBP algorithm scans the list of the
jobs, and maps these jobs to nodes. The key difference between
the VSMCBP and other bin-packing algorithms, such as first
fit bin packing (FFBP) [46], is the criteria used to select which
jobs should be co-located to fully utilize any given node(s).
The FFBP algorithm requires the next job to be packed on
the current node, and if this cannot be done, a new node is
used. The VSMCBP algorithm on the other hand scans the
given list of jobs and maps jobs randomly to nodes in full
utilization. Some jobs consist of a single task and do not have
dependent or do not depend on other task(s), and such jobs
are also co-located with other jobs.

Multi-job J is a collection of several jobs J ∈ J. These
jobs are packed tightly on nodes, so that fewer nodes are used
in full utilization and all the jobs are executed concurrently.
Hence our packing strategy is to solve the problem:

Minimize
∑

Ii∈Dedge?

Ii, (20)

subject to J⇒ Dedge? , (21)∑
J∈J

Γ [J, Ii] · T 〈c,m〉′ ≤ I〈c,m〉i , ∀c,m, (22)

Γ [J, Ii]=

{
1, if J ⇒ Ii,
0, otherwise, ∀Ii ∈ Dedge?.

(23)

The constraint (22) indicates that the total resource require-
ments of co-located jobs cannot exceed the node resource
capacity or availability, while the condition (23) means that
if job J is deployed on the node Ii, the indicator returns a
value of 1; otherwise, 0 is returned. This is to ensure that
each job is placed in exactly one node. The powerful Google
OR-Tools7, which provides an interface to several mixed-
integer programming (MIP) solvers, i.e., coin-or branch and
cut (CBC)8, is employed to solve this VSMCBP problem for

7https://developers.google.com/optimization
8https://projects.coin-or.org/Cbc
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TABLE III
FEDERATED-EDGE RESOURCE CAPACITIES

Edge Deployments Attached Edge Devices(s) and Total Weight CPU Capacity (Cores) Mem Capacity (GiB)
Drone 1 Snowcone + Huawei AR502H (3kg) 6 Cores 6 GiB
Drone 2 Dell 3000 + Dell 5000 + aiSage + dynaEdge (5.03kg) 12 Cores 28 GiB
Drone 3 HPE EL300 + Stack Edge mini (8.1kg) 20 Cores 58 GiB
Drone 4 INTELLIEDGE G700(x2) (11kg) 16 Cores 32 GiB
Drone 5 Lenovo SE350 + HIVECELL + Xavier NX + Dell 3000 (13.12kg) 30 Cores 274 GiB
Drone 6 Stack Edge mini(x4) + HIVECELL + Huawei AR502H (14.96kg) 74 Cores 202 GiB

multi-job packing.
Algorithm 3 describes the packing strategy which packs

tasks tightly on nodes, such that for any given tasks/jobs, fewer
nodes are used for execution. It takes the resource demand of
multi-task/job and resource availability of container-instances
or nodes as input, then scans through the multi-task/job to
select jobs having congruent resources matching the active
node in full utilization. This process is repeated until all jobs
are scheduled on nodes.

V. PERFORMANCE EVALUATION

We evaluate our AirEdge on real-time Alibaba cluster data
traces. With the aid of the job execution time estimate Ẽex′,
we show that AirEdge can minimize the actual execution time
of multi-dependent tasks, achieve high resource utilization
and avoid loss of job in a federated aerial edge system. We
conduct extensive experiments with orchestrated sets of multi-
dependent tasks having heterogeneous resource requests across
the computing resources. For each deployment, we compare
our AirEdge with some existing state-of-the-arts.

A. System Setup

Computing Resources: We use 6 federated aerial edge
deployments (drones), as summarized in Table III. The com-
puting resources are made up of heterogeneous container-
optimized nodes (container-instances). These drones have var-
ious resource capacities (up to 74 CPU cores and 202 GiB
of memory) and weights (up to 15 kg). We assume that the
selected drones have congruent flight time to execute ready
applications. This assumption is reasonable as practical drones
have such capacity. For example, the Easy Aerial Falcon9 is an
autonomous drone with load capacity up to 2 kg and flight time
up to 45 minutes. The Bell ATP7010 is another autonomous
drone with load capacity up to 31 kg and can cover up to 35
miles on a single charge while carrying its maximum load.

Applications: To evaluate our framework, we employ use-
cases of real-world CPU and memory intensive data-trace from
Alibaba, which records the activities of both long running
containers (for Alibaba’s e-commerce business) and batch jobs
across an 8-day period. An Alibaba cluster is a set of 4,034 ma-
chines, packed into racks, and connected by a high-bandwidth
cluster network. Workload arrives at the cluster in the form of
jobs. A job is comprised of one or more tasks, each of which
is accompanied by a set of resource requirements used for
scheduling the tasks onto machines. The data trace contains
about 14,295,731 tasks (with about 12,207,703 dependencies)

9https://easyaerial.com
10https://www.bellflight.com/products/bell-apt

and 4,201,014 jobs, among which we randomly choose 201
jobs with total of 857 tasks (including dependencies) for our
experiments. The number of tasks in each multi-job ranges
from (12, 302], while the task dependency depth among the
jobs ranges from (1, 18]. Task dependencies [47] in Alibaba
data trace is valuable for our investigation. In our experiments,
we assume that all tasks are of high priority.

B. Heuristics and Baselines

As explained previously, the closest heuristic or principle
is widely adopted as the dispatching policy in distributed
systems. Therefore, we fix the dispatching policy of the state-
of-the-art dependency-aware task orchestration benchmarks
compared to that of AirEdge, i.e., the closest heuristic. We
compare our scheduling or packing strategy with the following
three state-of-the-art schemes and the random approach.

1) Graphene [41] is a state-of-the-art approach in the
literature for dependency-aware task orchestration prob-
lems. First, it co-schedules some tasks identified as
troublesome tasks. Then the remaining tasks are divided
into parent, child and sibling subsets, which are placed
afterward to ensure compactness and to respect depen-
dencies. It deploys about 40% of a given DAG at a time.

2) Tetris [42] is an existing state-of-the-art approach for
task packing problems, although it does not consider the
task dependencies. It deploys at least 50% of any given
tasks at a time and primarily focuses on packing tasks
on nodes mainly to achieve high resource utilization.
For every task, it computes a packing score pScoret,
as a dot product between the task resource requirements
vector and the node’s resource availability vector.

3) Spear [40] is a dependency-aware task scheduler, which
applies Monte Carlo tree search (MCTS) with deep
reinforcement learning. It utilizes the Critical Path (CP)
to pick tasks along the CP in the DAG. Spear deploys
about 15% of the tasks at a time.

4) Random approach deploys a task randomly to any
available node, and assumes a node can only execute
a task at a time.

C. Deployment Results and Performance Comparison

Our investigation focuses on CPU and memory utilization,
task deployment, scheduling and execution times. We use the
cluster data trace from Alibaba to obtain resource requirements
(CPU, Memory) and all the task dependencies. The multi-
job execution information across the federated aerial edge
deployments are listed in Table IV. The results obtained by
AirEdge, Graphene, Tetris, Spear and Random are compared.
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Fig. 1. Multi-task deployment across the federated edge resources

Fig. 6. Multi-task deployment across the federated aerial edge resources.

TABLE IV
MULTI-TASK EXECUTION IN FEDERATED AERIAL EDGE.

Dedgei J C λ Ẽ′
ex(s)

Drone 1 1 6 5 63.67
Drone 2 3 13 (1, 6] 138.04
Drone 3 9 31 (1, 13] 522.38
Drone 4 11 26 (1, 4] 289.68
Drone 5 15 42 (1, 10] 468.19
Drone 6 30 103 (1. 13] 1313.45

We first investigate the capabilities of the five schemes
compared to deploy the required tasks across the six drone
resources. The multi-task deployments of all the five schemes
across the federated aerial edge resources are depicted in
Fig. 6. It can be see that AirEdge, Tetris and Graphene all are
able to deploy 100% of all the tasks. Spear is slightly inferior

and could not deploy 100% of the tasks across all the six
drones. Specifically, it can only achieve 93%, 96% and 99% of
the multi-task deployments on Drones 3, 4 and 6, respectively.
As expected, Random is the worst and the percentage of its
deployed tasks is much lower. Random approach deploys a
task randomly to any available node, and assumes that a node
can only execute a task at a time. This results in resource
under utilization and inability to deploy all its tasks, given the
available resources. Note that in the case that it is impossible
to deploy 100% of the tasks on a drone, other drone, which has
the additional congruent resource and flight time availability,
will have to deploy and execute these remaining tasks. In the
following performance comparison, however, we only show
the results for the tasks which are deployed successfully in
the federated aerial deployments.
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Fig. 7. Actual resource usage across the federated aerial edge clusters.
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Fig. 1. Memory utilization across the federated edge resources
Fig. 9. Memory utilization across the federated aerial edge resources.

1) Performance comparison across federated aerial edge:
We first introduce a performance metric, the actual resources
usage of jobs D〈c,m〉edgeiARU

, which is defined as the ratio of the
resources used for execution D〈c,m〉edgeiU

over the edge’s resource
capacity or availability D〈c,m〉edgei

:

D
〈c,m〉
edgeiARU

=
D
〈c,m〉
edgeiU

D
〈c,m〉
edgei

. (24)

Another metric, the resources utilization ρ
〈c,m〉
C , is already

given in (9). The metric ρ〈c,m〉C includes the CPU utilization
ρ
〈c〉
C and the memory utilization ρ

〈m〉
C , which can be defined

respectively according to

ρ
〈c〉
C =

∑
J∈J T

〈c〉′

D
〈c〉
edgeiU

, (25)

ρ
〈m〉
C =

∑
J∈J T

〈m〉′

D
〈m〉
edgeiU

, (26)

where
∑
J∈J T

〈c〉′ and
∑
J∈J T

〈m〉′ are the total collective
CPU and memory demands, respectively.

Fig. 7 compares the actual resource usage of AirEdge with
those of the three baseline schemes and the random approach.
It can be seen that AirEdge consumes the fewest resources in
the clusters with Tetris as the very close second best, while
Random uses the highest resources with Spear as the second
worst. Graphene ranks in the middle, in terms of resource
usage. The CPU and memory resource utilization comparisons
are shown in Figs. 8 and 9, respectively. Again, AirEdge and
Tetris are superior than Graphene, Spear and Random, and
they achieve the highest and close second highest resource
utilization, respectively, while Spear and Random achieve the
second lowest and lowest resource utilization, respectively.

Two other key metrics are the actual multi-task scheduling
time and, more importantly, the actual multi-task execution
time. Figs. 10 and 11 compares the actual multi-task schedul-
ing time and multi-task execution time of AirEdge with those
of the four benchmarks, respectively. The results show that
AirEdge is the best, Tetris is the second best, and Graphene
is the third best, while Random is the worst and Spear the
second worst, in terms of both scheduling and execution times.

Moreover, the superior performance of AirEdge over the other
benchmark schemes is overwhelmingly clear.

2) Performance comparison in individual clusters: Having
compared the performance of all the five schemes across the
entire federated aerial edge, in terms of actual resource usage
and resource utilization, task scheduling and execution times,
which are shown in Figs. 7 to 11, respectively, we now exam
the the performance of all the five schemes in individual
clusters in detail.

In Drone-1 edge-cluster, we deploy 1 job with a total
of 6 tasks, where the job has a task dependency depth of
5. AirEdge first optimizes the deployment by co-locating as
many jobs in a node as possible, to fully utilize the available
resources in the node. Utilizing the gang scheduling strategy,
AirEdge co-schedules all the 6 tasks at a time. These tasks are
tightly packed on nodes using the VSMCBP algorithm, which
uses all the nodes in the cluster to execute the job. Note that
this cluster is a small-capacity cluster, having 6 CPU cores
and 6 GiB of memory. Using the same configuration for the
baseline schemes, Graphene, Tetris and Spear also utilize the
full resources. The random approach utilizes the full resources
as well. Importantly, AirEdge has the fastest scheduling and
execution times compared to the three state-of-the-art schemes
and the random approach, mainly due to the following reasons:
(i) AirEdge utilizes the gang scheduling to co-schedule all
the tasks at a time, and (ii) its packing strategy explores the
available nodes to find the best node, which has the requisite
available resources to execute all the tasks, by packing them
tightly on the node. Observe that AirEdge is more than 2 times
faster than the second best Tetris in both the scheduling and
execution times. It is more than 3 times and 2 times faster
than Graphene as well as 9 times and 3 times faster than Spear
in the scheduling and execution times, respectively. Compared
with the worst Random, AirEdge is 48 times and 6 times faster
in terms of scheduling and execution times, respectively.
Drone-2 cluster is also a small-capacity cluster but with

higher CPU and memory capacity than Drone-1. Here, 3
jobs with a total of 13 tasks are deployed, where each job
has a task dependency in the range of (1, 6]. We optimize
the deployment to ensure that resources are fully utilized.
Containers provide isolation to running applications, making
it possible to co-locate multiple applications on the same
node without any interference. A single container-optimized
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Fig. 1. Tasks execution time across the federated edge resources
Fig. 11. Actual multi-task execution time across the federated aerial edge resources.

node can execute more containerized applications, given that
there are sufficient available resources. AirEdge, Graphene
and Tetris consume 8% fewer resources than Spear, and 25%
fewer resources than Random. AirEdge, Graphene and Tetris
also gain 9% and 24% higher CPU utilization over Spear and
Random, respectively, as well as 4% and 9% higher memory
utilization than Spear and Random, respectively. More signif-
icantly, AirEdge is 9, 6 and 23 times faster in the scheduling
time than Graphene, Tetris and Spear, respectively, while it is
2, 2 and 3 times faster in the execution time over these state-of-
the-art schemes, respectively. It is worth recapping that in the
case of Random, the results of actual resource usage, resource
utilization, scheduling and execution times are for 92% of the
tasks that it is able to deploy on Drone-2.
Drone-3 has high load capacity (up to 8kg) compared to

Drone-1 and Drone-2. This cluster is made up of 1 HPE
EL300 and 1 Stack Edge mini edge devices, with total
resource capacity of 20 Cores and 28 GiB. In this cluster,
we deploy 9 jobs, with total 31 tasks, where each job has
a task dependency range (1, 13]. AirEdge and Tetris reduce
resource usage by 10% compared with Graphene, Spear and
Random. AirEdge and Tetris achieve 10% and 5% higher CPU
and memory utilization, respectively, compared to Graphene,
Spear and Random. In terms of both scheduling and execution
times, AirEdge is about 2 times faster than Tetris. It is 4 times
and 5 times faster than Graphene as well as 18 times and
10 times faster than Spear, in the scheduling and execution
times, respectively. Not surprisingly, Random has the worst
scheduling and execution time performance.
Drone-4 edge-cluster is a high capacity cluster. Here, 11

jobs with total of 26 tasks are deployed, where each job has a
dependency depth range (1, 4]. It can be seen that AirEdge and
Tetris consume 12% and 19% fewer resources than Graphene

and Spear, respectively. AirEdge and Tetris also achieve 13%
and 18% higher CPU utilization as well as 4% and 6% higher
memory utilization, over Graphene and Spear, respectively.
It is worth pointed out that although Spear and the Random
approach utilize the same amount of resources, Random can
only deploy 38% of the tasks but Spear deploys 96% of the
tasks. By contrast, AirEdge, Graphene and Tetris all deploy
100% of the tasks. In terms of scheduling time, AirEdge
is approximately 7 times, 3 times and 30 times faster than
Graphene, Tetris and Spear, respectively. In terms of execution
time, AirEdge is about 4 times, 2 times and 8 times faster than
Graphene, Tetris and Spear, respectively. Again Random has
the worst scheduling and execution time performance.
Drone-5 and Drone-6 are the largest clusters in terms

of resource and load capacity. We deploy 15 and 30 jobs
in these two clusters, respectively. The total number of tasks
deployed in Drone-5 cluster is 42, while total of 103 tasks
are deployed in Drone-6 cluster. The task dependency depth
of each job is in the range of (1, 13]. Observe that Random
can only deploy 28% of the tasks in these two resource and
capacity rich drone clusters, respectively.

For Drone-5 edge-cluster, AirEdge and Tetris use 3%
and 10% less resources, compared with Graphene and Spear,
respectively. AirEdge and Tetris also achieve 4% and 10%
higher CPU utilization as well as 1% and 3% higher memory
utilization than Graphene and Spear, respectively. In terms of
scheduling time, AirEdge is approximately 10 times, 16 times,
30 times and 800 times faster than Graphene, Tetris, Spear and
Random, respectively. In terms of execution time, AirEdge
is about 4 times, 2 times, 8 times and 40 times faster than
Graphene, Tetris, Spear and Random, respectively.

For Drone-6 edge-cluster, AirEdge uses 2% less resources
than Tetris as well as 5% less resources than Graphene and
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Spear. AirEdge also achieve 1% higher CPU utilization than
Tetris as well as 4% higher CPU utilization than Graphene and
Spear. In terms of memory utilization, AirEdge is 1% higher
than Tetris as well as 2% higher than Graphene and Spear. In
terms of scheduling time, AirEdge is slightly faster than Tetris
as well as 2 times faster than Graphene and Spear. In terms of
execution time, AirEdge is 6 times faster, 3 times faster and
11 times faster than Graphene, Tetris and Spear, respectively.
AirEdge is 160 times faster and 100 times faster than Random
in the scheduling time and execution time, respectively.

D. Summary

Overall, AirEdge has demonstrated superior QoS in resource
management and multi-task orchestration in federated edge
clusters. Our algorithm consistently achieves both the highest
cluster resource utilization as well as the fastest scheduling
and execution times for multi-tasks/jobs, compared to the
three state-of-the-arts, Graphene, Tetris and Spear. Increasing
resource utilization by just a few percentage points can save
millions of dollars in large scale-computing. Achieving faster
scheduling time and in particular faster execution time are
crucial for modern applications to perform better.

The gains achieved by AirEdge as observed from our ex-
periments include load-balancing in a distributed and federated
edge clusters and an increase in the number of tasks that can
be deployed at a time as well as faster execution time of the
overall tasks and improved usage of cluster resources. The
significant advantage of AirEdge can be explained as follows.
It deploys sets of multi-jobs/tasks as a unit through the gang
scheduling strategy, and these applications are deployed and
executed concurrently. Unlike AirEdge, the existing state-of-
the-art methods do not deploy all ready tasks at a time or do
not respect task dependencies, leading to more resource usage
and cluster under utilization as well as causing scheduling
delay and longer task execution times.

VI. CONCLUSIONS

This paper has presented a dependency-aware multi-task
orchestration in a federated aerial edge computing system,
called AirEdge, to improve resource efficiency and enhance
performance. We have utilized a resource-specific dispatching
strategy that selects the closest edge cluster or drone suitable
for given job(s) based on estimated value of their execution
time, and a container-based bin packing optimization strat-
egy that packs or co-locates tasks tightly on nodes to fully
utilize available resources. Our approach involves capturing
the high-level resource request of tasks, federated aerial edge
clusters update state service, execution time estimation, gang
scheduling and co-locating multi-task on container-optimized
nodes called container-instances. To evaluate our approach,
we have illustrated use cases of real-world CPU and memory
intensive tasks from Alibaba cluster trace, which records the
activities of both long running containers (for Alibaba’s e-
commerce business) and batch jobs across an 8-day period.
We have compared our approach with the state-of-the-art
dependency-aware task orchestration and task packing baseline
strategies. Our experimental results have demonstrated that

AirEdge achieves both the highest cluster resource utilization
and the fastest execution time for multi-tasks/jobs compared
to the existing state-of-the-art strategies.
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