
H-FFMRA: A Multi Resource Fully Fair Resources
Allocation Algorithm in Heterogeneous Cloud

Computing
Hamed Hamzeh1, Sofia Meacham1 Kashaf Khan2 Angelos Stefanidis3 and Keith Phalp1

1Faculty of Science and Technology, Bournemouth University, UK.
hamzehh@bournemouth.ac.uk, smeacham@bournemouth.ac.uk, kphalp@bournemouth.ac.uk

2British Telecom, Ipswich, UK, kashaf.khan@bt.com
3 Xi’an Jiaotong-Liverpool University, China. Angelos.Stefanidis@xjtlu.edu.cn

Abstract—The allocation of multiple types of resources fairly
and efficiently has become a substantial concern in state-of-
the-art computing systems. Accordingly, the rapid growth of
cloud computing has highlighted the importance of resource
management as a complicated and NP-hard problem. Unlike tra-
ditional frameworks, in modern data centers, incoming jobs pose
demand profiles, including diverse sets of resources such as CPU,
memory, and bandwidth across multiple servers. Accordingly,
the fair distribution of resources, respecting such heterogeneity
appears to be a challenging issue. Furthermore, the efficient use
of resources as well as fairness, establish trade-off that renders a
higher degree of satisfaction for both users and providers. Dom-
inant Resource Fairness (DRF) has been introduced as an initial
attempt to address fair resource allocation in multi-resource
cloud computing infrastructures. Dozens of approaches have been
proposed to overcome existing shortcomings associated with DRF.
Although all those developments have satisfied several desirable
fairness features, there are still substantial gaps. Firstly, it is
not clear how to measure the fair allocation of resources among
users. Secondly, no particular trade-off considers non-dominant
resources in allocation decisions. Thirdly, those allocations are
not intuitively fair as some users are not able to maximize their
allocations. In particular, the recent approaches have not consid-
ered the aggregate resource demands concerning dominant and
non-dominant resources across multiple servers. These issues lead
to an uneven allocation of resources over numerous servers which
is an obstacle against utility maximization for some users with
dominant resources. Correspondingly, in this paper, a resource
allocation algorithm called H-FFMRA is proposed to distribute
resources with fairness across servers and users, considering
dominant and non-dominant resources. The experiments show
that H-FFMRA achieves approximately %20 improvements on
fairness as well as full utilization of resources compared to DRF
in multi-server settings.

Index Terms—Allocation, Cloud, Dominant, fairness, resource,
server, utility.

I. INTRODUCTION

Resource allocation with fairness in cloud computing has
been widely considered to be the most challenging issue. De-
spite other distributed systems, cloud computing is particularly
recognized in the heterogeneity of resources and servers [1]. In
other words, a cloud data center is likely to be established by
different servers, including diverse configurations in terms of
resources, such as memory, processing, and disk storage [2].

Due to this heterogeneity, some jobs are CPU-intensive such
as computational operations, while others are disk-intensive
like database management. Accordingly, resource allocation
in such specifications seems to be a significant and NP-hard
problem.

The traditional data center management frameworks such
as Hadoop slot scheduler [3] have ignored the resource
heterogeneity as they only consider a single resource type.
These approaches allocate resources in the form of partitions
called slots with a constant amount of resources. Such an
assumption leads to highly inefficient resource allocation [2].
To overcome this significant drawback, and as the first attempt,
Dominant Resource Fairness (DRF) [4] has been proposed
to deal with fair resource allocation in cloud computing.
As a generalization of Max-Min fairness [5], DRF employs
the progressive filling algorithm [6] to calculate shares by
equalizing dominant resources. A dominant resource has been
defined as the heaviest resource demand by a user. DRF has
rapidly attracted much attention as it has achieved several
desirable fairness features such as sharing-incentive, resource
monotonicity, envy-free, Pareto-efficiency, and strategy-proof
[4]. Despite these promising features, dozens of extensions
have been proposed different solutions to address the potential
problems associated with DRF such as works in [2] [7] [8].
The main focus of these approaches has been dealing with the
trade-off between fairness and efficiency, as under the notion
of DRF there is a resource wastage in some points [9].

In addition to the resource heterogeneity, the diversity of
servers is obvious in modern data centers [10]. DRF assumes
the whole system as a supercomputer where resources are
shared in a single resource pool. In such a case, applying DRF
separately in all servers causes inefficient allocation as some
users may have dominant resources across different servers
[2].

Unfortunately, there are substantial gaps associated with
recent developments. Firstly, while Jain’s fairness index is
being widely used in single resource environments, there is a
lack of measures to evaluate the fairness in cloud computing
systems. Secondly, the fairness-efficiency trade-off in recent
approaches has not taken into account non-dominant resources

1243

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00172

20
21

 IE
EE

 4
5t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

78
-1

-6
65

4-
24

63
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

51
77

4.
20

21
.0

01
72

in allocation decisions. Moreover, under these mechanisms,
some users’ allocation regarding dominant resources is not
maximized at all. This problem is noticeably phenomenal
in server diversification as some users could be adversely
affected concerning utility maximization. Consequently, recent
approaches have satisfied Pareto-efficiency from a general
perspective, nonetheless, to the best of our knowledge it is
not satisfied individually for a certain number of users.

Taking into account all the above-mentioned issues, in this
paper, we present H-FFMRA as an extension of our previous
work [11] in multiple servers. H-FFMRA captures multi-
resource allocation, considering dominant and non-dominant
resources for each server. It inherits all principal allocation
policies in FFMRA that are applicable in multi-server settings.
The experiments, conducted in the Cloudsim and driven by
randomly generated workloads confirm that not only FFMRA
achieves full resource utilization, but also it obtains fully fair
resource allocation.

This paper is organized as follows. Section II, gives an
overview of related works in multi-resource allocation. Section
IV, outlines H-FFMRA. The V section illustrates the fairness
measures associated with H-FFMRA. Section VI analysis
the performance of H-FFRA allocation. Finally, section VII,
concludes and discusses future work.

II. RELATED WORKS

In [2] the generalization of DRF has been proposed, aiming
to address the efficiency problem associated with DRF in het-
erogeneous servers. Despite [12], DRFH has performed global
dominant shares to achieve Max-Min fairness. DRFH satisfies
some fairness features, nonetheless, it is unable to guarantee
the sharing -incentive in certain points. Furthermore, DRFH
fails to meet bottleneck resource fairness as it maximizes the
minimum global dominant shares. In U-DRF [13], authors
have investigated how DRF is achievable when users have mul-
tiple intricate jobs. Accordingly, tasks are dependent on each
other with placement constraints. Similar to other approaches,
UDRF has satisfied some desirable fairness properties. Based
on the experiments, UDRF has presented better job completion
time compared to DRF, as well as reducing resource wastage.
Authors in [8] have proposed a new allocation model called
PS-DSF as an extension of DRF that has taken into account the
weight of allocated resources to every individual with respect
to each server where the placement constraint is considered as
well. PS-DSF has tried to assign the most efficient server to
each user, leading to achieving higher resource utilization than
other allocation mechanisms. Unfortunately, this mechanism
does not satisfy the Pareto-efficiency feature.

III. MOTIVATION

In FFMRA, the main focus was on a single server, whereas
modern data centers are composed of multiple servers with
distinct configurations. Applying both DRF, and FFMRA in a
naive extension form, and separately across all servers violates
Pareto-efficiency corresponding to DRF and intuitive fairness
in FFMRA. Although, performing FFMRA individually in

each server meets efficiency, users may receive an equal
allocation based on their demand profiles. To have a better
comprehension of the problem, we refer to the example in
Fig. 1.

Fig. 1: An example of a system with two servers and two users
each submits two tasks across both servers.

Fig. 2: The resource allocation under DRF mechanism

Assume there are two users let’s say users 1, and 2
with demand vectors (1CPU, 4GB), (2CPU, 5GB), and
(3CPU, 1GB), (4CPU, 3GB) respectively. Also, both users
are eligible to run tasks in servers 1, and 2 with the ca-
pacity vectors (9CPU, 18GB), and (10CPU, 20GB). Ac-
cordingly, the dominant resources for user 1 in server 1,
and 2 are memory (4/9 > 1/18), and (4/9, 3/18). For
user 2, CPU is dominant in both servers as (3/9, 1/18),
and (4/10 > 3/20). Intuitively, DRF tries to equalize both
users’ dominant resources in each server, assuming that DRF
is naively employed. Therefore, under DRF policy user 1
receives (3CPU, 12GB), and (4.48CPU, 1.2GB) in server
2. On the other hand, user 2 schedules, (6CPU, 2GB), and
(5.52CPU, 4.4GB) in servers 1, and 2 sequentially. Based
on the figure, an inefficient allocation occurs in both servers,
nearly 23% of wasted resources. Moreover, the distribution
of resources among users corresponding to the dominant, and
non-dominant shares is not the same percentage. The main
assumption is to equalize all resources of users across multiple
servers to achieve intuitive fairness. Therefore, according to

1244

the example in Fig. 3, users 1, and 2 benefit 69% of the entire
resource pool in each server for dominant shares plus 31%
equal percentage in all servers with regards to non-dominant
shares.

A. System setting

Assume there are |K| heterogeneous servers, |K| =
(s1, s2, ..., sm) with capacity vector C = (c1,s, ..., ck,s) .
Also n users indicated by U = (1, 2, ..., n) compete over
k resource types as R = (1, 2, ..., k) with resource request
profiles, presented by |R| = (r1,s, r2,s, ..., rn,s), where de-
mands are always positive corresponding to each user. i.e,
rn,s > 0, i ∈ U .

Definition 1. Consider resource k is the heaviest, and
non-heaviest demand of submission r by user i over the
maximum capacity of any server s. So, the dominant, and
non-dominant resources for each user, specified by vectors
D = (dk1,s, ..., d

k
i,s), and D̃ = (dk1,s, ..., d

k
i,s) respectively, are

determined as follows:

dki,s = max
ri,s

Ckmax
s

(1)

d̃ki,s = min
ri,s

Ckmax
s

(2)

Definition 2. If the allocation for each user i,(1 ≤ i ≤ n) in
server s is specified by Πi,s = (π1,s, ..., πn,s), with the utility
Ui,s, then, the maximum number of tasks Ψ that a user can
schedule in each server is the minimum allocation of a specific
resource type k. So:

Ψi(Ui,s)=min
Πi,s
ri,s

,Ui,s=max(Πi,s) =⇒ ∀i∈U,∃ri,s>0. (3)

Definition 3. A feasible allocation Πi is existed, if the total
allocation in each server is not greater than the total capacity
of resources as:

n∑
i

Πk
i,s ≤ Ckmax

s ,∀i ∈ U (4)

n∑
i

rki,l ≤ Ckmax
s ,∀i ∈ U (5)

Definition 4. The allocation Π is non-wasteful, if any user
i schedules at least one task in each particular server s, so
that:

n∑
i=1

Ψi(Ui,s) ≤ Ck,∀ri,r, i ∈ U. (6)

Accordingly, for any allocation Πi,s, and Π∗i,s, the allocation
meets non-wasteful if the following condition is satisfied:

Ψi(Π
∗
i,s) < Ψi(Πi,s) (7)

IV. H-FFMRA

In this section, a fully fair allocation mechanism called
H-FFMRA is proposed. H-FFMRA is a generalization of
FFMRA in multiple servers. It captures both dominant and
non-dominant resources with respect to each server and per-
forms β-fairness [11] to evaluate how resources are evenly
distributed among users across multiple servers. A two-level
hierarchy approach in FFMRA is also applied to each server.
H-FFMRA guarantees that users receive an equal share of
resources depending on their demands.

Fig. 3: The resource sharing under H-FFMRA mechanism,
indicating how data center resources are distributed fairly
among tasks in different servers.

A. Problem formulation

The allocation under H-FFRMA is initiated by defining
the Global Aggregate Resource (GAR), considering both
dominant and non-dominant based on (1) and (2). Fig. 3
illustrates how resources are allocated fully fair among users
across multiple servers. As can been seen, CPU and RAM are
dominant in both servers 1 and 2, while different for users 1
and 2. Therefore, H-FFMRA tries to balance the allocation
of resources based on dominant and non-dominant shares
based on GAR. Generally speaking, GAR aims to sum up all
dominant and non-dominant resources of all servers as follows:

GAR(dki,s) =
n∑
i=1

dki,s,∀rki,s; rki,s ∈ D (8)

GAR(d̃ki,s) =
n∑
i=1

d̃ki,s,∀rki,s; rki,s ∈ D̃ (9)

1) H-FFMRA allocation: According to Algorithm 1, in
the first step of the hierarchy, the proportion of the total
resource capacity of all servers which is indicated by ρ(dki,Ts

),
and ρ(d̃ki,Ts

) is calculated for dominant and non-dominant
resources across all servers. (Ts stands for total servers) is
determined for all users, sharing the entire resource pool
with dominant, and non-dominant resources. Secondly, the
proportions of ρ(dki,Ts

), and ρ(d̃ki,Ts
) are specified for each

server with respect to dominant, and non-dominant resources,
represented by ϕds , and ϕd̃s , respectively. If Ukds , and Uk

d̃s

1245

denote a group of users with specific dominant, and non-
dominant resources in each server sequentially. Then, the
proportion of ϕd, and ϕd̃ are used to calculate final shares,
employing MLF-DRS [14] based on the following optimiza-
tion problem.

maximize (r1,s, r2,s, ..., rn,s)

subject to ϕd,s ≤ ρd,s
ϕd̃,s ≤ ρd̃,s
ρ(Ukd,s) ≤ ϕd,s
ρ(Uk

d̃,s
) ≤ ϕd̃,s∑

dki,s +
∑

d̃ki,s ≤ Cks

(10)

Definition 5. An allocation under H-FFMRA is limited to only
requested resources if any resource shortage happens in the
system as the fewer amount of resources are provisioned to
all servers. Consequently, the allocation can be determined as
follows:

Π(dki,s) = rki,s,Π(d̃ki,s) = rki,s (11)

Definition 6. An allocation satisfies H-FFMRA, if for all
servers(s ∈ S), there is at least one user with submissions
in which (rki,s) > 0. Furthermore, H-FFMRA is feasible if
any allocation Π corresponding to user i cannot be max-
imised without decreasing the allocation for any user j. i.e,
Πi,s ≥ Πj,s.

V. FAIRNESS

H-FFMRA is the generalization of FFMRA in multiple
servers. It captures the dominant, and non-dominant resources
concerning each server, and performs β-fairness to evaluate
how resources are evenly distributed among users over mul-
tiple servers. The formulations in (12) and (13) indicate the
difference between the allocated resources to dominant shares
with respect to the capacity of each server. Accordingly, the
value of β falls in a range (0,1). Hence, if it tends to 0, the
allocation is fully fair.

βd=

∣∣∣(∑
(

Πi(dki,1)

Ck
s

)

)
−...−

(∑
(

Πi(dki,s)

Ck
s

)

)∣∣∣∈(0,1) (12)

βd̃=

∣∣∣(∑
(

Πi(d̃ki,1)

Ck
s

)

)
−...−

(∑
(

Πi(d̃ki,s)

Ck
s

)

)∣∣∣∈(0,1) (13)

The formulations (12), and (13) indicate that a group of
users in each server receive an equal proportion of the resource
pool. To measure resource allocation with fairness with regards
to each user in each server, the Jain’s index is applied for each
server based on (14), and (15) for dominant and non-dominant
shares.

J(dk1
i,s, ..., d

km
i,s) =

(
∑
dkmi,s)2

Ψ
∑
dkmi,s

2 (14)

J(d̃k1
i,s, ..., d̃

km
i,s) =

(
∑
d̃kmi,s)2

Ψ
∑
d̃kmi,s

2
(15)

Algorithm 1 FFMRA allocatin algorithm

1: K ← (1, 2, ..., k) . Resource vector
2: S ← (s1, s2, ..., sm) . The vector contains all servers
3: U ← (1, 2, ..., n) . total users in the system
4: D ← (rk1,s, ..., r

k
i,s) . demand vector

5: dki,s, d̃
k
i,s . Dominant, and non-dominant resources of

each user in each server
6: Tc,s ←

∑
Cks . Sum of total resources in entire system

7: σd ←
∑
dki,s . Sum of all dominant resources

8: σd̃ ←
∑
d̃ki,s . Sum of all non-dominant resources

9: ρd,s ← (Tc,s∗σd)/(σd+σd̃) . The proportion of resource
pool for all dominant, and non-dominant resources

10: ρd̃,s ← (Tc,s∗σd̃)/(σd+σd̃) . The proportion of resource
pool for all dominant, and non-dominant resources

11: for each s in S do
12: ϕd,s ← (ρd,s ∗ Cks)/σCks . The Proportion for each

server in terms of dominant resources
13: ϕd̃,s ← (ρd̃,s ∗ Cks)/σCks . The Proportion for each

server in terms of non-dominant resources
14: for each k in s do
15: ρ(Gd,s)← (ϕd,s ∗ Cks)/

∑
Cks . The proportion

for each group of users in each server, dominated in each
specific resource type

16: ρ(Gd̃,s)← (ϕd̃,s ∗ Cks)/
∑
Cks .

The proportion for each group of users in each server with
regards to non-dominant resources

17: for i in Gd,s do
18: Apply MLF-DRS
19: for i in Gd̃,s do
20: Apply MLF-DRS

VI. EVALUATIONS

In this section, we evaluate the performance of H-FFMRA,
considering resource allocation, utilization, and fairness. The
experiments are carried out using the CloudSim as a simulation
framework, driven by randomly generated workloads. For
simplicity, we use two types of resources, CPU and RAM.
Servers configurations are arbitrarily selected to measure the
actual functionality of H-FFMRA. Under random workload
generation, users may represent various submissions based on
dominant and non-dominant resources that could be varied
depending on demands.

A. Resource allocation

The resource allocation under H-FFMRA is measured tak-
ing into account four users and 90 servers. All users are
eligible to submit their tasks in all servers in absence of any
placement constraint. In each iteration, users submit a variety
of tasks, dominated either on CPU or memory. Moreover,
the allocation is examined over 1000 iterations. Fig. 4 and
5, compare total allocated tasks in Multi-Host DRF and H-
FFMRA for four users, taking into account CPU and RAM.
As can be seen in the figures, under H-FFMRA all users
approximately get a total equal allocated task as all resources

1246

are distributed fairly among groups of users in each server.
Surprisingly, according to lines 15, and 16 in Algorithm 1,
an absolute correlation is maintained for both dominant and
non-dominant resources in the entire system, as it also affects
allocated tasks for all users. Fig 4(a) is the best representation
of CPU allocation under H-FFMRA compared to Multi-Host
DRF as all users in H-FFMRA get more resources than Multi-
Host DRF. Furthermore, by iteration 800, all users get nearly
the same allocation under H-FFMRA. Nonetheless, after this
point, as the dominant resources of submitted tasks are greater
than the fair-share for some users, the allocation is slightly dif-
ferent. Therefore, some users get more resources than others.
Typically, H-FFMRA attempts to capture an equal allocation
for all users under such a condition where dominant resources
of all users are less than the fair-share. Fig. 5(b) also illustrates
RAM allocation in both approaches. The allocation under
HFFMRA is significantly higher than Multi-Host DRF. After
iteration 700, the allocated tasks for users in both algorithms
start to go down. This is because of the happening resource
shortage in the system as at this point no more resources are
provisioned to servers. Accordingly, both algorithms try to
allocate resources to users at least based on users’ requested
resources.

Fig. 4: Allocated CPU to all users

Fig. 5: Allocated RAM to all users

B. Resource utilization

In this section, we compare resource utilization under H-
FFMRA, and Multi-Host DRF policies, taking into account
2000 servers, and 200 users. The configuration of servers is

randomly selected so that the total capacities of CPU and RAM
in the entire system are: 2 × 106, and 4 × 106, respectively.
Then, the average resource utilization is determined in all
servers in each iteration based on the following equation:

Us,k(t) =

m∑
s=1

n∑
i=1

Πk
i,s/Ψs, s ∈ S (16)

Where Ψs denotes the total number of servers in the
system. The average utilization is a time-dependent function
that captures the utilization in a specific range of iterations. So,
if we assume time series in a range (t0, th+1), then Us,k(0)
gives utilization in average at iteration 0.

Fig. 6 represents the resource utilization in both approaches
in a time series experiment over 2000 iterations. Fig. 6(a)
depicts CPU utilization. As can be seen in the figure, H-
FFMRA shows better CPU utilization than DRF in a multi-
host setting. This is clear in allocated tasks to users in Fig. 4
and Fig. 5, as all users under H-FFMRA schedule significantly
more tasks than DRF. Concerning RAM utilization, the supe-
riority of H-FFMRA is seen under H-FFMRA in Fig. 6(b).
Typically, the original DRF algorithm fails to satisfy the full
utilization of resources, at least on a specific resource type in
the heterogeneous resource profile. Accordingly, the DRF in a
multi-servers perspective is unable to capture the full utiliza-
tion of resources. It is worth mentioning that under multi-host
DRF, the CPU utilization is near to optimum, however, other
resource types such as RAM and disk may not have been fully
utilized. Therefore, Fig.6(b) shows that H-FFMRA performs
extremely better than DRF in consuming system resources.
Except for resource shortage in some iterations, H-FFMRA
obtains approximately full utilization of resources.

Fig. 6: resource utilization in H-FFMRA, and MHDRF

C. Fairness

In this section, the performance of H-FFMRA is analyzed,
considering fairness in servers and user levels. For the first
set of experiments, the fairness is measured using the β −
fairness index, then the Jain′s index is applied to evaluate
the fairness for all users in the entire system. The experiments
are conducted using time series over 1000 iterations, and 2000
servers so that the fairness becomes meaningful. Similar to the
previous experiments, 200 users are considered with various

1247

task submissions. Then, the average fairness in each iteration
is reported, perceived by users in both hierarchical levels in
FFMRA.

1) β − fairness: Fig. 7 illustrates the fair distribution of
CPU and RAM under H-FFMRA among all servers as well as
groups of users with dominant resources. As an example, in a
range of iterations (20, 140), when 0.59 of RAM is considered
on average to all servers with a set of dominant resources,
the same amount for CPU is considered as well. The figure
clearly states that a fully fair distribution is achieved in almost
all iterations. Nonetheless, in some points, the distribution is
not the same for CPU and RAM in some specific ranges such
as 170− 270, 600− 830, and 840− 900. However as there is
a small deviation between (0.62, 0.64), it is trivial in such a
large-scale scenario. Overall, H-FFMRA achieves a fully fair
distribution of resources among servers.

Fig. 7: The fair distribution of resources among servers,
considering dominant resources

In Fig. 8(a)(b), the equal distribution of resources among
servers is examined, considering non-dominant shares, the
figures strongly confirm that the fair distribution is well-
achieved in H-FFMRA. Therefore, the values for β are exactly
the same for both types of resources as the difference between
the CPU and RAM shares are about 0 in each iteration
according to (11) and (12). Therefore, according to the results
in this section, we capture the fairness in the first hierarchy of
H-FFMRA. In the next section, we will go through the second
hierarchy by evaluating fairness using Jain′sindex.

Given the results in Fig. 7, and Fig. 8, the beta fairness
for dominant and non-dominant resources is illustrated in Fig.
9. Accordingly, it is the difference between the proportional
allocation for groups of users with dominant and non-dominant
shares for CPU and RAM.

As can be seen in the figure, the β−fairness is satisfied for
dominant and non-dominant shares. Although there is a small
variation for dominant shares in some iterations, it is trivial
to consider the difference in the range (0, 1). For example,
if we consider the time series in a range (150, 300), the
difference is 0.64− 0.62 = 0.02 which is a very small value.

Fig. 8: The fair distribution of resources among servers,
considering non-dominant resources

Fig. 9: Beta fairness for dominant, and non-dominant shares

Consequently, the results confirm that H-FFMRA satisfies a
fully fair distribution of resources in the first level of hierarchy.
In the next section, the fairness will be evaluated by applying
Jain′sindex to see how H-FFRMA behaves fairly among
users with regards to each specific server.

2) Jain’s fairness index: In the second hierarchy of H-
FFMRA, the fair allocation is examined with respect to each
server, and for each user in a specific group, considering
dominant and non-dominant shares. In this stage, and for
evaluating fairness, a series of experiments are conducted,
taking into account 400 users and 3000 servers over 1000
iterations. Fig. 8, depicts fair CPU and RAM allocations to
users, respecting dominant resources under H-FFMRA and
multi-host DRF. As the requested resources by users with tasks
dominated on CPU and RAM could be greater than the fair-
share, the value for the Jain could be oscillated, and far away
from 1. Correspondingly, based on the randomly generated
workloads, in some cases, the fairness is not the same for users
with dominant resources. Due to this, as can be seen in Fig.
10(a), the fairness in CPU goes beyond 1. In terms of RAM,
according to Fig. 10(b), the fairness index oscillates between
0.95, and 0.96 as the requested RAM by users is greater than
the fair-share in a certain time series. On the other hand, in
some iterations, Jain’s index is 1 which denotes that almost

1248

all requested resources are less than the fair share.

Fig. 10: The Jain’s index for users with dominant resources

In addition to dominant shares, we also measure Jain’s
index for non-dominants. According to Fig. 11, H-FFMRA
performs remarkably fairer than DRF in multiple hosts, as it
equalizes only dominant resources. Consequently, under DRF,
non-dominant resources do not receive an equal share of the
resource pool. Hence, as can be seen in the figure, the fairness
index for H-FFMRA is near to the optimal value of 1 for CPU,
and RAM compared to DRF. In a certain range of time series,
the value of Jain’s index is approximately 0.95. This is due to
that in some cases the dominated demand either on CPU and
RAM is greater or less than the fair-share. Therefore, similar
to dominant resources, the allocation could not be the same
for all users. Overall, the results verify that H-FFMRA is a
fully fair allocation mechanism. This is worth mentioning that
by increasing resource capacities for all servers in a standard
condition, and without having resource shortage, the chance
of reaching a fully fair allocation is considerably high.

Fig. 11: The Jain’s index for users with non-dominant re-
sources

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose H-FFMRA as a multi-resource,
multi-server fair allocation mechanism in cloud computing.
We determine Global Aggregate Resource(GAR), respecting
each server to establish an equal distribution of resources
across all servers. We systematically analyze the functionality
of H-FFMRA against DRF in a multi-server setting through

experiments conducted in the CloudSim and driven by ran-
domly generated workloads. The results from experiments
show that H-FFMRA captures intuitive fairness, fully fair
resource distribution across all servers and users as well as full
utilization of resources. Furthermore, a new fairness indicator
called β is introduced which indicates how resources in the
entire resource pool are fairly distributed among servers. H-
FFMRA is expected to be applicable in a wide range of
application domains such as IoT, edge computing, and cloud-
native solutions like Kubernetes. In future work, we will
investigate the implementation of H-FFMRA in these areas
by leveraging machine learning, and autonomic computing
techniques to make it adaptable to these environments.

REFERENCES

[1] F. L. Pires and B. Barán, Cloud computing resource allocation tax-
onomies, International Journal of Cloud Computing.

[2] W. Wang, B. Li, and B. Liang, Dominant resource fairness in cloud
computing systems with heterogeneous servers, IEEE INFOCOM 2014
- IEEE Conference on Computer Communications, 2014.

[3] J. V. Gautam, H. B. Prajapati, V. K. Dabhi and S. Chaudhary, ”A
survey on job scheduling algorithms in Big data processing,” 2015 IEEE
International Conference on Electrical, Computer and Communication
Technologies (ICECCT), Coimbatore, 2015, pp. 1-11.

[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.inProc. USENIX NSDI , vol. 11, 2011, pp. 24–24.

[5] D. Nace and M. Pioro, ”Max-min fairness and its applications to routing
and load-balancing in communication networks: a tutorial,” in IEEE
Communications Surveys Tutorials, vol. 10, no. 4, pp. 5-17, Fourth
Quarter 2008.

[6] M. A. Mollah, X. Yuan, S. Pakin and M. Lang, ”Rapid Calculation of
Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks,”
in IEEE Transactions on Parallel and Distributed Systems, vol. 29, no.
1, pp. 156-168, 1 Jan. 2018.

[7] W. Wang, B. Li, B. Liang and J. Li, ”Multi-resource Fair Sharing for
Datacenter Jobs with Placement Constraints,” SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, 2016, pp. 1003-1014.

[8] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar and Y.
Zhao, ”An Efficient and Fair Multi-Resource Allocation Mechanism
for Heterogeneous Servers,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 12, pp. 2686-2699, 1 Dec. 2018.

[9] W. Wang, C. Feng, B. Li, and B. Liang. ”On the Fairness-Efficiency
Tradeoff for Packet Processing with Multiple Resources”. In Proceedings
of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies (CoNEXT ’14). ACM, New York, NY,
USA, 235-248.

[10] P. Poullie, T. Bocek and B. Stiller, ”A Survey of the State-of-the-Art in
Fair Multi-Resource Allocations for Data Centers,” in IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 169-183, March
2018.

[11] H. Hamzeh, S. Meacham, K. Khan, K. Phalp, and A. Stefanidis.
FFMRA: ”Fully Fair Multi-Resource Allocation Algorithm in Cloud
Environments”, 2019.

[12] C. Joe-Wong, S. Sen, T. Lan and M. Chiang, ”Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” 2012 Proceedings
IEEE INFOCOM, Orlando, FL, 2012, pp. 1206-1214.

[13] Y. Tahir, S. Yang, A. Koliousis and J. McCann, ”UDRF: Multi-Resource
Fairness for Complex Jobs with Placement Constraints,” 2015 IEEE
Global Communications Conference (GLOBECOM), San Diego, CA,
2015, pp. 1-7.

[14] H. Hamzeh, S. Meacham, B. Virginas, K. Khan and K. Phalp, ”MLF-
DRS: A Multi-level Fair Resource Allocation Algorithm in Heteroge-
neous Cloud Computing Systems,” 2019 IEEE 4th International Confer-
ence on Computer and Communication Systems (ICCCS), 2019.

1249

		2021-09-07T16:50:31-0400
	Preflight Ticket Signature

