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Abstract— The use of data-driven business analytic 

models has had a significant impact on several sectors of 

the economy. In the UK, the tourism industry has 

contributed significantly to the economy. The 

contribution of tourism to the UK economy is estimated 

to be £145.9 billion (7.2%) of UK GDP. Regardless of its 

economic value, tourism is also one of the most vulnerable 

sectors, as it is susceptible to natural disasters, civil 

unrest, crisis, and pandemics, all of which can fully shut 

down the industry. Hence, an accurate and reliable 

tourism demand forecast is important. Apart from 

COVID-19, no other occurrence in modern history has 

had such a broad impact on the economy, industries, 

everyone and businesses in the world (Galvani et al., 

2020). However, with the impact of COVID19 on the 

industry, it is imperative to reassess potential recovery 

plans for the UK economy, particularly for local tourism 

businesses. Macroeconomic data is collected over many 

source markets for the UK and a machine learning 

algorithm is tested to assess the future of the industry. 

Keywords— tourism businesses, COVID-19, data-

driven business analytics, machine learning 

I. INTRODUCTION 

Tourism is one of the fastest-growing industries, with 
many countries relying on it for revenue, development, and 
growth. These changes are the product of tourist consumption 
of goods and services, taxes imposed on tourism-related 
businesses, and potential employment opportunities in 
industries that provide services to the tourism industry. 
According to the United Nations World Tourism Organization 
(UNWTO) (2019), global tourism growth continues to 
outpace global economic growth, making tourism a global 
driving force for economic growth and development that has 
spread globally. Tourism has developed into a significant 
source of revenue, economic development, jobs, tax revenue, 
wages, and foreign exchange, as well as a source that 
contributes to a country's national Gross Domestic Product 
(GDP).  

The contribution of tourism to the UK economy is 
estimated to have contributed £145.9 billion (7.2%) of UK 
GDP. Regardless of its economic value, tourism is also one of 
the most vulnerable sectors, as it is susceptible to natural 
disasters, civil unrest, crisis, and pandemics, all of which can 

fully shut down the industry. Hence, accurate and reliable 
tourism demand forecast is important. Accurate tourism 
demand forecasts are helpful in making strategic, tactical, and 
operational decisions. Forecasting in tourism entails 
predicting the course of potential demand, hence, offering 
useful knowledge to destination management and tourism 
providers [1]. A variety of measures are used in tourism 
market modelling and forecasting. However, tourist arrivals 
are a widely used metric.  

Time series and econometric models have been used in the 
past to forecast tourism demand [2]. Research by [2] shows 
autoregressive integrated moving average (ARIMA) models 
as the most frequent models in forecasting tourism demand. 
However, econometric models have the advantage of being 
able to recognize economic factors that affect tourism demand 
[3-4]. Most notably, a variety of tourism demand forecasting 
in times of crisis has been conducted by researchers, [5] assess 
the effects of both the global economic crisis and the swine flu 
pandemic on demand for the United Kingdom. Furthermore, 
Artificial neural networks (ANNs) and support vector 
machines (SVMs) are commonly used machine learning 
methods used for tourism demand forecasting [6]. These 
methods do not rely on particular statistical characteristics 
such as normality and linearity of the distribution of the 
dataset [2], as well as being more robust against skewed, 
missing, duplicate, and noisy data [2]. As a result, machine 
learning–based approaches usually produce better results, not 
only for noncausal but also for causal approaches [7], [2], [8]. 

Apart from COVID-19, no other occurrence in modern 
history has had such a broad impact on the economy, 
industries, everyone and businesses in the world (Galvani et 
al., 2020). The COVID-19 pandemic has caused an excessive 
number of deaths globally and led to severe losses in revenue 
in the United Kingdom tourism sector. As reported by the 
(World Health Organization; WHO 2021), 111,102,016 
confirmed cases of COVID-19 and 2,462,911 deaths had been 
reported globally as of February 22, 2020. These deaths rate 
cuts across countries that are tourism top source market to the 
UK. The figure 1 shows the leading inbound travel markets 
for the United Kingdom (UK) in 2018 and 2019, ranked by 
number of visits. 
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Figure 1: Leading inbound travel markets for the United Kingdom in 2018 and 2019 

Travel restrictions were imposed on all flights to the 
United Kingdom due to the high death rate and rapid spread 
of the virus. This resulted in a total of 7.0 million visits to the 
UK from overseas residents in Quarter 1 (Jan to Mar) 2020 
(mostly in March), a 16 percent decline from the same 
timeframe the previous year. As a result of the COVID-19 
pandemic, foreign visitors to the UK spent £4.3 billion in 
Quarter 1 2020, which was 10% less than in Quarter 1 2019, 
as travel was limited due to the coronavirus (COVID-19) 
pandemic. The (United Nations specialised origination; 
UNSO 2021) forecasts that the pandemic may cause a further 
decrease in tourism of 60 percent to 80 percent in relation to 
2019. This has the potential to put many businesses and 
income streams at risk, as well as halt progress toward 
achieving sustainable development goals. Pandemics like the 
COVID-19 pandemic are sporadic and unpredictable. Hence, 
accurate inbound tourism demand forecasting is critical for the 
tourism industry in the United Kingdom to effectively address 
potential challenges, encourage tourism, and allocate adequate 
resources for operations, marketing, investment, and financial 
planning. This project utilises inbound tourist arrivals data 
from 38 countries, the dataset is taken from online reputable 
source. Different machine learning algorithm such as Random 
Forest regression, support vector regression, Multiple Linear 
Regression and Polynomial regression will be used to forecast 
the inbound tourism demand to the UK while examining 
COVID-19 deaths from the originating countries. 

The tourist destination of United Kingdom serves as a case 
for this study, using arrival time series data between 1995 and 
2018 of 38 sending countries to the UK. Furthermore, the 
arrival data is reduced to top ten major source market 
countries to the UK (i.e., Belgium, Canada, Germany, France, 
Italy Netherlands, Poland, Sweden, Spain, and United State of 
America) with high COVID-19 deaths and other countries 
with low covid 19 deaths. 

This study aims to see how well machine learning models 
like multiple linear regression, polynomial regression, support 
vector regression, and random forest regression predict 
inbound tourist arrivals to the UK. Also, to take a different 
approach by applying machine learning methods in 
forecasting the inbound tourism demand to the UK from 38 

countries, 10 source counties with high COVID-19 deaths and 
other countries with low COVID-19 deaths. The findings will 
contribute to the tourism industry and the government by 
providing information needed to make better plans, policy, 
and decision. Also, it aims to give some references for future 
research.  

To realise the study’s aim and attempt to respond to the 
research question, the follow research objective will be sought 
after: to implement and build machine learning models for 
forecasting inbound tourism demand to the UK; evaluation of 
applied machine learning models; to implement and use the 
machine learning model with the best performance to forecast 
inbound tourism demand to the UK from 38 countries; to 
implement and use the machine learning model with the best 
performance to forecast inbound tourism demand to the UK 
from 10 top source market countries with high COVID-19 
deaths (minimum of 10,000 deaths) because they are 
relatively mature tourism source market to the UK; and to 
implement and use the machine learning model with the best 
performance to forecast inbound tourism demand to the UK 
from countries with low COVID-19 deaths (below 10,000 
deaths). 

II. LITERATURE REVIEW 

A. Tourism Demand Forecasting 

Forecasting tourism demand is a well-established research 
area that has been the focus of numerous studies in the tourism 
and hospitality fields. Studies on tourism demand forecasting 
can be divided into qualitative and quantitative approaches 
[2]. With regards to forecasting models, a number of 
techniques have been used to forecast tourism demand. These 
approaches can be classified as time-series models, 
econometric models, or AI models, according to [2] 

Time series models use historical data to classify patterns 
and trends in order to forecast future values of the series based 
on previous values and to investigate the relationships 
between different tourism demand variables and tourist arrival 
volumes. These time series models are widely used in 
forecasting tourism demand [9-10].  



Econometric models have the advantage of integrating 
relationships between tourism demand (dependent variable) 
and its influencing factors (explanatory variables), hence, 
econometric models are replacing time series models in 
forecasting tourism demand [2]. Tourism price and tourism 
income are two widely used economic variables correlated 
with origin and destination countries [11].  

Artificial Intelligence (AI) models in tourism demand 
forecasting is still new and are closely related to machine 
learning and soft computing methods. AI models have risen in 
popularity as data volume has increased and data 
characteristics have become more complex. They can capture 
complex relations and patterns in a large volume of data. 
Artificial neural networks (ANN) (Constantino, Fernandes, 
and Teixeira, 2016), machine learning techniques such as 
support vector regression (SVR) model [12-13] ; and fuzzy 
time series models [14]  are popular AI models used in tourism 
demand forecasting [15-16]. 

Machine learning is a cutting-edge methodology for 
recognizing, understanding, and analysing highly complex 
data structures and patterns [17]. With a systematic input of 
more recent results, it allows for consequential learning and 
enhances model predictions [18-19]. Machine learning 
research is a branch of artificial intelligence (AI) that aims to 
teach computers new information through the input of data 
such as texts, images, and numerical values, as well as support 
their interaction with other computer networks. Machine 
learning techniques have the advantage over statistical 
methods in that they do not make any assumptions about the 
data, such as normal distribution, linearity, or noncollinearity 
[20],[2], [21]. Concretely, the machine learning methods 
ANN, rough set theory, fuzzy time-series method, genetic 
algorithms (GAs), SVMs, and, most recently, deep learning 
approaches [22] are commonly used for tourism demand 
forecasting [22-25]. Applications of ANNs for tourism 
demand prediction are presented by [23-24],[26]. 

B. Role of IoT in Data collection for Tourism demand 

forecasting 

The Internet of Things (IoT) is a global network in which 
sensors communicate with one another over the internet in 
order to collect and transmit data. This data is collected over 
the internet and stored in a database, where it is analysed to 
assist various business models in resolving various business 
issues. Data collection can be costly, and accurate data is 
needed to validate a quantitative model. Observing and 
capturing complex and multidirectional data may be part of 
the data collection process. Since manual data collection is 
vulnerable to bias and recording errors, automated data 
collection has grown in significance and acceptance. IoT plays 
an important role in the collection of data in tourism demand 
forecasting as sensors are placed at the data collection points 
with unique identifiers to collect data.  

In forecasting tourism demand, data is critical. When it 
comes to Time Series Forecasting, for example, the data 
obtained in the past assists in predicting future patterns. The 
majority of the data used in each of the methods above will be 
primary data. Primary data should be obtained in an impartial 
and error-free manner. The following benefits can be achieved 
by using real data produced by IoT devices and can be used in 
analytical models for forecasting tourism demand. 

For many years, the tourism industry has been adapting to 
emerging technology and has shown several changes in its 
operations and processes. With the advent of the Internet of 
Things, real-time data can be collected in an unbiased and 
error-free manner, and these data can be used to predict 
inbound tourism demand, airline flight volume, and other 
transportation access areas. In addition, the Internet of Things 
has enabled many cities to become smarter by providing smart 
buildings, smart hospitals, and smart transportation. Hence, 
making tourist have a wonderful experience. 

Real-time data produced by IoT devices aids tourism 
organizations and the public sector in making decisions based 
on forecasting performance, preventing further losses. It also 
aids tourism organizations in making forecasting error 
corrections, as real-time insights into forecasting errors enable 
organizations to respond quickly to mitigate the effects of an 
operational problem. 

When designing forecasting models, the alternative model 
is chosen based on the most recent vintage of historical data 
available. The outputs are produced, and the resulting forecast 
errors are compared to evaluate the alternative forecasts. The 
comparison is also expanded to include the forecast produced 
using real-time data. This results in two types of benefits from 
using IoT to collect real-time data:  More data can be used to 
develop the model and the data can be over time revised. 

C. Tourism and COVID-19 in the UK Economy 

Tourism is a major part of the United Kingdom economy. 
The Office for National Statistics (ONS) shows that in 2017 
tourism directly contributed an estimated GBP 67.8 billion in 
gross value added (GVA), or around 3.9% of the total United 
Kingdom economy.  

Since late 2019, the corona virus disease 2019 (COVID-
19) pandemic has wreaked havoc on the world's health and 
social structures, as well as wreaking havoc on the global 
economy. As shown in figure 2, the tourism and hospitality 
industry is one of the most adversely impacted by the COVID-
19 pandemic [27]. Airline staff have been reduced by 90%, 
80% of hotel rooms are vacant, and tourist destinations lost 
money in 2020 [27].  Countries' lockdowns, widespread travel 
bans, and airport and national border closures decreased 
international tourist arrivals by 67 million in the first quarter 
of 2020 (2020Q1), according to UNWTO. 



 
Figure 2: Figure 2: Impact of COVID-19 on Industries [27]. 

III. DATA AND VARIABLES 

Explanatory variables for tourism demand include 
macroeconomic variables like Gross domestic product, 
exchange rate, and consumer price index [28]. These variables 
were gotten from reliable online open data sources with 
monthly and annually frequency and were included in the 
dataset. 

In this study, data on the annual inbound tourist arrivals in 
UK gotten from UNWTO are used. The real Gross domestic 
product (for the originating countries and destination country), 
Consumer price index (for the originating countries and 
destination country), and population data were collected from 
the International Monetary Fund (IMF). Exchange rate data 
were collected from the World bank open source. The sample 
period of the data used in this study is from 1995 to 2018 and 
the observations of tourist arrivals are at the annual frequency. 
The inbound tourist arrival dataset used in this study consist 
of the following columns; relative price; inbound Tourist 
Arrivals; relative income; and population. 

A. Shapiro-Wilk Test 

The dataset distribution influences which statistical test 
should be used to find evidence on the project study issue. The 
parametric test is used when data are normally distributed; 
otherwise, the non-parametric test is used [31]. The Shapiro-
Wilk test is performed in this study to determine whether the 
data has a Gaussian (normal) distribution or not. The null 
hypothesis for the Shapiro-Wilk test is that the data is 
normally distributed while the alternative hypothesis is that 
the data is not normally distributed [32]. In Shapiro-Wilk test, 
if the p value is greater than 0.05, it implies the data is not 
normally distributed, while if it is less than 0.05, it means the 
data is normally distributed. 

B. Spearman’s Correlation Coefficient (R) Test 

A statistical measure of the direction and intensity of the 
relationship between the dependent and independent variables 
is Spearman's correlation coefficient (R) [33]. In the 
Spearman’s correlation coefficient test, the value of R 
indicates the strength of the relationship between the 
dependent and independent variable. R has a value that ranges 
from +1 to -1. A value of +1 or -1 indicates that the dependent 

and independent variables are perfectly associated. As R 
approaches 0, the relationship between the independent and 
dependent variables will deteriorate. A probability value (p-
value) is calculated as part of the statistical test. The p-value 
is considered statistically significant if its value is less than 
0.05 (i.e. p less than 0.005). 

C. Data Preparation 

In this study, Data is obtained in raw format from various 
sources, which makes it difficult to train a model and reliably 
predict the inbound tourist arrivals, making data pre-
processing a crucial phase to implement. The steps involved 
in data preparation are listed below. 

D. Data Cleaning 

The handling of missing values, as well as the removal of 
noisy and inconsistent data based on domain information, are 
all important steps in data cleaning. These steps are essential 
for converting raw data into a more accurate result. The 
problem of missing data arises during the compilation process, 
as a result of a device failure or data entry errors. Missing 
values are manually or computationally extracted or filled, and 
noisy data such as outliers or incorrect data is removed based 
on domain awareness [34]. To account for the role of COVID-
19 deaths in forecasting inbound tourism to the UK, the data 
was further reduced to having just tourism demand data from 
source market countries to the UK with high and low COVID-
19 deaths (top source countries with over 10,000 deaths). 

IV. MODEL AND METHODOLOGY 

in this study, inbound tourist arrivals to the UK as well as 
some influencing econometric variable like relative price, 
relative income and population are used to forecast inbound 
tourism demand to the UK.  In this study, actual GDP of the 
source and destination market countries is chosen to measure 
the relative income level of the origin country. The relative 
income is defined as Relative income = 𝐺𝐷𝑃𝑈𝐾/𝐺𝐷𝑃𝑖 where 
GDPUK is the GDP for UK and GDPi is the GDP for the origin 
country.  

Relative price, CPI, population, GDP, and exchange rates 
are also taken into account. In this paper, calculating the 



relative price variables of tourism in UK is defined as CPI = 
𝐶𝑃𝐼𝑈𝐾

𝐶𝑃𝐼𝑖
 𝑋 𝐸𝑋𝑈𝐾   

A. Train and Test Split 

Train and test split is used to divide the dataset into two 
known as train and test. The train dataset is used to train and 
fit the machine learning models. The model enhances its 
parameter using the train data to forecast output values. The 
test data is used to assess the machine learning model's 
performance. 

B. Feature Scaling/ Pre-processing 

Feature scaling is used for the normalization of the range 
of separate variables or data set features [35]. Feature scaling 
is important as machine learning models are more effective 
when the data has a consistent distribution. 

C. K-Means Clustering 

Clustering is a grouping technology used to find 
information and trends about the data structure [36]. K-means 
clustering is a straightforward and accessible unsupervised 
machine learning algorithm for combining similar 
observations/data-points and finding underlying patterns. A 
cluster refers to a collection of data-points aggregated together 
because of certain similarities. Inbound tourism to the UK has 
different tourist arrivals volume among different countries 
with high and low COVID-19 deaths. 

D. Machine Learning Model 

In forecasting the inbound tourist arrivals to the UK with 
the historical data in this study, different machine learning 
models are explored in this study. This section provides 
Information on the forecasting models implemented in this 
study. 

1) Support Vection Regression 

SVR has recently emerged as an alternative and highly 
effective means of solving the nonlinear regression problem. 
SVR has been quite successful in both academic and industrial 
platforms owing to its many attractive features and promising 
generalization performance. In this study, SVR is chosen as 
one of the machine learning models because of some 
significant features of SVR such as: (i) it can model nonlinear 
relationships, (ii) the SVR training process is equivalent to 
solving linearly constrained quadratic programming 
problems, and the SVR embedded solution meaning is unique, 
optimal and unlikely to generate local minima, and (iii) it 
chooses only the necessary data points to solve the regression 
function, which results in the sparseness of solution. 

2) Random Forest Regression (RFR) 

For the prediction of future results, many machine 
teaching approaches can be used, but Random Forest 
regression machine learning method is employed as one of the 
methods for forecasting in this study. Random forest 
regression is a supervised machine learning algorithm that 
trains and analyses previous data samples through various 
trees. 

3) Multiple Linear Regression (MLR) 

Regression is a statistical empirical technique that uses the 
relation between two or more quantitative variables so that an 
outcome variable can be predicted from the others. MLR is 
basically a regression model that examines the relationship 
between the dependent variable and multiple independent 
variables. Often the regression models are used to predict 

future values of the response variable for certain values of the 
response variables. In this study, the Linear Regression class 
from the sklearn package is used. The fit () function is used to 
train the model, adjusting weights according to the data values 
in order to achieve better accuracy. 

4) Polynomial Regression 

Polynomial Regression Model is a type of Linear 
Regression model. Linear Regression calculates the forecast 
according to the Polynomial Regression forecast method 
based on an nth degree polynomic, to best fit the historical 
data. The polynomial degree is indicated by the Degree for 
Polynomial Regression field. For a best-fit model, a higher-
order equation with optimal degree value is required. If the 
degree is too high or too low, the model can be overfitting or 
underfitting, respectively [37]. 

E. Model Evaluation Selection 

Mean square error (MSE), mean absolute error (MAE), 
and root mean squared error were the measurement metrics 
used to evaluate the in-sample and out-of-sample forecasting 
output of the different models (RMSE). The correlation 
coefficient (R2) was also used to determine how closely the 
expected values matched the real values. 

1) R Squared Score 

R squared scare is a statistical measure which represent the 
proportion of the variance for a dependent variable by an 
independent variable in regression model, R squared explains 
to what extend the variance of one variable explain the 
variance of second variable (Han and Chi, 2016). It could be 
identified using following formulae: 

R2 = variance explained by model  (1) 

     Total Variance 

2) Mean Absolute Error 

It is a set of average number of errors in model 
prediction between model forecasting and real data, it is an 
average of test results [38]. Its value ranges from 0 to infinity. 
It is also called negatively oriented score as fewer score value 
of MAE shows the goodness of learning model. MAE is 
represented with the formula below 

MAE = 
1

𝑚
∑ | 𝑥𝑖𝑚

𝑖=0 − 𝑦𝑖|   (2) 

3) Mean Squared Error (MSE) 
Mean square error is a method of monitoring a regression 

model’s efficiency. MSE takes and squares the gap from the 
regression line to the sample points. Quadrating is important 
since the sign is negative, which is omitted [38]. The least 
MSE illustrates closeness of detecting the right match. It could 
be identified using following formulae: 

MSE = 
1

𝑚
∑ (𝑥𝑖 − 𝑦𝑖)2𝑚

𝑖=1    (3) 

4) Root Mean Squared Error (RMSE) 
The root mean square error estimates the average 

magnitude of the forecasting error. RMSE works by squaring 
the observed and forecast value and then averaged over the 
observations. The square root of the average is finally taken. 
Since the errors are squared before being averaged, it gives 
relatively more weight to larger error differences which means 
RMSE is very useful [39]. 

RMSE = √
1

𝑚
∑ (𝑥𝑖 − 𝑦𝑖)2𝑚

𝑖=1    (4) 



 

V. RESULTS AND DISCUSSIONS 

The United Kingdom has been a source of tourist destination 

over the years, and figure 3 shows the number of tourist 

arrivals to the UK from 1995-2018. Figure 4 shows the 

number of tourist arrivals from top source market countries 

to the UK.  France has the highest number of inbound tourist 

arrivals to the UK with USA being the second. Interestingly, 

as the top source market countries with high tourist arrivals 

to the UK are also top market countries with high COVID-19 

deaths as shown in figure 1.

 
Figure 3: Total Tourist arrival volume per country 

 
Figure 4: Total Tourist Arrivals volume for top 10 countries 

A. Grouping of Countries 

The countries are grouped into clusters and each cluster 

represents the inbound tourist arrival volume to the UK. The 

deeper the colour the higher the tourist arrivals and vice 

versa. The deep blue colour represents cluster 1 (countries 

with high inbound tourist arrival volume to the UK) while the 

faded colour represent cluster 2 (countries with low tourist 

arrivals volume).  For sample size, K-means clustering was 

applied on the top 10 source market countries to the UK 

because K-means clustering on sample size implies that the 

result extend beyond the selected countries. Figure 5 shows 

USA, France and Germany being in the same cluster 



 
Figure 5: Clustering of Countries with similar trend 

B. Machine Learning model performance Evaluation 

Table 1,2,3 presents the evaluation result for Random Forest 

Regression, Support Vector Regression, Polynomial 

Regression and Multiple Linear Regression model, based on 

their performance metrics: R2, MSE, RMSE and MAE, under 

the three scenarios mentioned above. 

 

  TOURISM FORECAST FOR ALL COUNTRIES 

Metric R² RMSE MSE MAE 

Random Forest Regression 0.95404 0.21573 0.04654 0.09687 

Support Vector Regression 0.59415 0.64110 0.41101 0.40347 

Polynomial Regression 0.66266 0.58448 0.34162 0.41388 

Multiple Linear Regression 0.22572 0.78335 0.78411 0.63921 

Table 1: Evaluation Result for all four models on tourism arrival data from 38 Countries with high and low COVID-19 

deaths 

  

FORECAST FOR SOURCE MARKET TO UK WITH 

HIGH COVID-19 OF 10,000 AND ABOVE 

Metrics R² RMSE MSE MAE 

Random Forest Regression 0.99347 0.09429 0.00889 0.05686 

Support Vector Regression 0.37360 0.92410 0.85396 0.41214 

Polynomial Regression 0.76101 0.57079 0.32580 0.40419 

Multiple Linear Regression 0.24601 1.01385 1.02789 0.66024 

Table 2: Evaluation result for all four models on tourist arrival data from top source market countries to the UK with high 

COVID-19 deaths 

  COUNTRIES WITH LOW COVID-19 DEATHS 

Metrics R² RMSE MSE MAE 

Random Forest Regression 0.91798 0.20189 0.04076 0.12129 

Support Vector Regression 0.28918 0.59435 0.35325 0.32230 

Polynomial Regression 0.35822 0.56475 0.31894 0.40664 

Multiple Linear Regression - 0.23476 0.78335 0.61364 0.60043 

Table 3: Evaluation result for all four models on tourist arrival data to the UK from countries with low COVID-19 deaths. 

 

The model predictions performance was examined using 

R2, RMSE, MSE and MAE. As observed in Table 2, the 

Random Forest Regression model has the highest R2 value 

and the lowest RMSE, MSE and MAE as compared to other 

models in all three scenarios. This shows that the random 

forest regression model fits the data correctly and is accurate 

and precise in forecasting inbound tourism demand 

considering the COVID-19 crises as the prediction error is 

lower than other models. 

 



 
Figure 6: Random Forest Regression model performance on predicting Inbound tourism demand 

In figure 6, the Blue colour line indicates what the 

Random Forest regression model predicted, and the dotted 

line is the actual value. From the figure, it shows that the 

predicted values are accurate and very close to the actual. It 

is basically trying to learn each point and curve. 

 

Table 4: Percentage Relative Difference between predicted 

and actual value 

 
Since the forecasting error in Random Forest regression 

model is lower that other models and since it outperforms 

other machine learning models, it is used to perform the 

forecast. The Random Forest regression model predicts a 

decrease in inbound tourist arrivals in all three scenarios in 

the study. Table 4 shows that the Random Forest regression 

model predicts a decrease of 0.2% from all sending countries 

in the dataset, 0.2% decrease from top source market 

countries with high COVID-19 deaths and 0.95% decrease 

from countries with low COVID-19 deaths. Although there is 

a little decrease in the inbound tourist arrival to the UK, it 

shows the top source market countries would still have the 

highest inbound tourist arrivals volume to the UK. However, 

the little decrease could affect the tourism sector if proper 

actions are not taken. 

The tourism demand forecast in this study would not have 

been possible if there was not enough data for forecasting, 

indicating the relevance of Internet of Things in tourism 

demand forecasting. Since effective tourism forecast depends 

on accurate real time data, this study shows that Internet of 

Things can influence the entire tourism sector and tourism 

demand forecasting by various means including: (i) making 

available the data about tourism demand available, 

consistent, and immutable.; (ii) the response of the tourism 

industry can be improved and operating costs for the 

hospitality sector can be reduced 

VI. CONCLUSION 

In this study, R2 is used to demonstrate how well the 

machine learning models fit the model and in comparing the 

model’s performance RMSE, MSE, and MAE is used. The 

forecasting study was conducted for United Kingdom, using 

arrival data of 38 sending countries with high and low 

COVID-19 deaths. Data analysis was firstly done to identify 

and understand the number of tourist arrivals from different 

countries to the UK. It is discovered that some countries are 

top tourism source market to the UK and then K-means 

algorithm was applied to group the top source market 

countries in clusters. Based on the hypothesis testing, an 

increase in relative income and population would cause an 

increase in tourist arrivals to the UK. Lastly, different 

machine learning models to forecast the inbound tourism 

demand to the UK was implemented.  

Random forest regression model fits the data and 

performed the best as compared to other models based on the 

evaluation metrics (RMSE, MSA and MAE) and its 

capability to being robust to outlier while Polynomial 

regression performed the worst. With regards to the forecast 

of the best model (Random Forest Regression), it predicts a 

decrease in the inbound tourist arrivals to the UK. It shows a 

0.2% decrease from all countries in the dataset, 0.2% 

decrease from top source market countries with high COVID-

19 deaths and 0.95% decrease from countries with low 

COVID-19 deaths. Based on the analysis and forecasting 

result, it shows that economic factors play an important role 

in inbound tourism to the UK and UK would continue to 

receive high volume of inbound tourist from the top source 

market countries. However, since population has a significant 

effect on inbound tourism to the UK, and the top source 

market countries also has huge population, it is recommended 

that effective and significant restrictions are implemented on 

tourist arrivals from the top market countries in order to 

prevent the spread of the COVID-19 virus.  
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