
Web Bot Detection Evasion Using Generative
Adversarial Networks

Christos Iliou
Information Technologies Institute

CERTH
Thessaloniki, Greece

BU-CERT
Bournemouth University

Bournemouth, United Kingdom
iliouchristos@iti.gr

Theodoros Kostoulas
Department of Information

& Communication Systems Engineering
University of the Aegean

Samos, Greece
theodoros.kostoulas@aegean.gr

Theodora Tsikrika
Information Technologies Institute

CERTH
Thessaloniki, Greece

theodora.tsikrika@iti.gr

Vasilis Katos
BU-CERT

Bournemouth University
Bournemouth, United Kingdom

vkatos@bournemouth.ac.uk

Stefanos Vrochidis
Information Technologies Institute

CERTH
Thessaloniki, Greece

stefanos@iti.gr

Ioannis Kompatsiaris
Information Technologies Institute

CERTH
Thessaloniki, Greece

ikom@iti.gr

Abstract—Web bots are programs that can be used to browse
the web and perform automated actions. These actions can
be benign, such as web indexing and website monitoring, or
malicious, such as content scraping and scalping. To detect
bots, web servers consider bots’ fingerprint and behaviour, with
research showing that techniques that examine the visitor’s mouse
movements can be very effective. In this work, we showcase that
web bots can leverage the latest advances in machine learning to
evade detection based on their mouse movements and touchscreen
trajectories (for the case of mobile web bots). More specifically,
the proposed web bots utilise Generative Adversarial Networks
(GANs) to generate images of trajectories similar to those of
humans, which can then be used by bots to evade detection. We
show that, even if the web server is aware of the attack method,
web bots can generate behaviours that can evade detection.

Index Terms—advanced web bots, generative adversarial net-
works, evasive web bots, mouse movements, humanlike behaviour

I. INTRODUCTION

Web bots allow for the automation of several tasks which
would be impossible to perform otherwise. Such tasks in-
clude indexing the web, monitoring websites and validating
hyperlinks and HTML code, testing the functionality of web
applications, and more. Imperva’s 2020 report [1] showed that
web bots accounted for 37.2% of the total traffic that they
monitored.

The aforementioned tasks require web bots to perform some
actions automatically, such as mousing over actions, clicking
on items, filling forms, etc. This resulted in the introduction
of browsing automation software, such as Selenium1, that

1https://www.seleniumhq.org/

supports the main functionalities of a browser, including
mouse movements, clicks, and keystroke actions.

Web bots that can automatically perform such advanced
functions have also been used for malicious purposes [1].
Thus, web servers employ web bot detection techniques, with
the most common ones being based on CAPTCHA (Com-
pletely Automated Public Turing test to tell Computers and
Humans Apart) challenges [2]. While such challenges have
been very effective in the past, the usability issues that they
introduce along with their reduced effectiveness due to the
advances in image processing [3] and speech recognition [4]
led current research to focus on web bot detection techniques
that are based on the visitors’ fingerprint (i.e., browser finger-
printing) and behaviour. For example, Google’s latest version
of its CAPTCHA challenge2 considers the visitor’s fingerprint
and actions to decide whether a visitor is a bot or not [5].

Browser fingerprinting is the process of enumerating several
characteristics of the visitor (e.g., font detection, plugin enu-
meration, WebGL fingerprinting, unique JavaScript variables,
etc. [6]–[8]) to identify whether a visitor uses browsing au-
tomation software. This approach can effectively detect simple
crawling scripts, as well as common browsing automation
tools (e.g., Selenium) in their default configurations, since their
characteristics are different from those of common browsers.

Even though detection based on fingerprints can adequately
detect several types of web bots, research has shown that
it has several flaws and can be bypassed by using spe-
cially configured browsing automation software [6], [9], or
by using common browsers instead of browsing automation
software [5]. Thus, to effectively detect web bots, current

2https://www.google.com/recaptcha978-1-7281-5684-2/20/$31.00 ©2021 IEEE

https://www.seleniumhq.org/
https://www.google.com/recaptcha

research examines, besides their fingerprint, their behaviour
regarding the web pages that they visit [10]–[13] and the
mouse movements that they perform [13]–[15].

In this work, we examine how well current state-of-the-
art web bot detection approaches work against web bots that
generate humanlike mouse and touchscreen trajectories (for
the case of mobile web bots) in a novel way by using Gener-
ative Adversarial Networks (GANs). As opposed to previous
research, this work takes advantage of the fact that mouse
and touchscreen trajectories can be depicted as images and
thus can be used as input to GANs to create new humanlike
trajectories. To the best of our knowledge, this is the first work
that proposes the generation of images with humanlike mouse
or touchscreen trajectories using GANs. This technique can be
combined with appropriately configured browsing automation
software to increase the evasiveness of the web bots. The main
contributions of this work are:

• The proposal of a novel technique that can be used by
web bots for the generation of humanlike mouse and
touchscreen trajectories by utilising GANs.

• The evaluation of the proposed technique against a web
server that performs web bot detection and is aware of
this type of attack. We demonstrate that even if the same
technique configurations are used by the web server, the
bots can still evade detection.

Through this research, we aim to increase the awareness on
the possibility of evasive web bots using the latest advances
in machine and deep learning and highlight the importance of
defense mechanisms that take such adversaries into account.

The remainder is structured as follows. Section II covers
related work. Section III describes the employed web bot de-
tection server, while Section IV presents the proposed evasive
web bots. Section V describes the evaluation methodology and
experimental setup, while Section VI discusses the results.
Finally, Section VII concludes and outlines future work.

II. RELATED WORK

The web bot detection problem aims to distinguish web
bots from human visitors [14], [16]–[18], and, in some cases,
to further categorise bots based on their functionality [19],
purpose [20], [21], or complexity [11]. In this section, we
first present techniques for the detection of web bots and then
techniques used by web bots to avoid detection.

A. Web bot detection

To detect web bots based on their behaviour, proposed meth-
ods typically examine: (i) web logs that visitors generate [10]–
[13], and (ii) visitor’s mouse movements [13]–[15].

Regarding the web logs, several measurable features are
extracted from the pages that the visitors accessed, along
with the access frequency and access patterns [11], [22];
the semantics of the content of each page have also been
considered [12]. Features extracted from web logs are used to
train machine learning models to classify the new visitors as
bots or humans, mainly through the use of classification [11],
[16] or clustering algorithms [22], [23]. Additionally, the

detection process can be performed either offline (after the end
of a session) [11], [22] or online by performing an estimation
during the session [10], [14].

More recent research has proposed detection methods that
use mouse movements. Such approaches either transform the
mouse trajectories into images and use them as input to Convo-
lutional Neural Networks (CNNs) [13], [15], or initially extract
several high level actions from them (e.g., click, point-and-
click, and drag-and-drop) and then extract additional features
from each action (e.g., duration, distance, displacement, etc.)
that are used as input to machine learning algorithms [14].

Current web bot detection techniques that are based on
mouse and touchscreen trajectories have shown very promis-
ing results when faced with web bots that try to present
a humanlike behaviour through heuristic approaches [13]–
[15]. Such works tested bots that perform mouse movements
following a specific type of lines (such as straight lines,
curves, etc.) [13], [15], or a combination of such lines with
keystrokes [14], or web bots that try to generate touchscreen
trajectories with similar features as the ones extracted from
humans’ (such as duration of mouse movements, velocity, etc.)
using statistics [24].

B. Web bot detection evasion

Several evasion approaches can be used by web bots
to avoid detection. Web bots can use statistics to generate
a humanlike behaviour in regards to the web pages they
visit [25]. Similar techniques are also used by mobile web
bots to generate swipe and accelerometer data [24]. Moreover,
Reinforcement Learning (RL) techniques are used by web
bots to learn an evasive behaviour [5]. Finally, GANs taking
advantage of Long Short Term Memory network layers are
used to generate synthetic swipe and accelerometer data [24].

In this work, we leverage the high performance of GANs
in their ability to generate images with the same features as
the ones used for training [26] for the generation of mouse
movements and touchscreen trajectories that can be used by
web bots to evade detection. As opposed to techniques that are
based either on statistics of specific features extracted from
the trajectories [24] or on RL techniques that learn through
trying several times [5], we consider that the trajectories can be
directly generated as images that can then be used as guidance
for the web bots to perform humanlike mouse movements and
mobile touch events to exhibit a more evasive behaviour.

III. WEB BOT DETECTION METHOD

Before presenting the proposed method for evading web
bot detection, a suitable detection method is described. A
highly accurate method for detecting web bots based on
their mouse movements is to generate images depicting the
mouse movements that visitors perform on each web page and
feed those into Convolutional Neural Networks (CNNs) [13],
[15]. A similar approach can be used for mobile touchscreen
trajectories, as they can also be processed as images. The
general architecture of this web bot detection framework is
presented in Fig. 1.

Fig. 1. Web bot detection framework

The first step is to generate images from the sequence of
mouse movements each visitor performs on each web page.
These sequences include the coordinates of all pixels that the
mouse passed at a specific time. The data are collected as
{(x1, y1, t1), ..., (xn, yn, tn)}, where xi and yi are the coordi-
nates of the current mouse point, ti is the respective timestamp,
and n is the total number of points over which the mouse
hovered. These sequences are mapped into 2-dimensional
matrices, where each (xi, yi) value pair corresponds to the
index of an element in the matrix and dti = ti+1 − ti to
its value [13], [15]. The same approach can be used for
touchscreen actions on mobile devices. To collect such data, a
JavaScript file is embedded in each web page to periodically
(e.g., every few seconds) send the data to the server.

The extracted images of the visitors’ mouse movements are
used as input into a (trained) CNN and the classification result
indicates whether the visitor is detected as a bot or a human.
In this work, a simple CNN architecture that combines a series
of Convolution and Max-pooling layers was used; details of
the architecture are presented in the Appendix. Additionally,
images were normalised so that their values become between
‘0’ and ‘1’, a commonly used technique in CNNs. The CNN
was implemented using Tensorflow3 and the Keras API4.

IV. EVASIVE WEB BOTS USING GANS

Evasive web bots try to hide their bot nature so as to
not be detected and blocked by the web servers of interest.
Given the current web bot detection approaches, evasive web
bots try to (i) present a fingerprint that is very similar to a
browser one, and (ii) exhibit a humanlike behaviour (regarding
both the web pages they visit and the mouse or touchscreen
trajectories that they perform). This work examines the case
of detecting web bots based on the mouse or touchscreen
trajectories, a technique shown to be very effective in the
case of mouse movements [13]–[15], [24]. If the bots can
generate humanlike trajectories, then these trajectories can be
combined with additional techniques, such as using a browser-
like fingerprint and selecting web pages to visit in a humanlike
manner [13], [25], to enable a more evasive behaviour.

The general architecture of the proposed web bots is pre-
sented in Fig. 2. More specifically, the proposed web bots
utilise GANs to generate humanlike mouse movements based
on real ones, since GANs have proven to generate realistic

3https://www.tensorflow.org/
4https://keras.io/

Fig. 2. Evasive web bots

images based on the images they were trained on [26].
GANs allow the generation of several mouse trajectories with
different starting and ending points each. From the available
trajectories, web bots can select the most appropriate ones
based on the actions that they want to perform.

GANs are architectures where two neural networks, the
Generator and the Discriminator, contest with each other and
are trained simultaneously in an “adversarial” setting. The
Generator constantly tries to generate images that can fool
the Discriminator into thinking that those images are real. The
Generator is trained to take as input points from a latent space
(in our case, these points correspond to vectors with values
drawn from a Gaussian distribution) and map them into new
images. Diversely, the Discriminator is trained to distinguish
fake images from real ones, using both images from human
trajectories and images created by the Generator. During that
process, the Generator becomes better at generating images
that look similar to the input images, while the Discriminator
becomes better at identifying which images are real.

In this work, a Deep Convolutional Generative Adversarial
Network (DCGAN) architecture is used for the generation of
humanlike mouse and touchscreen trajectories following the
recommendations in [26]. Differentiating from [26], we used
LeakyReLU for both the Generator and the Discriminator,
instead of only the Discriminator, because in our preliminary
experiments it gererated slightly better images. Details of the
architecture are presented in the Appendix. For the GAN
implementation, Tensorflow and the Keras API were used.

V. EVALUATION

To assess the effectiveness of the proposed approach, two
types of web bots are considered: (i) the scraping web bots
that crawl web servers to harvest their content, and (ii) the
mobile web bots that are requested to perform a specific task
to prove that they are humans, which in our case is to generate
touchscreen trajectories of specific numbers [24], [27].

A. Evaluation methodology
To examine the evasiveness of web bots that utilise GANs

for the generation of humanlike mouse movements and touch-
screen trajectories, we assume that web bots have already

https://www.tensorflow.org/
https://keras.io/

in their possession several human mouse movements and
touchscreen events. Bots can then use these data as input
to GANs to generate new humanlike behaviours with similar
characteristics as the ones they have previously seen.

Additionally, for simplicity, we consider that the web server
also uses GANs to train its detection models and that both
GANs (the GAN used by the web bots and the GAN used by
the web server) have the same architecture and configurations
(see Appendix) and were trained for 20k epochs. We argue
that these similarities in the aforementioned methods make
the evasion process more difficult.

On the other hand, we consider that the human behaviours
used by the web bots to train their models should be different
from the ones used by the web server. This choice was made
to present a more realistic scenario, where the web server
should be faced with new, unseen behaviours. Thus, in our
experiments, different human images are used by the web bot
detection module and by the evasive web bots.

To evaluate how well the web bots can evade detection,
we initially train and evaluate the performance of the web
bot detection framework. For that, the considered data sets
were split into 80% for the training and 20% for the testing,
and the CNN was trained for 30 epochs. Then, this detection
framework was used for evaluating the evasive web bots.

Finally, to account for the fact that the performance of both
the detection module and the web bots might be affected by the
images selected as the training set in each case, we repeated
the experiments considering different combinations of the sets
to be used by the web server and the web bots.

B. Datasets

The evasive web bots were evaluated on two datasets: (i) a
Web dataset generated by humans while browsing a web server
which hosted content copied from Wikipedia5 [13], and (ii)
part of the HuMIdb dataset6, in which humans were requested
to “draw” digits on mobile devices [24], [27].

Web: For this dataset, 27 human subjects were requested to
browse a web server that hosted 110 Wikipedia pages from
11 categories/topics [13]. Each human subject was instructed
to create two sessions, each session being between 15-20
minutes. All sessions were anonymised and only information
that indicates which sessions belong to the same user has been
kept. The dataset is available upon request.

HuMIdb: The second dataset is part of the HuMIdb
dataset [24], [27], a dataset that contains a wide range of
mobile sensors values acquired during a natural human-mobile
interaction performed by more than 600 users; this database is
not public but available upon request. To generate this dataset,
users were requested to perform eight simple tasks between
one and five times (indicating different sessions). In this work,
we utilised data from the task where a user had to draw with
their finger the digits ‘0’ to ‘9’ over the touchscreen.

In both datasets, and to account for the fact that different
visitors have varying monitor resolutions, we re-scaled all

5https://www.wikipedia.org/
6https://github.com/BiDAlab/HuMIdb

TABLE I
USERS, SESSIONS, AND IMAGES FOR EACH DATASET

1 2 3

Web
Users 9 9 9
Sessions 18 18 18
Images 367 369 561

HuMIdb
Users 200 200 200
Sessions 839 847 798
Images 8390 8470 7980

images to the same dimensions with a lower resolution. For
that, we initially increased the size of each mouse move by 30,
i.e., for each pixel where a mouse move was performed (and
thus has a non-zero value), its neighbours within distance less
or equal to 30 pixels were given the value of that pixel. Then
we re-scaled the images to 56x56 dimensions using the Pillow7

library and with the “antialias” (high-quality downsampling
filter) configuration. The 56x56 dimensions were selected to
account also for the fact that high resolution images consume
a lot of memory when used for training the networks.

Moreover, the dataset was split into three sets to facilitate
the evaluation process: two used by the web detection server
for training, and one used by the evasive web bots to generate
a humanlike behaviour. To account for the fact that different
images of the same user should not be in different sets, the
split was performed on a per user basis.

Finally, to account for the randomness introduced when the
models are trained on GPU experiments were run five times
and the average of all runs was considered.

C. Evaluation metrics

To assess the effectiveness of web detection, we used the
balanced accuracy evaluation metric, which is used in the
web bot detection problem when datasets are unbalanced [11].
For evaluating the evasiveness of the web bots and since we
have only one class, we used recall, i.e., the percentage of the
web bots that were correctly identified (True Positive) divided
by the total number of web bots used (True Positive + False
Negatives).

VI. RESULTS

A. Web bot detection performance

The performance of the detection framework is presented in
Table II. Experiments are performed on set X & set Y (denoted
as X & Y), where a random 80% of X and a random 80% of
Y are used for training the CNN detection framework, and the
remaining 20% of X and Y are used for testing. Data from set
X are considered as the ‘human’ class, while set Y is used as
input to the GAN of the bot detection; this GAN generates the
same number of images as the number of images in its input.

The detection framework manages to achieve a very high
accuracy and recall in both datasets. The high performance
was expected, since frameworks that use mouse movements
for web bot detection have shown very good results [13], [15].

7https://pillow.readthedocs.io/en/stable/

https://www.wikipedia.org/
https://github.com/BiDAlab/HuMIdb
https://pillow.readthedocs.io/en/stable/

TABLE II
PERFORMANCE OF THE DETECTION FRAMEWORK

Balanced accuracy
X&Y 1&2 2&1 2&3 3&2 1&3 3&1 Avg
Web 0.986 1.000 0.970 0.988 0.974 0.994 0.985
HuMIdb 0.995 0.996 0.995 0.997 0.995 0.997 0.996

Recall
Web 1.000 1.000 0.996 1.000 1.000 1.000 0.999
HuMIdb 0.992 0.996 0.996 0.997 0.995 0.997 0.995

TABLE III
PERFORMANCE OF EVASIVE WEB BOTS

Recall
X&Y 1&2 2&1 2&3 3&2 1&3 3&1 AvgZ 3 1 2
Web 0.531 0.648 0.693 0.437 0.263 0.139 0.452
HuMIdb 0.950 0.943 0.925 0.928 0.950 0.928 0.937

Since the same GAN was used to generate (different) images
for training and for testing, the CNN was able to identify this
behaviour.

B. Web bot detection against evasive web bots

To evaluate the proposed web bots, the already trained
detection framework that takes advantage of CNNs was used.
The evasive web bots train their GAN by using different
human images from the ones used by the detection framework.
The results are presented in Table III where the set X & set
Y indicates the sets that were used for training the web bot
detection framework (see Table II) and the set Z indicates the
set that was used for training the evasive web bots. In this
case, the recall indicates the percentage of images that were
correctly identified as images generated by web bots divided
by the total generated images.

The drop in performance of the detection module when
tested on the evasive web bots shows that generating human-
like trajectories using GANs is very effective against web
bot detection techniques, even if the same architecture and
configurations are used by the detection module. This was
expected, since the web server used the same GAN to generate
images for its training and validation, but was evaluated with
images generated from a different GAN used by the web
bots. Additionally, the drop in performance is very high in
the case of the Web dataset as opposed to the HuMIdb. This
is also something to be expected, since mouse trajectories on a
web server vary more between different humans compared to
“drawing” numbers on smartphones, making the “modeling”
of this behaviour more difficult.

Finally, to qualitatively evaluate the effectiveness of the use
of GANs for the generation of humanlike trajectories, selected
images are presented in Table IV. We observe that web bots
have a tendency to select simpler mouse movements to follow
instead of more complex ones. This could be attributed to the
fact that it is difficult for the latter to be modelled.

TABLE IV
SELECTED IMAGES BY HUMANS AND GENERATED BY GANS

Web

Images by humans

Images generated by GANs

HuMIdb

Images by humans

Images generated by GANs

VII. CONCLUSIONS AND FUTURE WORK

This work proposed a novel way for bots to generate
humanlike mouse and touchscreen trajectories using GANs
that can be used by web bots to exhibit a more evasive
behaviour. We evaluated the proposed approach against web
bot detection techniques that consider the mouse trajectories
of visitors, an approach that has shown to be very effective.
Additionally, we assume that the web bot detection framework
is aware of and uses the same methods as web bots, as well as
their configurations to train its detection models. We show that,
even if the web server knows of this attack, it is challenging
to effectively detect those web bots.

When applying this technique to a real world scenario,
where, in case of crawling bots, a web bot aims to move from
one location to another in a humanlike manner, bots should
generate several potential images from the GAN until they
find one that fits their purpose. However, as we show, web
bots generated simple evasive mouse movements, which might
be a problem when trying to perform more complex actions.
Thus, future work will further investigate the use of GANs
to generate more advanced humanlike mouse movements.
Additionally, the proposed approach will be compared with
different approaches proposed in literature, such as the ones
that use Reinforcement Learning to evade detection [5].

ACKNOWLEDGMENT

We would like to thank the creators of HuMIdb, and
the human subjects that participated in our research. This
work was supported by the FORESIGHT (H2020 833673),
ECHO (H2020 830943), and IDEAL-CITIES (H2020 778229)
projects, funded by the European Commission.

REFERENCES

[1] Imperva, “Bad bot report,” 2020. [Online]. Available: https://www.
imperva.com/resources/resource-library/reports/2020-bad-bot-report/

https://www.imperva.com/resources/resource-library/reports/2020-bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/2020-bad-bot-report/

[2] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using
hard ai problems for security,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2003, pp.
294–311.

[3] S. Sivakorn, I. Polakis, and A. D. Keromytis, “I am robot: (deep) learning
to break semantic image captchas,” in IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016, 2016, pp. 388–403.

[4] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in 11th {USENIX} Workshop on
Offensive Technologies ({WOOT} 17), 2017.

[5] I. Akrout, A. Feriani, and M. Akrout, “Hacking google recaptcha v3
using reinforcement learning,” arXiv preprint arXiv:1903.01003, 2019.

[6] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Web runner
2049: Evaluating third-party anti-bot services,” 2020.

[7] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser finger-
printing: a survey,” ACM Transactions on the Web (TWEB), vol. 14,
no. 2, pp. 1–33, 2020.

[8] M. Schwarz, F. Lackner, and D. Gruss, “Javascript template attacks:
Automatically inferring host information for targeted exploits.” in NDSS,
2019.

[9] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “Fp-crawlers:
Studying the resilience of browser fingerprinting to block crawlers,” in
NDSS Workshop on Measurements, Attacks, and Defenses for the Web
(MADWeb’20), 2020.

[10] S. Rovetta, A. Cabri, F. Masulli, and G. Suchacka, “Bot or not? a case
study on bot recognition from web session logs,” in Italian Workshop
on Neural Nets. Springer, 2017, pp. 197–206.

[11] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, and Y. Kom-
patsiaris, “Towards a framework for detecting advanced web bots,”
in Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES 2019, Canterbury, UK, August 26-29,
2019., 2019, pp. 18:1–18:10.

[12] A. Lagopoulos and G. Tsoumakas, “Content-aware web robot detection,”
Applied Intelligence, vol. 50, no. 11, pp. 4017–4028, 2020.

[13] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, and Y. Kom-
patsiaris, “Detection of advanced web bots by combining web logs with
mouse behavioural biometrics,” Digital Threats: Research and Practice,
in press.

[14] Z. Chu, S. Gianvecchio, and H. Wang, “Bot or human? A behavior-
based online bot detection system,” in From Database to Cyber Security
- Essays Dedicated to Sushil Jajodia on the Occasion of His 70th
Birthday, 2018, pp. 432–449.

[15] A. Wei, Y. Zhao, and Z. Cai, “A deep learning approach to web bot
detection using mouse behavioral biometrics,” in Biometric Recognition
- 14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12-
13, 2019, Proceedings, 2019, pp. 388–395.

[16] D. S. Sisodia, S. Verma, and O. P. Vyas, “Agglomerative approach for
identification and elimination of web robots from web server logs to
extract knowledge about actual visitors,” Journal of Data Analysis and
Information Processing, vol. 3, no. 01, p. 1, 2015.

[17] A. Cabri, G. Suchacka, S. Rovetta, and F. Masulli, “Online web bot
detection using a sequential classification approach,” in 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2018, pp. 1536–1540.

[18] D. Doran and S. S. Gokhale, “An integrated method for real time and
offline web robot detection,” Expert Systems, vol. 33, no. 6, pp. 592–606,
2016.

[19] ——, “A classification framework for web robots,” Journal of the
Association for Information Science and Technology, vol. 63, no. 12,
pp. 2549–2554, 2012.

[20] Q. Bai, G. Xiong, Y. Zhao, and L. He, “Analysis and detection of bogus
behavior in web crawler measurement,” in Proceedings of the Second
International Conference on Information Technology and Quantitative
Management, ITQM 2014, National Research University Higher School
of Economics (HSE), Moscow, Russia, June 3-5, 2014, ser. Procedia
Computer Science, F. Aleskerov, Y. Shi, and A. Lepskiy, Eds., vol. 31.
Elsevier, 2014, pp. 1084–1091.

[21] M. Zabihimayvan, R. Sadeghi, H. N. Rude, and D. Doran, “A soft
computing approach for benign and malicious web robot detection,”
Expert Syst. Appl., vol. 87, pp. 129–140, 2017.

[22] D. Stevanovic, N. Vlajic, and A. An, “Detection of malicious and non-
malicious website visitors using unsupervised neural network learning,”
Applied Soft Computing, vol. 13, no. 1, pp. 698–708, 2013.

[23] Z. Dewa and L. A. Maglaras, “Data mining and intrusion detection
systems,” vol, vol. 7, pp. 62–71, 2016.

[24] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and O. Delgado-
Mohatar, “Becaptcha: Bot detection in smartphone interaction us-
ing touchscreen biometrics and mobile sensors,” arXiv preprint
arXiv:2005.13655, 2020.

[25] C. Iliou, T. Tsikrika, S. Vrochidis, and Y. Kompatsiaris, “Evasive
focused crawling by exploiting human browsing behaviour: a study
on terrorism-related content,” in Proceedings of the 1st International
Workshop on Cyber Deviance Detection co-located with the Tenth
International Conference on Web Search and Data Mining CyberDD
@ WSDM 2017), Cambridge, UK, February, 10, 2017., 2017.

[26] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[27] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and I. Bartolome,
“Becaptcha: Detecting human behavior in smartphone interaction using
multiple inbuilt sensors,” in AAAI Workshop on Artificial for Cyber
Security (AICS), 2020.

APPENDIX

This section details the used neural network architectures.

CNN architecture for Web bot detection
Layer type Kernel size / stride Output Shape Activation
InputLayer – (56, 56, 1) –
Conv 3x3 / 1 (54, 54, 64) ReLU
M-Pool 2x2 / 2 (27, 27, 64) –
Conv 3x3 / 1 (25, 25, 64) ReLU
M-Pool 2x2 / 2 (12, 12, 64) –
Flatten – (9216) –
Dense – (2) Softmax

Layer type Configs Output Shape
Generator architecture

InputLayer – (100)
Dense – (12544)
BatchNormalisation – (12544)
LeakyReLU alpha=0.3 (12544)
Reshape – (7, 7, 256)

Conv2DTranspose kernel=5x5, stride=1,
padding=same (7, 7, 128)

BatchNormalisation – (7, 7, 128)
LeakyReLU alpha=0.3 (7, 7, 128)

Conv2DTranspose kernel=5x5, stride=1,
padding=same (14, 14, 64)

BatchNormalisation – (14, 14, 64)
LeakyReLU alpha=0.3 (14, 14, 64)

Conv2DTranspose kernel=5x5, stride=1,
padding=same (28, 28, 32)

BatchNormalisation – (28, 28, 32)
LeakyReLU alpha=0.3 (28, 28, 32)

Conv2DTranspose kernel=5x5, stride=1,
padding=same (56, 56, 1)

Discriminator architecture
InputLayer – (56, 56, 1)

Conv kernel=5x5, stride=2,
padding=same (28, 28, 64)

LeakyReLU alpha=0.3 (28, 28, 64)
Dropout rate=0.2 (28, 28, 64)

Conv kernel=5x5, stride=2,
padding=same (14, 14, 128)

LeakyReLU alpha=0.3 (14, 14, 128)
Dropout rate=0.2 (14, 14, 128)
Flatten – (25088)
Dense – (1)

	Introduction
	Related work
	Web bot detection
	Web bot detection evasion

	Web bot detection method
	Evasive web bots using GANs
	Evaluation
	Evaluation methodology
	Datasets
	Evaluation metrics

	Results
	Web bot detection performance
	Web bot detection against evasive web bots

	Conclusions and Future work
	References
	Appendix

