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Abstract—The highway-env reinforcement learning tasks pro-
vides a good abstract testbed for designing driving agents for spe-
cific driving scenarios like lane changing, parking or intersections
etc. But, generally these driving simulation environments often
restrict themselves to safer and precise trajectories. However,
we clearly know that real driving tasks often involve very high
risk collision prone unexpected situations. Hence, the autonomous
model-free driving agents prepared in these environments are
blind to certain low probability traffic collision corner cases.
In our study we systematically focus on generating adversarial
driving collision prone scenarios with dangerous driving behavior
and heavy traffic in order to create robust autonomous agents.
In our experimentation we train model free learning agents with
additional collision prone scenario simulations and compare their
efficacy with regular simulation based agents. Ultimately, we
create a causal experimentation setup which successfully accounts
for the performance improvements across different driving sce-
narios by utilizing learning from risky driving situations.

Index Terms—Autonomous Agents, Driving Simulations, Tra-
jectory Prediction, Causal Analysis

I. INTRODUCTION
1

Autonomous driving agents have transformed the automo-
bile industry into a new digital and intelligent era. Further, it
will be responsible for paving the way of new safer and effi-
cacious automotive innovations as well. Current industry pro-
gression trends show that individual autonomous agents will
dominate before a federated fleet of connected autonomous
agents can operate [1]. Connected autonomous agent society
is still far from the truth because of safety infrastructure,
security and public policy reasons [2]-[4]. Therefore, our
immediate focus should be on making the driving vehicles safe
and efficient. Creating safer and robust agents have already
been explored quite well for the past few years as it is very
important to know the agent behavior in critical scenarios
[5]-[9]. In regular driving situations risk prone scenarios don’t
happen frequently which makes the learning process harder
because of the sparsity in number of risky interactions [10].
Also, it is unethical to create risky driving scenarios for
experimental studies. Therefore, generating and studying these
scenarios is a very hard task.
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Fig. 1. Control & Treatment agents evaluated randomly for conservative and
collision prone test driving environments.

Noisy labelling adversarial approaches in perception
systems do demonstrate promising future research paths
[11]-[13]. But the important focus remains on the constant
interactions with other vehicles on roads which themselves
operate independently and unexpectedly. Simulation environ-
ments with good system dynamic approximations do serve as
great testbeds to simulate different critical driving tasks. Here,
in this paper we formulate the driving system dynamics as
Markov Decision Process (MDP) for our agent prototyping and
testing tasks [14]. In our study we model our value function
approximation autonomous agents with deep reinforcement
learning architectures for the defined MDP driving tasks.

In our experiment setup we create two unique variants of
the deep reinforcement learning model architecture for the
highway-env simulation tasks like lane changing, performing
u-turn etc. One of these two model variants is trained on
increased dangerous driving scenario interventions for the
driving related tasks in the highway-env package. Whereas
the second model variant represents the control variable in our



experiment which is used to define the baseline vanilla agent
trained on regular conservative simulations. In this study we
perform systematic doping of these environments with random
dangerous driving scenarios to create more collision prone
environments. This is done in two ways, first we increase
randomization behavior and second we increase traffic at
key locations making the driving maneuvers really hard to
perform. These two factors combined together makes the
driving environment more collision prone for our ego-vehicle
agent. This is done to create more robust agents in a given
environment for that particular scenario. The intent is to make
these agents better at post impact trajectory predictions of
other colliding vehicles. Figure 1 elaborates the causal analysis
aspect of the experimentation setup in randomized control trial
research design.

As we hold complete control of the data generation process
in our reinforcement learning setup we also attempt to under-
stand our experimentation setup from a causal viewpoint. This
in turn provides us with a unique vantage point of designing
the experiment study in the form of a randomized control
trial (RCT). We train our autonomous agents with a strong
assumption of absence in unobservable confounding variables
as we have strictly defined the vehicle behavior governing
models and state dynamics. The customization features in
the highway-env simulation package gives us control to keep
every condition the same except for our treatment. Essentially,
meaning that there is a covariate balance and comparability
in our experiment design [16]-[18]. This special relationship
allows us to imply that association found while calculating
potential outcomes is causation. Figure 2 demonstrates the
treatment (T) is subjecting the agent learning process to risk
prone collision scenarios in a given driving environment task.
The sample test experiment population includes evaluating
the two model variants against the regular and perturbed
environments with additional collision prone corner cases.
Finally, by utilizing the expectation equations derived from the
causal structure graph provided in Figure 2 we estimate the
causal impact of novel learning changes for enhanced efficacy
and safety.

Our main contribution from this paper includes providing an
experimentation methodology for reinforcement learning mod-
eling techniques that helps in calculating the causal impacts
of our treatments. Along with that this methodology assists in
creating more robust agents with better on-road safety. Also,
we benchmark performance in simulation driving tasks for
both treatment and control agents. Further in this paper we
first discuss the previous work corresponding to autonomous
simulation driving agents and utilization of risk prone behavior
for creating safer autonomous vehicles. After that we formally
define the reinforcement problem and discuss it from a causal
perspective. Third, we elaborate on the experimental setup
details and present the agent performance results. Finally,
we summarize our findings in the conclusion section for this
autonomous driving agent study.
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Fig. 2. Observational (Left) and Interventional (Right) distributions repre-
sented with causal graphs.

II. PREVIOUS WORK

In the past Deep-RL have made exhaustive contributions
in traffic control tasks [19], [20]. CARLA [21] simulation
environments provide a system framework that estimates var-
ious affordances from sensors [22]. Solving exploration based
driving tasks like vehicle merging in traffic etc. have shown
promising results in simulators [23]. ChaufferNet [24] dis-
cusses the advantages of using imitation learning for training
robust autonomous agents that leverage worst case scenarios
from realistic collision settings for learning.

The highway-env python package focuses on designing
safe working policies for nonlinear autonomous driving sys-
tems [14]. This package has been extensively used for mod-
elling different types of MDPs, for example: finite stochastic
MDP, constraint-MDP and budgeted-MDP (BMDP) [25]. The
BMDP variant ensures that the risk notion implemented as
cost signal stays below a custom threshold value [26]. Already
problem formalization mechanisms exist for defining workings
of temporal abstraction, partial observability, reward hypoth-
esis and vehicle kinematics. The BMDP safety and efficacy
study extends to continuous kinematics states and unknown
human behavior from finite state space and known dynamics
[26]. Model free learning techniques that approximate these
MDPs like Deep Q-Learning & Dueling Deep Q-Learning
networks have shown promising results in continuous agent
learning [27], [28].

Collision scenario knowledge has been leveraged for model
based algorithms by high confidence region building consisting
of true dynamics with high probability. Robust stabilisation
and mini-max control with generic costs was achieved by using
Tree based planning algorithms. Also, the same studies used
interval prediction and non-asymptotic linear regression for
safer trajectory predictions [14], [25]. Behavior guided action
research which uses safety trajectory computes and proximity
graphs to work with aggressive and conservative scenarios
have also shown promising results [29]. The CMetric study
was used to generate varying degrees of aggressiveness in
traffic for autonomous agent behavior analysis [30]. But, in



our case we use more randomization and traffic clogging at
key critical spaces across multiple lanes to evaluate agents
results at a more granular level.

Reason based interpretations have been extensively provided
by causal modelling techniques for many different domains
and use-cases [31]-[33]. Additionally, randomized control
trials (RCTs) by Fischer are the gold standard for causal
link discovery from observational data in any research design
experiment [17]. And Sewall’s path diagrams provide a math-
ematical framework for causal answers [34]. Currently, causal
diagrams and multiple adjustments on these diagrams proffer
causal relation information for any experimental variable under
study [16], [17], [35], [36]. In our experimental setup we uti-
lize these tools to infer direct causal robustness improvements
from our environment interventions during agent training.

III. PROBLEM FORMULATION

We intend to measure the performance improvement impact
causally with the learnings from collision prone situations for
different traffic scenarios. A MDP outputs action a for given
state s for any given behavior policy 7(a|s). From the action set
of (left, right, break, accelerate, idle) selection values for next
time step for driving tasks our goal is to learn this behavior
policy to predict safe and efficient trajectories. The state-
action value function Q7(s,a) for given (s,a) pair estimates
future rewards of given behavior policy 7. Hence, the optimal
state-action value function Q%*(s,a) provides maximum value
function estimates for all s € S and is evaluated by solving
the Bellman Equation [39], provided below for reference.

Q'(s,0) = E[R(s,a) + 7 ) P(s'|s,a) max Q"(s',a)] (1)
"

Traffic flow in the highway-env gets generated from MOBIL
model [38] for lane changing & Intelligent Driver Model
(IDM) [37] for linear acceleration. First criterion determines
the net advantage of lane changing in defined terms of
complete acceleration gain and second safety criterion checks
whether post lane change a given vehicle is having acceleration
room to drive. Our model free learning architecture consists
of dueling DQN networks encompassing value and advantage
streams which approximate Q(s,a) function to predict best
possible actions from the policy 7.

We intend to directly measure the impact of adding collision
scenario interventions in driving environments. Our evaluation
setup consists of calculation of average reward values against
perturbed and control environments randomly which makes
this setup equivalent to RCT. In this setup the backdoor
criterion is satisfied meaning that there is no unobserved
confounding variable present here. We know that in RCTs
distribution of all covariates are the same except the treatment.
This further implies that association is equal to causation here
as covariate balance in observational data is present. Meaning
that we can use the associative difference quantity to calculate
treatment effect on potential outcomes. Finally, we can use the
Average Treatment Effect (ATE) approach to evaluate causal
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Fig. 3. Probable collision example simulations generated for different driving
tasks.

performance improvements by subtracting averaged out values
of treatment and control potential outcomes.

Information about the system dynamics is not generally
available and model free learning approaches accumulate
learning only from environment interactions. Therefore, DQN
based autonomous agents generalizes policies only from the
particular scenarios encountered during the model training.
Figure 3 demonstrates different real-life collision situations
possible in different driving tasks. The cases a and ¢ demon-
strate sudden brake collision scenarios where our ego-vehicle
collides with suddenly stopped vehicles in traffic. In cases
b and d, collision because of clogged ego-vehicle trajec-
tory by already collided and moving traffic is highlighted
respectively. These cases present few of the real life collision
scenarios where conservatively trained model-free agents fail.
For increasing the critical case coverage of the autonomous
agent we add risky randomized behavior during the model
training which in turns introduces collision based corner
cases for learning. This further increases capacity to handle
critical scenarios to avoid hefty collisions. Further, we causally
analyze the performance improvements of our treatment agents
in comparison to control ones.

Geometrically intersection of two convex polygons rendered
in the highway-env package represents the collisions between
the vehicles. And these collisions get detected with the separat-
ing axis theorem mathematically. The main concept is to find a
separating line for the 2D polygons and if that line is found the
collision hasn’t happened yet. Essentially, for each given edge
of our polygon we find a perpendicular axis to the current
edges under review. Post that we project these edges along
these perpendicular axes and check whether the projections
don’t overlap with the other polygon, refer Figure 4. In essence
it functionally means that no collision has happened yet.
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Fig. 4. Overlapping (Left) and Non-Overlapping (Right) projection analysis
for collision detection in highway-env package.

Fig. 5. Different driving navigation environment tasks for collision prone
scenario analysis.

IV. EXPERIMENTATION

We evaluate the ATE metric in our experimentation setup for
five tasks: roundabout, intersection, lane changing, two-way
traffic and u-turn as shown in Figure 5. These five tasks are
evaluated at different specific granularities against increasing
vehicle count/density to a 200 % increase from respective
default values. For all these environments we create treatment
environments with dangerous steering and acceleration param-
eters that are non-compliant with MOBIL model criteria. We
create these collision prone scenarios by significantly changing
the max-min acceleration and steering parameters highlighted
in equations stated below to create more dangerous driving
kinematics rules defined in highway-env package. The addition
of this risk factor knowledge during the agent learning process
allows us to quantify model performance improvements with
our experimentation setup causally. And finally we compare it
with the control baseline models across these navigation tasks
against a spectrum of increasing traffic density.

accp = acCCmin + rand[0,1] * (acCmax — ACCmin) 5
stry = strmin + rand[0,1] * (stTmax — StTmin) @

We rebuild the highway-env package environments with
our custom traffic configurations each time for given specific
driving scenarios. Every newly built treatment environment
specific to every driving task consists of increased traffic den-
sity and more riskier randomized behavior. And their counter
control environments only contain increased traffic density but
not the randomized collision prone behavior. For example in
the lane changing task of episode duration 20 seconds, in
control and treatment agent training we incrementally move
the vehicle count from 50 to 150 with equivalent intermittent
increase of vehicle density by 100 %. We train distinct agents

for navigation on every different traffic count environment
version in our experiment corresponding to every vehicle
interval count increase. Also, we summarize our ATE findings
as a comparative analysis plot of treatment and control agents
across these different environment iterations.

In a similar manner, we uniformly increase vehicle count
from 3 to 12 with iterative increments of 3 traffic vehicles for
the u-turn tasks. These vehicles are added uniformly across
the two forward moving lanes on the critical turning area.
And while designing for the two-way traffic environment we
first reduce the original environment length to 2/3™. Post
that we iteratively increment the vehicle count from 5 in
direction & 2 opposite direction to 15 in direction & 6 opposite
direction in two more steps altogether. For collision scenario
treatment corresponding to the intersection task we add more
risk by randomizing the acceleration and deceleration even
further more. In addition to that we increase the vehicle from
10 to 30 incrementally with an interval gap of 5 vehicles
plus increase the spawning probability by 0.1 iteratively till
it reaches maximum threshold. Finally, for the roundabout
task we increase the traffic from 5 to 15 vehicles with more
risky randomized driving behavior encoded into our treatment
environments for agent training and performance comparison
with control agents.

All the above traffic configurations require the treatment
and control environments to be rebuilt every time for repeated
agent training. To evaluate each such agent from both control
and treatment environment configurations we kept the traffic
as constant in our test population set. In order to be compliant
with our causal experiment structure we only changed risky
behavior parameters in treatment environment configurations
for ATE calculations corresponding to a given traffic popula-
tion setting.

We use the Dueling DQN model architecture with ADAM
optimizer having learning rate 5e-4 in our experiments during
agent training. The discount factor is inputted as 0.99 and
observational agent interaction data is fed in the batch size of
100. Our agents are trained till the maximum count of 3072
episodes until they converge to average reward value specific
to that environment. We utilize the dueling network design
which uses advantage function A(s,a) to assist in estimation
of Q(s,a) function for state action pairs more accurately. This
architecture splits the network into two streams, namely value
and advantage ones which contain some base hidden layers
in common. As shown in Figure 6 the shared network has 3
fully connected layers of 256, 192 and 128 units respectively
and the final output of these streams is fully connected
to the remaining network. The value stream calculates the
value function for a given state with its one output. And the
advantage stream consists of n, outputs corresponding to all
discrete possible actions for a given state. These two outputs
are finally combined in the dueling architecture to get the
Q(s,a) function values for state-action pairs, given by Q(s, a)
= V(s) + A(s,a) formula.
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Fig. 6. DQN based dueling model architecture used for autonomous agent
training.

V. RESULTS

For uniformly adding randomization across different envi-
ronments corresponding to the same driving scenario we select
different initial random seed values. This essentially creates
variations in environment components like vehicle location,
spawning vehicles count, vehicle acceleration & deceleration
etc. With different random seed values we average out any
anomalous results for comparing ATE of our treatment and
control models which is evaluated against collision prone and
regular environments in the test set. The ATE calculation
used for this experimentation is expressed by the equation 3
where the first two terms calculate the average reward gains
achieved by the treatment models in risk prone and regular
environments. And the last two terms calculate the same for
control agents in both these types of environment samples as
well, where Nt = Nc = 100 in the final equation.

NT NC
ATE — ]-/NT,C % [Z RTavgi + ZRTavgi_
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Percentage improvements of ATE results in Figure 7 demon-
strates the advantage of learning from collision prone scenar-
ios. These improvements are even more pronounced when the
traffic density increases for driving environments like in any
real-life situation. There is also a declining trend of average
reward values as traffic increases over all the driving scenarios.
This depreciation can be attributed to slow progression of
the agent across the driving environments. The increase in
relative improvements of ATE values as the traffic continues
to grow showcases the robustness of treatment models over the
control ones. Hence, our causal effect estimation experiment
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setup quantifies the information learnt from the doped collision
prone scenarios. This approach holds good for creating key
metrics oriented systems for developing autonomous driving
agents.

VI. CONCLUSION

With our causal experimentation setup we generated more
rugged agents on the discussed critical driving situations by
using the same MDP formulation as earlier. This also proved
our initial experimentation hypothesis that agents trained on
systematically added critical driving scenarios excels in per-
formance as compared to agents learning from safer driving
simulations. For all the discussed environments our agents
proved to be better collision deterrents demonstrating the
importance of learning from corner cases generated by colli-
sion prone scenarios. Here, with our analysis we successfully
demonstrated a methodology that systematically measures the
agent’s ability to learn from risky driving situations.
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