
ciu.image: an R package for Explaining Image
Classification with Contextual Importance and

Utility ?

Kary Främling*1,2[0000−0002−8078−5172], Samanta Knapic̆2[0000−0001−5926−6151],
and Avleen Malhi3,2[0]

1 Dept. of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden
kary.framling@umu.se

2 Dept. of Computer Science, Aalto University, 02150 Espoo, Finland
{avleen.malhi,samanta.knapic}@aalto.fi

3 Department of Computing and Informatics, Bournemouth University, UK
amalhi@bournemouth.ac.uk

Abstract. Many techniques have been proposed in recent years that
attempt to explain results of image classifiers, notably for the case when
the classifier is a deep neural network. This paper presents an imple-
mentation of the Contextual Importance and Utility method for ex-
plaining image classifications. It is an R package that can be used with
the most usual image classification models. The paper shows results for
typical benchmark images, as well as for a medical data set of gastro-
enterological images. For comparison, results produced by the LIME
method are included. Results show that CIU produces similar or better
results than LIME with significantly shorter calculation times. However,
the main purpose of this paper is to bring the existence of this pack-
age to general knowledge and use, rather than comparing with other
explanation methods.

Keywords: Explainable Artificial Intelligence · Contextual Importance
and Utility · Image Classification · Deep Neural Network.

1 Introduction

Contextual Importance and Utility (CIU) is a method originally developed by
Kary Främling in his PhD thesis [3]. CIU was developed in a context of multiple
criteria decision making (MCDM), which is a domain where different mathe-
matical models are used as decision support systems for human decision makers.
Possible mathematical models include any kind of AI system, including systems
created using machine learning. CIU was designed to provide a mechanism for
explaining or justifying the outcome of any such AI system in a uniform way, no
matter if it is considered to be a so-called black-box model or not.
? Corresponding Author: Kary.Framling@cs.umu.se.

The work is partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

2 K. Främling et al.

As in many MCDM methods, CIU makes a difference between feature im-
portance and value utility. The feature importance expresses to what extent an
input feature (or combination of input features) can change the output value.
Value utility expresses to what extent the input value contributes towards a
high-utility output value. In classification tasks there is usually one output per
class and the output value is a class probability value, that can be directly used
as the output utility value. Both feature importance and value utility can change
depending on the studied instance or context, which is why feature importance is
called Contextual Importance (CI) and value utility is called Contextual Utility
(CU). CI and CU are scalars in the range [0, 1] and are absolute (non-relative)
values.

The purpose of this paper is to present an R implementation of CIU for
explaining image classification. This ‘ciu.image’ package is available at https:
//github.com/KaryFramling/ciu.image. It is a follow-up package to the ‘ciu’ R
package for tabular data available at https://github.com/KaryFramling/ciu [4].
After this Introduction, Section 2 provides implementation details of CIU for
image explanation. Section 3 gives software installation and usage instructions.
Section 4 shows example results on ImageNet and medical image explanations,
followed by Conclusions.

2 Contextual Importance and Utility for Images

The most recent description available about CIU is found in [4]. Only the most
relevant parts for explaining image classification with CIU are included here,
i.e. the basic definitions of CI and CU. CI expresses how much the output value
utility can change when modifying the value(s) of one or several input features
{i} relative to the total output range:

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
absmaxj − absminj

(1)

CU expresses to what extent the current input feature values
#»

C are favorable
for a high output value utility:

CUj(
#»

C, {i}) =
yj(

#»

C)− Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
(2)

Here, yj(
#»

C) is the value of output j for the current instance. Cmin and
Cmax are the minimal and maximal output values achievable by modifying the
value of the given input feature(s) with indices {i}. absmin and absmax give the
minimal and maximal possible values for the output. In the case of explaining
image classification (and for classification tasks in general) it is reasonable to
use absmin = 0 and absmax = 1.

‘ciu.image’ segments images into so-called super-pixels using Simple Linear
Iterative Clustering (SLIC) [1] in the same way as the LIME package [6]. There-
fore, the input features of CIU actually consist of super-pixel values. The super-
pixel values could in principle be ‘anything’ but what is used in practice is to have

ciu.image R package 3

only the values present/not-present, where ‘not-present’ corresponds to setting
the super-pixel to transparent. In practice, this leads to a rather trivial imple-
mentation of CIU for explaining image classification because calculating CI and
CU values of a super-pixel requires exactly two forward-passes of the classifica-
tion model, i.e. one with the original image and one with the super-pixel(s) of
interest set to transparent. For an image with 50 super-pixels, for instance, only
51 forward passes are needed for calculating the CIU values of all super-pixels.

When interpreting the results, the super-pixels with the highest CI values
are the ones that contribute the most to the classification result. CU can only
take values zero or one in this case, where CU = 1 signifies that the contribu-
tion is positive and CU = 0 signifies that the contribution is negative. As shown
in Section 4.1, this approach works relatively well for ImageNet classification.
For the gastro-enterological images in Section 4.2, this approach is not sufficient
because bleeding in any super-pixel will lead to classifying the image as ‘bleed-
ing’. However, since CIU can be calculated for any number of input features, an
‘inverse’ option was introduced, where all other super-pixels except the studied
one are set to transparent, which efficiently identifies all the super-pixels with
bleeding present.

3 Installation and Use

The package is available at https://github.com/KaryFramling/ciu.image. Instal-
lation instructions are also found there. The simplest way to install the package
is to first install the ‘devtools’ package and then install ‘ciu.image’ with the com-
mand devtools::install github(’KaryFramling/ciu.image’). The package
is loaded with the command library(ciu.image). A ciu.image object is cre-
ated by calling ciu.image.new(model) that uses the given predictor model. The
optional parameters of ciu.image.new and the methods of ciu.image objects
are explained in the package documentation and reflect the latest updates to the
package. Since ciu.image is still a research tool, it is expected to evolve over
time. Currently, the core ciu.image methods are the following:

1. ciu.superpixels(imgpath, ind.outputs=1, n_superpixels=50,

weight=20, n_iter=10, background = "grey", strategy =

"straight"): Return a list with fields out.names, outval, CI, CU, cmin,
cmax for the requested number of outputs in ind.outputs, where outputs
are ordered according to decreasing output value. Only imgpath is a
compulsory parameter, for the others the default values are often
appropriate.

2. plot.image.explanation(imgpath, ind.outputs=1, threshold=0.02,

show_negative=FALSE, n_superpixels=50, weight=20, n_iter=10,

background="grey", strategy="straight", ciu.sp.results=NULL,

title=NULL): Return a list of ggplot objects for the requested number of
outputs in ind.outputs, where outputs are ordered according to decreasing
output value. Most parameters are the same as for ciu.superpixels.

4 K. Främling et al.

The use of ‘ciu.image’ typically happens as follows:

c iu <− c iu . image .new(model , predict function , output .names)
p l i s t <− c iu$plot . image . exp lanat ion (imgpath)
print (p l i s t [[1]])

A complete code example is shown in Appendix 1.

4 Results

The experiments were run using Rstudio Version 1.3.1093 on a MacBook Pro,
with 2,3 GHz 8-Core Intel Core i9 processor, 16 GB 2667 MHz DDR4 memory,
and AMD Radeon Pro 5500M 4 GB graphics card. The LIME R package was
used for producing LIME results [6]. For image classification, CIU is entirely
deterministic so it always produces the same results, whereas LIME results tend
to vary from one run to the other.

4.1 ImageNet classification

Results are shown here for VGG16 and VGG19 models included in the ‘keras’
package, pre-trained on ImageNet images. The two images used are shown in
Figure 1. Appendix 1 shows the complete source code for producing the cat
classification results shown in Figure 2, both for CIU and LIME. For CIU, this
source code is also included in the online documentation and is accessible by
writing ?ciu.image.new on the R command line. Cat calculation times are 30
sec. for CIU and 5 min. 44 sec. for LIME. Dog playing guitar times are 18 sec.
for CIU and 4 min. 44 sec. for LIME.

(a) Cat.
(b) Dog playing guitar.

Fig. 1: Original images, with super-pixel borders shown by yellow lines.

For the cat explanations shown in Figure 2, CIU and LIME explanations
are quite similar. However, CIU extracts what makes the difference between
Egyptian, Tabby and Tiger cat according to the VGG16 model, whereas LIME

ciu.image R package 5

Egyptian cat, probability: 0.489
CI threshold=0.02, #superpixels=50

(a) Egyptian, CIU.

tabby, tabby cat, probability: 0.152
CI threshold=0.02, #superpixels=50

(b) Tabby, CIU.

tiger cat, probability: 0.103
CI threshold=0.02, #superpixels=50

(c) Tiger Cat, CIU.

(d) Egyptian, LIME. (e) Tabby, LIME. (f) Tiger Cat, LIME.

Fig. 2: Cat image explanation results using LIME and CIU trained with VGG16.

includes the same super-pixels for all three kinds of cat, with a smaller sub-set
included for the two lower-probability cat types Tabby and Tiger Cat. For the
guitar-playing dog image used in [7], the results are shown in Figure 3. In this
case, the interpretation of image explanations tends to be subjective and also
depends on how the underlying trained model makes the classification, so it does
not make much sense to declare a ‘winner’. Furthermore, LIME results tend to
change somewhat from one run to the other, whereas CIU results are guaranteed
to be identical for every run.

acoustic guitar, probability: 0.506
CI threshold=0.1, #superpixels=50

(a) CIU.

golden retriever, probability: 0.031
CI threshold=0.02, #superpixels=50

(b) CIU. (c) LIME. (d) LIME.

Fig. 3: Dog playing guitar image explanation results using LIME and CIU trained
with VGG19 for ‘Acoustic guitar’ and ‘Golden retriever’.

6 K. Främling et al.

4.2 Gastro-enterological image explanation

The image data set considered in this case is taken from a Video Capsule En-
doscopy (VCE), which is a non-invasive procedure to visualize the entire gastro-
enterological tract of a patient. The data set of 3,295 images, retrieved from
Coelho4 [2] was split into 2,941 training and 354 validation images (randomly
assigned), and it is a binary classification (bleeding or not). The medical data
set was trained using the Convolutional Neural Network (CNN) model from [5],
with 50 epochs with batch size of 16 and achieving a validation accuracy of
98.58%.

CIU explanations were generated using the parameter value
strategy="inverse" to the plot.image.explanation method. The threshold
value was 0.01 and 50 super-pixels were used. Some CIU results are shown in
Figure 4. For non-bleeding images, LIME failed to produce a result with the
default settings, as well as for many of the bleeding images. For the bleeding
images where LIME gave a result, CIU and LIME results were often quite
similar, even though CIU was clearly more precise. LIME’s ‘explanation fit’
tended to be below 0.001, which indicates that the fitted LIME model has low
or no explanatory value.

For ‘bleeding’ images, the parts (super-pixels) identified by CIU were con-
sidered relevant and correct by a user panel and also corresponded to the masks
of ‘correct’ answers available for the image set. For ‘non-bleeding’ images, all
super-pixels that belong to the actual image should be included because they
are all ‘non-bleeding’. However, the black corners of the images are present in all
images and therefore do not have any discriminatory effect between ‘bleeding’
and ‘non-bleeding’ images, so they have no significance for the classification. CIU
indeed filters out those black areas from the explanation, as seen in Figure 4.
CIU took less than 7 sec. per image, whereas LIME took about 1 min. 40 sec
per image.

Fig. 4: CIU explanations generated for ‘bleeding’ (left and right columns) and
‘non-bleeding’ (middle column) images.

4 https://rdm.inesctec.pt/dataset/nis-2018-003

ciu.image R package 7

5 Conclusions

This CIU implementation for explaining image classification shows that CIU
can produce explanations that are at least at comparable level to LIME. For
explaining gastro-enterological image classification, CIU manages to produce
‘makes-sense’ explanations for all images, whereas LIME fails to produce expla-
nations for several images. Moreover, CIU is orders of magnitude faster than
LIME, which might in the future be used for exploiting CIU’s capability to deal
with super-pixel combinations in different ways, rather than only setting one
super-pixel transparent, or the opposite. Therefore, CIU’s performance can be
expected to improve further with future research.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic
superpixels compared to state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012).
https://doi.org/10.1109/TPAMI.2012.120

2. Coelho, P., Pereira, A., Salgado, M., Cunha, A.: A deep learning approach for red
lesions detection in video capsule endoscopies. In: Digital Image Computing: Tech-
niques and Applications (DICTA). pp. 553–561. Springer (2018)

3. Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones
pour l’aide à la décision multicritère. Phd thesis, INSA de Lyon (Mar 1996), https:
//tel.archives-ouvertes.fr/tel-00825854

4. Främling, K.: Contextual importance and utility in R: the ‘ciu’ package. In: Pro-
ceedings of 1st Workshop on Explainable Agency in Artificial Intelligence, at 35th

AAAI Conference on Artificial Intelligence. pp. 110–114 (2021)
5. Malhi, A.K., Kampik, T., Pannu, H.S., Madhikermi, M., Främling, K.: Explaining

machine learning-based classifications of in-vivo gastral images. In: 2019 Digital
Image Computing: Techniques and Applications, DICTA 2019, Perth, Australia,
December 2-4, 2019. pp. 1–7. IEEE (2019)

6. Pedersen, T.L., Benesty, M.: lime: Local Interpretable Model-Agnostic Explanations
(2019), https://CRAN.R-project.org/package=lime, R package version 0.5.1

7. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should I trust you?”: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016. pp. 1135–1144 (2016)

8 K. Främling et al.

Appendix 1: Source Code for ImageNet cat results.

l ibrary (keras)
l ibrary (l ime)
l ibrary (magick)
l ibrary (c iu . image)
imgpath <− system . f i l e (' extdata ' , ' k i t t e n . jpg ' ,

package = ' c iu . image ')
load VGG16 image c l a s s i f i e r t r a ined on imagenet database
model <− a p p l i c a t i o n vgg16 (weights = ” imagenet ” , i n c lude top = TRUE)
We have to t e l l how images are prepared and eva l ua t ed .
vgg predict function <− function (model , imgpath) {

predict (model , image prep (imgpath))
}
Standard prepara t ion f o r imagenet , VGG16 & VGG19
image prep <− function (x) {

ar rays <− lapply (x , function (path) {
img <− image load (path , t a r g e t s i z e = c (224 ,224))
x <− image to array (img)
x <− array reshape (x , c (1 , dim(x)))
x <− imagenet p r ep roce s s input (x)

})
do . ca l l (abind : : abind , c (arrays , l i s t (a long = 1)))

}
model labels <− readRDS(system . f i l e (' extdata ' ,
' imagenet l a b e l s . rds ' , package = ' c iu . image '))
c iu <− c iu . image .new(model , vgg predict function ,
output .names = model labels)
Get exp l ana t i on f o r t h r e e topmost c l a s s e s .
Use ` t h r e sho l d ` parameter f o r ad j u s t i n g CI l e v e l to show .
p l i s t <− c iu$plot . image . exp lanat ion (imgpath , c (1 , 2 , 3))
for (i in 1 :3) print (p l i s t [[i]])

These l i n e s genera te corresponding LIME exp l ana t i on s .
e x p l a i n e r <− l ime (imgpath , as c l a s s i f i e r (model , model labels) ,
image prep)
exp lanat ion <− exp la in (imgpath , exp la ine r , n labels = 3 ,
n f e a t u r e s = 50 , n s u p e r p i x e l s =50)
exp lanat ion <− as . data . frame (exp lanat ion)
p <− plot image exp lanat ion (explanat ion , d i s p l a y = ' block ' ,
th r e sho ld = 0 . 0 1)
print (p)

