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Abstract  

We explored the neural signatures of face familiarity using cross-participant and cross-experiment 

decoding of event-related potentials, evoked by unknown and experimentally familiarized faces from 

a set of experiments with different participants, stimuli, and familiarization-types. Human participants 

of both sexes were either familiarized perceptually, via media exposure, or by personal interaction. 

We observed significant cross-experiment familiarity decoding involving all three experiments, 

predominantly over posterior and central regions of the right hemisphere in the 270–630 ms time 

window. This shared face familiarity effect was most prominent across the Media and the Personal, 

as well as between the Perceptual and Personal experiments. Cross-experiment decodability makes 

this signal a strong candidate for a general neural indicator of face familiarity, independent of 

familiarization methods, participants, and stimuli. Furthermore, the sustained pattern of temporal 

generalization suggests that it reflects a single automatic processing cascade that is maintained over 

time.  
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Introduction  
The successful recognition of a face requires the interplay between multiple cognitive systems via 

connections across several parts of the brain. A number of regions have been shown to highly favor 

face stimuli, while others are known to carry out more general-purpose processing (Duchaine and 

Yovel 2015). The joint, synchronized functioning of this network enables the integration of perceptual, 

episodic and recognition memory, semantic, contextual and affective information that underlies 

everyday interactions with others (Kovács 2020).  

We know relatively little about how this system accommodates the addition of a new face-identity to 

the existing repertoire of previously learned faces. To study the process of becoming familiar with 

someone, it is a good starting point to ask if a neural signature exists that reliably f lags unknown  

and/or known faces, irrespective of the mode of acquisition or depth of encoding. Furthermore, 

should such signals exist, are they shared across individuals, implying more of an automatic processing 

cascade, or do they rather arise as a combination of stimulus properties and idiosyncratic activation 

patterns, shaped by the person’s prior experience and functional-anatomical mappings (Wilmer et al. 

2010; Verhallen et al. 2016; Sanchez et al. 2021)?  

While the answer is most certainly a combination of both, compelling evidence exists for the markedly 

differential processing of familiar and unfamiliar faces (for a review see e.g., Johnston and Edmonds 

2009). For example, in the macaque brain, images of personally familiar conspecifics engage the face 

processing network more than unfamiliar ones, and recruit additional areas in the perirhinal cortex 

and temporal pole that rapidly activate when familiar faces became recognizable (Landi and Freiwald 

2017). Strong evidence from patients with acquired prosopagnosia (a brain-lesion-caused inability to 

recognize or experience a conscious feeling of familiarity with the faces of people previously 

encountered) provide clues that face familiarity can be inferred from physiological signals even 

without conscious recognition. Tranel and Damasio (1985) describe two female patients with bilateral 

occipito-temporal lesions who have shown elevated electrodermal responses for person ally familiar 

faces even in the absence of recall. Conversely, in Capgras syndrome person identification remains 

preserved but the associated feeling of familiarity appears to be lost and, in contrast to prosopagnosia, 

skin conductance responses do not differentiate between familiar and unfamiliar faces (Ellis and Lewis 

2001). In healthy volunteers, eye movement patterns reveal distinct markers of familiar face 

recognition (Rosenzweig and Bonneh 2019) that may even defy active countermeasures at 

concealment (Millen and Hancock 2019).  

In a recent study, Yan et al. (2017) demonstrated that while the processing of unfamiliar faces is not 

entirely automatic, familiarity with a face does increase the automaticity for certain facial 

characteristics. In a matching task, participants were instructed to report whether certain properties 

(sex, identity, ethnicity, and expression) were the same or different for two briefly presented faces. 

Automaticity was tested by comparing performance between cases when the instruction was given at 

the beginning of the trial to when it was given at the end of the trial. While performance for ethnicity 

(white/black) and expressed emotion (neutral/happy) benefited from cues at the beginning of the trial 

for both familiar and unfamiliar faces, no differences were found for judgments of sex and identity 

from familiar faces (celebrities), indicating a strong automatic processing of these dimensions. In 

agreement with this finding, Dobs et al. (2019) observed that familiarity enhanced the decodability of 

sex and identity (but not age) information at early stages of visual processing, suggesting that this 



familiarity enhancement effect is due to these processes being tuned to familiar face features. In a 

change-detection task, which did not require explicit image recognition, Buttle and Raymond (2003) 

presented briefly and successively pairs of faces (either famous or recently learned), changing one of 

the two faces between the presentations, and found that the change-detection performance was 

significantly better for famous when compared to unknown faces. Also, the authors found a clear left 

visual filed bias, consistent with the view that the right hemisphere is involved in a more global mode 

of face processing, whereas the left hemisphere attends to local information, suggesting that 

extensive experience with a face gives rise to a more configural as opposed to a featural mode of face 

processing. Measuring visual search performance with familiar (male Hollywood actors) and 

unfamiliar faces in paradigm, Persike et al. (2013) found that face familiarity also strongly enhances 

performance, both in terms of accuracy and reaction time. While for target absent trials only a small 

familiarity advantage was shown, for target-present trials the effect was pronounced. Moreover, 

participants needed more than twice the time to process one item of unfamiliar, compared to familiar 

faces. The authors concluded that familiarity enhances difference detection among faces via efficient 

global mechanisms, connected to long term memory representations.  

As we have seen, compelling evidence exists for differential processing of familiar and unfamiliar faces, 

implying the existence of automatic processes that provide prioritized access to certain stimulus 

characteristics when compared to faces of unknown individuals. The next logical question is, does this 

processing happen in a cascade-like manner with each step prewired, in temporal order, linked to the 

activity of distinct areas of the brain? Magnetoencephalography (MEG) and electroencephalography 

(EEG) provide the adequate temporal resolution to answer these questions and uncover the temporal 

dynamics underlying the emergence of face familiarity.  

Previous research had identified several electrophysiological components that appear to be indicative 

of the processing of face stimuli. Very early processing differences for familiar and unfamiliar faces 

have been found across various studies by Caharel and colleagues (Caharel et al. 2009, 2013; Ramon 

et al. 2011).  

The earliest of these components, the P1 (around 70–110 ms, with typically occipital peak) and the 

N170 (around 160–200 ms, with a lateral-parieto-occipital peak) most probably reflect early 

perceptual stages as they appear to be strongly modulated by the physical properties of the stimuli 

(Ambrus, Kaiser, et al. 2019).  

It is important to note that familiarity information may indeed already be present in this time-window, 

but due to methodological constrains, its signals do not reach the surface sensors, or they are drowned 

out by the strong response produced by the rapid processing of physical features immediately after 

stimulus onset. A strong indication of this is the fact that in some cases even these early waves have 

been reported to be influenced by familiarity (Debruille et al. 1998; Caharel et al. 2002; Barragan-

Jason et al. 2015), depending on the task, stimulus set, or prior expectations (Johnston et al. 2016). 

Furthermore, behavioral studies with high temporal precision, such as speeded go/no-go response 

tasks, eye movements or saccadic reaction times also support the idea that familiarity information 

may indeed already be present a very early stage (van Belle et al. 2010; Ramon et al. 2011, 2019).  

The first ERP component that is behaviorally connected to recognition seems to be the N250, a 

parieto-occipital negative def lection between ca. 230 and 350 ms. Huang et al. (2017) found a positive 

correlation between the N250 amplitude and reaction time in a famous/non-famous decision task, 

suggesting that it is the earliest electrophysiological indicator of familiar face recognition in long-term 

memory.  



More recently, several studies reported finding a late electrophysiological correlate of familiarity in 

the 400–600 ms time range. Using MEG, Dobs et al. (2019) observed a generic familiarity-related 

component ca. 400–600 ms after stimulus onset. Karimi-Rouzbahani et al. (2020) found a similar 

familiarity-related effect in EEG starting around 200 ms and peaking after approximately 400 ms. 

Wiese et al. (2019) observed an ERP component (dubbed as sustained familiarity effect, SFE) starting 

200 ms after stimulus onset with a maximum between 400 and 600 ms and being the most prominent 

over bilateral posterior regions for highly familiar versus unfamiliar faces. Finally, in our previous 

multivariate pattern analysis (MVPA) studies we found image-independent identity effects (Ambrus, 

Kaiser, et al. 2019) and familiarity effects (Ambrus et al. 2021) falling within the same temporal range.  

This study sets out to further investigate the spatio-temporal dynamics of the neural correlates of face 

familiarity by asking if a general, automatic signal of face familiarity processing exists, independent of 

participants, the properties of the stimuli, and the type of familiarization. As an extreme, and 

somewhat simplified example, we should find these hypothesized neural signatures in Alice when she 

meets her grandmother for a coffee, and in Bob, when he sees a known celebrity on the cover of a 

magazine while causally browsing at a newsstand. To investigate if representations are shared across 

participants and experimental conditions, a multivariate approach is necessary. Conventional 

univariate ERP analysis techniques contrast evoked response amplitudes between conditions at single 

or averaged channels, can tell us if the brain processes information differentially at a given time 

window. Instead of focusing on aggregated responses restricted in space and time, MVPA parses 

distributed patterns of activity at the trial level. It uses machine learning whereby the evoked 

responses from trials are iteratively split into training and test sets, and a classifier attempts to classify 

test trials based on the information it extracted from the training data. The classifier accuracy is 

therefore indicative of the presence of information in the pattern of evoked responses about the 

categories of interest (Grootswagers et al. 2017). A further advantage of MVPA over conventional ERP 

analysis is the flexibility that the train and test data need not necessarily come from the same time 

point, region of interest, experimental condition, participant, or, as we will see, from the same 

experiment.  

To investigate the shared neural signatures of face familiarity we analyzed ERP data from three 

different experiments that utilized different (Perceptual, Media, and Personal) familiarization 

methods. Utilizing a thus far less explored multivariate cross-classification analysis (MVCC, Kaplan et 

al. 2015), we iteratively trained and tested on data from each experiment. This cross-experiment 

analysis combines elements of cross-modal, cross-participant, and leave-one-participant-out 

approaches. It is cross-modal in the sense that the mode of familiarization differed across the 

experiments and cross-participant as the experiments were conducted on different sets of volunteers. 

It is also similar to a leave-one-participant-out strategy as training is performed on concatenated data 

from multiple participants and tested on one participant at a time. We believe that this procedure is 

well-suited to find general neural patterns that are indicative of shared information processing.  

Methods 

Datasets  
Three experiments, described in detail in a previous report from our laboratory, form the basis of the 

present study (Ambrus et al. 2021). These experiments investigated the EEG correlates of face 

familiarity in different familiarization conditions, using perceptual, media, and personal familiarization 

methods. The experiment was conducted in accordance with the guidelines of the Declaration of 

Helsinki, and with the approval of the ethics committee of the University of Jena. Written informed 

consent was acquired from all participants.  



For details on stimulus presentation, data acquisition and preprocessing, see Ambrus et al. (2021). 

Briefly, stimuli were ambient face images, in color, depicting originally unfamiliar identities. The 

images were cropped to center on the inner features of the face, eye aligned, and were presented 

centrally on a uniform gray background in a pseudorandom order. In all cases, the stimulus 

presentation time was 600 ms. Spatial and temporal jitter was applied when presenting the stimuli. 

Participants were given a simple target detection task to ensure maintained attention throughout the 

sessions. No participant took part in more than one experiment. For the purposes of the current 

analysis, data for each participant were labeled on the familiarized/unknown dimension.  

 

 
Figure 1. Cross-experiment decoding. (a) Trial × channel × time resolution EEG data from all participants in 
Experiment A is concatenated. At each time point, a classifier is trained to differentiate between familiarized 
and unknown trials. (b) These classifiers are then used to categorize the ERPs, at each corresponding time-
point in Experiment B, for each participant separately. (c) The subject-level accuracy scores are aggregated to 
yield the time-resolved decoding accuracy for Experiments A → B. 

 

EEG was recorded using a 64-channel Biosemi Active II system (512 Hz sampling rate; bandwidth: DC 

461 to 120 Hz) in a dimly lit, electrically shielded, and sound–attenuated chamber. Data were 

bandpass filtered between 0.1 and 40 Hz, segmented between −200 and 1300 ms and baseline 

corrected to the 200 ms preceding the stimulus presentation. The data were downsampled to 100 Hz 

resolution, and no artifact rejection was performed (Grootswagers et al. 2017). Processing was carried 

out using MNE-Python (Gramfort et al. 2013).  

Below is a short overview of the three experiments described in the report: 

Perceptual Familiarization  

Forty-two participants. Stimuli: 4 previously unknown female identities with 10 ambient images each. 

Forty repetitions of each image. Familiarization: sorting task for two of the 4 identities immediately 

prior to the EEG recording. The two to-be-familiarized identities were randomly chosen from the 6 

possible permutations of the 4 IDs for each participant. Task: detection of slightly rotated images.  

 



Media Familiarization  

Twenty-four participants. Stimuli: 4 previously unknown (two male and two female) identities with 

2 × 20 ambient images each, one image repeated 13 times. Familiarization: Watching a TV series with 

one male and one female person in lead roles between the pre- and post-familiarization EEG 

recordings. The to-be-familiarized identities were based on the series and were assigned randomly to 

the participants. Task: detection of repeated images.  

Personal Familiarization  

Twenty-three participants. Stimuli: 4 previously unknown female identities, with 10 ambient images 

each, one image repeated 22 times in a session. Familiarization: ca. one-hour personal interaction 

with two of the four identities on 3 consecutive days between pre- and post-familiarization EEG 

recordings. The to-be-familiarized identities were the same for all participants. Task: detection of 

rotated images. 

Analysis  
We used data from the post-familiarization phases of these experiments, using a cross-participant, 

cross-experiment decoding approach (Figure 1). Each iteration of the analysis used data from two out 

of the three experiments. The data was standardized within participants and across electrodes. The 

epoched EEG from all trials and all channels was concatenated from all participants in one experiment. 

At each of the 150 time points (−200 to 1300 ms relative to stimulus presentation onset, sampled at 

100 Hz), linear discriminant analysis classifiers (LDA) were trained to categorize familiarized and 

unknown identities. These classifiers were then used to assess prediction accuracy for familiarity in 

the other experiment, for each participant separately.  

To investigate the temporal organization of information processing stages, we used temporal 

generalization analysis. For this, the classifiers were trained on all timepoints in one experiment and 

tested on the data at every timepoint in the other, organized in a cross-temporal (training times × 

testing times) decoding accuracy matrix. We reasoned that if a classifier can generalize from one 

timepoint to another across experiments, similar information processing may be indicated at those 

time points. Furthermore, the temporal generalization method can reveal the stable, or dynamically 

evolving nature of the neural code that underlies above-chance decoding. For example, significant 

decoding accuracies clustered along the diagonal may suggest chained or isolated sets of generators, 

while a square-shaped generalization matrix indicates a stable neural code (King and Dehaene 2014).  

To achieve a finer spatial resolution, we repeated the procedure using a region of interest (ROI) and a 

searchlight approach. In the ROI analysis, similarly to (Ambrus, Kaiser, et al. 2019) and Ambrus et al. 

(2021), we pre-defined six scalp locations along the medial (left and right) and coronal (anterior, 

center, and posterior) planes (see Supplementary Figure 1), and used these subsets of channels for 

training and testing. In the searchlight analysis, all channels were systematically tested by creating 

quasi-ROIs that also included the neighboring electrodes and conducted the same time-resolved 

analysis steps as described above (see Supplementary Figure 2). 

 

Statistical Testing  
In order to increase signal-to-noise ratio, a moving average of 30 ms (3 consecutive time-points) was 

used on all cross experiment decoding accuracy data at the participant level (Kaiser et al. 2016; 

Ambrus, Kaiser, et al. 2019). For the ROI-based analyses, to test if classifiers on a given experiment 

can decode the data in another experiment, the decoding accuracies were entered into two-tailed, 



one-sample cluster permutation tests (10 000 iterations) against chance (50%). We also tested cross 

experiment decoding accuracies across 6 train/test pairings  

with two-tailed cluster permutation tests with 10 000 iterations. For the searchlight analysis, two-

tailed spatio-temporal cluster permutation tests were used against chance level (50%), with 10 000 

iterations.  

Additional exploratory analyses were carried out to probe the reliability of decoding on participant-

level using a bootstrapping method (Di Nocera and Ferlazzo 2000; Wiese et al. 2019). In this analysis, 

predicted labels were randomly reassigned (10 000 iterations) to the trial conditions, and at each 

reassignment, an accuracy score was calculated. Reliable effects were assumed if a participant’s true 

accuracy score exceeded 95% of the values, calculated from the random resamplings. Sample-level 

95% confidence intervals were calculated the following way: First, true/false labels (assuming 

independent, equal outcomes) were randomly assigned to each participant in the sample, and a 

sample-wide accuracy score was calculated. This procedure was repeated 50 000 times. We 

determined the cut-off by ascertaining the number of participants needed to score true to reach or 

exceed the 95% of the accuracy cores in the bootstrapped sample (n ≥ 95%CI = Perceptual: 26 [61.9%], 

Media: 16 [66.6%], Personal: 15 [65.2%]).  

The statistical analyses were conducted using python, MNE Python (Gramfort et al. 2013), scikit-learn 

(Pedregosa et al. 2011), and SciPy (Virtanen et al. 2020). 

 

Results  

All Electrodes  
 

 
Figure 2. Time-resolved cross-experiment decoding accuracies on all electrodes. Horizontal markers denote 
clusters with significantly different decoding accuracies against chance (top markers) and between-pair 
differences (bottom markers; two-tailed cluster permutation tests, p < 0.05). Shaded ranges denote standard 
errors. Note that this analysis is the equivalent of taking the diagonal in the temporal generalization analysis 
(Figure 4.). For detailed statistics on the regions of interest see Supplementary Figure 1 and Supplementary 
Table 1. 

 

Out of the six train-test cross-experiment decoding analyses on the all-electrodes data, significant 

familiarity decoding effects were observed in three, involving all three experiments, overlap ping 

between 270 and 630 ms (Figure 2., black significance markers) and peaking between 330 and 500 ms. 

Decodability of familiarity was mutual between the Media and the Personal familiarization 

experiments (Media ↔ Personal), with a significant cluster between 250 and 680 ms, peaking at 



380 ms (peak t24 = 2.86, peak Cohen’s d = 0.57) in Personal → Media, and a cluster between 190 and 

1010 ms, peaking at 500 ms (peak t22 = 7.24, peak Cohen’s d = 1.51) in Media → Personal direction. 

Furthermore, in Perceptual → Personal analysis a cluster between 270 and 410 ms with a peak at 

330 ms (peak t22 = 4.36, Cohen’s d = 0.91), and between 430 and 630 ms (peak t22 = 4.11, peak 

Cohen’s d = 0.86) was observed. Although no significant cross-experiment decoding effect was seen 

between the Media and Perceptual familiarization experiments, for completeness, statistics on these 

non-significant pairs will be reported as well in the following sections.  

 

 
Figure 3. Cross-experiment familiarity decoding at a single participant-level, using bootstrapping analysis on 
decoding data from all electrodes. Each participant’s decoding accuracy is presented separately, with filled 
bars indicating values exceeding the bootstrapped 95% confidence interval (horizontal markers). (a) Results 
of the overlapping 330–500 ms time windows (b) results at their respective peaks. Gray shaded areas denote 
the bootstrapped sample level 95% confidence intervals. 

 

A bootstrapping analysis between the overlapping peak decoding time intervals (320–500 ms) 

revealed that the majority of the participants’ accuracy scores lay above chance level, with 8% 

(Perceptual → Media), 4.3% (Perceptual → Personal) 47.8% (Media → Personal), and 48% 

(Personal → Media) of participants’ scores reaching the 95% confidence interval (Figure 3a). To 

establish an upper bound on subject-level reliability, we repeated the bootstrapping analysis 

separately for all train/test pairs at their respective peaks. Again, the majority of scores exceeded the 

chance level in all cases, with 21.4% (Media → Perceptual), 14.3% (Personal → Perceptual), 20% 



(Perceptual → Media), 34.8% (Perceptual → Personal) 74% (Media → Personal), and 52% 

(Personal → Media) of participants’ scores over the 95% confidence interval (Figure 3b).  

The temporal generalization analysis (Figure 4, Supplementary Figure 2.) revealed a sustained above-

chance decoding accuracy starting around 170 ms, lasting consistently to around 600 ms or in some 

cases, beyond. Media predicted, between 180 ms to the end of the epoch from Personal between 

80 ms onwards (cluster p = 0.0002). Reversely, Personal predicted, from 160 ms, Media, from 190 to 

700 ms (cluster p = 0.017). Finally, Perceptual, between 170 and 1170 ms, predicted Personal, from 

80 to 1010 ms, (cluster p = 0.019). 

Regions of Interest  
To track representational organization across electrode space, we repeated the above analysis across 

the 6 electrode clusters also used in previous studies (Ambrus et al. 2019, 2021)). For further details 

see Supplementary Figure 1 and Supplementary Table 1.  

 
Figure 4. Cross-experiment temporal generalization analysis on all electrodes. For the results of the temporal 
generalization analyses separately in the different ROIs, see Supplementary Figure 2. 

 

ROI analyses shown familiarity effects at posterior and central areas, mainly falling within the 300–

600 ms interval. In Personal → Media, a right posterior cluster with an extent of 250–670 ms, peaking 

at 490 ms (peak t24 = 4.3, peak Cohen’s d = 0.86) two left posterior clusters at 180–340 ms with a peak 

at 270 ms (peak t24 = 2.83, peak Cohen’s d = 0.57) and 360–800 ms with a peak at 520 ms (peak 

t24 = 4.57, peak Cohen’s d = 0.91), a right central cluster between 340 and 1010 ms with a peak at 

530 ms (peak t24 = 3.98, peak Cohen’s d = 0.80), and a left central cluster between 380 and 640 ms 

with a peak at 500 ms (peak t24 = 2.44, peak Cohen’s d = 0.59) emerged. In Media → Personal, a right 

posterior cluster between 200 and 1290 ms with a peak at 470 ms (peak t22 = 7.86, peak Cohen’s 

d = 1.64), three left posterior clusters, between 190 and 290 ms with a peak at 270 ms (peak t22 = 3.90, 

peak Cohen’s d = 0.82), between 320 and 990 ms with a peak at 480 ms (peak t22 = 4.96, peak Cohen’s 

d = 1.03), and a late 1010–1170 ms cluster with a peak at 1110 ms (peak t22 = 3.58, peak 

Cohen’s d = 0.75) and a right central cluster between 230 and 680 ms with a peak at 350 ms (peak 

t22 = 4.50, peak Cohen’s d = 1.04) were shown. In Perceptual → Personal, a right posterior cluster 



between 220 and 630 ms with a peak at 490 ms (peak t22 = 6.1, Cohen’s d = 1.27), a left posterior 

cluster between 480 and 640 ms with a peak at 520 ms (peak t22 = 5.29, Cohen’s d = 1.10), two right 

central clusters between 260 and 370 ms with a peak at 330 ms (peak t22 = 5.27, Cohen’s d = 1.10) and 

between 450 and 630 ms with a peak at 540 ms (peak t22 = 5.17, Cohen’s d = 1.08), two left central 

clusters between 260 and 360 ms with a peak at 330 ms (peak t22 = 3.58, Cohen’s d = 0.75) and 480 to 

580 ms with a peak at 500 ms (peak t22 = 3.47, Cohen’s d = 0.72) emerged. In Personal → Perceptual, 

two posterior clusters, one on the right between 480 and 580 ms with a peak at 560 ms (peak 

t41 = 3.31, peak Cohen’s d = 0.51) and one on the left between 470 and 590 ms peaking at 520 ms 

(peak t41 = 3.12, peak Cohen’s d = 0.48) were found. In Perceptual → Media, a single right central 

cluster between 260 and 560 ms with a peak at 320 ms (peak t24 = 3.59, peak Cohen’s d = 0.72) was 

observed. In Media → Perceptual, no significant effect was found. 

Searchlight  
 

 
Figure 5. Region-of-interest and searchlight analyses. In three out of six train/test pairs involving all three 
experiments, significant decoding accuracies based on all electrodes (black horizontal marker) overlapped 
between 270 and 630 ms after stimulus onset (a). Further two train/test pairs revealed significant clusters at 
posterior or central ROIs within this interval. Peak decoding accuracies in all analyses (b) fell between this 
overlapping interval. The top panel scalp maps show the averaged searchlight-based decoding accuracies 
(electrodes belonging to significant spatio-temporal clusters marked) in the different train/test evaluations 
averaged over the overlapping timepoints. The bottom part shows the time-resolved ROI-based decoding 
results. Horizontal markers denote clusters with significantly different decoding accuracies against chance 
(two-tailed cluster permutation test, p < 0.05). For detailed results, see Supplementary Figure 3. 

 

Apart from Media → Perceptual, extensive significant spatio-temporal clusters, encoding familiarity, 

were observed in several searchlight analyses. In Media → Personal a significant cluster (cluster 

p < 0.001), starting from 180 ms at bilateral temporo-parieto-occipital electrodes, was observed. Also 

starting at 180 ms (electrode I1), there was a significant cluster found in Personal → Media 



(cluster p = 0.014), lasting until 700 ms after stimulus onset. A significant cluster with an even earlier 

onset (100 ms, at Oz and POz) was observed in Perceptual → Personal (cluster p < 0.001), lasting until 

1210 ms. Between 210 and 680 ms, Perceptual → Media (cluster p = 0.01, starting at PO8 and P4) and 

between 410 and 870 ms, Personal → Perceptual (starting at FT9, cluster p = 0.007) also yielded 

significant clusters (Figure 5).  

 
Figure 6. Cross-experiment searchlight analysis. Electrodes with the highest peak decoding accuracy at their 
respective peak latencies. (a) Highest peak decoding accuracies are seen over the right-hemisphere occipito-
temporo-parietal electrodes (black arrows), ranging from 330 to 560 ms. (b) Bootstrapping analyses on the 
data of these electrodes at peak accuracy times revealed above-chance decoding in the majority of the 
participants in every cross-experiment combination. The decoding accuracy of individual participants is 
shown, with filled bars indicating values exceeding the bootstrapped 95% confidence interval (horizontal 
markers). Gray shaded areas denote the bootstrapped sample level 95% confidence intervals. Pairs with 
significant clusters in decoding from all electrodes are highlighted in bold typeface. 

 

Analysis of the searchlight results revealed peak decoding accuracies at right parieto-occipito-

temporal sites in all evaluations. In both Media → Personal and Personal → Media, maximum decoding 

accuracy was found at PO8, peaking at 560 ms (peak Cohen’s d = 1.83) and 490 ms (peak 

Cohen’s d = 0.89), respectively. In Perceptual → Personal the peak decoding accuracy was at P8, with 

a peak at 480 ms (peak Cohen’s d = 1.55). In Perceptual → Media, peak decoding accuracy was 

observed at TP10 at 370 ms (peak Cohen’s d = 0.85). In Personal → Perceptual, peak decoding accuracy 

was found at P8 at 560 ms (peak Cohen’s d = 0.61), and in Media → Perceptual at I2 at 330 ms (peak 

Cohen’s d = 0.32). Figure 6 shows the scalp distributions in the six cross-experiment searchlight 

decoding evaluations at and the bootstrap-based subject-level reliability calculations at their 

respective peak decoding latencies. For further details see Supplementary Figure 3. 



Additional Analyses  
We also compared the results of the cross-experiment analyses to within-experiment, leave-one-

participant-out results. These comparisons show no significant difference between Personal → Media 

and within-Media, but a prominent early within Personal signal (peaking at 130 ms) was missing in 

both the Perceptual → Personal, and Media → Personal cross experiment analyses. This is accounted 

for by the fact that early ERP signals are sensitive to low-level image statistics, and in the Personal 

experiment these were diagnostic as the familiarized and unknown stimuli were the same for  

all participants (Supplementary Information 1). The post 200 ms cross-experiment classifiers in the 

Media and Personal experiments did not underperform those that were trained within-experiment, 

and the general shape of the familiarity effects are remarkably similar in both cases, despite the 

differences in stimulus identities, stimulus gender, mode of familiarization, and experimental task.  

We conducted several additional analyses to rule out various sources of bias in our cross-experimental 

decoding method. The procedures and results of these are presented in the Supplementary 

Information 2–4. It is important to account for the possibility that besides familiarity, neural responses 

to other properties of the stimuli aid the classification. To rule out the effects of such features (e.g., 

low-level image statistics), we repeated the time-resolved cross-experiment decoding procedure, 

iteratively training on the Post-familiarization phase, and testing on the pre-familiarization phase of 

the experiments, where the stimuli were the same, but not yet familiar to the participants. We found 

no significant clusters in any of the analyses, suggesting that non-familiarity-related stimulus 

properties can be ruled out as confounds (Supplementary Information 2). To rule out that the effects 

observed in the Perceptual → Personal and Perceptual → Media analyses were affected by the 

relatively larger number of participants in the Perceptual experiment, we performed 100 iterations of 

the analyses where the Perceptual experiment served as the training set, with 24 randomly chosen 

participants at each iteration (Supplementary Information 3). Finally, to rule out the possibility that 

highly discriminable features come from only a few participants, we conducted cross experiment, 

cross-participant decoding analyses, i.e., iteratively training and testing on each participant across the 

experiments (see Supplementary Information 4). These analyses yielded similar results to our original, 

cross-experiment analyses, albeit with considerably lower mean decoding accuracies (due to the more 

limited data per classification). We found no indication of a few high signal-to-noise data points biasing 

the results. 

 

Discussion 
The current analysis is based on data from Ambrus et al. 2021 which explored the temporal dynamics 

of emerging face identity and familiarity information under different of familiarization conditions. 

Time-resolved representational similarity analysis of EEG data revealed that the level of familiarization 

has a robust effect on familiarity representations: they are strongly visible over posterior and central 

regions following personal, somewhat weaker after media familiarization, and they are absent 

following perceptual familiarization. 

In this present study, we set out to uncover the existence of shared face familiarity signal, across 

participants, familiarization contexts, and stimulus identities. We applied a cross-experiment decoding 

approach where evoked responses from participants in one experiment are decoded using classifiers 

trained on the aggregated data of the participants of another study. It is important to note that three 

experiments of the current study differed in 1) the mode and length of familiarization, 2) the stimulus 

material, 3) the number of images of a given identity, 4) the task, and 5) the participants tested. It is 



also worth taking note of the commonalities between the experiments, such as the Perceptual and 

Personal utilizing the same attention task (rotation detection), while in Media, a 1-back task was used. 

As Huang et al. (2017) have shown, task dependency might have an influence on the decodability of 

the familiarity signal. Furthermore, while for the perceptual and media familiarization an all-female 

stimulus set was used, in the case of the media familiarization both male and female stimuli were 

presented. 

Despite all these substantial differences between the three experiments, we found significant 

sustained cross-experiment familiarity decoding accuracies, most prominently in the 

Media ↔ Personal, and the Perceptual → Personal familiarization conditions, overlapping between 

270–630 ms. Bootstrapping analyses within the peak accuracy intervals (330–500 ms) have shown 

above-chance decoding in most of the participants, albeit the participant-level reliability did not reach 

the sample-level 95% confidence interval (Figure 3a). Additional ROI-and searchlight-based analyses 

revealed bilateral posterior and central effects, with a more pronounced right-hemisphere weight. 

We observed the most evident cross-experiment familiarity effect between the Media and Personal 

familiarization experiments, where the depth of familiarization was arguably the highest. In the Media 

experiment, in the span of two weeks, participants viewed a season of a television series, while in the 

Personal experiment, participants interacted with the experimentally familiarized identities personally 

for ca. 1 hour on 3 consecutive days. Somewhat unexpectedly, a similar effect emerged in 

Perceptual → Personal albeit more restricted in time. This is surprising as no significant familiarity 

effect was observed in the Perceptual experiment, in which identities were familiarized through a very 

short sequential sorting task (based on Andrews et al. 2015), as implemented in Ambrus, Dotzer, et 

al. (2017)). Although no further significant decoding effects on all electrodes were found, in 

Perceptual → Media a right-central cluster with an onset and duration similar to other train/test pairs 

was observed, while in Personal → Perceptual a small bilateral posterior effect was seen, also falling 

within the overlapping time windows of the strongest effects found in other decoding pairs. Finally, 

no familiarity-related cross-experiment decoding effects were observed in Media → Perceptual. 

There was some variation in the onset and duration of the effects, with searchlight and temporal 

generalization analyses flagging time points as early as ca. 100 and 160 ms, and ROI analyses showing 

onsets at around 180–200 ms in some cases. Literature regarding early effects is somewhat 

inconsistent (Ramon and Gobbini 2018)—while some reported no familiarity-related modulation in 

such early phases (Huang et al. 2017), ERP amplitude increase (Kloth et al. 2006), and decrease (Todd 

et al. 2008) have also been described. 

Recently, In an MEG-MVPA experiment Dobs et al. (2019) found a familiarity-related component about 

400–600 ms after stimulus onset, using familiar and unfamiliar celebrities as stimuli. The authors 

hypothesized that this identity-independent familiarity effect may reflect memory-related activations 

or affective responses. Wiese et al. (2019) also described an ERP component elicited by highly familiar 

versus unfamiliar faces. This sustained familiarity effect (SFE) started at around 200 ms after stimulus 

onset and reached its maximum between 400 and 600 ms as well. The source of this effect is theorized 

to lie within the ventral visual pathway, and its magnitude was found to be modulated by the level of 

familiarity (larger for contrasts with personally familiar faces compared to lecturers or celebrities). 

This led the authors to suggest that the SFE may be driven by the integration of perceptual and 

affective information. Finally, Karimi-Rouzbahani et al. (2021) also observed a familiarity-related effect 

starting around 200 ms and peaking after ca. 400, with the highest ERP amplitude elicited by the 

participants own face, followed by personally familiar, celebrity, and unfamiliar faces. The most stable 

cross-experiment effects were also observed in the 400–600 ms time-window, with peak decoding 

accuracies between 330–500 ms, supporting these above-mentioned results. While interindividual 



differences, regarding the recognition of faces play a crucial role, these studies also propose the idea 

of a shared, fundamental neural representation of face familiarity: Based on their temporal and spatial 

characteristics, we suggest that the familiarity effects, reported by the previous studies and the cross-

experiment decoding of the current study are related, and are indicative of a robust and general 

familiarity effect, which is largely independent of participants, experimental stimuli, and the method 

of familiarization. 

Where significant familiarity-related effects were present, temporal generalization analyses on all 

electrodes revealed a sustained above-chance decoding performance starting around 200 ms, lasting 

consistently to around 600 ms or in some cases, beyond. This suggests that the classifiers picked up 

on features generated by a single process, maintained over time (King and Dehaene 2014). 

 

At this point, we can only speculate as to the nature of processing underlying this observed effect. 

Although it is difficult to make inferences regarding the anatomical structures generating these signals, 

its occipito-temporal dominance is consistent with sources reported in relation to the ventral visual 

pathway, and parts of the core and extended face networks are most certainly involved (Gobbini and 

Haxby 2007; Kovács 2020). The occipital face area (OFA), an early face-selective region that has been 

shown to take part in image-dependent lower-level feature analysis (Pitcher et al. 2007) is already 

differentially responsive to familiar and unfamiliar identities (Jonas et al. 2014; Ambrus, Dotzer, et al. 

2017; Amado et al. 2018; Ambrus, Amado, et al. 2019), and may also play a causal role in the learning 

of new faces (Ambrus, Windel, et al. 2017). The fusiform face area (FFA) shows image-independent 

processing of face-information, it is therefore highly probable that its normal functioning is central to 

the recognition of familiar identities (Kanwisher et al. 1997). Finally, the superior temporal sulcus (STS) 

is more sensitive to dynamic/changeable visual features such as facial expressions (Zhang et al. 2016; 

Direito et al. 2019) (but see also (Calder and Young 2016)) that may also carry diagnostic, identity-

specific information, thus boosting familiarity signals. Also worth noting here that face-responsive 

cells in the monkey superior temporal polysensory area codes for familiarity and social status (Young 

and Yamane 1992), and that classifiers trained on fMRI signals for face identities in the right posterior 

STS can also differentiate between voices, and vice versa (Tsantani et al. 2019). 

The relatively late peak decoding latency we observed may be an indication that it depends, at least 

partially, on post-perceptual processing that is fed back from more modality-independent, memory-

related cortical areas. For example, regions considered to be outside the core face networks, such as 

different extrastriate visual areas, the structures in the anterior and medial temporal lobe (MTL) have 

been reliably demonstrated to exhibit stronger responses to familiar stimuli, including faces. The 

anterior temporal lobe (ATL), considered to be a semantic hub (Anzellotti 2017), is involved in 

associations of person-related semantics (Morton et al. 2021), e.g., a connection between a name and 

a face (Tsukiura et al. 2010). Structures within the MTL (e.g., the amygdala, perirhinal cortex and 

hippocampus) are involved in the storing and processing of biographical/autobiographical information 

related to faces, including the feelings of familiarity, and respond abruptly when sufficient information 

for familiar face recognition is accumulated (Ramon et al. 2015). 

Some of our analyses yielded decoding direction asymmetries, i.e., the cross-classification 

performance between two given experiments depended on the decoding direction. This is most 

evident in the case of Perceptual ↔ Personal, where generalization failed in the 

Personal → Perceptual, but succeeded in the Perceptual → Personal direction. 



In a recent study, van den Hurk and Op de Beeck 2019 elegantly demonstrated that such decoding 

direction asymmetries can be explained by the differences in signal-to-noise ratio (SNR) between the 

two datasets, with better generalization performance from the lower SNR to the higher SNR dataset. 

A lower SNR is indeed expected in the Perceptual experiment, with a brief, image-based sorting task, 

lasting a few minutes, compared to the other two experiments that involved more extensive 

familiarization. This SNR imbalance allows familiarity information to be extracted by the classifier from 

the Perceptual experiment data at training, but the higher noise in the signal prevents successful 

generalization in decoding. Thus, as van den Hurk and Op de Beeck (2019) suggest, the interpretation 

regarding significant generalization should be based on the superior performance direction. As such, 

the decoding direction asymmetry, and the lack of statistically significant familiarity effects in the 

Perceptual experiment (Ambrus et al. 2021; Supplementary Information 1) do not invalidate the cross-

experiment decoding results, but instead demonstrate that the seeds of the familiarity effect are 

already present in purely image-based individuation. This seems to imply that contributions from 

semantic, autobiographical, and affective processes are less essential, as these facets played little role 

in the Perceptual familiarization experiment, thus memory processes related to face-feature-based 

recall might be more promising candidates. Still, it is possible that even short-term perceptual 

familiarization engages the whole cascade, for example because it is enough to trigger search 

processes in long term storage and/or semantic and affective hubs. Further research is needed to 

precisely pin down the exact cognitive machinery behind our results. For example, methods such as 

M/EEG-fMRI fusion (Cichy and Oliva 2020; Muukkonen et al. 2020), combining the spatial and 

temporal resolution of these techniques, may give us further insight. 

On a methodological note, this study has shown that cross-experiment decoding is uniquely suited for 

finding general neural patterns that are indicative of a shared processing of information. It has the 

potential to be more sensitive than within-subject decoding, as it benefits from more training data 

and is less confounded by idiosyncratic participant-level effects and stimulus properties. We hope to 

see this method being utilized to advance our understanding of brain dynamics in the future. 
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