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Abstract

Background: Using two large datasets from Dorset, we previously reported an internally validated multivariable risk
model for predicting the risk of GI malignancy in IDA—the IDIOM score. The aim of this retrospective observational
study was to validate the IDIOM model using two independent external datasets.

Methods: The external validation datasets were collected, in a secondary care setting, by different investigators
from cohorts in Oxford and Sheffield derived under different circumstances, comprising 1117 and 474 patients with
confirmed IDA respectively. The data were anonymised prior to analysis. The predictive performance of the original
model was evaluated by estimating measures of calibration, discrimination and clinical utility using the validation
datasets.

Results: The discrimination of the original model using the external validation data was 70% (95% CI 65, 75) for the
Oxford dataset and 70% (95% CI 61, 79) for the Sheffield dataset. The analysis of mean, weak, flexible and across the
risk groups’ calibration showed no tendency for under or over-estimated risks in the combined validation data.
Decision curve analysis demonstrated the clinical value of the IDIOM model with a net benefit that is higher than
‘investigate all’ and ‘investigate no-one’ strategies up to a threshold of 18% in the combined validation data, using
a risk cut-off of around 1.2% to categorise patients into the very low risk group showed that none of the patients
stratified in this risk group proved to have GI cancer on investigation in the validation datasets.

Conclusion: This external validation exercise has shown promising results for the IDIOM model in predicting the
risk of underlying GI malignancy in independent IDA datasets collected in different clinical settings.

Keywords: Iron deficiency anaemia, Gastrointestinal cancer, IDIOM app, External validation, Temporal validation,
TRIPOD

Background
The strong association between iron deficiency anaemia
(IDA) and gastrointestinal (GI) cancer is well recognised
[1–5]. As a result, IDA in at-risk groups is an accepted
indication for fast-track referral to secondary care for

further investigation in the UK [6]. The problem with
this approach is that IDA is common, but the prevalence
of malignancy is only 8-10% [7]—meaning a large work-
load for a relatively small yield.
With the aim of risk stratification, we have previously

built and internally validated a binary multivariable lo-
gistic model to predict the risk of GI cancer in patients
with confirmed IDA, based on four simple variables: age,
sex, haemoglobin concentration (Hb) and mean cell vol-
ume (MCV)—the IDIOM model (iron deficiency as an
indicator of malignancy) [4]. Identifying subgroups of
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IDA patients who are at increased/reduced risk of GI
cancer might lead to (a) accelerating the investigation of
those at high predicted risk, with potential prognostic
implications, and (b) helping those at low predicted risk
to avoid unnecessary invasive procedures.
The clinical data used to develop the original model

was collected for adult patients with IDA (n = 1879)
referred to the IDA clinic in Poole hospital during
the period 2004-2016 inclusive. The criteria for inclu-
sion were iron deficiency confirmed by standard la-
boratory criteria, and subsequent investigation of the
upper and lower GI tract. Due to informed patient
preference, concurrent illness or major co-morbidity,
about 10% of IDA patients usually fail to undergo GI
investigation for IDA [3, 8].
Developing the original model was carried out be-

fore receiving an internal dataset (n = 511) from the
later period 2017-2018. Using this dataset, temporal
validation of the fitted model showed excellent prom-
ise of generalisability. The area under the receiver op-
erating characteristic (ROC) curve (AUC) was
estimated at 81% (95% CI 74, 86). The prevalence of
malignancy was 8.4% in the temporal dataset. The
average estimated risk of 7.6% indicated that the
IDIOM model has no tendency to underestimate or
overestimate risk. The calibration intercept and slope
were 0.1 (95% CI −0.1, 0.4) and 1.1 (95% CI 0.8, 1.5)
respectively, suggesting that risk estimates were not
systematically too moderate or extreme.
However, the data used to validate the model were

collected by the same centre (IDA clinic in Poole
hospital), for the same population (Dorset), using the
same predictors and outcome definitions and mea-
surements. Confirmed IDA was defined using the
same blood laboratory marker cut-offs in the training
and internal validation datasets, but these cut-offs are
relevant only to the local laboratory and may vary be-
tween laboratories.
So to apply the model with confidence to different

populations it must be tested, and amended in case of
poor performance, using data collected by other investi-
gators in other geographic areas and preferably using
locality-specific definitions for the predictors. This retro-
spective cohort study aims to address the transportabil-
ity of IDIOM score model by broadly validating it using
two independent external datasets.

Methods
After temporally validating the model in 2020, the train-
ing and internal datasets were merged to form the Dor-
set dataset. This was used to fit the full IDIOM model
[9]. The multiple binary logistic regression of this full
model was constructed according to the formula:

log
ℙ GI Maligancy ¼ postiveð Þ
ℙ GI Maligancy ¼ negativeð Þ

� �

¼ −1:84þ 0:94 sex
þ 0:06 age−0:03MCV−0:03 Hb

The full IDIOM model was almost identical to the ori-
ginal model using only the training dataset [4]. Statistical
assessment of the validity and goodness of fit of the lo-
gistic regression model (smoothed scatter plot, deviance
and residual test, Cook’s distance and standardised re-
sidual errors, variance inflation factor, Akaike informa-
tion criterion, analysis of variance χ2 test, pseudo R2)
was satisfactory.
Before importing the coefficients of the full IDIOM

model to predict the risk of GI cancer in the validation
data, least absolute shrinkage and selection operator
(Lasso) was applied to regulate the model. A comparison
of different regularisation method effects on the model
coefficients is shown in Additional file, Table S1. The
model coefficients after applying these methods were
very close; however, Lasso method was selected because
it is the method that shrunk the coefficients the most.
The final updated multiple binary logistic regression of

the full IDIOM model regulated using Lasso method
and validated in this study was constructed according to
the formula:

log
ℙ GI Maligancy ¼ postiveð Þ
ℙ GI Maligancy ¼ negativeð Þ

� �

¼ −1:84þ 0:89 sex
þ 0:05 age−0:03MCV−0:06 Hb

The ORs (95% CI, p value) for the four predictive vari-
ables were as follows:

� Sex: 2.44 for men (1.88 to 3.49, p < 0.0001)
� Age: 1.05 per year (1.04 to 1.08, p < 0.0001)
� MCV: 1.03 for each fl reduction (1.01 to 1.05, p <

0.01)
� Hb: 1.03 for each g/l reduction (1.02 to 1.04, p <

0.0001)

The quartiles of positive predictive values (PPV) were
updated based on the penalised model (Table 1). The
first PPV quarter was divided into two halves, in which
the lower half corresponds to negative predictive values
(NPV) equal to 100% only. The highest predicted risks
in each PPV quarter (and the lower half of the first quar-
ter) were used as cut-offs to create the risk groups. The
updated cut-offs to create the risk groups were 1.18%,
2.16%, 4.24% and 7.97%.
The highest Gmean (geometric mean of sensitivity

and specificity) value in the Dorset dataset was
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updated using the penalised IDIOM model and found
to be around 70%.

Source of data
Independent datasets were collected by investigators in
Oxford and Sheffield and included all subjects who met
the inclusion criteria within the collection time frame.
The Oxford dataset was collected for the period 2016-
2019 and comprised 1147 subjects with IDA referred for
fast-track investigation. The Sheffield dataset was col-
lected for the period 2013-2018 and compromised 477
subjects with IDA referred to a dedicated IDA Clinic.

Patients
For all datasets, the subjects were adults referred to sec-
ondary care who went on to be investigated for IDA.
The decision to refer was generally made in primary care
by the GP who requested the blood test revealing IDA,
usually following a discussion with the patient concerned
about the significance and potential implications of the
result.
Confirmation of IDA depended on local practice but

was broadly accepted as: (a) Transferrin saturation
(T.sat) < 15% and/or serum ferritin less than the lower
laboratory limit of normal at the time for the Dorset
dataset, (b) T.sat < 16% and/or serum ferritin < 10 μg/l
(women) or < 20 μg/l (men) for the Oxford dataset, (c)
serum ferritin < 31 μg/l (both sexes) for the Sheffield
dataset. The diagnosis of iron deficiency was confirmed
in all subject in each of the datasets by the finding of an
abnormally low serum ferritin and/or transferrin satur-
ation. All subjects underwent standard first-line GI in-
vestigation for IDA, comprising exclusion of coeliac
disease, OGD and an adequate colonic examination—ei-
ther by CT colonography or colonoscopy.

Outcome and predictors
As for the IDIOM model, the outcome was the pres-
ence/absence of cancer of the upper or lower GI tract.
The predictors were the recoded values of age at presen-
tation (years), sex (male/female), Hb (g/l) and MCV (fl)
measured from the same blood sample taken prior to
iron replacement therapy. The decision regarding the

presence or absence of GI malignancy was made by clin-
ician with responsibility for the case after GI investiga-
tions were complete.

Sample size
Being a retrospective analysis of secondary data meant
that there was no control of the size of the external val-
idation datasets. The number of outcome events in the
Oxford and Sheffield datasets was 86, 36 respectively.
Following the simulation-based sample size calculations
for external validation of clinical prediction models [10],
the anticipated precisions of performance measures were
estimated based on the available number of outcome
events in each external validation dataset, and on them
both combined. Further details about sample size con-
siderations are included in Additional file (sample size,
Fig. S1, Fig. S2).

Development vs. validation(s)
Differences in the quoted normal ranges for Hb, MCV,
T.sat and serum ferritin were to be expected between
the laboratories in Dorset, Oxford and Sheffield as these
references are relevant only to the local laboratory. How-
ever, the differences for all the variables (as shown in
Additional file, Table S2) were marginal.

Missing data
There was no missing data in the external validation
datasets for the results of IDA investigations, Hb, MCV,
sex and age.

Statistical analysis
Before starting the analysis, external validation datasets
were prepared by taking out duplicates and applying in-
clusion (confirmed IDA patients who underwent stand-
ard first-line GI investigation for IDA) and exclusion
criteria (all IDA patients diagnosed with other malignan-
cies, e.g. ovarian cancers, renal cancers, GIST, neuroen-
docrine tumours were excluded). The updated cut-offs
used to create the risk groups in Dorset (Table 1) were
imported to create risk groups in Oxford, Sheffield and
the combined validation datasets and then the predictive
performance of the IDIOM model was evaluated using

Table 1 Risk groups cut-offs after regulating IDIOM model based on the quartiles of PPV

PPV quarters PPV values range % Corresponding predicted risk cut-offs % Risk group

Lower half of the 1st quarter of PPVa [8.4-9.4] ≤ 1.18 Very low risk

Upper half of the 1st quarter of PPV ]9.4-10.8] ]1.18-2.16] Low risk

2nd quarter of PPV ]10.8-14.7] ]2.16-4.24] Moderate risk

3rd quarter of PPV ]14.7-19.6] ]4.24-7.97] High risk

4th quarter of PPV > 19.6 > 7.97 Very high risk
aThe risk group at which PPV values are in the lower quarter, and NPV = 100
PPV is the number of positive cases that were correctly classified divided by the total number of positive cases predicted. NPV is the number of negative cases
that were correctly classified divided by the total number of negative cases predicted

Almilaji et al. Diagnostic and Prognostic Research            (2021) 5:23 Page 3 of 11



the validation datasets by estimating the following
measures:

Discrimination
Discrimination refers to the ability of the model to dis-
tinguish correctly between the presence and absence of
GI cancer in the validation datasets. Discrimination of
the IDIOM model was assessed by examining the values
of C-statistic for these datasets. For a binary outcome,
the C-statistic is equivalent to the area under the re-
ceiver operating characteristic (ROC) curve (AUC). The
highest Gmean values in the Dorset, Oxford, Sheffield
and the combined validation datasets were compared
visually by adding them to the ROC curve graph.

Calibration
Calibration quantifies how close estimated risks are to
observed ones in the validation datasets. Assessment of
IDIOM calibration was carried out following published
methodology [11], employing mean calibration (or
calibration-in-the-large), weak calibration (calibration
intercept and calibration slope) and moderate calibration
(flexible calibration curve based on Loess functions).
To check calibration across the risk groups, we split

the combined validation dataset based on descending
order of probabilities into fifths (5 groups) using the de-
fined cut-offs (in Table 1). Then, the calibration between
observed and predicted risks across the risk groups was
assessed visually using a calibration plot. As per the sam-
ple size considerations (additional file), the two external
datasets were combined to assess the calibration.

Net benefit
The net benefit (NB) expresses the relative value of ben-
efits and harms associated with using the model. Benefits
reflect the diagnosis of a GI cancer by investigation,
whilst harms include the risks and cost of carrying out
an unnecessary invasive investigation.
Since the current standard of care is to offer investiga-

tion to all patients with IDA at risk of malignancy, a
major potential use of the IDIOM risk model would be
to identify those at very low risk who may not warrant
investigation. Decision curves can be used as a tool for
assessing the performance of risk prediction models
[12]. Decision curves were used to assess the clinical
value of the model by ensuring that it had a higher NB
than simple strategies such as “investigate all” or “inves-
tigate no-one” across a plausible range of risk thresholds.
Clinical impact curves, which are alternative plots for
the outputs of decision curves, were used to compare
the estimated number of patients who would be classi-
fied as low risk, and the number of patients classified
low risk without the outcome of interest (true negative)
at each threshold.

Subjects diagnosed with GI cancer (cases) have ex-
pected benefit B > 0 from the investigation, where B ac-
counts for the totality of good and bad effects. Likewise,
subjects who do not have GI cancer (controls) have a
cost (or burden) of the investigation, C > 0 [13]. Given
benefit (B) and cost (C), the optimal risk threshold (R)
for determining investigation is:

R ¼ C
C þ B

When the policy is ‘investigate all’, all controls experi-
ence the cost of investigation. The advantage of an opt-
out policy to the patient population accrues from con-
trols whose estimated risks are below R, as such patients
avoid the cost [13]. Expressing NB in terms of avoided
unnecessary investigations is recommended if the refer-
ence strategy is ‘investigate all’, and so NB is expressed
in terms of true negatives rather than true positives [14].
Given that ρ is the proportion of cases, the standardised
net benefit—which is easier to be interpreted than net
benefit—can be calculated by dividing the net benefit by
(1 − ρ) as can be shown from the equation [13]:

sNB ¼ TNRR−
ρ

1−ρð Þ
1−R
R

FNRR

In which TNR is the specificity at a given risk thresh-
old R, and FNR is the miss rate at the same threshold.
At ‘investigate no-one’; TNR = FNR ≡ 1, and at ‘investi-
gate all’; TNR = FNR ≡ 0. In an ‘investigate all’ standard
of care, the standardised net benefit can be viewed as
the TNR appropriately discounted by the FNR [13].
With an ‘investigate all’ standard of care, it is difficult
for any model to perform better than a strategy of ‘inves-
tigate no-one’ when the prevalence is low, and so for this
analysis, we combined both external validation datasets
into one and compared that to the Dorset dataset.
The TRIPOD (transparent reporting of a multivariable

prediction model for individual prognosis or diagnosis)
initiative was followed to report this study [15]. R (ver-
sion 3.6.1) and RStudio (version 1.2.5001) were used to
run the statistical analysis and to produce the graphs.

Results
Patients
After tidying the databases and applying the exclusion
criteria, 1117 cases were available for detailed analysis
from the Oxford dataset and 474 from the Sheffield
dataset. There were differences between the datasets, as
shown in Table 2. As expected, the Oxford dataset had a
lower median Hb in particular, as subjects presented ex-
clusively through the fast-track pathway.
A density plot of continuous variables according to the

presence/absence of GI cancer in each dataset using the
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IDIOM model is illustrated in Additional file, Fig. S3
whilst the probability distributions for each dataset are
shown in Additional file, Fig. S4.

Model performance
Discrimination
The discrimination of the IDIOM model was AUC, 77%
(95% CI 74, 80) for the Dorset dataset; AUC, 70% (95%
CI 65, 75) for the Oxford dataset; AUC, 70% (95% CI 61,
79) for the Sheffield dataset and AUC, 69% (95% CI 65,
74) for the combined validation dataset. As predicted by
the sample size calculations, due to the small sample size
of the Sheffield dataset, the width of the CI for the dis-
crimination was the largest. And for the combined valid-
ation data, was less than 10%.
Using the risk groups cut-offs in Table 1, analysis

showed the following:

� Cut-off 1 (≤ 1.18%) stratified about 11% of the
Dorset dataset and 3% of both external cohorts
(Oxford, 2%; Sheffield, 5%) into the very low risk
group.

� Cut-off 2 (1.18-2.16%) stratified about 14% of the
Dorset dataset and 8% of both external cohorts
(Oxford, 7%; Sheffield, 12%) into the low risk group.

� Cut-off 3 (2.16-4.24%) stratified about 26% of the
Dorset dataset and 25% of both external cohorts
(Oxford, 22%; Sheffield, 31%) into the moderate risk
group.

� Cut-off 4 (4.24-7.97%) stratified about 24% of the
Dorset dataset and 31% of both external cohorts
(Oxford, 30%; Sheffield, 33%) into the high risk
group.

� Cut-off 5 (> 7.97%) stratified about 25% of the
Dorset dataset and 33% of both external cohorts
(Oxford, 39%; Sheffield, 19%) into the very high risk
group.

The proportion of patients who fell into the higher-
risk groups from the Oxford dataset was large (69%).
This was expected because the patients in the Oxford
dataset had lower Hb values. None of the patients strati-
fied in the very low risk group from the validation

datasets (Oxford, 2%; Sheffield, 5%) proved to have GI
cancer on investigation as NPV remains 100%.
The ROC curve (Fig. 1) showed that the highest

Gmean values in the validation datasets were close (70%
in the Dorset dataset, 66% in the Oxford dataset, 68% in
the Sheffield dataset and 64% in the combined dataset).

Calibration

Risk groups calibration Assessing the calibration visu-
ally across the five risk groups in the combined valid-
ation data suggested (Additional file, Fig. S5) that the
observed and predicted risks across the five risk groups
were overall similar.

Mean calibration (calibration-in-the-large) The preva-
lence of malignancy was 7.7% (86/1117) for the Oxford
series, 7.6% (36/474) for the Sheffield series and 7.7%
(122/1591) for the combined datasets. The average risks
estimated by the IDIOM model were 8.5%, 5.5% and
7.6% respectively. Assessing the risk ratios, using the val-
idation datasets separately, showed that there was an
overestimation for the risks in the Oxford dataset (by
10%), and underestimation for the risk in the Sheffield
dataset (by 28%). However, the analysis using the com-
bined validation dataset showed no tendency for the
model to under- or overestimate risk (by 1%).

Weak calibration (calibration intercept and
calibration slope) For the Oxford dataset, the calibra-
tion intercept and slope were −0.11 (95% CI −0.34, 0.12),
and 0.87 (95% CI 0.59, 1.15) respectively. For the Shef-
field dataset, the calibration intercept and slope were
0.35 (95% CI 0.01, 0.70) and 0.96 (95% CI 0.5, 1.42) re-
spectively. For the combined Oxford and Sheffield data-
sets, the number of events was 122, the calibration
intercept and slope were 0.01 (95% CI, −0.18, 0.20) and
0.84 (95% CI 0.60, 1.07) respectively. With zero as the
target value for the intercept, the results for Oxford
dataset and the combined data suggest no tendency for
under- or overestimated risks. The calibration slopes
were close to the target value of 1, suggesting that risk
estimates for Oxford dataset and the combined data

Table 2 Descriptive statistics for the three datasets

Dataset Dorset Oxford Sheffield

Dataset size N 2390 1117 474

GI cancer Positive—n (%) 200 (8.4%) 86 (7.7%) 36 (7.6%)

Sex Male—n (%) 862 (36%) 446 (40%) 227 (48%)

Age (years) Median (min, max) 71 (16, 96) 74 (22, 97) 69 (18, 93)

Hb (g/l) Median (min, max) 104 (32, 159) 91 (29, 129) 104 (54, 152)

MCV (fl) Median (min, max) 80 (53, 112) 81 (55, 125) 80 (32, 104)
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were not systematically too moderate or extreme in ei-
ther dataset.
The confidence intervals for the calibration intercept

all contain 0 apart from the small size Sheffield dataset.
All confidence intervals were wide > 0.2; however, this
result was consistent with what the sample size calcula-
tions predicted based on the existing relatively small
number of outcome events.

Moderate calibration (flexible calibration curve) The
flexible calibration plot for the combined validation
dataset (Fig. 2) showed that the model was well-
calibrated for risks up to about 17%, but miscalibrated
for a few of the higher risk patients. For example, in
Fig. 2, a predicted risk of 30% corresponds to an ob-
served risk of around 20%. However, about 92% of the
combined cohort patients have predicted risks less than
17.5% and the model is well-calibrated in this region.
Also, using any of these cut-off values above 17.5%
would put these patients in the very high-risk group re-
gardless of their predicted risks.

The calibration plot for the Oxford dataset (Additional
file, Fig. S6) showed similar results to that in the com-
bined validation dataset (in which 90% of the Oxford co-
hort patients have predicted risks less than 17.5%).
Furthermore, the flexible calibration plot for the Shef-

field dataset (Additional file, Fig. S7) showed a strong
deviation from the ideal line across the range of true
risks above 20%. The miscalibration above 17.5% was
consistent with the previous results in the Oxford and
combined datasets. However, only 2% of the Sheffield
cohort has predicted risks more than 17.5%.

Net benefit
Decision curve analysis suggested that the IDIOM model
is of clinical value because it has the potential to add
value—i.e., standardised NB is higher than ‘investigate
no-one’ and ‘investigate all’ for a range of risk thresholds
up to 27% in the Dorset dataset, up to 18% in the com-
bined validation dataset (and up to 18% in the Oxford
dataset, and to 18% in the Sheffield dataset as can be
seen from Additional file, Figs. S8 and S9).

Fig. 1 Receiver operating characteristic curve shows the sensitivity on y-axis, and specificity on x-axis for the Dorset (black), Oxford (dark grey),
Sheffield (grey) and combined validation (dotted black) datasets with the highest GMean value in each dataset. AUC, area under curve; GMean,
geometric mean of sensitivity and specificity
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So at a risk threshold of 10% for example, use of the
IDIOM model would be the equivalent to a theoretical
strategy that reduced the number of unnecessary investi-
gations by about 43 per 100 in the Dorset dataset (Fig. 3),
and 38 per 100 in the combined validation dataset (38
per 100 in the Oxford dataset, 37 per 100 in the Shef-
field dataset) (Fig. 4).
The clinical impact curves (Additional file, Figs. S10

and S11) showed that at a risk threshold of 10%, around
825 of 1000 IDA patients in the Dorset dataset would be
anticipated as low risk and about 780 of these as true
negatives for GI cancer (cost/benefit: 1/9). At the same
risk threshold, of 1000 IDA patients in the combined
validation dataset, about 750 would be predicted as low
risk and about 710 of them as true negatives for GI can-
cer (cost/benefit: 1/9).
Figures S12 and S13 (Additional file) showed that at

the same risk threshold of 10%, around 690 of 1000
IDA patients in the Oxford dataset would be antici-
pated as low risk and about 650 of these as true neg-
atives for GI cancer (cost/benefit: 1/9). At the same

risk threshold, of 1000 IDA patients in the Sheffield
validation dataset, about 870 would be predicted as
low risk and about 840 of them as true negatives for
GI cancer (cost/benefit: 1/9).
Regardless of the sample size, in every dataset, the net

benefit analysis has shown consistently a clinical value
for the IDIOM model in the validation datasets.

Discussion
IDA is a problem commonly encountered in clinical
practice, and the prevalence of underlying GI cancer is
the primary justification for the urgent investigation of it
[7, 16–21]. Bidirectional endoscopy, combining gastros-
copy and colonoscopy in the same session, is generally
accepted as the most efficient method of assessing the
GI tract unless there are clear clinical clues as to the
cause [20]. It does however carry a small but significant
risk of complications, particularly in the elderly and
those with major comorbidities, and it is therefore im-
portant to consider the risk-benefit ratio for the investi-
gation of IDA on an individual case basis.

Fig. 2 Flexible calibration curve for the combined external datasets, showing the relationship between the estimated risks (on the x-axis) and the
observed proportion of events (on the y-axis)
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Bidirectional endoscopy is also labour intensive, taking
up to an hour to complete for each patient, yet over 90%
of procedures for IDA will not reveal malignancy. Be-
cause it is common, IDA is a major drain on investiga-
tional resources, accounting for a substantial proportion
of the workload in many endoscopy units—with esti-
mates of up to 20% of all diagnostic examinations [3].
Any manoeuvre to safely reduce the number of neces-
sary investigations has the potential to make a substan-
tial positive impact on both costs and waiting times.
We have previously proposed the IDIOM score as a

simple and reliable pre-test predictor of the risk of
underlying malignancy that is sufficiently discriminating
to be clinically useful for patient-centred counselling [4].
Effective risk stratification is a potentially important clin-
ical tool for two reasons. First, it allows the identification
of a very high-risk subgroup who warrant accelerated in-
vestigation and can be managed accordingly. Second, it
reveals individuals at very low risk who are unlikely to
benefit from invasive investigation and may wish to
make a considered decision not to proceed. Since there
is currently no consensus on the risk threshold

warranting investigation for GI cancer in IDA, the
IDIOM score is of potential use not just to predict the
GI risk and stratify patients in meaningful risk groups,
but also to inform the decisions of clinicians and pa-
tients when discussing whether invasive investigation is
appropriate.
Challenges to the applicability of the IDIOM score to

other IDA populations include relatively small propor-
tion of positive cases (8.4% for the Dorset dataset), and
differences in predictor definitions, referral pathway and
patient characteristics between cohorts in different parts
of the country. The external validation exercise reported
here was therefore important to confirm that the model
underlying the IDIOM score is capable of predicting the
risk of underlying GI malignancy in independent exter-
nal IDA datasets.
Using the combined validation dataset, our results

demonstrate that the IDIOM model has good discrimin-
ation performance, and of clinical value. The results also
suggest that the IDIOM model has no tendency to
under- or overestimate risk, and the risk estimates are
not systematically too moderate or extreme. Moreover,

Fig. 3 Decision curve analysis for GI investigation using Dorset data. Grey line: penalised IDIOM model. Black line: investigate no-one strategy.
Dashed line: investigate all strategy. The vertical axis displays standardised net benefit. The horizontal axis shows the risk thresholds
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using the 1.18% cut-off to categorise patients into the
ultra-low risk group showed that none of the IDA pa-
tients within this group proved to have GI cancer on in-
vestigation in any dataset (Dorset, Sheffield and Oxford).
The strength of this study is the inclusion of more

than one independent external dataset to validate the
model. Also, it represents the first risk prediction model
for gastrointestinal cancer in iron deficiency anaemia to
be internally and externally validated. Being a retrospect-
ive analysis, limitations include our inability to control
the size of the study external validation datasets which
resulted in a restricted suboptimal evaluation per centre,
or to incorporate other variables that might influence GI
cancer risk such as family history, previous cancer, race,
unintentional weight loss and red meat consumption—
though this is the aim of work to develop the model
further.

Conclusion
By analysing two independent datasets, this paper exter-
nally validates the IDIOM score risk prediction model, a
multivariable logistic regression model developed to pre-
dict the risk of gastrointestinal malignancy for patients

with iron deficiency anaemia. The assessment of the
model performance was evaluated by estimating the
measures of discrimination, calibration and net benefit.
This external validation exercise has shown promising
results regarding using the IDIOM model in predicting
the risk of underlying GI malignancy in different IDA
populations in the UK; however, further validation of
this model in larger datasets would still be useful to con-
firm the findings from this study.
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