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Abstract 

In today’s world, it is becoming increasingly important to have the tools to understand, and 

ultimately to predict, the response of ecosystems to disturbance. However, understanding such 

dynamics is not simple. Ecosystems are a complex network of species interactions, and therefore any 

change to a population of one species will have some degree of community level effect. In recent 

years, the use of Bayesian networks (BNs) has seen successful applications in molecular biology and 

ecology, where they were able to recover plausible links in the respective systems they were applied 

to. The recovered network also comes with a quantifiable metric of interaction strength between 

variables. While the latter is an invaluable piece of information in ecology, an unexplored application 

of BNs would be using them as a novel variable selection tool in the training of predictive models. To 

this end, we evaluate the potential usefulness of BNs in two aspects: (1) we apply BN inference on 

species abundance data from a rocky shore ecosystem, a system with well documented links, to test 

the ecological validity of the revealed network; and (2) we evaluate BNs as a novel variable selection 

method to guide the training of an artificial neural network (ANN). Here, we demonstrate that not 

only was this approach able to recover meaningful species interactions networks from ecological 

data, but it also served as a meaningful tool to inform the training of predictive models, where there 

was an improvement in predictive performance in models with BN variable selection. Combining 

these results, we demonstrate the potential of this novel application of BNs in enhancing the 

interpretability and predictive power of ecological models; this has general applicability beyond the 
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studied system, to ecosystems where existing relationships between species and other functional 

components are unknown. 

Keywords: Bayesian Networks, Artificial Neural Networks, Rocky Shores, Variable Selection, 

Predictive Ecological Model 

1. Introduction 

Ecosystems are facing multiple pressures, including climate change, biodiversity loss, habitat loss 

and pollution, on global, regional, and local scales (Steffen et al., 2018). Such pressures have 

significant impact on population dynamics, community structure, and ecosystem function. In many 

ecosystems if pressures exceed a threshold, or tipping point, the changes may lead to an ecological 

regime shift and potentially a new alternative stable state (Petraitis et al., 2009; Petraitis and 

Dudgeon, 1999). Regime shifts are large and sudden changes where an ecosystem undergoes a step 

change to another state that can last for substantial periods of time (typically decades for most 

ecosystems), and potentially indefinitely (Folke et al., 2004; Scheffer et al., 2001). This is detrimental 

to ecosystems for two reasons. Firstly, post-regime states may be highly stable themselves. Such 

shifts entail changes in internal dynamics and feedbacks of an ecosystem that often make it 

impossible to reverse to its original state, even if efforts are made in removing the drivers that lead 

to the shift (Scheffer et al., 1993). Secondly, alternative regimes are normally ‘poorer’ in both 

biodiversity and provision of ecosystem service (Hawkins et al., 2015). 

Given this, it is of paramount importance to be able to understand, and ultimately to predict, the 

response of ecosystems to disturbance, including resilience of the ecosystem and potential new 

stable states. However, understanding such dynamics is not simple. Ecosystems are a complex 

network of interactions: species exists as part of an ecological community that is dictated by 

interactions with prey, predators and competitors. Therefore, any change to a population of one 

species will have some degree of community level effect (Henneman and Memmott, 2001; Stafford 

et al., 2013).  

Computational inference of complex networks presents an efficient route to reveal complex 

interactions such as those within an ecosystem, and have been demonstrated to work on some 

natural complex systems. For example, the recent applications of Bayesian Networks (BNs) have 

shown success in recovering gene regulatory networks from gene microarray data (Chen and Mar, 

2018; Friedman et al., 2000; Hecker et al., 2009). BNs have also seen successful applications in 

ecology, where recovered networks from observational data corresponded well to known species 

and habitat interactions (Milns et al., 2010; Mitchell et al., 2021; Trifonova et al., 2015). Given that it 
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has been established that understanding these interactions is crucial in understanding the impact of 

large scale disturbances such as climate change on ecological systems (Pearson and Dawson, 2003; 

Proulx et al., 2005), BNs therefore offer a novel way to reveal ecological network structures within 

stable states using species counts that are relatively easy to obtain.  

Another key strength of BNs is the ability to at least semi-quantify the strength of interactions 

between variables (or species). Using this information, it follows that relative variable importance 

with respect to a certain variable of interest can be inferred from the revealed network. Knowing the 

relative strength of certain species in relation to others is invaluable in the field of ecology. For 

example, knowing the strength of interactions between predator, prey and competitors would give a 

clear understanding of how ecological communities are structured and regulated.  

The combination of these two features, network structure and interaction strength, has the 

potential to serve as a novel variable selection tool in the field of machine learning. The revealed 

structure can identify relevant variables in relation to a target variable. This could guide the training 

of various predictive models such as multiple linear regression (MLR) models, one of the most 

popular models in ecology. However, a key limitation of using MLR models or derivatives of them 

such as generalised linear models (GLM) as a predictive tool for ecosystem dynamics is their limited 

ability to deal with non-linear relationships between the dependent and independent variables 

(Brosse et al., 1999; Gevrey et al., 2003; Laë et al., 1999). A potential alternative to these approaches 

is the use of artificial neural networks (ANNs). ANNs have gained increasing attention in ecological 

modelling in the last decade, with the main reason being their ability to detect patterns through 

complex, non-linear relationships (Jeong et al., 2001; Kroodsma et al., 2018; Mac Aodha et al., 2018; 

Pereira et al., 2019). Therefore, this makes ANNs an attractive alternative to conventional regression 

models. However, ANNs lack easily-interpretable coefficients as found in MLR models. Thus, use of a 

BN variable selection tool would complement an ANN predictive model by providing interaction 

strengths for the selected variables. 

In this paper, we aim to evaluate the potential usefulness of BNs in two aspects. Firstly, we apply BN 

inference on species abundance data from a rocky shore ecosystem in Scotland. Rocky shores are 

systems with well documented relationships between species and this allows us to test the 

ecological validity of the revealed network against experimentally derived field data. Secondly, we 

evaluate BNs as a novel variable selection method to train an ANN for each component species of 

the network. To evaluate the effectiveness of BN as a variable selection method, we compare the 

performance of the ANN with and without the BN-based variable selection. Finally, to benchmark 

our approach against previous methods, we compare the performance of the ANN with variable 
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selection against a generalised linear model (GLM, a type of MLR model) with variable selection, 

where variable selection has been performed by the BN. 

 

2. Methods 

2.1 Field Methods 

Our study site was two continuous sections of rocky shore of 10m in length at East Sands, St 

Andrews, Scotland (56°20'04.0"N 2°46'23.2"W).  Both sites were at a tidal height of 2.9 m above 

chart datum. These sites were selected based on initial inspection of community structure to ensure 

that both macroalgae and barnacle stands were present, but were otherwise haphazardly selected 

from other potential sites at this height on the shore.    

All sampling occurred in May 2020. Sampling only occurred during low tide time periods. Fifty 

haphazardly placed 50x50cm double strung quadrats were placed at each site. Grazer count (for 

Littorina littorea (littorinids) and Patella vulgata (limpets) were obtained for each quadrat. 

Percentage cover estimates for barnacles (Semibalanus balanoides and Chthamalus stellatus), 

macroalgae (Ascophyllum nodosum and Fucus vesiculosus) and microalgae (Biofilm) were obtained 

by photographing the quadrat frames using an IPhone XR. Estimates were then made of percentage 

cover for each species present. Other grazer species were extremely rare, and accounted for < 2% of 

grazers found. This was considered unlikely to affect our results, so are not included in subsequent 

analysis. This sampling covered approximately 50% of the area being considered, which has been 

demonstrated to be sufficient to capture the variation and details of even the most patchily 

distributed organisms on the rocky shores (Stafford, 2002; Stafford et al., 2015). The research data 

underpinning this publication can be accessed at https://doi.org/10.17630/f2b69f88-efb7-43a1-

96e9-70012256a752 (Hui et al., 2021). 

 

2.2 Data pre-processing 

Data analysis was carried out using R 4.0 (R Core team, 2020) to prepare the data for further 

analysis. It is traditional knowledge in the field of machine learning that the more data that any 

machine learning algorithm has access to, the more effective it can be (Perez and Wang, 2017). The 

problem with small datasets is that models that are trained with them do not generalize well beyond 

the original dataset. Hence, these models suffer from overfitting. 
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To combat against this problem, and with the knowledge that our sampling sufficiently captured the 

site variation (Stafford, 2002; Stafford et al., 2015), we applied a uniform data augmentation 

method. This process simply takes each data point, in this case a single cell of percentage cover (0-

100%) or grazer count (0-42 individuals), and returns an additional point that either adds or 

subtracts a value from a uniform distribution of ±3.  This would take on the form as   

     (       ), with values <0 reset to 0. This process was repeated until 400 data points was 

reached. When partitioning the data into training and validation sets (in the neural networks), this 

process was applied only to the training data partition. 

 

3. Modelling 

3.1 Bayesian networks 

Bayesian networks consists of a graphical representation of the joint probability distribution among 

a set of variables   *         + . The graphical representation, in the form of a directed acyclic 

graph (DAG), represents the dependencies and conditional relationships among a set of variables. 

This can be defined with the pair 〈   〉. G represents a directed graph with nodes that correspond 

to the variables          ,  and links between nodes indicate statistical dependency, where the 

child variable is dependent on its parents.  The graph G and the joint probability distribution of   are 

connected to together by the Markov condition property: variable    is conditionally independent 

from all non-descendants, given its parents in G,   (  ). Lastly, the parameters of   specifies the 

probabilistic relationship of each node to its parents,  (  |  (  )). Given these qualities, the joint 

probability distribution that is described by 〈   〉 is therefore: 

     (       )   ∏  (  |  (  ))
 
       (1) 

 

3.1.1 Learning Bayesian networks  

Banjo 2.2 (https://users.cs.duke.edu/~amink/software/banjo/; Yu et al., 2004, Smith et al., 2006) 

was used to reveal the Bayesian networks. Due to the discrete nature of the learning algorithm, the 

dataset had to be discretized. To this end, all variables were discretized into 3 bins using quantile 

discretization. The variables were mapped into 3 bins as follows: 

 Limpet: *0, 9+ → low, *10, 29+ → medium, and *30/42+ → high  

 Littorinid: *0, 4+ → low, *5, 8+ → medium, and *9/21+ → high 
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 Barnacle: *0, 6+ → low, *7, 49+ → medium, and *50/88+ → high 

 Macroalgae: *0, 5+ → low, *5, 8+ → medium, and *9/21+ → high 

 Microalgae: *0, 10+ → low, *12, 50+ → medium, and *53/80+ → high 

 

The number of bins were selected due to the following reasons: 1) it is intuitive as it reflects ‘low’, 

‘medium’, and ‘high’ ordinal states; 2) to minimize the quantity of conditional probabilities while 

simultaneously allowing for non-monotonic relationships to be revealed, and 3) discretization into 3 

bins has been shown to be optimal in simulation studies and had success in previous applications of 

Bayesian networks in ecological systems (Yu et al., 2004; Milns et al., 2010). To search for the best 

networks, Banjo uses a heuristic search to identify top scoring networks based on the Bayesian 

Dirichlet equivalent scoring metric. Banjo was run using settings: greedy search, using random local 

moves, with an equivalent sample size of 1. Upon completion of a search, Banjo returns a single top 

scoring network along with influence score for each link, which ranges from -1 to 1, representing the 

direction and magnitude of influence, with a score of exactly 0.0 representing non-monotonic (e.g. 

hump- or U-shaped) influence. 

  

3.1.2 Using Markov blanket from Bayesian networks for variable selection 

A Markov blanket (MB) of any target variable  ,   ( ), is the minimal set for which the conditional 

independence relationship   between   and   holds such that  (    |   ( )), for all     

* +    ( ) in a variable set  . Therefore, the MB of a given target variable includes its parent 

nodes, child nodes, and other parent nodes of the children. This condition renders variable   

statistically independent from all the remaining variables of a BN, given the values of the variables in 

the Markov blanket. Putting all the above together, we can describe the relationship between 〈   〉 

as follows: a BN graphical structure of   is faithful to a joint probability distribution   over a variable 

set   if and only if every dependence entailed by the graph   is also present in  .  This formal 

definition is the basis of our proposed variable selection method: we identify the Markov blanket of 

specific variables within the revealed Bayesian network, and these variables will be selected for 

training the predictive models.  

 

3.1.4 Learning variable importance from Bayesian networks 
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To quantify variable importance from each component variables of the revealed Markov blankets, 

we utilize Banjo’s influence score and mutual information. Upon revealing the Markov blanket for 

each component variable within the Bayesian network, we parse each respective Markov blanket 

through Banjo to obtain the influence scores for each variable with regards to their target variable.  

To complement the influence score, which shows the direction and magnitude of relationship, we 

also compute the mutual information using the R package entropy v1.3.0 (Hausser and Strimmer, 

2009). The mutual information of two random variables is a measure of mutual dependence 

between two variables, where it quantifies the ‘amount of information’ obtained about one random 

variable through the observation of another random variable.  For example, the mutual information 

(I) between variables X and Y can be defined by: 

     (   )   ( )   ( | )     (2) 

where H represents the entropy of a given variable.  

This is then equivalent to the following: 

    (   )   ∑  ( )   ∑  ( | )       
 ( | )

 ( )
    (3) 

 

This allows mutual information between a target variable and any possible predictor to be 

computed. As a direct result, we can then infer which variable provides the maximum information 

gain, and thus allows us to gauge variable importance in relation to a target variable, in a manner 

complementary to the influence score. 

 

3.2 Artificial Neural Networks 

An Artificial Neural Network models the relationship a set of input and output signals using a model 

that is derived from animal neural system mechanisms (van Wijk and Bouten, 1999). 
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Figure 1: A single artificial neuron. Inputs X, Y, and Z are weighted by connection weights wX, wY and 

wZ, respectively, and combined within the neuron via its activation function f(x) to result in the 

Output. 

The model of a single artificial neuron is comparable to the biological model. Biological neurons 

receive incoming signals via their dendrites. This impulse is then weighted according to its relative 

importance, and as the cell body begins to accumulate weighted signals, a threshold is reached and 

the cell fires off an output signal. This process is essentially mirrored in artificial neurons (Fig. 1), 

where input signals are received by the dendrites (variables X, Y, Z) and are combined into the 

output signal (Output). Each signal is weighted (wx, wY and wZ) according to its importance and then 

summed up by the cell body, and the signal is passed according to an activation function. Therefore, 

the output an artificial neuron with n inputs can be expressed as the following: 

     ( )   (∑     
 
   )       (4) 

where wi represents the connection weights which allows each of n inputs (  ) to contribute to the 

sum of input signals. The net sum is used by the activation function f(x) and the resulting signal y(x), 

including the addition of a bias term (b), is the output. Here, we use the logistic activation function 

defined by:  ( )  
 

     
 . The main advantage of using this is that it provides a smooth gradient of 

outputs, preventing ‘jumps’ in output values.  

 

3.2.1 General network architecture 
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Figure 2: Generic structure of a feed-forward artificial neural network. The first layer represents the 

input neurons (I1-I3). The next 3 layers represent the hidden layers, and their associated hidden 

neurons. The final layer represents the output neuron (ON1). Bias terms per layer are represented by 

B1-4. Line represents connections between neurons, where the weights are represented by the 

thickness of the lines and the colors represent the effect, where green represents a positive effect and 

red representing negative. 

Typically, an ANN is composed in a manner where every neuron of one layer connects with all 

neurons in the next layer. The first layer is the input layer, which in this case represents input from 

each independent variable (Fig. 2).  This layer receives data and transmits data to the next layer, 

which is the hidden layer. Each cell in the hidden layer acts as a processing neuron which receives 

information from different input neurons. These cells sum up the input signals and processes the 

data according to an activation function. This in turn produces a signal for the next layer. The next 

layer can either be another hidden layer, or an output layer, which sums up all the incoming signals 

to produce a response, which in this context will be the value of the dependent variable. The 

connection between neurons vary by magnitude and direction: they can either be positive or 

negative, and they vary in high or lower effects. This is known as the ‘connection weights’, where the 

effect of one neuron on the next may be positive or negative depending on the sign of the weight 

(Olden and Jackson, 2002). Additionally, each hidden layer and output layer has a bias term added, 

which are numeric constants that allow the value at indicated neurons to be shifted upwards or 

downwards (Lantz, 2013). 

 

3.2.2 Training algorithm: Gradient based optimisation 

Recall that each neural network output transforms input data as defined by equation 4. In this 

expression, w and b are the weights and biases which are the trainable parameters, and these 
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weights contain the information learnt by the network from exposure to training data. Initially 

training starts with a random initialization of w and b, which allows us to obtain predictions of y(x). 

The algorithm then computes the loss, which is the degree of mismatch between the predicted 

outputs and the actual outputs. Given the degree of loss, the algorithm then gradually adjusts these 

weights in a way that slightly reduces the loss. This becomes a training loop, which is repeated until 

a very low loss on training data is achieved.  

Here, the activation function is crucial. Because the sigmoid activation function is differentiable, the 

training algorithm uses the derivative of each neurons activation function to identify the gradient in 

the direction of each training weight. Given the gradient, it allows the algorithm to measure how 

much the loss can be reduced for a change in weight. This process is known as the stochastic 

gradient descent and is the backbone of the training process in ANNs. In this paper, we utilize the 

backpropagation algorithm to train our ANNs. 

 

 

3.2.3 Training Artificial Neural Networks 

R was used to train the ANNs. All data points had to be modified as neural networks work best when 

the input data are scaled to a narrow range near 0 (Lantz, 2013). We defined our own min-max 

normalization function: 

g(x)=
     ( )

   ( )    ( )
     (5) 

This function was then applied to all variables independently to scale our data.  

To train the model, we used the R packages caret v6.0-88  (Kuhn, 2020) and neuralnet v1.44.2 

(Fritsch et al., 2019). Our dataset was randomly partitioned into 70% training and 30% validation. 

We used caret's maximum of 3 hidden layers, of which each layer is allowed to have 1-4 neurons. 

Therefore, to tune these hyperparameters, we performed 10 searches for each layer starting from 

layer 1. During each iteration, caret performs backpropagation to determine the most optimal 

number of neurons per hidden layer using 10-fold cross validation. The root mean square error 

(RMSE) is calculated and the model with the lowest RMSE is selected. This process is then repeated 

until the optimal number of neurons for all 3 layers have been learnt. For each component species of 

the revealed BN, we trained two ANNs: (1) where every other variable acts as the predictor (no 

variable selection); and (2) where only the variables within the Markov blanket of the target variable 

are used as the predictor (variable selection). To test our model performance, we utilized the 30% 
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validation set as input for each model, and then measured the Pearson correlation between the 

model predicted output and the true value.  We replicate this process 10 times for both no variable 

selection and for variable selection. 

 

3.2.4 Learning Variable Importance from ANN 

To quantify variable importance from our ANN models, we utilize Olden’s connection weights 

algorithm (Olden et al., 2004).This method calculates importance as the summed product of the raw 

input-hidden and hidden-output connection weights between each input and output neuron (Beck, 

2018). To apply this algorithm, we use the NeuralNetTools v1.5.2 package (Beck, 2018). 

 

3.2.5 Training GLM models 

R was used to train the GLM models. The same training and validation data used for training ANNs 

were used to train the GLM models. The data did not require min-max normalization. To train the 

GLM models, we used the glm function, with the Poisson link function, along with the caret package.  

For each model, we utilized a 5-fold cross validation training procedure. To test model performance, 

we use the same procedure outlined in the previous section. 

 

4. Results  

4.1 Bayesian Networks 

The network shown in Fig. 3 represents the revealed BN of rocky shore species. There was a strong 

negative relationship between macroalgae and barnacles. Additionally, positive links were found 

between grazers (limpets and littorinids) and macroalgae and microalgae. A non-monotonic link (0 

influence score) was found between limpets and barnacle. 
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Figure 3: Bayesian network showing the revealed species interaction network of a typical rocky shore 

community. Values represent influence scores. 

 

4.2 Markov blankets and variable importance 

Fig. 4 represents the Markov blanket of each component species of the Bayesian network shown in 

Fig. 3, along with the influence scores and mutual information. The Markov blanket for each species 

shows which species are the most important in predicting the specified target variable. The influence 

scores represent the direction and magnitude of relationship between the predictor and target 

variables, while the mutual information shows the extent to which having knowledge of a predictor 

variable reduces the uncertainty about the target variable.  Both influence score and mutual 

information was the strongest when sessile species were used to predict each other, where barnacle 

was the most important in predicting macroalgae and vice versa. 
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Figure 4: Markov blanket of each target variable (across top of plots) with influence scores (A) and 

mutual information (B) of each predictor (x-axes). Influence scores show the magnitude and direction 

of relationship between predictor variables and target variable. Influence scores of ‘0’ represent a 

non-monotonic (NM) relationship. The mutual information is the ‘amount of information’ obtained 

about the target variable through the observation of another predictor variable. 
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4.3 Artificial Neural Networks 

For each component species in the BN (Fig. 3), we trained one ANN using all other variables as a 

predictor (no variable selection), and another ANN using only the variables within the Markov 

blanket of the selected variable (variable selection). There were significant improvements in model 

performance with variable selection in macroalgae and barnacle (Figure 5: with predictor variables 

as defined in Fig. 4; significance determined by t-tests: macroalgae: t(17.442) = -16.903, p = 2.96x10-12; 

barnacle: t(-15.377) = -15.377, p = 1.37x10-8). On the other hand, no significant difference occurred with 

variable selection for microalgae, littorinids or limpets (microalgae, limpet and littorinid; p> 0.05).  

 

 

 

Figure 5: Comparison of model performance between ANN with variable selection and without variable 

selection, for predicting each variable across top. White bars = ANN with no variable selection (No VS), Grey 

bars = ANN with variable selection (VS). Error bars represent standard deviation. R represents Pearson 

correlation coefficient between model predictions and test data. 

 

4.4 Variable Importance from ANNs with variable selection 
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Olden's connection weight algorithm, when applied to each model, revealed which species were the 

most important in predicting the specific target variable, where it shows the strength and direction 

of this relationship. This showed similar patterns with the results from our BN influence scores (see 

Fig. 4), where the relationships were the strongest when sessile species were used to predict each 

other. However, the level of uncertainty for specific variables was large between model fits for the 

same network architecture.  

 

Figure 6: Variable importance derived from ANN models using Olden’s connection weight algorithm. 

Importance for predictor variables (x-axis) shown for each set of models predicting each variable in turn (top).  

Error bars represent standard deviation. 

 

 

4.5 Comparing ANN with GLM models 
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A total of 5 GLM models with variable selection were trained. The predictive performance of these 

models followed a similar trend observed in the ANNs, where performance was better for sessile 

species (barnacle, macroalgae and microalgae) compared to the grazers. However, the predictive 

performance of ANN outperformed GLM models across all species (Fig. 7). There were significant 

improvements in model performance in ANNs compared to GLMs for macroalgae, barnacle, 

microalgae and littorinid models (significance determined by t-tests: macroalgae: t(10.012) = 10.012, p 

= 1.184x10-9,  barnacle: t(10.999) = 10.827, p = 3.326x10-7, microalgae:  t(15.284) = 6.5204, p = 8.833x10-6, 

littorinid: : t(17.927) = 4.4089, p = 0.00034). However, there was no significant difference in model 

performance for in the Limpet ANN and GLM models (Fig. 7: limpet, p >0.05). 

 

 Figure 7: Comparing predictive performance of ANN and GLM models for each target variable 

(across top). Error bars represent standard deviation. R represents Pearson correlation coefficient 

between model predictions and test data. 

 

 

5. Discussion  
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The application of Bayesian networks to rocky shore ecosystems predicted relationships between 

species well, and provided relative weights to indicate the importance of the interactions. Although 

not those expected to be obtained immediately after experimental manipulations, these results 

match what one would expect from a ‘static’ rocky shore system (i.e. those which are in a ‘stable 

state’ rather than those adapting post experimental disturbance). The use of BNs for variable 

selection in ANNs demonstrated improved model performance in some cases, and addresses some 

ecological concerns around the ‘black box’ nature of ANNs. Finally, the predictive power of ANNs 

was shown to be greater than GLM for the rocky shore community we examined. These points are 

examined in more detail below.  

 

5.1 Bayesian networks revealed known functional relationships  

The BN revealed some inconsistency with prior experimental knowledge of competitive and grazing 

relationships. However, the BN revealed important specific relationships that one would expect to 

find on the rocky shores, given relationships between variables. From a BN conducted outside of 

experimental manipulations, as was the case in this study, i.e. within a given stable state, these links 

represent statistical dependencies, where links between variables are predictive in an informative 

manner, and not causality, which is often obtained through experimental manipulations. 

The strong negative relationship found between macroalgae and barnacle reflects the alternative 

stable states that have been documented in previous literature (Petraitis et al., 2003; Petraitis and 

Dudgeon, 1999), and the competition for space found on rocky shores (Raffaelli and Hawkins, 1999). 

Macroalgae stands and barnacle stands represent two different states, where both sessile species 

compete for space on the rocky shore. Therefore, it follows that having knowledge about the 

presence of barnacles is informative of the presence of macroalgae, as a high level of barnacle would 

suggest that space has been exploited, therefore leaving no room for macroalgae to establish (and 

vice versa). Here, it should be noted physical factors such as wave exposure and shore angles have 

been demonstrated to influence the distribution of macroalgae and barnacles as well. For example, 

biomechanical analysis of wave action has shown that dislodgement of macroalgae in land-facing 

sites were far less likely than sea-facing sites (Jonsson et al., 2006). Therefore, in seaward facing sites 

that are generally more exposed to wave action, patches with higher proportion of barnacles may 

not simply just be attributed to a exploitation of space, but also the physical factors that limit 

macroalgae from occupying these areas. 
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Grazing relationships appear to be captured in the model as well. Positive links were found between 

littorinids and macroalgae. This was consistent with prior knowledge as macroalgae has been 

documented to provide food (via spores) and shelter for littorinid snails, whilst simultaneously acting 

as a buffer from wave action (Norton et al., 1990). However, it should be noted that the links found 

reflect a static ‘snapshot’ of a typical rocky shore.  In a dynamic system with the consideration of 

time, we would also expect littorinids to reduce the level of establishing macroalgae (Hidalgo et al., 

2008). Therefore, it could also be argued that there should be a negative link found between 

littorinids and macroalgae. However, sampling occurred at a time where macroalgae had already 

established, and therefore acted as a refuge for littorinids. This led to a positive link being recovered: 

which was consistent with expectations for quadrats with established macroalgae (Norton et al., 

1990).  

This was the same with the relationships between limpet and microalgae. Generally, limpets graze 

on microalgae patches, which should lead to a negative link. However, they may be also attracted to 

areas with microalgae, thus leading to a positive link (Jerkanof, 2006; Nicotri, 1977). The latter 

appears to be what was revealed by the static Bayesian network, where limpets were generally 

associated with areas microalgae, rather than from experimental studies, where systems are settling 

into a new state following an experimental disturbance.    

The above relationship should hold between limpets and macroalgae as well – where limpets are 

expected to be attracted to areas with macroalgae, as they have been documented to graze on 

macroalgae patches (Arrontes et al., 2004; Davies et al., 2007). At the same time, studies have 

demonstrated that limpets control growth of established macroalgae, where increased limpet 

density around macroalgae patches decreases the breaking force of macroalgae, thereby increasing 

the vulnerability of macroalgae patches to wave induced breakage (Davies et al., 2007). Therefore, 

following the ‘static system’ argument, we should expect at least one of the two relationships 

(negative or positive) between limpets and macroalgae to be revealed. However, there was no link 

found. Additionally, it is unclear why there was a non-monotonic link between barnacles and 

limpets. While this is not an issue for the Bayesian network alone as expert knowledge can be used 

to validate links, this becomes a problem when using this specific network structure to perform 

variable selection to train a model to predict limpet abundance. This will be discussed in section 5.3. 
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5.2 Limitations of Bayesian network  

It becomes apparent that Bayesian network learning algorithms have revealed many known patterns 

of the functional relationship between species in a static ecological network. Additionally, it was able 

to provide a quantifiable measure of the strength of interactions between species community. Both 

are invaluable in the study of ecology. It should be noted, however, that the system under study was 

relatively static and within a stable state when we measured species count/% cover. Therefore, the 

recovered network represents a static snapshot of ecological interactions at a single time-step. 

Therefore, the next step to further our understanding in ecological networks would be implementing 

the consideration of time, and the effect of manipulations of grazer or producer density. This is 

crucial as not only will this allow the effects of competition and predation to be modelled on a 

dynamic time scale, but it also opens opportunities to study how ecosystems could recover from 

disturbance and how relationships change between potentially different states. Finally, such a 

network can be validated alongside known species relationships derived from considerable literature 

on manipulative experiments. This is especially important in the wider ecological context, where 

having the tools to predict the onset of a regime shift is becoming increasingly important (Folke et 

al., 2004; Stafford et al., 2013). 

 

5.3 Artificial Neural Networks show improvements with BN variable selection  

There were general improvements to model performance in ANN models with variable selection 

compared to models with no variable selection. This difference was significant for barnacles and 

macroalgae. From our models, there was a clear distinction of predictive performance of sessile 

species (barnacles and macroalgae) and mobile species (limpets and littorinids), where models of 

sessile species performed better than models of mobile species. From a causal perspective, this 

would make sense. Given the barnacles and macroalgae confer alternative assemblages on the rocky 

shore, the presence of one sessile species has strongly affects the presence of another.  However, it 

should be noted that physical abiotic factors such as wave exposure and site angle also have a strong 

influence on the distribution of these sessile species (see section 5.1). While the absence of these 

physical factors did not affect the performance of the barnacle and macroalgae models, this 

becomes problematic when modelling the distribution of grazers. Firstly, grazers are mobile. 

Therefore, despite a relevant biological relationship between macroalgae and littorinids, there is no 

way for the model to explain the presence of littorinids in areas with no macroalgae. In these 

instances, factors such as crevices and pits have a significant role in the distribution of littorinids 

(Chapman and Underwood, 1994; Seuront and Ng, 2016). For example, it has been demonstrated 
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that crevices play a key role in the survival of littorinid snails, as they serve as refuge against 

predators (Catesby and McKillup, 1998). Additionally, crevices play a role regulating thermal stress 

(Seuront and Ng, 2016). This would explain the poor performance in littorinid models, where despite 

revealing the correct variable via Markov blanket, the predictive performance was still very poor as it 

could not account for littorinids being present in quadrats with low % cover of macroalgae, where 

physical abiotic factors such as crevices may have driven underlying littorinid aggregations. This 

likely led to overfitting of ANN models for littorinids, especially on randomly selected training and 

test data. 

The lack of physical abiotic factors may have contributed to the drop in performance for limpet 

models with variable selection as well. Factors such as exposure to wave action are equally 

important in the distribution of limpets (Thompson, 1980), where it has been demonstrated that 

wave action has a significant effect on growth rates and mortality rates of limpets.  Another 

potential reason for the drop in the limpet models could be due to the original Markov blanket 

revealed in the BN, where only microalgae and barnacles were selected. Given that limpets have 

been documented to reside in both macroalgae and barnacle stands, one would expect to find links 

between the two variables (Thompson, 1980). Here, the absence of this relationship may potentially 

be attributed to a site-specific factor. Sampling occurred during late spring. While this usually entails 

an important growth period for macroalgae, an unexpected storm event or potential out of season 

factors may have caused a proportion of macroalgae patches to die off. While limpets were largely 

unaffected, the expected relationship between macroalgae and limpets was lost, as most of the 

limpets in my samples were closely associated with barnacles and microalgae.  

Here, while species count data was sufficient in training an accurate model for sessile species, 

physical abiotic factors would be required to fully capture the variation in grazers. Factors such as 

exposure to wave action, desiccation, and shore angle, along with biotic factors such as predation 

and competition all have a dynamic role in structuring intertidal communities (Raffaelli and Hawkins, 

1999). Additionally, it should be noted that these models reflect a static snapshot of an intertidal 

community – therefore, when trying to model more complex processes with the consideration of 

time, this issue of missing physical factors would likely lead to even more inaccurate models.  

 

5.4 Variable importance from BNs show more consistent and robust results than ANNs 

The variable importance obtained from the BN and ANN were relatively consistent, where both 

models showed similar patterns of sessile species being the strongest predictor when used to predict 
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each other. There were instances where the BN influence scores would show a non-monotonic link, 

whereas the ANN connection weight algorithm would show a strong effect. Here, we argue that the 

information from the BN is more reliable than ANN. Firstly, the BN comes with a quantifiable metric 

of interaction strengths via the influence score, which shows the direction and magnitude of 

relationship. This can then be complemented with mutual information which quantifies the ‘amount 

of information’ obtained about one variable through the observation of another variable. This 

becomes particularly useful when the influence scores show a non-monotonic relationship, as 

mutual information can provide further information about the nature of the relationship between 

two variables.   

On the other hand, the information derived from the ANN was far less reliable. Firstly, the level of 

uncertainty for specific variables from Olden’s connection weight (OCW) algorithm was very large 

between model fits for the same network architecture. This suggests that a single model may 

provide misleading information, and potentially require additional models to reduce uncertainty.  

Secondly, when comparing the results from influence scores against OCW, it becomes apparent that 

the OCW makes very strong assumptions about relationships between predictor and target 

variables. For example, the influence score of limpets in our barnacle model showed a non-

monotonic effect. On the other hand, the ANN connection weights showed a strong positive effect. 

From an ecological standpoint, limpets have been documented to reside in both macroalgae and 

barnacle stands (Thompson, 1980). However, limpets can also graze and prevent the settling of 

barnacle larvae, which would also lead to a negative relationship between the two variables 

(Blackmore, 1969). In this instance, the BN is correct in attributing limpets having a non-monotonic 

effect on barnacles. This also suggests that the strong assumptions made by OCW can provide 

misleading information about variable importance, a problem that may be exacerbated when 

applied to more complex ecological systems.  

 

5.5 ANN significantly outperformed GLM models 

MLRs and GLMs are the most frequently used predictive tool in ecology largely due to their ease of 

use and its ability to give explanatory results, as the regression coefficients of input variables provide 

simple interpretable information about their relative importance (Laë et al., 1999). However, MLR 

models make strong assumptions about distributions of the data, therefore they are unable to 

handle non-linear relationships between dependent and independent variables. While GLMs can be 

used to handle non-linear effects, ANNs showed superior predictive capabilities, while making 
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minimal assumptions about the underlying distribution of the data. This was clearly reflected in our 

results, where the ANNs performed significantly better than GLM.  

 

5.6 General conclusion 

To our knowledge, this is the first application of a hybrid style Bayesian network-Neural network 

modelling approach in the study of ecology. BN algorithms were able to recover known functional 

links of a typical rocky shore community, while providing insights to relative variable importance 

through Markov blankets. This was then utilized as a novel variable selection method to train an 

artificial neural network on each component species of the revealed network. The results from this 

workflow showed general improvements in predictive performance in models with variable selection 

versus no variable selection. The exception in grazers highlighted the need for physical factors to be 

considered as well. Additionally, ANN significantly outperformed conventional GLM models.  It 

should be noted that these models were applied to a relatively simple system, one with very few 

variables. Therefore, this difference in performance may be even more pronounced when applied to 

a more complex system. Further, variable selection in a more complex system could enable future 

data collection to focus on those features relevant to those variables whose prediction is of interest, 

potentially reducing experimental effort. 

In conclusion, Bayesian networks show strong potential in revealing ecological networks, however 

due to discretization of data, it is sub-optimal as a predictive tool as we would be limited to a 

classification type problem. On the other hand, artificial neural networks provide an opportunity to 

overcome this problem as it can handle complex non-linear data, while showing strong predictive 

capabilities. However, despite the ease of use and its high predictive abilities, a commonly cited 

weakness of ANN is its black box nature, where the results are generally difficult if not impossible to 

interpret. Given that explaining ecological relationships is integral in the study of ecology, ANNs may 

not be optimal as a standalone model. Here, we demonstrate that coupling the results from the 

Bayesian network can complement the strong predictive abilities of ANNs, as relative importance 

and contributions of each variable can be recovered from the BN. This in turn can overcome each 

models’ respective shortcomings. Therefore, this Bayesian network-neural network approach shows 

promise in the field of ecology as it can achieve two important features: 1) it has potential to reveal 

ecological network structures in different ecosystems, where existing relationships between species 

and other functional components are not known; and 2) it can guide the training of powerful 

predictive models by serving as a robust variable selection tool. 
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APPENDIX A 

 

Figure A1: Frequency distribution of percentage cover and counts of species found 

in our quadrats. 
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Figure A2: Non-metric dimensional scaling (NMDS) plot of field data.  
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Figure A3: Distribution of field data after quantile discretization into 3 bins. 
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Figure A4: Scatterplot of ANN predicted values versus true values. 
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Highlights 

 Learning Bayesian networks from ecological data reveals plausible interactions 

 Interaction strengths in Bayesian networks gives meaningful interpretation of links 

 Bayesian network structure can reveal key variables for predictive modelling 

 Using only such key variables in neural networks improves predictive performance 
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