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Abstract
We propose a novel method to capture data points near decision boundary in neural network
that are often referred to a specific type of uncertainty. In our approach, we sought to per-
form uncertainty estimation based on the idea of adversarial attack method. In this paper,
uncertainty estimates are derived from the input perturbations, unlike previous studies that
provide perturbations on the model’s parameters as in Bayesian approach. We are able to
produce uncertainty with couple of perturbations on the inputs. Interestingly, we apply the
proposedmethod to datasets derived from blockchain.We compare the performance ofmodel
uncertainty with the most recent uncertainty methods.We show that the proposedmethod has
revealed a significant outperformance over other methods and provided less risk to capture
model uncertainty in machine learning.

Keywords Uncertainty estimation · Adversarial attack · Neural Network · Blockchain data

1 Introduction

StandardNeural networkmodels have admitted great success in approximating functions that
map the inputs to desirable outputs in several domains [1–3]. Nevertheless, a single function
approximation often leads to overconfident and erroneous predictions. To reliably perform
predictions, uncertainty estimation is a desirable approach to provide on which inputs the
model is not certain about its predictions. Uncertainty estimation has increasingly received
considerable attention in the recent years. Several studies are conducted to express uncertainty
such as Monte Carlo dropout (MC-dropout) [4], Deterministic Uncertainty Quantification
(DUQ) [5] and Deterministic Uncertainty Estimation (DUE) [6]. However, these methods
are unable to capture noisy data points between the overlapping class distributions (critical
region) due to their inherent approximations. For instance, the perturbations of the decision
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boundary given byMC-dropout can only cause fluctuations in the model output by the inputs
lying in this critical region (decision boundary zone). However, a noisy data point lying
completely in a different region hinders the performance of MC-dropout wherein datapoints
falling in wrong classes cannot be triggered by the variability of the decision boundary. This
issue is further illustrated in the upcoming sections. Generally, existing methods relies on
weight variability or function approximation variability which in effect cause perturbations
in the decision boundary.

This behaviour hinders the performance of these approaches since they cannot capture
noisy data points in overlapping regions leading to high number of misclassified and certain
predictions. In this paper, we propose a new method based on adversarial attack to estimate
uncertainties in neural network models based on binary classification task. We refer to our
proposed method as Monte Carlo based Adversarial Attack abbreviated by "MC-AA". In
this paper, “Critical region” is inspired from the known hypothesis test in statistics wherein
the null hypothesis is accepted or rejected. By analogy, classification in machine learning
resembles as hypothesis test to perform decision-making, wherein critical region means the
region between the opposite classes or the decision boundary zone.

Initially, adversarial attacks/examples are defined as the inputs to machine learning that
an attacker has introduced to fool the outputs of the model [7–9]. These attacks have a
great impact on the security and integrity of machine learning model resulting in poor
decision-making. Motivated by previous work, we estimate uncertainty of the predictions
using adversarial attack. Firstly, we train a standard neural network then we apply MC-AA
method during the testing phase so that multiple outputs on each test point are introduced.
Hence, we compute mutual information on these outputs to estimate the uncertainty. Unlike
previous studies that apply perturbations to themodel parameters (e.g. in Bayesian approach),
our method sought to estimate uncertainty by perturbing the relevant inputs in a guided way.
The uncertainty estimates are highly tied with the location of the test point with respect to the
decision boundary. As a result, a perturbed input lying near decision boundary produces fluc-
tuated outputs between different classes. Furthermore, an input lying in overlapping regions
is enforced to move back and forth between the different classes leading to uncertain pre-
dictions using MC-AA. Consequently, the proposed method is likely to consider any point
lying on the border of the class distributions as uncertain. Accordingly, this reduces the risk
to produce wrong and certain predictions. The proposed method is backed up by the results
to obtain uncertainties and support our main idea.

The contributions of this paper are as follows:

• We show that adversarial attack is able to capturemodel uncertainty in binary classification
tasks.

• We demonstrate a well-defined way to estimate and evaluate the uncertainty of neural
network model using MC-AA. In addition, we illustrate the behaviour of the proposed
method in the feature space.

• We introduce the relevance of our proposed method to Bayesian approximations under
given conditions.

• We perform a comparative analysis between the most recent uncertainty methods using
datasets derived from blockchain. Our method shows superior success over the previous
work to capture uncertainty.
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The following sections are organised as follows: Sect. 2 provides the overview of the
related work. Section 3 demonstrates the background of the proposed method that is detailed
inSect. 4. Section 5provides themodel uncertaintymeasurements using the proposedmethod.
The experiments are provided in Sect. 6 and discussed in Sect. 7. A conclusion is stated in
Sect. 8.

2 Overview of RelatedWork

Knowing what the model is uncertain about is a desirable interest. Bayesian neural net-
work (BNN) has admitted great success in model uncertainty [10]. This approach introduces
priors over the weights of the neural network in order to find their posterior distributions;
however, this is computationally expensive. Several studies have been conducted to tackle
the time complexity problem of BNN by approximating the posterior distributions of the
model, such as the case in variational inference [11] and Markov Chain Monte Carlo with
Hamiltonian Dynamics [12]. However, they are hard to scale to large datasets [13]. Recent
studies have proposed more efficient methods to estimate uncertainties in neural networks
known as Monte-Carlo dropout (MC-dropout) [4], Deterministic Uncertainty Quantification
(DUQ) [5], and Deterministic Uncertainty Estimation (DUE) [6]. MC-dropout is equivalent
to probabilistic Bayesian approximations to capture model uncertainty [4]. This method is
derived from multiple stochastic forward passes on a trained neural network with activated
dropout during the testing phase to estimate uncertainties. In MC-dropout, the points falling
near the decision boundary are more likely to be uncertain about [14]. Nevertheless, this
method reveals two drawbacks. It requires many stochastic forward passes to output stable
estimates, and its uncertainty estimates are not reliable due to the high number of erroneous
and certain data points. DUQ is based on the idea of Radial Basis Function (RBF) network
incorporated with gradient penalty, wherein its output is squashed with Gaussian function to
quantify the distance from the tested point to the centroids of the given class distributions
[5]. This method is good at finding Out-of-Distribution (OoD) data. However, it is unre-
liable to capture noisy data points where the distance is not a sufficient metric to convey
uncertainty. DUE is based on the approximation of Gaussian process that scales to high
dimensional data using variational inducing points with feature extractor of Deep Kernel
Learning (DKL) [6]. Although its efficiency in capturing uncertainty, this method is not able
to capture data points lying in between the overlapping class distributions. As DUE method
is based on Gaussian process, this approach has never scaled to high dimensional datasets
because of a lack of well performing kernel function [5]. In addition, a comprehensive review
of most uncertainty methods in [15] as revealed the vigilance of previous studies on failures
of model uncertainty caused by adversarial attacks. Also, the methods in [16, 17] has sought
to improve the robustness of adversarial examples in machine learning. However, none of
them has straightforwardly used the idea of adversarial attack to estimate uncertainty to the
best of our knowledge.
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3 Background

Adversaries are crafted perturbations of the legitimate inputs. The perturbed inputs influ-
ence the predictions of a trained model to output incorrect predictions [18]. Such inputs
are designed by attackers to affect the security and integrity of the model. Some of these
attacks incorporate white-box models meaning that the attacker acquires a detailed knowl-
edge of the model’s parameters and architecture and tries to design a perturbed input using
the well-known Fast Gradient Sign Method (FGSM).

3.1 FGSM

FGSM is based on the gradient of the loss functionwith respect to the initial inputs. Consider a
neural network incorporating a set of parametersW = {W1, . . . ,WL } where L is the number
of layers. Consider a dataset with size N as X = {x1, . . . , xN } and Y = {y1, . . . , yN }, then
the loss function of this model can be written as: J(x, y). Hence, FGSM can be reformulated
as follows:

xAdv = x + ε.sign(∇x J (x, y)), (1)

where xAdv is the adversarial example, ε is a small number and ∇x is the gradient with
respect to the input, x ∈ X and y ∈ Y . Basically, FGSM adds noise to the input data in the
direction to the nearest decision boundary and scaled with ε as shown in Fig. 1. By providing
the incorrect class to the loss function, FGSM enforces the data points to walk towards the
decision boundary in the direction of the incorrect class. This type of attacks is rather tackled
by adversarial training.

Fig. 1 Toy example of adversarial attack with a linear classifier
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3.2 Adversarial Training

Adversarial training increases the model robustness by learning adversarial examples over
the train set [20]. This is also referred to data augmentation method so that the decision
boundary is further extended to these sensitive perturbations. The robust model is obtained
either by feeding the augmented data [19] or by minimisation of the modified objective loss
function [9] that can be expressed as:

J̃ (x, y) = α J (x, y) + (1 − α)J (x + ε.sign(∇x J (x, y)), y), (2)

where α is a regularisation parameter between 0 and 1, and other notations similar to that in
Eq. 1. The modified objective function allows to minimax the loss with the consideration of
the adversaries.

3.3 Adversarial Attacks and Uncertainty

The emergent uncertainty studies have discussed the impact of adversarial attacks on model
uncertainty. For instance, Smith et al. [20] has demonstrated themode failures ofMC-dropout
that is caused by adversaries. These failures are derived from the overconfident and certain
predictions that cannot be captured by dropout. The review in [15] has revealed the aware-
ness of previous studies regarding adversarial attacks in uncertainty. For instance, Bradshaw
et al. [21] has proposed a hybrid model of GP and DNN which is robust to adversarial
attacks to produce uncertainties. Pawlowski et al. [22] has introduced a new technique of
variational approximation that produced competitive accuracies and robustness against adver-
sarial attacks. Unlike previous studies, we perform uncertainty estimation directly by using
adversarial attack method with random class label assumption on the whole data points. This
is demonstrated in the upcoming section.

4 Method

Mainly, the uncertainty of the model falls into two major categories either epistemic or
aleatoric uncertainty. Epistemic uncertainty underlies the new instances that are not learned
yet by amodel. Aleatoric is the noisy observations such as data lying between the overlapping
classes. This type of noise is irreducible by acquiring more data in contrast to epistemic
uncertainty. In this paper, we intend to capture uncertainty using adversarial attacks on the
test set. For every data point, this is performed by feeding the neural network with multiple
perturbed versions of the input linearly back and forth in the direction of the decision boundary
as illustrated in Fig. 2. Hence, multiple outputs are produced which inform the tendency of a
given data point, after perturbations, to fall in the opposite class. The variants of the produced
output introduce the uncertainty on the given point using mutual information. The multiple
perturbations are themultiple scaled gradients added to the input data as a function of epsilon.
However, in order to apply FGSM, we need the target class in order to maximise or minimise
the loss function. Thus, we need to arbitrarily assign a class to compute the gradients.
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Fig. 2 Illustrative representation ofMC-AAmethod. Case (a) describes an input lying on the decision boundary.
Case (b) describes an input lying completely in its corresponding class 1. Case (c) describes an input with
its actual label 0 that lies in the region of class 1 (overlapping region). −→g represents the gradient of the loss
function with respect to the input

4.1 Procedure of MC-AA

Adversarial examples are computed by feeding input data to the neural network and assigning
a target class in the loss function. Then, the gradient of the loss function with respect to input
is scaled and added as mentioned in Eq. 1. To perform MC-AA, we apply the following
procedure:

1. Assume that all the test set belongs to the same class, e.g. class 0.
2. Perform multiple FGSM on each input for all values of ε ∈ I =

{εmin, εmin + β, . . . , 0, 0 + β, . . . , εmax} with εmax = −εmin as provided in Algorithm
1, where the given interval is evenly spaced by β and symmetric around zero. One should
note that standardisation of the dataset is a necessary step.

3. Compute mutual information metric to introduce uncertainty on each data point.
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If the assumed class is equal to the actual one and ε > 0, the output will maximise the
loss function so that the perturbed instance will shift towards the incorrect class. In contrast,
if ε < 0, the output will minimise the loss function and the perturbed instance will shift
towards the correct class. Otherwise, the opposite of the preceding statements is true. As a
result, the inputs falling near the decision boundaries are firstly targeted to provide fluctuating
outputs with various values of ε, and themodel classifies them as uncertain referring to Fig. 2.
We further note the data point falling in the overlapping region of different classes as the
case (c) in Fig. 2; MC-AA is able to capture such points, unlike MC-dropout method. MC-
dropout performs slight variations on the decision boundary. As this method is based on
stochastic forward passes, the variations on the decision boundary may not be able to move
around misclassified instances near the decision boundary with highly trained instances of a
similar class. In other words, the decision boundary is only able to perform variations with
dropout in a critical region. instances with misclassified predictions are more likely to occur
nearby decision boundary. While, MC-AA enforces datapoints to move back and forth in
the direction of the decision boundary regardless of region. This leads any instance near
the decision boundary to move between different classes, hence reflecting good uncertainty
estimates. This is done at the cost of capturing some correct predictions with uncertainty, but
they do not affect the performance of model uncertainty which is favoured. Also, the interval
of epsilon is chosen symmetric and evenly spaced to provide fair uncertainty results by the
model output. The model output is influenced by the linearly added perturbations (derived
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from gradients) to its relevant input. Linear perturbations are the simplest and efficient way
to reach the decision boundary in a small range of epsilon. Thus, the evenly spaced and
symmetric interval enforces the inputs tomove back and forth in an equal fashionwith respect
to the decision boundary, without any biasedness to any of the opposite class distributions.

4.2 Relation to Bayesian Approach

In fact, the proposed method can be viewed as a special case of an approximated Bayesian
model. Under required conditions, applying prior to weights in a neural network can be
matched with adding perturbations to the inputs. However, this is feasible on a very small
interval of ε in a neighbourhood of zero. Let y∗ be the observed output corresponding to the
input x∗ with M dimensions. Then, the mapping function of a neural network can be written
as:

p
(
y∗|x∗, X , Y

) = ∫ p
(
y∗|x∗, w

)
p(w|X , Y )dw, (3)

where p(y∗|x∗, w) is the likelihood of the model and p(w|X , Y ) is the posterior distribution
among its weights. We can write an approximation of the model’s weight underlying the
posterior distribution as: ŵi j = wi j + δwi j , where δwi j is a small perturbations on the
model’s parameter which can be equivalent of adding priors to the weights.

For simplicity, consider as an example a neural network with a single output layer. Then
the predictive posterior on each neuron c j can be expressed in its canonical form as:

c j =
M∑

k=1

xk .ŵk j =
M∑

k=1

(xk .wk j + xk .δwi j ), (4)

where j = 1, . . . , P with P being the number of output neurons. Using MC-AAmethod, the
adversaries over an input are written as: x̂i = xi + δxi . Similarly, we plug the adversaries
into the model’s equation as follows:

c j =
M∑

k=1

x̂k .wk j =
M∑

k=1

(xk .wk j + δxk .wk j ) (5)

Assuming Eq. 4 is equivalent to 5, we obtain the necessary constraints:

δxk
xk

= δwk j

wk j
(6)

Generally, the condition in Eq. 6 safely holds true on very small perturbations. In other
words,we can guarantee the satisfaction of this constraint by choosing δxk

xk
in a neighbourhood

of zero. Consequently, this is true when ε is very small.
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5 Model Uncertainty UsingMC-AA

5.1 Obtaining and EvaluatingModel Uncertainty

Firstly, the different values of ε introducemultiple outputs per instance. Hence, the predictive
mean can be written as:

pMC−AA
(
y∗|x∗) ≈ 1

T

T∑

i=1

ŷ∗(x∗{εi },W1, . . . ,WL

)
, (7)

where x∗
εi
is the perturbed x by FGSM method associated to εi with T being the length of

the discrete interval I as introduced in Sect. 4, with εmax is a hyper-parameter to be tuned.
Referring to [4], mutual information (MI) is shown to be an effective measurement of

uncertainty prediction.Also, it is sometimes referred to epistemic uncertainty [20].MI reflects
the amount of information of themultiple outputs on each input. Thus, the uncertain prediction
requires more amount of information by the model and consequently produces higher MI.
Following the same procedure as in [4], MI can be expressed as:

Î
(
y∗|x∗, w

) = Ĥ
(
y∗|x∗, w

)

+
∑

c

1

T

T∑

i=1

p
(
y∗ = c|x∗

εi
, w

)
log p

(
y∗ = c|x∗

εi
, w

)
, (8)

where c is the class label, and

Ĥ
(
y∗|x∗, w

) = −
∑

c

pMC−AA
(
y∗ = c|x∗, w

)
log pMC−AA

(
y∗ = c|x∗, w

)
(9)

The uncertainty of the model can be evaluated using the measurements of a binary classifi-
cation problem. In this paper, the uncertainty evaluations provide a similar approach of using
Area-under-Curve (AUC) score and Receiver-Operation-Curve (ROC). However, these met-
rics are accompanied by the ground truth of labels besides the predictive uncertainty derived
from MI as evaluated in [23]. Meaning, the output measurements of uncertainty estimates
are derived from correct/incorrect classification tied with certain/uncertain predictions. As
a result, we can distinguish between four possible states regarding model uncertainty mea-
surements as follows:

• TN: Correct and certain: The predictions match the labels and the mutual information is
low.

• FP: Correct and uncertain: The predictions match the labels, but the mutual information
is high.

• FN: Incorrect and certain: The predictions do not match the labels, but the mutual infor-
mation is low.

• TP: Incorrect and uncertain: The predictions do not match the labels and the mutual infor-
mation is high.

The uncertainty mapping (certain/uncertain) is derived from the predictive uncertainty mea-
surement. After computing these measurements, we set an uncertainty threshold, Tu . This
threshold moves between the minimum and the maximum predictive uncertainty estimates
in the test set. The correct/incorrect and certain/uncertain maps correspond to a new binary
classification task. From the abovementioned states, true positive (TP), false positive (FP),
true negative (TN), and false negatives (FN) values reflect the performance of the uncertainty
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classification task. These terms yield the following expressions that reflect the goodness of
uncertainty estimates:

• Accuracy of uncertainty estimation:

Accuracy = TN + TP

TN + TP + FN + FP

• Negative Predictive Value (NPV): we desire that if the model is certain about its prediction,
the prediction is assumed to be correct. This can be reformulated as conditional probability:

p(correct|certain) = p(correct, certain)

p(certain)
= TN

TN + FN

which is equivalent to NPV ratio in the binary test.
• True Positive Rate (TPR): If the model is incorrect about its predictions, we desire to be
uncertain about the predicted value. This is expressed as a conditional probability:

p(uncertain|incorrect) = p(uncertain, incorrect)

p(incorrect)
= TP

TP + FN

which is equivalent to "recall" used in the binary test.
The abovementioned metrics reflect a good uncertainty performance of the model where

better performance corresponds to the higher values of these metrics. These metrics are
studied according to the variation of the uncertainty threshold Tu As the threshold variates
between the min/max uncertainty values, ROC and AUC are hence computed, in which
we can easily derive a summarisable performance of the metrics. Instead of changing the
threshold between min/max uncertainties, we normalise this threshold with respect to the
uncertainty, where Tu ∈ [0, 1]. Hence, the expression of the threshold can be written as:
Tu = u−umin

umax−umin
where umax and umin correspond to the maximum and minimum values of

the predictive uncertainty measurement over the data, respectively.

5.2 Behaviour of MC-AA

To illustrate the behaviour of MC-AA, we generate 2D synthetic data of 12,000 instances
by sampling from random normal distribution on each dimension with a common standard
deviation of 0.25 and averages of values 0 and 1 corresponding to classes 0 and 1, respectively,
referring to Fig. 1. We fit this data into a neural network comprised of two hidden layers with
20 neurons each chosen arbitrarily. The outputs are then squashed with the softmax function
to produce the output classes. We use the NLLLoss function and Adam optimiser, then we
arbitrarily set the learning rate to 0.01 and the number of epochs to 100. We assume that all
labels belong to class 0. Hence, we apply MC-AA method using different values of ε that
belongs to a symmetric interval with εmax = −εmin = 5 × 10−3 chosen arbitrarily, wherein
the interval values are evenly spaced by β which is arbitrarily set to εmax

10 . Hence, only a few
output samples are required to produce uncertainty estimates using MI. Referring to Fig. 3,
we highlight the captured uncertainty in green, using different thresholds Tu . This method
behaves to some extent as MC-dropout that captures epistemic and aleatoric uncertainty of
the data points near the decision boundary [14]. These data points lack the knowledge about
the model’s decision. Since the perturbations directly influence the input data, MC-AA is
more robust to wrong labels lying between the overlapping regions (aleatoric uncertainty) in
which the recent uncertainty methods have failed to detect them. This will be further clarified
in the next sections.
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Fig. 3 Representation of MC-AA behaviour on 2D synthetic data. Each subplot highlights the uncertain data
points that fall above the provided threshold Tu

6 Experiments

To validate our method, we choose as an example two datasets derived from Bitcoin and
Ethereumblockchain.We test the performance ofMC-AAon these datasets. Then,weprovide
a fair comparison between our method (MC-AA) with the previous methods such as MC-
dropout, DUQ and DUE using a same experimental set-up on each of the datasets. In these
experiments, we use Pytorch [24] and GPytorch [25] packages in Python programming
language. We further divide this section into two parts, wherein we test the proposed method
with Bitcoin and Ethereum datasets in the first and second parts, respectively.

6.1 Experimenting with Bitcoin Data

It is known as Elliptic datawhich has been studied in [26–28] to detect illicit transactions. This
data comprises 49 distinct transaction graph networks collected at 49 different timestamps,
respectively. Each graph is directed acyclic graph (DAG) incorporating partially labelled
nodes as transactions between Bitcoin addresses and the edges as the payments flow. The
nodes acquire 166 features including timestamp, local features related to the transactions
(e.g. transaction fees) and aggregated features derived from the one-hop aggregations with
respect to the node of interest. Out of labelled nodes, 42,019 nodes are associated with licit
(e.g. miners) and 4545 belong to illicit transactions (e.g. scams). Regarding data split, the
primary 34 graphs correspond to the train set, and the 15 remaining graphs correspond to
the test set, whereas the last 5 graphs of the train set are used as validation set. Afterwards,
we exclude the timestamp feature and standardise the dataset in our experiments. The nodes
of each timestamped graph are considered as a batch in this experiment. Using this data,
we apply MC-AA, MC-dropout, DUQ and DUE each using a similar neural network as a
base network consisting of two hidden layers of widths n1 = 100 and n2 = 81, chosen
empirically, and squashed by ReLU function. However, each of the uncertainty methods is
associated with its corresponding experimental settings, which is provided in what follows.

MC-AA: With MC-AA method, the base network is followed by the softmax output layer
to produce the binary licit/illicit predictions. We empirically assign 0.3/0.7 to the weights
of the NLLLoss function to mitigate the class imbalance. We use Adam optimiser with a
learning rate that is empirically set to 0.01. After training the model, we performMC-AA on
the test set to capture the model uncertainty using multiple forward passes. Beforehand, all
test points are assumed to be in the licit class. Using the best AUC-score of model uncertainty
on the validation set, the hyper-parameter εmax is empirically tuned to be 0.1. We limit the
number of samples per data point to 20 by setting β arbitrarily to εmax

10 Then, the predictive
uncertainty is obtained using MI over the provided samples.
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MC-dropout: Like the preceded model in MC-AA, we use a similar neural network but with
a dropout function after every hidden layer. We empirically choose dropout equals 0.3. Then,
we arbitrarily perform 50 stochastic forward passes on the test set to produce uncertainty
estimates using MI.

DUQ: DUQ model comprises of feature extractor and an additional learnable layer known
as RBF kernel with two-sided gradient penalty to produce reliable uncertainties with single
forward pass [5]. Here, the feature extractor is the given base network to produce a fair
comparison. The output layer (RBF kernel) is formed of a learnable weight matrix per class
in order to compute the distance from the data points to the centroids of the different classes.
So, the weight matrix embeds the output of the feature extractor in a new space of embedding
size (centroid size) set by default to 10. The centroid of each class is updated by an exponential
moving average of the features corresponding to data points in accordance with that class.
The gradient penalty is the l2 norm of the gradient’s output with respect to the input bounded
by Lipschitz constant of 1 as introduced in [5]. This penalty incorporates a regularisation
factor λ. The binary-cross-entropy loss function is used to minimise the distance to the
correct centroid and maximise the others. Using Bitcoin data, we empirically set the hyper-
parameters of DUQ as : σ of RBF kernel equals 0.3, λ = 0.1, γ as a factor of moving average
over centroids is set to 0.9 and learning rate equals to 0.001.

DUE:DUEmodel comprises a feature extractor that is followed byGaussian Process (GP)
[6]. We use the same feature extractor as preceded. The model arbitrarily utilises 15 inducing
points that are initialised equally to the centroids by clustering the feature extractor output
using Kmeans algorithm with 15 clusters. Then, the output of the feature extractor is fed to
a sparse GP kernel with the variational inducing points that are used to approximate the full
dataset by maximising a lower bound on the marginal likelihood known as ELBO (evidence
lower bound). This model produces various predictions using the softmax likelihood function
by a single forward pass, wherein the predictive uncertainty is then computed via MI. Using
Bitcoin data, we empirically obtain the hyper-parameters settings as follows: learning rate =
0.01 and epochs = 50.

6.2 Experimenting with EthereumData

This data consists of labelled non-fraud/fraud accounts with a valid transaction history over
Ethereum blockchain which is studied in [29]. The fraudulent accounts are acquired by
Ethereum community to detect illicit behaviour e.g. Ponzi schemes and scams. Ethereum
account data comprises 9841 labelled account with 77.86% as non-fraud and 22.14% as
fraud. Initially, this dataset has an overall of 49 numerical and categorical features e.g. "Total
ether sent" and "total number of sent/received transactions". We exclude categorical features
as there aremissingvalues.Also,weperformdata pre-processing to exclude featureswith zero
variance or whose correlations are higher than 0.9, chosen arbitrarily. Then, we remove three
more features that are formed of less than 10 unique values, which are experimentally found to
be non-informative on the classification. Thus, the feature space is reduced to 28 dimensions
and the data is randomly split to train/validation/test by the ratios 0.7/0.1/0.2, wherein the
features are standardised. With Ethereum dataset, we apply MC-AA,MC-dropout, DUQ and
DUE each using neural network as a base network consisting of two hidden layers of widths
n1 = 50 and n2 = 25 chosen empirically, and squashed by ReLU function. In the following
parts, we provide the necessary experimental set-up on each of the uncertainty methods.
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MC-AA: We apply the softmax function to output the non-fraud/fraud predictions on the
output layer of the mentioned base network. We use the weighted NLLLoss with weights
0.4/0.6, chosen empirically. The number of epochs and the learning rate are empirically set
to 50 and 0.01, respectively. The batch size is arbitrarily set to 512. Using MC-AA on the
trained model, we assume that all testing points belong to class non-fraud. We empirically
choose the hyper-parameter εmax equals to 8.1× 10−4 that provides the highest AUC-score
on the validation set.We set the number of samples per data point to 20 by setting β arbitrarily
to εmax

10 .

MC-dropout: Similarly to the preceded model in MC-AA, we apply an additional dropout
function after every hidden layer of empirically chosen dropout ratio equals 0.3. Then, we
perform 50 stochastic forward passes on the test set, in which the uncertainty estimates are
computed through MI.

DUQ:We use the base network as feature extractor for DUQ. For this dataset, we empirically
opt the following values for hyper-parameters: epochs = 50, learning rate = 0.001, σ = 0.3,
λ = 0.01, γ = 0.9 and batch size = 512.

DUE:With Ethereum data, we use the base network as feature extractor and we empirically
choose the following settings: epochs = 50, learning rate = 0.01 and batch size = 512.

7 Discussion

Regarding Bitcoin data, we plot and compare the different uncertainty measurements on
the above-mentioned methods as shown in Figs. 4 and 5. Remarkably, the model uncer-
tainty based on MC-AA has shown superior performance in comparison to other uncertainty
methods. Referring to Fig. 4, NPV and TPR measurements have revealed a remarkable
improvement using MC-AA, whereas the accuracy curve has shown acceptable but lower
performance. This means that we are able to capture more true positives (incorrect and uncer-
tain) and less false negatives (incorrect and certain) on the cost of having more false positives
(correct and uncertain). This scenario is more favoured in model uncertainty because being
certain on incorrect predictions affects the integrity of the model. While, the uncertain and
correct predictions can be forwarded to an annotator for further analysis. In addition, the
goodness of classification of model uncertainty has recorded the highest AUC-score equals
to 0.8 with MC-AA, whereas others have recorded AUC-score of less than or equal to 0.75.

Fig. 4 Comparison of model uncertainty using different uncertainty methods on Bitcoin data. The subplots
(from left to right) correspond to accuracy, NPV and TPR as a function of threshold Tu
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Fig. 5 ROC-curve and Precision-Recall as a function of threshold Tu of model uncertainty using Bitcoin data.
The model uncertainty is performed using MC-AA (Ours), MC-dropout, DUQ and DUE

Fig. 6 Comparison of model uncertainty using different uncertainty methods on Ethereum data. The subplots
(from left to right) correspond to accuracy, NPV and TPR as a function of threshold Tu

Also, Precision-Recall curve has admitted a significant outperformance using our proposed
method as shown in Fig. 5.

In Ethereum data, we follow the same procedure to evaluate and validate our method in
comparison to previous uncertaintymethods. Referring to Figs. 6 and 7, themodel uncertainty
based on MC-AA has outperformed the other mentioned methods with an AUC-score equals
to 0.88.

The performance of MC-AA method is tied with the tuned hyper-parameter εmax It is
feasible to force the "incorrect and certain predictions" to be lower by increasing the value
of this hyper-parameter, but at the cost of other measurements. MC-AA can be also viewed
as a generalised form of the standard neural network model and can be approximated with
MC-dropout for a certain dropout value and εmax. However, MC-AA has shown to be more
favoured than MC-dropout since we have higher guidance and influence on the uncertainty
performance in accordance to the classification problem. For instance, the changes in εmax

of MC-AA are tied with perturbed inputs in which we can force the model not to tolerate
data points lying in the wrong class. While in MC-dropout, the changes in dropout factor are
tied with the perturbation of the decision boundary, wherein the model cannot be uncertain
about data points in the wrong class. In general, MC-AA is a viable approach in a binary
classification tasks and not limited to the used datasets. On the other hand, dealing with
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Fig. 7 ROC-curve and Precision-Recall as a function of threshold Tu of model uncertainty using Ethereum
data. The model uncertainty is performed using MC-AA (Ours), MC-dropout, DUQ and DUE

multi-class classification is not applicable with this method unless the classifier is converted
into "one versus all" classification. According to the results, MC-AA has shown to be more
efficient than MC-dropout as our proposed method has produced uncertainty estimates with
10 forward passes whereas the latter method has performed 50 forward passes to provide
stable uncertainty estimates using mutual information. Meaning, we are able to achieve good
uncertainty estimates with 10 back and forth movements using MC-AA.

8 Conclusion

We have proposed a novel method (MC-AA) based on adversarial attacks to capture model
uncertainty in binary classification tasks. We have shown that this method provides reliable
uncertainty estimations with reduced number of misclassified and certain predictions. We
have compared the performance of MC-AA with previous methods. Our model has outper-
formed the recent studies using datasets derived from Bitcoin and Ethereum blockchain.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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