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Abstract 25 

In recent times, economic policy uncertainty and geopolitical risk have escalated exponentially, 26 

and these factors affect both the economy and the environment. Therefore, the objective of this 27 

study is to investigate whether economic policy uncertainty and geopolitical risk impede CO2 28 

emissions in BRICST countries. We employ second generation panel data methods, AMG and 29 

CCEMG estimator, and panel quantile regression model. We find that all variables are integrated 30 

at I (1), and there exists co-integration among considered variables of the study. Moreover, we 31 

note that economic policy uncertainty and geopolitical risk have a heterogeneous impact on CO2 32 

emissions across different quantiles. Economic policy uncertainty adversely affects CO2 33 

emissions at lower and middle quantiles, while it surges the CO2 emissions at higher quantiles. 34 

On the contrary, geopolitical risk surges CO2 emissions at lower quartiles, and it plunges CO2 35 

emissions at middle and higher quantiles. Further, GDP per capita, non-renewable energy, 36 

renewable energy, and urbanization also have a heterogeneous impact on CO2 emissions in the 37 

conditional distribution of CO2 emissions. Based on the results, policy direction was discussed. 38 

Keywords: Economic policy uncertainty; geopolitical risk; renewable energy; non-renewable 39 

energy; panel quantile regression; BRICST countries 40 

 41 
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1. Introduction 43 

In the energy and environmental debate, carbon dioxide (CO2) often leads to negative 44 

consequences on natural and human activities. This is not all-time true, because CO2 has its 45 

important roles being exercised on natural and human events. Like the air we exhale, the 46 

nutrition we consumed, and the product we buy. In addition, CO2 is discharged when plants and 47 

animal inhale oxygen and nature such as ecosystem maintain the situation by absorbing and 48 

consequently eradicating the CO2 through plants and oceans. However, when an excess of CO2 is 49 

emitted by human activities on earth, it often causes damage to the environment, thereby leading 50 

to climate change or global warming. At this stage, CO2, like other greenhouse gases (methane, 51 

and water vapour, etc.), holds heat from escaping from the atmosphere, and thus the systematic 52 

pattern of weather is disrupted, global temperature is increased, and other climate changes 53 

occurred. CO2 emission is caused through different means of activities from individuals, services 54 

or events, government, organization, etc. This is emitted through deforestation, burning of fossil 55 

fuels, civil construction, transportation, government and commercial industry, manufacturing of 56 

foods, and other services. All these are needed for the sustainable economic growth of a country, 57 

and if stopped could posed threat to the global economy, giving rise to concerns on climate 58 

change, political and policy uncertainty.  59 

Fighting to reduce greenhouse gas emissions, especially CO2, is fighting against nature, it 60 

required no transport or permission to contribute to environmental problems everywhere, it is a 61 

threat to human life, and even a major cause of economic instability and jeopardized the nation’s 62 

security. Nonetheless, the environmental changes, according to Antonakakis et al. (2017), are 63 

associated with all man-made activities, such as the burning of fossil fuel for energy use, pitched 64 

toward economic growth, thereby actuating adverse effects to the quality of the environment. 65 
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This means that, even, a nation will continue to develop through the consumption of certain 66 

energy through government and commercial industry. For instance, in figure 1 below which 67 

represent the CO2 consumption in BRICST countries, it was observed that increase, in metric 68 

tons, from the start of 1990 till 2015. In the lieu of this, previous scholars have been investigated 69 

the problem, for decades, for the proper maintenance of sustainable development growth across 70 

the globe.  71 

Fossil energy utilization is normally seen as the lead cause of extreme carbon dioxide 72 

emission issues, and diminishing its consumption is a required process for both industrial and 73 

non-industrial nations to address the environmental change issue. In any case, because of the 74 

acknowledged view that energy utilization is perhaps the main driver of monetary development 75 

(WEF, 2018), the execution of energy measures have raised significant worries for financial 76 

development. In particular, assuming energy utilization causes fossil fuel byproducts yet is 77 

needed for monetary development, receiving energy preservation approaches will give numerous 78 

nations the issue of picking between the "climate or the economy.   79 

Figure 1. The trend of CO2 emissions 80 

 81 

 82 

 83 

 84 

 85 
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 87 

 88 

Note: “Country 1” represents South Africa, “country 2” denotes Brazil, “country 3” is Turkey, “country 4” represents China, 89 

“country 5” denotes India, and “country 6” is Russia. 90 

Over the years, several studies have revisited the relationship between economic growth, 91 

greenhouse gas emission, energy consumption (renewable and nonrenewable energy), but their 92 

findings are conflicting (Liu et al., 2019). The conflicting outcomes had made many countries 93 

choose different energy policies. For instance, Kraft and Kraft (1978), Menegaki (2010), and 94 

Rahman and Kashem (2017) posited in their study, specified by the energy conservation 95 

hypothesis, that energy consumption does not prompt economic growth. For this reason, policies 96 

can promote the reduction of CO2 without taking into consideration, its adverse effect on 97 

economic growth. On the other side, the economic led-growth hypothesis study by Appiah 98 

(2018), Cai et al. (2018), and Ha et al. (2018) revealed that energy consumption is consistent 99 

with economic growth.  100 

Consequently, policy implications might face environmental or economic problems, 101 

because controlling energy consumption may hinder economic growth. Moreover, an increase in 102 

CO2 emission resulting from economic growth means that at the expense of the environment, 103 

economic growth is realized (Shahbaz, 2016; Mirza and Kanwal, 2017), thus lowering the CO2 104 

emission to make economic growth ecologically friendly will be the priority of policy direction 105 

in such case (Liu et al., 2019). Consequently, an exact understanding of the driver of carbon 106 

emissions and economic growth is essential for policy authorities to cautiously design proper 107 

administration guidelines that can help their nations realize the win-win of the climate and the 108 

economy. With these, this paper attempt to identify the economic growth-emission nexus while 109 
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considering two uncertainties – economic policy uncertainty (EPU) and geopolitical risk (GPR) 110 

in the BRICST countries for a period of 1990 – 2015. The literature claimed that the behaviour 111 

of the economic agent, delay in consumption decision, and investment are influenced by these 112 

uncertainties.  113 

 EPU, according to the description of Jin et al. (2019), is portrayed as the vulnerability 114 

related to spikes in government administrative, financial, and monetary strategies that change the 115 

climate wherein people and organizations work. Different evidence from the empirical study has 116 

revealed that higher EPU is a yardstick for effect in economic growth, tourism, financial 117 

development, investment, inflations, and other macroeconomic variables (Ashraf and Shen, 118 

2019; Jin et al. 2019; Akron et al., 2020). Also, EPU is associated with vulnerabilities relating to 119 

monetary, fiscal, trade, and other interrelated policies (Tiwari et al., 2019). Next, there exist three 120 

strands of literature related to the EPU-environment nexus. The first strand confirms that EPU 121 

increases environmental degradation (Anser et al., 2021a; Anser et al., 2021c), while the second 122 

strand of related literature documents that EPU decreases environmental degradation (Syed and 123 

Bouri, 2021; Chen et al., 2021). Parallel to this, the third strand of EPU-environment nexus 124 

expounds that EPU does not affect the environment (Abbasi and Adedoyin, 2021). These 125 

aforementioned contrasting conclusions are confusing for policymakers at the time of any policy 126 

proposal, therefore, the vague relationship between EPU and environment propels us to 127 

reinvestigate the EPU-environment relationship to reach a particular conclusion, and to 128 

complement the prior studies.  Defining GPR is associated with political hullaballoo, 129 

discrepancy, hostile issues, and it is perceived as a yardstick for change in the business cycle 130 

(Tiwari et al., 2019). There are two dimensions of GPR-environment literature. One shows that 131 

GPR upsurges environmental pollution (Anser et al., 2021b), whereas the other reports that GPR 132 
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improves environmental quality (Anser et al., 2021c). The vague relationship between GPR and 133 

the environment calls for further probing for clear policy implementations, which motivates this 134 

study. 135 

 Based on the above milieu, the objective of this study is to explore the impact of EPU and 136 

GPR on CO2 emissions in the case of BRICST countries. It is well known that BRICST countries 137 

are among the top emerging countries with significantly high economic growth rates with the 138 

consort of higher CO2 emissions (Erdogan et al., 2019). So, it is inevitable to explore the drivers 139 

of carbon emissions in the case of BRICST countries. Therefore, we are interested to know 140 

whether the trend in EPU (figure 2) and GPR (figure 3) for the period of 1990 – 2015 have a 141 

significant association with emissions and if so, we are keen to know whether the relationship 142 

surges or diminish the emission.   143 

Regarding the uniqueness of this study, to the best of our knowledge, this is the first paper to 144 

consider the effect of EPU and GPR in panel emission of BRICST countries. Further, this is the 145 

first study that employs the panel quantile regression approach, in consort with AMG and 146 

CCMG estimators, to evaluate the effect of EPU and GPR on carbon emissions. Panel quantile 147 

regression outperforms mean-based regression models since it covers individual heterogeneity 148 

and distributional heterogeneity. That is, panel quantile regression allows probing the effect of 149 

EPU and GPR on high-, average-, and low-emitter countries. 150 

Figure 2. The trend of EPU 151 
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 152 

Note: “Country 1” represents South Africa, “country 2” denotes Brazil, “country 3” is Turkey, “country 4” represents China, 153 

“country 5” denotes India, and “country 6” is Russia. 154 

 155 

Figure 3. The trend of GPR 156 

 157 
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 158 

Note: “Country 1” represents South Africa, “country 2” denotes Brazil, “country 3” is Turkey, “country 4” represents China, 159 

“country 5” denotes India, and “country 6” is Russia. 160 

2. Literature review 161 

We divide this section into two subsections. The first subsection reports the existed 162 

studies on the impact of EPU and/ or GPR on CO2 emissions, whereas the second subsection 163 

highlights the prior literature on the socio-economic determinants of CO2 emissions using panel 164 

quantile regression. 165 

2.1 Economic policy uncertainty, geopolitical risk, and CO2 emissions 166 
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In their seminal study on the relationship between EPU and CO2 emissions, Jiang et al. 167 

(2019) employ Granger causality to probe the effect of EPU on sector-wise CO2 emissions for 168 

the US. The findings from the study note that uni-directional causality running from EPU to CO2 169 

emissions. After the study of Jiang et al. (2019), several studies explore the impact of EPU on 170 

environmental degradation, and they have not yet reached any conclusion. For instance, one 171 

group of studies reports that EPU escalates CO2 emissions, and the other group notes that EPU 172 

plunges the emissions. For instance, Danish et al. (2020) apply dynamic ARDL methodology to 173 

investigate the dynamic relationship between EPU and CO2 emissions in the US. The findings 174 

from their study highlight that EPU leads to higher CO2 emissions. Next, Pirgaip and Dinçergök 175 

(2020) noted that EPU raises the level of CO2 emissions in the case of G7 countries. Moreover, 176 

Wang et al. (2020) use the world uncertainty index (WUI) as a proxy of EPU and highlight that 177 

EPU contributes to CO2 emissions.  178 

Recently, Anser et al. (2021a) use a panel ARDL approach to examine the effect of EPU 179 

(measured by world uncertainty index) on CO2 emissions in the top ten emitter countries. The 180 

study concludes that, in the short run, EPU is responsible for a reduction in the levels of CO2 181 

emissions. Recently, Yu et al. (2021) also report that EPU leads to higher levels of CO2 182 

emissions in China. Conversely, Adedoyin and Zakari (2020) examine the impact of EPU on 183 

CO2 emissions in the UK and report that EPU impedes CO2 emissions in the short run. On the 184 

contrary, the study finds that EPU upsurges CO2 emissions in the long run. Similarly, Syed and 185 

Bouri (2021) employ the bootstrap ARDL approach and conclude that EPU plunges CO2 186 

emissions in the long run. Syed and Bouri (2020) argue that EPU harms both GDP and energy 187 

consumption. As a result, CO2 emissions do mitigate in the long run. Further, On the other hand, 188 

EPU contributes to strong CO2 emissions in the long run. In addition to this, Chen et al. (2021) 189 
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documented that EPU impedes CO2 emissions in the case of both developed and developing 190 

countries. Next, Abbasi and Adedoyin (2021) employ dynamic ARDL methodology to explore 191 

the effect of economic growth, energy, and EPU on CO2 emissions. The findings of the study 192 

note that EPU does not affect CO2 emissions in China, whereas energy and GDP escalate the 193 

CO2 emissions.   194 

Regarding the literature on the relationship between GPR and CO2 emissions, Adams et 195 

al. (2020) investigate whether GPR and EPU affect CO2 emissions in top resource-rich 196 

economies. The findings reveal that EPU escalates CO2 emissions, while GPR plunges 197 

emissions. Recently, Anser et al. (2021b) employ an AMG estimator to investigate the long-run 198 

impact of GPR on CO2 emissions. The results describe that GPR plunges renewable energy, 199 

R&D, and innovation. As a result, there has been a rise in the levels of CO2 emissions. Further, 200 

Zhao et al. (2021) conclude that there exists an asymmetric impact of GPR on CO2 emissions in 201 

BRICS countries.  202 

Table 1: Literature summary 203 

Study  Variables Methodology  Findings 

Jiang et al. (2019) EPU and CO2  Granger causality 

EPU causes carbon 

emissions 

Danish et al. (2020) 

EPU, GDP, energy 

efficiency, and CO2 

Dynamic ARDL  EPU increases CO2 

Pirgaip and Dinçergök 

(2020) 

EPU, GDP, energy, 

and CO2 

Panel causality test 

EPU causes carbon 

emissions 

Wang et al. (2020) EPU, GDP, energy, ARDL approach EPU increases CO2 
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and CO2 

Anser et al. (2021a) 

EPU, GDP, 

population, energy, 

and CO2 

Panel ARDL 

EPU increases CO2 in 

the long-run 

Yu et al. (2021) 

Provincial-EPU and 

CO2  

Fixed effects model EPU increases CO2 

Adedoyin and Zakari 

(2020) 

EPU, GDP, energy, 

and CO2  

ARDL 

EPU increases CO2 in 

the long-run 

Syed and Bouri 

(2021) 

EPU, industrial 

production, renewable 

energy, and CO2 

Bootstrap ARDL 

EPU decreases CO2 in 

the long-run 

Chen et al. (2021) EPU, GDP, and CO2 

Fixed- and Random 

effects models 

EPU decreases CO2 

Abbasi and Adedoyin 

(2021) 

EPU, GDP, energy, 

and CO2 

Dynamic ARDL 

EPU does not affect 

CO2 

Adams et al. (2020) 

EPU, GPR, GDP, and 

CO2  

PMG-ARDL 

EPU escalates CO2, 

while GPR plunges it. 

Anser et al. (2021b) 

GPR, GDP, energy, 

and CO2 

AMG estimator GPR increases CO2 

Zhao et al. (2021) GPR, GDP, and CO2 NARDL 

GPR exerts 

asymmetric impacts 

on CO2 

 204 
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2.2 Determinants of CO2 emissions 205 

There exist several studies that explore the determinants of CO2 emissions employing a 206 

panel quantile regression approach. For instance, Salman et al. (2019) investigate the impact of 207 

imports, exports, energy intensity, and technology on CO2 emissions for ASEAN-7 countries 208 

using a panel quantile regression approach. The study reports that exports and energy intensity 209 

escalates CO2 emissions at several quantiles, whereas imports and technological advancement 210 

plunges the carbon emissions. Also, the study validates the environmental Kuznets curve (EKC) 211 

hypothesis for the ASEAN-7 economies. The study of Zhu et al. (2016) examines the effect of 212 

FDI, economic growth, and energy consumption on CO2 emissions for ASEAN-5 economies. 213 

The findings reveal that Halo Effect Hypothesis exists for high emissions countries, whereas 214 

there is no association between FDI and CO2 emissions for low emissions countries. Further, 215 

energy consumption and GDP also have heterogeneous impacts on CO2 emissions across 216 

different quantiles. Moreover, the study notes that the EKC hypothesis does not exist within 217 

ASEAN-5 economies.   218 

According to Zhang et al. (2016), who probe the impact of corruption and economic 219 

growth on CO2 emissions for the Asia-Pacific Economic Cooperation region, heterogeneous 220 

impacts of corruption and GDP exist. The impact of corruption on CO2 emissions is negative for 221 

lower quantiles, whereas there is no association between corruption and CO2 emissions in higher 222 

quantiles. Additionally, the direct and indirect effects of corruption on CO2 emissions are also 223 

heterogeneous across quantiles. Using provincial-level data, Xu and Lin (2016) investigate the 224 

effect of GDP, urbanization, industrialization, and energy intensity on CO2 emissions for China. 225 

The findings expound that the impact of economic growth, on CO2 emissions, is profound at 226 

higher quantiles, whereas there exists a meagre relationship between GDP and CO2 emissions at 227 
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lower quantiles. Also, the positive impact of urbanization, on CO2 emissions, increases from 228 

lower to higher quantiles. Besides, the impact of industrialization plunges from higher quantiles 229 

to lower quantiles.  230 

In addition, Zheng et al. (2019) ascertain the heterogeneous impact of GDP, urbanization, 231 

industrialization, and population on CO2 emissions for selected Chinese cities. The authors 232 

explain that the positive impact of GDP on CO2 emissions rises from lower quantile to higher 233 

quantile, whereas the positive impact of urbanization and industrialization plunges while moving 234 

from lower to higher quantile. Besides, the negative relationship between population and CO2 235 

emissions increases while moving from higher to lower quantiles. Nwaka et al. (2020) analyze 236 

the determinants of CO2 emissions in selected West African countries. The results of their study 237 

describe that EKC does not exist for the selected countries. Moreover, there exists a positive 238 

impact of the agriculture sector on CO2 emissions across all percentiles, whereas the impact of 239 

renewable energy on CO2 emissions is negative in all quantiles. Additionally, there is a positive 240 

impact of trade on CO2 emissions across all quantiles. Using panel quantile regression, Chou et 241 

al. (2019) documented that democracy escalates energy efficiency, and reduces the level of 242 

carbon emissions in selected countries of South America. Next, Alola et al. (2020) examine the 243 

impact of economic growth, energy consumption, urbanization, and tourism on carbon 244 

emissions, using panel quantile regression, for selected OECD countries. The findings of the 245 

study conclude that urbanization, tourism, and economic growth upsurge CO2 emissions in upper 246 

(higher) quantiles. 247 

Likewise, Akram et al. (2020) explore the environmental impact of energy consumption 248 

within the framework of the environmental Kuznets curve for developing countries while 249 

controlling the role of renewable energy, nuclear energy, and urbanization. The study confirms 250 
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the validity of the environmental Kuznets curve and finds that energy efficiency mitigates carbon 251 

emissions. Moreover, the results of the study reveal that renewable and nuclear energy impedes 252 

carbon dioxide emissions. Next, Luo et al. (2020) examine the convergence of carbon emission 253 

coupled with its determinants for selected provinces of China. The study expounds that there 254 

exists convergence in CO2 emissions in China. Moreover, inward FDI plunges the emissions 255 

across different quantiles, whereas outward FDI escalates the emissions. The study also validates 256 

the existence of the environmental Kuznets curve hypothesis. The study of Liu et al. (2019) 257 

investigates the nexus between income inequality and CO2 emissions across states of the USA 258 

using panel quantile regression. The results declare that inequality improves the environmental 259 

quality, especially in high emissions states. Likewise, using panel quantile regression, Chen et al. 260 

(2020) explore the effect of income inequality on carbon emissions in both developed and 261 

developing countries. The study notes that income inequality escalates emissions in developing 262 

countries, whereas income inequality has a meagre impact on the level of emissions in developed 263 

countries. Cheng et al. (2021) investigate whether technological innovation affects carbon 264 

emissions in OECD countries. The findings from the panel quantile regression approach reveal 265 

that technological innovation impedes the emissions, however, the impact/ magnitude is 266 

heterogeneous across quantiles. Similarly, Yu et al. (2020) examine the effect of renewable 267 

energy on carbon emissions in China. The findings expound that renewable energy has a 268 

profound negative impact on CO2 in high and low emission regions of China. 269 

 Recently, a few studies expound several new drivers of CO2 emissions, such that, Qin et 270 

al. (2021) highlight that green innovations, composite risk, and environmental policy control 271 

environmental degradation. Similarly, Su et al. (2021) explore the political risk-environment 272 

nexus using advanced econometric methods. The authors documented that improved political 273 
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scenario helps to achieve a clean environment. Similarly, Alola et al. (2021) pointed out that 274 

economic growth and technological innovation lead to sustainable development. Further, Usman 275 

et al. (2021) document that ICT has an asymmetric impact on carbon emissions in the case of 276 

selected Asian economics. Likewise, Shan et al. (2021) noted that institutional quality and 277 

energy prices have detrimental impacts on levels of emissions in the case of the top 7 OECD 278 

countries. 279 

Table 2: Literature summary on CO2 emissions’ determinants  280 

Study Independent variables Country/region Findings 

Salman et al. (2019) Imports, exports, 

energy, technological 

advances 

ASEAN-7  Exports and energy 

increase carbon emissions, 

while imports and 

technological progress 

plummets emissions.  

Zhu et al. (2016) FDI, economic growth, 

energy consumption 

ASEAN-5 Economic growth and 

population size have a 

negative effect on CO2 

emissions in high-

emissions countries. 

Zhang et al. (2016) Energy consumption, 

corruption, democratic 

accountability, per 

capita GDP  

APEC countries Corruption has a negative 

direct effect and a positive 

indirect effect on CO2 

emissions. 
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Xu and Lin (2016) GDP, urbanization, 

industrialization, 

energy intensity 

China Economic growth plays a 

dominant role in the 

growth of CO2 emissions. 

Zheng et al. (2019) GDP, urbanization, 

industrialization, 

population 

China The positive impact of 

GDP, urbanization and 

industrialization on CO2 

emissions rises but is 

inconsistent between 

population and CO2 

emissions.  

Nwaka et al. (2020) Agricultural value-

added, renewable 

energy consumption, 

industry value-added, 

economic growth 

ECOWAS region Agriculture induced CO2 

emissions may emanate 

from cultivation and 

biomass use. 

Chou et al. (2019) Labor, economic 

output, capital input 

26 South 

American 

countries 

Democracy has an 

important impact on the 

reduction of national CO2 

emissions and brings a 

positive influence on 

energy efficiency. 

Alola et al. (2020) Real income per capita, 

international tourism 

31 OECD 

countries 

Urbanization, tourism, and 

economic growth upsurge 
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arrivals, urbanization, 

energy consumption 

CO2 emissions in higher 

quantiles. 

Akram et al. (2020) Energy efficiency, per 

capita GDP, the square 

of per capita GDP, 

renewable energy, 

nuclear energy, 

urbanization 

66 developing 

countries 

Energy efficiency has 

heterogeneous effects and 

a robust negative effect on 

carbon emissions. 

Luo et al. (2020) Population, GRP per 

capita, patent 

application, 

urbanization, IFDI, 

OFDI 

China Outward foreign direct 

investment had negative 

effects on CO2 emissions 

in China.  

Liu et al. (2019) Energy consumption, 

industry structure, per 

capita GDP 

US Higher-income inequality 

increases US carbon 

emissions in the short 

term, whereas it promotes 

carbon reduction in the 

long term. 

Chen et al. (2020) GDP per capita, energy 

consumption, FDI to 

GDP ratio, trade to 

GDP ratio, 

17 G20 countries In developing countries, 

inequality has a 

detrimental effect on CO2 

emissions another side 



 

19 
 

urbanization, 

population density 

most developed countries, 

income inequality hardly 

affects CO2 emissions. 

Cheng et al. (2021) GDP per capita, 

investment, renewable 

energy supply, 

development of patent 

technologies, export 

trade values 

35 OECD 

countries 

Technological innovation 

indirectly affects 

emissions by offsetting the 

positive impact of 

economic growth. 

Yu et al. (2020) Renewable energy 

generation, energy 

intensity, energy 

structure, industrial 

structure, GDP per 

capita, urbanization 

rate 

China China's renewable energy 

development has a limited 

effect on its carbon 

reduction but it becomes 

more and more obvious 

with time. 

      281 

2.3. Theoretical Framework 282 

This section theoretically describes that how EPU and GPR affect CO2 emissions. 283 

According to Jiang et al. (2019), there are two channels/ effects that link EPU with CO2 284 

emissions: (1) direct policy adjustment effect; (2) indirect economic demand effect. The direct 285 

policy adjustment effect expounds that increase in EPU averts the focus of policymakers from 286 

environmental quality to economic stability. As a result, CO2 emissions escalate in the economy. 287 
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Parallel to this, the indirect economic demand effect shows that EPU affects the decision-making 288 

and economic behaviour of consumers and producers, which in turn raises the levels of energy 289 

consumption. As a result, CO2 emissions surge in the country. 290 

Similarly, Wang et al. (2020) describe that EPU alters CO2 emissions through 291 

consumption effect and investment effect. The consumption effect expounds that EPU impedes 292 

the use of energy (i.e., non-renewable energy) and carbon-emitting consumers’ goods. As a 293 

result, CO2 emissions will be decreased. On the contrary, the investment effect notes that EPU 294 

mitigates the investment in R&D, technological advancement, and innovation. Hence, CO2 295 

emissions will have surged. 296 

Likewise, Yu et al. (2021) also developed three channels that link economic policies 297 

uncertainty with CO2 emissions. These three channels comprise the innovations channel; share of 298 

fossil fuel energy channel; and energy intensity channel. Innovation channel shows that policy-299 

related uncertainties lead to fewer innovations, thus, the level of CO2 emissions will be 300 

increased. Next, the share of fossil fuel channel describes that EPU surges the share of non-301 

renewable energy in the energy mix, which leads to higher levels of CO2 emissions. Moreover, 302 

the energy intensity channel explains that EPU upsurges the energy intensity, which on the 303 

contrary, intensifies levels of CO2 emissions.   304 

Parallel to this, Anser et al. (2021c) put forward escalating effect and mitigating effects of 305 

GPR, which link GPR with environmental degradation. According to escalating effect, GPR 306 

impedes R&D, technological advancement, and innovation. As a result of this, CO2 emissions 307 

will be escalated. Conversely, mitigating effect reports that GPR plunges economic growth and 308 

energy consumption, hence, CO2 emissions will be reduced.   309 
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3. Data, Model and methodology 310 

3.1 Model 311 

To evaluate the impact of human activities on environmental degradation, IPAT (I 312 

(influence) = P (population), A (affluence), T (technology)) framework has extensively been 313 

applied in empirical studies related to environmental economics. However, it has been noticed 314 

that IPAT contains a few limitations: (1) due to its mathematical form, application of hypothesis 315 

testing is not conceivable; (2) fixed proportionality through all independent variables is assumed 316 

in IPAT framework, which is invalid; (3) IPAT model does not discriminate the relative 317 

imperativeness of every independent variable (Anser et al., 2021a; York et al., 2003). To cover 318 

these aforementioned demerits, Dietz and Rosa (1994) develop stochastic impacts by regression 319 

on population, affluence, and technology (STIRPAT) framework. The STIRPAT model in its 320 

general form is presented as follows: 321 

𝐼𝑖𝑡 = ∅𝑃𝑖𝑡
𝛽1

𝐴𝑖𝑡
𝛽2

𝑇𝑖𝑡
𝛽3

𝜀𝑖𝑡                                                                                                                     (1) 322 

In Eq. (1), I denotes influence (proxied by carbon dioxide emissions), P represents the 323 

population, A is affluence (proxied by GDP per capita), and T is technology (represented by 324 

energy consumption). Further, ∅ denotes intercept, i is a cross-section (country in this study), t 325 

represents time, and 𝜀 is the error term. Also, βi (i=1,2,3) is coefficient. We incorporate economic 326 

policy uncertainty and geopolitical risk in the STIRPAT model for this analysis. 327 

𝐼𝑖𝑡 = ∅𝑃𝑖𝑡
𝛽1

𝐴𝑖𝑡
𝛽2

𝑇𝑖𝑡
𝛽3

𝐸𝑃𝑈𝑖𝑡
𝛽4

𝐺𝑃𝑅𝑖𝑡
𝛽5

𝜀𝑖𝑡                                                                                              (2) 328 

In Eq. (2), EPU represents economic policy uncertainty and GPR is geopolitical risk. 329 

Also, β4 and β5 are the coefficients of EPU and GPR, respectively. After taking the logarithm of 330 
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all variables, and substituting A, P, T, and I for their proxies, the final equation (i.e., empirical 331 

model of this study) is reported in Eq. (3): 332 

𝐿𝐶𝑂2,𝑖𝑡 = ∅𝑖𝑡 + 𝛽1𝐿𝑈𝑅𝐵𝑖𝑡 + 𝛽2𝐿𝐺𝐷𝑃𝑖𝑡 + 𝛽3𝐿𝑁𝑅𝐸𝑖𝑡 +  𝛽4𝐿𝑅𝐸𝑁𝑖𝑡 +  𝛽5𝐿𝐸𝑃𝑈𝑖𝑡 +  𝛽6𝐿𝐺𝑃𝑅𝑖𝑡 +333 

𝜀𝑖𝑡                                                                                                                                                   (3) 334 

Where LCO2 represents the log of CO2 emissions (proxy of influence), LURB is the log 335 

of urbanization (proxy of the population), LGDP denotes log of GDP per capita (proxy of 336 

affluence), LNRE is the log of non-renewable energy consumption, LREN is the log of 337 

renewable energy, LEPU denotes log of economic policy uncertainty (EPU), and LGPR 338 

represents the log of geopolitical risk (GPR). It is worth mentioning that renewable and non-339 

renewable energy consumption is used as a proxy of technology (T). Further, ∅ is intercept, i is a 340 

cross-section, t denotes period, and 𝜀 is the error term. In addition, βi (i=1, 2,..., 6) is the 341 

coefficient of the STIRPAT model.  342 

3.2 Methodology 343 

It is known that OLS regression renders an unbiased estimator with a minimum variance 344 

if: (1) error term of OLS regression has zero mean, and it has identical distribution (i, i, d); and 345 

(2) error term follows the normal distribution. According to De Silva et al. (2016), these 346 

aforementioned assumptions are not realistically provided the nature of economic variables in 347 

real life. To cover the demerits of OLS regression, Koenker and Bassett (1978) presented 348 

quantile regression. There exists several advantages of quantile regression: (1) the quartile 349 

regression does not possess any assumption related to the occurrence of moment function (Zhu et 350 

al., 2016); (2) quantile regression renders relatively accurate and robust results even in the case 351 

of outliers and fat tail distribution (Bera et al., 2016); (3) it does not develop any assumption 352 
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regarding the distribution (Sherwood and Wang, 2016). These aforementioned properties of 353 

quantile regression prompt this study to employ this methodology.  354 

                                                            𝑄𝑦𝑖 (∅|𝑥𝑖) =  𝑥𝑖
/
𝛼∅                                                      (4) 355 

Eq. (4) demonstrates the conditional quantile 𝑌𝑖 in a given 𝑥𝑖, however, ∅ denotes the 356 

quantile. While using quantile regression methodology in panel data, unobserved heterogeneity 357 

is taken into account which prompts to employ panel quantile regression model with a fixed 358 

effect. This model enables us to control unobserved individual heterogeneity. The panel quantile 359 

regression model with fixed effect is mentioned as follows. 360 

                                     𝑄𝑦𝑖𝑡 (∅𝑘|𝜑𝑖 , 𝑥𝑖𝑡) =  𝜑𝑖 + 𝑥𝑖𝑡
/

𝛼(∅𝑘)                                            (5) 361 

In Eq. (5), 𝜑𝑖 captures the fixed effect that also brings the incidental parameter problem 362 

(Lancaster, 2000).  With fixed time-series observations for each cross-sectional unit, the 363 

estimator becomes inconsistent when the cross-sectional unit approaches infinity (Galvao and 364 

Kato, 2016). Thus, we can’t use conventional linear approaches in the panel quantile regression 365 

model. 366 

Koenker (2004) develops an approach that is known as the shrinkage method, to solve the 367 

aforementioned problem of panel quantile regression. This method introduces a penalty term to 368 

eliminate the unobserved fixed effects. The parameters of the model are estimated as follows. 369 

(�̂�(∅𝑘 , 𝜂), { 𝜑𝑖  (𝜂)}N
i=1)= arg min ∑ ∑ ∑ 𝛺𝑘 𝜌∅𝑘( 𝑦𝑖𝑡 −𝑁

𝑖
𝑇
𝑡

𝐾
𝑘 𝜑𝑖 −  𝑥𝑖𝑡

/
𝛼(∅𝑘)) + 370 

                                                                𝜂 ∑ |𝑁
𝑖 𝜑𝑖|,                                                            (6) 371 
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In Eq. (6), i and t represent country and year, respectively. Further, k represents the 372 

quantile however 𝜌∅𝑘  shows the quantile loss functions. Moreover, 𝛺𝑘 denotes the given weight 373 

that is assigned to k-th quantile. Also, 𝛺𝑘 captures the contribution of different quantiles. Similar 374 

to Lamarche (2011), we also set 𝛺𝑘 = 1/𝑘. In addition, 𝜂 is tunning term/parameter that is used 375 

to plunge the individual effect to zero for better estimation of slope coefficients in the model. We 376 

also set the value of  𝜂 = 1 as many studies, for instance, Zhu et al. (2018), set the value of 𝜂 =1. 377 

3.3 Data 378 

The present study aims to evaluate the impact of economic policy uncertainty and 379 

geopolitical risk on CO2 emissions in BRICST (Brazil, Russia, India, China, South Africa, and 380 

Turkey) countries. We make use of panel data spanning 1990-2015 on annual frequency. The 381 

dependent variable of the current study is CO2 emissions (measured in metric tons per capita), 382 

whereas key independent variables/ regressors are economic policy uncertainty and geopolitical 383 

risk. The world uncertainty index, which is calculated based on the frequency of articles 384 

containing the “uncertainty” related words in Economic Intelligence Unit reports, is used as a 385 

proxy for economic policy uncertainty. Recently, several studies employ this world uncertainty 386 

index as a proxy to measure economic policy uncertainty (see, for example, Adams et al., 2020; 387 

Wang et al., 2020; Anser et al., 2021a). On the other hand, the geopolitical risk index, which is 388 

also calculated based on the frequency of articles containing “geopolitics” related words in a 389 

leading newspaper, is used as a proxy of geopolitical risk. Recently, many researchers use this 390 

proxy such as Adams et al. (2020) and Anser et al. (2021b). The data on both variables (i.e., 391 

world uncertainty index and geopolitical risk index) are gathered from policyuncertainty.com. 392 

Also, GDP per capita (measured in constant $2010), urbanization (measured as a percentage of 393 

urban population), non-renewable energy (measured as oil equivalent per capita), and renewable 394 
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energy (measured as a share of renewables in total energy) are the control variables. Data on 395 

these aforementioned variables and CO2 emissions are collected from WDI (World Development 396 

Indicators) database.   The description of the data is reported in table 3. 397 

Table 3: Summary of the data 398 

Variable Symbol Measurement Scale Source 

Carbon dioxide 

emissions 

LCO2 Metric ton per capita WDI 

Economic 

policy 

uncertainty 

LEPU World uncertainty index which is based 

on the frequency of articles containing 

“uncertainty” related words in EIU 

reports 

Policyuncertainty.com 

Geopolitical risk LGPR Geopolitical risk index which is based 

on the frequency of articles containing 

“geopolitics” related words in the 

newspaper 

Policyuncertainty.com 

Non-renewable 

energy 

LNRE Oil equivalent per capita WDI 

Renewable 

energy 

LREN Share of renewables in the energy mix WDI 

Urbanization LURB Percentage of urban population WDI 

GDP per capita LGDP Constant $2010 WDI 

 399 
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Note: All variables are converted in logarithmic form. Further, WDI is World Development Indicators, while EIU is Economic 400 

Intelligence Unit. 401 

The descriptive statistics of the considered variables are reported in Table 4. As can be 402 

seen from Table 4, the mean value of LURB is the highest, whereas it is the lowest for LEPU. 403 

Similarly, the standard deviation of LURB is also the highest, while it is the lowest for LGPR. 404 

The values of skewness elaborate that all variables have either positive or negative skewness 405 

except for LNRE, which is neither positively nor negatively skewed. In the same way, kurtosis 406 

expounds that a few considered variables (e.g., LEPU) contain heavy/ fat tail. In addition, the 407 

Jarque-Bera test reveals that all considered variables of this study contain non-normal 408 

distribution because the null hypothesis of normal distribution could be rejected for all variables 409 

in this study.    410 

Table 4: Descriptive statistics 411 

 LCO2 LGDP LREN LNRE LURB LGPR LEPU 

Mean 0.57 3.66 1.28 3.16 8.07 3.08 -0.73 

St. dev. 0.37 0.40 0.38 0.32 0.45 0.09 0.40 

Skewness -0.05 -0.97 -0.77 0.00 -0.03 0.57 -1.33 

Kurtosis 1.87 2.48 2.55 2.18 1.84 3.04 6.81 

Jarque-bera (0.00)*** (0.00)*** (0.00)*** (0.00)*** (0.00)*** (0.02)** (0.00)*** 

 412 

Note: (.) denotes probability value. Further, *, **, *** represent level of sig. at 10%, 5%, and 1%, respectively. 413 
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Apart from the Jarque-Bera test, we also employ a Q-Q plot to graphically show the 414 

distribution of the variables. In the Q-Q plot, the linear diagonal blue line shows the normal 415 

distribution, while the dotted line describes the deviation from the normal distribution. Fig. 4-10 416 

elaborate that all selected variables have non-normal distribution. 417 

[Insert figure 4-10 here] 418 

Moreover, the pairwise correlation between all selected variables of this study is reported 419 

in Table 5. As can be seen from Table 5, the correlation of LCO2 with LNRE and LURB is 420 

negative, while it is positive for all other variables. Additionally, correlation is the highest 421 

between LCO2 and LNRE, which is 0.96. Also, it is the lowest between LCO2 and LEPU, which 422 

is 0.08. 423 

Table 5: Correlation 424 

 LCO2 LGDP LREN LNRE LURB LGPR LEPU 

LCO2 1.00       

LGDP 0.58 1.00      

LREN -0.88 -0.48 1.00     

LNRE 0.96 0.70 -0.87 1.00    

LURB -0.43 -0.57 0.26 -0.43 1.00   

LGPR 0.14 0.11 -0.14 0.12 -0.21 1.00  

LEPU 0.08 0.43 -0.09 0.17 -0.45 0.07 1.00 

 425 

4. Results and Discussions 426 
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This section presents the findings in detail. We follow the five-step procedure to report 427 

the findings in a plausible form.  428 

In step-1, we probe the cross-sectional dependence (CD) using several tests (e.g., Pesaran 429 

CD test, Friedman CD test, and Frees CD test), and slope heterogeneity test by Pesaran and 430 

Yagamata (2008). In the panel dataset, CD refers to the spillover effect of a shock from one 431 

cross-section to another, and the proper scrutiny of CD is indispensable because its presence 432 

could lead to spurious findings (Pesaran, 2007). Parallel to this, ignoring slope heterogeneity 433 

may also lead to spurious outcomes. The findings from the CD tests and slope heterogeneity test 434 

are presented in table 6.   435 

Table 6: Cross-sectional dependence tests 436 

Note: (.) represents p-value. *, **, *** denote significance level at 10%, 5%, and 1%, respectively. 437 

As can be seen from Table 6, the null hypothesis of no cross-sectional dependence could 438 

be rejected from all tests. Thus, it could be implied that there exists CD. Similarly, the findings 439 

from the slope heterogeneity test document that there exists slope heterogeneity since we could 440 

reject the null hypothesis of no slope heterogeneity. 441 

 CD test Slope heterogeneity 

test 

 Pesaran 

CD test 

Friedman 

CD test 

Frees  

CD test 

Δ ΔAdj. 

LCO2=f(LGDP, LREN, 

LNRE, LGPR, LEPU, LURB) 

(0.02)** (0.00)*** (0.02)** 112.32*** 131.01*** 
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In step-2, we probe the unit root/ stationary property of the variables. The application of 442 

the unit root test is imperative for appropriate estimation/regression methodology, and reliable 443 

results. There are several panel data unit root tests in the literature; however, most of them (e.g., 444 

LLC unit root test and IPS unit root test, etc.) do not cover the issue of CD. Hence, these tests 445 

may lead to unreliable findings. On the contrary, the CIPS unit root test and CADF unit root test 446 

cover both CD and heterogeneity, therefore, these tests outperforms other first-generation panel 447 

unit root tests (i.e., LLC unit root test and IPS unit root test, etc.). Given the advantages of CIPS 448 

and CADF unit root tests, we also apply these tests in this study. The findings from CIPS and 449 

CADF unit root are reported in table 7, and it can be seen from table 7 that we could not reject 450 

the null hypothesis of there is a unit root at I (0) or level form. On the contrary, we could reject 451 

the null hypothesis at I (1) for all variables.  452 

Table 7: Unit root tests 453 

 CIPS test CADF test 

 Level 1st difference Level 1st difference 

LCO2 -2.01 -2.87 -2.13 -3.32 

LGDP -1.99 -2.90 -1.93 -3.78 

LREN -2.03 -3.46 -2.07 -2.64 

LNRE -2.32 -3.21 -2.48 -4.18 

LGPR -1.29 -2.65 -1.46 -3.36 

LEPU -2.38 -4.64 -1.39 -2.59 

 454 

Note: Critical value of CIPS at 1% is -2.51, whereas the critical value of CADF at 1% is -2.57  455 
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In step-3, we investigate whether there is a long-run (co-integration) relationship among 456 

the selected variables of the study. In the prior literature, there are many panel co-integration 457 

methods. However, conventional panel co-integration methodologies (e.g., Kao test and Pedroni 458 

test, etc.) do not incorporate the issue of CD and heterogeneity, which could render spurious 459 

results. To overcome the demerits of the first-generation (conventional) co-integration 460 

methodologies, Westerlund (2007) test is developed which covers the problem of CD and 461 

heterogeneity. The results from Westerlund (2007) test are presented in table 8. Table 8 462 

elaborates that the null hypothesis of no co-integration could be rejected for all four test 463 

statistics. Thus, it could be stated that there exists a long-run relationship among the selected 464 

variables of the study.    465 

Table 8: Westerlund (2007) test 466 

Statistic Value p-value 

Gt -11.01 0.00*** 

Ga -8.32 0.00*** 

Pt -10.83 0.00*** 

Pa -4.97 0.00*** 

 467 

Note: *** indicates the level of significance at 1%. 468 

In step-4, this study employs an augmented mean group (AMG) estimator and the 469 

Common Correlated Effects Mean Group (CCEMG) estimator for long-run elasticity. The 470 

motivation behind applying AMG and CCEMG is twofold: (1) these aforementioned 471 

methodologies cover both the CD and heterogeneity issue (Pesaran, 2006; Adedoyin et al., 472 
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2021); (2) there is no need to examine the unit root and co-integration before applying these 473 

methods (Anser et al., 2021b). Table 9 presents the findings from AMG and CCEMG estimators. 474 

Table 9: Findings from AMG and CCEMG estimator 475 

Variable AMG estimator CCEMG estimator 

LGDP 0.13 0.17 

LREN -0.39*** -0.48*** 

LNRE 0.87*** 0.81*** 

LURB 1.02 -2.44*** 

LEPU -0.37 0.00 

LGPR -0.62 -0.05*** 

 476 

Note: *** indicates the level of significance at 1%. 477 

Results from the AMG estimator reveal that all variables are statistically insignificant 478 

except LREN and LNRE, which are statically significant at 1%. The value of LREN is –0.39, 479 

which implies that a 1% increase in renewable energy plunges the CO2 emissions by 0.39%. On 480 

the other hand, the value of LERE is 0.87, indicating that a 0.87% increase in CO2 emissions is 481 

fostered by a 1% increase in non-renewable energy. By implication of the result, renewable 482 

energy share among the panel countries (Brazil, Russia, India, China, South Africa, and Turkey) 483 

importantly drives the environmental sustainability agenda while traditional energy such as fossil 484 

fuel remained a setback to such aspired agenda. The respective evidence of the negative and 485 
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positive impact of renewable and non-renewable on environmental degradation has been widely 486 

illustrated in the literature (Bekun et al., 2019; Saint Akadiri et al., 2019; Usman et al., 2020).  487 

On the contrary, the findings from the CCEMG estimator highlight that all variables are 488 

statistically significant except LGDP and LEPU, which are statistically insignificant. Regarding 489 

LREN, the value of the coefficient is -0.48. This indicates that a 1% increase in renewable 490 

energy impedes CO2 emissions by 0.48%. The coefficient of LNRE is 0.81, which implies that a 491 

0.81% surge in CO2 emissions is fostered by a 1% rise in non-renewable energy consumption. 492 

On the contrary, the value of LURB is -2.44, highlighting that a 1% increase in urbanization 493 

plunges CO2 emissions by 2.44%. In the literature, there have been divergent and inconclusive 494 

perspectives on the role of urbanization as a driver of environmental sustainability. For instance, 495 

while Onifade et al (2021) affirm the desirable impact of urbanization on environmental quality 496 

among the Organization of Petroleum Exporting Countries (OPEC), the studies of Asongu et al 497 

(2020) for Africa and Koyuncu et al (2021) for Turkey established a positive relationship 498 

between urbanization and environmental degradation. Moreover, the coefficient of LGPR is -499 

0.05, indicating that a 0.05% decrease in CO2 emissions is fostered by a 1% rise in geopolitical 500 

risk. Given that Olanipekun and Alola (2020) hints that geopolitical risk hampers oil production 501 

in the Persian Gulf region, the implication is geopolitical risk potentially mitigates environmental 502 

damage as supported in the current study. It is worth noting that AMG and CCEMG estimator is 503 

mean based regression methodologies, and we find contrasting results from these aforementioned 504 

methodologies. 505 

In step-5, we report the results from panel quantile regression which expectedly addresses 506 

the drawbacks of the mean-based approach. Additionally, we present findings from the fixed-507 

effects model to facilitate comparison. In table 10, the results from the fixed-effects model 508 
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expound that all variables are statistically significant except LEPU, which is statistically 509 

insignificant. Further, it could be concluded that renewable energy plunges LCO2 emissions, 510 

whereas the LGDP per capita, non-renewable energy, geopolitical risk, and urbanization 511 

contribute to high levels of CO2 emissions. 512 

Regarding the findings from panel quantile regression, we present the results at 10th, 20th, 513 

30th, 40th, 50th, 60th, 70th, 80th, and 90th quantiles. There exists a positive impact of LGDP (log of 514 

GDP per capita) on LCO2 (log of CO2 emissions per capita) across all quantiles, however, the 515 

strength of the relationship is heterogeneous. Thus, we note that LGDP escalates LCO2 in high-, 516 

middle-, and lower-emission countries. It is worth noting that the impact of LGDP on emissions 517 

is relatively strong at extreme quantiles (i.e., 10th and 90th), confirming that the impact of LGDP 518 

is profound on countries with either higher or lower levels of emissions. Our finding is somehow 519 

backed by the studies of Zheng et al. (2019). Further, there is the negative impact of renewable 520 

energy (LREN) on CO2 emissions (LCO2) at all quantiles. Additionally, the relationship is 521 

relatively strong at higher and lower quantiles (i.e., 10th, 20th, 80th, 90th). This implies that 522 

renewable energy is a tool to impede CO2 emissions, especially in higher and lower emission 523 

countries. This depicts that higher emitter BRICST countries are on the right path of achieving 524 

carbon neutrality through the use of renewables. This outcome is backed by the study of Yu et al. 525 

(2020). Next, we conclude that LNRE (non-renewable energy) surges CO2 emissions at all 526 

quantiles. Although the strength of this relationship is heterogeneous at all quantiles yet there is a 527 

profound impact of LNRE on CO2 emissions at 10th and 20th quantiles. It is worth reporting that 528 

nonrenewables consist of fossil fuels, which possess high carbon proportions. As a result, carbon 529 

emissions will be increased in the BRICST countries. This conclusion is in line with the results 530 

of Zhu et al. (2016). The results of LURB (urbanization) are slightly different from other control 531 
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variables. That is, there exists a negative relationship between LURB and CO2 emissions at 532 

lower quantiles, whereas the impact of LURB on CO2 emissions is positive at middle and higher 533 

quantiles. Hence, we note that LURB mitigates CO2 emissions in lower emission countries, 534 

while LURB leads to high CO2 emissions in high emissions countries.  It might be possible that 535 

in the low emitter countries, urbanization brings relatively better infrastructure, e.g., renewable 536 

energy-based technologies, etc. Moreover, urbanization may propel individuals to demand a 537 

healthy environment. On the contrary, in higher emission countries, urbanization can also 538 

increase the NREN, to meet the higher energy demand, and hence can contribute to emissions. 539 

These results are similar to the conclusion of Alola et al. (2020).  540 

Concerning LEPU (economic policy uncertainty), there exists a negative effect of LEPU 541 

on CO2 emissions at lower and middle quantiles. Whereas, LEPU escalates the LCO2 at higher 542 

quantiles. Therefore, we report the heterogeneous impact of LEPU which is in contract with the 543 

positive relationship that has been largely revealed in the literature (Adedoyin & Zakari, 2020; 544 

Anser et al., 2021a; Syed & Bouri, 2021; Yu et al., 2021). At lower and middle quantiles (i.e., 545 

countries with relatively low emission levels), it could be reported that the strength of the 546 

consumption effect is higher than the other channels/effects. Hence, EPU plummets the use of 547 

non-renewable energy and pollution-intensive goods, thereby reducing CO2 emissions is 548 

relatively low emitter countries. Conversely, in high emission countries (at high quantiles), the 549 

magnitude of the consumption effect is smaller than the other channels. This implies, EPU 550 

plummets the investment in renewable energy, increases the share of non-renewable energy in 551 

the energy mix, and escalates the energy intensity. As a result, the level of CO2 emission surges 552 

in high carbon emitter countries (i.e., China and Russia). Notably, China and India are among the 553 

top emitters in the case of BRICST countries wherein economic uncertainty has also been 554 
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upsurging over the years. Parallel to this, the level of emissions in these countries is also rising, 555 

inferring that uncertainty in economic policies also causes carbon emissions. On the contrary, 556 

Brazil and Turkey are among the lowest emitters in the case of BRICST countries wherein 557 

emissions have witnessed meagre growth over time. Also, uncertainty related to economic policy 558 

in these aforementioned countries has relatively been plunging, inferring that EPU may cause 559 

detrimental impacts on emissions.  560 

Additionally, the effect of LGPRU on LCO2 is positive at 10th, 20th, 30th, and 40th 561 

quantiles. While, there exists a negative effect of LGPR on LCO2 at all other quantiles (1.e., 50th, 562 

60th, 70th, 80th, and 90th). Moreover, the strength of the relationship plunges from the 10th to 40th 563 

quantile, and then it increases from 50th to 90th quantile. At 10th, 20th, 30th, and 40th quantile, 564 

escalating effect is dominant, implying that GPR discourages investment in R&D and renewable 565 

energy. As a result, carbon emission escalates in low emitter countries. These findings are in line 566 

with the conclusions of Anser et al. (2021b). On the other side, the strength of the mitigating 567 

effect is relatively high at 50th-90th quantiles. This indicates that GPR impedes economic growth 568 

and non-renewable energy consumption, thereby level of CO2 emissions drop in high emitter 569 

countries. These findings are backed by the results of Adams et al (2020) and Anser et al. 570 

(2021c). These findings note that, in low emitters (i.e., Brazil and Turkey), LGPR is one of the 571 

critical drivers of emissions. On the contrary, in high emitter countries (i.e., China and India), 572 

LGPR curbs emissions.  573 

 574 

 575 
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Table 10: Results from fixed effect and panel quantile regression model 576 

Variable Fixed effects Panel quantile regression 

  10th 20th 30th 40th 50th 60th 70th 80th 90th 

LGDP 0.410*** 0.171*** 0.040*** 0.062*** 0.102*** 0.061*** 0.045*** 0.081*** 0.041*** 0.252*** 

LEPU -0.001 -0.001*** -0.002*** -0.001*** -0.015*** -0.030*** -0.023*** 0.037*** 0.014*** 0.018*** 

LGPR 0.038* 0.031*** 0.019*** 0.014*** 0.003*** -0.001*** -0.013*** -0.017*** -0.018*** -0.035*** 

LREN -0.241*** -0.191*** -0.206*** -0.113*** -0.153*** -0.191*** -0.152*** -0.163*** -0.212*** -0.228*** 

LNRE 0.851*** 1.091*** 0.969*** 0.931*** 0.893*** 0.962*** 0.953*** 0.916*** 0.954*** 0.722*** 

LURB 1.401*** -0.269*** -0.092*** -0.291*** 0.339*** 0.096*** 0.201*** 0.453*** 0.417*** 0.257*** 

 577 

Note: *, **, *** denote significance level at 10%, 5%, and 1%, respectively. 578 
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Table 11: Summary of findings from panel quantile regression 579 

 580 

Note: “+” denotes a statistically significant and positive relationship, whereas “-“shows a negative and statistically 581 

significant relationship. For this analysis we set λ=1. 582 

In Table 11, we summarize the findings from panel quantile regression. As can be seen 583 

that LGDP and LNRE positively affect LCO2 at all quantiles, while LREN adversely affects 584 

LCO2 across all quantiles. Moreover, at lower quantiles, LURB plunges LCO2, while it surges 585 

LCO2 at middle and higher quantiles. Regarding LEPU, it adversely affects LCO2 at lower and 586 

middle quantiles. However, LEPU escalates LCO2 at higher quantiles. On the contrary, LGPR 587 

impedes LCO2 at lower and middle quantiles, whereas it surges LCO2 at higher quantiles.  588 

Furthermore, we probe the robustness of findings by setting different values of λ (i.e., λ= 589 

0.9 and λ=1.5). The results are almost similar to our aforementioned findings when λ=1. To save 590 

the space we just mention the summary of panel quantile models at λ= 0.9, and 1.5. Table 12 591 

presents the results as follows: 592 

Variable Low quantiles Middle quantiles High quantiles 

 10th, 20th, 30th 40th, 50th, 60th 70th, 80th, 90th 

LGDP + + + 

LEPU - - + 

LGPR + - - 

LREN - - - 

LNRE + + + 

LURB - + + 
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Table 12: Robustness check 593 

 594 

Note: “+” denotes a statistically significant and positive relationship, whereas “-“shows a negative and statistically significant 595 

relationship. All coefficients are statistically significant either at a 1% or 5% level of significance. 596 

 597 

5. Conclusion 598 

Variable Low quantiles Middle quantiles High quantiles 

 10th, 20th, 30th 40th, 50th, 60th 70th, 80th, 90th 

λ= 0.9 

LGDP + + + 

LEPU - - + 

LGPR + - - 

LREN - - - 

LNRE + + + 

LURB - + + 

λ= 1.5 

LGDP + + + 

LEPU - - + 

LGPR + - - 

LREN - - - 

LNRE + + + 

LURB - + + 
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In recent times, economic policy uncertainty and geopolitical risk have escalated 599 

exponentially, and these factors affect both the economy and the environment. Therefore, the 600 

objective of this study is to investigate whether economic policy uncertainty and geopolitical risk 601 

impede CO2 emissions in BRICST countries. We employ second generation panel data methods, 602 

AMG and CCEMG estimator, and panel quantile regression model. We find that all variables are 603 

integrated at I (1), and there exists co-integration among considered variables of the study. 604 

Moreover, we note that economic policy uncertainty and geopolitical risk have a heterogeneous 605 

impact on CO2 emissions across different quantiles. Economic policy uncertainty adversely 606 

affects CO2 emissions at lower and middle quantiles, while it surges the CO2 emissions at higher 607 

quantiles. On the contrary, geopolitical risk surges CO2 emissions at lower quartiles, and it 608 

plunges CO2 emissions at middle and higher quantiles. Further, GDP per capita, non-renewable 609 

energy, renewable energy, and urbanization also have a heterogeneous impact on CO2 emissions 610 

in the conditional distribution of CO2 emissions.  611 

Based on the aforementioned findings, we deduce a few policy implications reported as 612 

follows: 613 

(1) Since economic policy uncertainty impedes CO2 emissions in low- and middle-emissions 614 

countries, any attempt to control uncertainty in economic policies will raise the level of 615 

CO2 emissions. Therefore, policymakers should be well aware of the environmental 616 

impacts that EPU can exert.  617 

(2) Policymakers should initiate the measures to increase technological advancement and 618 

innovations if they want to simultaneously mitigate both CO2 emissions and economic 619 

policy uncertainty; 620 
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(3) We report that economic policy uncertainty surges CO2 emissions at high-emissions 621 

countries, therefore, policymakers should control economic policy uncertainty to limit 622 

CO2 emissions in those countries. In this regard, they should introduce anticipated 623 

economic policies. Also, the economic policies should be announced for next a few years 624 

to eliminate the uncertainty; 625 

(4) Since external shocks (e.g., pandemics and economic crisis, etc.) contribute to EPU and 626 

hence emissions in high emitter countries, the policymakers need to devise plans to 627 

counter the environmental impacts of external shocks; 628 

(5) Policymakers should control geopolitical risk in low- and middle-emissions countries 629 

since there exists a positive relationship between geopolitical risk and CO2 emissions. For 630 

this purpose, governments should initiate peace programs, sign peace treaties, and take 631 

measures to control terrorism, wars, and geopolitical conflicts; 632 

(6) In low and middle emissions countries, government officials should devise policies to 633 

control civil wars, impeachments, and religious & ethnic conflicts that boost geopolitical 634 

tensions and hence cause strong emissions; 635 

(7) There is a need to initiate cultural exchange programs, international student scholarship 636 

programs, and multinational peace summits to bring people together that may limit the 637 

conflicts among nations, which, in turn, helps to control emissions; 638 

(8) International organizations (e.g., United Nations, etc.) should play their role to shrink the 639 

geopolitical tensions, which, in turn, can control emissions; 640 

(9) Since geopolitical risk plunges CO2 emissions at high-emissions countries, policymakers 641 

should seek alternatives (e.g., renewable energy, R&D investment, and restrictions on 642 



 

41 
 

pollution-intensive goods, etc.) to simultaneously control both CO2 emissions and 643 

geopolitical risk; 644 

(10) There should be restrictions on imports of goods that consume non-renewable 645 

energy. Further, the share of renewable energy in total energy consumption should be 646 

escalated by rendering different incentives. For instance, there should be tax exemption 647 

on renewables imports. Next, investment in R&D related to renewable energy should also 648 

be encouraged; 649 

(11) To encourage renewables, proper policies related to feed-in-tariff should be 650 

introduced. 651 
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Appendix 907 

Figure 4: Q-Q plot of CO2 emissions 908 
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Figure 5: Q-Q plot of economic policy uncertainty 918 
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Figure 6: Q-Q plot of GDP per capita 928 
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Figure 7: Q-Q plot of geopolitical risk 938 
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Figure 8:  Q-Q plot of non-renewable energy 948 
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Figure 9: Q-Q plot of renewable energy 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 



 

57 
 

Figure 10: Q-Q plot of urbanization 967 
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