1	Do economic policy uncertainty and geopolitical risk surge CO2 emissions?
2	New insights from panel quantile regression approach
3	Qasim Raza Syed ¹
4	qasimrazasyed.economics@gmail.com
5	¹ National Tariff Commission, Ministry of Commerce, Pakistan.
6	
7	Festus Fatai Adedoyin ²
8	fadedoyin@bournemouth.ac.uk
9	² Bournemouth University, United Kingdom.
10	
11	Roni Bhowmik ^{3*}
12	roni@amss.ac.cn
13	³ School of Business, Guangdong University of Foreign Studies, China;
14	Department of Business Administration, Daffodil International University, Bangladesh.
15	*Corresponding author
16	
17	Andrew Adewale Alola ⁴
18	aadewale@gelisim.edu.tr
19	⁴ Istanbul Gelisim University, Istanbul, Turkey.
20	
21	Noreen Khalid ⁵
22	noreen123qau@gmail.com
23	⁵ Quaid-i-Azam University, Pakistan.
24	

25 Abstract

In recent times, economic policy uncertainty and geopolitical risk have escalated exponentially, 26 and these factors affect both the economy and the environment. Therefore, the objective of this 27 28 study is to investigate whether economic policy uncertainty and geopolitical risk impede CO_2 emissions in BRICST countries. We employ second generation panel data methods, AMG and 29 CCEMG estimator, and panel quantile regression model. We find that all variables are integrated 30 at I (1), and there exists co-integration among considered variables of the study. Moreover, we 31 note that economic policy uncertainty and geopolitical risk have a heterogeneous impact on CO_2 32 emissions across different quantiles. Economic policy uncertainty adversely affects CO₂ 33 emissions at lower and middle quantiles, while it surges the CO_2 emissions at higher quantiles. 34 On the contrary, geopolitical risk surges CO_2 emissions at lower quartiles, and it plunges CO_2 35 emissions at middle and higher quantiles. Further, GDP per capita, non-renewable energy, 36 renewable energy, and urbanization also have a heterogeneous impact on CO₂ emissions in the 37 conditional distribution of CO_2 emissions. Based on the results, policy direction was discussed. 38

Keywords: Economic policy uncertainty; geopolitical risk; renewable energy; non-renewable
energy; panel quantile regression; BRICST countries

41

43 **1. Introduction**

In the energy and environmental debate, carbon dioxide (CO₂) often leads to negative 44 consequences on natural and human activities. This is not all-time true, because CO_2 has its 45 46 important roles being exercised on natural and human events. Like the air we exhale, the nutrition we consumed, and the product we buy. In addition, CO_2 is discharged when plants and 47 48 animal inhale oxygen and nature such as ecosystem maintain the situation by absorbing and 49 consequently eradicating the CO_2 through plants and oceans. However, when an excess of CO_2 is emitted by human activities on earth, it often causes damage to the environment, thereby leading 50 to climate change or global warming. At this stage, CO₂, like other greenhouse gases (methane, 51 and water vapour, etc.), holds heat from escaping from the atmosphere, and thus the systematic 52 pattern of weather is disrupted, global temperature is increased, and other climate changes 53 54 occurred. CO₂ emission is caused through different means of activities from individuals, services or events, government, organization, etc. This is emitted through deforestation, burning of fossil 55 fuels, civil construction, transportation, government and commercial industry, manufacturing of 56 57 foods, and other services. All these are needed for the sustainable economic growth of a country, and if stopped could posed threat to the global economy, giving rise to concerns on climate 58 change, political and policy uncertainty. 59

Fighting to reduce greenhouse gas emissions, especially CO₂, is fighting against nature, it required no transport or permission to contribute to environmental problems everywhere, it is a threat to human life, and even a major cause of economic instability and jeopardized the nation's security. Nonetheless, the environmental changes, according to Antonakakis et al. (2017), are associated with all man-made activities, such as the burning of fossil fuel for energy use, pitched toward economic growth, thereby actuating adverse effects to the quality of the environment. This means that, even, a nation will continue to develop through the consumption of certain energy through government and commercial industry. For instance, in figure 1 below which represent the CO_2 consumption in BRICST countries, it was observed that increase, in metric tons, from the start of 1990 till 2015. In the lieu of this, previous scholars have been investigated the problem, for decades, for the proper maintenance of sustainable development growth across the globe.

72 Fossil energy utilization is normally seen as the lead cause of extreme carbon dioxide emission issues, and diminishing its consumption is a required process for both industrial and 73 74 non-industrial nations to address the environmental change issue. In any case, because of the acknowledged view that energy utilization is perhaps the main driver of monetary development 75 (WEF, 2018), the execution of energy measures have raised significant worries for financial 76 development. In particular, assuming energy utilization causes fossil fuel byproducts yet is 77 needed for monetary development, receiving energy preservation approaches will give numerous 78 nations the issue of picking between the "climate or the economy. 79

87

Note: "Country 1" represents South Africa, "country 2" denotes Brazil, "country 3" is Turkey, "country 4" represents China,
"country 5" denotes India, and "country 6" is Russia.

91 Over the years, several studies have revisited the relationship between economic growth, greenhouse gas emission, energy consumption (renewable and nonrenewable energy), but their 92 findings are conflicting (Liu et al., 2019). The conflicting outcomes had made many countries 93 94 choose different energy policies. For instance, Kraft and Kraft (1978), Menegaki (2010), and Rahman and Kashem (2017) posited in their study, specified by the energy conservation 95 hypothesis, that energy consumption does not prompt economic growth. For this reason, policies 96 can promote the reduction of CO_2 without taking into consideration, its adverse effect on 97 economic growth. On the other side, the economic led-growth hypothesis study by Appiah 98 (2018), Cai et al. (2018), and Ha et al. (2018) revealed that energy consumption is consistent 99 with economic growth. 100

Consequently, policy implications might face environmental or economic problems, 101 because controlling energy consumption may hinder economic growth. Moreover, an increase in 102 103 CO₂ emission resulting from economic growth means that at the expense of the environment, economic growth is realized (Shahbaz, 2016; Mirza and Kanwal, 2017), thus lowering the CO_2 104 105 emission to make economic growth ecologically friendly will be the priority of policy direction in such case (Liu et al., 2019). Consequently, an exact understanding of the driver of carbon 106 emissions and economic growth is essential for policy authorities to cautiously design proper 107 administration guidelines that can help their nations realize the win-win of the climate and the 108 economy. With these, this paper attempt to identify the economic growth-emission nexus while 109

considering two uncertainties – economic policy uncertainty (EPU) and geopolitical risk (GPR)
in the BRICST countries for a period of 1990 – 2015. The literature claimed that the behaviour
of the economic agent, delay in consumption decision, and investment are influenced by these
uncertainties.

EPU, according to the description of Jin et al. (2019), is portrayed as the vulnerability 114 related to spikes in government administrative, financial, and monetary strategies that change the 115 116 climate wherein people and organizations work. Different evidence from the empirical study has revealed that higher EPU is a vardstick for effect in economic growth, tourism, financial 117 development, investment, inflations, and other macroeconomic variables (Ashraf and Shen, 118 2019; Jin et al. 2019; Akron et al., 2020). Also, EPU is associated with vulnerabilities relating to 119 monetary, fiscal, trade, and other interrelated policies (Tiwari et al., 2019). Next, there exist three 120 strands of literature related to the EPU-environment nexus. The first strand confirms that EPU 121 increases environmental degradation (Anser et al., 2021a; Anser et al., 2021c), while the second 122 strand of related literature documents that EPU decreases environmental degradation (Syed and 123 124 Bouri, 2021; Chen et al., 2021). Parallel to this, the third strand of EPU-environment nexus expounds that EPU does not affect the environment (Abbasi and Adedoyin, 2021). These 125 aforementioned contrasting conclusions are confusing for policymakers at the time of any policy 126 proposal, therefore, the vague relationship between EPU and environment propels us to 127 reinvestigate the EPU-environment relationship to reach a particular conclusion, and to 128 Defining GPR is associated with political hullaballoo, 129 complement the prior studies. discrepancy, hostile issues, and it is perceived as a yardstick for change in the business cycle 130 (Tiwari et al., 2019). There are two dimensions of GPR-environment literature. One shows that 131 GPR upsurges environmental pollution (Anser et al., 2021b), whereas the other reports that GPR 132

improves environmental quality (Anser et al., 2021c). The vague relationship between GPR and
the environment calls for further probing for clear policy implementations, which motivates this
study.

Based on the above milieu, the objective of this study is to explore the impact of EPU and 136 GPR on CO₂ emissions in the case of BRICST countries. It is well known that BRICST countries 137 are among the top emerging countries with significantly high economic growth rates with the 138 139 consort of higher CO₂ emissions (Erdogan et al., 2019). So, it is inevitable to explore the drivers of carbon emissions in the case of BRICST countries. Therefore, we are interested to know 140 whether the trend in EPU (figure 2) and GPR (figure 3) for the period of 1990 - 2015 have a 141 significant association with emissions and if so, we are keen to know whether the relationship 142 surges or diminish the emission. 143

Regarding the uniqueness of this study, to the best of our knowledge, this is the first paper to consider the effect of EPU and GPR in panel emission of BRICST countries. Further, this is the first study that employs the panel quantile regression approach, in consort with AMG and CCMG estimators, to evaluate the effect of EPU and GPR on carbon emissions. Panel quantile regression outperforms mean-based regression models since it covers individual heterogeneity and distributional heterogeneity. That is, panel quantile regression allows probing the effect of EPU and GPR on high-, average-, and low-emitter countries.

151 *Figure 2. The trend of EPU*

153 Note: "Country 1" represents South Africa, "country 2" denotes Brazil, "country 3" is Turkey, "country 4" represents China,

"country 5" denotes India, and "country 6" is Russia.

156 Figure 3. The trend of GPR

Note: "Country 1" represents South Africa, "country 2" denotes Brazil, "country 3" is Turkey, "country 4" represents China,
"country 5" denotes India, and "country 6" is Russia.

161 **2. Literature review**

We divide this section into two subsections. The first subsection reports the existed studies on the impact of EPU and/ or GPR on CO_2 emissions, whereas the second subsection highlights the prior literature on the socio-economic determinants of CO_2 emissions using panel quantile regression.

166 2.1 Economic policy uncertainty, geopolitical risk, and CO₂ emissions

In their seminal study on the relationship between EPU and CO_2 emissions, Jiang et al. 167 (2019) employ Granger causality to probe the effect of EPU on sector-wise CO₂ emissions for 168 169 the US. The findings from the study note that uni-directional causality running from EPU to CO_2 emissions. After the study of Jiang et al. (2019), several studies explore the impact of EPU on 170 environmental degradation, and they have not yet reached any conclusion. For instance, one 171 172 group of studies reports that EPU escalates CO₂ emissions, and the other group notes that EPU plunges the emissions. For instance, Danish et al. (2020) apply dynamic ARDL methodology to 173 investigate the dynamic relationship between EPU and CO₂ emissions in the US. The findings 174 from their study highlight that EPU leads to higher CO₂ emissions. Next, Pirgaip and Dincergök 175 176 (2020) noted that EPU raises the level of CO₂ emissions in the case of G7 countries. Moreover, Wang et al. (2020) use the world uncertainty index (WUI) as a proxy of EPU and highlight that 177 EPU contributes to CO₂ emissions. 178

Recently, Anser et al. (2021a) use a panel ARDL approach to examine the effect of EPU 179 (measured by world uncertainty index) on CO_2 emissions in the top ten emitter countries. The 180 181 study concludes that, in the short run, EPU is responsible for a reduction in the levels of CO₂ emissions. Recently, Yu et al. (2021) also report that EPU leads to higher levels of CO₂ 182 emissions in China. Conversely, Adedoyin and Zakari (2020) examine the impact of EPU on 183 CO₂ emissions in the UK and report that EPU impedes CO₂ emissions in the short run. On the 184 contrary, the study finds that EPU upsurges CO₂ emissions in the long run. Similarly, Syed and 185 Bouri (2021) employ the bootstrap ARDL approach and conclude that EPU plunges CO_2 186 emissions in the long run. Syed and Bouri (2020) argue that EPU harms both GDP and energy 187 consumption. As a result, CO₂ emissions do mitigate in the long run. Further, On the other hand, 188 EPU contributes to strong CO_2 emissions in the long run. In addition to this, Chen et al. (2021) 189

documented that EPU impedes CO_2 emissions in the case of both developed and developing countries. Next, Abbasi and Adedoyin (2021) employ dynamic ARDL methodology to explore the effect of economic growth, energy, and EPU on CO_2 emissions. The findings of the study note that EPU does not affect CO_2 emissions in China, whereas energy and GDP escalate the CO_2 emissions.

Regarding the literature on the relationship between GPR and CO₂ emissions, Adams et 195 al. (2020) investigate whether GPR and EPU affect CO₂ emissions in top resource-rich 196 economies. The findings reveal that EPU escalates CO₂ emissions, while GPR plunges 197 emissions. Recently, Anser et al. (2021b) employ an AMG estimator to investigate the long-run 198 impact of GPR on CO_2 emissions. The results describe that GPR plunges renewable energy, 199 R&D, and innovation. As a result, there has been a rise in the levels of CO₂ emissions. Further, 200 Zhao et al. (2021) conclude that there exists an asymmetric impact of GPR on CO₂ emissions in 201 202 BRICS countries.

203 Ta l	ble 1	:]	Literature	summary
-----------------	-------	-----	------------	---------

Study	Variables	Methodology	Findings
Jiang et al. (2019)	EPU and CO ₂	Granger causality	EPU causes carbon emissions
Danish et al. (2020)	efficiency, and CO ₂		EPU increases CO ₂
Pirgaip and Dinçergök (2020)	EPU, GDP, energy, and CO ₂	Panel causality test	EPU causes carbon emissions
Wang et al. (2020)	EPU, GDP, energy,	ARDL approach	EPU increases CO ₂

	and CO ₂		
Anser et al. (2021a)	EPU, GDP, population, energy, and CO ₂	Panel ARDL	EPU increases CO ₂ in the long-run
Yu et al. (2021)	Provincial-EPU and CO ₂	Fixed effects model	EPU increases CO ₂
Adedoyin and Zakari	EPU, GDP, energy,		EPU increases CO ₂ in
(2020)	and CO ₂	ARDL	the long-run
Syed and Bouri (2021)	EPU, industrial production, renewable energy, and CO ₂	Bootstrap ARDL	EPU decreases CO ₂ in the long-run
Chen et al. (2021)	EPU, GDP, and CO ₂	Fixed- and Random effects models	EPU decreases CO ₂
Abbasi and Adedoyin	EPU, GDP, energy,		EPU does not affect
(2021)	and CO ₂	Dynamic ARDL	CO_2
	EPU, GPR, GDP, and		EPU escalates CO ₂ ,
Adams et al. (2020)	CO_2	PMG-ARDL	while GPR plunges it.
Anser et al. (2021b)	GPR, GDP, energy, and CO ₂	AMG estimator	GPR increases CO ₂
			GPR exerts
Zhao et al. (2021)	GPR, GDP, and CO ₂	NARDL	asymmetric impacts
			on CO ₂

205 **2.2 Determinants of CO₂ emissions**

There exist several studies that explore the determinants of CO₂ emissions employing a 206 panel quantile regression approach. For instance, Salman et al. (2019) investigate the impact of 207 208 imports, exports, energy intensity, and technology on CO₂ emissions for ASEAN-7 countries using a panel quantile regression approach. The study reports that exports and energy intensity 209 210 escalates CO_2 emissions at several quantiles, whereas imports and technological advancement 211 plunges the carbon emissions. Also, the study validates the environmental Kuznets curve (EKC) hypothesis for the ASEAN-7 economies. The study of Zhu et al. (2016) examines the effect of 212 FDI, economic growth, and energy consumption on CO₂ emissions for ASEAN-5 economies. 213 The findings reveal that Halo Effect Hypothesis exists for high emissions countries, whereas 214 215 there is no association between FDI and CO_2 emissions for low emissions countries. Further, 216 energy consumption and GDP also have heterogeneous impacts on CO₂ emissions across different quantiles. Moreover, the study notes that the EKC hypothesis does not exist within 217 ASEAN-5 economies. 218

According to Zhang et al. (2016), who probe the impact of corruption and economic 219 220 growth on CO₂ emissions for the Asia-Pacific Economic Cooperation region, heterogeneous 221 impacts of corruption and GDP exist. The impact of corruption on CO_2 emissions is negative for lower quantiles, whereas there is no association between corruption and CO₂ emissions in higher 222 223 quantiles. Additionally, the direct and indirect effects of corruption on CO_2 emissions are also heterogeneous across quantiles. Using provincial-level data, Xu and Lin (2016) investigate the 224 effect of GDP, urbanization, industrialization, and energy intensity on CO₂ emissions for China. 225 226 The findings expound that the impact of economic growth, on CO_2 emissions, is profound at higher quantiles, whereas there exists a meagre relationship between GDP and CO₂ emissions at 227

lower quantiles. Also, the positive impact of urbanization, on CO_2 emissions, increases from lower to higher quantiles. Besides, the impact of industrialization plunges from higher quantiles to lower quantiles.

231 In addition, Zheng et al. (2019) ascertain the heterogeneous impact of GDP, urbanization, industrialization, and population on CO_2 emissions for selected Chinese cities. The authors 232 233 explain that the positive impact of GDP on CO_2 emissions rises from lower quantile to higher 234 quantile, whereas the positive impact of urbanization and industrialization plunges while moving from lower to higher quantile. Besides, the negative relationship between population and CO₂ 235 236 emissions increases while moving from higher to lower quantiles. Nwaka et al. (2020) analyze the determinants of CO₂ emissions in selected West African countries. The results of their study 237 describe that EKC does not exist for the selected countries. Moreover, there exists a positive 238 239 impact of the agriculture sector on CO_2 emissions across all percentiles, whereas the impact of renewable energy on CO_2 emissions is negative in all quantiles. Additionally, there is a positive 240 impact of trade on CO_2 emissions across all quantiles. Using panel quantile regression, Chou et 241 242 al. (2019) documented that democracy escalates energy efficiency, and reduces the level of carbon emissions in selected countries of South America. Next, Alola et al. (2020) examine the 243 244 impact of economic growth, energy consumption, urbanization, and tourism on carbon emissions, using panel quantile regression, for selected OECD countries. The findings of the 245 study conclude that urbanization, tourism, and economic growth upsurge CO₂ emissions in upper 246 (higher) quantiles. 247

Likewise, Akram et al. (2020) explore the environmental impact of energy consumption within the framework of the environmental Kuznets curve for developing countries while controlling the role of renewable energy, nuclear energy, and urbanization. The study confirms

the validity of the environmental Kuznets curve and finds that energy efficiency mitigates carbon 251 252 emissions. Moreover, the results of the study reveal that renewable and nuclear energy impedes 253 carbon dioxide emissions. Next, Luo et al. (2020) examine the convergence of carbon emission coupled with its determinants for selected provinces of China. The study expounds that there 254 exists convergence in CO₂ emissions in China. Moreover, inward FDI plunges the emissions 255 256 across different quantiles, whereas outward FDI escalates the emissions. The study also validates the existence of the environmental Kuznets curve hypothesis. The study of Liu et al. (2019) 257 258 investigates the nexus between income inequality and CO₂ emissions across states of the USA 259 using panel quantile regression. The results declare that inequality improves the environmental 260 quality, especially in high emissions states. Likewise, using panel quantile regression, Chen et al. (2020) explore the effect of income inequality on carbon emissions in both developed and 261 developing countries. The study notes that income inequality escalates emissions in developing 262 countries, whereas income inequality has a meagre impact on the level of emissions in developed 263 264 countries. Cheng et al. (2021) investigate whether technological innovation affects carbon emissions in OECD countries. The findings from the panel quantile regression approach reveal 265 that technological innovation impedes the emissions, however, the impact/ magnitude is 266 267 heterogeneous across quantiles. Similarly, Yu et al. (2020) examine the effect of renewable energy on carbon emissions in China. The findings expound that renewable energy has a 268 269 profound negative impact on CO₂ in high and low emission regions of China.

Recently, a few studies expound several new drivers of CO₂ emissions, such that, Qin et al. (2021) highlight that green innovations, composite risk, and environmental policy control environmental degradation. Similarly, Su et al. (2021) explore the political risk-environment nexus using advanced econometric methods. The authors documented that improved political scenario helps to achieve a clean environment. Similarly, Alola et al. (2021) pointed out that economic growth and technological innovation lead to sustainable development. Further, Usman et al. (2021) document that ICT has an asymmetric impact on carbon emissions in the case of selected Asian economics. Likewise, Shan et al. (2021) noted that institutional quality and energy prices have detrimental impacts on levels of emissions in the case of the top 7 OECD countries.

280	Table 2: Literature s	ummary on CO	₂ emissions'	determinants
-----	-----------------------	--------------	-------------------------	--------------

Study	Independent variables	Country/region	Findings
Salman et al. (2019)	Imports, exports,	ASEAN-7	Exports and energy
	energy, technological		increase carbon emissions,
	advances		while imports and
			technological progress
			plummets emissions.
Zhu et al. (2016)	FDI, economic growth,	ASEAN-5	Economic growth and
	energy consumption		population size have a
			negative effect on CO ₂
			emissions in high-
			emissions countries.
Zhang et al. (2016)	Energy consumption,	APEC countries	Corruption has a negative
	corruption, democratic		direct effect and a positive
	accountability, per		indirect effect on CO ₂
	capita GDP		emissions.

Xu and Lin (2016)	GDP, urbanization,	China	Economic growth plays a
	industrialization,		dominant role in the
	energy intensity		growth of CO ₂ emissions.
Zheng et al. (2019)	GDP, urbanization,	China	The positive impact of
	industrialization,		GDP, urbanization and
	population		industrialization on CO2
			emissions rises but is
			inconsistent between
			population and CO ₂
			emissions.
Nwaka et al. (2020)	Agricultural value-	ECOWAS region	Agriculture induced CO ₂
	added, renewable		emissions may emanate
	energy consumption,		from cultivation and
	industry value-added,		biomass use.
	economic growth		
Chou et al. (2019)	Labor, economic	26 South	Democracy has an
	output, capital input	American	important impact on the
		countries	reduction of national CO ₂
			emissions and brings a
			positive influence on
			energy efficiency.
Alola et al. (2020)	Real income per capita,	31 OECD	Urbanization, tourism, and
	international tourism	countries	economic growth upsurge

	arrivals, urbanization,		CO ₂ emissions in higher
	energy consumption		quantiles.
Akram et al. (2020)	Energy efficiency, per	66 developing	Energy efficiency has
	capita GDP, the square	countries	heterogeneous effects and
	of per capita GDP,		a robust negative effect on
	renewable energy,		carbon emissions.
	nuclear energy,		
	urbanization		
Luo et al. (2020)	Population, GRP per	China	Outward foreign direct
	capita, patent		investment had negative
	application,		effects on CO ₂ emissions
	urbanization, IFDI,		in China.
	OFDI		
Liu et al. (2019)	Energy consumption,	US	Higher-income inequality
	industry structure, per		increases US carbon
	capita GDP		emissions in the short
			term, whereas it promotes
			carbon reduction in the
			long term.
Chen et al. (2020)	GDP per capita, energy	17 G20 countries	In developing countries,
	consumption, FDI to		inequality has a
	GDP ratio, trade to		detrimental effect on CO ₂
	GDP ratio,		emissions another side

	urbanization,		most developed countries,
	population density		income inequality hardly
			affects CO ₂ emissions.
Cheng et al. (2021)	GDP per capita,	35 OECD	Technological innovation
	investment, renewable	countries	indirectly affects
	energy supply,		emissions by offsetting the
	development of patent		positive impact of
	technologies, export		economic growth.
	trade values		
Yu et al. (2020)	Renewable energy	China	China's renewable energy
	generation, energy		development has a limited
	intensity, energy		effect on its carbon
	structure, industrial		reduction but it becomes
	structure, GDP per		more and more obvious
	capita, urbanization		with time.
	rate		

282 **2.3. Theoretical Framework**

This section theoretically describes that how EPU and GPR affect CO_2 emissions. According to Jiang et al. (2019), there are two channels/ effects that link EPU with CO_2 emissions: (1) direct policy adjustment effect; (2) indirect economic demand effect. The direct policy adjustment effect expounds that increase in EPU averts the focus of policymakers from environmental quality to economic stability. As a result, CO_2 emissions escalate in the economy. Parallel to this, the indirect economic demand effect shows that EPU affects the decision-making
and economic behaviour of consumers and producers, which in turn raises the levels of energy
consumption. As a result, CO₂ emissions surge in the country.

Similarly, Wang et al. (2020) describe that EPU alters CO_2 emissions through consumption effect and investment effect. The consumption effect expounds that EPU impedes the use of energy (i.e., non-renewable energy) and carbon-emitting consumers' goods. As a result, CO_2 emissions will be decreased. On the contrary, the investment effect notes that EPU mitigates the investment in R&D, technological advancement, and innovation. Hence, CO_2 emissions will have surged.

Likewise, Yu et al. (2021) also developed three channels that link economic policies 297 uncertainty with CO₂ emissions. These three channels comprise the innovations channel; share of 298 fossil fuel energy channel; and energy intensity channel. Innovation channel shows that policy-299 related uncertainties lead to fewer innovations, thus, the level of CO₂ emissions will be 300 increased. Next, the share of fossil fuel channel describes that EPU surges the share of non-301 renewable energy in the energy mix, which leads to higher levels of CO₂ emissions. Moreover, 302 the energy intensity channel explains that EPU upsurges the energy intensity, which on the 303 contrary, intensifies levels of CO₂ emissions. 304

Parallel to this, Anser et al. (2021c) put forward escalating effect and mitigating effects of GPR, which link GPR with environmental degradation. According to escalating effect, GPR impedes R&D, technological advancement, and innovation. As a result of this, CO₂ emissions will be escalated. Conversely, mitigating effect reports that GPR plunges economic growth and energy consumption, hence, CO₂ emissions will be reduced.

310 **3. Data, Model and methodology**

311 **3.1 Model**

To evaluate the impact of human activities on environmental degradation, IPAT (I 312 (influence) = P (population), A (affluence), T (technology)) framework has extensively been 313 applied in empirical studies related to environmental economics. However, it has been noticed 314 that IPAT contains a few limitations: (1) due to its mathematical form, application of hypothesis 315 testing is not conceivable; (2) fixed proportionality through all independent variables is assumed 316 317 in IPAT framework, which is invalid; (3) IPAT model does not discriminate the relative 318 imperativeness of every independent variable (Anser et al., 2021a; York et al., 2003). To cover these aforementioned demerits, Dietz and Rosa (1994) develop stochastic impacts by regression 319 320 on population, affluence, and technology (STIRPAT) framework. The STIRPAT model in its general form is presented as follows: 321

322
$$I_{it} = \emptyset P_{it}^{\beta 1} A_{it}^{\beta 2} T_{it}^{\beta 3} \varepsilon_{it}$$
 (1)

In Eq. (1), *I* denotes influence (proxied by carbon dioxide emissions), *P* represents the population, *A* is affluence (proxied by GDP per capita), and *T* is technology (represented by energy consumption). Further, \emptyset denotes intercept, i is a cross-section (country in this study), t represents time, and ε is the error term. Also, β_i (i=1,2,3) is coefficient. We incorporate economic policy uncertainty and geopolitical risk in the STIRPAT model for this analysis.

328
$$I_{it} = \emptyset P_{it}^{\beta 1} A_{it}^{\beta 2} T_{it}^{\beta 3} EPU_{it}^{\beta 4} GPR_{it}^{\beta 5} \varepsilon_{it}$$
(2)

In Eq. (2), EPU represents economic policy uncertainty and GPR is geopolitical risk.
Also, β₄ and β₅ are the coefficients of EPU and GPR, respectively. After taking the logarithm of

all variables, and substituting *A*, *P*, *T*, and *I* for their proxies, the final equation (i.e., empirical
model of this study) is reported in Eq. (3):

333
$$LCO_{2,it} = \phi_{it} + \beta_1 LURB_{it} + \beta_2 LGDP_{it} + \beta_3 LNRE_{it} + \beta_4 LREN_{it} + \beta_5 LEPU_{it} + \beta_6 LGPR_{it} +$$

334 ε_{it} (3)

Where LCO_2 represents the log of CO_2 emissions (proxy of influence), LURB is the log 335 of urbanization (proxy of the population), LGDP denotes log of GDP per capita (proxy of 336 affluence), LNRE is the log of non-renewable energy consumption, LREN is the log of 337 renewable energy, LEPU denotes log of economic policy uncertainty (EPU), and LGPR 338 339 represents the log of geopolitical risk (GPR). It is worth mentioning that renewable and nonrenewable energy consumption is used as a proxy of technology (T). Further, ϕ is intercept, i is a 340 cross-section, t denotes period, and ε is the error term. In addition, β_i (i=1, 2,..., 6) is the 341 coefficient of the STIRPAT model. 342

343 **3.2 Methodology**

It is known that OLS regression renders an unbiased estimator with a minimum variance 344 if: (1) error term of OLS regression has zero mean, and it has identical distribution (i, i, d); and 345 346 (2) error term follows the normal distribution. According to De Silva et al. (2016), these aforementioned assumptions are not realistically provided the nature of economic variables in 347 real life. To cover the demerits of OLS regression, Koenker and Bassett (1978) presented 348 quantile regression. There exists several advantages of quantile regression: (1) the quartile 349 regression does not possess any assumption related to the occurrence of moment function (Zhu et 350 351 al., 2016); (2) quantile regression renders relatively accurate and robust results even in the case of outliers and fat tail distribution (Bera et al., 2016); (3) it does not develop any assumption 352

regarding the distribution (Sherwood and Wang, 2016). These aforementioned properties of quantile regression prompt this study to employ this methodology.

355
$$Q_{\nu i}(\emptyset|x_i) = x_i^{\prime} \alpha_{\emptyset}$$
(4)

Eq. (4) demonstrates the conditional quantile Y_i in a given x_i , however, \emptyset denotes the quantile. While using quantile regression methodology in panel data, unobserved heterogeneity is taken into account which prompts to employ panel quantile regression model with a fixed effect. This model enables us to control unobserved individual heterogeneity. The panel quantile regression model with fixed effect is mentioned as follows.

361
$$Q_{yit}(\phi_k | \varphi_i, x_{it}) = \varphi_i + x_{it}^{/} \alpha(\phi_k)$$
(5)

In Eq. (5), φ_i captures the fixed effect that also brings the incidental parameter problem (Lancaster, 2000). With fixed time-series observations for each cross-sectional unit, the estimator becomes inconsistent when the cross-sectional unit approaches infinity (Galvao and Kato, 2016). Thus, we can't use conventional linear approaches in the panel quantile regression model.

367 Koenker (2004) develops an approach that is known as the shrinkage method, to solve the
aforementioned problem of panel quantile regression. This method introduces a penalty term to
eliminate the unobserved fixed effects. The parameters of the model are estimated as follows.

370
$$(\hat{\alpha}(\phi_k,\eta), \{\varphi_i(\eta)\}_{i=1}^N) = \arg\min \sum_k^K \sum_t^T \sum_i^N \Omega_k \rho_{\phi k} (y_{it} - \varphi_i - x_{it}^{\prime} \alpha(\phi_k)) + \eta \sum_i^N |\varphi_i|,$$
 (6)

In Eq. (6), *i* and *t* represent country and year, respectively. Further, *k* represents the quantile however $\rho_{\phi k}$ shows the quantile loss functions. Moreover, Ω_k denotes the given weight that is assigned to k-th quantile. Also, Ω_k captures the contribution of different quantiles. Similar to Lamarche (2011), we also set $\Omega_k = 1/k$. In addition, η is tunning term/parameter that is used to plunge the individual effect to zero for better estimation of slope coefficients in the model. We also set the value of $\eta = 1$ as many studies, for instance, Zhu et al. (2018), set the value of $\eta = 1$.

378 **3.3 Data**

The present study aims to evaluate the impact of economic policy uncertainty and 379 geopolitical risk on CO₂ emissions in BRICST (Brazil, Russia, India, China, South Africa, and 380 Turkey) countries. We make use of panel data spanning 1990-2015 on annual frequency. The 381 382 dependent variable of the current study is CO₂ emissions (measured in metric tons per capita), whereas key independent variables/ regressors are economic policy uncertainty and geopolitical 383 risk. The world uncertainty index, which is calculated based on the frequency of articles 384 385 containing the "uncertainty" related words in Economic Intelligence Unit reports, is used as a 386 proxy for economic policy uncertainty. Recently, several studies employ this world uncertainty 387 index as a proxy to measure economic policy uncertainty (see, for example, Adams et al., 2020; 388 Wang et al., 2020; Anser et al., 2021a). On the other hand, the geopolitical risk index, which is also calculated based on the frequency of articles containing "geopolitics" related words in a 389 leading newspaper, is used as a proxy of geopolitical risk. Recently, many researchers use this 390 391 proxy such as Adams et al. (2020) and Anser et al. (2021b). The data on both variables (i.e., world uncertainty index and geopolitical risk index) are gathered from *policyuncertainty.com*. 392 393 Also, GDP per capita (measured in constant \$2010), urbanization (measured as a percentage of urban population), non-renewable energy (measured as oil equivalent per capita), and renewable 394

energy (measured as a share of renewables in total energy) are the control variables. Data on
these aforementioned variables and CO₂ emissions are collected from WDI (World Development
Indicators) database. The description of the data is reported in table 3.

Table 3: Summary of the data

Variable	Symbol	Measurement Scale	Source
Carbon dioxide emissions	LCO ₂	Metric ton per capita	WDI
Economic	LEPU	World uncertainty index which is based	Policyuncertainty.com
policy		on the frequency of articles containing	
uncertainty		"uncertainty" related words in EIU	
		reports	
Geopolitical risk	LGPR	Geopolitical risk index which is based	Policyuncertainty.com
		on the frequency of articles containing	
		"geopolitics" related words in the	
		newspaper	
Non-renewable	LNRE	Oil equivalent per capita	WDI
energy			
Renewable	LREN	Share of renewables in the energy mix	WDI
energy			
Urbanization	LURB	Percentage of urban population	WDI
GDP per capita	LGDP	Constant \$2010	WDI

400 Note: All variables are converted in logarithmic form. Further, WDI is World Development Indicators, while EIU is Economic
401 Intelligence Unit.

The descriptive statistics of the considered variables are reported in Table 4. As can be 402 seen from Table 4, the mean value of LURB is the highest, whereas it is the lowest for LEPU. 403 Similarly, the standard deviation of LURB is also the highest, while it is the lowest for LGPR. 404 405 The values of skewness elaborate that all variables have either positive or negative skewness 406 except for LNRE, which is neither positively nor negatively skewed. In the same way, kurtosis expounds that a few considered variables (e.g., LEPU) contain heavy/ fat tail. In addition, the 407 408 Jarque-Bera test reveals that all considered variables of this study contain non-normal distribution because the null hypothesis of normal distribution could be rejected for all variables 409 410 in this study.

	LCO2	LGDP	LREN	LNRE	LURB	LGPR	LEPU
Mean	0.57	3.66	1.28	3.16	8.07	3.08	-0.73
St. dev.	0.37	0.40	0.38	0.32	0.45	0.09	0.40
Skewness	-0.05	-0.97	-0.77	0.00	-0.03	0.57	-1.33
Kurtosis	1.87	2.48	2.55	2.18	1.84	3.04	6.81
Jarque-bera	(0.00)***	(0.00)***	(0.00)***	(0.00)***	(0.00)***	(0.02)**	(0.00)***

411 **Table 4**: Descriptive statistics

412

413 Note: (.) denotes probability value. Further, *, **, *** represent level of sig. at 10%, 5%, and 1%, respectively.

Apart from the Jarque-Bera test, we also employ a Q-Q plot to graphically show the distribution of the variables. In the Q-Q plot, the linear diagonal blue line shows the normal distribution, while the dotted line describes the deviation from the normal distribution. Fig. 4-10 elaborate that all selected variables have non-normal distribution.

418 [Insert figure 4-10 here]

Moreover, the pairwise correlation between all selected variables of this study is reported in Table 5. As can be seen from Table 5, the correlation of LCO₂ with LNRE and LURB is negative, while it is positive for all other variables. Additionally, correlation is the highest between LCO₂ and LNRE, which is 0.96. Also, it is the lowest between LCO₂ and LEPU, which is 0.08.

	LCO2	LGDP	LREN	LNRE	LURB	LGPR	LEPU
LCO2	1.00						
LGDP	0.58	1.00					
LREN	-0.88	-0.48	1.00				
LNRE	0.96	0.70	-0.87	1.00			
LURB	-0.43	-0.57	0.26	-0.43	1.00		
LGPR	0.14	0.11	-0.14	0.12	-0.21	1.00	
LEPU	0.08	0.43	-0.09	0.17	-0.45	0.07	1.00

424 **Table 5:** Correlation

425

426 **4. Results and Discussions**

427 This section presents the findings in detail. We follow the five-step procedure to report428 the findings in a plausible form.

In step-1, we probe the cross-sectional dependence (CD) using several tests (e.g., Pesaran CD test, Friedman CD test, and Frees CD test), and slope heterogeneity test by Pesaran and Yagamata (2008). In the panel dataset, CD refers to the spillover effect of a shock from one cross-section to another, and the proper scrutiny of CD is indispensable because its presence could lead to spurious findings (Pesaran, 2007). Parallel to this, ignoring slope heterogeneity may also lead to spurious outcomes. The findings from the CD tests and slope heterogeneity test are presented in table 6.

436 **Table 6:** Cross-sectional dependence tests

		CD test		Slope hete	erogeneity
				te	st
	Pesaran	Friedman	Frees	Δ	Δ _{Adj.}
	CD test	CD test	CD test		
LCO2=f(LGDP, LREN,	(0.02)**	(0.00)***	(0.02)**	112.32***	131.01***
LNRE, LGPR, LEPU, LURB)					

437 Note: (.) represents p-value. *, **, *** denote significance level at 10%, 5%, and 1%, respectively.

As can be seen from Table 6, the null hypothesis of no cross-sectional dependence could be rejected from all tests. Thus, it could be implied that there exists CD. Similarly, the findings from the slope heterogeneity test document that there exists slope heterogeneity since we could reject the null hypothesis of no slope heterogeneity.

442	In step-2, we probe the unit root/ stationary property of the variables. The application of
443	the unit root test is imperative for appropriate estimation/regression methodology, and reliable
444	results. There are several panel data unit root tests in the literature; however, most of them (e.g.,
445	LLC unit root test and IPS unit root test, etc.) do not cover the issue of CD. Hence, these tests
446	may lead to unreliable findings. On the contrary, the CIPS unit root test and CADF unit root test
447	cover both CD and heterogeneity, therefore, these tests outperforms other first-generation panel
448	unit root tests (i.e., LLC unit root test and IPS unit root test, etc.). Given the advantages of CIPS
449	and CADF unit root tests, we also apply these tests in this study. The findings from CIPS and
450	CADF unit root are reported in table 7, and it can be seen from table 7 that we could not reject
451	the null hypothesis of there is a unit root at I (0) or level form. On the contrary, we could reject
452	the null hypothesis at I (1) for all variables.

	CIPS test		CAD	F test
	Level	1 st difference	Level	1 st difference
LCO2	-2.01	-2.87	-2.13	-3.32
LGDP	-1.99	-2.90	-1.93	-3.78
LREN	-2.03	-3.46	-2.07	-2.64
LNRE	-2.32	-3.21	-2.48	-4.18
LGPR	-1.29	-2.65	-1.46	-3.36
LEPU	-2.38	-4.64	-1.39	-2.59

455	Tan	e /:	UIII	1001	ισδιδ

In step-3, we investigate whether there is a long-run (co-integration) relationship among 456 the selected variables of the study. In the prior literature, there are many panel co-integration 457 methods. However, conventional panel co-integration methodologies (e.g., Kao test and Pedroni 458 test, etc.) do not incorporate the issue of CD and heterogeneity, which could render spurious 459 results. To overcome the demerits of the first-generation (conventional) co-integration 460 461 methodologies, Westerlund (2007) test is developed which covers the problem of CD and heterogeneity. The results from Westerlund (2007) test are presented in table 8. Table 8 462 elaborates that the null hypothesis of no co-integration could be rejected for all four test 463 statistics. Thus, it could be stated that there exists a long-run relationship among the selected 464 variables of the study. 465

Statistic	Value	p-value
Gt	-11.01	0.00***
Ga	-8.32	0.00***
Pt	-10.83	0.00***
Pa	-4.97	0.00***

466	Table 8:	Westerlund	(2007)) test
			· - · · · ·	

467

468 *Note: *** indicates the level of significance at 1%.*

In step-4, this study employs an augmented mean group (AMG) estimator and the Common Correlated Effects Mean Group (CCEMG) estimator for long-run elasticity. The motivation behind applying AMG and CCEMG is twofold: (1) these aforementioned methodologies cover both the CD and heterogeneity issue (Pesaran, 2006; Adedoyin et al., 2021); (2) there is no need to examine the unit root and co-integration before applying these
methods (Anser et al., 2021b). Table 9 presents the findings from AMG and CCEMG estimators.

Variable	AMG estimator	CCEMG estimator
LGDP	0.13	0.17
LREN	-0.39***	-0.48***
LNRE	0.87***	0.81***
LURB	1.02	-2.44***
LEPU	-0.37	0.00
LGPR	-0.62	-0.05***

Table 9: Findings from AMG and CCEMG estimator

476

477 Note: *** indicates the level of significance at 1%.

Results from the AMG estimator reveal that all variables are statistically insignificant 478 except LREN and LNRE, which are statically significant at 1%. The value of LREN is -0.39, 479 which implies that a 1% increase in renewable energy plunges the CO₂ emissions by 0.39%. On 480 the other hand, the value of LERE is 0.87, indicating that a 0.87% increase in CO₂ emissions is 481 fostered by a 1% increase in non-renewable energy. By implication of the result, renewable 482 energy share among the panel countries (Brazil, Russia, India, China, South Africa, and Turkey) 483 importantly drives the environmental sustainability agenda while traditional energy such as fossil 484 fuel remained a setback to such aspired agenda. The respective evidence of the negative and 485

487

positive impact of renewable and non-renewable on environmental degradation has been widely illustrated in the literature (Bekun et al., 2019; Saint Akadiri et al., 2019; Usman et al., 2020).

On the contrary, the findings from the CCEMG estimator highlight that all variables are 488 489 statistically significant except LGDP and LEPU, which are statistically insignificant. Regarding LREN, the value of the coefficient is -0.48. This indicates that a 1% increase in renewable 490 energy impedes CO₂ emissions by 0.48%. The coefficient of LNRE is 0.81, which implies that a 491 492 0.81% surge in CO₂ emissions is fostered by a 1% rise in non-renewable energy consumption. 493 On the contrary, the value of LURB is -2.44, highlighting that a 1% increase in urbanization plunges CO₂ emissions by 2.44%. In the literature, there have been divergent and inconclusive 494 perspectives on the role of urbanization as a driver of environmental sustainability. For instance, 495 while Onifade et al (2021) affirm the desirable impact of urbanization on environmental quality 496 497 among the Organization of Petroleum Exporting Countries (OPEC), the studies of Asongu et al (2020) for Africa and Koyuncu et al (2021) for Turkey established a positive relationship 498 between urbanization and environmental degradation. Moreover, the coefficient of LGPR is -499 500 0.05, indicating that a 0.05% decrease in CO_2 emissions is fostered by a 1% rise in geopolitical risk. Given that Olanipekun and Alola (2020) hints that geopolitical risk hampers oil production 501 502 in the Persian Gulf region, the implication is geopolitical risk potentially mitigates environmental damage as supported in the current study. It is worth noting that AMG and CCEMG estimator is 503 504 mean based regression methodologies, and we find contrasting results from these aforementioned methodologies. 505

506 In step-5, we report the results from panel quantile regression which expectedly addresses 507 the drawbacks of the mean-based approach. Additionally, we present findings from the fixed-508 effects model to facilitate comparison. In table 10, the results from the fixed-effects model expound that all variables are statistically significant except LEPU, which is statistically insignificant. Further, it could be concluded that renewable energy plunges LCO_2 emissions, whereas the LGDP per capita, non-renewable energy, geopolitical risk, and urbanization contribute to high levels of CO_2 emissions.

Regarding the findings from panel quantile regression, we present the results at 10th, 20th. 513 30th, 40th, 50th, 60th, 70th, 80th, and 90th quantiles. There exists a positive impact of LGDP (log of 514 GDP per capita) on LCO₂ (log of CO₂ emissions per capita) across all quantiles, however, the 515 strength of the relationship is heterogeneous. Thus, we note that LGDP escalates LCO₂ in high-, 516 middle-, and lower-emission countries. It is worth noting that the impact of LGDP on emissions 517 is relatively strong at extreme quantiles (i.e., 10th and 90th), confirming that the impact of LGDP 518 is profound on countries with either higher or lower levels of emissions. Our finding is somehow 519 backed by the studies of Zheng et al. (2019). Further, there is the negative impact of renewable 520 energy (LREN) on CO₂ emissions (LCO₂) at all quantiles. Additionally, the relationship is 521 relatively strong at higher and lower quantiles (i.e., 10th, 20th, 80th, 90th). This implies that 522 renewable energy is a tool to impede CO₂ emissions, especially in higher and lower emission 523 countries. This depicts that higher emitter BRICST countries are on the right path of achieving 524 carbon neutrality through the use of renewables. This outcome is backed by the study of Yu et al. 525 (2020). Next, we conclude that LNRE (non-renewable energy) surges CO₂ emissions at all 526 quantiles. Although the strength of this relationship is heterogeneous at all quantiles yet there is a 527 profound impact of LNRE on CO₂ emissions at 10th and 20th quantiles. It is worth reporting that 528 nonrenewables consist of fossil fuels, which possess high carbon proportions. As a result, carbon 529 emissions will be increased in the BRICST countries. This conclusion is in line with the results 530 of Zhu et al. (2016). The results of LURB (urbanization) are slightly different from other control 531

variables. That is, there exists a negative relationship between LURB and CO₂ emissions at 532 lower quantiles, whereas the impact of LURB on CO₂ emissions is positive at middle and higher 533 534 quantiles. Hence, we note that LURB mitigates CO₂ emissions in lower emission countries, while LURB leads to high CO₂ emissions in high emissions countries. It might be possible that 535 in the low emitter countries, urbanization brings relatively better infrastructure, e.g., renewable 536 537 energy-based technologies, etc. Moreover, urbanization may propel individuals to demand a healthy environment. On the contrary, in higher emission countries, urbanization can also 538 539 increase the NREN, to meet the higher energy demand, and hence can contribute to emissions. These results are similar to the conclusion of Alola et al. (2020). 540

Concerning LEPU (economic policy uncertainty), there exists a negative effect of LEPU 541 on CO₂ emissions at lower and middle quantiles. Whereas, LEPU escalates the LCO₂ at higher 542 543 quantiles. Therefore, we report the heterogeneous impact of LEPU which is in contract with the positive relationship that has been largely revealed in the literature (Adedoyin & Zakari, 2020; 544 Anser et al., 2021a; Syed & Bouri, 2021; Yu et al., 2021). At lower and middle quantiles (i.e., 545 546 countries with relatively low emission levels), it could be reported that the strength of the consumption effect is higher than the other channels/effects. Hence, EPU plummets the use of 547 548 non-renewable energy and pollution-intensive goods, thereby reducing CO_2 emissions is relatively low emitter countries. Conversely, in high emission countries (at high quantiles), the 549 magnitude of the consumption effect is smaller than the other channels. This implies, EPU 550 plummets the investment in renewable energy, increases the share of non-renewable energy in 551 the energy mix, and escalates the energy intensity. As a result, the level of CO_2 emission surges 552 in high carbon emitter countries (i.e., China and Russia). Notably, China and India are among the 553 top emitters in the case of BRICST countries wherein economic uncertainty has also been 554

upsurging over the years. Parallel to this, the level of emissions in these countries is also rising, inferring that uncertainty in economic policies also causes carbon emissions. On the contrary, Brazil and Turkey are among the lowest emitters in the case of BRICST countries wherein emissions have witnessed meagre growth over time. Also, uncertainty related to economic policy in these aforementioned countries has relatively been plunging, inferring that EPU may cause detrimental impacts on emissions.

Additionally, the effect of LGPRU on LCO₂ is positive at 10th, 20th, 30th, and 40th 561 quantiles. While, there exists a negative effect of LGPR on LCO₂ at all other quantiles (1.e., 50th, 562 60th, 70th, 80th, and 90th). Moreover, the strength of the relationship plunges from the 10th to 40th 563 quantile, and then it increases from 50th to 90th quantile. At 10th, 20th, 30th, and 40th quantile, 564 escalating effect is dominant, implying that GPR discourages investment in R&D and renewable 565 energy. As a result, carbon emission escalates in low emitter countries. These findings are in line 566 with the conclusions of Anser et al. (2021b). On the other side, the strength of the mitigating 567 effect is relatively high at 50th-90th quantiles. This indicates that GPR impedes economic growth 568 569 and non-renewable energy consumption, thereby level of CO_2 emissions drop in high emitter countries. These findings are backed by the results of Adams et al (2020) and Anser et al. 570 (2021c). These findings note that, in low emitters (i.e., Brazil and Turkey), LGPR is one of the 571 critical drivers of emissions. On the contrary, in high emitter countries (i.e., China and India), 572 LGPR curbs emissions. 573

574

Variable	Fixed effects		Panel quantile regression							
		10 th	20 th	30 th	40 th	50 th	60 th	70 th	80 th	90 th
LGDP	0.410***	0.171***	0.040***	0.062***	0.102***	0.061***	0.045***	0.081***	0.041***	0.252***
LEPU	-0.001	-0.001***	-0.002***	-0.001***	-0.015***	-0.030***	-0.023***	0.037***	0.014***	0.018***
LGPR	0.038*	0.031***	0.019***	0.014***	0.003***	-0.001***	-0.013***	-0.017***	-0.018***	-0.035***
LREN	-0.241***	-0.191***	-0.206***	-0.113***	-0.153***	-0.191***	-0.152***	-0.163***	-0.212***	-0.228***
LNRE	0.851***	1.091***	0.969***	0.931***	0.893***	0.962***	0.953***	0.916***	0.954***	0.722***
LURB	1.401***	-0.269***	-0.092***	-0.291***	0.339***	0.096***	0.201***	0.453***	0.417***	0.257***

Table 10: Results from fixed effect and panel quantile regression model

577

578 Note: *, **, *** denote significance level at 10%, 5%, and 1%, respectively.

579	Table	11:	Summary	/ of	f find	dings	from	panel of	quantile	regressio	n
			-								

Variable	Low quantiles	Middle quantiles	High quantiles
	10 th , 20 th , 30 th	40 th , 50 th , 60 th	70 th , 80 th , 90 th
LGDP	+	+	+
LEPU	-	-	+
LGPR	+	-	-
LREN	-	-	-
LNRE	+	+	+
LURB	-	+	+

581 Note: "+" denotes a statistically significant and positive relationship, whereas "-"shows a negative and statistically 582 significant relationship. For this analysis we set $\lambda = 1$.

In Table 11, we summarize the findings from panel quantile regression. As can be seen that LGDP and LNRE positively affect LCO₂ at all quantiles, while LREN adversely affects LCO₂ across all quantiles. Moreover, at lower quantiles, LURB plunges LCO₂, while it surges LCO₂ at middle and higher quantiles. Regarding LEPU, it adversely affects LCO₂ at lower and middle quantiles. However, LEPU escalates LCO₂ at higher quantiles. On the contrary, LGPR impedes LCO₂ at lower and middle quantiles, whereas it surges LCO₂ at higher quantiles.

Furthermore, we probe the robustness of findings by setting different values of λ (i.e., λ = 0.9 and λ =1.5). The results are almost similar to our aforementioned findings when λ =1. To save the space we just mention the summary of panel quantile models at λ = 0.9, and 1.5. Table 12 presents the results as follows:

Variable	Low quantiles	Middle quantiles	High quantiles
	10 th , 20 th , 30 th	40 th , 50 th , 60 th	70 th , 80 th , 90 th
	λ=	0.9	
LGDP	+	+	+
LEPU	-	-	+
LGPR	+	-	-
LREN	-	-	-
LNRE	+	+	+
LURB	-	+	+
	λ=	1.5	
LGDP	+	+	+
LEPU	-	-	+
LGPR	+	-	-
LREN	-	-	-
LNRE	+	+	+
LURB	-	+	+

Table 12: Robustness check

595 Note: "+" denotes a statistically significant and positive relationship, whereas "-"shows a negative and statistically significant

relationship. All coefficients are statistically significant either at a 1% or 5% level of significance.

5. Conclusion

In recent times, economic policy uncertainty and geopolitical risk have escalated 599 exponentially, and these factors affect both the economy and the environment. Therefore, the 600 601 objective of this study is to investigate whether economic policy uncertainty and geopolitical risk impede CO₂ emissions in BRICST countries. We employ second generation panel data methods, 602 603 AMG and CCEMG estimator, and panel quantile regression model. We find that all variables are 604 integrated at I (1), and there exists co-integration among considered variables of the study. Moreover, we note that economic policy uncertainty and geopolitical risk have a heterogeneous 605 606 impact on CO_2 emissions across different quantiles. Economic policy uncertainty adversely 607 affects CO_2 emissions at lower and middle quantiles, while it surges the CO_2 emissions at higher quantiles. On the contrary, geopolitical risk surges CO₂ emissions at lower quartiles, and it 608 plunges CO₂ emissions at middle and higher quantiles. Further, GDP per capita, non-renewable 609 610 energy, renewable energy, and urbanization also have a heterogeneous impact on CO_2 emissions in the conditional distribution of CO₂ emissions. 611

Based on the aforementioned findings, we deduce a few policy implications reported asfollows:

(1) Since economic policy uncertainty impedes CO₂ emissions in low- and middle-emissions
countries, any attempt to control uncertainty in economic policies will raise the level of
CO₂ emissions. Therefore, policymakers should be well aware of the environmental
impacts that EPU can exert.

(2) Policymakers should initiate the measures to increase technological advancement and
 innovations if they want to simultaneously mitigate both CO₂ emissions and economic
 policy uncertainty;

621 (3) We report that economic policy uncertainty surges CO_2 emissions at high-emissions 622 countries, therefore, policymakers should control economic policy uncertainty to limit 623 CO_2 emissions in those countries. In this regard, they should introduce anticipated 624 economic policies. Also, the economic policies should be announced for next a few years 625 to eliminate the uncertainty;

- (4) Since external shocks (e.g., pandemics and economic crisis, etc.) contribute to EPU and
 hence emissions in high emitter countries, the policymakers need to devise plans to
 counter the environmental impacts of external shocks;
- (5) Policymakers should control geopolitical risk in low- and middle-emissions countries
 since there exists a positive relationship between geopolitical risk and CO₂ emissions. For
 this purpose, governments should initiate peace programs, sign peace treaties, and take
 measures to control terrorism, wars, and geopolitical conflicts;
- (6) In low and middle emissions countries, government officials should devise policies to
 control civil wars, impeachments, and religious & ethnic conflicts that boost geopolitical
 tensions and hence cause strong emissions;
- (7) There is a need to initiate cultural exchange programs, international student scholarship
 programs, and multinational peace summits to bring people together that may limit the
 conflicts among nations, which, in turn, helps to control emissions;
- 639 (8) International organizations (e.g., United Nations, etc.) should play their role to shrink the
 640 geopolitical tensions, which, in turn, can control emissions;
- 641 (9) Since geopolitical risk plunges CO₂ emissions at high-emissions countries, policymakers
 642 should seek alternatives (e.g., renewable energy, R&D investment, and restrictions on

643	pollution-intensive goods, etc.) to simultaneously control both CO ₂ emissions and
644	geopolitical risk;
645	(10) There should be restrictions on imports of goods that consume non-renewable
646	energy. Further, the share of renewable energy in total energy consumption should be
647	escalated by rendering different incentives. For instance, there should be tax exemption
648	on renewables imports. Next, investment in R&D related to renewable energy should also
649	be encouraged;
650	(11) To encourage renewables, proper policies related to feed-in-tariff should be
651	introduced.
652	
653	

654 **Declarations**

Acknowledgement: The authors acknowledge the participatory contribution of all respondentsto this study.

Funding: This research did not receive any specific grant from funding agencies in the public,commercial, or not-for-profit sectors.

Author Contributions: All authors strongly believe that they have made an equal and substantial contribution to prepare this manuscript. Qasim Raza Syed: Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Software, Visualization, Roles/Writing - original draft, Writing - review & editing. Roni Bhowmik: Conceptualization, Data curation, Investigation, Project administration, Resources, Supervision, Visualization,

664	Roles/Writing - original draft, Writing - review & editing. Festus Fatai Adedoyin:
665	Conceptualization, Investigation, Methodology, Supervision, Validation, Writing - review &
666	editing. Andrew Adewale Alola: Investigation, Methodology, Software, Supervision,
667	Validation, Writing - review & editing. Noreen Khalid: Data curation, Formal analysis,
668	Resources, Software, Roles/Writing - original draft.
669	Data Availability Statement: No new data were created or analyzed in this study. Data sharing
670	does not apply to this article.
671	Conflicts of Interest: The authors declare no conflict of interest.
672	Ethical Approval: This article does not contain any studies with human participants or animals
673	performed by any of the authors.
674	Consent to Participate: Not applicable.
675	Consent for Publication: Not applicable.
676	
677	
678	
679	

680 **References**

- Abbasi, K. R., & Adedoyin, F. F. (2021). Do energy use and economic policy uncertainty affect
 CO 2 emissions in China? Empirical evidence from the dynamic ARDL simulation
 approach. *Environmental Science and Pollution Research*, 1-13.
 https://doi.org/10.1007/s11356-020-12217-6
- Adams, S., Adedoyin, F., Olaniran, E., & Bekun, F. V. (2020). Energy consumption, economic
 policy uncertainty and carbon emissions; causality evidence from resource rich
 economies. *Economic Analysis and Policy*, 68, 179-190.
 https://doi.org/10.1016/j.eap.2020.09.012
- Adedoyin, F. F., Alola, A. A., & Bekun, F. V. (2021). The alternative energy utilization and
 common regional trade outlook in EU-27: Evidence from common correlated effects. *Renewable and Sustainable Energy Reviews*, 145, 111092.
 https://doi.org/10.1016/j.rser.2021.111092
- Adedoyin, F. F., & Zakari, A. (2020). Energy consumption, economic expansion, and CO2
 emission in the UK: The role of economic policy uncertainty. *Science of the Total Environment*, 738, 140014. https://doi.org/10.1016/j.scitotenv.2020.140014
- Akram, R., Chen, F., Khalid, F., Ye, Z., & Majeed, M. T. (2020). Heterogeneous effects of
 energy efficiency and renewable energy on carbon emissions: Evidence from developing
 countries. *Journal of Cleaner Production*, 247, 119122.
 https://doi.org/10.1016/j.jclepro.2019.119122
- 700 Akron, S., Demir, E., Díez-Esteban, J. M., & García-Gómez, C. D. (2020). Economic policy 701 uncertainty and corporate investment: Evidence from the US hospitality industry. Tourism Management, 77, 104019. 702 https://doi.org/10.1016/j.tourman.2019.104019 703
- Alola, A. A., Lasisi, T. T., Eluwole, K. K., & Alola, U. V. (2020). Pollutant emission effect of
 tourism, real income, energy utilization, and urbanization in OECD countries: a panel
 quantile approach. *Environmental Science and Pollution Research*, 28(2), 1752-1761.
 https://doi.org/10.1007/s11356-020-10556-y

- Alola, A. A., Ozturk, I., & Bekun, F. V. (2021). Is clean energy prosperity and technological
 innovation rapidly mitigating sustainable energy-development deficit in selected subSaharan Africa? A myth or reality. Energy Policy, 158, 112520.
- Anser, M. K., Apergis, N., & Syed, Q. R. (2021a). Impact of economic policy uncertainty on
 CO2 emissions: Evidence from top ten carbon emitter countries. *Environmental Science and Pollution Research*, 1-10. https://doi.org/10.1007/s11356-021-12782-4
- Anser, M. K., Syed, Q. R., & Apergis, N. (2021b). Does geopolitical risk escalate CO2
 emissions? Evidence from the BRICS countries. *Environmental Science and Pollution Research*, 1-11. https://doi.org/10.1007/s11356-021-14032-z
- Anser, M. K., Syed, Q. R., Lean, H. H., Alola, A. A., & Ahmad, M. (2021c). Do Economic
 Policy Uncertainty and Geopolitical Risk Lead to Environmental Degradation? Evidence
 from Emerging Economies. *Sustainability* (forthcoming).
- Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Energy consumption, CO2 emissions,
 and economic growth: An ethical dilemma. *Renewable and Sustainable Energy Reviews*, 68, 808-824. https://doi.org/10.1016/j.rser.2016.09.105
- Appiah, M. O. (2018). Investigating the multivariate Granger causality between energy
 consumption, economic growth and CO2 emissions in Ghana. *Energy Policy*, *112*, 198 208. https://doi.org/10.1016/j.enpol.2017.10.017
- Ashraf, B. N., & Shen, Y. (2019). Economic policy uncertainty and banks' loan pricing. *Journal of Financial Stability*, 44, 100695. https://doi.org/10.1016/j.jfs.2019.100695
- Asongu, S. A., Agboola, M. O., Alola, A. A., & Bekun, F. V. (2020). The criticality of growth,
 urbanization, electricity and fossil fuel consumption to environment sustainability in
 Africa. *Science of the Total Environment*, 712, 136376.
 https://doi.org/10.1016/j.scitotenv.2019.136376
- Bekun, F. V., Alola, A. A., & Sarkodie, S. A. (2019). Toward a sustainable environment: Nexus
 between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU
 countries. *Science of the Total Environment*, 657, 1023-1029.
 https://doi.org/10.1016/j.scitotenv.2018.12.104
- Bera, A. K., Galvao, A. F., Montes-Rojas, G. V., & Park, S. Y. (2016). Asymmetric laplace
 regression: Maximum likelihood, maximum entropy and quantile regression. *Journal of Econometric Methods*, 5(1), 79-101.

- Cai, Y., Sam, C. Y., & Chang, T. (2018). Nexus between clean energy consumption, economic
 growth and CO2 emissions. *Journal of Cleaner Production*, 182, 1001-1011.
 https://doi.org/10.1016/j.jclepro.2018.02.035
- Chen, J., Xian, Q., Zhou, J., & Li, D. (2020). Impact of income inequality on CO2 emissions in
 G20 countries. *Journal of Environmental Management*, 271, 110987.
 https://doi.org/10.1016/j.jenvman.2020.110987
- Chen, Y., Shen, X., & Wang, L. (2021). The Heterogeneity Research of the Impact of EPU on
 Environmental Pollution: Empirical Evidence Based on 15
 Countries. *Sustainability*, *13*(8), 4166. https://doi.org/10.3390/su13084166
- Cheng, C., Ren, X., Dong, K., Dong, X., & Wang, Z. (2021). How does technological innovation
 mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile
 regression. *Journal of Environmental Management*, 280, 111818.
 https://doi.org/10.1016/j.jenvman.2020.111818
- Chou, L. C., Zhang, W. H., Wang, M. Y., & Yang, F. M. (2019). The influence of democracy on
 emissions and energy efficiency in America: New evidence from quantile regression
 analysis. *Energy* & *Environment*, *31*(8), 1318-1334.
 https://doi.org/10.1177/0958305X19882382
- Danish, Ulucak, R., & Khan, S. U. D. (2020). Relationship between energy intensity and CO2
 emissions: Does economic policy matter?. *Sustainable Development*, 28(5), 1457-1464.
 https://doi.org/10.1002/sd.2098
- De Silva, P. N. K., Simons, S. J. R., & Stevens, P. (2016). Economic impact analysis of natural
 gas development and the policy implications. *Energy Policy*, 88, 639-651.
 https://doi.org/10.1016/j.enpol.2015.09.006
- Dietz, T., & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence
 and technology. *Human* Ecology Review, 1(2), 277-300.
 https://www.jstor.org/stable/24706840
- Frdoğan, S., Yıldırım, D. Ç., & Gedikli, A. (2019). Investigation of Causality Analysis between
 Economic Growth and CO. International Journal of Energy Economics and Policy, 9(6),
 430-438.
- Galvao, A. F., & Kato, K. (2016). Smoothed quantile regression for panel data. *Journal of Econometrics*, 193(1), 92-112. https://doi.org/10.1016/j.jeconom.2016.01.008

- Ha, J., Tan, P. P., & Goh, K. L. (2018). Linear and nonlinear causal relationship between energy
 consumption and economic growth in China: New evidence based on wavelet
 analysis. *PloS ONE*, *13*(5), e0197785. https://doi.org/10.1371/journal.pone.0197785
- Jiang, Y., Zhou, Z., & Liu, C. (2019). Does economic policy uncertainty matter for carbon
 emission? Evidence from US sector level data. *Environmental Science and Pollution Research*, 26(24), 24380-24394. https://doi.org/10.1007/s11356-019-05627-8
- Jin, X., Chen, Z., & Yang, X. (2019). Economic policy uncertainty and stock price crash
 risk. *Accounting & Finance*, 58(5), 1291-1318. https://doi.org/10.1111/acfi.12455
- Koenker, R. (2004). Quantile regression for longitudinal data. *Journal of Multivariate Analysis*, 91(1), 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
- Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. *Econometrica: Journal of the Econometric Society*, 33-50. https://doi.org/10.2307/1913643
- Koyuncu, T., Beşer, M. K., & Alola, A. A. (2021). Environmental sustainability statement of
 economic regimes with energy intensity and urbanization in Turkey: A threshold
 regression approach. *Environmental Science and Pollution Research*, 1-14.
 https://doi.org/10.1007/s11356-021-13686-z
- Kraft, J., & Kraft, A. (1978). On the relationship between energy and GNP. *The Journal of Energy and Development*, 401-403. https://www.jstor.org/stable/24806805
- Lamarche, C. (2011). Measuring the incentives to learn in Colombia using new quantile
 regression approaches. *Journal of Development Economics*, 96(2), 278-288.
 https://doi.org/10.1016/j.jdeveco.2010.10.003
- 791 Lancaster, T. (2000). The incidental parameter problem since 1948. *Journal of Econometrics*, 95(2), 391-413. https://doi.org/10.1016/S0304-4076(99)00044-5
- Liu, C., Jiang, Y., & Xie, R. (2019). Does income inequality facilitate carbon emission reduction
 in the US?. *Journal of Cleaner Production*, 217, 380-387.
 https://doi.org/10.1016/j.jclepro.2019.01.242
- Liu, H., Lei, M., Zhang, N., & Du, G. (2019). The causal nexus between energy consumption,
 carbon emissions and economic growth: New evidence from China, India and G7
 countries using convergent cross mapping. *PloS ONE*, *14*(5), e0217319.
 https://doi.org/10.1371/journal.pone.0217319

- Luo, Y., Lu, Z., & Long, X. (2020). Heterogeneous effects of endogenous and foreign innovation
 on CO2 emissions stochastic convergence across China. *Energy Economics*, *91*, 104893.
 https://doi.org/10.1016/j.eneco.2020.104893
- Menegaki, A. N. (2011). Growth and renewable energy in Europe: A random effect model with
 evidence for neutrality hypothesis. *Energy Economics*, *33*(2), 257-263.
 https://doi.org/10.1016/j.eneco.2010.10.004
- Mirza, F. M., & Kanwal, A. (2017). Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis. *Renewable and Sustainable Energy Reviews*, 72, 1233-1240. https://doi.org/10.1016/j.rser.2016.10.081
- Nwaka, I. D., Nwogu, M. U., Uma, K. E., & Ike, G. N. (2020). Agricultural production and CO2
 emissions from two sources in the ECOWAS region: New insights from quantile
 regression and decomposition analysis. *Science of The Total Environment*, 748, 141329.
 https://doi.org/10.1016/j.scitotenv.2020.141329
- Olanipekun, I. O., & Alola, A. A. (2020). Crude oil production in the Persian Gulf amidst
 geopolitical risk, cost of damage and resources rents: Is there asymmetric inference?.
 Resources Policy, 69, 101873. https://doi.org/10.1016/j.resourpol.2020.101873
- Onifade, S. T., Alola, A. A., Erdoğan, S., & Acet, H. (2021). Environmental aspect of energy
 transition and urbanization in the OPEC member states. *Environmental Science and Pollution Research*, 28(14), 17158-17169. https://doi.org/10.1007/s11356-020-12181-1
- Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor
 error structure. *Econometrica*, 74(4), 967-1012. ttps://doi.org/10.1111/j.14680262.2006.00692.x
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section
 dependence. *Journal of Applied Econometrics*, 22(2), 265-312.
 https://doi.org/10.1002/jae.951
- Pirgaip, B., & Dinçergök, B. (2020). Economic policy uncertainty, energy consumption and
 carbon emissions in G7 countries: Evidence from a panel Granger causality
 analysis. *Environmental Science and Pollution Research*, 27, 30050-30066.
 https://doi.org/10.1007/s11356-020-08642-2

- Qin, L., Kirikkaleli, D., Hou, Y., Miao, X., & Tufail, M. (2021). Carbon neutrality target for G7
 economies: Examining the role of environmental policy, green innovation and composite
 risk index. Journal of Environmental Management, 295, 113119.
- Rahman, M. M., & Kashem, M. A. (2017). Carbon emissions, energy consumption and industrial
 growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger
 causality analysis. *Energy Policy*, *110*, 600-608.
 https://doi.org/10.1016/j.enpol.2017.09.006
- Saint Akadiri, S., Alola, A. A., Akadiri, A. C., & Alola, U. V. (2019). Renewable energy
 consumption in EU-28 countries: Policy toward pollution mitigation and economic
 sustainability. *Energy Policy*, 132, 803-810. https://doi.org/10.1016/j.enpol.2019.06.040
- Salman, M., Long, X., Dauda, L., Mensah, C. N., & Muhammad, S. (2019). Different impacts of
 export and import on carbon emissions across 7 ASEAN countries: A panel quantile
 regression approach. *Science of the Total Environment*, 686, 1019-1029.
 https://doi.org/10.1016/j.scitotenv.2019.06.019
- Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How
 urbanization affects CO2 emissions in Malaysia? The application of STIRPAT
 model. *Renewable and Sustainable Energy Reviews*, 57, 83-93.
 https://doi.org/10.1016/j.rser.2015.12.096
- Shan, S., Ahmad, M., Tan, Z., Adebayo, T. S., Li, R. Y. M., & Kirikkaleli, D. (2021). The role of
 energy prices and non-linear fiscal decentralization in limiting carbon emissions:
 Tracking environmental sustainability. Energy, 234, 121243.
- Sherwood, B., & Wang, L. (2016). Partially linear additive quantile regression in ultra-high
 dimension. *Annals of Statistics*, 44(1), 288-317. https://doi.org/10.1214/15-AOS1367
- Su, Z. W., Umar, M., Kirikkaleli, D., & Adebayo, T. S. (2021). Role of political risk to achieve
 carbon neutrality: Evidence from Brazil. Journal of Environmental Management, 298,
 113463.
- Syed, Q. R., & Bouri, E. (2021). Impact of economic policy uncertainty on CO2 emissions in the
 US: Evidence from bootstrap ARDL approach. *Journal of Public Affairs*, e2595.
 https://doi.org/10.1002/pa.2595

- Tiwari, A. K., Das, D., & Dutta, A. (2019). Geopolitical risk, economic policy uncertainty and
 tourist arrivals: Evidence from a developing country. *Tourism Management*, 75, 323-327.
 https://doi.org/10.1016/j.tourman.2019.06.002
- Usman, A., Ozturk, I., Ullah, S., & Hassan, A. (2021). Does ICT have symmetric or asymmetric
 effects on CO2 emissions? Evidence from selected Asian economies. Technology in
 Society, 67, 101692.
- Usman, O., Alola, A. A., & Sarkodie, S. A. (2020). Assessment of the role of renewable energy
 consumption and trade policy on environmental degradation using innovation accounting:
 Evidence from the US. *Renewable Energy*, 150, 266-277.
 https://doi.org/10.1016/j.renene.2019.12.151
- Wang, Q., Xiao, K., & Lu, Z. (2020). Does Economic Policy Uncertainty Affect CO2
 Emissions? Empirical Evidence from the United States. *Sustainability*, *12*(21), 9108.
 https://doi.org/10.3390/su12219108
- Westerlund, J. (2007). Testing for error correction in panel data. *Oxford Bulletin of Economics and Statistics*, 69(6), 709-748. https://doi.org/10.1111/j.1468-0084.2007.00477.x
- Xu, B., & Lin, B. (2016). A quantile regression analysis of China's provincial CO2 emissions:
 Where does the difference lie?. *Energy Policy*, *98*, 328-342.
 https://doi.org/10.1016/j.enpol.2016.09.003
- York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for
 unpacking the driving forces of environmental impacts. *Ecological Economics*, 46(3),
 351-365. https://doi.org/10.1016/S0921-8009(03)00188-5
- Yu, J., Shi, X., Guo, D., & Yang, L. (2021). Economic policy uncertainty (EPU) and firm carbon
 emissions: Evidence using a China provincial EPU index. *Energy Economics*, 94, 105071. https://doi.org/10.1016/j.eneco.2020.105071
- Yu, S., Hu, X., Li, L., & Chen, H. (2020). Does the development of renewable energy promote
 carbon reduction? Evidence from Chinese provinces. *Journal of Environmental Management*, 268, 110634. https://doi.org/10.1016/j.jenvman.2020.110634
- Zhang, Y. J., Jin, Y. L., Chevallier, J., & Shen, B. (2016). The effect of corruption on carbon 885 886 dioxide emissions in APEC countries: А panel quantile regression Social 887 analysis. *Technological* Forecasting and *Change*, 112, 220-227. https://doi.org/10.1016/j.techfore.2016.05.027 888

- Zhao, W., Zhong, R., Sohail, S., Majeed, M. T., & Ullah, S. (2021). Geopolitical risks, energy
 consumption, and CO2 emissions in BRICS: An asymmetric analysis. *Environmental Science and Pollution Research*, 1-12. https://doi.org/10.1007/s11356-021-13505-5
- Zheng, H., Hu, J., Wang, S., & Wang, H. (2019). Examining the influencing factors of CO2
 emissions at city level via panel quantile regression: Evidence from 102 Chinese
 cities. *Applied Economics*, *51*(35), 3906-3919.
 https://doi.org/10.1080/00036846.2019.1584659
- Zhu, H., Duan, L., Guo, Y., & Yu, K. (2016). The effects of FDI, economic growth and energy
 consumption on carbon emissions in ASEAN-5: Evidence from panel quantile
 regression. *Economic Modelling*, 58, 237-248.
- 899 https://doi.org/10.1016/j.econmod.2016.05.003
- Zhu, H., Xia, H., Guo, Y., & Peng, C. (2018). The heterogeneous effects of urbanization and income inequality on CO2 emissions in BRICS economies: Evidence from panel quantile regression. *Environmental Science and Pollution Research*, 25(17), 17176-17193. https://doi.org/10.1007/s11356-018-1900-y

905

907 Appendix

Figure 5: Q-Q plot of economic policy uncertainty

Figure 6: Q-Q plot of GDP per capita

Figure 7: Q-Q plot of geopolitical risk

Figure 8: Q-Q plot of non-renewable energy

Figure 9: Q-Q plot of renewable energy

