
Autocomplete Element Fields and
Interactive Synthesis System Development

for Aggregate Applications

CHEN-YUAN HSU

A thesis submitted in partial fulfillment of the requirements

of Bournemouth University for the degree of

Doctor of Philosophy

National Center for Computer Animation

Bournemouth University

July, 2020

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognize that its copyright rests with its author

and due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.

ii

Abstract

Aggregate elements are ubiquitous in natural and man-made objects and

have played an important role in the application of graphics, design and vi-

sualization. However, to efficiently arrange these aggregate elements with

varying anisotropy and deformability still remains challenging, in particular

in 3D environments. To overcome such a thorny issue, we thus introduce

autocomplete element fields, including an element distribution formulation

that can effectively cope with diverse output compositions with controllable

element distributions in high production standard and efficiency as well as

an element field formulation that can smoothly orient all the synthesized

elements following given inputs, such as scalar or direction fields. The pro-

posed formulations can not only properly synthesize distinct types of ag-

gregate elements across various domain spaces without incorporating any

extra process but also directly compute complete element fields from par-

tial specifications without requiring fully specified inputs in any algorithmic

step. Furthermore, in order to reduce input workload and enhance output

quality for better usability and interactivity, we further develop an interactive

synthesis system, centered on the idea of our autocomplete element fields,

to facilitate the creation of element aggregations within different output do-

mains. Analogous to conventional painting workflows, through a palette-

based brushing interface, users can interactively mix and place a few ag-

gregate elements over a brushing canvas and let our system automatically

populate more aggregate elements with intended orientations and scales

for the rest of outcome. The developed system can empower the users to

iteratively design a variety of novel mixtures with reduced workload and en-

hanced quality under an intuitive and user-friendly brushing workflow with-

out the necessity of a great deal of manual labor or technical expertise. We

validate our prototype system with a pilot user study and exhibit its applica-

tion in 2D graphic design, 3D surface collage, and 3D aggregate modeling.

iii

Contents

List of Figures . x

List of Tables . xi

Acknowledgements . xii

Declaration . xiii

1 Introduction 14

1.1 Overview . 14

1.2 Objectives . 19

1.3 Contributions . 26

1.4 Publications . 28

2 Related Works 29

2.1 Element Packing . 30

2.1.1 Mosaics . 31

2.1.2 Collages . 33

2.1.3 Glyphs . 35

2.1.4 Artistic Layouts . 36

2.1.5 Summary . 37

2.2 Element Modeling . 39

2.2.1 Arrangements . 40

2.2.2 Structures . 42

2.2.3 Aggregations . 43

2.2.4 Manufactures . 45

2.2.5 Summary . 46

iv

2.3 Field-Guided Element Placement 48

2.3.1 Graphic Design . 49

2.3.2 Hatching Illustration 50

2.3.3 Texture Synthesis . 51

2.3.4 Summary . 53

2.4 Interactive Design . 55

2.4.1 Drawings . 56

2.4.2 Paintings . 57

2.4.3 Visual Effects . 59

2.4.4 Modelings . 60

2.4.5 Distributions . 61

2.4.6 Summary . 62

3 Autocomplete Element Fields 64

3.1 Element Representation . 65

3.1.1 Element Samples . 65

3.1.2 Element Graphs . 66

3.1.3 Sample Attributes . 67

3.2 Element Exemplar . 68

3.3 Element Distribution Formulation 70

3.3.1 Sample Distribution 71

3.3.1.1 Data-Driven Process 72

3.3.1.2 Procedural Process 76

3.3.2 Conflict Check . 78

3.3.3 Graph Similarity . 79

3.4 Element Field Formulation . 80

3.4.1 Field Alignment . 82

3.4.2 Field Continuity . 83

3.4.3 Element Rigidity . 85

3.4.4 Rotation Constraint . 86

v

3.5 Synthesizer . 87

3.5.1 Initialization . 87

3.5.2 Iterations . 88

3.5.3 Output . 89

3.6 Formulation Evaluation . 93

3.6.1 Distribution Manipulation 93

3.6.2 Field Manipulation . 99

4 Interactive Synthesis System 106

4.1 Development Specification 107

4.1.1 Design Rationale . 107

4.1.2 Software Engineering 110

4.1.3 User Interface . 112

4.1.3.1 Brushing Canvas 113

4.1.3.2 Brush Operations 114

4.1.3.3 Control Panel 114

4.1.3.4 Element Palette 116

4.2 System Evaluation . 118

4.2.1 Iterative Design Procedure 118

4.2.2 Performance . 129

4.2.3 Limitations . 130

4.3 User Study . 131

4.3.1 Procedure . 131

4.3.1.1 Warm-up Session 131

4.3.1.2 Target Brush Session 132

4.3.1.3 Open Brush Session 132

4.3.1.4 Final Interview Session 133

4.3.2 Outcome . 133

4.3.3 User Feedback . 137

4.4 Other Applied Results . 139

vi

4.4.1 Pattern Design . 139

4.4.2 Solid Texturing . 141

4.4.3 Field Visualization . 141

5 Conclusion and Future Work 144

5.1 Conclusion . 144

5.2 Future Work . 147

References 149

Appendix A 161

Appendix B 162

vii

List of Figures

1.1 The examples about aggregate applications. 15

1.2 The examples about aggregate applications incorporating in-

put fields. 18

1.3 The element fields. 22

1.4 Autocomplete element synthesis following partial user speci-

fications. 23

2.1 The examples about element packing. 31

2.2 The examples about element modeling. 39

2.3 The examples about field-guided element placement. 48

2.4 The examples about interactive design. 55

3.1 The element representation. 66

3.2 The input element exemplars for the data-driven method. . . 69

3.3 The prediction displacement. 74

3.4 The power diagram. 77

3.5 The iteration process of our optimization procedure for the 2D

case. 91

3.6 The iteration process of our optimization procedure for the 3D

case. 92

3.7 The comparison between the data-driven process and the

procedural process. 94

3.8 The manipulation of element distributions. 96

viii

3.9 The enhancement of visual diversity of artistic works. 97

3.10 The ablation study. 98

3.11 The effect of the adaptive weight wo(s
′, s, i). 99

3.12 Multiple partial input fields. 100

3.13 The comparison between the one-step and two-step processes.102

3.14 The singularity handling. 103

3.15 The chaotic input field. 104

3.16 Dynamic input fields. 105

4.1 The user interface. 113

4.2 The control panel. 115

4.3 The element palette. 116

4.4 The brushing workflow. 119

4.5 The manipulation of the influence of the field continuity Ec term.120

4.6 The manipulation of dense and sparse element distributions. 121

4.7 The manipulation of spatially varying element distributions. . 123

4.8 The manipulation of tile-based element distributions. 124

4.9 Incoherent user strokes. 125

4.10 The manipulation of the initial orientations and scales of ag-

gregate elements. 126

4.11 The manipulation of misaligned element fields. 128

4.12 The outcome statistics. 133

4.13 The sample user study outputs for the 2D target. 135

4.14 The sample user study outputs for the 3D target. 136

4.15 The user feedback. 138

4.16 Tileable pattern design. 140

4.17 Solid texturing. 142

4.18 Field visualization. 143

A.1 The iteration process with the weight wo(s
′, s, i). 161

A.2 The iteration process without the weight wo(s
′, s, i). 161

ix

B.1 Dynamic input fields from 1 to 8 frames. 162

B.2 Dynamic input fields from 9 to 16 frames. 163

B.3 Dynamic input fields from 17 to 24 frames. 164

B.4 Dynamic input fields from 25 to 32 frames. 165

B.5 Dynamic input fields from 33 to 40 frames. 166

B.6 Dynamic input fields from 41 to 48 frames. 167

B.7 Dynamic input fields from 49 to 56 frames. 168

B.8 Dynamic input fields from 57 to 64 frames. 169

B.9 Dynamic input fields from 65 to 72 frames. 170

B.10 Dynamic input fields from 73 to 80 frames. 171

B.11 Dynamic input fields from 81 to 88 frames. 172

B.12 Dynamic input fields from 89 to 96 frames. 173

B.13 Dynamic input fields from 97 to 104 frames. 174

B.14 Dynamic input fields from 105 to 112 frames. 175

B.15 Dynamic input fields from 113 to 120 frames. 176

x

List of Tables

4.1 The synthesis timing. 129

xi

Acknowledgements

First of all, I deeply appreciate my family, especially my parents, for their

support and encouragement to me. During my study for a doctoral degree,

they always gave me full confidence and faith and made sure that I do not

have anything to worry about and can concentrate on doing what I want.

I am very thankful to Dr. Li-Yi Wei since my research project was mainly

guided by him. Dr. Li-Yi Wei gave me many helpful suggestions about the

direction of my research and assisted me in developing algorithms from the

beginning. With his valuable advice, I was able to step by step cultivate

my research capability and successfully publish high-quality papers in top

peer-reviewed conferences.

I would also like to give my deepest appreciation to my supervisors Profes-

sor Lihua You and Professor Jian Jun Zhang for their academic help. With

their great assistance, I could smoothly achieve my research project in a

very flexible process.

I am also grateful to Bournemouth University for offering me a comfortable

research environment. The university was able to sufficiently supply me with

not only essential study resources but also technical services, so I could

make steady and productive progress on my research project without dis-

ruption.

Finally, I would like to thank everyone I met in Bournemouth. You brought

me a memorable experience in my life. Wish you all have a good luck.

Thank you very much.

xii

Declaration

This thesis has been created by myself and has not been submitted in any

previous application for any degree. The work in this thesis has been un-

dertaken by myself except where otherwise stated.

xiii

1 Introduction

1.1 Overview

There can be no doubt that innovative interaction designs and techniques

are important and worth investigating, as novel and creative interaction

modalities are able to facilitate possible interface exploration and inspire

future device development. Over the past decades, a large number of in-

teractive technologies and systems have already been widely proposed in

various research areas, such as computer graphics and human–computer

interaction. It can also be seen that a certain portion of these interactive

technologies and systems have been successfully integrated into industrial

production or commercial products. Obviously, to develop an applicable

algorithm along with an intuitive and user-friendly interface for practical ap-

plications can be a popular and meaningful research topic for scientific ex-

perts and software engineers, and there also exist several top peer-reviewed

conferences, such as SIGGRAPH, SIGGRAPH Asia, CHI and UIST, for re-

searchers to publish their works related to this topic. Since a well-developed

framework for pragmatic usage can not only effectively assist both novice

users and professional technicians in the simplification of production work-

14

flows and the creation of sophisticated designs but also significantly im-

prove productive efficiency as well as resulting quality, it can be crucial and

essential to explore potential avenues and study usable schemes for un-

addressed usability issues or challenging interactivity tasks. Therefore, in

terms of the research presented in this thesis, the goal is to construct such

a well-developed framework, which includes relevant formulations and sys-

tem development, for interactive synthesis of discrete element textures for

aggregate applications across 2D and 3D output domains, and the aggre-

gate applications which we focus on here are the applications related to

packing or distributing a certain number of aggregate elements following

design intention into a target region with a specific shape for desired art-

works, such as graphic design, artistic collage, and aggregate modeling, as

exemplified in Figure 1.1.

(a) Maharik et al. (2011) (b) Hu et al. (2016) (c) Peytavie et al. (2009)

Figure 1.1: The examples about aggregate applications. Distinct types of

aggregate elements, such as letters in (a), numbers in (b), and rocks in (c),

can be respectively placed over 2D image planes for graphic design (a),

3D object surfaces for artistic collage (b), and 3D environmental scenes for

aggregate modeling (c).

Like these individual letters, numbers and rocks shown in Figure 1.1, aggre-

gate elements are omnipresent in man-made artistic works and can be ob-

15

served around natural environments as well. Since well-organized element

aggregations can be broadly exploited by artists and designers in a vari-

ety of applications, both practicable solutions and easy-to-use interfaces for

making such element aggregations are popular and still remain in high de-

mand. There are a great number of relative publications and academic liter-

atures presented for different research purposes, such as rendering (Meng

et al. 2015; Muller et al. 2016), modeling (Ma et al. 2011; Sakurai and Miy-

ata 2014; Roveri et al. 2015), simulation (Hsu and Keyser 2010, 2012), in-

teraction (Kazi et al. 2012, 2014), and design (Kim and Pellacini 2002; Gal

et al. 2007; Zou et al. 2016; Kwan et al. 2016). Moreover, in relevant in-

dustry sectors, several notable software packages, such as Adobe Photo-

shop, Adobe Illustrator, Autodesk Maya, and Autodesk AutoCAD, have also

been developed and released to offer designers and animators customized

user interfaces to properly deal with specific aggregate elements for illus-

tration designs and animation productions through either manual placement

or physically-based simulation. However, to reasonably transform concep-

tual ideas into concrete design outcomes, ordinary users still can not only

require adequate knowledge of crafting procedures and artistic skills in ad-

vance but also spend plenty of time and energy on production. It can be

noted that there is a lack of efficient algorithms and general user interfaces

for interactive authoring of aggregate elements with varying anisotropy and

deformability, especially within 3D output domains (Cho et al. 2007).

It is clear that manual placement of aggregate elements can allow users to

access full authoring freedom, but the users can demand to acquire essen-

tial understanding of technical expertise and make heavy efforts to repeti-

tively adjust the distributions, orientations and scales of individual aggregate

elements for final design outcomes in a tedious and energy-consuming pro-

cedure. While automatic batch computation in preceding approaches such

as (Ma et al. 2011; Sakurai and Miyata 2014; Saputra et al. 2018) can apply

16

in 2D or 3D output domains, it cannot provide sufficient authoring freedom

and desirable interactivity for users due to algorithmic limitations or expen-

sive computation cost. Even though there exist a handful of methods that

can automate interactive authoring of 2D sketched elements for pictorial

animations (e.g. (Kazi et al. 2012, 2014)), creators still need to individu-

ally place each brush stroke or position element collections step by step all

over the output domain. To efficiently distribute aggregate elements with

anisotropic shapes and various sizes across various domain spaces can

be significantly complicated, and the degree of difficulty of distributing such

aggregate elements can often notably increase along with the amount of

element anisotropy and the variety of element deformability. Consequently,

it can be observed that there have been a lack of good solutions that can

supply desirable interactivity without compromising user controls so far.

Furthermore, as exemplified in Figure 1.2, in order to better orient distinct

types of aggregate elements for desired element arrangements, existing el-

ement synthesis practices, such as (Maharik et al. 2011; Li et al. 2011; Ma

et al. 2011; Saputra et al. 2017), often have to incorporate full scalar or

direction fields into their algorithms as part of optimization, but it can be

difficult or inconvenient for ordinary users to acquire such full scalar or di-

rection fields either manually or automatically over arbitrary output domains,

in particular in 3D environments. The full input fields, even when automati-

cally computed by existing field design algorithms, may also force undesir-

able artifacts, such as misaligned aggregate elements near singular points

which can be reduced via singularity manipulation but cannot be entirely

avoided (Zhang et al. 2006; Palacios et al. 2017), and while separately em-

ploying alternative auxiliary production platforms or application softwares for

the generation of fully specified input fields, this extra process can signifi-

cantly break the natural artist workflow as well. Hence, being able to let

users handily create compelling element aggregations that can accordingly

17

match certain user specifications (e.g. scalar or direction fields) in high out-

put standard via a general design procedure without sacrificing performance

is more challenging and still remains an unaddressed problem.

(a) Saputra et al. (2017) (b) Li et al. (2011) (c) Ma et al. (2011)

Figure 1.2: The examples about aggregate applications incorporating input

fields. Aggregate elements with anisotropic shapes and various sizes are

oriented to follow certain directions for desired element arrangements.

In addition to the user specifications, another challenging task that users

can face for the creation of element aggregations is the controllability of

freely mixing specific aggregate elements for diverse output compositions.

Since preceding approaches lack the flexibility of directly manipulating the

distribution of aggregate elements and do not take user-interactive element

mixing into consideration either, it can be particularly tricky for creators to

optionally determine the entire element arrangements within arbitrary mix-

tures. As a result, in order to effectively sort out the aforementioned issues

and simultaneously address the requirement of both usability and interactiv-

ity, the ideal solution for element synthesis has to be efficient and versatile

enough to flexibly deal with aggregate elements with general shapes, dis-

tributions, and alignments over different output domains, and the interactive

synthesis system should also be user-friendly and intuitive enough for users

to iteratively design and explore a variety of output formations with desirable

appearances for practical applications without requiring a great deal of man-

ual labor or technical expertise from the users.

18

1.2 Objectives

As mentioned in (Reinert et al. 2013), to optimally pack an arbitrary set

of aggregate elements, especially those aggregate elements with varying

anisotropy and deformability, into a target output domain can be an NP-

hard problem (bin packing). In most instances, it can be time-consuming

to directly compute an accurate packing layout for arbitrary mixtures con-

sisting of distinct types of aggregate elements as described in (Kwan et al.

2016; Saputra et al. 2018), and the computational complexity of optimiz-

ing such a packing layout can further increase by the amount of element

anisotropy, the variety of element deformability, the output domain’s size,

shape and dimension, as well as given user specifications. To overcome

this challenging problem regarding element arrangements for better pro-

ductivity, our solution is designed to balance a tradeoff between synthesis

quality and performance so that the functionality of user interaction can be

adequately carried out. Therefore, we devise an element representation

that can properly characterize aggregate elements with varying anisotropy

and deformability by a set of element samples and graphs to reasonably re-

duce inter-element penetrations and strengthen intra-element connections

and specifically propose autocomplete element fields, which include an el-

ement distribution formulation that can effectively cope with diverse output

compositions with controllable element distributions across various domain

spaces as well as an element field formulation that can smoothly orient all

the synthesized elements following given specifications such as scalar or

direction fields.

Our element distribution formulation, which contains a data-driven method

(Hsu et al. 2018) and a procedural approach (Hsu et al. 2020), concentrates

on effectively distributing aggregate elements with anisotropic shapes and

19

various sizes in high synthesis quality and performance within the target

output domain. Analogous to previous example-based algorithms (Ijiri et al.

2008; Ma et al. 2011; AlMeraj et al. 2013; Landes et al. 2013; Roveri et al.

2015; Guérin et al. 2016; Davison et al. 2019), our data-driven method can

appropriately synthesize the aggregate elements on the basis of given el-

ement distribution references captured in the input element exemplars, but

unlike these preceding example-based algorithms, which cannot allow to

freely mix desired aggregate elements from multiple input element exem-

plars, our data-driven method can directly mix distinct types of aggregate

elements from different input element exemplars to arbitrarily form a variety

of novel mixtures. Nevertheless, since the data-driven method can demand

to individually prepare the input element exemplars in advance as a pre-

process, the preparation of such input element exemplars can significantly

increase user workload, and a higher level of technical expertise can also

be required to make relevant input element exemplars for corresponding ele-

ment distribution references. In order to further streamline work procedures,

we thus present the procedural approach that can not only fulfill faster com-

putation performance for interactive speed but also sufficiently provide more

functionality, such as the manipulation of user-specified element distribu-

tions, without heavy implementation workload. Similar to previous procedu-

ral techniques (e.g. (Kwan et al. 2016; Saputra et al. 2018)), our procedural

approach can also directly produce an assortment of mixtures composed of

specific aggregate elements without the need to prepare any input element

exemplars in advance, but unlike these prior procedural techniques, which

are not able to flexibly manipulate the aggregate elements’ distribution, our

procedural approach can versatilely deal with diverse output compositions

with dense, sparse or even spatially varying element distributions under the

same element synthesis process. On the basis of our element distribu-

tion formulation, aggregate elements with anisotropic shapes and various

sizes can be well synthesized to create compelling element aggregations

20

in satisfactory output standard and efficiency within 2D planes, 3D surfaces

and 3D volumes without needing to incorporate any additional solvers (e.g.

physically-based simulation).

Furthermore, while taking user specifications (i.e. scalar or direction fields)

into consideration, to reasonably match individual aggregate elements with

the given user specifications, existing element synthesis practices predomi-

nantly take a two-step process, which first requires to preprocess a full input

field and then forces all the synthesized elements to follow correspondingly.

However, such a two-step process can not only break the natural artist work-

flow but also may result in undesirable artifacts (i.e. misaligned aggregate

elements around singular points). In order to better orient these aggregate

elements with varying anisotropy and deformability for desired element ar-

rangements, our element field formulation focuses on adequately matching

all the aggregate elements with given inputs and adaptively smoothing the

overall element arrangements depending upon their inter- and intra-element

relationships at the same time through a one-step automatic optimization

process. As demonstrated in Figure 1.3, through directly optimizing each

aggregate element with the user-specified input together, the synthesized

elements can be more smoothly oriented with the intended element orienta-

tions and scales via the one-step automatic optimization process, whereas

the final outcomes created via the two-step process might not either prop-

erly reach the expected output standard or well reflect the original user in-

tention. Our element field formulation can automatically compute complete

element fields from partial user specifications (e.g. manual brush strokes or

presimulated orientation fields) without the necessity of fully specified input

fields in any algorithmic step and even support tunable controllability, such

as the manipulation of the topology of element fields, without requiring any

additional field preprocessing (e.g. field smoothing and interpolation). In

consequence, by means of our one-step automatic optimization process,

21

arbitrary mixtures consisting of specific aggregate elements with certain ori-

entations and scales can be entirely constructed in a productive and handy

manner without breaking the natural artist workflow or compromising the

output level of production.

(a) partially specified input (b) element fields computed from (a)

(c) full input field from (a) (d) element fields computed from (c)

Figure 1.3: The element fields. Given a partially specified input (a), our

one-step automatic optimization process (b) can directly compute smoother

element fields and more adaptively arrange distinct types of aggregate ele-

ments (i.e. deformable grasses and rigid leaves) than the two-step process

(d), which needs to process a full input field (c) from the partial input (a) in

advance via Laplacian smoothing (Zhang et al. 2006; Palacios et al. 2017)

and then compels all the synthesized elements to follow accordingly.

In addition to the formulations described above, to reduce input workload

and enhance output quality for better usability and interactivity, we further

develop an interactive synthesis system with our proposed formulations

to facilitate the creation of element aggregations for practical applications,

such as graphic design, artistic collage and aggregate modeling, across 2D

or 3D output domains. As exemplified in Figure 1.4, the developed system

22

can enable users to interactively arrange distinct types of aggregate ele-

ments over given output domains, automatically optimize the distributions,

orientations and scales of all the synthesized elements according to given

user specifications (e.g. partially user-specified brush strokes), and directly

compute complete and smooth outcomes that can appropriately reflect user

intention. With the interactive synthesis system, assorted output formations

with desirable appearances like Figure 1.4a can be correspondingly gener-

ated in accordance with personal preferences, whereas it can be fairly diffi-

cult if not impossible for users to accomplish such output formations through

preceding approaches.

(a) graphic design (b) artistic collage (c) aggregate modeling

Figure 1.4: Autocomplete element synthesis following partial user specifi-

cations. Our interactive synthesis system can be applied for different output

domains such as 2D planes (a), 3D surfaces (b), and 3D volumes (c), dis-

tinct types of aggregate elements, and various applications such as graphic

design (a), artistic collage (b), and aggregate modeling (c). The developed

system can automatically optimize the entire element distributions, orien-

tations and scales based on the partially user-specified brush strokes (a)

(inset), enable users to interactively arrange the element collections over

the output domain (b), and directly compute the volumetric output (c) from

a given surface direction field (see Figure 3.6).

Analogous to traditional painting workflows, through a palette-based brush-

23

ing interface, users can freely select single or even mix multiple aggregate

elements from an element palette, directly brush the selected elements over

a given canvas (e.g. 2D planar region or 3D object surface) and see the cor-

responding results interactively. Like common color palettes (e.g. in (Shug-

rina et al. 2017)), the combination of user-picked element collections can

also be subsequently saved as a new input entry into the element palette

for further reuse, and therefore the users are empowered to optionally cus-

tomize their own element palettes and remix the saved input entry with other

aggregate elements in a convenient and flexible procedure. Moreover, while

with several controllable parameters, ordinary users are able to iteratively

design diverse output compositions with reduced user workload and en-

hanced synthesis quality within different output domains under an intuitive

and user-friendly brushing workflow without sacrificing their authoring free-

dom. Our developed system, centered on the idea of the autocomplete

element fields, can effectively cope with aggregate elements with general

shapes, distributions, and alignments, sufficiently provide more usability and

interactivity than existing element synthesis practices, and let creators more

quickly and properly transform their conceptual ideas into concrete element

aggregations like Figure 1.4b without the requirement of a great amount of

manual labor or technical expertise. To evaluate the prototype system, we

perform a pilot user study and demonstrate its applications for both interac-

tive design and collage as well as batch modeling, with partial or full user

specifications.

In the end, the overall objectives we aim to achieve in this research study

are briefly summed up as follows:

• To carry out a literature survey, which includes existing element synthesis

practices and interactive design interfaces related to aggregate applica-

24

tions, to elaborate on challenging issues related to interactive authoring

of aggregate elements or unaddressed points (e.g. the manipulation of

user-specified element distributions).

• To devise a general framework, that can simplify the representation of

aggregate elements with varying anisotropy and deformability (i.e. by a

set of element samples and graphs), to effectively deal with a variety of

phenomena and output formations.

• To formulate a practicable solution, that can handle certain specifications

(i.e. scalar or direction fields), operate across different output domains

(i.e. 2D planes, 3D surfaces, and 3D volumes), support desirable con-

trols (e.g. the manipulation of the topology of element fields) and achieve

interactive speed, to facilitate the creation of element aggregations while

fulfilling satisfactory production standard.

• To develop a one-step automatic optimization process, that can not only

directly compute full outputs from partial inputs but also properly avoid

undesirable artifacts (i.e. element misalignments around singularities) and

well reflect design intention, to simultaneously reduce input workload and

enhance output quality.

• To implement an easy-to-use interface, that can provide sufficient user-

friendliness (e.g. brushing workflow) and intuitive interactivity (e.g. ele-

ment mixing), as an external plugin into a commercial application software

to match the natural artist workflow and more flexibly fit element synthesis

with interactive authoring.

• To evaluate both theoretical formulation and methodological design, detail

information about the system development, conduct a pilot user study for

measuring the usability of our prototype system and point out limitations

as well as potential future work.

25

1.3 Contributions

To sum up, the key contributions of the research presented in this thesis are

listed as follows:

1. An element distribution formulation: On the basis of our devised ele-

ment representation, the element distribution formulation, which includes

the data-driven method (Hsu et al. 2018) as well as the procedural ap-

proach (Hsu et al. 2020), can appropriately distribute aggregate ele-

ments with anisotropic shapes and various sizes, considerably reduce

the undesired overlaps between all the aggregate elements to a cer-

tain degree, effectively maintain each synthesized element’s appearance

without needing to integrate any additional solvers or processes and yet

significantly provide sufficient functionality to flexibly manipulate the dis-

tributions of the aggregate elements (e.g. dense, sparse or spatially-

varying element distributions) without either expensive computation cost

or heavy implementation workload.

2. An element field formulation: Our element field formulation, which is

able to be applied for both scalar and direction fields, can smoothly orient

distinct types of aggregate elements all over the output domain, properly

deal with the element arrangements around the singularities, more ade-

quately match the synthesized elements with the original user intention

and further supply the controllability for the topology of element fields

(i.e. smoother or less smooth element scales and orientations). Addi-

tionally, through compatibly combining the element field formulation with

the element distribution formulation together into a one-step automatic

optimization process, complete element fields can be automatically com-

puted according to inter- and intra-element relationships from given par-

26

tial specifications (e.g. partially user-specified brush strokes) without the

necessity of fully specified inputs in any algorithmic step.

3. An interactive synthesis system: Our interactive synthesis system,

to this day, is the first for interactive authoring of aggregate elements

with varying anisotropy and deformability for various applications within

different output domains. Analogous to traditional painting workflows,

through the palette-based brushing interface, creators are enabled to di-

rectly arrange user-picked element collections or automatically compute

full outcomes under an intuitive and user-friendly brushing workflow. With

adjustable parameters, ordinary users can iteratively design a variety of

novel mixtures consisting of specific aggregate elements with intended

orientations and scales without requiring a great deal of technical ex-

pertise or manual labor. Like common color mixing in a color palette,

user-interactive element mixing can be similarly fulfilled via the element

palette as well. The developed system can not only more naturally fit

element synthesis with interactive authoring but also significantly offer

users better usability and interactivity as compared with existing element

synthesis practices.

27

1.4 Publications

The research papers for this thesis have been published in peer-reviewed

journals and conferences as listed below:

1. Hsu, C.-Y., Wei, L.-Y., You, L. and Zhang, J. J., 2020. Autocomplete

Element Fields. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems, CHI ’20, 1–13. Available from: https:

//doi.org/10.1145/3313831.3376248 [Accessed 1 July 2020]

2. Hsu, C.-Y., Wei, L.-Y., You, L. and Zhang, J. J., 2018. Brushing Element

Fields. In SIGGRAPH Asia 2018 Technical Briefs, SA ’18. Available from:

https://doi.org/10.1145/3283254.3283274 [Accessed 1 July 2020]

3. Palacios, J., Roy, L., Kumar, P., Hsu, C.-Y., Chen, W., Ma, C., Wei, L.-

Y. and Zhang, E., 2017. Tensor Field Design in Volumes. ACM Trans.

Graph., 36(6). Available from: https://doi.org/10.1145/3130800.3130844

[Accessed 1 July 2020]

In brief, our data-driven method is first devised in (Palacios et al. 2017) to

synthesize aggregate elements with varying anisotropy and deformability for

tensor field visualization through a two-step process. Then, by combining

the data-driven method with the basic idea of our element field formulation

as proposed in (Hsu et al. 2018), the distributions, orientations and scales of

all the synthesized elements can be directly optimized based on partial user

specifications via a one-step automatic optimization process. Eventually,

our procedural approach with more complete formulations, evaluations and

applications is presented in (Hsu et al. 2020), and for better usability and

interactivity, the interactive synthesis system is consequently carried out.

28

2 Related Works

Here we carry out a literature review on recent advancements and existing

publications about element synthesis and interactive authoring. For better

clarification, we categorize related works into four major classifications: el-

ement packing, element modeling, field-guided element placement, and in-

teractive design. The element packing algorithms concentrate on optimally

packing a certain number of specific aggregate elements (e.g. graphical

primitives or image cutouts) into a target output domain. Therefore, in order

to acquire an ideal output with compact element distributions, the individual

aggregate elements often have to be deformed and resized accordingly to

best match the domain shape and minimize the empty space in the out-

put. While the element modeling methods focus on automatically comput-

ing output compositions with programmable or user-specified element dis-

tributions, both computer-generated geometric shapes (e.g. pentagons and

ellipses) and predefined element exemplars can be utilized to design com-

plicated mixtures with customized or special appearances (e.g. repetitive

structures or entangled details).

Furthermore, existing element synthesis practices often incorporate full in-

put fields, which can be preprocessed via either manual specification or

automatic computation, with their algorithms to better orient aggregate ele-

29

ments with anisotropic shapes and various sizes. In consequence, oriented

element arrangements can be accomplished based on such input fields as

described in relevant applications regarding the field-guided element place-

ment. Since both interface development and interaction modality can play

a vital role in the research field of human-computer interaction, in order to

more enhance the usability and interactivity of our interactive synthesis sys-

tem, it can be desirable and necessary to investigate practicable solutions

with general user interfaces related to the interactive design. In the following

sections, we thus elaborate the element packing in Section 2.1, the element

modeling in Section 2.2, the field-guided element placement in Section 2.3,

and the interactive design in Section 2.4 respectively.

2.1 Element Packing

A variety of element packing algorithms have been broadly investigated for

various applications, such as mosaics (Hausner 2001; Kim and Pellacini

2002; Dalal et al. 2006; Hu et al. 2016; Doyle et al. 2019), collages (Gal

et al. 2007; Huang et al. 2011; Kwan et al. 2016; Saputra et al. 2018),

glyphs (Xu and Kaplan 2007; Xu et al. 2010; Zou et al. 2016), and artistic

layouts (Schiftner et al. 2009; Reinert et al. 2013; Huang et al. 2014; Sapu-

tra et al. 2017), over different output domains, including 2D planes, 3D sur-

faces and 3D volumes. As illustrated in Figure 2.1, the mosaic approaches

aim to evenly partition the output domain space into a large number of small

pieces, followed by fully matching individual primitives with these partitioned

regions, while the collage methods tend to tightly place various objects with

specific shapes within the entire output domain. In addition, the glyph av-

enues utilize characters or symbols to shape or outline the contour of the

output domain, and for the artistic layouts, additional specifications like con-

30

straints and rules are required to correspondingly arrange the packed aggre-

gate elements. Below we briefly describe each element packing algorithm

and highlight open issues in existing practices.

(a) Doyle et al. (2019) (b) Saputra et al. (2018)

(c) Xu and Kaplan (2007) (d) Reinert et al. (2013)

Figure 2.1: The examples about element packing. By optimally packing ag-

gregate elements into a given container, compelling outcomes like mosaics

(a), collages (b), glyphs (c) and artistic layouts (d) can be produced.

2.1.1 Mosaics

Hausner (2001) presents an approach to pack similarly-shaped objects,

such as square tiles, following a derived direction field into a rectangular

image region. The approach utilizes a Voronoi diagram with a manhattan

metric to randomly divide the image region into several subregions and then

employs these subregions to contain individual objects. Subsequently, each

object is moved to the centroid of its corresponding Voronoi cell and aligned

31

with the direction field via an iterative process.

Kim and Pellacini (2002) propose a method to compactly fill an arbitrarily-

shaped container image with a set of arbitrarily-shaped image tiles. Similar

to (Hausner 2001), this method first constructs a centroidal Voronoi diagram

to partition the whole container and then initially places the image tiles into

the divided regions one by one on the basis of an energy-based frame-

work which includes color, gap, and overlap energy terms with adjustable

weights. In order to minimize the gaps and overlaps between the image

tiles, each image tile can be adaptively deformed according to its nearby

image tiles via a refinement phase.

By adopting an evenness metric and a tile adjustment step, Dalal et al.

(2006) introduce an improved technique to accommodate image tiles of

varying shapes, such as triangles and stars, within different image contain-

ers. Analogous to (Hausner 2001), this technique also constructs a Voronoi

diagram to initialize the placement of image tiles. However, instead of uti-

lizing the centroid of each Voronoi cell, the technique iteratively moves and

rotates each image tile to the position and orientation that can minimize the

sum of squared distances among the perimeter of this image tile and all

pixels inside its Voronoi cell.

Hu et al. (2016) propose a synthetic method to tightly tile a set of objects

with irregular shapes and different textures over curved surfaces. At the be-

ginning, the method randomly distributes a specified number of objects over

the base surface and properly shrinks the distributed objects to avoid any

overlap between each object. On the basis of this initial object distribution,

the surface can be divided into approximate Voronoi regions of the objects

via the chordal axis transform (Prasad 1997). In order to fulfill a better cov-

erage for the surface, each tiled object is repetitively inflated, shrunk, spun

32

and translated to best cover its corresponding Voronoi region. Through fur-

ther replacing and permutating certain objects with large uncovered regions

by more compatible candidate objects to minimize vacant holes, a compact

configuration can be optimized eventually.

Doyle et al. (2019) offer another synthetic method to create digital pebble

mosaics with a historical style over an image plane. The method first utilizes

simple linear iterative clustering with a modified distance metric to acquire

a number of segmented tiles. Subsequently, by smoothing these tiles into

rounded shapes, the input image content can be approximated with highly

expressive pebbles. Additionally, an extra height field generated from the

pebble contours via a Laplace equation can be further used to enhance the

final output details.

2.1.2 Collages

Huang et al. (2011) give an avenue to produce Arcimboldo-like collages that

can disguise a given source image with multiple image cutouts of arbitrary

shapes from the Internet while the selected image cutouts can still be rec-

ognizable in the source image. To achieve it, the avenue directly segments

the source image into several patches according to the mean-shift cluster-

ing method (Comaniciu and Meer 2002) at the beginning and then searches

for the best matching image cutout for each patch by measuring the consis-

tency of their color histograms and shapes.

Kwan et al. (2016) aim to compactly fill a given region with reasonably-sized

and irregular shapes. To accomplish this, a pyramid of arclength descriptor

is devised by Kwan et al. (2016) to facilitate efficient partial shape matching.

33

By continuously translating, rotating and scaling the selected shapes one by

one to match the given region in a progressive packing process, compact

collages can be carried out automatically. Moreover, for the improvement

of visual quality, an optional deformation step can be further included as a

postprocess to minimize the gaps and overlaps between all the shapes via

standard shape morphing.

Saputra et al. (2018) develop a system, called RepulsionPak, to explicitly

pack deformable instances of geometric elements picked from an element

library into a container shape for the generation of artistic compositions. In

the system, each geometric element is represented by a triangle mesh, and

during the initial element placement, a user-specified number of elements

with random orientations and minimized sizes are placed inside the target

container via blue noise sampling (Bridson 2007). Through a growth pro-

cess based on physically-based simulation, the meshes of all the elements

are gradually translated, rotated, enlarged and deformed until the target

container can be tightly filled with these geometric elements.

In 3D volumes, a computerized system devised by Gal et al. (2007) focuses

on packing a collection of 3D elements retrieved from a database of models

into a target shape to form expressive 3D compound shapes. The system

employs a partial shape matching algorithm to determine multiple matched

elements from a list of candidate elements, and by allowing users to man-

ually select the desired one, a 3D compound layout with expressive and

aesthetic aspects can be built accordingly.

34

2.1.3 Glyphs

Xu and Kaplan (2007) introduce a solution that concentrates on assembling

calligraphic letters with a few extra rendering styles into a container region.

The solution first adopts a level-set method to initially divide the container

region into several subregions and subsequently maps the specific letters,

such as English characters, into these subregions through a best-fit warping

approach.

Xu et al. (2010) provide an approach that can well approximate the main

line structure of a given image content by the shape of characters to auto-

matically generate structure-based ASCII art. The approach integrates an

alignment-insensitive shape similarity metric and a constrained deformation

metric together to determine the best-matched characters and simultane-

ously minimize the shape dissimilarity and deformation between the char-

acters and the reference image.

Zou et al. (2016) present an algorithm to directly create compact calligrams

that can have a balance among conveying the shape of a given input image

and the legibility of associated letters. This algorithm initially generates an

approximate text layout path within the input image outline according to cor-

responding color-coded letter anchors, and then the individual letters can

be collectively deformed based on the approximate path to best match the

image outline. To properly preserve the legibility of all the letters, a defor-

mation scheme with a legibility measure learned from crowdsourced data is

used to enhance overall readability as well as aesthetics. In addition, a post-

process for the final calligram refinement is also exploited so as to minimize

the gaps and overlaps between the letters.

35

2.1.4 Artistic Layouts

Reinert et al. (2013) design a system that can automatically arrange a small

number of graphical primitives on the basis of their visual properties, such

as size, anisotropy and brightness, across a 2D spatial target container. The

system is able to not only iteratively order the whole primitives but also in-

fer design intention from user-defined features (e.g. shape and texture) to

compute a balanced distance between each primitive while following artistic

goals derived from the design intention. Reinert et al. (2013) also devise

a projection from the space of visual properties into a lower-dimensional

layout space to achieve feature mapping for the design intention’s infer-

ence. Moreover, a generalization of centroidal Voronoi diagram is proposed

to evenly distribute the primitives with spatial extent, and in order to en-

able interactive exploration of different artistic layouts, a GPU computing

implementation is consequently utilized to accelerate the computation per-

formance of the iterative relaxation.

Saputra et al. (2017) develop a technique, called FLOWPAK, for packing

ornamental elements chosen from a library of templates into a container re-

gion. The technique first computes a full direction field from user-specified

directional guides within the container and then traces evenly-spaced stream-

lines with desired lengths in the field as a preprocess. During the initial

placement of ornamental elements, the target container is partitioned into

subregion blobs based on the preprocessed streamlines via an approxi-

mate generalized Voronoi diagram, and by using a shape matching step

to determine the best ornamental element for each blob, all the ornamen-

tal elements can be initially located within the corresponding blobs. Sub-

sequently, to improve the overall layout, each ornamental element can be

slightly rotated and deformed to gradually eliminate empty zones and make

36

the spacing more uniform via an iterative refinement process.

Schiftner et al. (2009) introduce an algorithm that can compute a triangle

mesh with the property of incircle packing for various circle pattern layouts

over arbitrary freeform surfaces. The algorithm aims to simultaneously opti-

mize the resulting quality of circle packing, the similarity between the trian-

gle mesh and the target surface as well as the boundary proximity of both

the triangle mesh and the target surface through a damped Gauss-Newton

approximation.

Huang et al. (2014) present an avenue that can automatically construct

3D well-structured layouts composed of mechanical elements from a given

database and properly reflect some of the design objectives without user

intervention. During the automatic construction, an artist-designed proxy

model is required to coarsely depict the desired domain shape consisting of

multiple separate proxy components, and an iterative unification algorithm

is exploited to repetitively adjust the assembled mechanical elements within

each proxy component. Furthermore, the avenue refers to a few graphic

design principles, such as unity, variety and contrast, to better emphasize

on internal element configuration.

2.1.5 Summary

It can be seen that the aforementioned element packing algorithms directly

optimize element packing layouts without taking interactivity or user-specified

element distributions, orientations and scales into consideration. As the de-

gree of difficulty of packing aggregate elements for arbitrary mixtures can

also increase by the amount of element anisotropy, the variety of element

37

deformability, the output domain’s size, shape and dimension, as well as

given user specifications, to interactively synthesize distinct types of ag-

gregate elements and simultaneously consider their individual distributions,

orientations and scales is much more challenging and still remains an open

problem, especially in 3D output domains (Cho et al. 2007).

Additionally, as described in (Kwan et al. 2016; Saputra et al. 2018), since

to explicitly calculate optimal element packing layouts can require significant

computation time and thus compromise interactivity, we formulate the auto-

complete element fields that can not only well balance between synthesis

quality and performance but also provide flexible manipulations to effectively

deal with a variety of phenomena and output formations. Unlike previous

element packing algorithms, which mainly concentrate on packing certain

types of aggregate elements (e.g. isotropic or rigid elements) within a sin-

gle type of output domain (e.g. only 2D planar regions), our element distri-

bution formulation can efficiently distribute aggregate elements with varying

anisotropy and deformability within different output domains, including 2D

planes, 3D surfaces and 3D volumes, as exemplified in Figure 1.4. With our

element field formulation, both inter- and intra-element relationships can be

taken into account to smoothly organize the overall element arrangements

across the entire output domain and match all the synthesized elements with

given user specifications at the same time. Through directly incorporating

the proposed formulations into the interactive synthesis system to facilitate

the creation of element aggregations, not only high functionality but also

satisfactory user-friendliness can be accomplished and user-specified ele-

ment distributions, orientations and scales can be adequately coped with

via a general design procedure as well.

38

2.2 Element Modeling

As demonstrated in Figure 2.2, modeling aggregate elements considering

their individual shapes and distributions can be applied for different applica-

tions, such as arrangements (Ijiri et al. 2008; AlMeraj et al. 2013; Landes

et al. 2013; Davison et al. 2019), structures (Li et al. 2011; Roveri et al.

2015; Loi et al. 2013; Santoni and Pellacini 2016), and aggregations (Pey-

tavie et al. 2009; Ma et al. 2011; Sakurai and Miyata 2014; Guérin et al.

2016), via either data-driven methods or procedural approaches, and by al-

lowing merging or overlapping the synthesized elements, fabricated objects

with desired appearances can be formed for practical manufactures (Zhou

et al. 2014; Zehnder et al. 2016; Chen et al. 2017; Dumas et al. 2018).

(a) Landes et al. (2013) (b) Santoni and Pellacini (2016)

(c) Guérin et al. (2016) (d) Dumas et al. (2018)

Figure 2.2: The examples about element modeling. By properly distributing

aggregate elements within the output domain, arrangements (a), structures

(b), aggregations (c) and manufactures (d) can be fulfilled respectively ac-

cording to demand.

39

Generally speaking, for the arrangements, predefined element exemplars

are needed in advance so as to form user-specified element distributions

through the data-driven methods, and about the structures, when with spe-

cific specifications (e.g. grammars, programs or examples), structured ele-

ment distributions can be organized for corresponding configuration outputs.

In terms of the aggregations, by reasonably distributing aggregate elements

which come from surroundings, natural details can be generated to design

and decorate environmental scenes. Moreover, the manufactures provide

alternative 3D printing algorithms to fabricate output formations with desired

appearances. Below we summarize the prior element modeling methods

and discuss unaddressed problems.

2.2.1 Arrangements

Ijiri et al. (2008) present an element arrangement system for creative design.

The system can produce large output patterns that have local relationships

and topologies similar to given reference inputs (e.g. small desired patterns)

via an example-based synthesis process. Ijiri et al. (2008) arrange the syn-

thesized elements on the basis of a combination of a local neighborhood

comparison that can search for the best matching element as well as a lo-

cal growth process that can avoid undesired structures. Through directly

employing a global relaxation to maintain the local characteristic of the re-

sulting patterns, the output patterns with smooth element arrangements can

be further acquired.

AlMeraj et al. (2013) offer a patch-based strategy that can well synthesize

geometric elements from a range of input element exemplars, especially

those whose element distributions are not too much regular, over a large

40

container region. This patch-based strategy first tiles the container with a

number of overlapping patch copies from the input element exemplar during

the initialization and subsequently utilizes a heuristic method to remove the

synthesized elements that have undesired overlaps with neighboring geo-

metric elements. In order to better retain the visual property of the input

element exemplar, an additional adjustment step is incorporated to repet-

itively modify local element densities and orientations for the final outputs

via an iterative process.

Another data-driven algorithm developed by Landes et al. (2013) can prop-

erly fill specified output domains with distinct types of aggregate elements

which originate from an input element exemplar. The data-driven algorithm

relies on proxy geometries, which are rougher versions of the real geome-

tries of individual aggregate elements, to represent the aggregate elements

by low-resolution polylines or meshes. Through exploiting spatial relation-

ship measurements between the synthesized elements for the enhance-

ment of element interaction modeling, aggregate elements with anisotropic

shapes and various sizes can be well distributed, and undesirable collisions

among them can also be effectively avoided.

Davison et al. (2019) implement a sketch-based system that can allow users

to design virtual objects consisting of a variety of discrete elements from

given input element exemplars on 3D surfaces. Analogous to (Ma et al.

2011), each discrete element can be represented by single or multiple point

samples. In the sketch-based system, a fast region-growing manner is

adopted to progressively synthesize new elements around previously syn-

thesized elements, and the sample-based neighborhood metric of Ma et al.

(2011) is extended to measure the similarity between pairs of the discrete

elements. As a consequence, the outcomes with similar element distribu-

tions to the input element exemplars can be appropriately produced over

41

the target surface.

2.2.2 Structures

Loi et al. (2013) propose a programmable technique for designing a large

variety of 2D structured textures. This technique relies on a set of com-

binable and extensible operators to factorize common element distribution

algorithms, such as Lloyd’s relaxation and dart throwing. The factorized for-

mulation can enable users to write their own texture programs to automate

the production of discrete textures with stylized structures by combining cor-

responding operators.

Santoni and Pellacini (2016) present a procedural method that can generate

2D tangle patterns composed of a collection of hierarchical and recursive el-

ements such as dots and curves. The procedural method similarly utilizes

a set of geometric, decorative and grouping operators to well express tan-

gle drawings with related group grammars. Through explicitly designing the

relevant grammars, the tangle patterns with desired structures can be pro-

duced correspondingly without the need to specifically represent individual

elements in advance.

Li et al. (2011) introduce an approach that can procedurally construct geo-

metric or organic patterns with a global structure over 3D manifold surfaces

according to the concept of field-guided shape grammars. By properly build-

ing on the shape grammars, the approach is able to automatically model

the structured patterns following a fully specified vector or tensor field in the

Euclidean plane. While further adopting additional collision detection and

shape merging steps, the local structures of the patterns can be appropri-

42

ately optimized.

General structures with repetitive element geometries in 3D output domains

can be accomplished by an example-based synthesis avenue (Roveri et al.

2015). The example-based synthesis avenue directly combines the sample-

based element representation of Ma et al. (2011) and a meshless element

representation together to indicate discrete and continuous element geome-

tries respectively. Analogous to (Ma et al. 2011), through a neighborhood

matching metric, Roveri et al. (2015) can also measure the structure simi-

larity between the given example geometries and the generated geometries

to progressively construct the structures composed of repetitive element ge-

ometries in the outputs.

2.2.3 Aggregations

Peytavie et al. (2009) propose a procedural tiling approach that can model

piles of rocks by a collection of aperiodic cube tiles without incorporating any

physically-based simulation. The approach modifies a corner cube gener-

ation algorithm (Lagae and Dutré 2006) to initially distribute a set of point

samples within the cube tiles and then subdivides the volumes of the individ-

ual cube tiles into small rock volumes on the basis of these distributed point

samples via the Voronoi diagram with an anisotropic distance function. After

utilizing an eroding process that can sculpt and carve all the rock volumes

and preserve adequate contact points between the rocks in the cube tiles,

the mesh of each rock can be subsequently generated through polygonizing

its rock volume.

Ma et al. (2011) introduce a data-driven method that can synthesize dis-

43

crete aggregate elements based on a user-prepared input element exem-

plar within a given output domain to form a large output with similar ap-

pearance to the input element exemplar. At the beginning, the data-driven

method adopts point samples to represent individual aggregate elements

and subsequently analyzes relative element properties and distributions

captured in the input element exemplar via these point samples. Then,

according to this analysis, Ma et al. (2011) devise a sample-based neigh-

borhood similarity metric to compute the distributions of the synthesized

elements in an iterative energy optimization framework. In addition, an ex-

tra physics solver can be optionally integrated into the optimization process

for the improvement of synthesis quality.

Sakurai and Miyata (2014) present a procedural avenue that can automat-

ically model heaps of arbitrary components, such as fruits and pebbles,

within a volumetric aggregate shape. To achieve it, the procedural avenue

involves a placement step that first determines the initial positions and ori-

entations of all the components through a dart throwing method as well as

a refinement step that can gradually reduce the interpenetrations between

the components by iteratively translating or even removing the overlapping

components.

Guérin et al. (2016) develop a unified framework for modeling large scenes

with a large number of natural details, such as grass tufts and leaves. In

the framework, a Ghost Tile structure is created to record numerous over-

lapping candidate objects in a tile and capture a precomputed graph that

can indicate the collisions between the candidates. Through traversing the

scene with the structure to determine the optimal candidate objects, the

natural details can be properly generated over given surfaces or volumes.

By means of further incorporating additional density fields into the genera-

tion process, the distribution density of different candidate objects can be

44

specified correspondingly.

2.2.4 Manufactures

Zhou et al. (2014) mainly concentrate on synthesizing decorative elements

from an input pattern exemplar along a specified curve for fabrication. With

topology descriptors, their synthesizer can automatically analyze and de-

compose the input pattern into a certain number of pieces for synthesis

optimization. Through directly assembling these pieces along the curve and

optimizing the topological properties and pattern geometries of the assem-

bled pieces, the final fabricated target with decorative element components

can be precisely constructed.

A computational tool developed by Zehnder et al. (2016) can be applied for

designing structurally-sound curve networks consisting of ornamental elas-

tic rods over complex surfaces. This tool can assist users in mapping planar

rods to arbitrary surfaces, avoiding undesired intersections, tackling con-

tacts, and detecting structural weakness. With a set of editing operations,

the users can then enhance the stability of the designed output target for

digital fabrication.

Chen et al. (2017) propose a method to automatically synthesize a set of

basic filigree elements, such as flower and leaf patterns, over a target sur-

face for digital fabrication. The method first employs the medial axis of each

filigree element to indicate its skeletal structure and then optimizes filigree

configurations on the basis of the skeletal structures of the synthesized el-

ements via a pattern matching energy, which can measure the synthesis

quality of the entire filigree pattern. During the optimization period, a non-

45

rigid deformation algorithm is exploited so as to better improve the contacts

and alignments between the filigree elements. By partially merging adjacent

overlapping elements in an inconspicuous way, the fabricated structure can

be connected firmly and sufficiently.

Dumas et al. (2018) present a technique to automatically create element

aggregations into structurally-sound objects that can be directly manufac-

tured by 3D printing machines. Similar to (Ma et al. 2011), the technique

also adopts a collection of point samples to represent rigid elements, but in

order to well deal with deformable elements, an additional articulated skele-

ton is necessarily embedded as extra deformation constraints for synthesis

optimization. To form printable element aggregations, Dumas et al. (2018)

depend on a density-based topology optimization process (Bendsoe and

Sigmund 2004), which includes a continuation scheme as well as a connec-

tion step, to iteratively move and rotate individual aggregate elements and

gradually decrease the gaps between the synthesized elements.

2.2.5 Summary

In general, on account of algorithmic limitations or expensive computation

cost, a majority of these element modeling techniques mostly concentrate

on automatic batch computation without providing sufficient user interaction

(e.g. user-interactive element mixing or the manipulation of user-specified

element distributions, orientations and scales), and for appropriate element

arrangements, multiple proposed algorithms such as (Ma et al. 2011; Li

et al. 2011; Roveri et al. 2015; Guérin et al. 2016) can demand to incor-

porate fully specified input fields with their algorithms as part of optimiza-

tion. Even though interactive speed can be accomplished by Roveri et al.

46

(2015) for certain aggregate elements (e.g. linear helix and chain) or by

Davison et al. (2019) for specific element arrangements (e.g. repeating el-

ement distributions), a general user interface with functional manipulations

for interactive authoring is not taken into consideration.

Furthermore, since the previous data-driven element modeling methods (Ijiri

et al. 2008; Ma et al. 2011; Landes et al. 2013; AlMeraj et al. 2013; Zhou

et al. 2014; Roveri et al. 2015; Guérin et al. 2016; Davison et al. 2019) rely

on the given input element exemplars to synthesize aggregate elements,

both synthesis quality and performance can be significantly confined by the

prepared input element exemplars, and element mixing among different in-

put element exemplars is not supplied either. Even if the prior procedu-

ral element modeling approaches (Peytavie et al. 2009; Li et al. 2011; Loi

et al. 2013; Sakurai and Miyata 2014; Santoni and Pellacini 2016; Zehnder

et al. 2016; Chen et al. 2017; Dumas et al. 2018) can directly distribute in-

dividual aggregate elements, the distributions of the synthesized elements

still cannot be flexibly manipulated. As compared with these preceding ele-

ment modeling techniques, our element distribution formulation can not only

freely mix distinct types of aggregate elements but also efficiently generate

diverse output compositions with dense, sparse or even spatially varying

element distributions over given output domains, and when assisted with a

palette-based brushing interface, aggregate elements following certain user

specifications can be reasonably accomplished under an intuitive and user-

friendly brushing workflow.

47

2.3 Field-Guided Element Placement

Obviously, aggregate elements following certain input fields (e.g. vector

or tensor fields) can be widely seen in a variety of popular applications,

such as graphic design (Hausner 2001; Maharik et al. 2011; Saputra et al.

2017), hatching illustration (Hertzmann and Zorin 2000; Palacios and Zhang

2007; Kalogerakis et al. 2012), and texture synthesis (Takayama et al. 2008;

Zhang et al. 2011; Ma et al. 2011; Li et al. 2011), in 2D or 3D output domains

as exemplified in Figure 2.3. In terms of these field-guided element place-

ment applications, there can be no doubt that it is important and necessary

to derive a complete and well-designed input field for adequate element

alignments due to the fact that the topology and resolution of the input field

can have a direct and significant influence on the overall quality of the re-

sulting element alignments, especially for those aggregate elements with

anisotropic shapes and various sizes.

(a) Hausner (2001) (b) Kalogerakis et al. (2012) (c) Takayama et al. (2008)

Figure 2.3: The examples about field-guided element placement. By ap-

propriately orienting anisotropic elements to pursue fully specified direction

fields, multiple applications like graphic design (a), hatching illustration (b)

and texture synthesis (c) can be achieved accordingly.

In the main, the full input fields generated in the graphic design applications

48

have to appropriately match either the color segmentation of a given image

or the contour of a container region in order to better express and preserve

recognizable features (e.g. boundary edges). While the hatching illustration

applications derive the smooth input fields from 3D object surfaces, depend-

ing on the point of view, elongated streamlines can be adaptively placed

and rendered for fine cross-hatching to illustrate the surface shapes. For

the texture synthesis applications, through tailored field design interfaces or

algorithms, both image and geometry textures with anisotropic or structural

properties can be better synthesized to follow the underlying input fields and

maintain the texture features at the same time. In the following, we focus on

describing the relationship between the placement of aggregate elements

and the generation of input fields and point out potential issues about the

field-guided element placement.

2.3.1 Graphic Design

As mentioned in Section 2.1.1, Hausner (2001) demands to incorporate a

derived direction field to control the orientations of all the square tiles across

the image domain region. Therefore, in order to obtain such a direction field,

Hausner (2001) evaluates the image gradients on the basis of information

about boundary edge features or optional user-specified curves within the

given image. Subsequently, through directly smoothing the directions of the

gradients via a Gaussian kernel, the resulting square tiles with a smooth-

looking flow can be correspondingly arranged according to the smoothed

image gradients.

A digital micrography design tool (Maharik et al. 2011) is developed for plac-

ing textual content (e.g. words or letters) following a smooth and singularity-

49

free vector field with low curvatures within a given region. Maharik et al.

(2011) first devise alternative user-imposed alignment constraints and then

integrate the method of Palacios and Zhang (2007) to completely generate

the desired vector field across the entire region. Furthermore, necessary

boundary conditions are also incorporated by Maharik et al. (2011) to make

sure that all the texts are able to be properly aligned with the region bound-

aries. Through individually computing the vector field within a collection of

user-extracted areas, a well-spaced text layout over the given region can be

formed accordingly.

As described in Section 2.1.4, a precomputed direction field is utilized by

Saputra et al. (2017) to arrange ornamental elements within a container

region. Saputra et al. (2017) adopt the N-RoSy field design algorithm of

Palacios and Zhang (2007) to construct the full direction field according to

the given directional guides (e.g. partially user-specified curves) and then

compulsively match the placed ornamental elements with this precomputed

direction field via a deformation scheme.

2.3.2 Hatching Illustration

In (Hertzmann and Zorin 2000), in order to better illustrate streamlines over

surfaces, a full input field for the definition of hatching directions has to be

supplied in advance. Thus, Hertzmann and Zorin (2000) directly compute a

raw principle curvature direction field (Interrante 1997) from the given sur-

face (e.g. a subdivision surface or an implicit surface) at the beginning and

then proceed an optimization procedure to smooth all the principle curva-

ture directions across the whole surface. After smoothing the direction field’s

topology, by evenly placing the streamlines along with the smoothed direc-

50

tion field on the surface as in (Jobard and Lefer 1997), a smooth cross-

hatching illustration can be rendered accordingly.

Palacios and Zhang (2007) provide a system for designing a N-way rota-

tional symmetry (N-RoSy) field on mesh surfaces and then apply the N-

RoSy field to pen-and-ink sketching. Palacios and Zhang (2007) employ

a relaxation technique (like in (Wei and Levoy 2001)) to initially generate

a complete N-RoSy field with a few singularities at the beginning and then

smooth the N-RoSy field with several topological editing operations. Analo-

gous to (Zhang et al. 2006), the system allows users to remove unwanted

singularities or move a singular point to a more desirable position to ac-

quire the smoothed N-RoSy field for streamline placement. In consequence,

smooth cross-hatching illustrations can be rendered eventually via the same

strategy as in (Hertzmann and Zorin 2000).

Kalogerakis et al. (2012) analyze pen-and-ink strokes from a given 3D ob-

ject’s hatching illustration to extract the corresponding per-pixel orientation

feature of the pen-and-ink strokes. Through directly mapping the extracted

orientation feature to the target object, an entire orientation field over the

target surface can be relatively computed via a machine learning frame-

work. Subsequently, the streamline placement algorithm of Hertzmann and

Zorin (2000) can be similarly adopted to render illustrations with fine cross-

hatching as well.

2.3.3 Texture Synthesis

Takayama et al. (2008) present a system that can fill a model with anisotropic

solid textures along a user-defined tensor field in 3D volumes. By means

51

of a customized sketch-based user interface, users are able to draw a few

brush strokes as inputs across the tetrahedralized mesh. Then, the system

can completely interpolate a volumetric tensor field based on the directions

of the brush strokes via Laplacian smoothing (Fu et al. 2007), and the axes

of the solid texture space can be respectively aligned with the corresponding

axes of the tensor field for the final output.

Zhang et al. (2011) propose an example-based avenue that can extract ge-

ometric structures from given 2D examples to synthesize solid textures that

match design intention (e.g. guiding lines) within 3D output domains. This

avenue also provides a sketch-based interface for users to incrementally

draw desired feature curves as specifications, and therefore a smooth ten-

sor field all over the output domain can be fully interpolated according to

the user-sketched feature curves via the Laplacian operator. Furthermore,

a correction scheme is further utilized in order to properly maintain the ge-

ometric structures presented in the given examples, so the resulting solid

textures can be well synthesized to follow the tensor field while keeping the

original texture features.

As mentioned in Section 2.2.2, a vector or tensor field is employed by Li

et al. (2011) for the appropriate alignment of shape patterns. Li et al. (2011)

respectively adapt the algorithms of Zhang et al. (2006) and Zhang et al.

(2007) for interactively designing desirable vector and tensor fields across

the output domains. While with a smoothing operation, a few unwanted

singular points in the fields can be correspondingly reduced to improve the

overall placement of the shape patterns.

Similarly, in (Ma et al. 2011), an extra orientation field also has to be in-

tegrated so as to well orient individual aggregate elements, and such an

orientation field can be either fully specified by hand or automatically gener-

52

ated by existing field interpolation algorithms. By directly incorporating the

orientation field as part of synthesis optimization, more interesting element

aggregations can be created accordingly.

2.3.4 Summary

It can be observed that in these field-guided element placement applica-

tions, their algorithms predominantly adopt a two-step process, which de-

mands to process a full scalar or direction field in advance and then compels

the entire aggregate elements to pursue correspondingly. However, it can

be difficult and inconvenient for ordinary users to fully specify such scalar

or direction fields across arbitrary output domains, especially in 3D environ-

ments. Even though the full input fields can be automatically preprocessed

by several field interpolation algorithms, desirable output standard or de-

sign intention might not be properly fulfilled as exemplified in Figure 1.3d,

especially when there can exist undesired singular points in the input fields.

While separately employing other standalone field design systems for the

generation of the fully specified input fields, users can demand to take extra

time and energy to learn essential understanding and knowledge regarding

the field design systems in advance and the natural artist workflow as well

as the production pipeline can be significantly compromised as well.

As a result, for better synthesis quality and production efficiency, we thus

propose the element field formulation that can completely construct smoother

element fields (e.g. Figure 1.3b) according to original user intention (e.g.

partial user-specified brush strokes) via our one-step automatic optimiza-

tion process without the requirement of fully user-specified input fields in

any algorithmic step. In contrast to these algorithms presented in the field-

53

guided element placement applications, our element field formulation is able

to effectively arrange aggregate elements with varying anisotropy and de-

formability within different output domains and appropriately match all the

synthesized elements with user-specified scalar or direction fields at the

same time. In addition, through properly enhancing the field continuity con-

dition in the one-step automatic optimization process, misaligned aggregate

elements around singular points in the output can be directly smoothed out

without the need to incorporate any additional field preprocessing (e.g. field

smoothing). Depending upon personal preferences, smoother, less smooth

or even incoherent element fields can also be flexibly dealt with without the

requirement of a great deal of technical expertise and manual labor from

users.

54

2.4 Interactive Design

Over the past few years, there have been a large number of interactive

design systems which are specifically developed for various applications,

such as drawings (Lu et al. 2012, 2014; Kazi et al. 2012, 2014), paintings

(Ritter et al. 2006; Lu et al. 2013; Lukáč et al. 2013, 2015), visual effects

(Schroeder et al. 2010; Chen et al. 2012; Xing et al. 2016), modelings

(Buron et al. 2015; Gay 2016a; Frehse 2018), and distributions (Emilien

et al. 2015; Guérin et al. 2016; Davison et al. 2019), as demonstrated in

Figure 2.4.

(a) Lu et al. (2014) (b) Lukáč et al. (2013) (c) Xing et al. (2016)

(d) Buron et al. (2015) (e) Emilien et al. (2015)

Figure 2.4: The examples about interactive design. A number of interac-

tive design systems have been developed for applications in drawings (a),

paintings (b), visual effects (c), modelings (d) and distributions (e). With

customized interfaces, users are able to create outcomes more efficiently.

Overall, the drawing systems can assist users in designing decorative or

55

animated illustrations with stylized appearances, while the painting systems

directly allow to interactively brush a 2D digital canvas with prepared image

or stroke exemplars. When with dynamic input fields or moving particles,

certain illustrative, painterly or motion effects for animations can be carried

out via the visual effect systems. Furthermore, through the modeling sys-

tems, geometric elements with textural details can be effectively modeled

onto surfaces of 3D objects, and in the distribution systems, by interactively

positioning a desired collection of 3D natural primitives at specified loca-

tions, complicated landscapes can be iteratively designed in accordance

with user intention. Below we mainly concentrate the discussion on inter-

active authoring interfaces as well as production workflows and emphasize

the aspect about human-computer interaction.

2.4.1 Drawings

Lu et al. (2012) present a data-driven approach to empower novice users

to produce expressive strokes with stylized trajectories via limited input de-

vices (e.g. mice and multitouch screens). By sufficiently gathering a library

of user strokes with 6 degrees of freedom (DOFs: 2D position, 1D rotation,

pressure, and 2D tilt) data, the data-driven approach allows users to use

less expensive hardware with lower DOF to draw 2-DOF strokes that can

look like the 6-DOF strokes in the library. Through applying this stylization

approach to line art and handwriting, a drawing system for interactive usage

can be designed specifically.

Another data-driven drawing system introduced by Lu et al. (2014) can en-

able users to generate highly structured decorative patterns following user-

sketched input paths. Similar to (Lu et al. 2012), the data-driven system

56

also builds a library of input stroke exemplars (i.e. geometric primitives) for

the synthesis of stylized strokes. With a drawing interface, users are em-

powered to interactively specify the overall output outline of a pattern, and

then the decorative pattern with a similar style to the input stroke exemplars

can be produced automatically.

Kazi et al. (2012) carry out a sketch-based system to facilitate interactive

design and manipulation of 2D pen-and-ink illustrations. Users can first

draw a small portion of sketched textures as well as an intended direction

path and subsequently let the sketch-based system automatically fill the

rest of empty space with the textures along the direction path while well

preserving the users’ personal design style.

Kazi et al. (2014) propose an animation tool that can allow users to draw

2D illustrations with kinetic elements, such as flying birds and falling leaves.

The users can directly sketch individual elements and a motion path, set an

element emitter which is automatically located at the starting point of the

motion path, and then let the element emitter emit the sketched elements

moving along the motion path. By further defining the scales and velocities

of the emitted elements, a rich set of motion elements can be generated to

depict continuous dynamic phenomena.

2.4.2 Paintings

Ritter et al. (2006) develop a painting system for generating 2D digital im-

ages with nature-looking effects through painting with a set of input texture

exemplars. Users can interactively paint an output region with a specific

texture selected in the input texture exemplars. With a layered painting

57

framework, which allows users to merge, intersect and overlap their tex-

tural strokes, the final output image with desired boundary appearance and

alpha information can be generated adequately.

Lu et al. (2013) present a data-driven painting system for interactively syn-

thesizing both brush strokes and complicated stroke interactions from a

collection of input stroke exemplars without incorporating physically-based

simulation. The painting system first scans numerous images of real media

such as isolated, overlapping or smudged brush strokes and then factorizes

the physical properties and behaviors of the captured stroke data into a li-

brary. Users are able to digitally paint a 2D image canvas with the captured

media and directly produce plausible artworks with a wide range of painterly

appearances.

Lukáč et al. (2013) propose an example-based digital painting tool that can

assist users in painting an output image with visual stylizations similar to

given input image exemplars. The users can initially set a few line features

in a reference source image and subsequently design corresponding lines

within a target image. The painting tool can consequently transfer relevant

textures derived from the source images to the target image via an auto-

matic content-aware fill procedure.

Lukáč et al. (2015) provide an example-based painting interface for inter-

actively drawing edge-aware directional textures. Through the painting in-

terface, users are enabled to transfer textural details of a selected source

image to a user-specified target shape. Moreover, in order to better con-

trol both global and local textural details in the output target, a direction

detection and authoring scheme is devised so as to assist the users in the

manipulation of textural directions. Therefore, the users can well generate a

variety of natural textures with desirable edge effects and interior structures

58

captured in the selected source image.

2.4.3 Visual Effects

Schroeder et al. (2010) carry out a sketch-based interface for creating illus-

trations of 2D vector fields, such as simulated fluid flows, without requiring a

great amount of mathematical background or programming expertise from

users. By means of translating hand-drawn marks related to an underlying

vector field, the users can explore the placement of streamlines with new vi-

sual designs and illustrate different styles of outputs that can be consistent

with the underlying field data.

Chen et al. (2012) propose a system for interactively designing 2D time-

varying vector fields over both planar regions and manifold surfaces for con-

trollable dynamic effects, including steerable crowd movement and painterly

animation. With this field design system, users can directly specify a few

flow descriptors, such as streamlines, pathlines, singularity paths and bifur-

cations, to generate the full time-varying vector fields. Through employing a

certain number of topological editing operations to modify the instantaneous

fields at specific times, the users can consequently obtain the desired time-

varying vector fields to smoothly control the instantaneous transformation of

the dynamic effects.

Xing et al. (2016) develop an interactive tool for designing dynamic effects,

such as fire and smoke, for 2D animated illustrations. Users can interactively

specify several motion paths along with a set of predefined moving elements

(i.e. flow particles with different velocities) to dynamically deform underlying

illustrations. In order to facilitate the creation of stylized animation effects,

59

the users can further record existing motion paths and subsequently apply

these recorded motion paths to other target illustrations through a motion

scripting interface.

2.4.4 Modelings

Buron et al. (2015) introduce a procedural method for interactively synthe-

sizing structured models, such as growth plants, on top of geometric sur-

faces. With a GPU-based implementation, users are empowered to dynam-

ically produce highly detailed textural models via a context-sensitive shape

grammars modeling system. Through an editing interface, the users can

directly guide the generation process and interactively paint the geometric

surfaces with the textural models in a production environment.

PhysX Painter (Gay 2016a), which is a 3ds Max plugin, is developed for

users to quickly populate scenes with 3D digital assets, such as metal gears,

through physically-based simulation. The users can freely select a few as-

sets, interactively brush the selected assets across the output domain and

progressively see the resulting simulation outcomes. The plugin can assist

the users in effectively creating piles of objects in less time and benefit the

production of natural scenes.

Another 3ds Max plugin, called AutoModeller Pro (Frehse 2018), adopts UV

mapping to appropriately position geometric elements, such as bricks and

wooden sticks, over surfaces. The plugin can not only automatically slice,

resize or deform the geometric elements at the borders of object surfaces

but also smoothly wrap these geometric elements around the curvature of

the target objects. With an editing interface, users can directly model ge-

60

ometries from a user-specified group of meshes on any objects with prede-

fined UV layouts.

2.4.5 Distributions

Emilien et al. (2015) present an example-based editing system for interac-

tively designing virtual worlds such as islands with trees. The editing system

can capture the distributions of given aggregate elements as well as struc-

tured graphs and then construct their interactions on the basis of the relative

distributions. By analyzing the captured information, users are enabled to

interactively arrange consistent content over specific regions via common

painting operations.

Guérin et al. (2016) implement a simple painting tool for interactive edit-

ing of 3D primitive details for the design of natural scenes (e.g. terrains).

Nevertheless, instead of the inside space of a target object, the painting

tool merely allows users to paint the target object’s surface with the primi-

tive details, and the editing process is still restricted on account of a lack of

user-friendly controls.

Davison et al. (2019) develop an interactive interface for arranging aggre-

gate elements within 2D planes and 3D surfaces. Users can first choose

a single input element exemplar from a palette and then interactively popu-

late the output domain with the chosen input element exemplar via common

brush operations.

61

2.4.6 Summary

It is obvious that these existing interactive design systems are mostly tai-

lored for specific applications in 2D planes or 3D surfaces. Although the 3ds

Max plugin (Gay 2016a) can deal with interactive placement of rigid objects

in 3D output domains via physically-based simulation, similar to previous

element packing algorithms, aggregate elements following user specifica-

tions (e.g. directions or scales) are not properly taken into consideration

aside from basic gravity and collision. Interactive texturing with a general

user interface for multiple applications across different output domains is

a more challenging problem and has received less attention until now, in

particular in 3D environments.

Analogous to a canvas-based palette tool (Schwarz et al. 2007), our interac-

tive synthesis system with a palette-based brushing interface aims to supply

users with general and functional authoring controls so that the users can

interactively produce desired element arrangements according to their de-

sign intention for various applications within different output domains under

an intuitive and user-friendly brushing workflow. To facilitate the creation

of element aggregations with reduced input workload and enhanced output

quality, the developed system is able to automatically compute complete

and smooth outcomes on the basis of partial user specifications without

the requirement of fully manual authoring. Like common color mixing in a

color palette (Shugrina et al. 2017), the users can similarly mix desired ag-

gregate elements with specific properties (e.g. element size and rigidity)

through an element palette and optionally customize their own personal el-

ement palettes as well. As compared with these existing interactive design

systems, our interactive synthesis system, focused on the concept of our

autocomplete element fields, can not only more naturally fit element syn-

62

thesis with interactive authoring but also significantly provide more usability

and interactivity for users to widely deal with a variety of phenomena and

output formations.

63

3 Autocomplete Element Fields

When given multiple input element exemplars {I1, . . . , Im} with specific ag-

gregate elements and optional distribution information, an output domain D

with desired shape and size, and a partially or fully specified scalar or direc-

tion field O over the output domain D, our goal is to automatically complete

a full output X composed of aggregate elements from the input element ex-

emplars such that all the aggregate elements within the output domain can

be well distributed and have smooth scales or orientations that match the

specified input field. In order to accomplish the goal, we therefore formu-

late a distribution objective Ee, which includes the data-driven method (Hsu

et al. 2018) and the procedural approach (Hsu et al. 2020), in the element

distribution formulation and a field objective Ef , which can be applied for

both scalar and direction fields, in the element field formulation to simulta-

neously observe the input element exemplars and the specified input field

for the final output. In the following sections, we introduce the devised ele-

ment representation in Section 3.1, describe the input element exemplar I

in Section 3.2, specifically detail the distribution objective Ee in Section 3.3

as well as the field objective Ef in Section 3.4, elaborate the optimization

process about our synthesizer in Section 3.5, and offer a summing-up eval-

uation about our proposed formulations in Section 3.6.

64

3.1 Element Representation

As inspired by Ma et al. (2011, 2013), in our element representation, each

aggregate element e can be individually represented by a set of element

samples. Nevertheless, only employing a set of element samples is not

sufficient enough to appropriately depict distinct types of aggregate ele-

ments, especially those aggregate elements with varying anisotropy and

deformability. As a consequence, in order to better characterize such ag-

gregate elements for element synthesis, we extend the prior sample-based

element representation along with relevant sample weights as well as el-

ement graphs to not only effectively reduce inter-element penetrations but

also firmly strengthen intra-element connections.

3.1.1 Element Samples

Since we characterize each aggregate element by a collection of element

samples, the total number of the element samples and their relative loca-

tions in the aggregate element are important. Ideally, we would like to use as

few element samples as possible while representing the aggregate element

as accurately and reasonably as possible. As exemplified in Figure 3.1, in-

stead of utilizing a certain number of unweighted element samples in (Ma

et al. 2011, 2013), we exploit a few element samples with related weights

to well characterize distinct types of aggregate elements, and by directly

considering these sample weights as bounding spheres in our element syn-

thesis process, the inter-element penetrations can be effectively reduced.

Depending on the requirement of synthesis quality and performance, the

number of these weighted element samples and their positions within an

65

aggregate element can be correspondingly determined in the element rep-

resentation. For example, in general, using more element samples to rep-

resent aggregate elements can more or less increase the synthesis quality,

but this can accordingly decrease the overall performance as well. Based

on our experiment, in most instances, in order to acquire a satisfactory bal-

ance between interactive speed and output standard for element synthesis,

the total number of the element samples of a single aggregate element can

range between 1 and 8.

(a) grass (b) leaf (c) semiquaver (d) treble clef

Figure 3.1: The element representation. The black dots individually indicate

the positions of element samples of each aggregate element. The radius of

each yellow circle stand for the sample weight ws, and the blue lines de-

note the element graphs. In the element representation, the distributions of

these weighted element samples in an aggregate element can be sparse

(a), dense (b), overlapping (c) or even hybrid (d). Both the element sam-

ples and graphs can be either manually specified by designers or directly

constructed by existing algorithms (Amenta et al. 2001; Wang et al. 2006;

Thiery et al. 2013; Li et al. 2015). In our current prototype, we set the ele-

ment samples and graphs via the manual specification.

3.1.2 Element Graphs

As illustrated in Figure 3.1, in our element representation, we further employ

a graph structure G, which is inspired by Sumner et al. (2007), to indicate

66

the connectivity among element samples and the relationship between the

shapes of aggregate elements and their element samples. As compared

with (Ma et al. 2011, 2013), which demand to integrate an extra physics

solver (Coumans 2013) with their algorithms to better cope with deformable

elements (e.g. noodles) for the improvement of synthesis quality (e.g. ele-

ment shape preservation), by applying this graph structure G in our element

representation, our synthesizer can directly synthesize rigid and deformable

elements in high production quality and efficiency without the need to incor-

porate any additional physics solvers or processes and reasonably dealt

with the intra-element connections to firmly preserve the shapes of the syn-

thesized elements in the final output.

3.1.3 Sample Attributes

In addition to the sample weight ws, each element sample s also contains

individual attributes such as a spatial position p, an orientation matrix o and

a scale c as well as extra information, such as a sample id, an element id

and an exemplar id. Note that the sample id indicates the index of this ele-

ment sample in the aggregate element, and the element id represents the

index of the aggregate element in the output, while the exemplar id means

the index of the input element exemplar where the aggregate element orig-

inates from. For the distribution objective Ee, the spatial position p is the

variable to optimize, while for the field objective Ef , the optimized variables

are the orientation matrix o and the scale c.

67

3.2 Element Exemplar

Since to distribute individual aggregate elements can be achieved through

either the data-driven method (Hsu et al. 2018) or the procedural approach

(Hsu et al. 2020), depending on which process to carry out, the input el-

ement exemplars can possess different information for element synthesis.

As the data-driven method aims to synthesize distinct types of aggregate

elements on the basis of given element distribution references over output

domains, the input element exemplars for the data-driven method have to

supply not only a certain number of identical aggregate elements {e1, . . . , el}

but also relative distribution information about these identical aggregate el-

ements. While the procedural approach can directly distribute aggregate

elements with anisotropic shapes and various sizes without requiring addi-

tional distribution information, each input element exemplar for the proce-

dural approach just contains only one specific aggregate element (like each

aggregate element in Figure 3.1) as the input primitive (i.e. polygon geom-

etry or vector graphics). Additionally, all the input element exemplars can

also capture other relevant information, such as the graph structures of the

corresponding aggregate elements, or even their individual image textures

and shaders.

In terms of the relative distribution information, as demonstrated in Fig-

ure 3.2, it can be observed that each input element exemplar can include a

certain number of the same kind of aggregate elements as the pure input

primitives for user-interactive element mixing (like pure colors for color mix-

ing), and in order to extract the element distribution references from the in-

put element exemplars, analogous to prior data-driven algorithms (Ma et al.

2011, 2013), we can also measure the inter-distances between the element

samples of each aggregate element in the input element exemplars. In other

68

words, each input element exemplar for the data-driven method can capture

the displacements between each element sample and its neighboring ele-

ment samples as the relative distribution information, and to determine the

neighboring element samples of each element sample, we can alternatively

adopt either a specified range (like in (Ma et al. 2011, 2013)) or an auxiliary

structure used in our procedural approach (see Section 3.3.1.2). Similarly,

according to the requirement of synthesis quality and performance, the total

number of aggregate elements and their relative distributions, orientations

and scales in each input element exemplar can be correspondingly deter-

mined as well.

(a) flat (b) minim (c) quaver (d) rest

(e) semibreve (f) semiquaver (g) sharp (h) treble clef

Figure 3.2: The input element exemplars for the data-driven method. Here

we demonstrate some of the input element exemplars we use. In general,

we regularly place distinct types of music symbols in the input element ex-

emplars and capture their relative distribution information via their element

samples. Note that the music symbols in the input element exemplars can

also be irregularly placed to acquire chaotic element distribution references

for element synthesis if there is need.

69

3.3 Element Distribution Formulation

To well synthesize distinct types of aggregate elements across different out-

put domains, both interpenetrations and intraconnections have to be prop-

erly taken into consideration for all the synthesized elements. In the element

distribution formulation, we specifically devise the distribution objective Ee

to appropriately distribute the aggregate elements while reasonably dealing

with such inter-element penetrations and intra-element connections, and

this distribution objective Ee consists of a sample distribution Ed term, a

conflict check Ek term, and a graph similarity Eg term.

More detailedly, the sample distribution Ed term aims to adequately dis-

tribute aggregate elements with anisotropic shapes and various sizes on

the basis of their element samples through either the data-driven method

(Hsu et al. 2018) or the procedural approach (Hsu et al. 2020), and the con-

flict check Ek term focuses on effectively reducing the inter-element pene-

trations, while the graph similarity Eg term concentrates on precisely pre-

serving the intra-element connections based on the element graphs of the

aggregate elements. Both the sample distribution Ed term and the conflict

check Ek term are employed to globally measure the overall quality of the

distributions of the synthesized elements (i.e. inter-element distributions) all

over the output domain, and the graph similarity Eg term is adopted to locally

maintain the coherence of intra-element connections for each aggregate el-

ement represented by multiple element samples. Thus, putting the sample

distribution Ed term, the conflict check Ek term and the graph similarity Eg

term together, we can have the distribution objective Ee as:

Ee = (Ed + Ek)⊕wgEg, (3.1)

70

where + means that the sample distribution Ed term and the conflict check

Ek term are minimized together, ⊕ indicates that the graph similarity Eg term

is minimized separately during the optimization process, and wg is a rela-

tive weight, which is set to 100 from our experiment, to firmly reconstruct

the graph structures of the synthesized elements from the distributions of

their element samples. More details about the optimization process can be

seen in Section 3.5, and in the following sections, to elaborate our distribu-

tion objective Ee, we detail the sample distribution Ed term, which includes

the data-driven process and the procedural process, in Section 3.3.1, the

conflict check Ek term in Section 3.3.2 and the graph similarity Eg term in

Section 3.3.3 respectively.

3.3.1 Sample Distribution

To properly place individual aggregate elements within a given output do-

main can be accomplished by directly distributing the element samples of

these aggregate elements via either the data-driven method or the proce-

dural approach. We thus define the sample distribution Ed term as an alter-

native form of a data-driven sample distribution Ed
d term for the data-driven

process and a procedural sample distribution Ep
d term for the procedural

process as follows:

Ed =

Ed
d for the data-driven process

Ep
d for the procedural process

. (3.2)

Based on whether the input element exemplars provide the relative distri-

bution information or not, we can directly determine which process to carry

out for element synthesis. Below we detailedly describe the data-driven

71

process for the data-driven sample distribution Ed
d term as well as the pro-

cedural process for the procedural sample distribution Ep
d term.

3.3.1.1 Data-Driven Process

The data-driven process depends on the given element distribution refer-

ences captured in the input element exemplars {I1, . . . , Im} to correspond-

ingly compute an output X with similar element distributions to the input

element exemplars. As inspired by Ma et al. (2011, 2013), to determine

whether the output can have the similar element distributions to the input el-

ement exemplars, we can directly measure the distribution similarity among

the output and the input element exemplars via the neighborhood distances

between the element samples of aggregate elements. Nevertheless, since

Ma et al. (2011, 2013) employ unweighted element samples to characterize

distinct types of aggregate elements, the neighborhood distance between

two element samples in (Ma et al. 2011, 2013) is directly calculated only

based on the positions of the element samples without considering inter-

sample relationships (i.e. the inter-sample distances associated with the

scales and weights of the element samples). Therefore, in (Ma et al. 2011,

2013), the distribution similarity among the output and the input element

exemplars may not be properly measured, especially for those aggregate

elements with anisotropic shapes and various sizes. In order to well deal

with such aggregate elements, Ma et al. (2011, 2013) consequently have to

integrate an additional physics solver (Coumans 2013) with their algorithms

for the improvement of synthesis quality.

In contrast to (Ma et al. 2011, 2013), in our data-driven process, we not only

include the position p of each element sample but also take the weight ws,

scale c and orientation o of the element sample into consideration to more

72

reasonably calculate the neighborhood distances between all the element

samples for the measurement of the distribution similarity. To compute the

neighborhood distance between two element samples, here we first define

the displacement between an element sample s and its neighboring element

sample s′ as:

p̂ (s′, s) = p (s′)− p (s) . (3.3)

Then, each neighborhood N centered at an element sample s with differ-

ences of all neighboring element samples Ns = {s′1, . . . , s′n} can be subse-

quently defined as:

N(s) = {p̂ (s′1, s) , . . . , p̂ (s′n, s)}. (3.4)

Furthermore, while an element sample from an input element exemplar is

denoted by si here, the element sample in the output is represented by

so. In consequence, as demonstrated in Figure 3.3, when a displacement

p̂(s′i, si) between two element samples si and s′i (i.e. the relative distribution

information described in Section 3.2) can be offered by the input element

exemplar, we can derive a prediction displacement p̃(s′i, si, s
′
o, so) between

two element sample so and s′o in the output from the displacement p̂(s′i, si)

as follows:

p̃ (s′i, si, s
′
o, so) = wω (s′i, si, s

′
o, so)o(so)p̂ (s′i, si) ,

wω (s′i, si, s
′
o, so) =

c(s′o)ws(s
′
o) + c(so)ws(so)

ws(s′i) + ws(si)
,

(3.5)

where wω(s′i, si, s
′
o, so) is an associated weight used to adaptively adjust

the prediction displacement p̃(s′i, si, s
′
o, so) based on the scales and weights

of the element samples among the input element exemplar and the out-

put. Note that in order to compatibly derive the prediction displacement

73

p̃(s′i, si, s
′
o, so), both the element samples so and si should originate from the

same kind of aggregate elements in the same input element exemplar (i.e.

the same exemplar id) and their sample ids should be the same as well,

while the neighboring element samples s′o and s′i do not have this limita-

tion as the neighboring aggregate elements can come from different input

element exemplars in an arbitrary mixture.

p(si)

p̂(s′i, si)

p(s′i)

(a) input element exemplar

p(so)

p̃(s′i, si, s
′
o, so)

p(s′o)

(b) output

Figure 3.3: The prediction displacement. Here each yellow ellipse individ-

ually stands for an aggregate element, and each aggregate element is rep-

resented by two element samples. According to the displacement p̂(s′i, si)

between a matching element sample si (blue) and its neighboring element

sample s′i in the input element exemplar (a), the prediction displacement

p̃(s′i, si, s
′
o, so) between an element samples so (red) and its neighboring el-

ement sample s′o in the output (b) can be derived correspondingly.

As a result, the neighborhood distance d (N(so),N(si)) for a pair of element

samples so and si can be formulated as:

d (N(so),N(si)) =
∑

s′o∈Nso

|p̂ (s′o, so)− p̃ (s′i, si, s
′
o, so)|

2
, (3.6)

where p̂(s′o, so) is the relative displacement between the element samples s′o

74

and so that we aim to solve here, and p̃(s′i, si, s
′
o, so) is a constant quantity. As

described in (Ma et al. 2011, 2013), by searching for the best matching ele-

ment sample si from the input element exemplar for each element sample so

in the output, we can minimize the neighborhood distance d (N(so),N(si))

for each pair of element samples so and si. Since to look for the best match

between two sets (i.e. N(so) and N(si)) can be considered as an assign-

ment problem (Ramshaw and Tarjan 2012), to exactly determine these best

matches for all pairs of the element samples so and si, we can employ the

Hungarian algorithm (Kuhn 1955) to solve this assignment problem as de-

scribed in (Ma et al. 2013). Hence, when given an input element exemplar I,

to acquire the output with similar element distributions to the input element

exemplar, the data-driven sample distribution Ed
d term can be subsequently

formulated as:

Ed
d (X, I) =

∑
so∈X

min
si∈I

d (N(so),N(si)) . (3.7)

Moreover, while considering the output X consisting of aggregate elements

from multiple input element exemplars {I1, . . . , Im}, the neighborhood dis-

tance d (N(so),N(si)) for each pair of element samples so and si should

be properly computed according to the corresponding input element ex-

emplars. Therefore, in terms of the multiple input element exemplars, the

data-driven sample distribution Ed
d term for arbitrary mixtures can be conse-

quently extended as follows:

Ed
d (X, {I1, . . . , Im}) =

∑
so∈X

min
si∈Iκ(so)

d (N(so),N(si)) , (3.8)

where κ(so) ∈ {1, . . . ,m}, and Iκ(so) means the input element exemplar

where the element sample so originates from (i.e. the element samples

so and si have an identical exemplar id).

75

3.3.1.2 Procedural Process

As described above, the data-driven process can synthesize individual ag-

gregate elements on the basis of the given element distribution references

captured in the input element exemplars. However, the input element exem-

plars for our procedural approach only contain a unique aggregate element

without providing extra distribution information, and thus to well distribute

distinct types of aggregate elements within a given output domain, the pro-

cedural process aims to directly balance the interspaces between the ag-

gregate elements by measuring the inter-distances between their element

samples. To fulfill this, we thus apply an auxiliary structure, called the power

diagram (Aurenhammer 1987), to effectively keep all the element samples

in a balanced distance to each other over the entire output domain. As

compared with former procedural algorithms (e.g. (Reinert et al. 2013; Sa-

putra et al. 2018)), which aim to explicitly compute the balanced distances

between the aggregate elements in 2D output domains, our procedural pro-

cess takes a simple and yet efficient strategy that can not only achieve the

comparably balanced distances between the synthesized elements across

different output domains but also sufficiently offer more flexibility without ex-

pensive computation cost or heavy implementation workload.

More detailedly, as the power diagram is a generalized form of the Voronoi

diagram and can be used to partition a given domain space into several

power cells based on a set of point sites with weights, we can also utilize

the power diagram to directly partition the output domain into a number of

power cells based on the weighted element samples of aggregate elements

and subsequently derive a potential position for each element sample from

the centroid of its corresponding power cell. As illustrated in Figure 3.4,

analogous to general Lloyd-like optimization methods, by iteratively mov-

76

ing each element sample to the potential position, well-distributed element

samples can be gradually acquired, and the procedural sample distribution

Ep
d term can be consequently formulated as:

Ep
d (X) =

∑
s∈X

|p (s)− centroid (s)|2 , (3.9)

where p(s) is the position of the element sample s that we want to solve,

and centroid(s) treated as a constant here represents the centroid of the

power cell of the element sample s. In addition, through further employing

this power diagram to acquire the neighboring power cells of each power

cell, we can accordingly determine a set of neighboring element samples

Ns for each element sample s as well.

sample

centroid

(a) centroid (b) triangulation

Figure 3.4: The power diagram. Here each yellow ellipse also individually

stands for an aggregate element, and each aggregate element is repre-

sented by two element samples with weights (green). It can be seen that by

utilizing the power diagram to partition the output domain (a), a potential po-

sition (purple) for an element sample (red) can be derived from the centroid

of the power cell of the element sample. A weighted Delaunay triangulation

(b), which is the dual graph of the power diagram, can be further employed

to construct the neighborhood information of each element sample.

77

3.3.2 Conflict Check

Since mixtures consisting of aggregate elements with anisotropic shapes

or various sizes (e.g. Figure 1.4a) may not have either the relevant ele-

ment distribution references captured in the input element exemplars or the

relevant domain space partitioned by the power diagram, in order to in-

crease overall synthesis quality for arbitrary mixtures, the conflict check Ek

term is exploited to effectively avoid the conflicts between the aggregate el-

ements by checking the distances between the weighted element samples

of the synthesized elements. As the distance between two element sam-

ples should not be less than the sum of their sample weights (which act like

bounding spheres as illustrated in Figure 3.1), the conflict check Ek term

can be formulated as follows:

Ek (X) =
∑
s∈X

∑
s′∈Ns

wk (s′, s) |p̂ (s′, s)−wX (s′, s) p̌ (s′, s)|2 ,

wk (s′, s) =

1 if wX (s′, s) > 1 and s ∈ e, s′ ∈ e′, e 6= e′

0 if wX (s′, s) ≤ 1 or s, s′ ∈ e

,

wX (s′, s) =
c(s′)ws(s

′) + c(s)ws(s)

|p̌ (s′, s)|
,

(3.10)

where Ns denotes a set of all neighboring element samples of the element

sample s as described in Section 3.3.1, p̂(s′, s) is the relative displacement

between the element samples s′ and s that we aim to solve, and p̌(s′, s)

stands for the current displacement between the element samples s′ and s

treated as a constant during the optimization process. Note that since the

aggregate elements may be characterized by a few overlapping element

samples, the conflict check Ek term ignores those element samples in the

same aggregate element, and this can be straightforwardly determined by

78

checking the element ids of the element samples. According to wX(s′, s),

which is a ratio about whether the element samples s′ and s can overlap,

the conflict check Ek term can be correctly applied to those element sam-

ples which can conflict with their neighboring element samples through a

conditional weight wk(s
′, s).

3.3.3 Graph Similarity

In addition to the global inter-element distributions, the local intra-element

connections should be properly taken into consideration as well. As a result,

the graph structure of each aggregate element represented by multiple ele-

ment samples has to be reconstructed as precisely as possible so as to rea-

sonably maintain the shape of the aggregate element. To well reconstruct

such a graph structure, we can minimize the graph distance d(G(s),G′(s))

between the graph structure G(s) that we want to retain and the original

graph structure G′(s) for each element sample s in each aggregate element

to consistently keep all the graph structures during the optimization process,

and therefore the graph similarity Eg term can also be subsequently defined

as follows:

Eg (X) =
∑
s∈X

d (G(s),G′(s)) ,

d (G(s),G′(s)) =
∑
s′∈Gs

|p̂ (s′, s)− c(s)o(s)p̂′ (s′, s)|2 ,

(3.11)

where Gs denotes a set of all connected element samples of the element

sample s in the element representation, p̂(s′, s) is the relative displacement

between the element samples s′ and s that we aim to solve as in Equa-

tion (3.10), and p̂′(s′, s) treated as a constant here means the displacement

between the element samples s′ and s in the original graph structure G′.

79

3.4 Element Field Formulation

In addition to forming well-distributed aggregate elements, the synthesized

elements should also match the specified scalar or direction field O while

behaving reasonably well in the specified and unspecified portions of the

output domain D. To achieve this, we thus design the field objective Ef

to smoothly arrange distinct types of aggregate elements within the entire

output domain and simultaneously fit all the synthesized elements with the

given input field. This field objective Ef consists of a field alignment Ea term,

a field continuity Ec term and an element rigidity Er term for both scalar and

direction fields, and each term is also formulated in element samples for

consistency.

More specifically, the field alignment Ea term aims to effectively align the

aggregate elements with the given input field in the specified areas, and the

field continuity Ec term concentrates on adaptively smoothing inter-element

relationships within both the specified and unspecified regions, while the

element rigidity Er term focuses on individually adjusting intra-element re-

lationships based on the element rigidity of each aggregate element. In the

element field formulation, both the field alignment Ea term and the field con-

tinuity Ec term are exploited to globally organize the element arrangements

across the output domain, and the element rigidity Er term is employed to

locally constrain the deformability of each aggregate element represented

by multiple element samples. In addition, as the local orientation o of an

element sample is defined as a rotation matrix, in order to penalize the devi-

ation of the orientation o to well keep a pure rotation matrix for each element

sample during the optimization process, analogous to (Sumner et al. 2007;

Xing et al. 2015), an additional rotation constraint Eo term has to be applied

for the direction fields. As a result, the direction field objective Ed
f can be a

80

summation of the field alignment Ea term, the field continuity Ec term, the

element rigidity Er term and the rotation constraint Eo term as:

Ed
f = Ea + α2Ec + Er + Eo. (3.12)

Similarly, putting the field alignment Ea term, the field continuity Ec term and

the element rigidity Er term together, we can have the scalar field objective

Es
f as follows:

Es
f = Ea + β2Ec + Er. (3.13)

Note that α and β (both default values = 1) are controllable parameters

that can be tuned to optionally increase or decrease the effect of the field

continuity Ec term for specific scenarios and applications (i.e. smoother or

less smooth element fields).

As the scales and orientations of element samples are directly associated

with the scalar and direction fields respectively, here we first define the dis-

tance between two scales c and c8 for the scalar field objective Es
f and the

distance between two orientation matrices M and M8 for the direction field

objective Ed
f as:

d (c, c8) = |c− c8|2 ; (3.14)

d (M,M8) =
Dim∑
i=1

|Mi −M8
i|2 , (3.15)

where Dim stands for the dimension of the output domain, and Mi and M8
i

represent the i-th column vectors of M and M8 respectively. In the follow-

ing sections, we first detail the field alignment Ea term in Section 3.4.1, the

field continuity Ec term in Section 3.4.2 and the element rigidity Er term in

81

Section 3.4.3 for both the scalar field objective Es
f and the direction field

objective Ed
f and specifically describe the rotation constraint Eo term in Sec-

tion 3.4.4 for the direction field objective Ed
f at the end.

3.4.1 Field Alignment

Since each element sample s is associated with a scale c and an orienta-

tion o, the scale and orientation of the element sample s in the specified

output domain should be properly aligned with the scale and orientation of

the specified input field O at the closest specified output domain point p to

the element sample s, where an output domain point p indicates an output

domain unit used to record information about the specified input field O (i.e.

the values of scalars or the vectors of directions), and depending on the

dimension of the output domain, the output domain unit can be a 2D pixel

or a 3D voxel. Hence, for each element sample s in the specified output

domain, the distance between c(s) and O(p) and the distance between o(s)

and O(p) should be minimized accordingly, and the field alignment Ea term

can be formulated as:

Ea (o, O) =

∑
s∈X

wa (s) d (c(s), O(p)) for Es
f

∑
s∈X

wa (s) d (o(s), O(p)) for Ed
f

,

wa (s) =

π (c′ (s)ws (s))2

A
in 2D output domains

4
3
π (c′ (s)ws (s))3

V
in 3D output domains

,

(3.16)

where wa(s) is a confident weight which means a larger element sample

dominating a larger output domain space should contribute more influence

82

than a smaller element sample, c′(s) treated as a constant is the current

scale of the element sample, and A and V are the 2D area and 3D volume

of the output domain unit respectively.

3.4.2 Field Continuity

To adaptively smooth the inter-element relationships for aggregate elements

with varying anisotropy and deformability within the entire output domain

(including regions with or without the specified input field O), we can ori-

ent each aggregate element with its neighboring aggregate elements as

similarly as possible, and this can be accomplished through measuring the

distance between c(s) and c(s′) and the distance between o(s) and o(s′) for

each pair of element samples s and s′. As a result, we can also formulate

the field continuity Ec term as:

Ec (o) =

∑
s∈X

∑
s′∈Ns

wc (s′, s) d (c(s), c(s′)) for Es
f

∑
s∈X

∑
s′∈Ns

wc (s′, s) d (o(s),o(s′)) for Ed
f

,

wc (s′, s) =
1

1 +
(
wX(s′, s)−1

)2 ,
(3.17)

where wc(s
′, s) is an inverse quadratic radial basis function used to relatively

adjust the influence of the field continuity Ec term according to wX(s′, s)−1 in

Equation (3.10) (i.e. the inter-distance between the element samples s and

s′ altered based on the current scales and weights of the element samples),

and it means that each pair of element samples with a closer inter-distance

wX(s′, s)−1 can have a relatively stronger effect upon the field continuity Ec

term. Note that based on our experiment, wc(s
′, s) can well reach a bal-

anced relationship among each term in the element field formulation, and

83

other radial basis functions (e.g. the Gaussian function) can also be con-

sidered for other scenarios or specific applications if there is need. In addi-

tion, for dimension reduction, in 2D output domains, we optimize the closest

three neighboring element samples s′ chosen from all the neighboring ele-

ment samples Ns for each element sample s according to wX(s′, s)−1, while

in 3D output domains, the closest four neighboring element samples s′ are

chosen and optimized similarly. Relying on this, the field continuity condition

can be well tackled with reduced computation cost.

However, it can be observed that singularities in the field may cause un-

desirable artifacts such as misaligned aggregate elements and to explicitly

determine the element arrangements across the singularities can also be

tricky in arbitrary mixtures. Hence, in order to more properly arrange the

aggregate elements around the singular points, we further utilize an extra

adaptive weight to d(o(s),o(s′)) to accordingly adjust the inter-element rela-

tionships, and the field continuity Ec term for the direction field objective Ed
f

can be subsequently reformulated as follows:

Ec (o) =

∑
s∈X

∑
s′∈Ns

wc (s′, s) d (c(s), c(s′)) for Es
f

∑
s∈X

∑
s′∈Ns

wc (s′, s)
Dim∑
i=1

wo (s′, s, i) |oi(s)− oi(s
′)|2 for Ed

f

,

wo (s′, s, i) = (1 + o′i(s) · o′i(s′)) ,

(3.18)

where wc(s
′, s) is the same as in Equation (3.17), wo(s

′, s, i) is the extra

weight which aims to adaptively increase or decrease the influence of the

field continuity Ec term on the basis of the current orientations of element

samples, oi represents the i-th column vector of the orientation matrix o

of the element sample that we want to solve, and o′i treated as a constant

here denotes the i-th column vector of the current orientation matrix o′ of

84

the element sample. As a consequence, when with wo(s
′, s, i), each pair of

element samples with similar orientations can also have a relatively stronger

effect upon the field continuity Ec term, and by applying this extra adaptive

weight wo(s
′, s, i), the aggregate elements near the singular points can be

better stabilized with their neighboring aggregate elements during the opti-

mization process (see Figure 3.11). Note that since the values of the dot

products of the i-th column vectors (i.e. o′i(s) · o′i(s′)) can be the same in

2D output domains but may be different in 3D output domains, the adaptive

weight wo(s
′, s, i) for each pair of the i-th column vectors has to be individu-

ally calculated in 3D output domains.

3.4.3 Element Rigidity

If the aggregate element e is rigid, all element samples in this aggregate

element should have the same scales and orientations (i.e. c(s) = c(s′) and

o(s) = o(s′), ∀s, s′ ∈ e). If the aggregate element is deformable, the element

samples of the aggregate element may have different scales and orienta-

tions. Therefore, to distinguish between rigid and deformable elements, the

distance between c(s) and c(s′) and the distance between o(s) and o(s′) for

each pair of element samples s and s′ connected by an element graph in

the aggregate element can be similarly measured, and the element rigidity

Er term can be consequently formulated as:

Er (o) =

∑
s∈X

∑
s′∈Gs

wr (e) d (c(s), c(s′)) for Es
f

∑
s∈X

∑
s′∈Gs

wr (e) d (o(s),o(s′)) for Ed
f

, (3.19)

where wr(e) is the weight of the element rigidity of the aggregate element e.

In our element field formulation, we set the weight of the element rigidity to

85

100 for rigid elements, while the weight of the element rigidity can be set to

0 for deformable elements.

3.4.4 Rotation Constraint

Analogous to (Sumner et al. 2007; Xing et al. 2015), since each column

vector of a rotation matrix must have a unit length and all the column vec-

tors have to be orthogonal to each other, in order to correctly maintain the

orientation o of each element sample during the optimization process, we

can additionally define the rotation constraint Eo term for the direction field

objective Ed
f as follows:

Eo (o) =
∑
s∈X

R (o(s)) ,

R (o(s)) =
Dim∑
i=1

(oi (s) · oi (s)− 1)2 +
∑

1≤i<j≤Dim

(oi (s) · oj (s))2 ,

(3.20)

where oi(s) and oj(s) are the i-th and j-th column vectors of the orientation

matrix o of the element sample respectively. Note that this rotation con-

straint Eo term is a nonlinear function in the matrix entries.

86

3.5 Synthesizer

To solve the distribution objective Ee and the field objective Ef , our synthe-

sizer directly optimizes all the synthesized elements with the given specifi-

cations on the basis of the positions, orientations and scales of their element

samples across the entire output domain through an iterative optimization

procedure, and the fundamental idea of our optimization procedure is that

we separately approach the minimization of each objective by iterations so

as to gradually optimize the individual objectives for the final output. The

pseudocode of the optimization procedure in our synthesizer can be seen

in Algorithm 1, and illustrations about the iteration process of our optimiza-

tion procedure for both 2D and 3D cases are demonstrated in Figures 3.5

and 3.6 respectively.

3.5.1 Initialization

During the initialization, distinct types of aggregate elements from multiple

input element exemplars are randomly placed into the output domain, and

the orientations and scales of element samples of each aggregate element

are initially set according to the given specifications (e.g. scalar or direction

fields) captured in the closest specified output domain point to the aggre-

gate element. To quickly obtain such a closest specified output domain

point within the specified regions, we take advantage of a k-d tree as an ac-

celeration data structure to facilitate the nearest neighbor searching for the

set of the specified output domain points. This k-d tree can also be subse-

quently employed to quickly obtain relevant information about the specified

input fields at the closest specified output domain points for the field align-

87

ment Ea term during the iterations. In order to handle boundary conditions,

additional fixed samples with a unit weight are added to the output domain

boundary in this stage. Thus, by similarly applying the conflict check Ek

term (see Section 3.3.2) to these boundary samples and their neighboring

element samples together as part of optimization, all the element samples

can be effectively confined within the output domain. Furthermore, since

the areas or volumes of individual aggregate elements can be calculated

in preprocessing, the total number of aggregate elements placed into the

output domain can be proportionally estimated on the basis of the total area

or volume of the output domain. Related implementation details about the

initialization are available in Section 4.1.2.

3.5.2 Iterations

In each iteration, we take a distribution step, an orientation step, and a scale

step for different objectives (i.e. Ee, Ed
f , and Es

f), and each step optimizes

only one variable (i.e. the position p, the orientation o, and the scale c) at a

time. At the beginning, the neighborhood information of each element sam-

ple is constructed through the power diagram as illustrated in Figure 3.4b.

Based on the neighborhood information of each element sample, we can

first carry out the scale step for the scalar field objective Es
f and then run

the orientation step for the direction field objective Ed
f . Subsequently, the

distribution step is fulfilled for the distribution objective Ee at the end of each

iteration.

In the scale step, the scale c is the variable, and we can directly solve the

scalar field objective Es
f via linear least squares. While the orientation o is

the variable in the orientation step, due to the rotation constraint Eo term

88

(i.e. the nonlinear term), we optimize the direction field objective Ed
f via

the Levenberg-Marquardt method (Madsen et al. 2004) to solve this non-

linear least squares problem. Finally, in the distribution step, the position

p is the variable, and as there can exist an irreconcilable conflict between

the global inter-element distributions and the local intra-element connec-

tions, which may lead to a suboptimal result in terms of the positions of the

element samples, we thus first solve the sample distribution Ed term and

the conflict check Ek term together to optimally arrange the inter-element

distributions via linear least squares. Then, for the aggregate elements rep-

resented by multiple element samples (like in Figure 3.1), as the current

optimized positions of their element samples may not be properly located at

the expected or reasonable places, to firmly reconstruct the intra-element

connections for such aggregate elements, we can solve the graph similarity

Eg term multiplied by the relative weight wg on the basis of the current opti-

mized positions, orientations and scales of their element samples via linear

least squares as well. Note that the relative weight wg, which is set to 100

from our experiment, aims to increase the influence of the graph similarity

Eg term so that the shapes of the synthesized elements can be precisely

maintained according to the corresponding element samples and graphs.

3.5.3 Output

For the final output, the weighted element samples of the aggregate ele-

ments can be employed as the control points to appropriately regularize the

source mesh vertices of the aggregate elements as in (Sumner et al. 2007),

and at this final stage, these synthesized elements in the output can also be

accordingly assigned related image textures and shaders captured in the

corresponding input element exemplars.

89

Function X ← SYNTHESIZER({I1, . . . , Im}, O)

// X: the output

// {I1, . . . , Im}: the input element exemplars

// O: the partially or fully specified scalar or direction field

X ← INITIALIZATION({I1, . . . , Im}, O)

ITERATIONS(O,X)

OUTPUT({I1, . . . , Im}, X)

Return X

Function ITERATIONS(O,X)

Iterate until convergence or enough # of iterations reached

∀s ∈ X, Ns ← building the power diagram

SCALE(O,X)

ORIENTATION(O,X)

DISTRIBUTION(X)

End

End

Function SCALE(O,X)

∀s ∈ X, c(s)← solving Esf with O

End

Function ORIENTATION(O,X)

∀s ∈ X, o(s)← solving Edf with O

End

Function DISTRIBUTION(X)

∀s ∈ X, p(s)← solving Ed and Ek together

∀s ∈ X, p(s)← solving wgEg from the current optimized p(s), o(s) and c(s)

End

Algorithm 1: The pseudocode of the optimization procedure in our syn-

thesizer. Our synthesizer iteratively optimizes the individual objectives to

observe the input element exemplars {I1, . . . , Im} and the given specified

input field O for the output X.

90

(a) partially specified input (b) initialization (c) iteration 1

(d) iteration 2 (e) iteration 4 (f) iteration 8

(g) iteration 20 (h) iteration 50 (i) iteration 100

Figure 3.5: The iteration process of our optimization procedure for the 2D

case. Distinct types of music symbols are randomly placed into the output

domain and initially aligned with a partially specified input (a) during the ini-

tialization (b), and our synthesizer respectively optimizes the positions, ori-

entations and scales of all the element samples via an iterative manner (i.e.

(c) to (i)). Note that the input (a) is just to imply the intended element orien-

tations and scales instead of being optimized together (see Section 4.1.3.2).

According to the number of aggregate elements, the complexity of mixture,

the completeness of input fields, and the output domain’s size, shape and

dimension, the total number of iterations can range from 5 to 100.

91

(a) input mesh (b) initialization (c) iteration 1

(d) iteration 2 (e) iteration 3 (f) iteration 5

(g) iteration 10 (h) iteration 20 (i) cross-sectional view of (h)

Figure 3.6: The iteration process of our optimization procedure for the 3D

case. We compute an extrinsically smooth direction field (Huang and Ju

2016) over a sparse set of mesh vertices (a) as the partially specified in-

put and employ our synthesizer to automatically compute a full volumetric

output (i.e. not just over the surface). The cross-sectional view (i) shows

that the full outcome (h) can be smoothly constructed from only the surface

input field (i.e. a very small subset relative to the entire volume) without the

need to predefine the whole resolution of the input field and interpolate the

full input field.

92

3.6 Formulation Evaluation

In this section, we evaluate the element distribution formulation as well as

the element field formulation in terms of the distribution manipulation and

the field manipulation respectively. Below we utilize several representative

examples under specific situations for better illustrations, and more com-

plete outcomes about practical applications can be seen in Chapter 4.

3.6.1 Distribution Manipulation

In our element distribution formulation, aggregate elements with anisotropic

shapes and various sizes can be distributed via either the data-driven method

(Hsu et al. 2018) or the procedural approach (Hsu et al. 2020), and thus here

we first make a comparison between our data-driven method and our pro-

cedural approach in terms of synthesis quality and performance. Since the

data-driven process demands to search for the best matches for all pairs of

element samples, the size of each input element exemplar (i.e. the number

of aggregate elements in the input element exemplar) has to be restricted in

order to speed up the search process for better performance. Therefore, the

data-driven method cannot reasonably deal with the element distributions

for arbitrary mixtures and consequently compromise the synthesis quality

by reason that the input element exemplars with limited sizes may not suf-

ficiently provide relevant distribution information for element synthesis. In

contrast, as the procedural process can directly distribute the aggregate

elements on the basis of the power cells of their element samples, the syn-

thesized elements can be uniformly distributed without requiring expensive

computation cost. As demonstrated in Figure 3.7, it can be seen that our

93

procedural approach can significantly outperform our data-driven method in

both synthesis quality and performance. In consequence, unless noted oth-

erwise, we majorly generate the output results shown in this thesis through

our procedural approach due to the remarkable advantage in terms of the

output standard and efficiency.

(a) partially specified input (b) Hsu et al. (2020) (c) Hsu et al. (2018)

Figure 3.7: The comparison between the data-driven process and the pro-

cedural process. When given the same partially specified input (a), our

procedural approach (b) can more uniformly distribute distinct types of ag-

gregate elements in better performance than the data-driven method (c).

The outputs in (b) and (c) contain the same 689 aggregate elements and

1598 element samples, and the synthesis times of (b) and (c) are 9 and 44

seconds respectively in 100 iterations, and the CPU we use is Intel® Xeon®

E5-1650 3.20GHz. Note that we employ the input element exemplars in Fig-

ures 3.2a to 3.2h to generate the output in (c).

In addition, as our data-driven method relies on the given element distri-

bution references captured in the input element exemplars to synthesize

aggregate elements, the flexibility of manipulating the distributions of the ag-

gregate elements can also be significantly confined owing to the factor that

relevant input element exemplars have to be accordingly prepared for corre-

sponding element distributions in advance. Similarly, because of algorithmic

94

limitations or expensive computation cost, existing data-driven methods or

other procedural approaches do not take the manipulation of element dis-

tributions into account either. By comparison, our procedural approach can

flexibly cope with diverse output compositions with dense, sparse or spa-

tially varying element distributions under the same element synthesis pro-

cess, and such a flexibility can further give a clear demonstration that our

procedural approach can definitely offer more functionality than our data-

driven method and prior algorithms.

More detailedly, it can be straightforward for our procedural approach to

uniformly form dense and sparse element distributions through directly con-

trolling the total number of aggregate elements placed within the output do-

main. While taking spatially varying element distributions into consideration,

our procedural approach can incorporate an additional density field, which

is also a scalar field, to spatially vary the distributions of the aggregate ele-

ments. To fulfill this, we can directly modify the weights of element samples

of each aggregate element by the given density field during the optimization

process but do not change the actual sizes of the synthesized elements for

the final output as follows:

w′s (s) = (1 + ρ (s))ws (s) , (3.21)

where ρ(s) is the density with a value between 0 and 1 in the density field.

This density field can also be optimized independently via the same formu-

lation and step with the scalar field objective Es
f during the iterations, and

through directly replacing ws(s) by w′s(s) in our proposed formulations, our

procedural approach can not only densely or sparsely distribute aggregate

elements but also spatially vary the overall element distributions according

to demand as exemplified in Figure 3.8. Note that by alternatively taking

advantage of a control map or a density function, the additional density field

95

can be generated either partially or fully.

(a) dense element distributions (b) sparse element distributions

(c) control map (d) spatially varying element distributions

Figure 3.8: The manipulation of element distributions. Through directly

controlling the total number of aggregate elements placed into the output

domain, the aggregate elements (i.e. words) can be distributed densely (a)

or sparsely (b). While optionally taking advantage of a control map (c) as

the density field, the distributions of the synthesized elements can be varied

spatially (d).

Since a majority of existing practices either only work for rigid elements

(e.g. (Reinert et al. 2013; Kwan et al. 2016)) or need extra schemes such

as physics solvers for deformable elements (e.g. (Ma et al. 2011; Saputra

et al. 2018)), the capability of freely mixing specific aggregate elements is

usually confined. In contrast, based on our devised element representation,

our element distribution formulation can effectively synthesize aggregate el-

ements with varying anisotropy and deformability in a satisfactory output

standard and directly bring a variety of novel mixtures into existence with-

out the need to incorporate any additional solvers or processes. Analogous

to common color mixing, this capability of being able to freely mix multiple

rigid and deformable elements can definitely provide more flexibility for the

creation of element aggregations as well. Furthermore, while the specified

input field O is not given (i.e. only optimizing the element distributions), the

96

element arrangements in the output can be entirely regular as exemplified

in Figures 3.8a and 3.8b (i.e. the same element orientations and scales). In

order to enhance visual diversity of artistic works, we can utilize extra local

orientations and scales to individually manipulate the initial orientations and

scales of aggregate elements, and thus different styles of mixtures com-

posed of the aggregate elements with regular or irregular orientations or

scales can be accordingly produced as demonstrated in Figure 3.9.

(a) regular both (b) random scales (c) random orientations (d) random both

Figure 3.9: The enhancement of visual diversity of artistic works. Through

regularly or randomly initializing the orientations or scales of elements, mul-

tiple types of music symbols with regular scales and orientations (a), ran-

dom scales and regular orientations (b), regular scales and random orien-

tations (c), or random scales and orientations (d) can be correspondingly

synthesized for different output appearances.

At the end, as illustrated in Figure 3.10, we further perform an ablation study

about the sample distribution Ed term and the conflict check Ek term in our

element distribution formulation to clarify their individual effects upon the

distributions of aggregate elements. Note that as previously described and

exemplified in Figure 3.7, our data-driven method may not distribute the ag-

gregate elements uniformly enough, and this can consequently affect the

ablation study result. Therefore, in order to better demonstrate the effect

differences between the two terms, we employ the procedural sample dis-

tribution Ep
d term (i.e. the procedural process) as the sample distribution Ed

term in our ablation study.

97

(a) Ed on, Ek on

(b) Ed on, Ek off

(c) Ed off, Ek on

(d) Ed on, Ek on

(e) Ed on, Ek off

(f) Ed off, Ek on

(g) Ed on, Ek on

(h) Ed on, Ek off

(i) Ed off, Ek on

(j) Ed on, Ek on

(k) Ed on, Ek off

(l) Ed off, Ek on

Figure 3.10: The ablation study. For better clarification, we densely (i.e.

(a), (b), (c), (g), (h), and (i)) and sparsely (i.e. (d), (e), (f), (j), (k), and

(l)) distribute rigid (i.e. treble clefs) and deformable (i.e. words) elements

respectively and study the sample distribution Ed term and the conflict check

Ek term in different cases to demonstrate their individual effects. It can be

observed that while aggregate elements are densely distributed without the

conflict check Ek term as shown in (b) and (h), the synthesized elements

may overlap, especially near the singular point (i.e. the center of the heart).

When without the sample distribution Ed term, the synthesized elements do

not overlap, but both dense and sparse element distributions can be non-

uniform as illustrated in (c), (f), (i) and (l).

98

3.6.2 Field Manipulation

In our element field formulation, we utilize rotation matrices instead of ra-

dians to indicate local orientations because of the need to specifically uti-

lize the adaptive weight wo(s
′, s, i) in Equation (3.18) for the direction field

objective Ed
f to better stabilize aggregate elements with their neighboring

aggregate elements around singular points. In Figure 3.11, we first show an

example to demonstrate the effect of the adaptive weight wo(s
′, s, i).

(a) outputs with the weight wo(s
′, s, i) via 70, 80, 90 and 100 iterations from left to right

(b) outputs without the weight wo(s
′, s, i) via 70, 80, 90 and 100 iterations from left to right

Figure 3.11: The effect of the adaptive weight wo(s
′, s, i). It can be seen

that with the adaptive weight wo(s
′, s, i) (a), the aggregate elements near

the singularity (i.e. the center of the heart) can be better stabilized after 70

iterations, whereas without the adaptive weight wo(s
′, s, i) (b), the synthe-

sized elements around the singularity can still remain unsteady throughout.

Please refer to Appendix A for the illustrations of in-between iterations.

In addition, using rotation matrices can also offer more freedom and ver-

satility as individual rotation axes can be separately aligned with specified

input directions for specific purposes. For example, for aggregate elements

99

near the output domain boundary, we can directly align the up axes of the

rotation matrices of their element samples with the normals of the output

domain boundary to generate corresponding results, as a normal at an out-

put domain point near the output domain boundary is a direction vector.

As illustrated in Figure 3.12, the element field formulation can effectively

integrate a given partially specified input with the normals of the output do-

main boundary as multiple partial input fields to more smoothly match all the

synthesized elements with both the output domain boundary and the given

specification across the output domain.

(a) partially specified input

(b) one-step process in different views

(c) two-step process in different views

Figure 3.12: Multiple partial input fields. By directly combining a small

partially specified input (a) and the normals of the output domain boundary

together, our one-step automatic optimization process (b) can effectively

generate smoother element fields, whereas the two-step process (c) may

lead to discontinuous element fields.

100

As exemplified in Figure 1.3, by directly optimizing the element distributions

with the given specification together, our one-step automatic optimization

process can more adaptively orient distinct types of aggregate elements

and more smoothly compute complete element fields than the existing two-

step process. In Figure 3.13, we show more examples about the compar-

ison between our one-step process and the two-step process. Moreover,

in addition to stabilizing the synthesized elements near the singular points

(i.e. Figure 3.11), when there exist undesired singularities in the field, our

element field formulation is able to directly smooth out the element arrange-

ments around the undesired singularities without needing to change the un-

derlying field. As demonstrated in Figure 3.14, by gradually increasing the

value of the parameter α in Equation (3.12) to further enhance the influence

of the field continuity Ec term for the direction field objective Ed
f , multiple

singularities in the field can be effectively hidden while the overall topology

of element fields can still be reasonably maintained.

While the given input field is chaotic, we can also consider our field continu-

ity Ec term as a denoise filter to smoothly regularize all the synthesized ele-

ments without incorporating any field preprocessing (e.g. field smoothing).

As illustrated in Figure 3.15, analogous to Figure 3.14, by directly enhancing

the effect of the field continuity Ec term for the direction field objective Ed
f ,

the degree of chaos of the overall element arrangements can be reduced

correspondingly as well. Eventually, when given a sequence of dynamic in-

put fields, our element field formulation can also well synthesize aggregate

elements following such dynamic input fields frame by frame. The overall

procedure for the dynamic input fields is that at the beginning, we generate

the output for the first frame and utilize this output as the initialization for

the next frame to compute the next output, and by adopting the same strat-

egy, the outputs for the rest of the frames can be similarly computed via the

same element synthesis process.

101

(a) partially specified input (b) element fields computed from (a)

(c) full input field from (a) (d) element fields computed from (c)

(e) partially specified input (f) element fields computed from (e)

(g) full input field from (e) (h) element fields computed from (g)

Figure 3.13: The comparison between the one-step and two-step pro-

cesses. Our one-step process can directly compute smooth element fields

(b) and (f) from partially specified inputs (a) and (e), while the two-step pro-

cess may create less smooth results (d) and (h). Note that the full input fields

(c) and (g) are preprocessed via Laplacian smoothing as in Figure 1.3c, and

the problematic regions in (d) and (h) are highlighted by red circles.

102

(a) full input field

(b) α = 0 (c) α = 5

(d) α = 10 (e) α = 15 (f) α = 20

Figure 3.14: The singularity handling. Given a full input field (a) with a

few singular points, by directly tuning the value of the parameter α in Equa-

tion (3.12) to increase the effect of the field continuity Ec term for the direc-

tion field objective Ed
f , our element field formulation can directly smooth out

the element arrangements across the singular points without changing the

underlying field. Note that the orientations of the synthesized elements near

the output domain boundary can still remain almost the same.

103

(a) full input field

(b) α = 0 (c) α = 1

(d) α = 2 (e) α = 3 (f) α = 4

Figure 3.15: The chaotic input field. The full input field (a) here is gen-

erated by directly adding random noise to the input field in Figure 3.14a.

Analogous to Figure 3.14, through gradually increasing the value of the pa-

rameter α in Equation (3.12) to accordingly relief the effect of the random

noise, corresponding element fields with noise reduction can be appropri-

ately computed to comparably match the original input field in Figure 3.14a.

104

(a) frame 0

(b) frame 40

(c) frame 80

(d) frame 120

Figure 3.16: Dynamic input fields. Our element field formulation can also

cope with dynamic input fields. In this case, we directly compute the out-

put for the first frame in 100 iterations while the outputs for the rest of the

frames are generated in 20 iterations. Please refer to Appendix B for the

illustrations of in-between frames.

105

4 Interactive Synthesis System

In order to enrich visual diversity of artistic works and streamline work pro-

cedures for the creation of element aggregations, we aim to develop an in-

teractive synthesis system with a palette-based brushing interface for users

to iteratively design diverse output compositions for practical applications

via an enjoyable and effective manner. To carry out this, we thus incorpo-

rate the idea of our autocomplete element fields (i.e. both the element dis-

tribution formulation and the element field formulation) into the interactive

synthesis system and establish an intuitive and user-friendly brushing work-

flow for interactive authoring of aggregate elements across different output

domains. In the following sections, we first detail the development specifi-

cation, which includes the design rationale, software engineering and user

interface of our developed system, in Section 4.1, evaluate the prototype

system in Section 4.2, show our pilot user study in Section 4.3 and then

demonstrate other applied results in Section 4.4.

106

4.1 Development Specification

Below we first recap the design rationale of our interactive synthesis system

in terms of both element synthesis and interactive authoring in Section 4.1.1

and then elaborate the software engineering about implementation details

in Section 4.1.2. Subsequently, the user interface of the developed system

is introduced in Section 4.1.3.

4.1.1 Design Rationale

Manual placement of aggregate elements can offer users full authoring free-

dom, but the users can not only demand to possess essential knowledge of

artistic skills and production workflows in advance but also make heavy ef-

forts to repetitively organize individual aggregate elements with intended

scales and orientations over the given output domain. During the process

of iterative design, the users can consequently take significant production

time and energy to completely produce satisfactory results by hand. While

automatic batch computation can assist the users in the creation of element

aggregations within 2D or 3D output domains, it cannot supply the users

with sufficient interactivity and flexibility to appropriately transform their con-

ceptual ideas into final design outcomes owing to algorithmic limitations or

expensive computation cost, and therefore the ability and freedom of ade-

quately generating desirable output formations according to user intention

can be confined significantly.

In addition, for better element arrangements, existing element synthesis

practices demand to incorporate full scalar or direction fields with their algo-

107

rithms as part of optimization through a two-step process. Nevertheless, for

ordinary users, it can be difficult or inconvenient to manually specify such full

input fields across arbitrary output domains, especially in 3D environments.

Even though the full input fields can be preprocessed by existing field inter-

polation algorithms, the final outputs created via the two-step process might

not either properly reach the expected synthesis quality or reasonably re-

flect the original user intention as exemplified in Figures 1.3d, 3.12c, 3.13d

and 3.13h by reason that these existing field interpolation algorithms are

not specifically developed for element synthesis and do not take both inter-

and intra-element relationships into consideration. While optionally operat-

ing additional field design systems for the generation of the fully specified

input fields, the users may be able to ideally design the full input fields for

desired element arrangements. However, it can require significant learning

time from the users to obtain essential understanding of these field design

systems, and this can not only break the natural artist workflow but also

hinder novice users from producing artistic works.

As a majority of preceding interfaces for interactive design are mostly tai-

lored for specific applications in 2D planes or 3D surfaces without supplying

enough input interactivity and output diversity, it can be seen that to this day,

there is still a lack of general user interfaces for interactive authoring of ag-

gregate elements with varying anisotropy and deformability for multiple ap-

plications across different output domains. Moreover, in order to adequately

handle these preceding interfaces, users can require a broad background

of technical expertise in relevant work procedures, and the overall process

of interactive authoring can also be tedious and time-consuming due to the

lack of an intuitive and user-friendly production workflow. Even though it is

possible to take advantage of physically-based simulation to facilitate the

placement of aggregate elements (e.g. (Gay 2016a)), the users can still de-

mand to globally specify and deploy each individual aggregate element all

108

over the output domain by fully manual authoring. To encourage and ben-

efit more creators, especially ordinary novices, in the creation of element

aggregations, a well-developed framework that can achieve more interac-

tive responses and simultaneously offer versatile flexibility is desirable and

worth establishing, and the ideal user interface for interactive authoring of

aggregate elements has to be intuitive and user-friendly enough so that the

creators are able to effectively generate a variety of output formations from

their design intention via an efficient and handy manner without compromis-

ing their authoring freedom.

As a result, in order to properly overcome the aforementioned challenges

for better usability and interactivity, we thus develop the interactive synthe-

sis system that aims to not only retain full user controls but also provide an

efficient and yet versatile solution for users to iteratively design and explore

diverse output compositions with controllable element distributions for var-

ious applications. The developed system, which combines the concept of

our autocomplete element fields, can take both the inter- and intra-element

relationships into account to reduce the total production workload of the

users and enhance the overall synthesis quality of the outcomes via the

one-step automatic optimization process. Through our palette-based brush-

ing interface, ordinary users can easily familiarize themselves with our de-

veloped system in a short time and flexibly manipulate the distributions of

aggregate elements with partial authoring without the need to learn any ad-

ditional field design systems like (Palacios et al. 2017). With our intuitive and

user-friendly brushing workflow similar to conventional painting workflows,

the interactive synthesis system can indeed more naturally fit element syn-

thesis with interactive authoring as compared with preceding approaches

and better assist users in creating more interesting and novel element ag-

gregations in high production standard without the requirement of a great

amount of manual labor and technical expertise.

109

4.1.2 Software Engineering

There is no doubt that it can be complicated and time-consuming for de-

velopers to completely carry out a standalone interactive synthesis system

from the beginning. In addition, it can also be troublesome to promote and

share such a standalone system to relevant public communities, and this

can more or less hinder the system developers from receiving useful and

constructive feedback from existing user forums for further improvement.

As a consequence, to simplify the development process of our interactive

synthesis system and facilitate the promotion of the concept of our auto-

complete element fields, we directly implement the proposed formulations

along with the palette-based brushing interface as an external plugin into

Autodesk Maya, which is a 3D computer graphics application software, to

leverage its whole system manipulations, such as camera control, and func-

tions like rendering. Overall, in our implementation, we utilize the Maya Em-

bedded Language (MEL) for the development of our palette-based brushing

interface and employ C++ with the Maya API for the fulfillment of the auto-

complete element fields.

It is clear that one of the essential components for interactive authoring is

to create a general brushing canvas for objects with specific shapes and

sizes within the display viewport of Autodesk Maya. To achieve it, we can

directly voxelize the selected object as the brushing canvas (i.e. a planar

layer of voxels for 2D cases or a fully voxelized solid object for 3D cases) in

the developed system, and as inspired by Kim et al. (2018), a sparse octree

can be subsequently exploited to represent all the voxels of the selected

object. Analogous to color information stored in the pixels of a 2D image,

these voxels can be used to capture relevant information about given user

specifications such as stroke directions and brush radii, and each voxel can

110

also be utilized to stand for an output domain point. Note that the directions

of user-specified brush strokes can be employed to denote a direction field,

while the brush radii of the user-specified brush strokes can be exploited to

indicate a scalar field.

Furthermore, by adding additional fixed samples with a unit weight (i.e. the

unit size of the voxel) to the boundary voxels of the selected object, we

can apply the conflict check Ek term (see Section 3.3.2) to these additional

boundary samples and the element samples of their neighboring aggregate

elements as part of optimization. Therefore, boundary conditions for arbi-

trary output domains with desired shapes and sizes can be effectively dealt

with under the same element synthesis process. The boundary voxels of

the selected object can be similarly used to record information about the

normals of the output domain boundary for further usage as exemplified in

Figure 3.12. Note that in order to quickly obtain such boundary normals, in-

stead of accurately calculating the normals of the output domain boundary

from the selected object, we can adopt the Sobel filter to efficiently com-

pute an approximation of the boundary normals according to the voxels

of the output domain. Since our proposed formulations can automatically

construct complete and smooth element fields on the basis of partial input

fields as exemplified in Figure 3.6, such an approximation of the bound-

ary normals can be directly handled by our synthesizer without needing to

incorporate any extra processes.

Similar to a conventional brush cursor, which can be discretized by pixels

in 2D images, the brush cursor with a solid sphere shape in our prototype

system can be discretized by voxels as well. By adding a flag (e.g. 1 for

inside, 0 for boundary, and -1 for outside) to the voxels of the brush cursor

to determine the domain scope via a boolean operator, users are able to in-

teractively brush aggregate elements within the inside, boundary or outside

111

voxels of the output domain. More detailedly, as the brush cursor’s center is

located over the output domain, there can exist a portion of the brush cur-

sor’s voxels inside the output domain and another portion outside the output

domain. If the flag is set to 1, aggregate elements can be directly synthe-

sized in the brush cursor’s voxels inside the output domain, while if the flag

is set to -1, the users are enabled to place the synthesized elements within

only the brush cursor’s voxels outside the output domain. Note that it is also

feasible to support a tablet with a stylus for the users to control the brush

cursor in the interactive synthesis system.

Moreover, since we can similarly voxelize individual aggregate elements in

preprocessing as well and record the initial number of each aggregate ele-

ment’s voxels in the corresponding input element exemplar, the total number

of aggregate elements placed into the output domain can be proportionally

estimated on the basis of the total number of the voxels of the output do-

main. In consequence, by alternatively increasing or decreasing the voxel

count of each aggregate element, the proportion of aggregate elements

synthesized in the output domain can be effectively controlled to generate

sparse or dense element distributions correspondingly. About the construc-

tion of the power diagram (see Figure 3.4), we extend Voro++ (Rycroft 2009)

to compute the power cells of element samples of all the synthesized ele-

ments in parallel and simultaneously establish the neighborhood information

of each element sample.

4.1.3 User Interface

As illustrated in Figure 4.1, we directly develop the interactive synthesis sys-

tem with our proposed formulations into Autodesk Maya, which is a popular

112

application software in the animation and film industry, for interactive au-

thoring of aggregate elements within 2D and 3D output domains. In the

following, the major components of our palette-based brushing interface, in-

cluding a brushing canvas, brush operations, a control panel and an element

palette, are introduced respectively.

Figure 4.1: The user interface. The palette-based brushing interface is

integrated with Autodesk Maya. Both the element palette and the control

panel are on the left, and the brushing canvas is in the middle.

4.1.3.1 Brushing Canvas

Similar to common painting interfaces, a brushing canvas is established

for users to interactively arrange user-picked element collections within the

domain scope, and as described in Section 4.1.2, the brushing canvas (i.e.

the voxelized object) can be a 2D plane, a 3D surface, or a 3D volume with

a specific domain shape and size in our developed system. As a result,

aggregate elements are able to be intuitively brushed by the users over

113

the brushing canvas to create results that can well match the given domain

shape and size.

4.1.3.2 Brush Operations

In the developed system, we offer add, erase, and replace brush opera-

tions for interactive authoring. The add brush operation enables users to

handily place a collection of aggregate elements over the output domain,

while the erase brush operation can remove the already placed aggregate

elements. The replace brush operation is a combination of both the erase

and add brush operations. For automatic completion, the partially user-

specified brush strokes can be employed to imply the intended element

orientations and scales for the whole synthesized elements, and instead

of keeping these brush strokes unchanged, our interactive synthesis sys-

tem globally optimizes all the element distributions, orientations and scales

together according to their inter- and intra-element relationships to better

produce smooth element fields while adequately observing the original user

intention. Based on our experiment, this can more effectively utilize the en-

tire output domain space to improve overall synthesis quality. For example,

when there exists a small gap space between two brush strokes, if the brush

strokes are fixed, such a gap space may not be properly covered by the syn-

thesized elements, and thus the overall element distributions may not reach

satisfactory output standard.

4.1.3.3 Control Panel

The control panel aims to offer users essential parameters and functions

for global element synthesis controls as demonstrated in Figure 4.2. For in-

114

stance, the users can freely adjust the brush radius to proportionally enlarge

or shrink the overall element sizes of all the selected input element exem-

plars, set the total number of iterations used in the optimization process or

directly press an autocomplete button to generate complete outputs from

partially specified inputs via the one-step process. Additionally, through this

control panel, the users are able to specifically determine the brush op-

erations, the domain scope (i.e. the output domain’s inside, boundary or

outside voxels) and the total number of aggregate elements placed into the

output domain as well.

Figure 4.2: The control panel. A number of controllable parameters and

relevant functions for global element synthesis controls are provided in the

control panel.

The controllable parameters for manipulating α in Equation (3.12) and β

in Equation (3.13) are also supplied in the control panel, and thus the in-

fluence of the field continuity Ec term in the element field formulation (see

Section 3.4.2) can be optionally increased or decreased by users in the in-

teractive synthesis system. As exemplified in Figure 3.14, by directly tuning

the related parameters from the control panel, it can encourage the users

to flexibly produce outcomes with smoother or less smooth element orien-

tations and scales on the basis of the same user specifications without the

necessity of any additional field preprocessing. Moreover, with the control

panel, the users can further delete multiple undesired brush strokes, reset

the entire output domain or even import a predefined input field for element

synthesis if there is specific demand.

115

4.1.3.4 Element Palette

As illustrated in Figure 4.3, through directly clicking the image icons of in-

dividual aggregate elements from the element palette, a variety of input

element exemplars listed in the element palette can be freely selected and

mixed by users.

(a) element palette (b) two types (c) eight types

Figure 4.3: The element palette. Through the element palette (a), several

kinds of input element exemplars (i.e. music symbols) can be chosen by

users as the input primitives to form a shoeprint consisting of only two types

(b) or eight types (c). For each input element exemplar, the users can re-

spectively set its initial element size and deformability by adjusting the scale

and rigidity parameters and individually manage the total proportion of this

kind of aggregate elements placed into the output domain via the ratio pa-

rameter. In addition, while manipulating the resize and orient parameters,

the scales and orientations of the synthesized elements can be accordingly

randomized as exemplified in Figure 3.9. To further enhance visual diversity

of artistic works, the distort parameter can be tuned to arbitrarily twist the

element shapes (see Figure 4.10c).

116

During the iterative design procedure, users can choose one of the input ele-

ment exemplars to generate simple outcomes consisting of the same kind of

aggregate elements or mix multiple input element exemplars to create novel

mixtures composed of different kinds of aggregate elements. Analogous

to common color palettes (like in (Shugrina et al. 2017)), the combination

of user-picked element collections can be subsequently saved as another

new input entry into the element palette for further reuse and remix, so the

users are able to customize their own element palettes in an intuitive and

flexible manner. Like tunable color properties (e.g. hue, intensity and sat-

uration) in a common color palette, in our element palette, there are also a

few manageable element properties (e.g. initial element size and deforma-

bility) for the users to freely control, and through optionally manipulating the

properties of individual aggregate elements, it can encourage the users to

produce more interesting element aggregations. Furthermore, in order to

quickly search and choose relevant aggregate elements from the element

palette, the users are enabled to automatically filter irrelevant input element

exemplars from the element palette by directly entering the corresponding

names of the desired aggregate elements into a text field.

Finally, one thing to note here is that in our current prototype, the input el-

ement exemplars listed in the element palette are stored in a designated

folder, and the developed system can automatically import all the input ele-

ment exemplars from the folder into the element palette. To add new input

element exemplars to the element palette, users have to manually collect

essential information about new aggregate elements (i.e. source models,

image textures and shaders) into the designated folder. Obviously, it can be

desirable to develop an advanced interface that can simplify the process of

the addition and removal of different input element exemplars or even assist

the users in classifying and exploring existing input element exemplars like

in (Chen et al. 2016), and we consider this as a potential future task.

117

4.2 System Evaluation

In this section, we first describe the iterative design procedure about the cre-

ation of element aggregations and simultaneously evaluate the versatility of

our interactive synthesis system by demonstrating more diverse and com-

pelling results. Subsequently, the performance of element synthesis about

our representative results and the limitations of the developed system are

reported and discussed respectively.

4.2.1 Iterative Design Procedure

During the process of iterative design, users can freely choose single or mix

multiple aggregate elements from the element palette, optionally tune rela-

tive parameters from the control panel, and directly perform corresponding

brush operations to interactively arrange the user-picked element collec-

tions over the brushing canvas for the production of artistic works. In gen-

eral, for better production efficiency, at the beginning, the users can syn-

thesize a certain number of aggregate elements and adopt fewer iterations

(e.g. 5 to 20 iterations) to quickly generate basic sample layouts as initial

previews on the basis of given user specifications. Following that, when the

sample layouts can reach the users’ expected design outcomes, the users

can then specify a desired proportion of the synthesized elements and uti-

lize more iterations (e.g. 50 to 100 iterations) to optimally produce the final

intended results. At the end of the process of iterative design, further ar-

rangements such as the removal or replacement of undesired aggregate

elements can be subsequently carried out. Additionally, if there is need,

far more iterations can also be available for the users to cope with more

118

complicated scenarios. In the interactive synthesis system, the fundamen-

tal brushing workflow about the creation of element aggregations can be

seen in Figure 4.4.

(a) aggregate elements (b) given output domain (c) user-specified strokes

(d) automatic completion (e) final arrangement

Figure 4.4: The brushing workflow. Users can select desired aggregate

elements (a) from the element palette, directly brush the selected elements

within the boundary voxels of a given output domain (b) and interactively see

the corresponding results (c). Based on the stroke directions and brush radii

derived from the partial user specifications (c), the developed system can

automatically complete the full output (d) with intended element orientations

and scales. Subsequently, the users can further arrange the aggregate

elements over the outside voxels of the output domain for the final outcome

(e) via corresponding brush operations.

As our control panel provides the controllable parameters α and β for users

to optionally manipulate the influence of the field continuity Ec term for both

the direction field objective Ed
f and the scalar field objective Es

f , the users

can flexibly produce output compositions with smoother or less smooth el-

ement orientations and scales according to their personal preferences. As

119

illustrated in Figure 4.5, when given partially user-specified brush strokes,

by directly tuning the values of the parameters α and β from the control

panel, the final intended results with different appearances can be corre-

spondingly generated on the basis of the same user specifications. This

feature of being able to let users manipulate the topology of element fields

can not only supply more flexibility for the iterative design procedure but

also significantly assist the users in designing more satisfactory artworks

without breaking the natural artist workflow. As a result, through our inter-

active synthesis system, ordinary users neither need to learn any additional

field design systems (like in (Zhang et al. 2007; Palacios et al. 2017)) nor

become algorithmic experts in the interpolation process of full input fields.

(a) partially specified input

(b) α = 1, β = 1 (c) α = 3, β = 1

(d) α = 1, β = 10 (e) α = 3, β = 10

Figure 4.5: The manipulation of the influence of the field continuity Ec term.

By reasonably increasing the values of the parameters α and β via the con-

trol panel, it can encourage smoother element orientations and scales. Our

interactive synthesis system can observe the original user intention (a) (i.e.

partially user-specified brush strokes) to optimize overall synthesis quality

with the tuned parameter values accordingly.

120

While iteratively designing a large output, it can be desirable and even es-

sential for users to be able to flexibly manipulate the distributions of aggre-

gate elements for the final output and alternatively acquire a variety of vi-

sual effects and artistic styles, such as compact or loose output formations.

Since the total number of aggregate elements placed into the output domain

can be directly determined by the users via the control panel, our interactive

synthesis system can enable the users to straightforwardly generate vari-

ous output compositions with dense or sparse element distributions via the

same element synthesis process. As demonstrated in Figure 4.6, after par-

tially brushing a few strokes of aggregate elements over the output domain,

the developed system can alternatively create compact or loose element ag-

gregations from the same partially user-specified strokes according to the

users’ favorites.

(a) partially specified input (b) dense words (c) sparse words

Figure 4.6: The manipulation of dense and sparse element distributions.

Based on the same partially user-specified brush strokes (a), by directly

adjusting the total number of aggregate elements placed into the output do-

main, our interactive synthesis system can densely (b) or sparsely (c) dis-

tribute the aggregate elements (i.e. words) across the entire output domain

and simultaneously well match all the synthesized elements with the given

user specifications.

121

Moreover, as exemplified in Figure 3.8d, by incorporating an additional den-

sity field as part of optimization, our element distribution formulation can

effectively deal with output compositions with spatially varying element dis-

tributions. However, similar to the fully specified direction or scalar fields, to

acquire such a complete density field within different output domains can be

difficult or inconvenient for users as well. Therefore, in order to streamline

work procedures for better usability and interactivity, the interactive synthe-

sis system can further enable the users to interactively specify partial den-

sity fields across different output domains via the same brush operations

under the same brushing workflow. To accomplish this, in our current pro-

totype system, each brush stroke can be optionally equipped with a density

value among 0 and 1, and the users can interactively brush multiple strokes

with specified density values over the output domain to acquire a partial

density field and then let our synthesizer spatially vary the distributions of

aggregate elements according to the partially specified density field. Like

stroke directions and brush radii, this extra information about the density

values of brush strokes can also be directly captured in the voxels of the

output domain, and the density value of each brush stroke can be individu-

ally determined by the users via the control panel.

As demonstrated in Figure 4.7, through directly equipping individual brush

strokes with relative density values from the control panel, our interactive

synthesis system can allow users to interactively specify a partial density

field within the given output domain and then correspondingly generate an

output composition with spatially varying element distributions based on the

partially user-specified density field in an efficient and handy manner. In

consequence, in terms of the iterative design procedure, this manipulation

ability can not only provide more usability and interactivity for users to pro-

duce desired element aggregations but also encourage the users in enrich-

ing visual diversity of artistic works and increase creativity and productivity.

122

(a) partially specified input (b) partial density field

(c) uniform element distributions (d) spatially varying element distributions

Figure 4.7: The manipulation of spatially varying element distributions.

Users can interactively specify brush strokes (a) with density values to ac-

quire a partial density field (b) over the output domain. Without adopting the

density field (b), aggregate elements can be distributed uniformly (c). While

incorporating the density field (b) as part of optimization, the distributions of

the synthesized elements can be varied spatially (d).

While taking toroidal boundary conditions into consideration, our synthe-

sizer can be further applied to the generation of 2D and 3D element tiles that

can seamlessly tile a large output domain. As illustrated in Figure 4.8, rigid

and deformable elements with anisotropic shapes and various sizes can

be properly synthesized to form mixtures with tile-based element distribu-

tions according to given user specifications. It is obvious that the capability

of directly manipulating the distributions of aggregate elements via our de-

veloped system can offer users higher functionality since existing practices

123

do not take user-specified element distributions into account, and thanks

to the versatility of our interactive synthesis system, it can also be achiev-

able for the users to interactively create these tileable output compositions

with dense, sparse or spatially varying element distributions via the same

element distribution manipulation.

(a) rigid elements (b) mixed elements (c) deformable elements

Figure 4.8: The manipulation of tile-based element distributions. Aggregate

elements with varying anisotropy and deformability can be properly mixed to

generate seamless element tiles on the basis of the partially user-specified

brush strokes. Note that in (b), the rigid elements (i.e. music symbols)

are randomly aligned, while the deformable elements (i.e. words) follow the

stroke directions.

In addition to the manipulation of user-specified element distributions de-

scribed above, the freedom of interactive authoring can also be crucial, as it

can directly reflect design intention and affect final output formations. Since

our element field formulation can effectively handle chaotic input fields as

exemplified in Figure 3.15, by taking advantage of this ability, the interactive

synthesis system can enable users to arbitrarily specify brush strokes with

incoherent directions or sizes to produce stylized or notable results without

compromising their brushing behavior. As illustrated in Figure 4.9, different

124

kinds of incoherent user strokes can be freely specified by the users within

the output domain, and our synthesizer can still appropriately match all the

synthesized elements with such incoherent user strokes to smoothly gen-

erate incoherent element fields. This characteristic can indeed offer users

sufficient freedom of interactive authoring and clearly demonstrate that our

interactive synthesis system can outperform existing practices in terms of

usability and interactivity since previous methods (e.g. (Maharik et al. 2011;

Saputra et al. 2017)) only deal with coherent inputs (e.g. fully smooth input

fields) for element arrangements without taking incoherent user specifica-

tions into consideration.

(a) overlapping strokes (b) intertwined strokes (c) distorted strokes

(d) incoherent element fields computed from (a), (b) and (c) respectively

Figure 4.9: Incoherent user strokes. Our interactive synthesis system can

allow users to freely specify overlapping (a), intertwined (b) or even distorted

(c) brush strokes with incoherent directions or sizes to produce stylized or

notable results (d) without restricting their authoring freedom, whereas it can

be difficult if not impossible for the users to effectively generate such results

through existing practices.

125

Furthermore, while user specifications (i.e. brush strokes or input fields) are

not supplied, our synthesizer is still able to generate diverse output compo-

sitions by randomly manipulating the initial orientations and scales of aggre-

gate elements as exemplified in Figure 3.9. Through our element palette,

users can arbitrarily orient, resize or even twist the selected element collec-

tions and let our interactive synthesis system automatically create complete

element aggregations. As demonstrated in Figure 4.10, the developed sys-

tem can properly form a variety of novel mixtures composed of aggregate

elements with random orientations or scales in high synthesis quality with-

out the need to incorporate any additional schemes (e.g. deformation sim-

ulation). Although there may exist a few overlaps between the synthesized

elements, it can be observed that the overall inter-element penetrations are

not visually obvious in the outputs.

(a) aggregate vegetables (b) piled pebbles (c) tangled metals

Figure 4.10: The manipulation of the initial orientations and scales of ag-

gregate elements. Through individually manipulating the initial orientation

and scale of each selected aggregate element from the element palette,

compelling mixtures consisting of multiple aggregate elements with chaotic

alignments (a), arbitrary orientations and scales (b) or even twisted shapes

(i.e. metal wires) (c) can be correspondingly formed by users in 3D volumes.

Note that in (c), to twist the shapes of the metal wires, each element sam-

ple of the metal wires is further assigned another extra random orientation,

which can also be determined by the users via our element palette.

126

This feature can significantly relieve the demand of collecting or modeling

a host of aggregate elements, assist users in broadening the formations

of element aggregations, and more increase the versatility of our interac-

tive synthesis system. In particular, to our best knowledge, there is a lack

of efficient and straightforward avenues for the creation of such mixtures

from user-specified aggregate elements as well. Moreover, we can also ex-

tend this feature to further enhance the visual effects of output formations.

For instance, as illustrated in Figure 4.11, when given user specifications,

users can still slightly randomize the initial orientations of aggregate ele-

ments through the element palette, and our interactive synthesis system

can automatically compute more or less misaligned element fields across

the entire output domain and accordingly match all the synthesized ele-

ments with the original user intention at the same time.

To sum up, it is evident that the developed system can supply users with

functional manipulations to facilitate the iterative design procedure, and due

to the intuitiveness and user-friendliness of our brushing workflow, the users

are enabled to produce compelling outcomes with controllable element dis-

tributions, orientations and scales as demonstrated above. While our cur-

rent prototype system is generalized enough to effectively cope with a va-

riety of phenomena and output formations, this property can make further

extension and potential enhancement more practicable for particular sce-

narios and applications. For example, being able to directly place a few

fixed key aggregate elements in the output domain as partial inputs for op-

timization can be considered as an alternative production workflow, and to

allow the users to design specific element alignments around the output do-

main boundary (e.g. only part of the synthesized elements perpendicular

to the boundary normals) is also worth developing. Thus, to more leverage

our proposed formulations, it is considerable to incorporate more design

constraints into our interactive synthesis system for future improvement.

127

(a) partially specified input (b) well-aligned branches

(c) less-misaligned branches (d) more-misaligned branches

Figure 4.11: The manipulation of misaligned element fields. When given

several partially user-specified brush strokes (a), well-aligned aggregate el-

ements (b) can be directly synthesized by our developed system across the

entire 3D volume. While slightly randomizing the initial orientations of the

individual aggregate elements from the element palette, the synthesized el-

ements can be misaligned less (c) or more (d) but still correspondingly follow

the original user intention.

128

4.2.2 Performance

The synthesis times of our representative results shown in this thesis are

reported for reference in Table 4.1. In our current prototype system, there

exists room to improve the performance. For example, as we extend Voro++

(Rycroft 2009), which is developed for 3D output domains, for the construc-

tion of the power diagram, it should be able to specifically optimize the code

framework of Rycroft (2009) to reduce the computation of the power cells of

element samples in 2D output domains. We leave it for future work.

2D case # elements # samples time # iterations
Figure 1.4a 725 1656 9s 100
Figure 4.5b 303 1276 15s 200
Figure 4.6b 634 2629 144s 1000
Figure 4.6c 436 1810 94s 1000
Figure 4.7c 381 1560 8s 100
Figure 4.7d 274 1139 7s 100
Figure 4.8a 187 402 4s 200
Figure 4.8b 194 650 6s 200
Figure 4.8c 206 838 8s 200
Figure 4.9a 367 849 5s 100
Figure 4.9b 516 1675 18s 200
Figure 4.9c 355 1477 28s 400

3D case # elements # samples time # iterations
Figure 1.4b 3994 19970 28s 5
Figure 1.4c 6280 43960 170s 20
Figure 4.10a 5272 15931 60s 50
Figure 4.10b 6158 16966 101s 50
Figure 4.10c 5344 26344 145s 50
Figure 4.11b 4888 48880 150s 10

Table 4.1: The synthesis timing. The CPU we use is Intel® Xeon® E5-

1650 3.20GHz. Note that Figures 4.5b to 4.5e have similar synthesis times

and the same numbers of aggregate elements and element samples, Fig-

ures 4.9a to 4.9c here represent the corresponding outputs in Figure 4.9d

respectively, and Figures 4.11b to 4.11d also have similar synthesis times

as well as the same numbers of aggregate elements and element samples.

129

4.2.3 Limitations

Since our synthesizer randomly places distinct types of aggregate elements

into the output domain for fast initialization, the optimization process for the

distributions of aggregate elements might be trapped in a local minimum

when the synthesized elements are highly anisotropic and the output do-

main is irregular. For instance, as shown in Figure 1.4a, the numbers of

aggregate elements within the four feet of the gecko (i.e. the output do-

main) are slightly different from each other, but this can be relieved via a

progressive initialization like (Davison et al. 2019) or a teleportation scheme

like (Cohen-Steiner et al. 2004) for the dynamic addition and removal of ag-

gregate elements. In addition, our current prototype system cannot entirely

avoid inter-element penetrations, but the issue does not result in visually ob-

vious artifacts to our outcomes shown in this thesis. If there is requirement,

similar to (Hsu and Keyser 2010, 2012), it is also feasible to incorporate ad-

ditional physics solvers (e.g. (Coumans 2013)) into the developed system

to overcome this issue.

Unlike (Xing et al. 2014, 2015; Peng et al. 2018), which only demand to

deal with a few number of sketched or geometric elements within a small

region at once, our interactive synthesis system aims to automatically com-

pute a complete element field and thus may lack interactive speed for large

outputs (e.g. Figure 4.11). One possibility is to display the intermediate it-

eration progress of the optimization process (like in (Saputra et al. 2018))

instead of only the final result at the end. Furthermore, while the synthesizer

is currently carried out based on CPU computing, to investigate GPU com-

puting for further speedup can be an alternative solution for more immediate

interactivity.

130

4.3 User Study

The interactive synthesis system aims for the reduction of input workload

(by partial user specifications) and the enhancement of output quality (by

smooth field topology). To evaluate our developed system, we have con-

ducted a pilot user study, and the goal of our user study procedure was

designed to measure how much workload users can reduce via our inter-

active synthesis system while achieving the designated targets. The study

participants included 2 professional artists and 3 novice users without ex-

perience in element authoring.

4.3.1 Procedure

The study includes four sessions: warm-up, target brush, open brush, and

final interview. All tasks were conducted on a desktop computer with a

mouse and a Wacom tablet, and the whole study took around 2 hours per

participant on average.

4.3.1.1 Warm-up Session

This session aims to assist the novice users in learning basic understanding

and manipulation of Autodesk Maya (e.g. camera control) and familiarize all

the participants with our interactive synthesis system. The process consists

of interactive authoring and automatic completion for given objects in both

2D and 3D output domains. Through the session, we supplied the partic-

ipants with relevant assistance, and thus each participant could properly

131

experience our brushing workflow and realize relative parameters as well

as essential functions.

4.3.1.2 Target Brush Session

In this session, we aim to measure the usability of the palette-based brush-

ing interface for the participants with different levels of expertise. During the

session, each participant was asked to create similar outcomes to the des-

ignated targets. Although the 2D target (Figure 4.13b) can be achieved by

Adobe Photoshop or Illustrator (e.g. Levis (2014); VideoLot (2016)) and the

3D target (Figure 4.14a) can be fulfilled by PhysX Painter (e.g. Gay (2016b))

plus manual placements, it can still require significant artistic skills and man-

ual labor from users in a time-consuming procedure. As a consequence,

instead of asking the participants to accomplish these designated results by

existing tools, we let our participants directly create outcomes through our

developed system under two conditions: autocomplete off (i.e. synthesizing

aggregate elements only under the user strokes) and autocomplete on. We

then recorded the production time and the total number of user strokes for

each task respectively.

4.3.1.3 Open Brush Session

In order to identify possible enhancement for better usability and interactiv-

ity, the participants were encouraged to freely create other element aggre-

gations during this period, and at the same time, we observed their brushing

behavior and production workflow throughout the process. In the session,

we also offered the participants necessary supports to assist them in ex-

ploring more interesting experiments.

132

4.3.1.4 Final Interview Session

In the final interview, we discussed conceivable usage and potential im-

provement about our interactive synthesis system with the participants, and

each participant was also asked a few user feedback questions, such as

desirable manipulations for the autocomplete element fields and other prob-

able applications about the developed system. At the end, we requested

our participants to mark the interactive synthesis system in terms of utility,

easy to use, quality, efficiency, and satisfaction respectively.

4.3.2 Outcome

Figure 4.12 offers quantitative measures of production time and stroke counts

for each target task. The outcome statistics demonstrate that our interac-

tive synthesis system can significantly reduce both the production time and

the number of user strokes for either artists or novices. Please refer to Fig-

ures 4.13 and 4.14 for the sample user study outputs. Below we highlight

the participants’ authoring behaviors from our observation.

10

8

6

4

2

0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

2D auto off 2D auto on 3D auto off 3D auto on
min

(a) production time

175

150

125

100

75

50

25

0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

2D auto off 2D auto on 3D auto off 3D auto on
strokes

(b) number of user strokes

Figure 4.12: The outcome statistics. The production time (a) and the total

number of user strokes (b) for each target were measured individually.

133

In terms of the 2D target, without the autocomplete mode, the participants

had to repetitively adjust the brush radius and carefully place each brush

stroke one by one so as to fill the entire output domain and properly match

the element alignments in the 2D target. However, even though they could

quickly and intuitively arrange the brush strokes all over the output domain

via the palette-based brushing interface, analogous to common sketching

and painting, to perfectly place these brush strokes side by side was not

straightforward to them by reason that the brushing paths could be a little

tilted to some extent. Thus, the outcomes regarding fully manual brushing

can contain some obvious gaps amid the user strokes, and the orientations

and scales of aggregate elements are not smooth enough either. While with

the autocomplete mode, the participants could place a few strokes of aggre-

gate elements around the singularity and some other evenly-spaced brush

strokes within the remaining output domain for automatic completion. It can

be seen that the results created via the one-step automatic optimization

process can have smoother element distributions, orientations and scales

as well as similar appearances to the 2D target even though the partially

user-specified brush strokes are not totally identical. From our observation,

some of the user strokes might follow the 2D target’s outline but the out-

line did not actually affect the participants’ authoring strategies in general,

while the element alignments in the 2D target could affect the participants’

decisions about where to place the brush strokes for automatic completion.

Similar results to the 3D target could be made via both without and with the

autocomplete mode as the participants did not need to consider the element

alignments for the body shape of the 3D target (i.e. lemons and bananas),

but it can be noted that with the autocomplete mode, the outcomes can have

overall tighter element distributions. An interesting situation is that since the

nose of the 3D target (i.e. cucumbers) has precise element alignments (i.e.

horizontal directions), to avoid obvious element misalignments appearing

134

at the 3D target’s nose, multiple participants had to brush more than once

for better oriented cucumbers, while the rest (except the 3D target’s body

shape) could be specified with a single brush stroke in most instances. To

sum up, with our interactive synthesis system, the participants could more

flexibly produce the designated targets with reduced user workload and en-

hanced synthesis quality without sacrificing their controls.

(a) user input (b) 2D target (c) user input (d) auto on (e) auto off

(f) user input (g) auto on (h) auto off (i) user input (j) auto on (k) auto off

(l) user input (m) auto on (n) auto off (o) user input (p) auto on (q) auto off

Figure 4.13: The sample user study outputs for the 2D target. Each group

of the sample user study outputs contains the partially specified input for

automatic completion, the result automatically computed from the user input

(i.e. auto on), and the output created by fully manual brushing (i.e. auto off).

135

(a) 3D target (b) auto on (c) auto off

(d) auto on (e) auto off (f) auto on (g) auto off

(h) auto on (i) auto off (j) auto on (k) auto off

Figure 4.14: The sample user study outputs for the 3D target. Each group

of the sample user study outputs contains the result computed via auto-

matic completion plus partially manual brushing and the output created by

fully manual brushing. With the autocomplete mode (i.e. (b), (d), (f), (h)

and (j)), the lemons and bananas were automatically synthesized within the

output domain via our interactive synthesis system. Without the autocom-

plete mode (i.e. (c), (e), (g), (i) and (k)), the lemons and bananas were

interactively brushed by the participants over the output domain.

136

While comparing the brushing behavior between the professional artists and

the novice users, thanks to our intuitive and user-friendly brushing workflow,

there was no obvious behavior difference between the participants based on

our observation in terms of partially specifying a few brush strokes for auto-

matic completion. About fully manual brushing, in the main, the novice users

tended to brush the output domains with comparatively short brush strokes

and sometimes some of their brushing paths might be a little slightly zigzag,

whereas the professional artists could more flexibly utilize brush strokes with

different lengths to generate the outputs. Note that the slightly zigzag user

strokes did not lead to visual artifacts in their results since our proposed for-

mulations can directly compute smooth element fields even from incoherent

brush strokes as exemplified in Figure 4.9.

4.3.3 User Feedback

Figure 4.15 shows a summarization of the user feedback marked by each

participant. Overall, the participants were content with our interactive syn-

thesis system and commented that they can easily learn and understand

the brushing workflow and directly produce desirable results without requir-

ing a great amount of practice and expertise, as our palette-based brushing

interface can fit the natural artist workflow. They also said that with the in-

teractive synthesis system, they only demand to design a few specific brush

strokes for automatic completion instead of arranging all the element collec-

tions across the output domain during the process of iterative design, and

this concept is fairly creative and novel to them. When asked about com-

paring manual placement with automatic completion, the participants stated

that the one-step automatic optimization process can indeed help them to

reduce input workload and obtain smooth output compositions in an efficient

137

and handy manner, and it can significantly encourage them to explore more

interesting experiments. The participants were happy to see that our de-

veloped system can improve existing production pipelines for professional

artists and benefit more novice users in the production of artistic works.

7

6

5

4

3

2

1

0
Artist 1 Artist 2 Novice 1 Novice 2 Novice 3

utility easy to use quality efficiency satisfaction

Figure 4.15: The user feedback. The participants were asked to mark our

interactive synthesis system in terms of utility, easy to use, quality, efficiency,

and satisfaction, and all quantities are expressed in a 7-point Likert scale.

Our participants also made comments related to possible enhancement and

conceivable usage for our interactive synthesis system. The artists recom-

mended that it can be desirable to have more advanced brush controls such

as a single stroke with varying brush radii for more varied effects, and being

able to save the designed brush strokes as presets for further reuse (i.e.

relocating a set of predefined brush strokes at a desired region) may be

handier. Some participants expressed that after automatic completion, to

let users slightly adjust a few local aggregate elements with specified orien-

tations or scales as partial inputs for local optimization can be an alternative

avenue for local field manipulation, as it can still work under our element

field formulation, and this may benefit some scenarios which require more

precise control of flow directions. Since our current prototype system is de-

veloped to provide a general user interface for interactive texturing across

different output domains, we believe that their advice can be integrated into

the developed system for tailored applications in accordance with require-

ments.

138

4.4 Other Applied Results

In addition to graphic design, artistic collage, and aggregate modeling we

demonstrate in the previous sections, here we show more applications of

our interactive synthesis system in pattern design, solid texturing, and field

visualization as follows.

4.4.1 Pattern Design

There can be no doubt that element arrangements are important for pattern

design (Loi et al. 2017), but it can still be difficult or inconvenient for ordi-

nary users to effectively design tile-based patterns composed of aggregate

elements with varying anisotropy and deformability. Since existing tools of-

ten require users to manually arrange individual aggregate elements for the

generation of repeating patterns in a tedious and time-consuming process

as exemplified in (Cunningham 2015; Purdy 2019), the users can notably

take plenty of mental energy as well as production time to iteratively de-

sign such patterns with different styles (e.g. compact or loose output for-

mations). As our interactive synthesis system can supply the capability of

flexibly manipulating the distributions of aggregate elements, creators are

enabled to directly form diverse output compositions with dense, sparse,

spatially varying or evenly overlapping element distributions without requir-

ing a great amount of manual labor and technical expertise. As a result,

analogous to Figure 4.8, through toroidal boundary conditions, our devel-

oped system can significantly assist the creators in interactively designing a

variety of tileable patterns with intended element distributions, orientations

and scales via an efficient and handy manner as illustrated in Figure 4.16.

139

(a) colorful pattern (b) floral pattern

(c) fish pattern (d) vegetable pattern

Figure 4.16: Tileable pattern design. When given partially user-specified

brush strokes, the tileable patterns with dense (a) or evenly overlapping

(b) element distributions can be properly generated. Note that in (b), we

overly increase the total number of aggregate elements placed into the out-

put domain to form slightly overlapping but comparatively uniform element

distributions. While taking advantage of control maps (i.e. (c) and (d)), the

distributions of aggregate elements in the tileable patterns can be spatially

varied. Note that in (c), we utilize the partially user-specified brush stroke in

Figure 4.8c and a tileable density map as the given inputs for optimization,

and in (d), we directly randomize the initial orientations of aggregate ele-

ments and also match the synthesized elements with an extra density map.

The aggregate elements we use here are designed by Freepik (2019).

140

4.4.2 Solid Texturing

The creation of solid textures is another application of our interactive synthe-

sis system. Since most proposed methods for solid texturing (e.g. (Jagnow

et al. 2004; Qin and Yang 2007; Kopf et al. 2007; Du et al. 2013)) create

the solid textures from 2D input exemplars such as photos, the input ex-

emplars with specific structures might not be properly synthesized. To our

best knowledge, there is also a lack of algorithms which can generate tile-

based solid textures from user-specified aggregate elements. In contrast,

our developed system can not only create 3D element tiles from specific

aggregate elements but also well maintain the element configuration. Users

can directly choose a few types of aggregate elements from the element

palette and take relevant manipulations to create tileable solid textures, and

then these tile-based solids can be subsequently reused to fully construct

arbitrary objects as shown in Figure 4.17. An extra benefit is that instead

of using a dense 3D array to store relevant texture information in traditional

voxel-based algorithms, based on our devised element representation, we

only need to record the source models of aggregate elements and corre-

sponding information about the positions, orientations and scales of ele-

ment samples of the synthesized elements to entirely reconstruct the target

objects without compromising texture resolution and storage capability.

4.4.3 Field Visualization

To visualize orientation fields can be a direct application of our developed

system. As illustrated in Figure 4.18, by properly distributing and aligning

anisotropic elements to depict underlying fields, it can be considered as an

alternative geometry-based technique for field visualization.

141

(a) pebble cement

(b) beehive rock

(c) peanut caramel

Figure 4.17: Solid texturing. By randomly resizing and orienting a few ag-

gregate elements from the element palette, tile-based solid textures can be

created for concrete (a), eroded (b) and colloidal (c) structures. Note that in

(b), the aggregate elements are used as cutting objects to trim models.

142

(a) 2D plane

(b) 3D surface (c) 3D volume

Figure 4.18: Field visualization. To more clearly depict the underlying field,

aggregate elements can be properly assigned color-ramped textures (a) for

the enhancement of the visual effect of flow directions. By directly mapping

elongated elements onto polygonal surfaces (b), cross fields can be visu-

alized over the surfaces. Analogous to (Palacios et al. 2017), anisotropic

elements can also be exploited to individually indicate the orientations of

field axes for the visualization of volumetric tensor fields (c).

143

5 Conclusion and Future Work

5.1 Conclusion

It is obvious that the arrangement of aggregate elements is important and

popular for artists and designers, as these well-organized element aggrega-

tions can be widely employed for a variety of practical applications, such as

graphic design, artistic collage, and aggregate modeling. Nevertheless, a

certain number of creators, especially ordinary novices, often find it difficult

or ineffective to appropriately transform their conceptual ideas into concrete

design outcomes through existing practices. Additionally, to well produce

satisfactory element aggregations, those creators not only have to possess

essential production abilities in advance but also demand heavy efforts in

most cases by reason that there is still a lack of efficient algorithms and

general user interfaces for interactive authoring of aggregate elements with

varying anisotropy and deformablility. As a consequence, the desire for

a well-developed element synthesis framework that can flexibly cope with

diverse output compositions for pragmatic usage, especially in 3D environ-

ments, can be significant. In order to effectively overcome this challenging

issue and reasonably satisfy the demand from users in the iterative design

144

procedure, in this thesis, we thus specifically formulate the autocomplete el-

ement fields that can properly deal with a variety of phenomena and output

formations across different output domains and further develop the interac-

tive synthesis system to facilitate the creation of element aggregations with

high production quality and efficiency.

In terms of the key contributions of our research, the element distribution

formulation, which includes the data-driven method (Hsu et al. 2018) and

the procedural approach (Hsu et al. 2020), focuses on adequately distribut-

ing aggregate elements with anisotropic shapes and various sizes to form

a variety of novel mixtures. As compared with existing element synthe-

sis practices, based on our devised element representation, the element

distribution formulation can directly synthesize and mix distinct types of ag-

gregate elements in high output standard without the need to integrate any

additional physics solvers. In addition, the capability of being able to manip-

ulate the distribution of aggregate elements can also demonstrate a clear

advantage that our procedural approach can provide more functionality for

element synthesis, since a majority of the proposed algorithms do not take

user-specified element distributions into account owing to algorithmic limita-

tions or expensive computation cost. This notable advantage can be crucial

for the production of artistic works, as it can offer more freedom of designing

diverse output compositions.

Moreover, the element field formulation, which is our second key contribu-

tion, concentrates on smoothly organizing the overall element arrangements

on the basis of inter- and intra-element relationships such that complete ele-

ment fields can be automatically computed according to given specifications

(e.g. scalar or direction fields). Since existing field interpolation algorithms

or field design systems are not developed for the purpose of orienting aggre-

gate elements, in contrast to the two-step process, our one-step automatic

145

optimization process can more adaptively orient all the aggregate elements

to better reflect user intention and even effectively avoid undesirable arti-

facts, such as element misalignments near singular points. Based on our

element field formulation, rigid and deformable elements can be straightfor-

wardly distinguished without needing to incorporate any additional schemes

(e.g. deformation simulation), and by directly adjusting the field continuity

condition, the topology of element fields can also be accordingly manipu-

lated without requiring any extra field preprocessing (e.g. field smoothing).

Clearly, this remarkable flexibility can not only significantly streamline work

procedures but also further enrich visual diversity of artistic works without

breaking the production workflow.

In addition to the proposed formulations, another key contribution of the

research is the development of the interactive synthesis system, as our

developed system, centered on the concept of our autocomplete element

fields, is the first for interactive authoring of aggregate elements with varying

anisotropy and deformability for multiple applications. During the process of

iterative design, through our palette-based brushing interface, creators can

directly brush different output domains with chosen element collections to

flexibly deal with diverse output compositions under an intuitive and user-

friendly brushing workflow without requiring a great deal of manual labor and

technical expertise. When with the automatic completion of full outcomes

based on partially user-specified inputs, the interactive synthesis system

can dramatically reduce input workload and simultaneously enhance output

quality to properly assist both professional artists and novice users in the

production of desired element aggregations without compromising their au-

thoring freedom. Our current prototype system as an extension of traditional

painting systems can indeed more naturally fit element synthesis with inter-

active authoring and sufficiently offer users more usability and interactivity

than existing practices.

146

5.2 Future Work

As described in Section 3.1, distinct types of aggregate elements are char-

acterized by a set of element samples and graphs in our devised element

representation, and currently we set these element samples and graphs

by hand. Even though the automatic computation of element representa-

tion can be fulfilled by utilizing a few relevant algorithms as mentioned in

Figure 3.1, it may not ideally fit user design intention or reach operational

standard for element synthesis, and thus further adjustments, which include

moving, resizing or removing the related element samples and graphs, are

needed in order to better approach the intended element representation.

As a result, to simplify the procedure, a user-interactive editing tool for ef-

ficiently specifying the element samples and graphs can be considered as

a potential future task. Furthermore, as our proposed formulations can ef-

fectively handle aggregate elements with general shapes, distributions and

alignments, there can exist several interesting research directions worth in-

vestigating and we individually list them as follows:

1. Geometric feature brushes: While considering geometric features (e.g.

fish scales or bird feathers) as aggregate elements, it should be possible

to interactively brush such geometric features over polygonal surfaces,

and this can be achieved by integrating (Schmidt et al. 2006; Takayama

et al. 2011) into our interactive synthesis system to process the geomet-

ric features over the surfaces.

2. 3D printable element aggregations: As inspired by Dumas et al. (2018),

by properly adding extra constraints to make sure that all the synthesized

elements can slightly contact with each other, we believe that our element

synthesis framework can be directly extended for 3D printing.

147

3. VR brushing: Recently, VR brushing has received significant attention,

as it can provide an immersive environment for interactive painting and

modeling like (Kim et al. 2018; Xing et al. 2019). We plan to implement

our proposed formulations under VR and offer a user interface for inter-

active authoring of aggregate elements in immersive environments.

4. Continuous element synthesis: Since our current prototype system

does not take continuous elements (Roveri et al. 2015) into considera-

tion due to the complexity of brush controls in 3D environments and the

difficulty of arbitrarily mixing such continuous elements, a potential re-

search direction is to extend our proposed formulations with (Lu et al.

2014; Zhou et al. 2014) for interactive synthesis of continuous artistic

patterns following user specifications.

5. Dynamic element synthesis: As demonstrated in Figure 3.16, our pro-

posed formulations can also handle dynamic input fields. Therefore, we

also plan to extend this feature for motion graphics like (Kazi et al. 2014;

Xing et al. 2016) and element animations like (Ma et al. 2013; Milliez et al.

2014, 2016) as our future work. While to properly visualize unsteady in-

put fields is still an open problem, especially in 3D output domains, we

are going to more fully explore possible solutions to efficiently deal with

time-varying input fields and moving elements for dynamic field visual-

ization like (Jobard et al. 2012; Hu et al. 2019) as well.

Finally, to enhance our interactive synthesis system, we would like to over-

come the limitation issues described in Section 4.2.3 and carry out more

desirable user controls mentioned in Section 4.3.3 for more specific usage.

Since the developed system is directly fulfilled into an external Autodesk

Maya plugin, we are planning to share the plugin to relevant public commu-

nities so as to obtain useful and constructive feedback from potential users

for the future improvement.

148

Bibliography

AlMeraj, Z., Kaplan, C. S. and Asente, P., 2013. Patch-based geometric

texture synthesis. In Proceedings of the Symposium on Computational

Aesthetics, CAE ’13, 15–19.

Amenta, N., Choi, S. and Kolluri, R. K., 2001. The power crust. In Proceed-

ings of the Sixth ACM Symposium on Solid Modeling and Applications,

SMA ’01, 249–266.

Aurenhammer, F., 1987. Power diagrams: Properties, algorithms and appli-

cations. SIAM J. Comput., 16(1), 78–96.

Bendsoe, M. and Sigmund, O., 2004. Topology Optimization: Theory, Meth-

ods and Applications.

Bridson, R., 2007. Fast poisson disk sampling in arbitrary dimensions. In

ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07.

Buron, C., Marvie, J.-E., Guennebaud, G. and Granier, X., 2015. Dynamic

on-mesh procedural generation. In Proceedings of the 41st Graphics In-

terface Conference, GI ’15, 17–24.

Chen, G., Kwatra, V., Wei, L.-Y., Hansen, C. D. and Zhang, E., 2012. Design

of 2d time-varying vector fields. IEEE Transactions on Visualization and

Computer Graphics, 18(10), 1717–1730.

149

Chen, W., Ma, Y., Lefebvre, S., Xin, S., Martı́nez, J. and wang, w., 2017.

Fabricable tile decors. ACM Trans. Graph., 36(6), 175:1–175:15.

Chen, Y., Fu, H. and Au, K. C., 2016. A multi-level sketch-based interface

for decorative pattern exploration. In SIGGRAPH ASIA 2016 Technical

Briefs, SA ’16.

Cho, J. H., Xenakis, A., Gronsky, S. and Shah, A., 2007. Anyone can cook

– inside ratatouille’s kitchen. In SIGGRAPH 2007 Courses.

Cohen-Steiner, D., Alliez, P. and Desbrun, M., 2004. Variational shape ap-

proximation. ACM Trans. Graph., 23(3), 905–914.

Comaniciu, D. and Meer, P., 2002. Mean shift: A robust approach toward

feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5),

603–619.

Coumans, E., 2013. Bullet physics library. Available from: https://

bulletphysics.org [Accessed 15 March 2020].

Cunningham, T., 2015. How to create seamless patterns in illustrator. Avail-

able from: https://www.youtube.com/watch?v=ITRZ75OKrG0 [Accessed

15 March 2020].

Dalal, K., Klein, A. W., Liu, Y. and Smith, K., 2006. A spectral approach

to npr packing. In Proceedings of the 4th International Symposium on

Non-photorealistic Animation and Rendering, NPAR ’06, 71–78.

Davison, T., Samavati, F. and Jacob, C., 2019. Interactive example-palettes

for discrete element texture synthesis. Computers & Graphics, 78, 23 –

36.

Doyle, L., Anderson, F., Choy, E. and Mould, D., 2019. Automated pebble

mosaic stylization of images. Computational Visual Media, 5, 33–44.

150

Du, S.-P., Hu, S.-M. and Martin, R. R., 2013. Semiregular solid texturing

from 2d image exemplars. IEEE Transactions on Visualization and Com-

puter Graphics, 19(3), 460–469.

Dumas, J., Martı́nez, J., Lefebvre, S. and Wei, L.-Y., 2018. Printable aggre-

gate elements. CoRR, abs/1811.02626.

Emilien, A., Vimont, U., Cani, M.-P., Poulin, P. and Benes, B., 2015. World-

brush: Interactive example-based synthesis of procedural virtual worlds.

ACM Trans. Graph., 34(4), 106:1–106:11.

Freepik, , 2019. Graphic resources for everyone. Available from: https:

//www.freepik.com/ [Accessed 15 March 2020].

Frehse, L., 2018. Automodeller pro. Available from: http://www.

automodeller.com/ [Accessed 15 March 2020].

Fu, H., Wei, Y., Tai, C.-L. and Quan, L., 2007. Sketching hairstyles. In Pro-

ceedings of the 4th Eurographics Workshop on Sketch-based Interfaces

and Modeling, SBIM ’07, 31–36.

Gal, R., Sorkine, O., Popa, T., Sheffer, A. and Cohen-Or, D., 2007. 3d

collage: Expressive non-realistic modeling. In Proceedings of the 5th In-

ternational Symposium on Non-photorealistic Animation and Rendering,

NPAR ’07, 7–14.

Gay, C., 2016a. Physx painter. Available from: http://www.scriptspot.

com/3ds-max/scripts/physx-painter [Accessed 15 March 2020].

Gay, C., 2016b. Physx painter teaser. Available from: https://vimeo.com/

162046605 [Accessed 15 March 2020].

Guérin, E., Galin, E., Grosbellet, F., Peytavie, A. and Génevaux, J.-D.,

2016. Efficient modeling of entangled details for natural scenes. Com-

puter Graphics Forum, 35(7), 257–267.

151

Hausner, A., 2001. Simulating decorative mosaics. In Proceedings of the

28th Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’01, 573–580.

Hertzmann, A. and Zorin, D., 2000. Illustrating smooth surfaces. In Proceed-

ings of the 27th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’00, 517–526.

Hsu, C.-Y., Wei, L.-Y., You, L. and Zhang, J. J., 2018. Brushing element

fields. In SIGGRAPH Asia 2018 Technical Briefs, SA ’18.

Hsu, C.-Y., Wei, L.-Y., You, L. and Zhang, J. J., 2020. Autocomplete element

fields. In Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems, CHI ’20, 1–13.

Hsu, S.-W. and Keyser, J., 2010. Piles of objects. ACM Trans. Graph., 29

(6), 155:1–155:6.

Hsu, S.-W. and Keyser, J., 2012. Automated constraint placement to main-

tain pile shape. ACM Trans. Graph., 31(6), 150:1–150:6.

Hu, W., Chen, Z., Pan, H., Yu, Y., Grinspun, E. and Wang, W., 2016. Surface

mosaic synthesis with irregular tiles. IEEE Transactions on Visualization

and Computer Graphics, 22(3), 1302–1313.

Hu, Z., Xie, H., Fukusato, T., Sato, T. and Igarashi, T., 2019. Sketch2vf:

Sketch-based flow design with conditional generative adversarial network.

Computer Animation and Virtual Worlds, 30(3-4), e1889.

Huang, H., Zhang, L. and Zhang, H.-C., 2011. Arcimboldo-like collage using

internet images. ACM Trans. Graph., 30(6), 155:1–155:8.

Huang, Z., Wang, J., Fu, H. and Lau, R. W. H., 2014. Structured mechanical

collage. IEEE Transactions on Visualization and Computer Graphics, 20

(7), 1076–1082.

152

Huang, Z. and Ju, T., 2016. Extrinsically smooth direction fields. Computers

& Graphics, 58, 109–117.

Ijiri, T., Mêch, R., Igarashi, T. and Miller, G., 2008. An example-based pro-

cedural system for element arrangement. Computer Graphics Forum, 27

(2), 429–436.

Interrante, V., 1997. Illustrating surface shape in volume data via principal

direction-driven 3d line integral convolution. In Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’97, 109–116.

Jagnow, R., Dorsey, J. and Rushmeier, H., 2004. Stereological techniques

for solid textures. ACM Trans. Graph., 23(3), 329–335.

Jobard, B. and Lefer, W., 1997. Creating evenly-spaced streamlines of ar-

bitrary density. In Visualization in Scientific Computing ’97, 43–56.

Jobard, B., Ray, N. and Sokolov, D., 2012. Visualizing 2d flows with ani-

mated arrow plots. arXiv preprint arXiv:1205.5204.

Kalogerakis, E., Nowrouzezahrai, D., Breslav, S. and Hertzmann, A., 2012.

Learning hatching for pen-and-ink illustration of surfaces. ACM Trans.

Graph., 31(1), 1:1–1:17.

Kazi, R. H., Chevalier, F., Grossman, T., Zhao, S. and Fitzmaurice, G., 2014.

Draco: Bringing life to illustrations with kinetic textures. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI

’14, 351–360.

Kazi, R. H., Igarashi, T., Zhao, S. and Davis, R., 2012. Vignette: Interactive

texture design and manipulation with freeform gestures for pen-and-ink

illustration. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’12, 1727–1736.

153

Kim, J. and Pellacini, F., 2002. Jigsaw image mosaics. ACM Trans. Graph.,

21(3), 657–664.

Kim, Y., Kim, B. and Kim, Y. J., 2018. Dynamic deep octree for high-

resolution volumetric painting in virtual reality. Computer Graphics Forum,

37(7), 179–190.

Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D. and Wong, T.-

T., 2007. Solid texture synthesis from 2d exemplars. ACM Trans. Graph.,

26(3).

Kuhn, H. W., 1955. The hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2), 83–97.

Kwan, K. C., Sinn, L. T., Han, C., Wong, T.-T. and Fu, C.-W., 2016. Pyra-

mid of arclength descriptor for generating collage of shapes. ACM Trans.

Graph., 35(6), 229:1–229:12.

Lagae, A. and Dutré, Ph., 2006. Poisson sphere distributions. In Vision,

Modeling, and Visualization, 373–379.

Landes, P.-E., Galerne, B. and Hurtut, T., 2013. A shape-aware model for

discrete texture synthesis. In Proceedings of the Eurographics Sympo-

sium on Rendering, EGSR ’13, Aire-la-Ville, Switzerland, Switzerland.

67–76.

Levis, M., 2014. Tutorial on how to do a typography design of a woman’s

face in photoshop cc. Available from: https://www.youtube.com/watch?

v=LcZFp1s1AQI [Accessed 15 March 2020].

Li, P., Wang, B., Sun, F., Guo, X., Zhang, C. and Wang, W., 2015. Q-mat:

Computing medial axis transform by quadratic error minimization. ACM

Trans. Graph., 35(1), 8:1–8:16.

154

Li, Y., Bao, F., Zhang, E., Kobayashi, Y. and Wonka, P., 2011. Geometry

synthesis on surfaces using field-guided shape grammars. IEEE Trans-

actions on Visualization and Computer Graphics, 17(2), 231–243.

Loi, H., Hurtut, T., Vergne, R. and Thollot, J., 2013. Discrete texture design

using a programmable approach. In SIGGRAPH ’13 Talks, 43:1–43:1.

Loi, H., Hurtut, T., Vergne, R. and Thollot, J., 2017. Programmable 2d ar-

rangements for element texture design. ACM Trans. Graph., 36(3), 27:1–

27:17.

Lu, J., Barnes, C., DiVerdi, S. and Finkelstein, A., 2013. Realbrush: Paint-

ing with examples of physical media. ACM Trans. Graph., 32(4), 117:1–

117:12.

Lu, J., Barnes, C., Wan, C., Asente, P., Mech, R. and Finkelstein, A., 2014.

Decobrush: Drawing structured decorative patterns by example. ACM

Trans. Graph., 33(4), 90:1–90:9.

Lu, J., Yu, F., Finkelstein, A. and DiVerdi, S., 2012. Helpinghand: Example-

based stroke stylization. ACM Trans. Graph., 31(4), 46:1–46:10.

Lukáč, M., Fišer, J., Asente, P., Lu, J., Shechtman, E. and Sýkora, D.,

2015. Brushables: Example-based edge-aware directional texture paint-

ing. Comput. Graph. Forum, 34(7), 257–267.

Lukáč, M., Fišer, J., Bazin, J.-C., Jamriška, O., Sorkine-Hornung, A. and

Sýkora, D., 2013. Painting by feature: Texture boundaries for example-

based image creation. ACM Trans. Graph., 32(4), 116:1–116:8.

Ma, C., Wei, L.-Y., Lefebvre, S. and Tong, X., 2013. Dynamic element tex-

tures. ACM Trans. Graph., 32(4), 90:1–90:10.

Ma, C., Wei, L.-Y. and Tong, X., 2011. Discrete element textures. ACM

Trans. Graph., 30(4), 62:1–62:10.

155

Madsen, K., Nielsen, H. B. and Tingleff, O., 2004. Methods for non-linear

least squares problems (2nd ed.). Available from: http://www2.imm.

dtu.dk/pubdb/views/publication_details.php?id=3215 [Accessed 15

March 2020].

Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A. and Carr, N., 2011.

Digital micrography. ACM Trans. Graph., 30(4), 100:1–100:12.

Meng, J., Papas, M., Habel, R., Dachsbacher, C., Marschner, S., Gross,

M. and Jarosz, W., 2015. Multi-scale modeling and rendering of granular

materials. ACM Trans. Graph., 34(4), 49:1–49:13.

Milliez, A., Guay, M., Cani, M.-P., Gross, M. and Sumner, R. W., 2016. Pro-

grammable animation texturing using motion stamps. Comput. Graph.

Forum, 35(7), 67–75.

Milliez, A., Noris, G., Baran, I., Coros, S., Cani, M.-P., Nitti, M., Marra, A.,

Gross, M. and Sumner, R. W., 2014. Hierarchical motion brushes for ani-

mation instancing. In Proceedings of the Workshop on Non-Photorealistic

Animation and Rendering, NPAR ’14, 71–79.

Muller, T., Papas, M., Gross, M., Jarosz, W. and Novak, J., 2016. Efficient

rendering of heterogeneous polydisperse granular media. ACM Trans.

Graph., 35(6).

Palacios, J., Roy, L., Kumar, P., Hsu, C.-Y., Chen, W., Ma, C., Wei, L.-Y. and

Zhang, E., 2017. Tensor field design in volumes. ACM Trans. Graph., 36

(6).

Palacios, J. and Zhang, E., 2007. Rotational symmetry field design on sur-

faces. ACM Trans. Graph., 26(3).

Peng, M., Xing, J. and Wei, L.-Y., 2018. Autocomplete 3d sculpting. ACM

Trans. Graph., 37(4), 132:1–132:15.

156

Peytavie, A., Galin, E., Grosjean, J. and Mérillou, S., 2009. Procedural

generation of rock piles using aperiodic tiling. Computer Graphics Forum,

28(7), 1801–1809.

Prasad, L., 1997. Morphological analysis of shapes. CNLS Newsletter,

139, 1–18.

Purdy, C., 2019. Make it, sell it: Repeating patterns in adobe illus-

trator. Available from: https://create.adobe.com/2019/4/2/make_it_

sell_it_repe.html [Accessed 15 March 2020].

Qin, X. and Yang, Y.-H., 2007. Aura 3d textures. IEEE Transactions on

Visualization and Computer Graphics, 13(2), 379–389.

Ramshaw, L. and Tarjan, R. E., 2012. On minimum-cost assignments in

unbalanced bipartite graphs.

Reinert, B., Ritschel, T. and Seidel, H.-P., 2013. Interactive by-example

design of artistic packing layouts. ACM Trans. Graph., 32(6), 218:1–218:7.

Ritter, L., Li, W., Curless, B., Agrawala, M. and Salesin, D., 2006. Painting

with texture. In Proceedings of the 17th Eurographics Conference on

Rendering Techniques, EGSR ’06, 371–376.

Roveri, R., Öztireli, A. C., Martin, S., Solenthaler, B. and Gross, M., 2015.

Example based repetitive structure synthesis. Comput. Graph. Forum, 34

(5), 39–52.

Rycroft, C., 2009. Voro++: A three-dimensional voronoi cell library in

c++. Available from: http://math.lbl.gov/voro++/ [Accessed 15 March

2020].

Sakurai, K. and Miyata, K., 2014. Modelling of non-periodic aggregates

having a pile structure. Comput. Graph. Forum, 33(1), 190–198.

157

Santoni, C. and Pellacini, F., 2016. gtangle: A grammar for the procedural

generation of tangle patterns. ACM Trans. Graph., 35(6), 182:1–182:11.

Saputra, R., Kaplan, C. and Asente, P., 2018. Repulsionpak: Deformation-

driven element packing with repulsion forces. In Proceedings of Graphics

Interface 2018, GI 2018, 10 – 17.

Saputra, R. A., Kaplan, C. S., Asente, P. and Měch, R., 2017. Flowpak:

Flow-based ornamental element packing. In Proceedings of the 43rd

Graphics Interface Conference, GI ’17, 8–15.

Schiftner, A., Höbinger, M., Wallner, J. and Pottmann, H., 2009. Packing

circles and spheres on surfaces. ACM Trans. Graph., 28(5), 139:1–139:8.

Schmidt, R., Grimm, C. and Wyvill, B., 2006. Interactive decal composit-

ing with discrete exponential maps. In ACM SIGGRAPH 2006 Papers,

SIGGRAPH ’06, 605–613.

Schroeder, D., Coffey, D. and Keefe, D., 2010. Drawing with the flow: A

sketch-based interface for illustrative visualization of 2d vector fields. In

Proceedings of the Seventh Sketch-Based Interfaces and Modeling Sym-

posium, SBIM ’10, 49–56.

Schwarz, M., Isenberg, T., Mason, K. and Carpendale, S., 2007. Modeling

with rendering primitives: An interactive non-photorealistic canvas. In

Proceedings of the 5th International Symposium on Non-photorealistic

Animation and Rendering, NPAR ’07, 15–22.

Shugrina, M., Lu, J. and Diverdi, S., 2017. Playful palette: An interactive

parametric color mixer for artists. ACM Trans. Graph., 36(4), 61:1–61:10.

Sumner, R. W., Schmid, J. and Pauly, M., 2007. Embedded deformation for

shape manipulation. ACM Trans. Graph., 26(3).

158

Takayama, K., Okabe, M., Ijiri, T. and Igarashi, T., 2008. Lapped solid tex-

tures: Filling a model with anisotropic textures. ACM Trans. Graph., 27

(3), 53:1–53:9.

Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T. and

Sorkine, O., 2011. Geobrush: Interactive mesh geometry cloning. Com-

puter Graphics Forum, 30(2), 613–622.

Thiery, J.-M., Guy, E. and Boubekeur, T., 2013. Sphere-meshes: Shape

approximation using spherical quadric error metrics. ACM Trans. Graph.,

32(6), 178:1–178:12.

VideoLot, , 2016. Adobe illustrator cs6 — typography portrait — bruno

mars. Available from: https://www.youtube.com/watch?v=_kdhB-8tNeM

[Accessed 15 March 2020].

Wang, R., Zhou, K., Snyder, J., Liu, X., Bao, H., Peng, Q. and Guo, B., 2006.

Variational sphere set approximation for solid objects. Vis. Comput., 22

(9), 612–621.

Wei, L.-Y. and Levoy, M., 2001. Texture synthesis over arbitrary manifold

surfaces. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’01, 355–360.

Xing, J., Chen, H.-T. and Wei, L.-Y., 2014. Autocomplete painting repeti-

tions. ACM Trans. Graph., 33(6), 172:1–172:11.

Xing, J., Kazi, R. H., Grossman, T., Wei, L.-Y., Stam, J. and Fitzmaurice,

G., 2016. Energy-brushes: Interactive tools for illustrating stylized ele-

mental dynamics. In Proceedings of the 29th Annual Symposium on User

Interface Software and Technology, UIST ’16, 755–766.

Xing, J., Nagano, K., Chen, W., Xu, H., Wei, L.-Y., Zhao, Y., Lu, J., Kim, B.

and Li, H., 2019. Hairbrush for immersive data-driven hair modeling. In

UIST 2019.

159

Xing, J., Wei, L.-Y., Shiratori, T. and Yatani, K., 2015. Autocomplete hand-

drawn animations. ACM Trans. Graph., 34(6), 169:1–169:11.

Xu, J. and Kaplan, C. S., 2007. Calligraphic packing. In Proceedings of

Graphics Interface 2007, GI ’07, 43–50.

Xu, X., Zhang, L. and Wong, T.-T., 2010. Structure-based ascii art. ACM

Trans. Graph., 29(4), 52:1–52:10.

Zehnder, J., Coros, S. and Thomaszewski, B., 2016. Designing structurally-

sound ornamental curve networks. ACM Trans. Graph., 35(4), 99:1–

99:10.

Zhang, E., Hays, J. and Turk, G., 2007. Interactive tensor field design and

visualization on surfaces. IEEE Transactions on Visualization and Com-

puter Graphics, 13(1), 94–107.

Zhang, E., Mischaikow, K. and Turk, G., 2006. Vector field design on sur-

faces. ACM Trans. Graph., 25(4), 1294–1326.

Zhang, G.-X., Du, S.-P., Lai, Y.-K., Ni, T. and Hu, S.-M., 2011. Sketch guided

solid texturing. Graphical Models, 73(3), 59–73.

Zhou, S., Jiang, C. and Lefebvre, S., 2014. Topology-constrained synthesis

of vector patterns. ACM Trans. Graph., 33(6), 215:1–215:11.

Zou, C., Cao, J., Ranaweera, W., Alhashim, I., Tan, P., Sheffer, A. and

Zhang, H., 2016. Legible compact calligrams. ACM Trans. Graph., 35

(4), 122:1–122:12.

160

Appendix A

(a) iteration 72 (b) iteration 74 (c) iteration 76 (d) iteration 78 (e) iteration 80

(f) iteration 82 (g) iteration 84 (h) iteration 86 (i) iteration 88 (j) iteration 90

(k) iteration 92 (l) iteration 94 (m) iteration 96 (n) iteration 98 (o) iteration 100

Figure A.1: The iteration process with the weight wo(s
′, s, i).

(a) iteration 72 (b) iteration 74 (c) iteration 76 (d) iteration 78 (e) iteration 80

(f) iteration 82 (g) iteration 84 (h) iteration 86 (i) iteration 88 (j) iteration 90

(k) iteration 92 (l) iteration 94 (m) iteration 96 (n) iteration 98 (o) iteration 100

Figure A.2: The iteration process without the weight wo(s
′, s, i).

161

Appendix B

(a) frame 1 (b) frame 2 (c) frame 3 (d) frame 4

(e) frame 5 (f) frame 6 (g) frame 7 (h) frame 8

Figure B.1: Dynamic input fields from 1 to 8 frames.

162

(a) frame 9 (b) frame 10 (c) frame 11 (d) frame 12

(e) frame 13 (f) frame 14 (g) frame 15 (h) frame 16

Figure B.2: Dynamic input fields from 9 to 16 frames.

163

(a) frame 17 (b) frame 18 (c) frame 19 (d) frame 20

(e) frame 21 (f) frame 22 (g) frame 23 (h) frame 24

Figure B.3: Dynamic input fields from 17 to 24 frames.

164

(a) frame 25 (b) frame 26 (c) frame 27 (d) frame 28

(e) frame 29 (f) frame 30 (g) frame 31 (h) frame 32

Figure B.4: Dynamic input fields from 25 to 32 frames.

165

(a) frame 33 (b) frame 34 (c) frame 35 (d) frame 36

(e) frame 37 (f) frame 38 (g) frame 39 (h) frame 40

Figure B.5: Dynamic input fields from 33 to 40 frames.

166

(a) frame 41 (b) frame 42 (c) frame 43 (d) frame 44

(e) frame 45 (f) frame 46 (g) frame 47 (h) frame 48

Figure B.6: Dynamic input fields from 41 to 48 frames.

167

(a) frame 49 (b) frame 50 (c) frame 51 (d) frame 52

(e) frame 53 (f) frame 54 (g) frame 55 (h) frame 56

Figure B.7: Dynamic input fields from 49 to 56 frames.

168

(a) frame 57 (b) frame 58 (c) frame 59 (d) frame 60

(e) frame 61 (f) frame 62 (g) frame 63 (h) frame 64

Figure B.8: Dynamic input fields from 57 to 64 frames.

169

(a) frame 65 (b) frame 66 (c) frame 67 (d) frame 68

(e) frame 69 (f) frame 70 (g) frame 71 (h) frame 72

Figure B.9: Dynamic input fields from 65 to 72 frames.

170

(a) frame 73 (b) frame 74 (c) frame 75 (d) frame 76

(e) frame 77 (f) frame 78 (g) frame 79 (h) frame 80

Figure B.10: Dynamic input fields from 73 to 80 frames.

171

(a) frame 81 (b) frame 82 (c) frame 83 (d) frame 84

(e) frame 85 (f) frame 86 (g) frame 87 (h) frame 88

Figure B.11: Dynamic input fields from 81 to 88 frames.

172

(a) frame 89 (b) frame 90 (c) frame 91 (d) frame 92

(e) frame 93 (f) frame 94 (g) frame 95 (h) frame 96

Figure B.12: Dynamic input fields from 89 to 96 frames.

173

(a) frame 97 (b) frame 98 (c) frame 99 (d) frame 100

(e) frame 101 (f) frame 102 (g) frame 103 (h) frame 104

Figure B.13: Dynamic input fields from 97 to 104 frames.

174

(a) frame 105 (b) frame 106 (c) frame 107 (d) frame 108

(e) frame 109 (f) frame 110 (g) frame 111 (h) frame 112

Figure B.14: Dynamic input fields from 105 to 112 frames.

175

(a) frame 113 (b) frame 114 (c) frame 115 (d) frame 116

(e) frame 117 (f) frame 118 (g) frame 119 (h) frame 120

Figure B.15: Dynamic input fields from 113 to 120 frames.

176

