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Abstract—The next generation digital subscriber line (DSL)
standard G.mgfast introduces far stronger co-channel inter-
ference termed as far-end crosstalk (FEXT) than the existing
ones. Given perfect transmitter-side channel state information
(CSIT), it is well known that the lattice-reduction-aided K-best
sphere encoder (LR-KBSE) is a near-optimal transmit precoding
(TPC) technique compared to the classic (LR-) depth-first sphere
encoder (DFSE), albeit having significantly lower complexity
than the latter. However, the decision feedback precoding (DFP)
structure and the Schnorr-Euchner enumeration procedure, both
perceived as state-of-the-art in the literature, are not provably
optimal for solving the closest vector problem (CVP) embedded
in sphere encoding. As a counterexample, this paper proposes
a stochastic sphere encoder (SSE) relying on differential evolu-
tion aided random walk over lattices. The parallel processing
complexity, memory efficiency and signal to noise ratio (SNR)
improvement of the proposed SSE are all shown to be superior
to the LR-KBSE for G.mgfast systems.

Index Terms—Differential evolution, digital subscriber line,
G.mgfast, far-end crosstalk, transmit precoding, lattice reduction,
sphere encoder, random walk

I. INTRODUCTION

The backhaul support for fifth-generation (5G) mobile ac-
cess and Internet of Things (IoT) applications requires high
throughput, high reliability and low latency. As the globally
dominating wireline access technology, digital subscriber line
(DSL) systems constitute a widely-deployed type of backhaul
solution for indoor and outdoor mobile access. The latest
DSL standard G.mgfast aims to support multi-Gigabit nom-
inal throughput by exploiting at least double the baseband
bandwidth of its predecessor G.fast. However, due to the
propagation loss and mutual coupling between those closely-
spaced pairs of twisted copper wires used by DSL networks,
the extra bandwidth introduced in G.mgfast systems usually
leads to worse channel quality.

Multi-pair DSL systems are conventionally modelled as
a family of quasi-static yet strongly frequency-selective
multiple-input-multiple-output (MIMO) systems. For multi-
pair G.mgfast, it has been recognized that the co-channel in-
terference known as far-end crosstalk (FEXT) is the dominant
source of impairment particularly at high frequencies. Classic
linear zero forcing precoding (ZFP) is not powerful enough

This paper is an update to Sec. 2.7 of the thesis [1]. The channel data as
shown in Fig. 1 were recorded at Adastral Park, Ipswich, UK.

for the strong FEXT at high frequencies. Such limitations
have stimulated research in both non-linear precoding [2]
and regularized linear precoding [3]. It is known that vector
perturbation (VP) [4] is a near-optimal transmit precoding
(TPC) technique in terms of minimising the signal to noise
ratio (SNR) penalty caused by ZFP. However, the success of
VP predominantly depends on optimally solving the NP-hard
closest vector problem (CVP) over the lattice associated with
the channel inverse matrix [5]. Unfortunately, even the best
algorithm for solving exactly a general CVP in d dimension
has a complexity order of 20.264d+O(d), while requiring a
buffer size of 20.185d+O(d) [6].

Practical implementations of VP for TPC mainly rely on a
sphere encoder based enumeration architecture. The family of
sphere encoders generally consist of depth-first and best-first
variations, both primarily rely on decision feedback precoding
(DFP) for finding an initial point, followed by Schnorr-
Euchner enumeration [7] of adjacent points in subspaces of
the lattice. Despite the popular belief that DFP-aided Schnorr-
Euchner enumeration is the most efficient deterministic sphere
encoding framework [8], recent literature in cryptanalysis
showed that stochastic processes may potentially achieve bet-
ter trade-off between performance and complexity, particularly
in high-dimensional spaces [9]. Such discoveries contribute to
the escalating research interest in novel MIMO algorithms for
the large-scale regime of next-gen networks. Moreover, since
DSL channels are widely known to have long coherence time,
sphere encoders may achieve their theoretical potential due to
the more lenient processing delay constraint.

In this paper, FEXT cancellation for G.mgfast systems is
addressed with the aid of a stochastic sphere encoder (SSE)
design example. The proposed SSE architecture incorporates a
partial random walk strategy over lattice grids directed by the
evolutionary algorithm. This paper proposes the first artificial
intelligence (AI) aided SSE framework for G.mgfast systems
that disproves the conjectured optimality of Schnorr-Euchner
enumeration.

II. SYSTEM MODEL

A. DSL Channel Environment

All existing DSL access networks operate over pairs of
twisted copper wires, with one or more dedicated copper



pairs connecting a customer premise equipment (CPE) and
its designated distribution point unit (DPU). When one DPU
serves more than one CPE in an area, the pairs belonging
to independent CPEs are often bound together as a large
DSL binder. It has been widely recognized that such kind of
wireline network environment is quasi-static over time, albeit
showing strong frequency selectivity. Furthermore, the FEXT
between closely spaced pairs relative to the direct channel gain
is also an increasing function of the signalling frequency. This
is shown in the channel measurements of Fig. 1.
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Fig. 1. G.mgfast frequency domain transfer characteristics for directly
connected channels and FEXT coupling channels, measured for a 50m 16-pair
binder.

B. Vector Perturbation Precoder

G.mgfast employs a multicarrier scheme known as discrete
multitone (DMT), which leads to a collection of T independent
MIMO subsystems in the frequency domain. MIMO precoding
jointly treats multiple independently-transmitted data streams
(via n pairs of copper wires) in the escalated high-dimensional
signal space as a vector. Such a system is modelled as:

yyyt = HHHtxxxt +nnnt, (t = 1, 2, ..., T ). (1)

Since each subsystem operates independently, we drop the tone
(subcarrier) index t here for the simplcity of lattice analysis.
xxx, yyy, nnn ∈ Rn are the transmitted data, received data and
noise vectors, respectively. HHH ∈ Rn×n represents the MIMO
channel matrix. As the TPC dual counterpart of the optimal
maximum likelihood detector, VP precoding [4] performs the
following TPC operations:

xxx = GGG(uuu− lll′), (2)

where GGG = HHH† is the (pseudo-)inverse channel matrix. The
original message-carrying data vector uuu ∈ Rn is assumed
to be drawn from the square-shaped quadrature amplitude
modulated (QAM) constellations. For analytical simplicity, we
characterise the multi-stream hyper QAM constellation as the
hypercubic set U = [−1/2, 1/2]n. lll′ ∈ Zn is a perturbation
vector. Given that xxx needs to be scaled by a normalisation
factor of ξ , ‖xxx‖, we have the following formulation of yyy by
substituting (2) into (1):

yyy =
uuu− lll′

ξ
+nnn. (3)

Without receiver cooperation, an estimate zzz of the message uuu
can be found by isolating the fractional part of ξyyy with the
aid of the modulo operator:

zzz , mod(ξyyy)

= uuu+ mod(ξnnn). (4)

Since nnn is Gaussian distributed, (4) has a vanishing probability
of error when E[‖ξnnn‖2] tends to zero, where ξ may also be
interpreted as the signal-to-noise ratio (SNR) penalty1. In order
to achieve this, the optimal perturbation vector l̄ll is chosen to
minimise ξ, which results in the following CVP for L(GGG):

l̄ll = arg min
lll′∈Zn

‖xxx∗ −GlGlGl′‖2, (5)

where xxx∗ = GuGuGu is the transmitted signal as if it were encoded
by linear ZFP. Therefore, (5) finds the vector of L(GGG) that is
the closest to xxx∗.

III. CLASSIC LR-AIDED SPHERE ENCODERS

Even though approximate solutions of (5) relying on both
the LLL preprocessing and Babai’s heuristic procedures [11],
such as the TPC techniques of [12], are readily powerful, their
respective near-optimality was only observed for small-scale
wireless and fixed MIMO systems. Moreover, it is a well-
known result that approximating the CVP within a constant
proximity factor is NP-hard [13]. Therefore, improved CVP
approximations over Babai’s methods are required as the
system gradually becomes large-scale. In this section, we
first review Babai’s classic CVP approximations, and then the
main subcategories of sphere encoders, namely the depth-first
(DFSE) and K-best (KBSE) variations. Since LR is invoked in
the remainder of this paper, both (LR-)DFSE and (LR-)KBSE
may be perceived as CVP with preprocessing (CVPP).

A. Preprocessing

Babai’s rounding-off and nearest-plane algorithms are
equivalent to LR-aided ZFP and LR-aided decision feedback
precoding (DFP), respectively. They are also widely employed
as the initialisation routines of sphere encoders. Given the
CVP (5), we may firstly formulate the LR preprocessing as
the following joint matrix factorisation:

GGG = QQQRRRZZZ†, (6)

where QQQHQQQ = III , and RRR is upper triangular. ZZZ is the transfor-
mation matrix as found by the LLL algorithm. Therefore, QQQRRR
constitutes the LLL-reduced basis. Let vvv = QQQHxxx∗, lll = ZZZ†lll′

and RRR be that of (6). (5) is now equivalently formulated as:

l̄ll = ZZZ(arg min
lll
‖vvv −RlRlRl‖2). (7)

Based on (7), Babai’s rounding-off approximation is then
formulated as:

lllRO = ZZZdZZZ†uuuc. (8)

1In fact, E[‖ξnnn‖2] and the noise variance of (4) were shown to differ by
the modulo loss [10], which vanishes in the high-SNR regime.



where d·c represents element-wise rounding off to the nearest
integer. Similarly, the nearest-plane approximation is found by
performing DFP recursively, defined as follows:

lk = dckc

=


d vk
rk,k
c k = n,

d vk
rk,k
−

n∑
j=k+1

rk,j
rk,k

ljc k = n− 1, · · · , 1.
(9)

The recursion of (9) is performed top-down sequentially from
k = n to k = 1, which solves the sub-problem within the
parenthesis of (7). The vector lllNP = ZZZlll is the nearest-plane
solution of (5).

B. Depth-First Sphere Encoder
The success of DFSE (Fig. 2) relies on bounding the total

number of lattice points to be enumerated. Additionally, if
a point of the lattice is the closest to the target xxx∗ within
a bounded distance

√
β, said lattice point must also be the

closest to the reference over the infinite lattice. DFSE attempts
to gradually reduce the search radius

√
β until no more lattice

points may be found in the interior of the hypersphere. As a
result, it is more practical to commence with one of Babai’s
approximations.

Since (7) is defined for a triangular matrix, the following
necessary condition of the hypersphere constraint holds:

r2
k,k(lk − ck)2 < β −

n∑
j=k+1

r2
j,j(lj − cj)2. (10)

Explicitly, the Euclidean distance metric ‖vvv−RlRlRl‖ is now de-
coupled into subspaces, termed as partial Euclidean distance
(PED), which allows for evaluating the hypersphere constraint
at each DFP iteration k. Thus, enumeration is made possible as
an intermediate operation during each DFP step. An efficient
way of enumerating the closest integer neighbours of a given
center l(1) ∈ Z is to traverse the Schnorr-Euchner series [7]:

l(n) = l(1) + (−1)n+1bn
2
c, n ∈ Z+, (11)

where b·c and Z+ denote the floor operation and the set of
positive integers, respectively. The main steps of DFSE are
summarised as follows.

Assuming that (10) is satisfied at layer k + 1, DFP is
immediately performed at layer k as formulated in (9). This
finds the first term l

(i=1)
k in the Schnorr-Euchner series (11)

associated with layer k, as well as overwriting the pre-existing
Schnorr-Euchner process of the same layer. If (10) is not
satisfied at layer k and k < n, DFSE retreats to layer k+1 and
enumerates the next term in its associated Schnorr-Euchner
series. If (10) is satisfied at layer k and k = 1, a new integer
vector representing a lattice point closer to the target vvv is found
and written to the output buffer. β is reduced accordingly to
be the new squared distance. If (10) is not satisfied at layer k
and k = n, it is no longer possible to find a new integer vector
representing a lattice point closer to the target vvv. Therefore,
DFSE terminates. The most recently cached integer vector is
the final output of DFSE.

PED2
k < β? k > 1?

k ← k + 1k > n? β ← βnew

k ← k − 1
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l
(i)
k ← l

(i+1)
k

Output
Buffer

l
(i=1)
k

k = n

Fig. 2. Depth-First Sphere Encoder.

C. K-Best Sphere Encoder

In contrast to the bidirectional search tree traversing strategy
of DFSE, KBSE (Fig. 3) only progresses through the search
tree (from the root k = n to the leaf k = 1) once, dispensing
with any backwards travel. In general, this reduces KBSE’s
complexity order from exponential to polynomial, at the risk
of prematurely pruning the globally optimal path. However,
KBSE needs more buffer than DFSE, while also having to
sort its memory iteratively.

If no hypersphere constraint β is invoked, KBSE performs
a fixed number of operations. Conventionally, a KBSE im-
plementation that generates K output candidates requires a
processing buffer of size K2. The main steps of KBSE are
summarised as follows:

At the beginning of KBSE, DFP is performed once at layer
n as formulated in (9). This finds the first term l

(i=1)
n in

the Schnorr-Euchner series associated with layer n. The next
K − 1 terms until l(K)

n are also extracted. Each of the K
cached (partially-filled) integer vectors generated from layer
k + 1 spawns K candidates at layer k in the same way as
in initialization. Thus, the processing buffer needs to cache
a total number of K2 partially-filled integer vectors for any
given layer except for the nth. The K2 candidate vectors (K
for layer n) generated in the previous step are sorted by their
respective partial squared distance to the target vvv in ascending
order, as defined by the summation on the RHS of (10). The
first K candidates in the sorted list of layer k are admitted to
layer k − 1. The integer vectors enumerated at layer 1 are no
longer partially-filled. Therefore, KBSE only needs to find the
optimal candidate having the shortest Euclidean distance to vvv
instead of performing the standard K-min operation. KBSE
terminates when the optimal candidate is found.

Due to its DFP-based structure, the worst-case performance
of KBSE is given by the nearest-plane approximation lllNP

formulated in (9). Therefore, if we set a hypersphere constraint
of
√
β < ‖xxx∗ −GlGlGlNP‖, KBSE may need to enumerate more

entries in the Schnorr-Euchner series than the unconstrained
version does in order to find all legitimate candidates. This
paper will mainly focus on the unconstrained version which
has a deterministic complexity.
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IV. STOCHASTIC SPHERE ENCODER

A. Directional Walk over Lattices

The geometric nature of most existing sphere encoding
algorithms is to traverse the lattice grids under the constraint
of (partial) Euclidean distance. Unlike the case of gradient
descent over continuous surfaces, there is no trivial algorithm
that finds the most efficient path over general lattices when
solving the CVP. Namely, the main bottleneck of enumeration-
based algorithms is the inability of determining the best
‘direction of travel’ per step. In this section, we propose
a novel SSE framework relying on evolutionary algorithm
assisted random walk for FEXT cancellation in G.mgfast. The
evolutionry MIMO detector conceived in [14] may be viewed
as an upstream dual counterpart of the presented SSE.

B. Evolutionary Random Walk Algorithm

Using a format similar to gradient descent, the proposed
evolutionary random walk over a lattice L(RRR) is iteratively
formulated in the context of solving (7) as follows:

wwwg+1 = wwwg +RRR∇̂(wwwg), (12)

where wwwg = RlRlRlg represents the starting lattice point of the
gth step. To simulate the fast converging property of gradient
descent, we define the random walk operator ∇̂(www) as taking
a step (over the lattice basis grid) that approximately results
in the minimum distance to the target vvv of (7):

∇̂(www) , arg min
ξξξ∈Bn

‖www +RξRξRξ − vvv‖2, (13)

where B , {−1, 0, 1}. The complexity of solving (13) by
exhaustively searching the entire set Bn increases exponen-
tially in n. Therefore, it is implicitly solved by performing
discrete differential evolution over a subset of Bn. More
specifically, (13) is characterised as the mutation and crossover
of a population {lll} of candidates lll ∈ Zn for (7).

For simplicity of notation, let γ(lll) , ‖vvv − RlRlRl‖2 be the
fitness of a member lll during evolutionary random walking for
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Fig. 4. Evolutionary random walk aided SSE. The initial population is found
by Babai’s rounding off algorithm [11] plus a random sparse binary vector
δδδp for p = 1, 2, · · · , Np − 1.

solving (7), given a fixed target vvv and the reduced lattice basis
RRR. The detailed steps of evolutionary random walk (Fig. 4) are
summarised as follows:

1) Initialization: Babai’s rounding-off algorithm is per-
formed, which finds an initial reference coolant vector lllb. If
the QoS target cannot be satisfied with the aid of lllb, then the
members of the initial population {lll1} are initialized according
to:

lllp,1 =

{
lllb p = 1,

lllb + δδδp−1 p = 2, 3, · · · , Np,
(14)

where Np is the size of the population, while δδδp represents
randomly-generated sparse vectors whose non-zero entries are
drawn from ±1. This initialization approach ensures the near-
optimality of the initial population. If the buffer supports a
large Np, then δδδp is allowed to draw uniformly distributed
random integers from a wider symmetric interval such as
[−2, 0)∪(0, 2]. Due to the lack of ergodicity of lattice vectors,
allowing a relatively dense fluctuation vector δδδp over small Np
may increase the risk of significantly reducing the quality of
the initial population {lll1}. This drawback outweighs the small
rise of diverging from a locally optimal lattice vector.

2) Crossover: Also known as discrete recombination, this
specific operation uses a crossover mask MC to select and
recombine the component vectors, i.e. subspace projections,
from a randomly-selected pair of members of the current
generation g. Specifically, the ‘child set’ in the gth generation
{̃lllg} is produced as follows:

l̃llp,g ⊃ l̃k,p,g =

{
lk,p,g, if rand(0, 1) < MC ,

lΠk,p,g, otherwise,
(15)



where {lllg}Π ⊃ lllΠp,g ⊃ lΠk,p,g represents a random permutation
Π of the ‘parent set’ {lllg}, and rand(0, 1) represents a uni-
formly distributed random variable within the range (0, 1). If
all of the member vectors in the ‘parent set’ are sufficiently fit
and non-overlapping, they should be close to each other in the
lattice. As a result, the probability of producing significantly
worse member vectors for the ‘child set’ becomes low, if we
simply recombine the component vectors.

3) Mutation: In contrast to the regular definition of mu-
tation in the differential evolution algorithm, we define the
specific operation as a random jump over the lattice grid,
which is characterized by the LLL-reduced basis obtained
during initialization. This modification addresses a potential
problem associated with using the regular mutation strategy
in our context. More specifically, the difference of two close
lattice vectors may be very far away from either of them,
which does not constitute a good ‘trial set’ {̂lllp,g}. In particular,
the mutation operation is defined for a random movement
vector δ̃δδp as follows:

l̂llp,g =

{
l̃llp,g + δ̃δδp, if γ(̃lllp,g + δ̃δδp)− γ(̃lllp,g) < 0,

l̃llp,g, otherwise,
(16)

Unlike in (14), the random jump δ̃δδp in (16) does not have to
be based on a sparse vector, but its entries must be selected
strictly from {−1, 0, 1} in order to guarantee that the change
is only by a single grid position. Moreover, the mutation
strategy in (16) does not rely on calculating the difference
of the member vectors. Instead, it uses the difference of the
cost function values, i.e. the Euclidean distance from the target
vector, in order to produce a ‘trial set’ that is at least as good as
the ‘child set’. This is the principal stage that characterizes the
‘progressive sieving’ concept. However, this operation incurs
an additional Np cost function evaluations compared to the
conventional mutation.

4) Selection: In order to determine the member vectors to
be retained for the (g + 1)st generation, the cost of the ‘trial
set’ is compared against that of the ‘parent set’. Because the
costs of both the ‘trial set’ and of the ‘parent set’ are known,
there are no additional cost function evaluations at this stage.
Similar to (16), each member vector of the (g+1)st generation
may be formulated as:

lllp,g+1 =

{
l̂llp,g, if γ(̂lllp,g)− γ(lllp,g) < 0,

lllp,g, otherwise.
(17)

When the new ‘parent set’ of the (g+1)st generation is filled,
the cost of the member vectors is compared to that of the
current best member. The best member vector is updated if
the best member in the new ‘parent set’ has a lower cost than
the existing one, where the ‘converged generation counter’ ∆g
is reset to zero. If no new best member can be found, then
∆g is increased by one. The algorithm terminates when ∆g
reaches its designated limit ∆gmax.

V. PERFORMANCE EVALUATION

In this section, the performances of our proposed SSE will
be compared to the KBSE benchmark, in terms of their impact

on the received signal’s average SNR, parallel processing
complexity and lattice theoretical characteristics. We define
these performance metrics as follows.

Assuming the transmit power spectral density limit is
E{‖xxxt‖2} = 1 for a given tone t, then the average received
SNR is reduced by a penalty factor due to the normalization
of DPU output (3) based on the optimization result of the cost
function (5):

SNR Penalty ,
1

T

T∑
t=1

‖GGGt(uuut − lll′t)‖2. (18)

The complexity of an algorithm solving the CVP is classically
characterised by the size of its search space, namely, the
total number of lattice points to be processed. In order to
emphasise the trade-off between processing delay and buffer
usage, we will evaluate a closely related metric termed as
the parallel processing complexity. For fair comparisons, the
parallel processing complexity of a sphere encoder is defined
as the number of concurrent-enumeration and swap (CES) op-
erations. For a concurrent enumeration step, each free memory
address of the parallel buffer is assigned an element from a
list of candidates (e.g. the Schnorr-Euchner list) concurrently.
Meanwhile, a swap is a step where the memory addresses of
two buffered candidates are exchanged to satisfy the ordering
criterion.

The performance comparisons between KBSE and SSE are
collectively portrayed in Fig. 5 for full bandwidth operation
(Fig. 5(a)) and partial bandwidth operation above G.fast fre-
quencies (Fig. 5(b)), assuming that they both have access to
an ideal buffer of the same size. Since SSE is randomized, its
upper and lower bound performances are also shown.

From a lattice-theoretical perspective, the performance mea-
sure equivalent to the SNR penalty (18) becomes the minimum
Euclidean distance in the multi-user signal space. In this
respect, a pair of closely related performance metrics, namely
the proximity factor [15] F0 and the success probability Ps
[16], is selected for evaluating the algorithms. Here, we define
the success probability of SSE in terms of its F0 when
compared to the KBSE benchmark:

Ps , P (
‖GGG(uuu− lll′SSE)‖
‖GGG(uuu− lll′KBSE)‖

≤ F0). (19)

The trade-off is portrayed in Fig. 6. Bearing in mind that
in full bandwidth operation, the lower half 0 − 212 MHz
spectrum does not cause nearly the same degree of SNR
penalty as the higher half, and therefore the performance gap
between KBSE and SSE is negligible. Such behaviours are
demonstrated by the pair of success probability curves in Fig.
6 showing F0 = 1. When compared to Fig. 5, it may be
observed that the optimal operating point of SSE needs a buffer
size of 50. Assuming that F0 < 1, we have Ps ≈ 1/3 for
the above 212 MHz band, and Ps ≈ 1/5 for the full band.
Therefore, in automatic repeat request (ARQ) aided systems,
SSE is expected to outperform KBSE when at least four extra
retransmissions are allowed for each user data vector. With at
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assuming that the parallel processing buffers have the same size in both cases.
Complexity is normalized against the number of sequential enumeration steps
of DFSE, requiring no parallel processing buffer.

least one extra transmission allowed, the performance of SSE
is likely to be at least as good as KBSE.
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VI. CONCLUSIONS

This paper investigated LR-aided TPC techniques for miti-
gating the hostile FEXT environment of broadband multi-pair
G.mgfast systems. In particular, we assessed the family of
conventional sphere encoders, and proposed a fully parallel
evolutionary random walk assisted SSE. By comparing to

KBSE in simulations, we found that the parallel processing
complexity of SSE scales much more favourably with the
buffer size than KBSE, whereas the average SNR penalty
incurred by SSE converges to approximately 0.2 dB higher
than KBSE. However, the best case SNR improvement of SSE
over KBSE is above 0.4 dB for all buffer sizes. Additionally,
SSE is likely to outperform KBSE in ARQ aided systems that
only needs a few retransmissions. Finally, the design of SSE
is also applicable to a wider range of MIMO systems beyond
multi-pair G.mgfast, such as massive MIMO or fixed wireless
systems where there is little CSI variations.
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