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Abstract Polygon, subdivision, and NURBS are three mainstream modeling
techniques widely applied in commercial software packages. They require
heavy manual operations, and involve a lot of design variables leading to
big data, high storage costs and slow network transmissions. In this paper,
we integrate the strengths of boundary-based surface creation and partial
differential equation (PDE) based geometric modeling to obtain the first
analytical C0 continuous 4-sided PDE patches involving sculpting force-based
shape creation and manipulation and use them to develop an interactive
modeling technique for easy and quick creation of 3D models with small data
from vertex-frames. With this modeling technique, a vertex frame is defined
by eight vertices, and a C0 continuous 4-sided PDE patch is created from the
vertex-frame through an analytical solution to a vector-valued second-order
PDE subjected to the boundary conditions determined by the eight vertices of a
vertex-frame. A user-friendly interface is developed from the obtained analytical
solution, which enables users to interactively input and modify vertex-frame
models easily and create 3D models in real time. Different surface modeling
tasks are carried out to test the developed interactive tool and compare our
proposed method with polygon and NURBS modeling and Coons surfaces.
The results demonstrate the effectiveness of our proposed method and its
advantages in reducing design variables, saving storage costs, and effective
shape creation and manipulation.
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1 Introduction

Surface modeling is widely applied in creative and industrial sectors to pro-
duce 3D geometric models. Current mainstream surface modeling techniques
are polygon [1], Non-uniform rational B-splines (NURBS) [2] and subdivision
[3, 4]. These modeling techniques have been integrated into high-end geometric
modeling systems such as Maya, Houdini and 3D Max. All of the three main-
stream modeling approaches are purely geometric, which means that no extra
constraint forces called sculpting forces are used in creation and manipulation
of surface shapes.

Polygon and subdivision modeling techniques are surface vertex-based. They
use planar facets to approximate curved surfaces of 3D objects. In order to
represent curved surfaces and create detailed 3D models, a large number of
planar facets defined by vertices (design variables) are required, which cause
big data, high storage costs, slow network transmissions and heavy manual
operations to manipulate the vertices. NURBS modeling is control point-based.
It also involves many design variables and requires extra manual operations to
stitch adjacent NURBS surfaces together with required continuities and add
control points to interactively manipulate NURBS surfaces in small deformation
regions as shown in Fig. 7 of this paper in comparison with PDE-based modeling.
Boundary-based surface creation generates surfaces from boundary curves or
boundary curves and tangents (normal derivative functions on boundary curves).
Since only boundary curves or boundary curves and tangents are required to
define surfaces, fewer design variables and manual operations are involved. The
representative boundary-based surface creation methods are bilinear Coons
surfaces and bicubic Coons surfaces [5]. Unfortunately, both of them have
weak ability in creating and manipulating shapes of surfaces. Bilinear Coons
surfaces are defined by four boundary curves and have no ability to change
their shapes if boundary curves remain unchanged. Bicubic Coons surfaces are
defined by four boundary curves and four normal derivative functions on the
four boundary curves. Shapes of bicubic Coons surfaces can be changed through
the four normal derivative functions. Such a shape manipulation method is less
capable. First, when the normal derivative functions on the boundary curves of
one bicubic Coons patch are changed, the normal derivative functions on the
shared boundary curves of all adjacent patches must be changed accordingly
to maintain the required continuity. Second, adjusting the normal derivative
functions on the boundary curves of one bicubic Coons patch changes the
shape of the whole patch only and cannot change the shape in arbitrarily
specified local regions in the patch as shown in Fig. 8 of this paper. Third,
many shape changes that can be obtained by manipulating control points or
surface vertices or sculpting forces cannot be achieved by changing the normal
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derivative functions on the boundary curves of bicubic Coons surfaces, which
is also demonstrated in Fig. 8 of this paper.

Partial differential equations (PDEs) were introduced into geometric model-
ing about three decades ago to develop PDE-based geometric modeling. Before
that, they had already been applied in engineering and scientific calculations to
describe the underlying physics. For example, a fourth-order PDE can be used
to describe the underlying physics of bending deformations of a thin elastic
plate subjected to lateral loads, and a wave equation, which is a second-order
PDE, can be used to describe the underlying physics of transverse vibrations
of a tensed string [6]. Due to this nature, PDE-based geometric modeling
is physics-based, has a potential to create more realistic appearances of 3D
models and 3D deformations, and addresses the weaknesses of purely geometric
modeling.

PDE-based modeling uses the solution to a vector-valued PDE subjected
to user’s specified boundary conditions to create a PDE patch. Like the term
on the right-hand side of a fourth-order PDE describing bending deformations
of a thin elastic plate, which is a lateral force acting on the plate, the term
on the right-hand side of an arbitrary vector-valued PDE used for geometric
modeling acts as a sculpting force. It and the coefficients of all the terms on
the left-hand side of a vector-valued PDE called shape control parameters
greatly affect the shape of a PDE patch and provide flexible and powerful shape
manipulation handles. As shown in Fig. 11 of Subsection 5.1, different shape
control parameters and different values of same shape control parameters can
be used to create different shapes of a same PDE patch. A sculpting force can
be applied not only in both a whole PDE patch and small regions encircled by
boundary curves in a single PDE patch shown in Fig. 8 in Subsection 4.2, but
also a large region across multiple PDE patches shown in Fig. 9 in the same
subsection.

Since PDE surface patches are defined by the solution to a PDE subjected to
exact satisfaction of boundary conditions, adjacent PDE patches automatically
achieve required continuities on shared boundaries defined in boundary condi-
tions. Unlike polygon modelling, which uses many planar facets to approximate
curved surfaces causing a lot of design variables and cannot achieve tangent and
higher order continuities between adjacent planar facets, PDE-based modeling
creates curved patches with complicated shapes directly, greatly reduces design
variables, and easily achieves tangent and higher order continuities between
adjacent PDE patches. Different from NURBS modelling, which involves many
control points, and requires extra manual operations to stitch adjacent NURBS
patches together and add control points to interactively create shapes in small
deformation regions, PDE-based modeling only requires boundary information
and few coefficients in a vector-valued PDE to define complicated 3D models
leading to fewer design variables, naturally achieves specified continuities with-
out any manual operations to stitch two PDE patches together, and uses a
sculpting force to create various shapes in any deformation regions more easily
and flexibly. Same as bicubic Coons surfaces, PDE-based modeling can also
use the normal derivative functions on the boundary curves of PDE patches to
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manipulate PDE surfaces. But differently, PDE-based modeling has following
advantages as demonstrated in Fig. 8 of this paper. First, it uses shape control
parameters and a sculpting force to change the shape of a PDE patch without
changing the continuities on the boundary curves shared by adjacent PDE
patches. Second, it applies a sculpting force to achieve shape manipulation
in arbitrarily specified local regions in a PDE patch. Third, it easily creates
various shape changes by applying different sculpting forces and adjusting
shape control parameters. Therefore, PDE-based modeling integrates Coons
surface’s strengths of easiness and few design variables, but overcomes the
weakness of Coons surfaces in shape creation and manipulations.

However, due to the difficulty in analytically solving PDEs, existing tools of
manipulating sculpting forces are mainly developed from an analytical solution
to a vector-valued PDE for simple 2-sided PDE patches [7] or from a numerical
solution for complicated 3D models [8]. In this paper, we will propose an
analytical solution to a PDE involving a sculpting force and use it to create
and manipulate 4-sided patches.

PDE-based geometric modeling has been intensively studied. Various nu-
merical methods such as the finite element method [9, 10, 11], finite difference
method [12, 13], and direct discretization of polygonal models using a discrete
Laplace operator [14, 15] etc. have been proposed to solve PDEs for hybrid
subdivision surface design [16], surface reconstruction [15], estimation of surface
normal [14], smoothing arbitrary triangle meshes [17], surface deformations
[18], defining geometric solid models [19], surface modeling [20, 9], and direct
shape manipulation [8] etc.

When using PDE-based modeling to create new 3D models from scratch,
3D models are decomposed into some 2-, 3-, and 4-sided PDE patches. For
creating 3D models from PDE patches, numerical solutions of PDEs have
three weaknesses. 1) The analytical functions of the boundary constraints
for a 3- or 4-sided surface patch cannot be exactly satisfied since numerical
methods obtain the solutions at discrete points. 2) Numerical methods such as
the finite element and finite difference methods involve heavy computations,
and may not be ideal in interactive geometric modeling or real-time shape
manipulations. 3) Numerical methods are needed to obtain coordinate values
at many discrete nodes or vertices. Each node or vertex is a vector-valued
design variable consisting of 3 components. Therefore, numerical methods will
lead to many design variables and high storage costs.

The above discussions highlight the biggest problem for PDE-based geo-
metric modeling. It is how to develop analytical solutions for PDE patches
and interactive user interface from analytical PDE patches for releasing the
potential of PDE-based geometric modeling.

Since analytical solutions of 3- and 4-sided PDE patches are very difficult to
obtain, the existing research studies on analytical PDE surfaces focus on 2-sided
PDE patches, i. e., creating a PDE patch from boundary conditions on two
opposite boundaries. Various accurate and approximate analytical solutions of 2-
sided PDE patches have been developed [21, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30].
Although the paper [30] claims an analytical pseudo-spectral method, which
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can generate regular 4-sided PDE surface patches, no analytical formulae were
presented to explicitly determine the unknown constants. In addition, the paper
only used the proposed pseudo-spectral method to create single 4-sided PDE
patch, how to use the proposed 4-sided PDE patches to create 3D models
was not investigated in the paper. In [31], a central point and its surrounding
three curves were used to develop an analytical solution of PDE surfaces and
significantly reduce the size of a polygon femur model and the corresponding
NURBS model from 3.2 MB (polygon model) and 0.55 MB (NURBS model) to
0.26 MB (PDE model). The method is effective in rebuilding polygon models
with a much smaller data size, but unapplicable to creation of 3D models from
scratch. In addition, 4-sided PDE patches were not investigated in the paper.
We are unaware of any other work provides analytical solution for 4-side PDE
patches.

Using analytical 2-sided PDE patches only is not applicable to all 3D
modeling tasks. For example, 2-sided PDE patches are incapable in creating
branched models. Here, a branched model is a 3D model with branching
structures that are connected to but not part of the central body of the model,
such as the trunk of a tree with branches and a human body with limbs. In
order to release the potential of PDE-based geometric modeling, analytical
3- and 4-sided patches with different continuity requirements and powerful
shape manipulation functions should be developed. Due to the limit of space,
in this paper, we will propose the first analytical C0 continuous 4-sided PDE
patches, investigate how to integrate shape control parameters and sculpting
forces in the analytical C0 continuous 4-sided PDE patches, and develop an
interactive interface to facilitate 3D model creation and manipulation from the
analytical C0 continuous 4-sided PDE patches. The development of analytical
Cn continuous 3- and 4-sided PDE patches and demonstration of sculpting
forces in creating the deformations in the regions bounded by complicated
boundary curves will be our following work.

The contributions of this paper are: 1) obtaining the first analytical C0

continuous 4-sided PDE patches to create complicated 3D models and release
the potential of PDE-based geometric modeling, 2) integrating shape control
parameters and sculpting forces into the analytical C0 continuous 4-sided PDE
patches to achieve flexible and powerful shape creation and deformations and
overcome the weakness of Coons surfaces in shape creation and manipulations,
3) proposing vertex-frames consisting of eight boundary vertices to represent
boundary conditions for PDE patches, reduce design variables and data size of
PDE-based geometric modeling, and facilitate the development of the analytical
C0 continuous 4-sided PDE patches, 4) investigating a vertex frame-based
modeling technique to quickly create 3D models with positional continuity by
filling vertex-frames with the analytical 4-sided PDE patches, and 5) developing
a user-friendly interface, which enables users to interactively input and modify
vertex-frames, create 3D surface models, and manipulate shapes of the created
3D models.

The remaining parts of this paper are organized as follows. The related
works on purely geometric modeling approaches and PDE-based modeling
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methods are briefly reviewed in Section 2. Analytical C0 continuous 4-sided
PDE patches are investigated in Section 3. The results and comparisons with
polygon, NURBS, and Coons surfaces are given in Section 4. Interactive design
of 3D modeling is developed in Section 5. And finally, conclusions and future
work are discussed in Section 6.

2 Related work

The work presented in this paper is related to purely geometric modeling
techniques and PDE-based geometric modeling. In this section, we first briefly
introduce polygon modeling, subdivision, and patch-based modeling in relation
to the proposed method, and then review existing work on PDE-based geometric
modeling.

2.1 Purely geometric modeling techniques

Purely geometric modeling techniques include polygon, subdivision, and patch
surfaces such as NURBS and Coons surfaces etc. Among them, polygon,
subdivision, and NURBS have become industrial standard being integrated in
many commercial software packages.

Polygon modeling [1] can produce detailed or branched models, assign uv
texture coordinates, and create hard edges more readily than NURBS modeling.
However, polygons are incapable of accurately representing curved surfaces.
Therefore, a large number of polygons must be generated to approximate
curved surfaces in a visually appealing manner, leading to heavy manual
operations, a large number of design variables, high storage costs, and slow
network transmissions.

Subdivision modeling [32, 33, 34, 35] starts the modeling with a coarse
polygonal model, subdivides its polygonal faces into smaller faces through
approximating or interpolating schemes, and generates a denser polygon mesh
of the model. Subdivision makes the modeling of complex geometry more
easily and rendering more efficiently, but has the same weaknesses as polygon
modeling.

The typical patch surfaces are NURBS surfaces [2, 36]. Patch surface-based
modeling starts from a single NURBS patch and obtains the whole model
by manually stitching many patches together [37] to deal with the continuity
problem between different patches, leading to heavy manual operations. In
addition, this modeling method is control point-based. Although it has fewer
design variables than polygon modeling and subdivision, many control points
are still required to create complicated 3D models.

Unlike NURBS surfaces, which are control point-based, Coons surfaces
are boundary-based. A bilinear Coons surface [38] is constructed from four
boundary curves, and bicubic Coons surfaces [39] is constructed from four
boundary curves and four normal derivative functions on the four boundary
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curves. Coons surfaces are easy to use, and involve fewer design variables
than NURBS surfaces since they only involve boundary information. However,
bilinear Coons surfaces are not adjustable if boundary curves are not changed.
Although the shapes of bicubic Coons surfaces can be manipulated by changing
the normal derivative functions on boundary curves, such shape manipulations
are not flexible and powerful.

Polygon, NURBS and subdivision involve heavy manual operations and
large data. Coons surfaces have small data but are weak in shape manipulation.
The PDE-based modeling method will develop analytical 4-sided PDE patches
and vertex frame-based 3D model creation to reduce large data and heavy
manual operations, and introduce shape control parameters and sculpting
forces to obtain flexible and powerful shape manipulations.

2.2 PDE-based geometric modeling

PDEs were introduced in geometric modeling by Bloor and Wilson about three
decades ago [25]. After that, PDE-based geometric modeling attracts a lot of
research attention. Various numerical, accurate analytical and approximate
analytical solutions have been developed to promote their applications. Since
the biggest problem for PDE-based geometric modeling is how to solve PDEs,
we briefly review existing numerical methods, accurate analytical methods, and
approximate analytical methods used to solve PDEs for geometric modeling
applications.

2.2.1 Numerical methods

Numerical methods are most effective in solving PDEs for geometric modeling
applications. Popular numerical methods are the finite element method, finite
difference method, and direct discretization of polygonal models using a discrete
Laplace-Beltrami operator. Since there are many publications on numerical
PDE-based geometric modeling, it is impossible to review all of them. In what
follows, only some of them are reviewed.

A B-spline finite element method was proposed in [10] and used to approxi-
mate PDE surfaces. A bivariant B-spline finite element method is developed
in [9] and applied to tackle dynamic PDE surface modeling. By considering
Laplacian and Laplacian gradient energies leading to biharmonic and trihar-
monic equations, respectively, and viewing the discretization of biharmonic
and triharmonic equations as transformation of a mixed element discretization,
a mixed finite element method was investigated in [11] to solve the biharmonic
and triharmonic equations and address variational surface modeling. Through
presenting a novel technique to evaluate the finite element basis functions and
coupling the finite element method with a hybrid loop and Catmull-Clark
subdivision algorithm, a numerical simulation method was examined in [16]
for hybrid subdivision surface design using geometric PDEs.
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By solving an Euler-Lagrange equation with the finite difference method, the
smoothing properties were achieved by reducing the amplitude of various high
frequency Fourier harmonics in surfaces [40]. Using the finite difference method
to discretize a general sixth order geometric PDE, the problems of surface
processing and modeling including creation of high order continuous surfaces
are efficiently solved in [12]. Employing the finite difference discretization
and variational interpolating approach with the localized iterative solver, an
implicit fourth-order PDE and an implicit second-order PDE were numerically
integrated in [13] to achieve shape design of solid models.

Using the umbrella operator to linearly approximate the Laplacian operator
at each vertex of polygon models and numerically integrating a diffusion
equation involving the Laplacian and the second Laplacian, rough features from
irregularly data are rapidly removed to portray a smooth surface [41]. In order
to smooth arbitrary triangle meshes while satisfying G1 boundary conditions,
a new algorithm was presented in [17] to numerically solve a PDE with the
discrete Laplace-Beltrami operator and 1-neighborhood based discretization of
the mean curvature normal at a vertex. The discrete Laplace-Beltrami operator
was also used to obtain variational minimization for surface deformations in
[18], estimate surface normal in [14], and perform surface reconstruction in
[15].

2.2.2 Accurate analytical methods

Accurate analytical methods exactly satisfy both PDEs and boundary con-
ditions. It is very difficult or even impossible to obtain accurate analytical
solutions of PDEs when boundary conditions are complicated. Therefore, the
existing work only developed accurate analytical solutions for 2-sided PDE
patches subjected to some simple boundary conditions. Treating blending
design as a boundary value problem and considering some simple boundary
functions, the accurate analytical solutions for x and y components were ob-
tained from a second-order PDE and the accurate analytical solution for z
component was obtained from a fourth-order PDE to create parametric sur-
faces [42]. For primary surfaces represented with a combination of hyperbolic
sine and cosine functions, some accurate analytical solutions were presented
to blend the primary surfaces together in [25]. By mapping a unit cube in
(u, v, w) parameter space to a hexahedral solid in physical space, the accurate
analytical solutions to a second-order PDE with three parametric variables
were obtained in [43] to investigate the functionality in solids. The accurate
closed form solutions for the boundary conditions represented with triangular
functions are investigated in [7] for vase design.

2.2.3 Approximate analytical methods

Approximate analytical solutions cannot exactly satisfy both PDEs and bound-
ary conditions. Existing approximate analytical solutions exactly satisfy bound-
ary conditions, but only minimize the error of PDEs. Fourier series-based
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approximate analytical solution was proposed in [21] to generate free-form
surfaces for the design of hull of yacht-like boat, propeller blade, phone handset,
and ship hull. The Fourier series-based approximate analytical solution was
used to solve a fourth-order PDE for the interactive surface design in [23] and
parametric design of aircraft geometry in [24]. It was also extended to obtain
an approximate analytical solution to a sixth-order PDE for surface modeling
in [28]. A weighted residual method was presented to approximately solve a
time-dependent fourth-order PDE for creation of deformable moving surfaces
in [27], a time-independent fourth-order PDE in [26] for C1 continuous surface
blending, and a time-independent sixth-order PDE for surface modeling in [22]
and C2 continuous surface blending in [29].

Numerical methods are most effective in solving various PDEs but with
discrete representations, big data, and high computational costs. Accurate
analytical solutions are only applicable to some simple surface modeling tasks.
And existing approximate analytical solutions can deal with more complicated
surface modeling than accurate analytical solutions, but most studies focus
on 2-sided PDE patches. How to develop explicit representations of analytical
4-sided PDE patches has not been well investigated.

3 Continuous and sculpting force-driven 4-sided PDE patches

In this section, we develop the first analytical 4-sided PDE patches, which
not only maintain C0 continuity on curved boundaries but also involve shape
control parameters and sculpting forces to achieve flexible and powerful shape
manipulations. In what follows, we first introduce the mathematical model
of the 4-sided PDE patches that consists of a vector-valued second-order
nonhomogeneous PDE and C0 continuous boundary conditions in Subsection
3.1. Since the general solution of a vector-valued second-order nonhomogeneous
PDE consists of a general solution of the corresponding homogeneous PDE and
a particular solution satisfying the nonhomogeneous PDE, we will investigate
the general solution of the corresponding homogeneous PDE in Subsection 3.2,
and the particular solution in Subsection 3.3.

3.1 PDE-based mathematical model

A vector-valued second-order PDE is easier to solve analytically than higher
order PDEs. It provides enough degrees of freedom to satisfy the conditions of
C0 continuity between adjacent patches. In order for the 4-sided PDE patches
to have flexible and powerful shape manipulation functions, we also introduce
a vector-valued sculpting force function to the right-hand side of the PDE.
Based on these considerations, the PDE used to develop analytical 4-sided
PDE surfaces takes the form of

a1
∂2S(u, v)

∂u2
+ a2

∂2S(u, v)

∂v2
= F(u, v) (1)
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where S(u, v) = [x(u, v) y(u, v) z(u, v)]T represents a 4-sided PDE surface
patch, a1 and a2 are vector-valued shape control parameters, u and v are
the parametric variables defined by 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, and F(u, v) =
[fx(u, v) fy(u, v) fz(u, v)]T are vector-valued sculpting forces.

A 4-sided patch S(u, v) has four boundaries. If the boundary curves on the
four boundaries are: α(u),β(u), γ(v), and δ(v), respectively, the 4-sided patch
S(u, v) at its four boundaries u = 0, u = 1, v = 0, and v = 1 should have the
same curve functions as the four boundary curves, which leads to the following
boundary conditions.

S(u, 0) = α(u),S(u, 1) = β(u) ∀u ∈ [0, 1]

S(0, v) = γ(v),S(1, v) = δ(v) ∀v ∈ [0, 1]
(2)

The mathematical model of our proposed 4-sided patches is defined by
the vector-valued second-order PDE (1) and the C0 continuous boundary
conditions (2). The remaining work is how to derive the analytical solution of
the mathematical model.

3.2 General solution of second-order homogeneous PDE

When deriving the general solution Sh(u, v) of the homogeneous PDE of Eq.
(1), the right-hand side term is zero. We obtain

a1
∂2Sh(u, v)

∂u2
+ a2

∂2Sh(u, v)

∂v2
= 0 (3)

The surface function of the 4-sided patches should exactly satisfy the
positional continuous boundary conditions (2), have some degrees of freedom
to minimize the error of the PDE (3), and introduce shape control parameters
to manipulate the shape of 4-sided patches. Taking these into account, the
vector-valued surface function of the 4-sided patches is taken to be

Sh(u, v) = C(0) + C(1)u+ C(2)u2 + C(3)u3 + C(4)v+

C(5)v2 + C(6)v3 + C(7)uv + C(8)u2v + C(9)uv2
(4)

where C(i) (i = 0, 1, ..., 9) are the vector-valued unknown constants to be
explicitly determined below.

We introduce vertex-frames to define four boundary curves for reducing
design variables. As shown in Fig. 1(a), a vertex-frame consists of eight vertices:
four corner vertices P (1), P (3), P (5), P (7), and four middle vertices P (2), P (4),
P (6), P (8), and each of the four boundary curves is defined by three vertices
of a vertex-frame. According to Eq. (2), the four corner vertices and the four
middle vertices are related to the four boundary curves through P (1) = α(0),
P (2) = α(0.5), P (3) = α(1), P (4) = δ(0.5), P (5) = δ(1), P (6) = β(0.5),
P (7) = β(0), and P (8) = γ(0.5). If a PDE patch Sh(u, v) shown in Fig. 1(b) is
generated from the vertex-frame, its four corner vertices and four middle vertices
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are V (1) = Sh(0, 0), V (2) = Sh(0.5, 0), V (3) = Sh(1, 0), V (4) = Sh(1, 0.5),
V (5) = Sh(1, 1), V (6) = Sh(0.5, 1), V (7) = Sh(0, 1), and V (8) = Sh(0, 0.5).
Since the eight curve vertices and the eight surface vertices indicate the same
vertices, we have V (k) = P (k) (k = 1, 2, . . . , 8).

Fig. 1 The vertex-frame (a) and the generated PDE patch (b).

For the sake of conciseness, the subscript ”h” in the patch function Sh(u, v)
is omitted in the remaining part of this subsection and the next subsection
when more than one subscript is involved. That is to say, we use Si,j to stand
for Shi,j .

In order to use 4-sided PDE patches to create complicated 3D models,
three different groups of 4-sided PDE patches are identified in Fig. 2. The first
group contains only a single patch Si,j , which is created first. The second group
has four patches Si−1,j , Si,j+1, Si+1,j , and Si,j−1. Each of the four patches
shares an edge highlighted in red with the patch Si,j . The third group also has
four patches Si−1,j−1, Si−1,j+1, Si+1,j+1, and Si+1,j−1. Each of them shares
two edges highlighted in blue with its two adjacent patches. Generating these
patches must follow the specified rule and direction. In the following subsection,
we first introduce the patch generation rule, and then discuss patch direction.

3.2.1 Patch generation rule

Since the patch function Sh(u, v) is not the accurate solution of the PDE (3),
substituting Sh(u, v) into PDE (3) will cause an error function Eh(u, v). If we
uniformly allocate M × N points in the region {0 ≤ u ≤ 1; 0 ≤ v ≤ 1}, the
M ×N points can be represented by (um,vn) {1 ≤ m ≤M ; 1 ≤ n ≤ N} where
um = m−1

M−1 and vn = n−1
N−1 . The error of the PDE (3) at the point (um, vn) is

denoted by Eh(um, vn). We sum the squared errors at all these points, and
obtain

J =

M∑
m=1

N∑
n=1

Eh(um, vn)2 (5)
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Fig. 2 PDE surface patches with vertex-frames

where

Eh(um, vn) = a1
∂2Sh(u, v)

∂u2
+ a2

∂2Sh(u, v)

∂v2

∣∣∣∣
(u,v)=(um,vn)

(6)

Using the least squares method to minimize the squared error sum J with
respect to the two unknown constants C(3) and C(6) leads to the following
equations

∂J

∂C(3)
=

M∑
m=1

N∑
n=1

Eh(um, vn)
∂Eh(um, vn)

∂C(3)
= 0

∂J

∂C(6)
=

M∑
m=1

N∑
n=1

Eh(um, vn)
∂Eh(um, vn)

∂C(6)
= 0

(7)

In what follows, we use the conditions of the eight boundary vertices
V (k) = P (k) (k = 1, 2, . . . , 8) and Eq. (7) to determine all the unknown
constants involved in the patch function (4) for each of the three groups of
4-sided patches shown in Fig. 2.

First group of PDE patches All the unknown constants in the PDE patch
function (4) can be determined from the conditions of the eight boundary

vertices V
(k)
i,j = P

(k)
i,j (k = 1, 2, . . . , 8) and the two error minimization conditions
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∂Ji,j

∂C
(3)
i,j

= 0 and
∂Ji,j

∂C
(6)
i,j

= 0. By making Eq. (4) for Patch Si,j satisfy these

ten conditions, we obtain all the ten unknown constants C
(k)
i,j = P̄

(k)
i,j (k =

0, 1, 2, 3, ..., 9) where P̄
(k)
i,j are given in Eq. (A.1).

Second group of PDE patches Each of this group of patches shares an edge
(the red line in Fig. 2) with Patch Si,j whose unknown constants have been
determined above. For Patch Si,j+1, we have Si,j+1(0, v)=Si,j(1, v), i. e.,
γi,j+1(v) = δi,j(v), which is used to determine the three unknown constants

C
(4)
i,j+1, C

(5)
i,j+1, and C

(6)
i,j+1. The remaining five boundary vertices V

(k)
i,j+1 = P

(k)
i,j+1

(k = 2, 3, ..., 6) and the error minimization condition
∂Ji,j+1

∂C
(3)
i,j+1

= 0 are used to

determine the remaining six unknown constants C
(k)
i,j+1 (k = 1, 2, 3, 7, 8, 9). All

obtained unknown constants C
(k)
i,j+1 = P̄

(k)
i,j+1 (k = 0, 1, 2, ..., 9) are given in Eq.

(A.4). The similar treatment is used to obtain the unknown constants of the
remaining three 4-sided patches. For Patch Si+1,j , the constraint conditions are

Si+1,j(u, 0)=Si,j(u, 1), i. e., αi+1,j(u) = βi,j(u), V
(k)
i+1,j = P

(k)
i+1,j (k = 4, 5, ..., 8)

and the error minimization condition
∂Ji+1,j

∂C
(6)
i+1,j

= 0, which are used to determine

the ten unknown constants C
(k)
i+1,j = P̄

(k)
i+1,j (k = 0, 1, 2, ..., 9) given in Eq. (A.6).

For Patch Si,j−1, the constraint conditions are Si,j−1(1, v)=Si,j(0, v) , i. e.,

δi,j−1(v) = γi,j(v),V
(k)
i,j−1 = P

(k)
i,j−1 (k = 1, 2, 6, 7, 8) and the error minimiza-

tion condition
∂Ji,j−1

∂C
(3)
i,j−1

= 0, which are used to determine the ten unknown

constants C
(k)
i,j−1 = P̄

(k)
i,j−1 (k = 0, 1, 2, ..., 9) given in Eq. (A.8). For Patch

Si−1,j , the constraint conditions are Si−1,j(u, 1)=Si,j(u, 0) , i. e.,βi−1,j(u) =

αi,j(u), V
(k)
i−1,j = P

(k)
i−1,j (k = 1, 2, 3, 4, 8) and the error minimization condi-

tion
∂Ji−1,j

∂C
(6)
i−1,j

= 0, which are used to determine the ten unknown constants

C
(k)
i−1,j = P̄

(k)
i−1,j (k = 0, 1, 2, ..., 9) given in Eq. (A.10).

Third group of PDE patches Each of this group of patches share two edges high-
lighted in blue in Fig. 2 with two of the second group of patches whose unknown
constants have been determined above. For Patch Si+1,j+1 , since it shares one
edge highlighted in blue with Patch Si,j+1 and another edge also highlighted in
blue with Patch Si+1,j as shown in Fig. 2, we have Si+1,j+1(u, 0)=Si,j+1(u, 1), i.
e., αi+1,j+1(u) = βi,j+1(u) and Si+1,j+1(0, v)=Si+1,j(1, v), i. e., γi+1,j+1(v) =

δi+1,j(v), which are used to determine the seven unknown constants C
(k)
i+1,j+1

(k = 0, 1, 2, ..., 6). The remaining boundary vertices V
(k)
i+1,j+1 = P

(k)
i+1,j+1 (k =

4, 5, 6) are used to determine the remaining three unknown constants C
(k)
i+1,j+1

(k = 7, 8, 9). By substituting Eq. (4) into these ten constraint conditions, we

obtain the ten unknown constants C
(k)
i+1,j+1 = P̄

(k)
i+1,j+1 (k = 0, 1, 2, ..., 9), which

are given in Eq. (A.12). For Patch Si−1,j−1, since it shares one edge with Patch
Si−1,j and another edge with Si,j−1, we have Si−1,j−1(1, v)=Si−1,j(0, v), i. e.,
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δi−1,j−1(v)=γi−1,j(v) and Si−1,j−1(u, 1)=Si,j−1(u, 0), i. e., βi−1,j−1(u)=αi,j−1(u),

and the boundary vertices V
(k)
i−1,j−1=P

(k)
i−1,j−1 (k = 1, 2, 8). These ten constraint

conditions are used to obtain the ten unknown constants C
(k)
i−1,j−1 = P̄

(k)
i−1,j−1

(k = 0, 1, 2, ..., 9), which are given in Eq. (A.13). For Patch Si−1,j+1, since
it shares one edge with Patch Si,j+1 and another edge with Si−1,j , we have
Si−1,j+1(u, 1)=Si,j+1(u, 0), i. e., βi−1,j+1(u)=αi,j+1(u) and Si−1,j+1(0, v) =

Si−1,j(1, v), i. e., γi−1,j+1(v) = δi−1,j(v), and the boundary vertices V
(k)
i−1,j+1

= P
(k)
i−1,j+1 (k = 2, 3, 4). These ten constraint conditions are used to obtain

the ten unknown constants C
(k)
i−1,j+1 = P̄

(k)
i−1,j+1 (k = 0, 1, 2, ..., 9), which are

given in Eq. (A.14). For Patch Si+1,j−1 , since it shares one edge with Patch
Si,j−1 and another edge with Si+1,j , we have Si+1,j−1(u, 0)=Si,j−1(u, 1), i. e.,
αi+1,j−1(u) = βi,j−1(u) and Si+1,j−1(1, v)=Si+1,j(0, v), i. e., δi+1,j−1(v) =

γi+1,j(v), and the boundary vertices V
(k)
i+1,j−1 = P

(k)
i+1,j−1 (k = 6, 7, 8). These

ten constraint conditions are used to obtain the ten unknown constants
C

(k)
i+1,j−1 = P̄

(k)
i+1,j−1 (k = 0, 1, 2, ..., 9), which are given in Eq. (A.15).

3.2.2 Patch direction

The uv-coordinate systems for the PDE patches in different groups shown in
Fig. 2 have the same u and v directions. Such a direction uniformity is suitable
for creating regular and smooth 3D models. However, for a 3D model with a
branching structure, the u and v directions of the uv-coordinate system for
the branching structure are usually different from the u and v directions of the
uv-coordinate system for the main body of the 3D model. For example, for the
basket shown in Fig. 3 below, the u and v directions of the uv-coordinate system
for the handle are opposite to the u and v directions of the uv-coordinate
system for the main body. Such direction inconformity may lead to the following
two situations in the direction parallel to the edge shared by two adjacent
PDE patches: 1) the parametric variable of one patch is different from the
parametric variable of the adjacent patch, 2) two adjacent patches share a same
parametric variable but the direction of the parametric variable for one patch
is opposite to the direction of the parametric variable for the adjacent patch.
If we still use the same u and v directions shown in Fig. 2 to generate PDE
patches for these two situations, position discontinuities on the edge occur. In
order to avoid position discontinuities, it is necessary to adjust one parametric
variable or the direction of one parametric variable for one of two adjacent
patches in the direction parallel to the shared edge so that two adjacent PDE
patches share a same parametric variable and a same direction in the direction
parallel to their shared edge.

In total, the inconformity of parametric variables and directions of two
adjacent patches in the direction parallel to the shared edge has six cases, which
are shown in Fig. 4(a)-(f). In the figure, the PDE patches with odd number
(S1, S3, S5, S7, S9 and S11) are known and the PDE patches with even number
(S2, S4, S6, S8, S10 and S12) are unknown, which need to be generated. The six



Interactive PDE patch-based surface modeling from vertex-frames 15

Fig. 3 An example of different patch directions (marked by dashed lines) of the basket
model.

cases can be divided into three groups. The first group is shown in Fig. 4(a) and
4(d). In this group, both the parametric variables in the direction parallel to
the shared edge and their directions for the two adjacent patches are different.
Since the position continuity on the shared edge requires S2(u, 0) = S1(1, v) for
the patches 1 and 2 with v = 0 corresponding to u = 1 and S8(0, v) = S7(u, 1)
for the patches 7 and 8 with u = 0 corresponding to v = 1, we change the
parametric variable for the top patches in the direction parallel to the shared
edge to the other one and replace the changed parametric variable with 1 minus
the changed parametric variable in the position continuity condition, i. e.,
S2(u, 0) = S1(1, 1− u) and S8(0, v) = S7(1− v, 1). The second group is shown
in Fig. 4(b) and 4(e). In this group, the parametric variables in the direction
parallel to the shared edge are different but their directions for the two adjacent
patches are the same. Since the position continuity on the shared edge requires
S4(u, 0) = S3(0, v) for the patches 3 and 4 and S10(0, v) = S9(u, 0) for the
patches 9 and 10, we change the parametric variable for the top patches in the
direction parallel to the shared edge to the other one in the position continuity
condition, i. e., S4(u, 0) = S3(0, u) and S10(0, v) = S9(v, 0). The third group
is shown in Fig. 4(c) and 4(f). In this group, the parametric variables in the
direction parallel to the shared edge are the same but their directions for the two
adjacent patches are opposite. Since the position continuity on the shared edge
requires S6(u, 0) = S5(u, 0) for the patches 5 and 6 and S12(0, v) = S11(0, v)
for the patches 11 and 12, we replace the parametric variable with 1 minus the
parametric variable for the top patches in the position continuity condition, i.
e., S6(u, 0) = S5(1− u, 0), and S12(0, v) = S11(0, 1− v).

3.3 Particular solution of second-order nonhomogeneous PDE

As discussed previously, the right-hand side term of PDE (1) act as a sculpting
force to easily and effectively create different shapes of a PDE surface. The
solution corresponding to the right-hand side term of PDE (1) is a particular
solution. In this subsection, we investigate the particular solution of PDE (1).

When deriving the general solution Sh(u, v) of the vector-valued second-
order homogeneous PDE (3), the positional continuous boundary conditions
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Fig. 4 Six forms of direction inconformity of two adjacent patches

(2) have been exactly satisfied. Therefore, when deriving the particular solution
Sp(u, v) of the vector-valued second-order nonhomogeneous PDE (1), the
boundary conditions (2) should not be changed. It means the particular solution
must satisfy the following zeroed boundary conditions

Sp(u, 0) = 0,Sp(u, 1) = 0 ∀u ∈ [0, 1]

Sp(0, v) = 0,Sp(1, v) = 0 ∀v ∈ [0, 1]
(8)

The vector-valued sculpting force function can take different forms. Since
the particular solution depending on the vector-valued sculpting force function
must satisfy the requirements of both PDE (1) and boundary conditions (8),
the construction of the vector-valued sculpting force function must take these
requirements into account. There are different functions that can satisfy these
requirements. Here we take the following function as the vector-valued sculpting
force function

F(u, v) = f0sin(πu)sin(πv) (9)

where f0 = [f0x f0y f0z]T is a vector-valued coefficient whose direction and size
can be changed to apply different sculpting forces to a PDE surface.

According to the vector-valued sculpting force function (9), the vector-
valued particular solution can be taken to be

Sp(u, v) = sp0sin(πu)sin(πv) (10)

Clearly, the above particular solution (10) exactly satisfies the zeroed
boundary conditions (8). The remaining problem is to satisfy the PDE (1).
Using Sp(u, v) in (10) to replace S(u, v) in (1) and introducing (9) into (1), we
obtain

sp0 = − f0
π2(a1 + a2)

(11)

Substituting Eq. (11) into Eq. (10), the particular solution of the vector-
valued second-order nonhomogeneous PDE (1) is obtained as

Sp(u, v) = − f0
π2(a1 + a2)

sin(πu)sin(πv) (12)

Putting the obtained general solution of the vector-valued second-order
homogeneous PDE (3) and the particular solution (12) of the vector-valued
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second-order nonhomogeneous PDE (1) together, we obtain the following
general solution of the vector-valued second-order nonhomogeneous PDE (1)

S(u, v) = Sh(u, v) + Sp(u, v) = P̄
(0)
m̄,n̄ + P̄

(1)
m̄,n̄u+ P̄

(2)
m̄,n̄u

2

+P̄
(3)
m̄,n̄u

3 + P̄
(4)
m̄,n̄v + P̄

(5)
m̄,n̄v

2 + P̄
(6)
m̄,n̄v

3 + P̄
(7)
m̄,n̄uv

+P̄
(8)
m̄,n̄u

2v + P̄
(9)
m̄,n̄uv

2 − f0
π2(a1 + a2)

sin(πu)sin(πv)

(13)

where P̄
(k)
m̄,n̄ (k = 0, 1, 2, ..., 9; m̄ = i − 1, i, i + 1; n̄ = j − 1, j, j + 1) are the

analytical formulae obtained in Subsection 3.2.1 and given in A.
The above general solution defines an analytical C0 continuous 4-sided PDE

patch. It can be used to create various shapes of a single patch and generate
complicated 3D models to be demonstrated in the following two sections.

4 Results and comparisons

We validated our approach using a set of test models that includes both man-
made (the dress, mug and hat) and organic (the human face and ear) models as
shown in Fig. 5. These vertex-frame models are generated by extracting feature
curves from free 3D objects in TURBOSQUID (http://www.turbosquid.com).
The shape of a PDE patch-based surface model generated from a vertex-frame
model is controlled by three kinds of parameters: the position coordinate of
eight vertices P (k) (k = 1, 2, ..., 8) used to define the boundary of a PDE patch,
the two shape control parameters a1 and a2 and sculpting force used to control
surface shapes.

Fig. 5 Test results of examples. Each example includes its vertex-frame model (left) and
PDE patch-base surface model (right)

4.1 Comparison of accuracy and data size

We compare our proposed method with polygon and NURBS modeling tech-
niques. Since the 3D objects used in our tests come from real models, these
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Fig. 6 Comparisons with polygon and NURBS modeling

real models can be regarded as the ground truth in our comparisons. Fig. 6
shows the five ground truth models (the first column) rebuilt by polygon (the
second column), NURBS (the third column) and our proposed 4-sided PDE
patches (the fourth column), respectively. In order to compare the storage
requirements of the three modeling techniques, the corresponding three rebuilt
models should have the same or very close accuracy against the ground truth
model. We use the root mean square (RMS) error with respect to the bounding
box diagonal, which is evaluated with Metro tool [44] to measure the accuracy
of the created models. The RMS error is evaluated between the sample points
of the rebuilt models and the ground truth model. Our experiment indicates
that the number of sample points same as the vertex number of the rebuilt
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polygon model gives very accurate results. The comparison needs to satisfy
the following criteria. 1) RMS errors between the three models and the ground
truth model are taken to be the same or very close. 2) The data of the polygon
model are the coordinate values of vertices, the data of the NURBS model
are the coordinate values of control points and weights, and the data of our
PDE model are coordinate values of boundary vertices, the two shape control
parameters, and the vector-valued coefficient of the sculpting force defined in
Eq. (9). 3) The values of all data used in the comparison are rounded to six
significant digits.

Table 1 lists the statistical data of the three modeling techniques for the
five surface models, including the number of vertices or control points, RMS
errors and storage amounts. According to Table 1, for the surface model of
the dress, mug, ear, hat and human face, our proposed modeling of 4-sided
PDE patches saves the storage space of 81.3%, 79.5%, 85.2%, 78.3% and 85.9%
over the polygon modeling, and 58.0%, 56.6%, 57.6%, 58.1%, and 58.4% over
the NURBS modeling. Therefore, our proposed method has a much smaller
requirement for storage space. Moreover, the results indicate our proposed
method only need a small amount of vertices to generate surface models with
almost same RMS errors compared to polygon and NURBS techniques. It
means our proposed method is more efficient and easier for users to do manual
operations and real-time interactive design. This will be discussed in detail in
Section 5.

Table 1 Statistical data of polygon (PO), NURBS (NU) and our proposed method for the
five surface models

Vertices or control points RMS error (%) Storage (KB)

PO NU Ours PO NU Ours PO NU Ours

Dress 2996 1020 362 0.1 0.1 0.1 76.0 33.8 14.2
Mug 1275 460 168 0.2 0.2 0.2 32.2 15.2 6.6
Ear 1862 498 174 0.4 0.4 0.4 47.2 16.5 7.0
Hat 2256 900 312 0.1 0.1 0.1 58.5 30.3 12.7
Face 3701 963 336 0.1 0.1 0.1 94.8 32.2 13.4

4.2 Comparison of the local deformation

Since the sculpting force of PDE-based modeling is powerful in creating different
deformations, we compare shape manipulation of our proposed method with
NURBS and Coons modeling techniques to demonstrate the capacity and
effectiveness of our proposed method.

Fig. 7 shows the comparison of the interior deformation between PDE and
NURBS patches. We generate a simple PDE patch (a) and a NURBS patch (c)
with a same surface shape. The PDE patch can easily produce a small convex
shape (b) within arbitrary inner local regions by interactively manipulating a
sculpting force, but the NURBS patch with the given control points cannot
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create such a small convex shape through interactively moving its control
points, as shown in (d). In order to obtain the similar shape to that shown
in (b), the most common approach is to interpolate the NURBS patch in the
deformation region by adding new control points, as shown in (e). However,
the interpolation needs extra manual operations and will greatly increase the
data size of the NURBS patch.

Fig. 7 Comparison of the interior deformation between PDE and NURBS patches. (a)
An original PDE patch. (b) The PDE patch (a) with a local deformation created by
manipulating a sculpting force. (c) An original NURBS patch with the same shape as (a).
(d) The deformation of the NURBS patch (c) by moving control points. (e) The deformation
of the NURBS patch (c) after the interpolation.

PDE-based and Coons modeling techniques are both boundary-based surface
creation methods. Since bilinear Coons surfaces have no shape manipulation
capacity, and bicubic Coons surfaces can manipulate surface shapes by changing
boundary tangents, we compare our proposed method with bicubic Coons
surfaces in manipulating surface shapes. The sculpting force in our proposed
method can deform: 1) the whole PDE patch (Fig. 8(b)), 2) inner local regions
of a single PDE patch (8(c) and (d)) by controlling the range of parametric
variables u and v in Sp(u, v), and 3) arbitrary regions across multiple PDE
patches (Fig. 9). In contrast, boundary tangents of a bicubic Coons patch can
only deform the whole region rather than arbitrary inner local regions of the
patch. Fig. 8 shows the comparison between PDE patches ((a)-(d)) and bicubic
Coons patches ((e)-(h)) with the four same boundaries α(u), β(u), γ(v) and
δ(v). We apply w1α(u), w2β(u), w3γ(v) and w4δ(v) to describe the boundary
tangents of bicubic Coons patches where wi = [wix, wiy, wiz]T (i = 1, 2, 3, 4).
The results show that our proposed method is more flexible and powerful in
shape manipulations and local deformations.

5 Interactive design

5.1 Shape control parameter and sculpting force

The shape of the PDE patch generated from a given vertex-frame can be
effectively controlled by two shape control parameter a1, a2 and a sculpting
force f0. We develop a tool shown in Fig. 10 for interactively choosing their
suitable values. After inputting a vertex-frame, different shapes of a PDE patch
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Fig. 8 The comparison between PDE surface patches (a)-(d) and bicubic Coons surface
patches (e)-(h). (a) f0 = [0 0 0]. (b) f0 = [20 1 1]; (c) f0 = [3 1 2] and the deformation region
0.25 ≤ u ≤ 0.75, 0.25 ≤ v ≤ 0.75. (d) f0 = [2 0 0] and deformation region 0.2 ≤ u ≤ 0.45,
0.2 ≤ v ≤ 0.45 and 0.6 ≤ u ≤ 0.9, 0.55 ≤ v ≤ 0.8. (e) w1 = w2 = w3 = w4 = [0 0 0]. (f)
w1 = w3 = [100 0 0], w2 = w4 = [−100 0 0]. (g) w1 = w2 = w3 = [0 0 0], w4 = [−100 0 0].
(h) w1 = [−20 0 − 20], w2 = [−20 0 0], w3 = w4 = [0 0 0].

Fig. 9 The shape deformation in a region encircled by boundary curves (white) across
multiple PDE patches. (a) f0 = [0 0 0]. (b) f0 = [−1 − 1 1]. (c) f0 = [−5 1 0]. (d)
f0 = [−8 − 2 2].

can be generated by moving the slider of different components of a1, a2 and f0.
The default range of each slider is [0, 1], and there is an input box next to each
slider for inputting a magnification coefficient. The values of a1, a2 and f0 are
displayed in real time under the sliders.

The function of shape control parameters a1 and a2 is to weight the first
and second terms on the left-hand side of the PDE (1) and create a smoothing
effect to the differential operator in u and v direcions [28]. The two parameters
can be used to directly change the shape of PDE patches. As shown in Fig. 11,
we change the shape control parameters aleft

1 and aleft
2 of the patch at the left

joint of the basket strap and aright
1 and aright

2 of the patch at the right joint
to demonstrate the effect of the two shape control parameters. It can be seen
from the figure that by changing the two shape control parameters, we can
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Fig. 10 The tool for interactively manipulating a1, a2 and f0.

Fig. 11 Design parameter modification of a basket. (a) aleft
1 = aleft

2 = aright
1 = aright

2 =

[1 1 1]T . (b) aleft
1 = aright

1 = 150 × [1 1 1]T , aleft
2 = aright

2 = [1 1 1]T . (c) aleft
1 =

aright
1 = −100 × [1 1 1]T , aleft

2 = aright
2 = [1 1 1]T . (d) aleft

1 = aright
1 = [1 150 1]T ,

aleft
2 = aright

2 = [1 1 1]T .

obtain various shapes of the basket strap without moving the vertex positions
of vertex-frames.

5.2 Interactive tool

Besides the shape control parameters and sculpting forces, which can be used
in surface manipulations, the shape of a PDE surface patch can also be changed
by the positions of eight vertices of its vertex-frame. When users are dissatisfied
with some shapes of an output surface model, it is time-consuming to remake
a new version of the corresponding vertex-frames and create new shapes to
replace the unsatisfactory shapes. In contrast, modifying the corresponding
vertices of vertex-frames to obtain their desired shapes is easier and will greatly
improve the modeling efficiency. In order to expand the practicability of our
proposed method, the user should be able to modify the vertex-frame model
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Fig. 12 Interactive tool of PDE patch-based surface modeling.

and generate the desired surface model in real time. Therefore, we design an
interactive interface with which users can move every vertex of an input vertex-
frame model and check the quality of an output surface model. The interface
of our interactive tool is shown in Fig. 12, which includes three transformation
functions, i. e., rotation, moving and scaling, for both the vertex-frame model
and surface model.

The interactive tool is developed in the Cartesian space. The user can
manipulate the models by using the three transformation functions. After
inputting a vertex-frame model by clicking the Load button, the vertex-frame
model is presented in left position. The user can move a vertex by clicking and
dragging it with mouse, and releasing the mouse button at desired position
(Fig. 13). When the modification ends, the user can click the Create button
to generate a surface model in real time and Save button to save the surface
model.

Fig. 13 Editing of a vertex. (a) the vertex-frame model. (b) the surface model.
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We invited three volunteers to design different surface models using our
interactive tool. All of them have experience in 3D modeling tasks. The test
objects are the five vertex-frame models shown in Fig. 5. We explained how to
use the interactive tool in a ten-minute training session and then asked them
to design and recreate new surface models based on the five existing vertex-
frame models. Fig. 14 shows the results created by the three volunteers. They
generated some interesting surface models by modifying only a few vertices of
the corresponding vertex-frame models. The feedback from the volunteers was
very positive. All of them believed that our proposed method is easier to create
and manipulate desired surface models than polygon and NURBS modeling
techniques.

Fig. 14 Results created by the three volunteers.

6 Conclusions and future work

We have developed the first analytical C0 continuous 4-sided PDE patches to
tackle the weaknesses of big data and heavy manual operations of polygon
and NURBS modeling, and integrate shape control parameters and sculpting
forces in boundary-based PDE patches to avoid weak ability of Coons surfaces
in shape manipulations. We have also developed a novel PDE patch-based
surface modeling technique to quickly create 3D models from vertex-frames,
and implemented the modeling technique into an interactive software tool
to input and modify vertex-frame models and create and manipulate surface
models in real time. The experiments made by testing several vertex-frame
models validate the capacity and effectiveness of our proposed method and



Interactive PDE patch-based surface modeling from vertex-frames 25

demonstrate that our proposed method can create complex surface models
with a small number of patches and fewer manual operations. Moreover, we
have compared our proposed method with polygon and NURBS techniques in
creating different surface models with respect to the ground-truth model. The
results indicate that our proposed method greatly reduces the data size of 3D
models and save storage space. We have also compared our proposed method
with Coons surfaces in manipulating surface shapes and demonstrated that
our proposed method is more flexible and powerful.

Our proposed method has some limitations. Firstly, 4-sided PDE surface
patches are not flexible enough to represent complex shapes of some 3D models
such as branching structures. For such structures, 4-sided patches combined with
3-sided patches are easier and more powerful to create their surface models and
reduce the number of patches. Secondly, the method developed in this paper can
only achieve position continuity between adjacent PDE patches. 3- and 4-sided
PDE patches with tangent continuity, curvature continuity, and even higher
order Cn continuity have not been investigated in this paper. Thirdly, how to
use sculpting forces to create local deformations in the regions bounded by
complicated boundary curves have not been demonstrated. Fourthly, the patch
generation rule and patch direction discussed in Subsections 3.2.1 and 3.2.2
must be followed when creating 3D models from the analytical C0 continuous
4-sided PDE patches. In our following work, we will develop Cn continuous
3- and 4- sided PDE patches without the constraints of the patch generation
rule and patch direction and investigate how to use sculpting forces to create
different deformations in the regions bounded by various complicated boundary
curves to demonstrate the advantages of PDE-based geometric modeling over
polygon and NURBS modeling in shape creation and manipulation.
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A Analytical formulae of P̄
(k)
m̄,n̄ (m̄ = i− 1, i, i+ 1; n̄ = j − 1, j,

j + 1)

For Si,j patch, P̄
(k)
i,j (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the following analytical

formulae 

P̄
(0)
i,j = P

(1)
i,j

P̄
(1)
i,j = −3P

(1)
i,j + 4P

(2)
i,j − P

(3)
i,j + 1

2
P̄

(3)
i,j

P̄
(2)
i,j = 2P

(1)
i,j − 4P

(2)
i,j + 2P

(3)
i,j − 3

2
P̄

(3)
i,j

P̄
(3)
i,j =

Āi,jDi,j−Ai,jB̄i,j

B̄i,jBi,j−Di,jDi,j

P̄
(4)
i,j = 4P

(8)
i,j − P

(7)
i,j − 3P

(1)
i,j + 1

2
P̄

(6)
i,j

P̄
(5)
i,j = −4P

(8)
i,j + 2P

(7)
i,j + 2P

(1)
i,j − 3

2
P̄

(6)
i,j

P̄
(6)
i,j =

Ai,jDi,j−Āi,jBi,j

B̄i,jBi,j−Di,jDi,j

P̄
(7)
i,j = 5P

(1)
i,j − 4P

(2)
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(3)
i,j + 4P

(4)
i,j − 3P

(5)
i,j + 4P

(6)
i,j

−P
(7)
i,j − 4P

(8)
i,j

P̄
(8)
i,j = −2P

(1)
i,j + 4P

(2)
i,j − 2P

(3)
i,j + 2P

(5)
i,j − 4P

(6)
i,j + 2P

(7)
i,j

P̄
(9)
i,j = −2P

(1)
i,j + 2P

(3)
i,j − 4P

(4)
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(5)
i,j − 2P

(7)
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(8)
i,j

(A.1)
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where

Bi,j =

M∑
m=1

N∑
n=1

a2
1(6um − 3)2

B̄i,j =

M∑
m=1

N∑
n=1

a2
2(6vn − 3)2

Di,j =

M∑
m=1

N∑
n=1

a1a2(6um − 3)(6vn − 3)

Ai,j =

M∑
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N∑
n=1

a1(6um − 3)Fm,n
i,j

Āi,j =

M∑
m=1

N∑
n=1

a2(6vn − 3)Fm,n
i,j

(A.2)

and Fm,n
i,j is determined by:

Fm,n
i,j =4(a1 − a1vn + a2 − a2um)P

(1)
i,j

+ 8a1(vn − 1)P
(2)
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(3)
i,j
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(5)
i,j − 8a1vnP

(6)
i,j

+ 4a2(1 − um)P
(7)
i,j + 8a2umP

(8)
i,j

(A.3)

For Si,j+1 patch, P̄
(k)
i,j+1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the following

analytical formulae
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(A.4)

where
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(A.5)
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For Si+1,j patch, P̄
(k)
i+1,j (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the following

analytical formulae
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(7)
i+1,j − 4P

(6)
i+1,j − P̄

(2)
i+1,j − 3

2
P̄

(3)
i+1,j

P̄
(9)
i+1,j = 2P
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where

Fm,n
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i+1,j + 3umP̄
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(7)
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(A.7)

For Si,j−1 patch, P̄
(k)
i,j−1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the following

analytical formulae
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where
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(1)
i,j−1 − 4P
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(9)
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For Si−1,j patch, P̄
(k)
i−1,j (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the following

analytical formulae
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where
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(A.11)

For Si+1,j+1 patch, P̄
(k)
i+1,j+1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the

following analytical formulae
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For Si−1,j−1 patch, P̄
(k)
i−1,j−1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the

following analytical formulae



P̄
(0)
i−1,j−1 = P

(1)
i−1,j−1

P̄
(1)
i−1,j−1 = 4P

(2)
i−1,j−1 − 3P

(1)
i−1,j−1 + 1

2
P̄

(3)
i,j−1 − P̄

(0)
i−1,j

P̄
(2)
i−1,j−1 = −4P

(2)
i−1,j−1 + 2P

(1)
i−1,j−1 − 3

2
P̄

(3)
i,j−1 + 2P̄

(0)
i−1,j

P̄
(3)
i−1,j−1 = P̄

(3)
i,j−1

P̄
(4)
i−1,j−1 = 4P

(8)
i−1,j−1 − 3P

(1)
i−1,j−1 + 1

2
P̄

(6)
i−1,j − P̄

(0)
i,j−1

P̄
(5)
i−1,j−1 = −4P

(8)
i−1,j−1 + 2P

(1)
i−1,j−1 − 3

2
P̄

(6)
i−1,j + 2P̄

(0)
i,j−1

P̄
(6)
i−1,j−1 = P̄

(6)
i−1,j

P̄
(7)
i−1,j−1 = 5P

(1)
i−1,j−1 − 4P

(2)
i−1,j−1 − 4P

(8)
i−1,j−1 + 2P̄

(0)
i−1,j

+P̄
(4)
i−1,j − 1

2
P̄

(6)
i−1,j + P̄

(0)
i,j−1 − P̄

(2)
i,j−1 − 3

2
P̄

(3)
i,j−1

P̄
(8)
i−1,j−1 = −2P

(1)
i−1,j−1 + 4P

(2)
i−1,j−1 − 2P̄

(0)
i−1,j

+P̄
(2)
i,j−1 + 3

2
P̄

(3)
i,j−1

P̄
(9)
i−1,j−1 = −2P

(1)
i−1,j−1 + 4P

(8)
i−1,j−1 − 2P̄

(0)
i,j−1

+P̄
(5)
i−1,j + 3

2
P̄

(6)
i−1,j

(A.13)

For Si−1,j+1 patch, P̄
(k)
i−1,j+1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the

following analytical formulae



P̄
(0)
i−1,j+1 = P̄

(0)
i−1,j + P̄

(1)
i−1,j + P̄

(2)
i−1,j + P̄

(3)
i−1,j

P̄
(1)
i−1,j+1 = 4P

(2)
i−1,j+1 − P

(3)
i−1,j+1 − 3P̄

(0)
i−1,j+1 + 1

2
P̄

(3)
i,j+1

P̄
(2)
i−1,j+1 = −4P

(2)
i−1,j+1 + 2P

(3)
i−1,j+1 + 2P̄

(0)
i−1,j+1 − 3

2
P̄

(3)
i,j+1

P̄
(3)
i−1,j+1 = P̄

(3)
i,j+1

P̄
(4)
i−1,j+1 = P̄

(4)
i−1,j + P̄

(7)
i−1,j + P̄

(8)
i−1,j

P̄
(5)
i−1,j+1 = P̄

(5)
i−1,j + P̄

(9)
i−1,j

P̄
(6)
i−1,j+1 = P̄

(6)
i−1,j

P̄
(7)
i−1,j+1 = 4P

(4)
i−1,j+1 − P

(3)
i−1,j+1 − 4P

(2)
i−1,j+1 + P̄

(0)
i−1,j+1

−2P̄
(4)
i−1,j+1 − P̄

(5)
i−1,j+1 − 1

2
P̄

(6)
i−1,j+1 − 2P̄

(2)
i,j+1

− 5
2
P̄

(3)
i,j+1 − P̄

(1)
i,j+1

P̄
(8)
i−1,j+1 = −2P

(3)
i−1,j+1 + 4P

(2)
i−1,j+1 − 2P̄

(0)
i−1,j+1

+P̄
(2)
i,j+1 + 3

2
P̄

(3)
i,j+1

P̄
(9)
i−1,j+1 = −4P

(4)
i−1,j+1 + 2P

(3)
i−1,j+1 + 2P̄

(0)
i−1,j+1

+2P̄
(4)
i−1,j+1 + P̄

(5)
i−1,j+1 + 1

2
P̄

(6)
i−1,j+1

+2P̄
(1)
i,j+1 + 2P̄

(2)
i,j+1 + 2P̄

(3)
i,j+1
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For Si+1,j−1 patch, P̄
(k)
i+1,j−1 (k = 0, 1, 2, 3, ..., 9) are explicitly determined by the

following analytical formulae

P̄
(0)
i+1,j−1 = P̄

(0)
i,j−1 + P̄

(4)
i,j−1 + P̄

(5)
i,j−1 + P̄

(6)
i,j−1

P̄
(1)
i+1,j−1 = P̄

(1)
i,j−1 + P̄

(7)
i,j−1 + P̄

(9)
i,j−1

P̄
(2)
i+1,j−1 = P̄

(2)
i,j−1 + P̄

(8)
i,j−1

P̄
(3)
i+1,j−1 = P̄

(3)
i,j−1

P̄
(4)
i+1,j−1 = 4P

(8)
i+1,j−1 − P

(7)
i+1,j−1 − 3P̄

(0)
i+1,j−1 + 1

2
P̄

(6)
i+1,j

P̄
(5)
i+1,j−1 = −4P

(8)
i+1,j−1 + 2P

(7)
i+1,j−1 + 2P̄

(0)
i+1,j−1 − 3

2
P̄

(6)
i+1,j

P̄
(6)
i+1,j−1 = P̄

(6)
i+1,j

P̄
(7)
i+1,j−1 = −4P

(8)
i+1,j−1 − P

(7)
i+1,j−1 + 4P

(6)
i+1,j−1 + P̄

(0)
i+1,j−1

−2P̄
(1)
i+1,j−1 − P̄

(2)
i+1,j−1 − 1

2
P̄

(3)
i+1,j−1 − P̄

(4)
i+1,j

−2P̄
(5)
i+1,j − 5

2
P̄

(6)
i+1,j

P̄
(8)
i+1,j−1 = 2P

(7)
i+1,j−1 − 4P

(6)
i+1,j−1 + 2P̄

(0)
i+1,j−1

+2P̄
(1)
i+1,j−1 + P̄

(2)
i+1,j−1 + 1

2
P̄

(3)
i+1,j−1

+2P̄
(4)
i+1,j + 2P̄

(5)
i+1,j + 2P̄

(6)
i+1,j

P̄
(9)
i+1,j−1 = 4P

(8)
i+1,j−1 − 2P

(7)
i+1,j−1 − 2P̄

(0)
i+1,j−1

+P̄
(5)
i+1,j + 3

2
P̄

(6)
i+1,j
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