
1 

 

Differential Equation-based Shape Interpolation for 

surface blending and facial blendshapes 

   

 

Xiangyu You 

 

 

A thesis submitted in partial fulfilment of the requirements 

of Bournemouth University for the degree of 

 

Doctor of Philosophy 

 

 

 
 

Department of Creative Technology 

Faculty of Science & Technology  

Bournemouth University 

Poole, BH12 5BB 

United Kingdom 

 
 

  

 



2 

 

Copyright  

This copy of the thesis has been supplied on condition that anyone who consults it is understood to 

recognise that its copyright rests with its author and due acknowledgement must always be made of 

the use of any material contained in, or derived from, this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Declaration 

This thesis has been created by myself and has not been submitted in any previous application for 

any degree. The work in this thesis has been undertaken by myself except where otherwise stated. 

The materials presented in Section 3.3 have been published by You et al. (2018). The materials 

presented in Section 3.4 have been published by You et al. (2019a). The materials presented in 

Chapter 4 have been published by You et al. (2019b). These publications are listed in Subsection 

1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Acknowledgements 

I would like to first thank my respected supervisors Professor Feng Tian and Professor Wen Tang 

for giving me their invaluable advice, time and kind support throughout the duration of my PhD 

study who have helped me to solve various problems and kept me on good progress. It is my great 

fortunate in my life to become one of their PhD students. Completing my PhD research is inseparable 

from their tireless instructions and help. I would also like to thank Bournemouth University, Faculty 

of Science and Technology, and Department of Creative Technology for providing me with a great 

research environment, and faculty for all their supports to my PhD research. 

I greatly appreciate my company’s support which enables me to complete my part-time PhD study.  

Last but not least, I would like to thank my wife for her love, encouragement and strong supports 

and my children who have made my life enjoyable.  

 

The mesh data used in Figures 32, 35, 36, 38, and 40 of this thesis were made available by Robert 

Sumner and Jovan Popovic from the Computer Graphics Group at MIT.  

  



5 

 

Abstract 

Differential equation-based shape interpolation has been widely applied in geometric modelling and 

computer animation. It has the advantages of physics-based, good realism, easy obtaining of high-

order continuity, strong ability in describing complicated shapes, and small data of geometric models. 

Among various applications of differential equation-based shape interpolation, surface blending and 

facial blendshapes are two active and important topics. 

Differential equation-based surface blending can be time-independent and time-dependent. 

Existing differential equation-based surface blending only tackles time-dependent 𝐶1 continuous 

surface blending. In many applications, time-dependent 𝐶2 continuous surface blending is required. 

Another problem is that time-dependent surface blending and time-independent surface blending are 

investigated separately in existing work, which requires more effort to implement and is not 

convenient to use. Integrating them together will save implementation effort and time and facilitate 

their applications.  

Differential equation-based facial blendshapes are physics-based, which have the advantages 

of following underlying physics and generating more different blended facial shapes than those 

based on geometric interpolation algorithms. Unfortunately, existing physics-based facial 

blendshapes and facial animation are based on various numerical methods. These numerical methods 

are extremely difficult and time-consuming to setup since they require special knowledge and skills, 

additional mesh pre-processing, large computing capacity, and high computational costs and are not 

easy to learn, implement and use.  

This thesis will investigate new techniques of 𝐶2 continuous blending of constant and varying 

parametric surfaces and facial blendshapes with differential equation-based shape interpolation. For 

differential equation-based surface blending, three approximate analytical approaches called closed 

form solution-based approximate analytical approach, variable decomposition-based approximate 
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analytical approach, and differential property-based approximate analytical approach will be 

developed to achieve  𝐶2  continuous blending of constant and varying parametric surfaces. For 

differential equation-based shape interpolation, an efficient physics-based facial blendshape 

technique will be developed, which is based on a simple and efficient closed form analytical solution 

to the equation of motion, which considers inertial effects, damping effects and the resistance against 

deformations. A blending force-based framework consisting of slider force-based, exponentiation 

force-based and random force-based methods will be developed to achieve highly efficient facial 

blendshapes.  
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1.  Introduction  

Computer graphics is a branch of computer science. Modelling, rendering and animation of 

geometric objects are three most important elements of computer graphics.  

Geometric modelling plays a very important role in computer graphics, and it can be divided 

into curve modelling, surface modelling and volume modelling. Among them, surface modelling is 

most widely applied. Currently, surface modelling can be achieved by polygon modelling, spline 

modelling and subdivision.  

•    Polygonal modelling (Russo, 2005) is an approach for modelling objects by representing 

or approximating their surfaces using polygon meshes. The basic element used in polygon meshes 

is a vertex which is a point in a three-dimensional space. Two vertices connected by a straight line 

become an edge. Three vertices, connected to each other by three edges, define a triangle, which is 

the simplest polygon in the Euclidean space. More complex polygons can be created out of multiple 

triangles, or as a single object with more than 3 vertices. Four sided polygons (generally referred to 

as quads) and triangles are the most common shapes used in polygonal modelling. Polygon 

modelling uses some straight-line segments to approximate a curve and flat facets to approximate a 

curved surface. 

•    Spline modelling (Piegl and Tiller, 2012) creates a complex curve by stitching some curved 

segments and a complex surface by stitching some surface patches. Among various spline modelling 

approaches, Non-uniform rational B-spline (NURBS) is the most popular and has been implemented 

into various computer graphics software packages and computer-aided design software packages. 

•    Subdivision modelling (DeRose et al., 1998) generates a curve by repeatedly refining a 

polyline and a 3D surface by refining a coarse polygon mesh into a denser mesh through 

approximating or interpolating schemes. A subdivision surface, in the field of 3D computer graphics, 

represents a smooth surface via the specification of a coarser piecewise linear polygon mesh. The 
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smooth surface can be calculated from the coarse mesh as the limit of a recursive process of 

subdividing each polygonal face into smaller faces that better approximate the smooth surface. 

Subdivision surfaces are defined recursively. The process starts with a given polygonal mesh. A 

refinement scheme is then applied to this mesh. This process takes that mesh and subdivides it to 

create new vertices and new faces. The positions of the new vertices in the mesh are computed based 

on the positions of nearby old vertices. In some refinement schemes, the positions of old vertices 

might also be altered (possibly based on the positions of new vertices) as stated by Yu et al. (2010). 

This process produces a finer mesh than the original one, containing more polygonal faces. This 

resulting mesh can be passed through the same refinement scheme again and so on. The limit 

subdivision surface is the surface produced from this process being iteratively applied infinitely 

many times. In practical use however, this algorithm is only applied for a limited number of times. 

Subdivision surface refinement schemes can be broadly classified into two categories: interpolating 

and approximating. Interpolating schemes are required to match the original position of vertices in 

the original mesh. Approximating schemes are not; they can and will adjust these positions as needed. 

In general, approximating schemes have greater smoothness, but editing applications that allow 

users to set exact surface constraints require an optimization step. 

All the three surface modelling methods create geometric models from scratch. After 

geometric models have been created, shape interpolation can generate more geometric models from 

known geometric models very efficiently. It generates transition surfaces or new shapes by 

interpolating existing ones.   

The application of shape interpolation in geometric modelling and computer animation is 

massive (Bajaj and Ihm, 1992; Lewis et al., 2014). Blending surfaces and morphing between two 

different geometric models are two examples of the applications in geometric models. Facial 

blendshapes and keyframe animation are two examples of the applications in computer animation.  
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Shape interpolation can be divided into two types: one is to interpolate the boundaries of 

existing surfaces, and the other is to interpolate existing shapes directly. The transition surfaces 

created by the former is called blending surfaces, and the new shapes generated by the latter is called 

blend shapes. As the link1  states, “facial expressions can communicate complex combinations of 

emotion information via multiplexed facial signals”. Facial blendshapes are very useful in 

generating different facial expressions. This research will introduce differential equations to develop 

new approaches of surface blending and facial blendshapes.   

1.1   Background 

Surface blending and facial blendshapes are very important in geometric modeling and 

computer animation. Surface blending has a wide range of applications in computer-aided design. 

Facial blendshapes are  widely applied in creative industries especially in computer animation and 

games.  

Surface blending is to generate a smooth transition between intersecting surfaces or a smooth 

connection between disjoint surfaces. The surfaces to be blended are called primary surfaces. The 

surface which forms a smooth transition or connection between primary surfaces is called a blending 

surface. The interface curves between a blending surface and primary surfaces are called trimlines 

(Vida et al., 1994). 

Surface blending can be divided into different types. The main types of blends met in practice 

can be categorized as: surfaces governed by strong functional constraints, aesthetic blends, fairings, 

and rounds and fillets (Rossignac and Requicha, 1984). 

Surfaces used in geometric modelling can be grouped into explicit, implicit, and parametric 

surfaces. They can be mathematically represented with 𝑧 = 𝑓(𝑥, 𝑦), 𝑓(𝑥, 𝑦, 𝑧) = 0, and 𝑥 = 𝑥(𝑢, 𝑣), 

𝑦 = 𝑦(𝑢, 𝑣), and 𝑧 = 𝑧(𝑢, 𝑣), respectively. Accordingly, surface blending can be grouped into 

 
1 https://www.sciencealert.com/our-facial-expressions-can-portray-a-broader-range-of-emotions-than-you-might-think  

https://www.sciencealert.com/our-facial-expressions-can-portray-a-broader-range-of-emotions-than-you-might-think
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explicit blending, implicit blending (Rockwood, 1989), and parametric blending (Filip, 1989). Since 

parametric surfaces such as NURBS surfaces are most popular, this research will concentrate on 

blending of parametric surfaces.   

Continuity can be divided into geometric continuity and parametric continuity. Geometric 

continuity can be further divided into tangent continuity, curvature continuity and higher order 

geometric continuity. Tangent continuity is G1 continuity. It requires two surfaces to have a same 

tangent direction at their shared interface. Curvature continuity is G2 continuity. It requires two 

surfaces to have a same curvature at their shared interface. Parametric continuity can be divided into 

C1 continuity, C2 continuity, and higher order parametric continuity.  C1 continuity requires two 

surfaces to have the same position function and first partial derivative function at their shared 

interface. It is more stringent than G1 continuity. C2 continuity requires two surfaces to have the 

same position function, first partial derivative function, and the second partial derivative function at 

their shared interface. C2
 continuity is more stringent than G2 continuity.  

Among position, tangent, curvature, and higher order continuities, the tangent and curvature 

continuities are most frequently applied in many fields. For example, discontinuous curvature causes 

problems in numerical control (NC) milling and leads to break points of reflection lines (Aumann, 

1995) which are widely used in automotive industry (Tosun et al., 2007). A cam with second-order 

discontinuity creates abrupt changes in acceleration, and the design of streamlined surfaces of 

aircraft, ship, and submarine requires curvature continuity to avoid flow separation and turbulence 

(Pegna and Wolter, 1992). Although 𝐺2  continuous surfaces can meet curvature continuity 

requirement, higher order continuity such as continuous slope-of-curvature can suppress both 

laminar and turbulent separation and lead to higher aerodynamic efficiency (Shen et al., 2017). It is 

also stated that higher order (>𝐶2continuous) surfaces are often required for certain numerical 

simulations and to meet visual, aesthetic, and functional requirements (Shen et al., 2017). Due to the 

importance of 𝐶2 continuities, this thesis will investigate surface blending with 𝐶2continuities. 
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A comprehensive literature survey on blending time-independent parametric surfaces has been 

made in (Vida et al., 1994; Hatna et al., 2001). Although various blending methods have been 

developed, all these methods can only deal with time-independent primary surfaces which do not 

change their positions and shapes over time. However, in many situations, primary surfaces are 

constantly in motion and change shapes. It has been pointed out that the blending surface joining the 

wing of an aircraft to the fuselage must meet stringent aerodynamic requirements (Rossignac and 

Requicha, 1984). The blending surfaces connecting the torso and limbs of a running person must be 

always smooth and seamless.  

For the primary surfaces that change motion and shapes over time, the task of surface blending 

is to generate smooth transition surfaces between these time-dependent surfaces whose 

mathematical representations involve a time variable. The existing methods of time-independent 

surface blending are unable to deal with the time variable due to the difficulty in involving the time 

variable in the surface blending algorithms effectively. For example, when using a constant-radius 

rolling-ball to blend two time-independent primary surfaces 𝑆1(𝑢, 𝑣) and 𝑆2(𝑢, 𝑣), the radius of the 

rolling ball is a constant 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (Choi and Ju, 1989). When two primary surfaces become 

time-dependent, i.e.,  𝑆1(𝑢, 𝑣, 𝑡)and 𝑆2(𝑢, 𝑣, 𝑡), it is difficult to determine how the radius of the 

rolling ball changes with time, i.e., change 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 to 𝑟 = 𝑟(𝑡) where t is a time variable. 

Although time-dependent surfaces can be approximated by time-independent surfaces at many time 

instants and various time-independent blending methods (vida et al., 1994) can be used to blend 

time-independent surfaces at the time instants, such treatments cannot smoothly connect the 

blending surface to the primary surfaces between two adjacent time instants, since the blending 

surfaces at the two adjacent time instants are interpolated to generate new blending surfaces and 

these new generated blending surfaces cannot satisfy the required continuities. In contrast, partial 

differential equations (PDEs) provide an effective solution to cope with time-dependent surface 

blending by involving the time variable in PDEs (You et al., 2012). 
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 The above discussion highlights the importance of time-dependent surface blending.  Since 

time-dependent surface blending is more difficult than time-independent surface blending, only one 

paper by You et al. (2012) investigated time-dependent 𝐶1 continuous surface blending before this 

research. It indicates time-dependent surface blending has not attracted a lot of research attention 

and the paper by You et al (2012) has two weaknesses: (1) it is not applicable to time-independent 

surface blending, and (2) it is unable to achieve 𝐶2 continuous surface blending as discussed below. 

For the surface blending introduced by You et al. (2012), the first and second partial 

derivatives of blending surfaces with respect to a time variable 𝑡 are involved in a vector-valued 

PDE. Despite the advantage in considering the effects of acceleration and velocity, it will cause the 

following problem. When primary surfaces are time-independent and do not change their positions 

and shapes, the blending surface should also be time-independent and does not change its position 

and shape. However, since the first and second partial derivatives of blending surfaces with respect 

to the time variable 𝑡 are involved in the vector-valued partial differential equation, its closed form 

solution involves the time variable 𝑡 and the blending surface defined by the closed form solution 

will change its shape with time. This is contradictory to the real situation and makes the surface 

blending technique proposed by You et al. (2012) unsuitable for time-independent surface blending.  

The blending boundary constraints given in (You et al., 2012) only require the primary and 

blending surfaces to share the same position functions and first partial derivatives at trimlines. 

Therefore, the surface blending method developed in (You et al., 2012) can generate 𝐶1 continuous 

blending surfaces only. The question on how to achieve time-dependent surface blending with 𝐶2
 

continuity has not been addressed. 

Another important problem is how to achieve satisfactory shapes of blending surfaces but still 

maintain exact satisfaction of blending boundary constraints. Kiciak (2011) introduced a function 

which is the integral of the square of length of the mean curvature gradient with respect to the surface 

measure and minimized the functional to achieve a satisfactory shape of a blending surface. The 
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numerical minimization algorithm involves heavy computations. How to achieve a satisfactory 

shape of blending surfaces easily and quickly without involving heavy numerical minimization 

calculations has not been addressed. 

Apart from interpolating known boundaries to generate smooth blending surfaces, facial 

blendshapes interpolate two or more known 3D shapes to create new shapes. They are the 

predominant choice for realistic facial animation in the movie industry and a standard feature of 

commercial animation packages (Lewis et al., 2014). They have driven animated characters in 

Hollywood films and attracted a lot of research attention.  

Facial blendshapes can be divided into the geometric and physics-based. Linear interpolation 

plays a dominant role in geometric facial blendshapes. As discussed in (Lewis et al., 2014), it can 

be mathematically formulated as 𝒙 = 𝒙0 + ∑ 𝑤𝑗(𝒙𝑗 − 𝒙0)𝑁
𝑗=1 , where 𝒙 , 𝒙0  and 𝒙𝑗  contains the 

coordinates of all the vertices of a new facial shape (called the blended shape in this thesis) to be 

created, a neutral shape, and the 𝑗𝑡ℎ blendshape (called the target shape), respectively, 0 ≤ 𝑤𝑗 ≤ 1 

is a weight, and 𝑁 is the total number of all the target shapes.    

Linear interpolation based facial blendshapes are very popular since they have the advantages 

of simplicity, expressiveness, and interpretability. Despite this, the following limitations have been 

identified by Barrielle et al. (2016). First, linear interpolation constrains the space of facial 

expressions to lie in an affine subspace. Since not all values of the weight 𝑤𝑗 yield plausible facial 

deformations such as nonlinear and rotational deformations (Kozlov et al., 2017), the space of facial 

expressions should not be considered affine. Some approaches such as pose space deformation-

based corrections (Seol et al., 2012) have been proposed to deal with nonlinearities which are not 

represented by the affine model. Second, facial blendshapes could be regarded as samples from a 

hypothesized manifold of facial expressions. Generating a new facial shape requires enough target 

facial shapes to sample the manifold and define local linear interpolation functions. Creating enough 

target facial shapes is usually an iterative and labour-intensive process. New techniques of facial 
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blendshapes are required to create a superset of blended shapes which contain not only the subspace 

of the blended shapes generated by linear interpolation but also those that linear interpolation is 

unable to generate. Some efforts have been devoted to extending the subspace such as splitting the 

face model into segments and applying a local affine model to each segment (Tena et al., 2011) and 

capturing geometric shapes regulated by physics-inspired deformations (Ma et al., 2011; Ma et al., 

2012; Li et al., 2013). However, these approaches struggle to consider complex physical behaviours. 

Third, linearly combining blendshapes tend to move groups of vertices jointly as blocks over time 

which cannot render fine temporal behaviours. Linear interpolation changes facial shapes with a 

same deformation rate. Generating special effects such as acceleration and deceleration effects (Noh 

and Neumann, 1999) requires animating facial shape changes with different deformation rates.     

Different from linear interpolation that is purely geometric, physics-based facial blendshapes 

(Barrielle et al., 2016; Kozlov et al., 2017) are to add physics to facial blendshapes which has a 

potential to tackle the above problems. Especially, when physics-based simulations are combined 

with data-driven approaches, realistic facial animation can be created. Apart from its capacity in 

tackling the above problems, another important feature of physics-based approaches is that the 

simulation parameters can be controlled to achieve the desired effects (Ichim et al., 2017). These 

simulation parameters include mass, damping coefficient, stiffness coefficient, rest shape volume, 

and static bone structure etc.  

Existing physics-based facial animation is obtained by various numerical methods such as the 

finite element method which simulates facial models as thin shell (Barrielle et al., 2016) or a solid 

volume (Ichim et al., 2017). As stated in (Kozlov et al., 2017), “these methods can simulate all the 

desired dynamic effects but are extremely difficult and time-consuming to set up” since they require 

special knowledge and skills, additional mesh pre-processing, large computing capacity, and high 

computational costs and are not easy to implement and use. Therefore, they are not applicable to the 

situations where real-time animation or high animation frame rates are required. As stated in (Koch 
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et al., 1996), “In facial animation, computational complexity is a fundamental constraint, and real-

time performance is often much more important than a highly accurate facial shape in terms of a still 

image.” 

1.2   Research questions  

As discussed above, differential equation-based surface blending and physics-based facial 

blendshapes have not answered the following questions.  

1. How to develop time-dependent geometric modelling of 𝐶2 continuity? Surface blending 

with tangent and curvature continuity is frequently required in many applications. Aerodynamics 

has been used to investigate aerodynamic performance of racing cars, high-speed trains, and 

airplanes. Aerodynamics is an important application of fluid mechanics, which is based on time-

dependent Navier-Stokes equations. To achieve good aerodynamic performance, racing cars, high-

speed trains, and airplanes must have streamlined shapes whose transition surfaces can be obtained 

from 𝐶2  continuous surface blending. Although there are a lot of publications about time-

independent surface blending, time-dependent surface blending with 𝐶2  continuity has not been 

fully developed.  

2. How to integrate time-dependent and time-independent surface blending? Current 

differential equation-based approaches can deal with either time-independent or 𝐶1 continuous time-

dependent surface blending. There are no differential equation-based algorithms which can cope 

with both time-independent and time-dependent surface blending.  Separate treatment of time-

independent and time-dependent surface blending will increase implementation effort and time and 

does not facilitate practical applications. 

3. How to develop simple, efficient and realistic physics-based facial blendshapes? Physics-

based facial blendshapes and animation can generate more realistic results, but they require special 

knowledge and skills, additional mesh pre-processing, large computing capacity, and high 
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computational costs and are not easy to implement and use. The challenge on developing efficient 

and realistic facial blendshapes has not been solved.   

1.3   Aim and objectives 

To answer the above questions, the work presented in this thesis aims to develop new differential 

equation-based shape interpolation approaches and apply them in surface blending and facial 

blendshapes. This aim will be achieved through the following objectives.  

• Our first objective is to integrate time-independent and time-dependent 𝐶2  continuous 

surface blending in a unified mathematical model. This mathematical model consists of a 

vector-valued sixth-order partial differential equation and 𝐶2 continuous blending boundary 

constraints.     

• Our second objective is to develop three new approaches of 𝐶2 continuous surface blending. 

They are the closed form solution-based approximate analytical approach, variable 

decomposition-based approximate analytical approach, and differential property-based 

approximate analytical approach.  

• Our third objective is to develop an analytical approach of dynamic facial blendshape 

animation. It does not require any special knowledge and skills of numerical calculations and 

can be used to create facial blendshape animation with high animation frame rates. 

• Our fourth objective is to develop a blending force-based facial animation framework. It 

consists of the slider force-based, exponentiation force-based, and random force-based facial 

blendshapes. 

1.4   Contributions  

Through developing new differential equation-based shape interpolation for surface blending and 

facial blendshapes, the proposed research has made the following contributions.  
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1. A new mathematical model to integrate both time-dependent and time-independent 𝐶2 

continuous blending of parametric surfaces. 

2. A closed form solution-based approximate analytical approach to effectively tackle various 

𝐶2 continuous blending problems of time-independent constant parametric surfaces. 

3. A variable decomposition-based approximate analytical approach which decomposes 

variables to simplify the problem treatment and creates 𝐶2  continuous blending between time-

dependent and time-independent parametric surfaces. 

4. A differential equation-based approximate analytical approach which considers different 

differential properties to speed up the solution process of the mathematical model and integrates 

time-dependent and time-independent 𝐶2 continuous blending into a unified framework to generate 

various surfaces efficiently and accurately.  

5. A novel mathematical model of dynamic deformations which integrates the equation of 

motion and the constraints of the source and target shapes. 

6. The first analytical approach of dynamic facial blendshape animation which is easy to 

implement and use by animators without special knowledge and skills of numerical calculations.  

7. A simple blending force-based facial animation framework which integrates slider force-

based, exponentiation force-based, and random force-based facial blendshapes to create various 

facial blendshape animation with high animation frame rates and good realism. 

1.5   Thesis structure  

This thesis contains five chapters. Each chapter is briefly outlined below. 

1: Introduction - As presented above, Chapter 1 gives the background information, identifies 

the research questions, defines the research aim and objectives, and highlights the research 

contributions. It also gives the thesis structure and lists the publications from this research.  
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2: Literature review – This chapter presents a literature review about surface blending and 

facial blendshapes with a focus on differential equation-based approaches.  

3: 𝑪𝟐 continuous blending of varying and constant surfaces with differential equation-

based shape interpolation – This chapter investigates differential equation-based 𝐶2 continuous 

blending of time-dependent and time-independent surfaces. It includes proposing a new 

mathematical model, developing a closed form solution-based approximate analytical approach, 

variable decomposition-based approximate analytical approach, and differential property-based 

approximate analytical approach, examining the accuracy and efficiency of the proposed approaches 

and the effects of the second partial derivatives, and investigating the applications of the developed 

approaches in time-dependent and time-independent surface blending.  

4: Facial blendshapes with differential equation-based shape interpolation – This chapter 

proposes a new differential equation-based technique of facial blendshapes. It first proposes the 

mathematical model and derives a simple and efficient closed form analytical solution of the model. 

After that, it develops a blend force-based, exponentiation force-based, and random force-based 

facial blendshapes to achieve highly efficient and realistic facial animation.  

5: Conclusion and future work – This chapter starts by concluding the work presented in 

this thesis, followed by future work. 

 

1.6   Publications 

• Xiangyu You, Feng Tian, Wen Tang, 2018. A unified approach to blending of constant and 

varying parametric surfaces with curvature continuity. In Proceedings of Computer Graphics 

International 2018. ACM Press, pp. 51-56. 
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• Xiangyu You, Feng Tian, Wen Tang, 2019a. C2 continuous blending of time-dependent 

parametric surfaces. Journal of Computing and Information Science in Engineering 19(4):  
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• Xiangyu You, Feng Tian, Wen Tang, 2019b. Highly efficient facial blendshape animation with 

analytical dynamic deformations. Multimedia Tools and Applications 78(18): 25569-25590. 
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2.  Related work  

2.1 Surface blending review  

Surface blending is a geometric algorithm, which creates a smooth surface connecting different 

surfaces. These different surfaces, which are connected together by a smooth surface, are called 

primary surfaces. And the smooth surface is called a blending surface. The interface curves where 

the blending surface is connected to primary surfaces are called trimlines. The constraints, which 

the blending surface should satisfy at trimlines, are called blending boundary constraints. 

A surface can be mathematically represented explicitly, implicitly, and parametrically. 

Accordingly, surface blending can be divided into explicit, implicit, and parametric blendings. 

Explicit blending (You et al., 2004b) is the blending between different explicit primary surfaces, 

implicit blending (Hartmann, 2001) is to create a smooth surface between implicit surfaces, and 

parametric blending (Song and Wang, 2007; Kiciak, 2011) is to form a smooth transition between 

parametric surfaces. Since explicit surfaces has a very weak capacity in representing complicated 

shapes, it is difficult to find the publications on explicit surface blending except for (You et al., 

2004b). In what follows, existing work on implicit blending and parametric blending will be 

reviewed. 

2.1.1 Implicit blending 

 
Some blending methods for implicit surfaces were introduced by Woodwark (1987). It was stated 

by Liming (1979) and Faux and Pratt (1979) that determining the blending surface relies on finding 

a conic tangential to two straight lines that define a plane. Later on, Middledich and Sears (1985) 

applied such a technique to surface blending. The formulation for blending two or three implicit 

primary surfaces was proposed and named as the potential method by Hoffmann and Hopcroft (1985, 
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1986, 1987). This potential method was also developed into a projective potential method to blend 

an arbitrary number of primary surfaces to form a convex corner (Kosters, 1989), and the 

applicability of the potential method for blending implicitly defined surfaces was extended by 

Kosters (1991). Ohkura and Kakazu (1992) made a more general formulation for both convex and 

concave combinations for the blending of three primary surfaces, and extended the projective 

potential method to produce a convex combination of three surfaces using the two-map explanation 

of the potential method. Hsu (2018) obtained four families of k-ary Boolean set blends with 𝐶1 

continuity which use a single blending operation to create the blending among more than two models. 

In the work by Angles et al. (2017), implicit blending is used with 2D sketches to obtain 2D shapes 

or 3D surfaces. Derived from 2D sketches, a gradient-based implicit operator is obtained, which 

creates 3D implicit blends from a user’s sketch with the effect of any existing blending operator.  

These methods are effective in blending time-independent implicit primary surfaces. They are 

not applicable to blending between time-dependent parametric primary surfaces, which will be 

investigated in this thesis.  

Blending of one shape into another called metamorphosis which is based on implicit surfaces 

or function representation combined with set-theoretic operations, R-functions and displacement 

functions was also well investigated. By using R-functions consisting of union, intersection, and 

subtraction and introducing a displacement function, an exact analytical definition of the blending 

set-theoretic operations over geometric solids with implicitly defined surfaces were proposed by 

Pasko and Savchenko (1994). Using the control points on the surfaces of two solids or an additional 

bounding solid to define the shape and location of the blend which is called bounded blending, new 

analytical formulae of bounded blending were proposed by Paska et al. (2002) for functionally 

defined set-theoretic operations. By using implicit surfaces to functionally define initial shapes of 

3D volume models, the metamorphosis was used to create different shapes of the 3D volume models 

in (Kazakov et al., 2003). Using implicit surfaces to define simple shapes without holes and self-
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intersections and Function representation (FRep) solids to define complicated shapes, a new 

approach was proposed by Pasko et al. (2004a) to achieve shape transformation between 2D or 3D 

objects with different topology and positions through increasing dimension, applying bounded 

blending with added materials, and making cross-section to get intermediate shapes during the 

transformation. Using bounded blending operations in space-time for shape metamorphosis, two 

extensions were made by Pasko et al. (2004b). One extension used "smoothed" versions of half-

cylinders to solve the problem of "jump" in animation or the rapid transition between shapes in the 

given interval. The other extension applied the bounded blending union operation to the 

corresponding "smoothed" 4D space-time half-cylinders. Using two types of functions: FRep 

functions (Pasko et al., 1995) and parametric functions, a new function-based extension of Virtual 

Reality Modeling Language (VRML) was made by Liu and Sourin (2005) to obtain function-defined 

shape metamorphoses in VRML. Using standard R-functions to describe pure set-theoretic 

operations and introducing localized displacements to the standard R-functions, new analytical 

formulations for bounded blending set-theoretic operations were proposed by Pasko et al. (2005).  

Based on the use of analytical implicit, explicit and parametric functions, function-based extensions 

of VRML and X3D were made by Liu and Sourin (2006), making the programming of function-

defined shape metamorphoses very easy in visual cyberworlds. By introducing additional 

controllable affine transformations to initial objects in space-time to address the fast transition 

between the shapes and give users more control and an additional non-linear deformation operation 

to the pure space-time blending, real-time space-time blending with improved user control was 

achieved by Pasko et al. (2010). By proposing a formula of the pairwise metamorphosis with a 

variety of functions for different stages of deformation, morphing and offsetting, and extending it to 

the metamorphosis between groups of shapes with weighted feature elements, an approach was 

proposed by Sanchez et al. (2013) to generate morphological shapes through user-controlled group 

metamorphosis. By collapsing the source mesh and the target mesh to approximate skeletal implicit 
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surfaces (convolution surfaces), transforming shape between the two implicit surfaces, and 

projecting the obtained implicit surface to the target mesh, the metamorphosis between two skeleton-

driven animated meshes with arbitrary topologies was obtained by Kravtsov et al. (2014). A space-

time transfinite interpolation was obtained by Sanchez et al. (2015) through extending a transfinite 

interpolation to spatio-temporal variations in heterogeneous volume objects. The obtained space-

time transfinite interpolation was used for volumetric metamorphosis where both geometry and 

volumetric properties change in time. Space-time blending was extended by Adzhiev et al. (2020) 

to deal with heterogeneous objects. It interconnects geometry and attribute transformations of 

volumetric objects with attributes representing their physical properties. Based on a new unifying 

functionally-based hybrid representation called HFRep, Tereshin et al. (2021) presented a novel 

framework to model volumetric heterogeneous objects and used it to bend two oscillating 4D 

geometric shapes.  

Most of the above methods investigated time-independent metamorphosis. Few of them such 

as Sanchez et al. (2015) dealt with time-dependent metamorphosis by involving a time variable. The 

problems tackled by the above methods are about gradual changes of one shape into another shape 

represented with implicit surfaces, which are different from the problems of blending between two 

time-dependent varying parametric surfaces to be investigated in this thesis.  

2.1.2 Parametric blending 

 
Various blending methods of time-independent parametric surfaces have been developed. According 

to the survey paper by Vida et al. (1994), these surface blending methods can be divided into: rolling-

ball-based blends, spine-based blends, trimline-based blends, blends based on polyhedral methods 

and other methods including a cyclide solution, PDE-based blends, and Fourier-based blends.  

Among various surface blending approaches above mentioned, rolling ball methods are the 

most popular and most widely used for rounding edges and corners of mechanical parts (Hatna et 
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al., 2001). The pioneer work of the rolling ball methods was presented by Rossignac and Requicha 

(1984). With this method, a blending surface is created by rolling a ball along two primary surfaces. 

Various rolling-ball blending methods can be divided into constant-radius and variable-radius ones.  

Constant-radius rolling-ball blending methods were investigated by Rossignac and Requicha 

(1984), Choi and Ju (1989), Farouki and Sverrisson (1996), Kós et al. (2000), and Dahl and 

Krasauskas (2012). Rossignac and Requicha (1984) proposed a new method to incorporate constant-

radius blends which is achieved by rolling a sphere in contact with primary surfaces to be blended 

together. Choi and Ju (1989) mathematically constructed rolling-ball blends through sweeping 

rational quadratic curves and representing corner blends where three surfaces meet with a convex 

combination of linear Taylor interpolants. Farouki and Sverrisson (1996) investigated the numerical 

methods of constant-radius blends to achieve prescribed-precision approximation and guarantee the 

satisfaction of specified tolerance. Kós et al. (2000) discussed how to determine the radius of rolling 

ball blends from point data which have been pre-processed and segmented. By applying canal 

surfaces, Dahl and Krasauskas (2012) developed a general algorithm to parametrize fixed radius 

rolling ball blends of pairs of natural quadrics.  

Constant-radius rolling-ball blending is not applicable to some situations where the distance 

between two trimlines varies along the trimlines. For such situations, variable-radius rolling-balling 

blending is effective.  

Variable-radius rolling-ball blending methods were examined by Chuang et al. (1995), Chuang 

and Hwang (1997), Lukács et al. (1997), Lukács (1998), Chuang and Lien (1998), and Kós (2011). 

Chuang et al. (1995) calculated a parametric form of variable-radius spherical and circular blends 

by using the derived spine curve and linkage curves. Chuang and Hwang (1997) tackled the 

problems that the radius for variable-radius blending is difficult to specify and the spine curve is 

hard to trace by introducing several geometric constraints to specify the variable radius and a 

paradigm to implement the constraints of tracing the spine curve. Lukács et al. (1997) treated 
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variable radius rolling ball blending surfaces as the envelopes of one parameter families of varying 

radius balls which are special cases of discriminant sets. Lukács (1998) used the theory of envelopes 

and discriminant set to analyse variable radius rolling ball blending surfaces, determine the 

differential geometric invariants of the surfaces, and characterize the progressive and regressive 

points on the variable radius rolling ball blending surfaces. Chuang and Lien (1998) presented two 

formulations to determine general blending between parametric surfaces. The first formulation 

represents the blend as a sweeping surface whose radii satisfy a specific one-parameter curve, and 

the second formulation also defines the blend as a sweeping surface but whose radii satisfy a specific 

two-parameter surface. Kós (2011) generalized the algorithms for reconstructing constant radius 

rolling ball blends to reconstruct variable radius blends.   

Rolling ball blends are also used with automatic segmentation and structural recovery. Zhang 

et al. (2020) presented a clustering algorithm to extract general quadric and rolling-ball blending 

regions, proposed a method to automatically segment 3D models to reveal surface structures of the 

underlying shapes, and developed a skeleton extraction-based algorithm to recover the parameters 

of the rolling center trajectories and ball radius and fit rolling-ball blending surface patches. 

Due to simplicity, rolling-ball blends are very popular. However, they are not suitable to blend 

some surfaces. For example, when a surface is separated into two parts with a gap between the two 

parts, rolling-ball blending methods are not suitable to create a blending surface to smoothly connect 

the two parts together. For such situations, PDE-based surface blending provides an effective means.  

Cyclides are effective in dealing with some simple blends such as generating the transition 

surface for the situation where a cylinder obliquely meets a plane. Implicit quartic equations or 

parametric expressions represented with trigonometrical parameterisation or rational biquadratic 

Bézier equations can be used to describe cyclides. Using both Dupin ring cyclides and parabolic 

cyclides, Allen and Dutta (1997a) investigated the blends between natural quadrics by using a new 

definition of a pure cyclide blend to force the construction of non-singular cyclide blends which 
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deliberately exclude cyclide joins and singular surfaces. Later on, they (Allen and Dutta, 1997b) 

studied the relationship of the existence of cyclide blends to the common inscribed sphere condition. 

They (Allen and Dutta, 1997c) also examined the supercyclide blends between a plane and a cone 

and the supercyclide blends between a plane and a cylinder. Shene (1997) presented a necessary and 

sufficient condition for two cones to have a blending Dupin cyclide and proposed a new construction 

algorithm to establish the correspondence between the points on one or two coplanar lines for 

blending cones with Dupin cyclides. 

As discussed above, cyclides have been used to smoothly connect two cylinders, blend two 

cones, and create plane/cone and plane/cylinder blends. These blending problems are simple. For 

many complicated blending tasks such as rounding a corner and filling a 𝑛-sided hole, there are no 

reports of using cyclides to tackle these blending problems.    

Bizzarri et al. (2015) proposed a method of constructing blending surfaces, modified the 

method for n-way blends, investigated contour curves on ringed surfaces, and used the contour 

curves to calculate approximate parameterizations of implicitly given blends. They used rational 

envelope (RE) curves to develop an interpolation algorithm and used the algorithm to produce 

rational surface blends between canal surfaces (Bizzarri et al., 2016). They also examined RE 

surfaces, used RE surfaces to develop efficient algorithms, and employed them in rational skinning 

and blending of sets of spheres and cones/cylinders (Bizzarri et al., 2017). 

RE surfaces are especially suitable for smoothly connecting two cylinders. By using an 

auxiliary sphere, RE surfaces can be used to blend more than two cylinders. By skinning three or 

more spheres, RE surfaces can be extended to blend disconnected cones/cylinders in various 

orientations. Although strong capacity of RE surfaces in blending disconnected cones/cylinders, 

they are incapable in some other blending situations such as blending two or more intersecting planes. 

In addition to the above surface blending methods, Roach and Martin (1992) proposed a 

Fourier-based blending method which predicts and controls curved shapes in a two-dimensional 
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system. Kim and Elber (1996) presented a symbolic approach for the computation of blending 

surfaces with good accuracy and meaningful control which provides accurate tangent plane 

continuities along the entire boundary of blending surfaces.   

2.1.3 Noncircular blending 

Rolling-ball methods can create circular shapes of blending surfaces only. In general situations, the 

shapes of blending surfaces are noncircular. Such noncircular blending surfaces can be generated 

with some other methods such as filling n-sided regions (Schichtel, 1993; Hsu, 1998;  Piegl and 

Tiller, 1999;  Hwang and Chuang, 2003; Yang et al., 2006; Shi et al., 2010; Liu, 2015), polyhedral 

vertex blending with setbacks using rational S-patches (Zhou and Qian, 2009; Zhou, 2010), 

branching blends between two natural quadrics with Pythagorean normal surfaces (Krasauskas, 

2008), and partial differential equation (PDE)-based methods (Bloor and Wilson, 1989). 

PDE-based methods are most powerful in creating different noncircular shapes of blending 

surfaces. They formulate surface blending as a mathematical boundary-value problem and adjust 

shape control parameters embedded in the PDE to generate different shapes of blending surfaces 

while still keeping exact satisfaction of boundary constraints. The solution to a vector-valued partial 

differential equation subjected to the constraints of boundary curves and the first, second and higher 

order partial derivatives at trimlines represents a blending surface. Since surface blending with 

tangent and curvature continuity is the most frequently met in engineering (Pegna and Wolter, 1992; 

Hatna et al., 2001) in comparison with higher order continuities and tangent continuity surface 

blending has been investigated in (Bloor and Wilson, 1989; Cheng et al., 1990; Bloor et al., 2000; 

You al., 2012), this thesis examines constant and varying parametric surface blending with curvature 

continuity.  

PDE-based surface blending was pioneered in (Bloor and Wilson, 1989). The main problem 

with PDE-based surface blending is how to solve partial differential equations effectively and 
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efficiently. Numerical, accurate, and approximate analytical methods can be used to solve partial 

differential equations. Various numerical methods such as the finite difference method (Bloor et al., 

1995), the finite element method (Brown et al, 1998; Li and Chang, 1999; Jacobson et al., 2010; Pan 

et al., 2014), and direct discretization with the discrete Laplace operator (Park et al., 2015; Stanko 

et al., 2016) are most powerful. Despite their powerful capacity, they have the following limitations. 

First, they generate blending surfaces with discrete boundary representations which are unsuitable 

for the requirement of good continuity. Second, they involve many design variables and a lot of 

calculations which cause high requirements for computing devices and slow response. Third, 

specific knowledge and skills of the numerical methods are required to carry out the numerical 

calculations. To overcome the limitations of numerical methods in solving partial differential 

equations for surface blending, some accurate and approximate analytical methods have been 

proposed in (Zhang and You, 2002; Bloor and Wilson, 1996; You et al., 2004a, 2004b). Most 

recently, Wu and Zhu (2021) introduced a sixth order partial differential equation into bicubic B-

spline surface with uniform and quasi-uniform knots and used the obtained method to construct an 

open blending surface and a closed blending surface with 𝐶1 continuity.  

Compared to numerical methods, accurate and approximate analytical methods can overcome 

the limitations of numerical methods but with less powerful capacity in complicated surface blending 

such as filling n-sided holes. Accurate methods obtain the closed form solution of partial differential 

equations, but only apply to some simple and special cases (Zhang and You, 2002). Approximate 

analytical methods (Bloor and Wilson, 1996) can solve more complicated surface blending problems 

and are more powerful than accurate methods. They are more efficient than numerical methods. 

However, obtaining approximate analytical formulae of PDE-base surface blending is more difficult 

than using numerical methods to solve the same surface blending problems. In this thesis, 

approximate analytical methods will be adopted to develop new surface blending approaches.  
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Most PDE-based methods and all other surface blending approaches only deal with constant 

surface blending where primary surfaces do not move and change their shapes.  Before this research, 

only one paper by You et al. (2012) dealt with time-dependent surface blending with 𝐶1 continuity 

and initiated the research to blending of dynamic varying parametric surfaces. In the paper, a vector-

valued dynamic fourth-order partial differential equation was used to develop a new approach which 

tackles blending of varying parametric surfaces with 𝐶1  continuity. The method is not applicable to 

time-independent surface blending since the solution of the partial differential equation always 

involves the time variable t. In addition, 𝐶2 continuous surface blending has not been investigated.  

To tackle the above problems and generalize the technique introduced in (You et al., 2012), 

this research drops the time variable t, proposes sixth-order partial differential equations, introduces 

the second partial derivative continuity into blending boundary constraints to address 𝐶2 continuity, 

and develops the first group of approximate analytical solutions of the sixth-order partial differential 

equations to unify both time-independent and time-dependent 𝐶2  continuous surface blending. The 

developed solutions have the advantages of good accuracy and high efficiency.  

2.2 Facial blending review  

The new approach of facial blendshapes that has been proposed in this thesis is related to facial 

shape interpolation including facial blendshapes and physics-based facial animation. The existing 

works related to these two topics are reviewed below. 

2.2.1 Facial shape interpolation 

 
Facial animation is very important in computer animation. Facial shape interpolation is the most 

intuitive and commonly used technique in facial animation practice. It can be divided into linear and 

nonlinear interpolation. Linear interpolation (Bergeron and Lachapelle, 1985; Pighin et al., 1998; 

Seo and Thalmann, 2003; Liang and Ouhyoung, 2004; Sifakis et al., 2005) plays a dominant role in 
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facial blendshapes. Region-based linear interpolation of 3D face models proposed in (Tena et al., 

2011) increases flexibility for modelling local deformations while keeping the model coherent. A 

bilinear model was applied to natural spatiotemporal phenomena such as dynamic faces and bodies 

(Akhter et al., 2012). A higher order generalization of linear model called multilinear was used for 

modelling identity, expression, and speech independently in (Vlasic et al., 2005). The cosine 

interpolation proposed in (Waters and Levergood, 1993) and other variations such as spline can 

provide acceleration and deceleration effects at the beginning and end of an animation. An 

optimization scheme was proposed in (Liu et al., 2011) to automatically explore the nonlinear 

relationship of facial blendshape animation from captured facial expressions. Linear blendshapes 

were used in a statistical model of 3D facial motion to reconstruct 3D face shapes from in-the-wild 

images (Richardson et al., 2017; Tewari et al., 2017; Tran and Liu, 2018; Booth et al., 2017, 2018). 

Using linear blendshapes to describe both the motion that is produced by expression (Cheng et al., 

2018) and/or motion that is produced by speech (Tzirakis et al., 2019), continuous parameters of the 

linear blendshapes are used to drive generative adversarial networks (GANs) for synthesizing 

expressive face images through sliding 3D blendshape parameters (Ververas and Zafeiriou 2020) 

where sliders were used to control continuous values of statistical blendshape model of facial motion 

and SliderGAN was used to transform an input face image into a new one and edit a facial image 

according to expression and speech blendshapes.  

In recent years, more research studies were reported. Tu et al. (2019) proposed an automatic 

approach to select a set of base expressions from a sequence of facial motions by using the Procrustes 

analysis to estimate the difference among face models and obtain the composition of the base 

expressions. By selecting a few facial landmarks on an avatar mesh, Onizuka et al. (2019) presented 

an automatic approach to easily create realistic key-shapes of any avatar with largely different shapes 

and topology in comparison with the source template mesh for generating facial blendshapes. In 

order to improve the time-consuming blendshape editing process, Cetinaslan and Orvalho (2020a) 
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implemented a sketch-based interface, which uses geodesic circles to confine the edits to the local 

geometry and allows the artists to directly sketch onto the 3D facial model to localize direct 

manipulation of blendshape models for facial animation. Wang and Ling et al. (2020) used the facial 

emotion information extracted from an arbitrary facial motion sequence to define semantics and 

updated facial blendshapes with large-scale and middle-scale face shapes and fine-scale facial details. 

Given a target neutral face mesh and a small input dataset, Wang and Bradley et al. (2020) developed 

an approach to synthesize realistic facial expressions by introducing global-local multilinear models 

to integrate the strengths of global models in coarse motion estimations and local models in 

expression-specific and identity-specific details where local identity models contain expression 

variation for a specific identity and local expression models contain identity variation for a specific 

expression. In order to predict perceptual importance of blendshapes under different activation levels, 

Carrigan and Zell et al. (2020) investigated the noticeability of blendshapes and proposed new 

perceptually based models, which use commonly-used geometry and image-based metrics to predict 

visibility. Carrigan and Zibrek et al. (2020) treated the semantics of facial expressions as an integer 

optimization of the blendshape weights and used the obtained facial expressions as semantic 

references during scanning to calculate as-few-as-possible training expressions, which have 

minimum overlap of activated blendshapes. In order to set up a simulation rig and control material 

properties based on facial performances more easily and efficiently, Romeo and Schvartzman (2020) 

proposed a workflow to create an activation map for pseudo-muscles, added physical simulation 

obtained from an extended position-based dynamics solver to facial animation, and used the 

activation map to control the simulation behaviour. Chen et al. (2020) used geometric optimization 

to generate facial blendshapes preserving the identity exaggeration style of an artist-drawn caricature 

and a conditional generative adversarial network (cGAN) to obtain dynamic textures of target 

expressions. Wang and Cheng et al. (2020) used a facial blendshape to enhance the performance of 

facial expression recognition (FER) through proposing a two-stream network called 
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BlendshapeFERNet. The first stream called image-based FER network extracts the expression 

information from images and the second stream called blendshape regression network extracts 3D 

facial muscle movements. In order to avoid unexpected results during facial expression editing by 

direction weight manipulation interfaces based on the pseudo-inverse of the matrix that contains all 

the vertex positions of blendshape target shapes, Cetinaslan and Orvalho (2020b) used the transpose 

of the Jacobian matrix rather than the pseudo-inverse to reduce unexpected movements during 

blendshape weight editing. Han et al. (2021) used linear regression and an autoencoder to 

automatically create individually optimized blendshapes from the captured face and selected the 

trained results that are more similar to the original face. 

Facial shape interpolation reviewed above is simpler and more efficient than physics-based 

facial animation. Due to high efficiency, facial shape interpolation such as facial blendshapes has 

been widely applied in computer animation industry. However, facial shape interpolation based on 

linear interpolation and nonlinear interpolation does not consider the underlying physics and is less 

capable in creating realistic facial animation in comparison with physics-based facial animation.  

Unlike these purely geometric face shape interpolation methods which blend source and target 

shapes through one weight or a set of weights, the approach proposed in this thesis introduces one 

source shape and one target shape as the constraints of the equation of motion in the physics-based 

mathematical model, and uses blended forces and different values of the time variable involved in 

the equation of motion to create different blended shapes.    

2.2.2 Physics-based facial animation  

Physics-based facial animation is introduced to consider the underlying physics of facial animation 

and tackle the problems of purely geometric facial animation in creating realistic facial expressions. 

Various physics-based approaches have been proposed such as the finite element method, finite 

difference method, boundary element method, finite volume method, mass-spring systems, shape 
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matching methods, and reduced deformable models based on model analysis (Nealen et al., 2006). 

Among them, the finite element method is the most accurate and has been used in movies to create 

realistic deformations, and mass-spring systems are widely applied in computer graphics since they 

are efficient to calculate (Hong et al., 2016). In this thesis, only the work on mass-spring systems 

and the finite element method will be reviewed.  

Mass-spring systems actuated by vector muscles were introduced to animate facial expressions 

in (Platt and Badler, 1981). Video-based tracking of facial features was used to calculate muscle 

actuation parameters in (Terzopoulos and Waters, 1993). For an isotropic linear elastic reference 

model, Lloyd et al. (2007) derived analytical expressions of the spring parameters for simulating 

deformable models with a mass-spring system. Natsupakpong and Çavuşoğlu (2010) determined 

elasticity parameters of mass-spring-damper models for simulating deformable objects by 

minimizing the error between the stiffness matrices of the linear lumped element model and the 

linear finite element model of the same object. Physically-plausible shape blending was obtained by 

linearly interpolating spring rest length parameters of a mass-spring system between source and 

target shapes (Ma et al., 2011). San-Vicente et al. (2012) adjusted stress-strain and compressibility 

curves to a given reference behavior and proposed a method to estimate spring stiffness valid for 

linear and nonlinear material models used in mass-spring systems. Kot et al. (2015) investigated 

physical properties of a mass-spring system consisting of mass points and linear springs, proposed 

theoretical predictions of elastic parameters, and presented their verifications in several test cases. 

Later on, they investigated the construction of Mass-spring models for representing homogeneous 

isotropic elastic materials whose Poisson’s ratio is adjustable (Kot and Nagahashi, 2017). Through 

modifying the traditional equation for mass spring dampers to introduce nonlinearity and 

viscoelasticity into the calculation of elastic force, a new method was proposed by (Xu et al., 2018) 

to simulate soft tissue deformation with mechanical properties of viscoelasticity, nonlinearity and 

incompressibility etc. for virtual surgery applications. Mass-spring systems were also used to 
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achieve physical simulations of volumetric skin behavior, lip contacts, and sticky lips for facial 

animation through the implicit Euler integration (Barrielle and Stoiber, 2019). Regarding the spring 

deformation energy depends on the volume only and is insensitive to changes of shape, Golec et al. 

(2020) developed a hybrid 3D mass-spring system to simulate any compressible isotropic elastic 

material and in particular the nearly incompressible biological soft tissues with Poisson ratio ν≅0.5.  

Mass-Spring Systems use simplified physical laws and mathematical models to achieve 

physically inaccurate but real-time simulations. They are simpler, easier and more efficient than the 

finite element method.   

The finite element method is the most popular numerical method especially in computational 

sciences and engineering because it can simulate complex geometries and irregular shapes subjected 

to arbitrary constraints with the highest accuracy among various numerical methods. It was 

introduced to simulate facial surgery in (Koch et al., 1996). 3D finite element simulations were 

integrated into a computer-aided surgical planning system in (Keeve et al., 1996), and used to 

develop an anatomically accurate model for facial animation in (Sifakis et al., 2005). Rig-space 

physics uses the underlying finite element model and explores the interactions between physical 

models and artistic rigging (Hahn et al., 2012). Physical face cloning was obtained through nonlinear 

finite element simulations with a neo-Hookean material (Bickel et al., 2012). Recently, finite 

element simulations were combined with facial blendshapes to preserve volume and avoid self-

collisions during facial animation (Barrielle et al., 2016), introduced to develop a new framework 

for the finite element simulation of facial muscle and flesh to achieve anatomically and 

biomechanically accurate muscle models (Cong et al. 2016), used to enhance facial blendshape rigs 

(Kozlov et al., 2017), integrated with a data-driven approach to develop data-driven physics (Kim 

et al., 2017), and applied with a novel muscle activation model to achieve physics-based face 

modelling and animation (Ichim et al., 2017). The finite element simulation was also used to 

simulate facial skeleton and musculature for adding physical detail to improve that anatomical 
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validity of both blendshapes and blendshape animation in the film Kong (Cong et al., 2017). Physics-

based finite element simulations were introduced into animations of arbitrary models with triangle 

meshes by Li et al., (2017), which include automatically creating simulation meshes, converting 

triangle mesh animations into animations of the simulation mesh, and dealing with collisions and 

self-collisions. By using the finite-element method to simulate the nonlinear, quasi-incompressible, 

isotropic, hyperelastic properties of a tongue and integrating it with the anatomical model consisting 

of the skeleton, muscle, and skin, a real-time 3D system was proposed by (Jun et al., 2018) to 

generate facial animation. Smith et al. (2018) designed a novel Neo-Hookean energy and derived 

closed form eigenvalue and eigenvector expressions to make the new Neo-Hookean model behave 

well across a wide range of Poisson’s ratios and remain stable under large deformations. A simple 

finite element simulation approach was proposed by (Kozlov et al., 2019) to produce facial 

animation which reconstructs a very small number of head poses of the actor in 3D and recovers the 

required simulation parameters to best match a real actor's face motion. Building on a meshless finite 

elements technique which has already been used successfully for the elastic simulation of surface 

models in real time, Uhlmann and Brunnett (2019) employed a point-based technique to simulate 

facial movements. Cong and Fedkiw (2019) presented a physics-based facial retargeting method, 

which conducts the finite element simulation of an actor’s muscle to obtain the best performance-

matched blendshape muscles, transfers the obtained blendshape muscles to a creature model to 

create the corresponding creature blendshape muscles, and uses the creature blendshape muscles to 

drive a creature muscle simulation to achieve the retargeted performance. Kim et al. (2019) proposed 

an inversion-safe transversely isotropic energy and an element rehabilitation method for badly-

conditioned finite elements to robustly simulate large deformations even when degenerate and zero-

volume elements are involved. By using a material space-dependent function to modulate the 

deformation gradient, Kadleček and Kavan (2019) built a neutral facial volumetric model from 

magnetic resonance images, and solved an inverse physics problem with linear finite elements to 
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learn facial mechanical properties, i.e., heterogenous stiffness and prestrain, from the training data. 

Without using 3D finite elements for physics-based real-time facial animation driven by muscle 

deformation, a 2D shell element due to the thin structure of facial muscles was used by (Kim et al., 

2020) to avoid inefficient caused by 3D finite elements and simulate the movements and 

deformations of the facial system consisting of four layers of skin, subcutaneous layer, muscles, and 

skull. Considering the blending of the fine muscles and passive tissue, Dinev et al. (2020) reduced 

the number of parameters required to build personalized muscle module and used an augmented 

finite-element-like elastic potential with tetrahedral elements to achieve forward simulation of a face 

model. Wang and Zheng et al. (2020) combined finite element simulations to consider character’s 

physically based soft-tissue dynamics with linear blend skinning and pose-space deformation for 

geometric mesh animation. Since the lip plays a critical role in facial aesthetics, Kim et al. (2021) 

presented a new finite element incremental simulation method, which improves the prediction 

accuracy in the lip region with a realistic sliding effect. 

In comparison with mass-spring systems, the finite element method uses more accurate 

physical laws and mathematical models. It can easily increase the order of finite elements so that 

physics fields can be approximated very accurately, locally refine the mesh to get better 

approximations, and tightly couple multi-physics such as electromagnetic heating to get an accurate 

solution. Therefore, the finite element method is more powerful and accurate but slower than mass-

spring systems. 

Different from physics-based facial blendshapes using numerical methods which require an 

additional preprocess to convert polygon meshes into finite elements or mass-spring meshes, special 

knowledge and skills to implement and use them, and large computer memory and high 

computational costs to realize the simulations leading to low animation efficiency,  an analytical 

approach proposed in this thesis directly works on the vertices of polygon models and avoids the 

problems of numerical methods.  
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3. 𝑪𝟐  continuous blending of varying and constant 

surfaces with differential equation-based shape 

interpolation  

In this chapter, how to introduce partial differential equation-based shape interpolation to achieve 

𝐶2  continuous blending of varying and constant surfaces will be investigated. Here, “varying 

surfaces” also called “time-dependent surfaces” mean primary surfaces change their shapes with  

time and are time-dependent, and “constant surfaces” also called “time-independent surfaces” 

indicate that primary surfaces do not change their shapes with time and are time-independent. 

First, the mathematical model of a unified approach to blending of constant and varying 

parametric surfaces with C2 continuity will be proposed in Section 3.1. After that, three different 

approaches will be developed, including (1) the closed form solution-based approximate analytical 

approach to be investigated in Section 3.2; (2) the variable decomposition-based approximate 

analytical approach to be examined in Section 3.3; (3) the differential property-based approximate 

analytical approach which will be discussed in Section 3.4. Finally, concluding remarks and future 

work will be given in Section 3.5.  

3.1 Mathematical Model 

When two primary parametric surfaces are to be connected with 𝐶2 continuity, the blending surface 

must satisfy the constraints of the position functions and the first and second partial derivatives of 

the two primary parametric surfaces at the trimlines. If the two primary parametric surfaces change 

their shape with the time, the position functions and the first and second partial derivatives of the 

primary parametric surfaces at the trimlines are the functions of time variable 𝑡. Therefore, the 
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position function and the first and second partial derivatives for the first primary parametric surface 

at the trimline can be written as 𝑪1(𝑣, 𝑡), 𝑪2(𝑣, 𝑡) and 𝑪3(𝑣, 𝑡), and those for the second primary 

parametric surface can be written as 𝑪4(𝑣, 𝑡), 𝑪5(𝑣, 𝑡) and 𝑪6(𝑣, 𝑡). 

Assuming two varying parametric surfaces to be smoothly blended together are 𝑆1(𝑢, 𝑣, 𝑡) and 

𝑆2(𝑢, 𝑣, 𝑡), with 𝑆1(𝑢, 𝑣, 𝑡)  to be blended at the position 𝑢 =  𝑢1 and 𝑆2(𝑢, 𝑣, 𝑡) to be blended at the 

position 𝑢 =  𝑢2. 𝑆1 and  𝑆2 contain three components [𝑆1𝑥(𝑢, 𝑣, 𝑡),  𝑆1𝑦(𝑢, 𝑣, 𝑡), 𝑆1𝑧(𝑢, 𝑣, 𝑡)]𝑇 and 

[𝑆2𝑥(𝑢, 𝑣, 𝑡),  𝑆2𝑦(𝑢, 𝑣, 𝑡), 𝑆2𝑧(𝑢, 𝑣, 𝑡)]𝑇 respectively. The position function and the first and second 

partial derivatives of the varying parametric surface 𝑆1(𝑢, 𝑣, 𝑡)  with respect to the parametric 

variable 𝑢 at the position 𝑢 =  𝑢1 are  

𝑪𝟏(𝑣, 𝑡)  =  𝑺𝟏(𝑢1, 𝑣, 𝑡), 

𝑪𝟐(𝑣, 𝑡)  = 𝜕𝑺𝟏(𝑢1, 𝑣, 𝑡)/𝜕𝑢 

𝑪𝟑(𝑣, 𝑡)  =  𝜕2𝑺𝟏(𝑢1, 𝑣, 𝑡)/𝜕2𝑢 

where 𝑪𝟏(𝑣, 𝑡), 𝑪𝟐(𝑣, 𝑡), 𝑪𝟑(𝑣, 𝑡) contain three components below, respectively 

[𝐶1𝑥(𝑣, 𝑡),  𝐶1𝑦(𝑣, 𝑡), 𝐶1𝑧(𝑣, 𝑡)  ]
𝑇

 

[𝐶2𝑥(𝑣, 𝑡),  𝐶2𝑦(𝑣, 𝑡), 𝐶2𝑧(𝑣, 𝑡)  ]
𝑇

 

[𝐶3𝑥(𝑣, 𝑡),  𝐶3𝑦(𝑣, 𝑡), 𝐶3𝑧(𝑣, 𝑡)  ]
𝑇

 

And the position function and first and second derivatives of the varying parametric surface 

𝑆2(𝑢, 𝑣, 𝑡) at the position 𝑢 =  𝑢2 are  

𝑪𝟒(𝑣, 𝑡)  =  𝑺𝟐(𝑢2, 𝑣, 𝑡), 

𝑪𝟓(𝑣, 𝑡)  = 𝜕𝑺𝟐(𝑢2, 𝑣, 𝑡)/𝜕𝑢 

𝑪𝟔(𝑣, 𝑡)  =  𝜕2𝑺𝟐(𝑢2, 𝑣, 𝑡)/𝜕2𝑢 

where 𝑪𝟒(𝑣, 𝑡), 𝑪𝟓(𝑣, 𝑡), 𝑪𝟔(𝑣, 𝑡) also contains three components below, respectively 

[𝐶4𝑥(𝑣, 𝑡),  𝐶4𝑦(𝑣, 𝑡), 𝐶4𝑧(𝑣, 𝑡)  ]
𝑇

 

[𝐶5𝑥(𝑣, 𝑡),  𝐶5𝑦(𝑣, 𝑡), 𝐶5𝑧(𝑣, 𝑡)  ]
𝑇
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[𝐶6𝑥(𝑣, 𝑡),  𝐶6𝑦(𝑣, 𝑡), 𝐶6𝑧(𝑣, 𝑡)  ]
𝑇
 

If the blending surface 𝑆(𝑢, 𝑣, 𝑡) connects two varying parametric surfaces at the positions 

𝑢 =  𝑢1 of the first primary surface and 𝑢 =  𝑢2 of the second primary surface smoothly, it must 

satisfy the following blending boundary constraints, which require the blending surface to share the 

same boundary curves, the first partial derivatives, and the second partial derivatives with primary 

surfaces on the trimlines. 

𝑢 = 0         𝜕𝑛𝑺(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = 𝑪𝑛+1(𝑣, 𝑡) 

𝑢 = 1         𝜕𝑛𝑺(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = 𝑪𝑛+4(𝑣, 𝑡) 

(𝑛 = 0,1,2)                                                                     (1) 

where 𝑢 = 0 of the blending surface is the same as 𝑢 =  𝑢1 of the first primary surface 𝑆1(𝑢, 𝑣, 𝑡),  

𝑢 = 1 of the blending surface is the same as 𝑢 =  𝑢2  of the second primary surface 𝑆2(𝑢, 𝑣, 𝑡), 

 𝜕0𝑺(𝑢, 𝑣, 𝑡)/𝜕𝑢0 = 𝑺(𝑢, 𝑣, 𝑡) , 𝑺(𝑢, 𝑣, 𝑡)  has three components 𝑆𝑥(𝑢, 𝑣, 𝑡) ,  𝑆𝑦(𝑢, 𝑣, 𝑡)  and 

𝑆𝑧(𝑢, 𝑣, 𝑡) , and 𝑪𝒏(𝑣, 𝑡) (𝑛 = 1,2, … ,6)  also have three components 𝑪𝑥𝑛(𝑣, 𝑡) ,  𝑪𝑦𝑛(𝑣, 𝑡)  and 

𝑪𝑧𝑛(𝑣, 𝑡). 

For example, the two primary surfaces are to be smoothly connected together where the 

parametric representations for the first (top) primary surface are    

𝑥 = 𝑎𝑒𝑡 𝑠𝑖𝑛 2 𝜋𝑣              𝑦 = 𝑏𝑒−𝑡 𝑐𝑜𝑠 2 𝜋𝑣           𝑧 = ℎ1 + ℎ2𝑢2                             (2) 

and the parametric representations for the second (bottom) primary surface are    

𝑥 = 𝑐𝑒−𝑡 𝑠𝑖𝑛 2 𝜋𝑣           𝑦 = 𝑑𝑒𝑡 𝑐𝑜𝑠 2 𝜋𝑣                 𝑧 = −ℎ3𝑢3                        (3) 

where 𝑎, 𝑏, 𝑐, 𝑑, ℎ1,  ℎ2 and ℎ3 are known geometric parameters.  

Setting the geometric parameters in Eqs. (2) and (3) to be: 𝑎 = 1.6,  𝑏 = 1.0,  𝑐 = 0.8,  𝑑 =

0.6,  ℎ1 = 2.0,  ℎ2 = 3.0,  and ℎ3 = 5.0, the top primary surface between 𝑢 = 0.2 and 𝑢 = 0.65 

and the bottom primary surface between 𝑢 = 0.3 and 𝑢 = 0.6 at the time instants 𝑡 = 0, 𝑡 = 0.1, 

𝑡 = 0.2, and 𝑡 = 0.3 are depicted in Figure 1 where the top primary surfaces are obtained from Eq. 

(2) and the bottom primary surfaces are achieved from Eq. (3).    
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If  the trimline is take to be 𝑢 = 0.2 in Eq. (2) for the top primary surface and 𝑢 = 0.3 in Eq. 

(3) for the bottom primary surface, the boundary curves 𝑪1(𝑣, 𝑡) =

[𝑎𝑒𝑡 𝑠𝑖𝑛 2 𝜋𝑣 𝑏𝑒−𝑡 𝑐𝑜𝑠 2 𝜋𝑣 ℎ1 + 0.04ℎ2]𝑇  and 𝑪4(𝑣, 𝑡) =

[𝑐𝑒−𝑡 𝑠𝑖𝑛 2 𝜋𝑣 𝑑𝑒𝑡 𝑐𝑜𝑠 2 𝜋𝑣 −0.027ℎ3]𝑇 are obtained. With Eqs. (2) and (3), the first partial 

derivatives 𝜕𝑥 𝜕𝑢⁄ , 𝜕𝑦 𝜕𝑢⁄ , and 𝜕𝑧 𝜕𝑢⁄ , and the second partial derivatives 𝜕2𝑥 𝜕𝑢2⁄ , 𝜕𝑦2 𝜕𝑢2⁄ , and 

𝜕2𝑧 𝜕𝑢2⁄  can be derived. Setting 𝑢 = 0.2  for the partial derivatives from Eq. (2), 𝑪2(𝑣, 𝑡) =

[0 0 −0.4ℎ2]𝑇  and 𝑪3(𝑣, 𝑡) = [0 0 2ℎ2]𝑇  are obtained. Setting 𝑢 = 0.3  for the partial 

derivatives from Eq. (3), 𝑪5(𝑣, 𝑡) = [0 0 −0.27ℎ3]𝑇  and 𝑪6(𝑣, 𝑡) = [0 0 −1.8ℎ3]𝑇  are 

obtained. Substituting 𝑪1(𝑣, 𝑡) , 𝑪2(𝑣, 𝑡) , 𝑪3(𝑣, 𝑡) ,  𝑪4(𝑣, 𝑡) , 𝑪5(𝑣, 𝑡)  and 𝑪6(𝑣, 𝑡)  into (1), the 

boundary constraints (1) for this blending problem become 

𝑢 = 0       

𝑆𝑥 = 𝑎𝑒𝑡 𝑠𝑖𝑛 2 𝜋𝑣       𝑆𝑦 = 𝑏𝑒−𝑡 𝑐𝑜𝑠 2 𝜋𝑣   𝑆𝑧 = ℎ1 + 0.04ℎ2 

𝜕𝑆𝑥

𝜕𝑢
= 0                  

𝜕𝑆𝑦

𝜕𝑢
= 0                  

𝜕𝑆𝑧

𝜕𝑢
= −0.4ℎ2 

𝜕2𝑆𝑥

𝜕𝑢2
= 0               

𝜕2𝑆𝑦

𝜕𝑢2
= 0                

𝜕2𝑆𝑧

𝜕𝑢2
= 2ℎ2 

𝑢 = 1       

𝑆𝑥 = 𝑐𝑒−𝑡 𝑠𝑖𝑛 2 𝜋𝑣    𝑆𝑦 = 𝑑𝑒𝑡 𝑐𝑜𝑠 2 𝜋𝑣     𝑆𝑧 = −0.027ℎ3 

𝜕𝑆𝑥

𝜕𝑢
= 0                 

𝜕𝑆𝑦

𝜕𝑢
= 0                 

𝜕𝑆𝑧

𝜕𝑢
= −0.27ℎ3 

𝜕2𝑆𝑥

𝜕𝑢2 = 0              
𝜕2𝑆𝑦

𝜕𝑢2 = 0               
𝜕2𝑆𝑧

𝜕𝑢2 = −1.8ℎ3                                         (4) 

 

                 

𝑡 = 0                            𝑡 = 0.1   
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            𝑡 = 0.2                                 𝑡 = 0.3 

Figure 1: Primary (top and bottom) surfaces at t=0, t=0.1, t=0.2, and t=0.3. 

 

Achieving both effective shape control of blending surfaces and exact satisfaction of blending 

boundary constraints is a difficult task. A vector-valued partial differential equation is ideal in 

achieving such an aim since its solution can satisfy blending boundary constraints exactly and the 

shape control parameters involving the vector-valued partial differential equation (5) below have a 

great influence on the shape of the blending surface but have no effect on blending boundary 

constraints. Here, a vector-valued partial differential equation involving a vector-valued unknown 

function 𝑺(𝑢, 𝑣, 𝑡)  consists of three partial differential equations involving three unknown 

component functions 𝑆𝒙(𝑢, 𝑣, 𝑡) , 𝑆𝒚(𝑢, 𝑣, 𝑡)  and 𝑆𝒛(𝑢, 𝑣, 𝑡) , respectively. Since the coefficients 

involved in the vector-valued partial differential equation have strong influences on the shape of a 

blending surface, they are called shape control parameters.  

Unlike in computational sciences and engineering where physically accurate simulations are 

required, in computer graphics, physics-based simulations, not physically accurate simulations, are 

popular. Even in computer-aided design and other engineering applications, physics-based blending 

surfaces are preferable to purely geometric blending surfaces since blending surfaces are in very 

small regions between two primary surfaces to be connected, the movements and deformations of 

blending surfaces are subjected to the constraints at trimlines from primary surfaces, and physics-

based blending surfaces have a potential to give more reasonable shapes due to the consideration of 

physics.  
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Differential equations are used to describe the underlying physics in various fields of 

engineering and science. For example, fourth-order partial differential equations are used to describe 

bending deformations of thin elastic plates, sixth-order partial differential equations are used to 

characterize nonlinear wave dynamics etc., and sixth-order ordinary differential equations are used 

in astrophysics. Therefore, partial differential equation-based blending surfaces can be regarded as 

physics-based. 

The solution of a vector-valued sixth order partial differential equation contains 6 unknown 

constants. They can be used to satisfy the 6 constraints of the position functions and the first and 

second partial derivatives in blending boundary constraints (1). Therefore, the following vector-

valued sixth order partial differential equation is chosen for 𝐶2 continuous surface blending. In the 

equation, 𝛾, 𝜂, 𝜆, and 𝜌 are called shape control parameters since they have a big influence on the 

shapes of blending surfaces.  

(𝛾
𝜕6

𝜕𝑢6 + 𝜂
𝜕6

𝜕𝑢4𝜕𝑣2 + 𝜆
𝜕6

𝜕𝑢2𝜕𝑣4 + 𝜌
𝜕6

𝜕𝑣6) 𝑺(𝑢, 𝑣, 𝑡) = 0                           (5) 

Putting Eq. (5) and Eq. (1) together, the mathematical model of 𝐶2  continuous surface 

blending of time-dependent varying parametric surfaces is obtained. When the time variable 𝑡 in 

Eqs. (1) and (5) drop, the mathematical model of 𝐶2  continuous surface blending of time-

independent constant parametric surfaces is obtained.  

3.2 Closed form solution-based approximate analytical 

approach 

One of the advantages for partial differential equation (PDE)-based surface blending is both 

effective shape control and exact satisfaction of blending boundary constraints. However, it is not 

easy to solve partial differential Eq. (5) subjected to blending boundary constraints (1). In this 

section, Eq. (5) subjected to the blending boundary constraints (1) is solved with a closed form 
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solution and a closed form solution-based approximate analytical approach is developed to achieve 

surface blending with 𝐶2  continuity. In what follows, we demonstrate how to use the unified 

mathematical model consisting of the partial differential equation (5) subjected to the blending 

boundary constraints (1) to solve time-independent surface blending problems. The obtained closed 

form solution-based approximate analytical approach is also applicable to time-dependent surface 

blending. This can be achieved by simply replacing 𝑓𝑠𝑘(𝑣)(𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠) in this 

section with 𝑓𝑠𝑘(𝑣, 𝑡) (𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠). 

After the time variable 𝑡  in the partial different equation (5) and the blending boundary 

constraints (1) is dropped, and the partial differential equation (5) is converted into the following 

partial differential equation (7), and the blending boundary constraints (1) are changed into the 

blending boundary constraints (6) below. 

After the conversion, elementary functions in the blending boundary constraints are identified. 

Taking advantage of the elementary functions identified from blending boundary constraints, the 

proposed approach first changes blending boundary constraints into a linear combination of the 

identified elementary functions. Accordingly, the functions for blending surfaces are constructed 

from these elementary functions, which transform sixth-order partial differential equations for 𝐶2 

surface blending into some sixth-order ordinary differential equations. The analytical solutions of 

these sixth-order ordinary differential equations subjected to corresponding blending boundary 

constraints are investigated. 

With the developed analytical PDE-based method, time-independent 𝐶2 continuous surface 

blending problems are solved. These surface blending examples indicate that the developed method 

is simple. It can be used to control the shape of blending surfaces and at the same time exactly satisfy 

𝐶2 continuous blending boundary constraints. 

In the following subsections, the conversion of the mathematical model for 𝐶2 continuous 

surface blending of time-independent constant parametric surfaces is first investigated. Then, a 
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closed form solution of the converted mathematical model. And finally, some examples are 

presented to demonstrate the applications of the developed closed form solution.  

3.2.1 Conversion of mathematical model 

Dropping the time variable t in Eq. (1), the blending boundary constraints for 𝐶2 continuity surface 

blending of time-independent constant parametric surfaces can be formulated as 

𝑢 = 0      ∂𝑛𝑠(𝑢, 𝑣) 𝜕𝑢𝑛⁄ = 𝐵𝑠𝑛+1(𝑣) 

𝑢 = 1      ∂𝑛𝑠(𝑢, 𝑣) 𝜕𝑢𝑛⁄ = 𝐵𝑠𝑛+4(𝑣) 

(𝑠 = 𝑥, 𝑦, 𝑧;  𝑛 = 0, 1, 2)                                                                (6) 

where 𝑢  and 𝑣  are  two parametric variables, 𝑠(𝑢, 𝑣)  stands for the three components 𝑥(𝑢, 𝑣) , 

𝑦(𝑢, 𝑣)  and 𝑧(𝑢, 𝑣)  of a blending surface, 𝐵𝑠1(𝑣)  and 𝐵𝑠4(𝑣)  are the position components of 

boundary curves at the boundaries 𝑢 = 0 and 𝑢 = 1, respectively, 𝐵𝑠2(𝑣) and 𝐵𝑠5(𝑣) are the first 

partial derivatives and 𝐵𝑠3(𝑣) and 𝐵𝑠6(𝑣) are the second partial derivatives of the blending surface 

𝑺(𝑢, 𝑣) = [𝑥(𝑢, 𝑣) 𝑦(𝑢, 𝑣) 𝑧(𝑢, 𝑣)]𝑇 with respect to the parametric variable 𝑢 at the boundary 

curves, and 

𝜕0𝑠(𝑢, 𝑣) 𝜕𝑢0⁄ = 𝑠(𝑢, 𝑣) 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                                       (6a) 

By dropping the time variable t in the vector-valued partial differential equation (5), the vector-

valued partial differential equation involving the time variable t is converted into the following 

partial differential equations without the time variable t. 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑠(𝑢, 𝑣) = 0 

  (𝑠 = 𝑥, 𝑦, 𝑧)                                                                                               (7) 
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The converted mathematical model of 𝐶2 continuous blending between two time-independent 

constant parametric surfaces is obtained by putting Eq. (6) and Eq. (7) together. Its closed form 

solutions will be developed below. 

The six equations for each component 𝑠 = 𝑥, 𝑦, 𝑧  in the blending boundary constraints (6) can 

be decomposed into constants 𝑑𝑠0,𝑛  (𝑠 = 𝑥, 𝑦, 𝑧;  𝑛 = 1,2, ⋯ ,6) and some elementary functions. 

These elementary functions can be divided into two groups: the first group has the differential 

property whose second derivatives are the same as the elementary functions themselves multiplied 

by a coefficient, and the second group does not have.  

If all elementary functions in boundary constraints belong to the first group, the approach 

developed below can be used to obtain closed form solution of Eq. (7) subject to the boundary 

constraints (6) and provides the best tool to tackle such surface blending problems. If some 

elementary functions in boundary constraints belong to the second group, these elementary functions 

must be first transformed into Fourier series functions with each term having the differential property, 

i. e., their second derivatives are the same as themselves multiplied by a coefficient. Then, the 

approach developed below can be used to obtain closed form solution of Eq. (7) subjected to the 

constraints of these elementary functions.  

After transforming the second group of elementary functions into Fourier series functions, all 

the functions 𝑓𝑠𝑘(𝑣)(𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠) in the blending boundary constraints (6) have 

the differential property 

𝜕2𝑓𝑠𝑘(𝑣)

𝜕𝑣2
= 𝜉𝑠𝑘𝑓𝑠𝑘(𝑣)   

(𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠)                                           (8) 

where 𝜉𝑠𝑘  is the coefficient obtained from the differentiation operation (8). For example, when 

𝑓𝑠𝑘(𝑣) = 𝑠𝑖𝑛(2𝜋𝑣), 
𝜕2𝑓𝑠𝑘(𝑣)

𝜕𝑣2 = −4𝜋2𝑠𝑖𝑛(2𝜋𝑣). Therefore, 𝜉𝑠𝑘 = −4𝜋2. 
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Introducing the functions 𝑓𝑠𝑘(𝑣)(𝑠 = 𝑥, 𝑦, 𝑧;  𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠) into the blending boundary 

constraints and considering the constants 𝑑𝑠0,𝑛 (𝑠 = 𝑥, 𝑦, 𝑧;  𝑛 = 1, 2, ⋯ ,6), Eq. (6) can be changed 

into 

𝑢 = 0      ∂𝑛𝑠(𝑢, 𝑣) 𝜕𝑢𝑛⁄ = 𝑑𝑠0,𝑛+1 + ∑ 𝑑𝑠𝑘,𝑛+1

𝐾𝑠

𝑘=1

𝑓𝑠𝑘(𝑣) 

𝑢 = 1      ∂𝑛𝑠(𝑢, 𝑣) 𝜕𝑢𝑛⁄ = 𝑑𝑠0,𝑛+4 + ∑ 𝑑𝑠𝑘,𝑛+4

𝐾𝑠

𝑘=1

𝑓𝑠𝑘(𝑣) 

(𝑠 = 𝑥, 𝑦, 𝑧; 𝑛 = 0,1,2)                                                        (9) 

Since the blending surface should satisfy the blending boundary constraints at the boundaries 

𝑢 = 0 and 𝑢 = 1, the blending surface functions should: (1) involve the functions 𝑓𝑠𝑘(𝑣), and (2) 

have the functions of the parametric variable 𝑢 only to satisfy the constraints of the constants 𝑑𝑠0,𝑛 

(𝑠 = 𝑥, 𝑦, 𝑧;  𝑛 = 1, 2, ⋯ ,6) on the boundaries 𝑢 = 0 and 𝑢 = 1. Therefore, the blending surface 

functions can be constructed as     

𝑠(𝑢, 𝑣) = 𝐺𝑠0(𝑢) + ∑ 𝐺𝑠𝑘

𝐾𝑠

𝑘=1

(𝑢)𝑓𝑠𝑘(𝑣) 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                                            (10) 

where 𝐺𝑠0(𝑢) (𝑘 = 0, 1, 2, … , 𝐾𝑠) are unknown functions to be determined below. 

Substituting Eq. (10) into Eq. (7), the partial differential equations given in Eq. (7) are 

transformed into the following ordinary differential equations 

𝛾𝐺𝑠0
(6)

(𝑢) + ∑[𝛾𝐺𝑠𝑘
(6)

(𝑢)𝑓𝑠𝑘(𝑣) + 𝜂𝐺𝑠𝑘
(4)

(𝑢)𝑓𝑠𝑘
(2)

(𝑣)

𝐾𝑠

𝑘=1

 

+𝜆𝐺𝑠𝑘
(2)

(𝑢)𝑓𝑠𝑘
(4)

(𝑣) + 𝜌𝐺𝑠𝑘(𝑢)𝑓𝑠𝑘
(6)

(𝑣)] = 0 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                                                             (11) 

where 𝑓𝑠𝑘
(𝑚)(𝑣) =

𝑑𝑚𝑓𝑠𝑘(𝑣)

𝑑𝑣𝑚
 (𝑚 = 2, 4, 6). 
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Considering the differential property (8), Eq. (11) can be changed into the following ordinary 

differential equations (ODEs) 

𝐺𝑠0
(6)

(𝑢) = 0 

𝑎𝑠0𝐺𝑠𝑘
(6)

(𝑢) + 𝑎𝑠1𝑘𝐺𝑠𝑘
(4)

(𝑢) + 𝑎𝑠2𝑘𝐺𝑠𝑘
(2)

(𝑢) + 𝑎𝑠3𝑘𝐺𝑠𝑘(𝑢) = 0 

(𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠)

                                                                      

(12) 

where 

𝑎𝑠0 = 𝛾                     𝑎𝑠1𝑘 = 𝜂𝜉𝑠𝑘  

𝑎𝑠2𝑘 = 𝜆𝜉𝑠𝑘
2               𝑎𝑠3𝑘 = 𝜌𝜉𝑠𝑘

3  

(𝑠 = 𝑥, 𝑦, 𝑧;  𝑘 = 1, 2, 3, ⋯ , 𝐾𝑠)

                                         

(13) 

Substituting Eq. (10) into the blending boundary constraints (9), the following boundary 

constraints are obtained 

𝑢 = 0         ∂𝑛𝐺𝑠𝑘(𝑢) 𝜕𝑢𝑛⁄ = 𝑑𝑠𝑘,𝑛+1 

𝑢 = 1         ∂𝑛𝐺𝑠𝑘(𝑢) 𝜕𝑢𝑛⁄ = 𝑑𝑠𝑘,𝑛+4 

(𝑠 = 𝑥, 𝑦, 𝑧;  𝑘 = 0, 1, 2, 3, ⋯ , 𝐾𝑠;   𝑛 = 0, 1, 2)                          (14) 

where 

𝜕0𝐺𝑠𝑘(𝑢) 𝜕𝑢0⁄ = 𝐺𝑠𝑘(𝑢) 

(𝑠 = 𝑥, 𝑦, 𝑧;  𝑘 = 0, 1, 2, 3, ⋯ , 𝐾𝑠) 

After the above treatment, the mathematical model consisting of Eqs. (7) and (6) is changed 

into the one consisting of Eqs. (12) and (14), and the original problem of solving the partial 

differential equations given in Eq. (7) subjected to the boundary constraints (6) is transformed into 

solving the ordinary differential equations given in Eq. (12) subject to the boundary constraints (14). 

In what follows, an exact analytical approach will be developed to obtain the closed form solutions 

of Eq. (12) subjected to Eq. (14).   
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3.2.2 Closed form solution of mathematical model  

Integrating the first of Eq. (12) six times with respect to the parametric variable 𝑢, we obtain the 

unknown function 𝐺𝑠0(𝑢), which has the form below:  

𝐺𝑠0(𝑢) = ∑ 𝐶𝑠𝑗+1𝑢𝑗

5

𝑗=0

 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                   (15) 

where 𝐶𝑠𝑗+1 (𝑠 = 𝑥, 𝑦, 𝑧; 𝑘 = 0, 1, 2, … , 5) are unknown constants. 

Substituting Eq. (15) into (14) and taking 𝑘 = 0 in (14), the following equation is obtained. 

𝐶𝑠1 = 𝑑𝑠0,1                       

𝐶𝑠2 = 𝑑𝑠0,2                       

2𝐶𝑠3 = 𝑑𝑠0,3 

∑ 𝐶𝑠𝑗+1 =

5

𝑗=0

𝑑𝑠0,4    

∑ 𝑗𝐶𝑠𝑗+1 =

5

𝑗=1

𝑑𝑠0,5    

∑ 𝑗(𝑗 − 1)𝐶𝑠𝑗+1 =

5

𝑗=2

𝑑𝑠0,6 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                                     (16) 

Solving the six linear algebra equations in Eq. (16), the six unknown constants 𝐶𝑠𝑗  (𝑗 =

1, 2, ⋯ , 6) are obtained. Substituting them back into Eq. (15), the exact analytical solution for the 

first ODE of Eq. (12) is found to be 

𝐺𝑠0(𝑢) = ∑ 𝑔𝑗(𝑢)𝑑𝑠0,𝑗

6

𝑗=1

 

(𝑠 = 𝑥, 𝑦, 𝑧)                                                             (17) 
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where 

𝑔1(𝑢) = 1 − 10𝑢3 + 15𝑢4 − 6𝑢5 

𝑔2(𝑢) = (1 − 6𝑢2 + 8𝑢3 − 3𝑢4)𝑢 

𝑔3(𝑢) = (0.5 − 1.5𝑢 + 1.5𝑢2 − 0.5𝑢3)𝑢2 

𝑔4(𝑢) = (10 − 15𝑢 + 6𝑢2)𝑢3 

𝑔5(𝑢) = (−4 + 7𝑢 − 3𝑢2)𝑢3 

𝑔6(𝑢) = (0.5 − 𝑢 + 0.5𝑢2)𝑢3                                            (18) 

  A popular method in solving linear ordinary differential equations is to transform them into 

characteristic algebraic equations. This can be achieved by taking the unknown function involved in 

a linear ordinary differential equation to be an exponential function with the independent variable 

multiplied by an undetermined coefficient. With this method, the unknown function 𝐺𝑠𝑘(𝑢) 

involved in the second of Eq. (12) can be taken to be 

𝐺𝑠𝑘(𝑢) = 𝑒𝑟𝑠𝑘𝑢                                               (19) 

For clarity, 𝑎0 , 𝑎1 , 𝑎2 , and 𝑎3  are used to indicate 𝑎𝑠0 , 𝑎𝑠1𝑘 , 𝑎𝑠2𝑘 , and 𝑎𝑠3𝑘  in Eq. (12), 

respectively. Then, Eq. (19) is substituted into the second of Eq. (12) to obtain the following 

nonlinear algebra equation  

𝑟𝑠𝑘
6 + 𝑎4𝑟𝑠𝑘

4 + 𝑎5𝑟𝑠𝑘
2 + 𝑎6 = 0                              (20) 

where 

𝑎𝑗+3 = 𝑎𝑗 𝑎0⁄  

(𝑗 = 1,2,3)                                                              (21) 

Eq. (20) can be changed into 

(𝑟𝑠𝑘
4 + 𝑏1𝑟𝑠𝑘

2 + 𝑏2)(𝑟𝑠𝑘
2 + 𝑏3) = 0                                     (22) 

Comparing Eq. (22) with Eq. (20), the following equations are obtained 
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𝑏1 + 𝑏3 = 𝑎4 

𝑏2 + 𝑏1𝑏3 = 𝑎5 

    𝑏2𝑏3 = 𝑎6                                                               (23) 

The three algebra equations given in Eq. (23) can be changed into one cubic equation below 

𝑏3
3 − 𝑎4𝑏3

2 + 𝑎5𝑏3 − 𝑎6 = 0                                          (24) 

Some existing research studies (Zhao et al., 2011; Okereke et al., 2014) have discussed how 

to solve a cubic equation. Here the method given in the link2 is used to solve a cubic equation. With 

the root formulas given in the link, the three roots below of the cubic equation (24) are obtained 

below. 

𝑏3,1 = 𝑎4 3⁄ + (𝑃 + 𝑇) 

𝑏3,2 = 𝑎4 3⁄ − [(𝑃 + 𝑇) − 𝑖√3(𝑃 − 𝑇)] 2⁄  

𝑏3,3 = 𝑎4 3 −⁄ [(𝑃 + 𝑇) + 𝑖√3(𝑃 − 𝑇)] 2⁄                       (25) 

where the second subscript 1, 2, and 3 indicates the first, second and third roots, respectively, i is an 

imaginary number, and  

𝑃 = √𝑅 + √𝐷
3

             𝑇 = √𝑅 − √𝐷
3

 

𝐷 = 𝑄3 + 𝑅2               Q = (3𝑎5 − 𝑎4
2) 9⁄  

𝑅 = (−9𝑎4𝑎5 + 27𝑎6 + 2𝑎4
3) 54⁄                                            (26) 

Substituting Eq. (25) back into Eq. (23), 𝑏1,𝑗  and 𝑏2,𝑗  (𝑗 = 1, 2, 3) can be obtained, which 

correspond to 𝑏3,𝑗 (𝑗 = 1, 2, 3), respectively. Here 𝑏3,1 is taken as an example to demonstrate how 

to determine 𝑏1,1  and 𝑏2,1 , and the corresponding solution to the second ODE of Eq. (12). 

Introducing the first of Eq. (25) into (23) and solving for 𝑏1 and 𝑏2, and 𝑏2,1 are obtain below.  

 
2 https://mathworld.wolfram.com/CubicFormula.html 

https://mathworld.wolfram.com/CubicFormula.html
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𝑏1,1 = 2𝑎4 3⁄ − (𝑃 + 𝑇)                                 

                                         𝑏2,1 = 𝑎5 − [2𝑎4
2 + 3𝑎4(𝑃 + 𝑇) − 9(𝑃 + 𝑇)2] 9⁄                    (27) 

Once again for clarity, 𝑏1, 𝑏2 and 𝑏3 are used to indicate 𝑏1,1, 𝑏2,1 and 𝑏3,1 in the following 

mathematical operations.  

From Eq. (22), the following two nonlinear algebra equations are obtained. 

𝑟𝑠𝑘
2 + 𝑏3 = 0 

𝑟𝑠𝑘
4 + 𝑏1𝑟𝑠𝑘

2 + 𝑏2 = 0                                   (28) 

Substituting 𝑏3 = 𝑏3,1 into the first of Eq. (28), the following two roots (𝑟𝑠𝑘)1,2 are obtained.  

(𝑟𝑠𝑘)1,2 = ±𝑞0         for  𝑏3 < 0 

(𝑟𝑠𝑘)1,2 = ±𝑖𝑞0        for  𝑏3 > 0 

𝑞0 = √|𝑏3|                                                                      (29) 

Since 𝑓𝑠𝑘(𝑣) has the differential property (8), 𝑎3 ≠ 0  according to Eq. (8). From Eq. (21), 

𝑎6 ≠ 0. Therefore, 𝑏3 ≠ 0 according to Eq. (23).  

Substituting 𝑏1 = 𝑏1,1  and 𝑏2 = 𝑏2,1  into the second of Eq. (28) and solving for 𝑟𝑠𝑘
2 , the 

following result is obtained. 

(𝑟𝑠𝑘
2 )1,2 = (−𝑏1 ± √𝑏1

2 − 4𝑏2) 2⁄                               (30) 

According to three different cases below, the four roots can be obtained from Eq. (30). 

Case 1: 𝑏1
2 = 4𝑏2. For this case, (𝑟𝑠𝑘

2 )1,2 = −𝑏1 2⁄  and there are three different situations, i. 

e., 𝑏1 < 0, 𝑏1 = 0, and 𝑏1 > 0. According to 𝑏1
2 = 4𝑏2  𝑏1 = 0 will lead to 𝑏2 = 0. According to 

Eq. (23), 𝑏1 = 0 and 𝑏2 = 0 will lead to 𝑎5 = 𝑎6 = 0. Therefore, 𝑏1 cannot be zero. The roots for 

the remaining two situations 𝑏1 < 0 and 𝑏1 > 0 can be summarized as  

(𝑟𝑠𝑘)3,4,5,6 = ±𝑞1       for       𝑏1 < 0 

(𝑟𝑠𝑘)3,4,5,6 = ±𝑖𝑞1     for        𝑏1 > 0 

𝑞1 = √|𝑏1| 2⁄                                                                           (31) 
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From the two roots in Eq. (29) and the four roots in Eq. (31), the four different solutions of the 

second ordinary differential equation of Eq. (12) are indicated below. 

1) For 𝑏3 < 0 , 𝑏1
2 = 4𝑏2 , and 𝑏1 < 0 ,   (𝑟𝑠𝑘)1,2 = ±𝑞0  according to Eq. (29) and 

(𝑟𝑠𝑘)3,4,5,6 = ±𝑞1 according to Eq. (31).  The solution of the second ODE of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘𝑢) 

𝑒𝑞1𝑢 + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘𝑢)𝑒−𝑞1𝑢                                                              (32) 

                𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞1𝐶𝑠3𝑘𝑒𝑞1𝑢 + 𝐶𝑠4𝑘(1 +

                        𝑞1𝑢)𝑒𝑞1𝑢−𝑞1𝐶𝑠5𝑘𝑒−𝑞1𝑢 + 𝐶𝑠6𝑘(1 − 𝑞1𝑢)𝑒−𝑞1𝑢                                          (32a)   

      𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞1
2𝐶𝑠3𝑘𝑒𝑞1𝑢 + 𝐶𝑠4𝑘𝑞1(2 + 𝑞1𝑢)𝑒𝑞1𝑢 +

                      𝑞1
2𝐶𝑠5𝑘𝑒−𝑞1𝑢 − 𝐶𝑠6𝑘𝑞1(2 − 𝑞1𝑢)𝑒−𝑞1𝑢                                                                  (32b) 

Substituting Eqs. (32), (32a), and (32b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝑞1𝐶𝑠3𝑘 + 𝐶𝑠4𝑘−𝑞1𝐶𝑠5𝑘 + 𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

                    𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 + 𝑞1
2𝐶𝑠3𝑘 + 2𝐶𝑠4𝑘𝑞1+𝑞1

2𝐶𝑠5𝑘 − 2𝑞1𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

                   𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘)𝑒𝑞1 + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘)𝑒−𝑞1 = 𝑑𝑠𝑘,4  

       𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞1𝐶𝑠3𝑘𝑒𝑞1 + 𝐶𝑠4𝑘(1 + 𝑞1)𝑒𝑞1−𝑞1𝐶𝑠5𝑘𝑒−𝑞1 + 𝐶𝑠6𝑘(1 −

                     𝑞1)𝑒−𝑞1 = 𝑑𝑠𝑘,5 

𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞1
2𝐶𝑠3𝑘𝑒𝑞1 + 𝐶𝑠4𝑘𝑞1(2 + 𝑞1)𝑒𝑞1 + 𝑞1

2𝐶𝑠5𝑘𝑒−𝑞1 − 𝐶𝑠6𝑘𝑞1(2 −

                    𝑞1)𝑒−𝑞1 = 𝑑𝑠𝑘,6                                                                                        (32c) 

Solving Eq. (32c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (32), 𝐺𝑠𝑘(𝑢) is obtained. 

2) For 𝑏3 < 0 , 𝑏1
2 = 4𝑏2 , and 𝑏1 > 0 , (𝑟𝑠𝑘)1,2 = ±𝑞0  according to Eq. (29) and 

(𝑟𝑠𝑘)3,4,5,6 = ±𝑖𝑞1 according to Eq. (31).  The solution of the second ODE of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘𝑢) 
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𝑐𝑜𝑠( 𝑞1𝑢) + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘𝑢) 𝑠𝑖𝑛( 𝑞1𝑢)                                       (33) 

     𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 − 𝑞1𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞1𝑢) + 𝐶𝑠4𝑘[𝑐𝑜𝑠( 𝑞1𝑢) −

              𝑞1𝑢 𝑠𝑖𝑛( 𝑞1𝑢)] + 𝑞1𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞1𝑢) + 𝐶𝑠6𝑘 [𝑠𝑖𝑛( 𝑞1𝑢) + 𝑞1𝑢 𝑐𝑜𝑠( 𝑞1𝑢)]              (33a)       

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 − 𝑞1
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞1𝑢) − 𝐶𝑠4𝑘[2𝑞1 𝑠𝑖𝑛( 𝑞1𝑢) +

             𝑞1
2𝑢 𝑐𝑜𝑠( 𝑞1𝑢)] − 𝑞1

2𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞1𝑢) + 𝐶𝑠6𝑘[2 𝑞1 𝑐𝑜𝑠( 𝑞1𝑢 − 𝑞1
2𝑢 𝑠𝑖𝑛( 𝑞1𝑢)]         (33b) 

Substituting Eqs. (33), (33a), and (33b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝐶𝑠4𝑘+𝑞1𝐶𝑠5𝑘 = 𝑑𝑠𝑘,2 

                                      𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 − 𝑞1
2𝐶𝑠3𝑘 + 2𝑞1𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

                   𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘) 𝑐𝑜𝑠( 𝑞1) + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘) 𝑠𝑖𝑛( 𝑞1) = 𝑑𝑠𝑘,4

 𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 − 𝑞1𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞1) + 𝐶𝑠4𝑘[𝑐𝑜𝑠( 𝑞1) − 𝑞1 𝑠𝑖𝑛( 𝑞1)] +

                       𝑞1𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞1) + 𝐶𝑠6𝑘 [𝑠𝑖𝑛( 𝑞1) + 𝑞1 𝑐𝑜𝑠( 𝑞1)] = 𝑑𝑠𝑘,5 

𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 − 𝑞1
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞1) − 𝐶𝑠4𝑘[2𝑞1 𝑠𝑖𝑛( 𝑞1) + 𝑞1

2 𝑐𝑜𝑠( 𝑞1)] −

                     𝑞1
2𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞1) + 𝐶𝑠6𝑘[2𝑞1 𝑐𝑜𝑠( 𝑞1) − 𝑞1

2 𝑠𝑖𝑛( 𝑞1)] = 𝑑𝑠𝑘,6                             (33c)                                                                        

Solving Eq. (33c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (33), 𝐺𝑠𝑘(𝑢) is obtained. 

3)   For 𝑏3 > 0 , 𝑏1
2 = 4𝑏2 , and 𝑏1 < 0 , (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0  according to Eq. (29) and 

(𝑟𝑠𝑘)3,4,5,6 = ±𝑞1 according to Eq. (31).  The solution of the second ODE of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘𝑢) 

𝑒𝑞1𝑢 + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘𝑢)𝑒−𝑞1𝑢                                                                      (34) 

         𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝑞1𝐶𝑠3𝑘𝑒𝑞1𝑢 + 𝐶𝑠4𝑘(1 +

                     𝑞1𝑢)𝑒𝑞1𝑢−𝑞1𝐶𝑠5𝑘𝑒−𝑞1𝑢 + 𝐶𝑠6𝑘(1 − 𝑞1𝑢)𝑒−𝑞1𝑢                                               (34a) 

          𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 cos(𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞1
2𝐶𝑠3𝑘𝑒𝑞1𝑢 + 𝐶𝑠4𝑘𝑞1(2 +

                     𝑞1𝑢)𝑒𝑞1𝑢+𝑞1
2𝐶𝑠5𝑘𝑒−𝑞1𝑢 − 𝐶𝑠6𝑘𝑞1(2 − 𝑞1𝑢)𝑒−𝑞1𝑢                                           (34b)  
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Substituting Eqs. (34), (34a), and (34b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠2𝑘 + 𝑞1𝐶𝑠3𝑘 + 𝐶𝑠4𝑘−𝑞1𝐶𝑠5𝑘 + 𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

                                      −𝑞0
2𝐶𝑠1𝑘 + 𝑞1

2𝐶𝑠3𝑘 + 2𝑞1𝐶𝑠4𝑘 + 𝑞1
2𝐶𝑠5𝑘 − 2𝑞1𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

                   𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘)𝑒𝑞1 + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘)𝑒−𝑞1 = 𝑑𝑠𝑘,4 

 −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) + 𝑞1𝐶𝑠3𝑘𝑒𝑞1 + 𝐶𝑠4𝑘(1 +

                     𝑞1)𝑒𝑞1−𝑞1𝐶𝑠5𝑘𝑒−𝑞1 + 𝐶𝑠6𝑘(1 − 𝑞1)𝑒−𝑞1 = 𝑑𝑠𝑘,5 

         −𝑞0
2𝐶𝑠1𝑘 cos(𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞1
2𝐶𝑠3𝑘𝑒𝑞1 + 𝐶𝑠4𝑘𝑞1(2 +

                    𝑞1)𝑒𝑞1+𝑞1
2𝐶𝑠5𝑘𝑒−𝑞1 − 𝐶𝑠6𝑘𝑞1(2 − 𝑞1)𝑒−𝑞1 = 𝑑𝑠𝑘,6                                        (34c)                                                                        

Solving Eq. (34c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (34), 𝐺𝑠𝑘(𝑢) isobtained.                                    

4)   For 𝑏3 > 0 , 𝑏1
2 = 4𝑏2 , and 𝑏1 > 0 , (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0  according to Eq. (29) and 

(𝑟𝑠𝑘)3,4,5,6 = ±𝑖𝑞1 according to Eq. (31).  The solution of the second ODE of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘𝑢) 

                             𝑐𝑜𝑠( 𝑞1𝑢) + (𝐶𝑠5𝑘 + 𝐶𝑠6𝑘𝑢) 𝑠𝑖𝑛( 𝑞1𝑢)                                                               (35) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞1𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞1𝑢) + 𝐶𝑠4𝑘 

[𝑐𝑜𝑠( 𝑞1𝑢) − 𝑞1𝑢 𝑠𝑖𝑛( 𝑞1𝑢)]+𝑞1𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞1𝑢) + 𝐶𝑠6𝑘[𝑠𝑖𝑛( 𝑞1𝑢) +

                      𝑞1𝑢 𝑐𝑜𝑠( 𝑞1𝑢)]      (35a)      

    𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) − 𝑞1
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞1𝑢) −

             𝐶𝑠4𝑘𝑞1[2 𝑠𝑖𝑛( 𝑞1𝑢) + 𝑞1𝑢 𝑐𝑜𝑠( 𝑞1𝑢)]−𝑞1
2𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞1𝑢) + 𝐶𝑠6𝑘𝑞1[2𝑐𝑜𝑠( 𝑞1𝑢) 

−𝑞1𝑢 𝑠𝑖𝑛( 𝑞1𝑢)]                        (35b) 

Substituting Eqs. (35), (35a), and (35b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 = 𝑑𝑠𝑘,1 



61 

 

𝑞0𝐶𝑠2𝑘 + 𝐶𝑠4𝑘+𝑞1𝐶𝑠5𝑘 = 𝑑𝑠𝑘,2 

                                              −𝑞0
2𝐶𝑠1𝑘 − 𝑞1

2𝐶𝑠3𝑘 + 2𝐶𝑠6𝑘𝑞1 = 𝑑𝑠𝑘,3 

                   𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + (𝐶𝑠3𝑘 + 𝐶𝑠4𝑘) 𝑐𝑜𝑠( 𝑞1) + (𝐶𝑠5𝑘 +

                                  𝐶𝑠6𝑘) 𝑠𝑖𝑛( 𝑞1) = 𝑑𝑠𝑘,4 

           −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞1𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞1) + 𝐶𝑠4𝑘[𝑐𝑜𝑠( 𝑞1) −

                𝑞1 𝑠𝑖𝑛( 𝑞1)]+𝑞1𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞1) + 𝐶𝑠6𝑘[𝑠𝑖𝑛( 𝑞1) + 𝑞1 𝑐𝑜𝑠( 𝑞1)] = 𝑑𝑠𝑘,5   

  −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) − 𝑞1
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞1) − 𝐶𝑠4𝑘𝑞1[2 𝑠𝑖𝑛( 𝑞1) +

            𝑞1 𝑐𝑜𝑠( 𝑞1)]−𝑞1
2𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞1) + 𝐶𝑠6𝑘𝑞1[2 𝑐𝑜𝑠( 𝑞1) − 𝑞1 𝑠𝑖𝑛( 𝑞1)] = 𝑑𝑠𝑘,6             (35c)                                                                                                      

Solving Eq. (35c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (35), 𝐺𝑠𝑘(𝑢) is obtained.         

Case 2: 𝑏1
2 > 4𝑏2. For this case, there are six different situations, i. e.,  −𝑏1 ± √𝑏1

2 − 4𝑏2 <

0, −𝑏1 ± √𝑏1
2 − 4𝑏2 = 0, and −𝑏1 ± √𝑏1

2 − 4𝑏2 > 0. It is obvious that −𝑏1 ± √𝑏1
2 − 4𝑏2 cannot 

be zero since −𝑏1 ± √𝑏1
2 − 4𝑏2 = 0  will lead to 𝑏2 = 0

 
and 𝑎6 = 0

 
according to Eq. (23). 

Therefore, only −𝑏1 ± √𝑏1
2 − 4𝑏2 < 0 and −𝑏1 ± √𝑏1

2 − 4𝑏2 > 0 are considered.  

The roots of Eq. (30) for the remaining four situations −𝑏1 ± √𝑏1
2 − 4𝑏2 < 0 and −𝑏1 ±

√𝑏1
2 − 4𝑏2 > 0 can be summarized as 

For   𝑏1 < −√𝑏1
2 − 4𝑏2,      (𝑟𝑠𝑘)3,4 = ±𝑞2      (𝑟𝑠𝑘)5,6 = ±𝑞3    

For   − √𝑏1
2 − 4𝑏2 <  𝑏1 < √𝑏1

2 − 4𝑏2,                  (𝑟𝑠𝑘)3,4 = ±𝑞2        (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3   

For   𝑏1 > √𝑏1
2 − 4𝑏2,      (𝑟𝑠𝑘)3,4 = ±𝑖𝑞2      (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3                    (36) 

where 

𝑞2 = √|−𝑏1 + √𝑏1
2 − 4𝑏2| 2⁄  
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𝑞3 = √|−𝑏1 − √𝑏1
2 − 4𝑏2| 2⁄                        (37) 

From the two roots in Eq. (29) and the four roots in Eq. (36), the six different solutions of the 

second ordinary differential equation of Eq. (12) as obtained below. 

5)    For 𝑏3 < 0, 𝑏1
2 > 4𝑏2, and 𝑏1 < −√𝑏1

2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑞0 according to Eq. (29), and 

(𝑟𝑠𝑘)3,4 = ±𝑞2 and (𝑟𝑠𝑘)5,6 = ±𝑞3 according to Eq. (36). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞2𝑢 

                                           + 𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝐶𝑠5𝑘𝑒𝑞3𝑢 + 𝐶𝑠6𝑘𝑒−𝑞3𝑢                                          (38) 

                              𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞2𝐶𝑠3𝑘𝑒𝑞2𝑢 

                                         − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝑞3𝐶𝑠5𝑘𝑒𝑞3𝑢 − 𝑞3𝐶𝑠6𝑘𝑒−𝑞3𝑢                                  (38a) 

                             𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2𝑢    

                                        +𝑞2
2𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝑞3

2𝐶𝑠5𝑘𝑒𝑞3𝑢 + 𝑞3
2𝐶𝑠6𝑘𝑒−𝑞3𝑢                                         (38b) 

Substituting Eqs. (38), (38a), and (38b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠4𝑘 + 𝐶𝑠5𝑘 + 𝐶𝑠6𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠3𝑘 − 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠5𝑘 − 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

                        𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 + 𝑞2
2𝐶𝑠3𝑘+𝑞2

2𝐶𝑠4𝑘 + 𝑞3
2𝐶𝑠5𝑘 + 𝑞3

2𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞2 + 𝐶𝑠4𝑘𝑒−𝑞2 + 𝐶𝑠5𝑘𝑒𝑞3 + 𝐶𝑠6𝑘𝑒−𝑞3 = 𝑑𝑠𝑘,4 

                   𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞2𝐶𝑠3𝑘𝑒𝑞2 − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2 + 𝑞3𝐶𝑠5𝑘𝑒𝑞3 −

                              𝑞3𝐶𝑠6𝑘𝑒−𝑞3 = 𝑑𝑠𝑘,5 

               𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2+𝑞2

2𝐶𝑠4𝑘𝑒−𝑞2 + 𝑞3
2𝐶𝑠5𝑘𝑒𝑞3 +

                             𝑞3
2𝐶𝑠6𝑘𝑒−𝑞3 = 𝑑𝑠𝑘,6                             (38c)                                                                                                      

Solving Eq. (38c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (38), 𝐺𝑠𝑘(𝑢) is obtained.  
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6)   For 𝑏3 < 0, 𝑏1
2 > 4𝑏2, and −√𝑏1

2 − 4𝑏2 < 𝑏1 < √𝑏1
2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑞0 according to 

Eq. (29), and (𝑟𝑠𝑘)3,4 = ±𝑞2 and (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3 according to Eq. (36). The solution of the second 

ODE of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞2𝑢 

      + 𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)                             (39) 

             𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞2𝐶𝑠3𝑘𝑒𝑞2𝑢 

                     − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2𝑢 − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3𝑢) + 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3𝑢)                              (39a) 

           𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2𝑢 

                    + 𝑞2
2𝐶𝑠4𝑘𝑒−𝑞2𝑢 − 𝑞3

2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) − 𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)                                       (39b) 

Substituting Eqs. (39), (39a), and (39b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠4𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠3𝑘 − 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

                              𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 + 𝑞2
2𝐶𝑠3𝑘+𝑞2

2𝐶𝑠4𝑘 − 𝑞3
2𝐶𝑠5𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞2 + 𝐶𝑠4𝑘𝑒−𝑞2 + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,4 

                   𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞2𝐶𝑠3𝑘𝑒𝑞2 − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2 − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3) +

                                 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3) = 𝑑𝑠𝑘,5 

               𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2 + 𝑞2

2𝐶𝑠4𝑘𝑒−𝑞2 − 𝑞3
2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3) −

                               𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,6                                                                                               (39c) 

Solving Eq. (39c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (39), 𝐺𝑠𝑘(𝑢) is obtained.    

7)   For 𝑏3 < 0, 𝑏1
2 > 4𝑏2, and 𝑏1 > √𝑏1

2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑞0 according to Eq. (29), and 

(𝑟𝑠𝑘)3,4 = ±𝑖𝑞2 and (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3 according to Eq. (36). The solution of the second ODE in Eq. 

(12) is 
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𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2𝑢) 

      + 𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2𝑢) + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)                         (40) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 − 𝑞2𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞2𝑢) 

      + 𝑞2𝐶𝑠4𝑘 𝑐𝑜𝑠( 𝑞2𝑢) − 𝑞3𝐶𝑠5𝑘sin (𝑞3𝑢) + 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3𝑢)                         (40a) 

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ =  𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 +  𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 − 𝑞2
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2𝑢) 

      − 𝑞2
2𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2𝑢) − 𝑞3

2𝐶𝑠5𝑘cos (𝑞3𝑢) − 𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)                         (40b) 

Substituting Eqs. (40), (40a), and (40b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

𝑞0
2𝐶𝑠1𝑘 +  𝑞0

2𝐶𝑠2𝑘 − 𝑞2
2𝐶𝑠3𝑘 − 𝑞3

2𝐶𝑠5𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2) + 𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2) + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,4 

𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 − 𝑞2𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞2) + 𝑞2𝐶𝑠4𝑘 𝑐𝑜𝑠( 𝑞2) − 𝑞3𝐶𝑠5𝑘sin (𝑞3)

+ 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3) = 𝑑𝑠𝑘,5 

𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 +  𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 − 𝑞2
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2) − 𝑞2

2𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2) − 𝑞3
2𝐶𝑠5𝑘cos (𝑞3)

− 𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,6                                                                                           (40c) 

Solving Eq. (40c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (40), 𝐺𝑠𝑘(𝑢) is obtained.     

8)   For 𝑏3 > 0, 𝑏1
2 > 4𝑏2, and 𝑏1 < −√𝑏1

2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0 according to Eq. (29), and 

(𝑟𝑠𝑘)3,4 = ±𝑞2 and (𝑟𝑠𝑘)5,6 = ±𝑞3 according to Eq. (36). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝐶𝑠3𝑘𝑒𝑞2𝑢 

      + 𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝐶𝑠5𝑘𝑒𝑞3𝑢 + 𝐶𝑠6𝑘𝑒−𝑞3𝑢

           

                                         (41) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝑞2𝐶𝑠3𝑘𝑒𝑞2𝑢 



65 

 

      − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝑞3𝐶𝑠5𝑘𝑒𝑞3𝑢 − 𝑞3𝐶𝑠6𝑘𝑒−𝑞3𝑢

           

                  (41a) 

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2𝑢 

      + 𝑞2
2𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝑞3

2𝐶𝑠5𝑘𝑒𝑞3𝑢 + 𝑞3
2𝐶𝑠6𝑘𝑒−𝑞3𝑢

           

                                         (41b) 

Substituting Eqs. (41), (41a), and (41b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠4𝑘 + 𝐶𝑠5𝑘 + 𝐶𝑠6𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠3𝑘 − 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠5𝑘 − 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

−𝑞0
2𝐶𝑠1𝑘 + 𝑞2

2𝐶𝑠3𝑘 + 𝑞2
2𝐶𝑠4𝑘 + 𝑞3

2𝐶𝑠5𝑘 + 𝑞3
2𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞2 + 𝐶𝑠4𝑘𝑒−𝑞2 + 𝐶𝑠5𝑘𝑒𝑞3 + 𝐶𝑠6𝑘𝑒−𝑞3 = 𝑑𝑠𝑘,4 

     −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) + 𝑞2𝐶𝑠3𝑘𝑒𝑞2 − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2 + 𝑞3𝐶𝑠5𝑘𝑒𝑞3 − 𝑞3𝐶𝑠6𝑘𝑒−𝑞3

= 𝑑𝑠𝑘,5 

   −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2 + 𝑞2

2𝐶𝑠4𝑘𝑒−𝑞2 + 𝑞3
2𝐶𝑠5𝑘𝑒𝑞3 + 𝑞3

2𝐶𝑠6𝑘𝑒−𝑞3

= 𝑑𝑠𝑘,6                                                                                                                         (41c) 

Solving Eq. (41c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (41), 𝐺𝑠𝑘(𝑢) is obtained.     

9)  For 𝑏3 > 0, 𝑏1
2 > 4𝑏2 , and −√𝑏1

2 − 4𝑏2 < 𝑏1 < √𝑏1
2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0 according 

to Eq. (29), and (𝑟𝑠𝑘)3,4 = ±𝑞2  and (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3  according to Eq. (36). The solution of the 

second ODE in Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝐶𝑠3𝑘𝑒𝑞2𝑢 

      + 𝐶𝑠4𝑘𝑒−𝑞2𝑢 + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)
     

                             (42) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝑞2𝐶𝑠3𝑘𝑒𝑞2𝑢 

      − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2𝑢 − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3𝑢) + 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3𝑢)
     

                             (42a) 

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2𝑢 

      + 𝑞2
2𝐶𝑠4𝑘𝑒−𝑞2𝑢 − 𝑞3

2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) − 𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)

     
                             (42b) 
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Substituting Eqs. (42), (42a), and (42b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠4𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠3𝑘 − 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

−𝑞0
2𝐶𝑠1𝑘 + 𝑞2

2𝐶𝑠3𝑘 + 𝑞2
2𝐶𝑠4𝑘 − 𝑞3

2𝐶𝑠5𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞2 + 𝐶𝑠4𝑘𝑒−𝑞2 + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,4 

     −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) + 𝑞2𝐶𝑠3𝑘𝑒𝑞2 − 𝑞2𝐶𝑠4𝑘𝑒−𝑞2 − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3)

+ 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3) = 𝑑𝑠𝑘,5 

   −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞2
2𝐶𝑠3𝑘𝑒𝑞2 + 𝑞2

2𝐶𝑠4𝑘𝑒−𝑞2 − 𝑞3
2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3)

− 𝑞3
2𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3) = 𝑑𝑠𝑘,6                                                                                    (42c) 

Solving Eq. (42c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (42), 𝐺𝑠𝑘(𝑢) is obtained.     

10)   For 𝑏3 > 0, 𝑏1
2 > 4𝑏2, and 𝑏1 > √𝑏1

2 − 4𝑏2, (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0 according to Eq. (29), and 

(𝑟𝑠𝑘)3,4 = ±𝑖𝑞2 and (𝑟𝑠𝑘)5,6 = ±𝑖𝑞3 according to Eq. (36). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2𝑢) 

      + 𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2𝑢) + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3𝑢)
                                

 (43) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞2𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞2𝑢) 

      + 𝑞2𝐶𝑠4𝑘 𝑐𝑜𝑠( 𝑞2𝑢) − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3𝑢) + 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3𝑢)
                                

 (43a) 

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) − 𝑞2
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2𝑢) 

      − 𝑞2
2𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2𝑢) − 𝑞3

2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3𝑢) − 𝑞3
2𝐶𝑠6𝑘sin (𝑞3𝑢)

                                
 (43b) 

Substituting Eqs. (43), (43a), and (43b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 
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𝑞0𝐶𝑠2𝑘 + 𝑞2𝐶𝑠4𝑘 + 𝑞3𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

−𝑞0
2𝐶𝑠1𝑘 − 𝑞2

2𝐶𝑠3𝑘 − 𝑞3
2𝐶𝑠5𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2) + 𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2) + 𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3) + 𝐶𝑠6𝑘 𝑠𝑖𝑛( 𝑞3)

= 𝑑𝑠𝑘,4 

     −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞2𝐶𝑠3𝑘 𝑠𝑖𝑛( 𝑞2) 

      + 𝑞2𝐶𝑠4𝑘 𝑐𝑜𝑠( 𝑞2) − 𝑞3𝐶𝑠5𝑘 𝑠𝑖𝑛( 𝑞3) + 𝑞3𝐶𝑠6𝑘 𝑐𝑜𝑠( 𝑞3) = 𝑑𝑠𝑘,5 

   −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) − 𝑞2
2𝐶𝑠3𝑘 𝑐𝑜𝑠( 𝑞2) − 𝑞2

2𝐶𝑠4𝑘 𝑠𝑖𝑛( 𝑞2) − 𝑞3
2𝐶𝑠5𝑘 𝑐𝑜𝑠( 𝑞3)

− 𝑞3
2𝐶𝑠6𝑘sin (𝑞3) = 𝑑𝑠𝑘,6                                                                                        (43c) 

Solving Eq. (43c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (43), 𝐺𝑠𝑘(𝑢) is obtained.   

Case 3: 𝑏1
2 < 4𝑏2. For this case, Eq. (30) is changed into the following one 

(𝑟𝑠𝑘
2 )1,2 = (−𝑏1 ± 𝑖√4𝑏2 − 𝑏1

2) 2⁄                                      (44) 

To obtain the roots (𝑟𝑠𝑘)3,4,5,6 from Eq. (44), is Eq. (44) is transformed into 

(𝑟𝑠𝑘
2 )1,2 = 𝑟(𝑐𝑜𝑠 𝜑 ± 𝑖 𝑠𝑖𝑛 𝜑)                                   (45) 

where 

𝑟 = √|𝑏2| 

𝑐𝑜𝑠 𝜑 = − |𝑏1| (2√|𝑏2|)⁄     for    𝑏1 > 0 

𝑐𝑜𝑠 𝜑 = |𝑏1| (2√|𝑏2|)⁄        for    𝑏1 < 0 

𝑠𝑖𝑛 𝜑 = √4𝑏2 − 𝑏1
2 (2√|𝑏2|)⁄                                           (46) 

According to Eq. (45), the four roots (𝑟𝑠𝑘)3,4,5,6 for Case 3 can be written as  

(𝑟𝑠𝑘)3,4,5,6 = √|𝑏2|4 {𝑐𝑜𝑠[(𝜃 + 2𝑗𝜋) 2⁄ ] ± 𝑖 𝑠𝑖𝑛[(𝜃 + 2𝑗𝜋) 2⁄ ]} 

(𝑗 = 0,1)                                                                                                       (47) 

After introducing 
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𝑞4 = 0.5√2√|𝑏2| + |𝑏1| 

𝑞5 = 0.5√2√|𝑏2| − |𝑏1|                              (48) 

the four roots for 𝑏1 > 0 are 

(𝑟𝑠𝑘)3,4 = 𝑞5 ± 𝑖𝑞4 

(𝑟𝑠𝑘)5,6 = −𝑞5 ∓ 𝑖𝑞4                                        (49) 

and the four roots for 𝑏1 < 0 are 

(𝑟𝑠𝑘)3,4 = 𝑞4 ± 𝑖𝑞5 

(𝑟𝑠𝑘)5,6 = −𝑞4 ∓ 𝑖𝑞5                                        (50) 

From the two roots in (29) and the four roots in (49) and (50), the four different solutions of 

the second ordinary differential equation of Eq. (12) are obtained below. 

11)   For 𝑏3 < 0, 𝑏1
2 < 4𝑏2, and  𝑏1 > 0, (𝑟𝑠𝑘)1,2 = ±𝑞0 according to Eq. (29), and (𝑟𝑠𝑘)3,4 =

𝑞5 ± 𝑖𝑞4 and (𝑟𝑠𝑘)5,6 = −𝑞5 ∓ 𝑖𝑞4 according to Eq. (49). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑒𝑞5𝑢(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞4𝑢 + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞4 𝑢)

+ 𝑒−𝑞5𝑢(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞4𝑢 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞4 𝑢)     

   

                                                         (51) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞5𝑢(𝑞5𝑐𝑜𝑠𝑞4𝑢 − 𝑞4𝑠𝑖𝑛𝑞4𝑢)

+ 𝐶𝑠4𝑘𝑒𝑞5𝑢(𝑞5 𝑠𝑖𝑛 𝑞4 𝑢 + 𝑞4𝑐𝑜𝑠 𝑞4 𝑢)−𝐶𝑠5𝑘𝑒−𝑞5𝑢(𝑞5𝑐𝑜𝑠𝑞4𝑢

+ 𝑞4𝑠𝑖𝑛𝑞4𝑢)−𝐶𝑠6𝑘𝑒−𝑞5𝑢(𝑞5𝑠𝑖𝑛𝑞5𝑢 − 𝑞4𝑐𝑜𝑠𝑞4𝑢)                                        (51a) 

𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞5𝑢(𝑞5
2𝑐𝑜𝑠𝑞4𝑢 − 2𝑞4𝑞5𝑠𝑖𝑛𝑞4𝑢 −

𝑞4
2𝑐𝑜𝑠𝑞4𝑢) + 𝐶𝑠4𝑘𝑒𝑞5𝑢(𝑞5

2 𝑠𝑖𝑛 𝑞4 𝑢 + 2𝑞4𝑞5𝑐𝑜𝑠 𝑞4 𝑢 − 𝑞4
2𝑠𝑖𝑛𝑞4𝑢) + 𝐶𝑠5𝑘𝑒−𝑞5𝑢(𝑞5

2𝑐𝑜𝑠𝑞4𝑢 +

2𝑞4𝑞5𝑠𝑖𝑛𝑞4𝑢 − 𝑞4
2𝑐𝑜𝑠𝑞4𝑢) + 𝐶𝑠6𝑘𝑒−𝑞5𝑢(𝑞5

2𝑠𝑖𝑛𝑞4𝑢 − 2𝑞4𝑞5𝑐𝑜𝑠𝑞4𝑢 − 𝑞4
2𝑠𝑖𝑛𝑞4𝑢)   (51b)

    

Substituting Eqs. (51), (51a), and (51b) into the boundary constraints (14), the following 

equations are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘+𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 
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𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝐶𝑠3𝑘𝑞5 + 𝐶𝑠4𝑘𝑞4−𝐶𝑠5𝑘𝑞5+𝐶𝑠6𝑘𝑞4 = 𝑑𝑠𝑘,2 

𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 + 𝐶𝑠3𝑘(𝑞5
2 − 𝑞4

2) + 2𝑞4𝑞5𝐶𝑠4𝑘 + 𝐶𝑠5𝑘(𝑞5
2 − 𝑞4

2) − 2𝑞4𝑞5𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

          𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + 𝑒𝑞5(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞4 + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞4) + 𝑒−𝑞5(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞4 +

                    𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞4)   = 𝑑𝑠𝑘,4 

    𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞5(𝑞5𝑐𝑜𝑠𝑞4 − 𝑞4𝑠𝑖𝑛𝑞4) + 𝐶𝑠4𝑘𝑒𝑞5(𝑞5 𝑠𝑖𝑛 𝑞4 +

𝑞4𝑐𝑜𝑠 𝑞4)−𝐶𝑠5𝑘𝑒−𝑞5(𝑞5𝑐𝑜𝑠𝑞4 + 𝑞4𝑠𝑖𝑛𝑞4)−𝐶𝑠6𝑘𝑒−𝑞5(𝑞5𝑠𝑖𝑛𝑞4 − 𝑞4𝑐𝑜𝑠𝑞4) = 𝑑𝑠𝑘,5 

   𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞5(𝑞5
2𝑐𝑜𝑠𝑞4 − 2𝑞4𝑞5𝑠𝑖𝑛𝑞4 − 𝑞4

2𝑐𝑜𝑠𝑞4) +

𝐶𝑠4𝑘𝑒𝑞5(𝑞5
2 𝑠𝑖𝑛 𝑞4 + 2𝑞4𝑞5𝑐𝑜𝑠 𝑞4 − 𝑞4

2𝑠𝑖𝑛𝑞4) + 𝐶𝑠5𝑘𝑒−𝑞5(𝑞5
2𝑐𝑜𝑠𝑞4 + 2𝑞4𝑞5𝑠𝑖𝑛𝑞4 − 𝑞4

2𝑐𝑜𝑠𝑞4) +

𝐶𝑠6𝑘𝑒−𝑞5(𝑞5
2𝑠𝑖𝑛𝑞4 − 2𝑞4𝑞5𝑐𝑜𝑠𝑞4 − 𝑞4

2𝑠𝑖𝑛𝑞4) = 𝑑𝑠𝑘,6                                     (51c) 

Solving Eq. (51c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (51), 𝐺𝑠𝑘(𝑢) is obtained. 

12)   For 𝑏3 < 0, 𝑏1
2 < 4𝑏2, and 𝑏1 < 0, (𝑟𝑠𝑘)1,2 = ±𝑞0 according to Eq. (29), and (𝑟𝑠𝑘)3,4 =

𝑞4 ± 𝑖𝑞5 and (𝑟𝑠𝑘)5,6 = −𝑞4 ∓ 𝑖𝑞5 according to Eq. (50). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝑒𝑞4𝑢(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞5𝑢 

     + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞5 𝑢) + 𝑒−𝑞4𝑢(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞5𝑢 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞5 𝑢)                               (52) 

     𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = 𝑞0𝐶𝑠1𝑘𝑒𝑞0𝑢 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞4𝑢(𝑞4𝑐𝑜𝑠𝑞5𝑢 − 𝑞5𝑠𝑖𝑛𝑞5𝑢) +

𝐶𝑠4𝑘𝑒𝑞4𝑢(𝑞4  𝑠𝑖𝑛 𝑞5 𝑢 + 𝑞5 𝑐𝑜𝑠 𝑞5 𝑢) − 𝐶𝑠5𝑘𝑒−𝑞4𝑢(𝑞4𝑐𝑜𝑠𝑞5𝑢 + 𝑞5𝑠𝑖𝑛𝑞5𝑢) +

𝐶𝑠6𝑘𝑒−𝑞4𝑢(−𝑞4 𝑠𝑖𝑛 𝑞5 𝑢 + 𝑞5 𝑐𝑜𝑠 𝑞5 𝑢)                                                               (52a) 

   𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = 𝑞0
2𝐶𝑠1𝑘𝑒𝑞0𝑢 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0𝑢 + 𝐶𝑠3𝑘𝑒𝑞4𝑢(𝑞4
2𝑐𝑜𝑠𝑞5𝑢 − 2𝑞4𝑞5𝑠𝑖𝑛𝑞5𝑢 −

𝑞5
2𝑐𝑜𝑠𝑞5𝑢) + 𝐶𝑠4𝑘𝑒𝑞4𝑢(𝑞4

2𝑠𝑖𝑛𝑞5𝑢 + 2𝑞4𝑞5𝑐𝑜𝑠𝑞5𝑢 − 𝑞5
2𝑠𝑖𝑛𝑞5𝑢) + 𝐶𝑠5𝑘𝑒−𝑞4𝑢(𝑞4

2𝑐𝑜𝑠𝑞5𝑢 +

2𝑞4𝑞5𝑠𝑖𝑛𝑞5𝑢 − 𝑞5
2𝑐𝑜𝑠𝑞5𝑢) + 𝐶𝑠6𝑘𝑒−𝑞4𝑢(𝑞4

2 𝑠𝑖𝑛 𝑞5 𝑢 − 2𝑞4𝑞5 𝑐𝑜𝑠 𝑞5 𝑢 − 𝑞5
2 𝑠𝑖𝑛 𝑞5 𝑢)          (52b) 

Substituting Eqs. (52), (52a), and (52b) into the boundary constraints (14), the following 

equations are obtained.      
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                       𝐶𝑠1𝑘 + 𝐶𝑠2𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

    𝑞0𝐶𝑠1𝑘 − 𝑞0𝐶𝑠2𝑘 + 𝑞4𝐶𝑠3𝑘 + 𝑞5𝐶𝑠4𝑘 − 𝑞4𝐶𝑠5𝑘 + 𝑞5𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

𝑞0
2𝐶𝑠1𝑘 + 𝑞0

2𝐶𝑠2𝑘 + 𝐶𝑠3𝑘(𝑞4
2 − 𝑞5

2) + 2𝑞4𝑞5𝐶𝑠4𝑘 + 𝐶𝑠5𝑘(𝑞4
2 − 𝑞5

2) − 2𝑞4𝑞5𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

        𝐶𝑠1𝑘𝑒𝑞0 + 𝐶𝑠2𝑘𝑒−𝑞0 + 𝑒𝑞4(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞5 + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞5) + 𝑒−𝑞4(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞5 +

                 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞5)   = 𝑑𝑠𝑘,4 

    𝑞0𝐶𝑠1𝑘𝑒𝑞0 − 𝑞0𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞4(𝑞4𝑐𝑜𝑠𝑞5 − 𝑞5𝑠𝑖𝑛𝑞5) + 𝐶𝑠4𝑘𝑒𝑞4(𝑞4 𝑠𝑖𝑛 𝑞5 +

𝑞5 𝑐𝑜𝑠 𝑞5) − 𝐶𝑠5𝑘𝑒−𝑞4(𝑞4𝑐𝑜𝑠𝑞5 + 𝑞5𝑠𝑖𝑛𝑞5) + 𝐶𝑠6𝑘𝑒−𝑞4(−𝑞4 𝑠𝑖𝑛 𝑞5 + 𝑞5 𝑐𝑜𝑠 𝑞5) = 𝑑𝑠𝑘,5   

𝑞0
2𝐶𝑠1𝑘𝑒𝑞0 + 𝑞0

2𝐶𝑠2𝑘𝑒−𝑞0 + 𝐶𝑠3𝑘𝑒𝑞4(𝑞4
2𝑐𝑜𝑠𝑞5 − 2𝑞4𝑞5𝑠𝑖𝑛𝑞5 − 𝑞5

2𝑐𝑜𝑠𝑞5) + 𝐶𝑠4𝑘𝑒𝑞4(𝑞4
2𝑠𝑖𝑛𝑞5 +

2𝑞4𝑞5𝑐𝑜𝑠𝑞5 − 𝑞5
2𝑠𝑖𝑛𝑞5) + 𝐶𝑠5𝑘𝑒−𝑞4(𝑞4

2𝑐𝑜𝑠𝑞5 + 2𝑞4𝑞5𝑠𝑖𝑛𝑞5 − 𝑞5
2𝑐𝑜𝑠𝑞5) + 𝐶𝑠6𝑘𝑒−𝑞4(𝑞4

2 𝑠𝑖𝑛 𝑞5 −

2𝑞4𝑞5 𝑐𝑜𝑠 𝑞5 − 𝑞5
2 𝑠𝑖𝑛 𝑞5) =

𝑑𝑠𝑘,6                                                                                                                                                                 (52c) 

Solving Eq. (52c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (52), 𝐺𝑠𝑘(𝑢) is obtained. 

13)   For 𝑏3 > 0 , 𝑏1
2 < 4𝑏2 , and  𝑏1 > 0 , (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0  according to Eq. (29), and 

(𝑟𝑠𝑘)3,4 = 𝑞5 ± 𝑖𝑞4  and (𝑟𝑠𝑘)5,6 = −𝑞5 ∓ 𝑖𝑞4  according to Eq. (49). The solution of the second 

Ordinary Differential Equation of Eq. (12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑒𝑞5𝑢(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞4𝑢 

     + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞4 𝑢) + 𝑒−𝑞5𝑢(𝐶𝑡5𝑘𝑐𝑜𝑠𝑞4𝑢 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞4 𝑢)
 

                                      (53) 

𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠3𝑘𝑒𝑞5𝑢(𝑞5 𝑐𝑜𝑠𝑞4𝑢 −

𝑞4𝑠𝑖𝑛𝑞4𝑢) + 𝐶𝑠4𝑘𝑒𝑞5𝑢(𝑞5 𝑠𝑖𝑛𝑞4𝑢 + 𝑞4𝑐𝑜𝑠𝑞4𝑢) + 𝐶𝑡5𝑘𝑒−𝑞5𝑢(−𝑞5𝑐𝑜𝑠𝑞4𝑢 − 𝑞4𝑠𝑖𝑛𝑞4𝑢) +

𝐶𝑡6𝑘𝑒−𝑞5𝑢(−𝑞5𝑠𝑖𝑛𝑞4𝑢 + 𝑞4𝑐𝑜𝑠𝑞4𝑢)                                                       (53a) 

        𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝐶𝑠3𝑘𝑒𝑞5𝑢(𝑞5
2 𝑐𝑜𝑠𝑞4𝑢 −

2𝑞4𝑞5𝑠𝑖𝑛𝑞4𝑢 − 𝑞4
2𝑐𝑜𝑠𝑞4𝑢) + 𝐶𝑠4𝑘𝑒𝑞5𝑢(𝑞5

2 𝑠𝑖𝑛𝑞4𝑢 + 2𝑞4𝑞5𝑐𝑜𝑠𝑞4𝑢 − 𝑞4
2𝑠𝑖𝑛𝑞4𝑢) +
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𝐶𝑡5𝑘𝑒−𝑞5𝑢(𝑞5
2𝑐𝑜𝑠𝑞4𝑢 + 2𝑞4𝑞5𝑠𝑖𝑛𝑞4𝑢 − 𝑞4

2𝑐𝑜𝑠𝑞5𝑢) + 𝐶𝑡6𝑘𝑒−𝑞5𝑢(𝑞5
2𝑠𝑖𝑛𝑞4𝑢 − 2𝑞4𝑞5𝑐𝑜𝑠𝑞4𝑢 −

𝑞4
2𝑠𝑖𝑛𝑞4𝑢)                                                                   (53b) 

Substituting Eqs. (53), (53a), and (53b) into the boundary constraints (14), the following 

equations are obtained.      

                         𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑡5𝑘 = 𝑑𝑠𝑘,1 

   𝑞0𝐶𝑠2𝑘 + 𝑞5𝐶𝑠3𝑘 + 𝑞4𝐶𝑠4𝑘 − 𝑞5𝐶𝑡5𝑘 + 𝑞4𝐶𝑡6𝑘 = 𝑑𝑠𝑘,2 

−𝑞0
2𝐶𝑠1𝑘 + 𝐶𝑠3𝑘(𝑞5

2  − 𝑞4
2) + 2𝑞4𝑞5𝐶𝑠4𝑘 + 𝐶𝑡5𝑘(𝑞5

2 − 𝑞4
2) − 2𝑞4𝑞5𝐶𝑡6𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑒𝑞5(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞4 

     + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞4) + 𝑒−𝑞5(𝐶𝑡5𝑘𝑐𝑜𝑠𝑞4 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞4) = 𝑑𝑠𝑘,4 

−𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞5(𝑞5 𝑐𝑜𝑠𝑞4 − 𝑞4𝑠𝑖𝑛𝑞4) + 𝐶𝑠4𝑘𝑒𝑞5(𝑞5 𝑠𝑖𝑛𝑞4 +

𝑞4𝑐𝑜𝑠𝑞4) + 𝐶𝑡5𝑘𝑒−𝑞5(−𝑞5𝑐𝑜𝑠𝑞4 − 𝑞4𝑠𝑖𝑛𝑞4) + 𝐶𝑡6𝑘𝑒−𝑞5(−𝑞5𝑠𝑖𝑛𝑞4 + 𝑞4𝑐𝑜𝑠𝑞4) = 𝑑𝑠𝑘,5    

−𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞5(𝑞5
2 𝑐𝑜𝑠𝑞4 − 2𝑞4𝑞5𝑠𝑖𝑛𝑞4 − 𝑞4

2𝑐𝑜𝑠𝑞4)

+ 𝐶𝑠4𝑘𝑒𝑞5(𝑞5
2 𝑠𝑖𝑛𝑞4 + 2𝑞4𝑞5𝑐𝑜𝑠𝑞4 − 𝑞4

2𝑠𝑖𝑛𝑞4) + 𝐶𝑡5𝑘𝑒−𝑞5(𝑞5
2𝑐𝑜𝑠𝑞4 + 2𝑞4𝑞5𝑠𝑖𝑛𝑞4 − 𝑞4

2𝑐𝑜𝑠𝑞5)

+ 𝐶𝑡6𝑘𝑒−𝑞5(𝑞5
2𝑠𝑖𝑛𝑞4 − 2𝑞4𝑞5𝑐𝑜𝑠𝑞4 − 𝑞4

2𝑠𝑖𝑛𝑞4)

= 𝑑𝑠𝑘,6                                                                                                                                                         (53c) 

Solving Eq. (53c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (53), (𝑢) is obtained. 

14)   For 𝑏3 > 0, 𝑏1
2 < 4𝑏2, and 𝑏1 < 0, (𝑟𝑠𝑘)1,2 = ±𝑖𝑞0 according to Eq. (29), and (𝑟𝑠𝑘)3,4 =

𝑞4 ± 𝑖𝑞5 and (𝑟𝑠𝑘)5,6 = −𝑞4 ∓ 𝑖𝑞5 according to Eq. (50). The solution of the second ODE in Eq. 

(12) is 

𝐺𝑠𝑘(𝑢) = 𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑒𝑞4𝑢(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞5𝑢 

     + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞5 𝑢) + 𝑒−𝑞4𝑢(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞5𝑢 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞5 𝑢)
 
                                      (54) 

   𝜕𝐺𝑠𝑘(𝑢) 𝜕𝑢⁄ = −𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0𝑢) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0𝑢) + 𝐶𝑠3𝑘𝑒𝑞4𝑢(𝑞4 𝑐𝑜𝑠𝑞5𝑢 −

𝑞5𝑠𝑖𝑛𝑞5𝑢) + 𝐶𝑠4𝑘𝑒𝑞4𝑢(𝑞4 𝑠𝑖𝑛𝑞5𝑢 + 𝑞5𝑐𝑜𝑠𝑞5𝑢) − 𝐶𝑠5𝑘𝑒−𝑞4𝑢(𝑞4 𝑐𝑜𝑠𝑞5𝑢 + 𝑞5𝑠𝑖𝑛𝑞5𝑢) +

𝐶𝑠6𝑘𝑒−𝑞4𝑢(−𝑞4 𝑠𝑖𝑛𝑞5𝑢 + 𝑞5𝑐𝑜𝑠𝑞5𝑢)                                (54a) 
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      𝜕2𝐺𝑠𝑘(𝑢) 𝜕𝑢2⁄ = −𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0𝑢) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0𝑢) +

𝐶𝑠3𝑘𝑒𝑞4𝑢(𝑞4
2𝑐𝑜𝑠𝑞5𝑢−2𝑞4𝑞5𝑠𝑖𝑛𝑞5𝑢 − 𝑞5

2𝑐𝑜𝑠𝑞5𝑢) + 𝐶𝑠4𝑘𝑒𝑞4𝑢(𝑞4
2𝑠𝑖𝑛𝑞5𝑢 + 2𝑞4𝑞5 𝑐𝑜𝑠𝑞5𝑢 −

𝑞5
2𝑠𝑖𝑛𝑞5𝑢)+𝐶𝑠5𝑘𝑒−𝑞4𝑢(𝑞4

2𝑐𝑜𝑠𝑞5𝑢 + 𝑞4𝑞5𝑠𝑖𝑛𝑞5𝑢 − 𝑞5
2𝑐𝑜𝑠𝑞5𝑢)+𝐶𝑠6𝑘𝑒−𝑞4𝑢(𝑞4

2𝑠𝑖𝑛𝑞5𝑢 −

2𝑞4 𝑞5𝑐𝑜𝑠𝑞5𝑢 − 𝑞5
2𝑠𝑖𝑛𝑞5𝑢)                                                                                                                     (54b) 

Substituting Eqs. (54), (54a), and (54b) into the boundary constraints (14), the following equations 

are obtained.      

𝐶𝑠1𝑘 + 𝐶𝑠3𝑘 + 𝐶𝑠5𝑘 = 𝑑𝑠𝑘,1 

   𝑞0𝐶𝑠2𝑘 + 𝑞4𝐶𝑠3𝑘 + 𝑞5𝐶𝑠4𝑘 − 𝑞4𝐶𝑠5𝑘 + 𝑞5𝐶𝑠6𝑘 = 𝑑𝑠𝑘,2 

−𝑞0
2𝐶𝑠1𝑘 + 𝐶𝑠3𝑘(𝑞4

2 − 𝑞5
2) + 2𝑞4𝑞5𝐶𝑠4𝑘+𝐶𝑠5𝑘(𝑞4

2 − 𝑞5
2)−2𝑞4 𝑞5𝐶𝑠6𝑘 = 𝑑𝑠𝑘,3 

𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑒𝑞4(𝐶𝑠3𝑘𝑐𝑜𝑠𝑞5 

     + 𝐶𝑠4𝑘 𝑠𝑖𝑛 𝑞5) + 𝑒−𝑞4(𝐶𝑠5𝑘𝑐𝑜𝑠𝑞5 + 𝐶𝑠6𝑘𝑠𝑖𝑛 𝑞5) = 𝑑𝑠𝑘,4 

−𝑞0𝐶𝑠1𝑘 𝑠𝑖𝑛( 𝑞0) + 𝑞0𝐶𝑠2𝑘 𝑐𝑜𝑠( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞4(𝑞4 𝑐𝑜𝑠𝑞5 − 𝑞5𝑠𝑖𝑛𝑞5) + 𝐶𝑠4𝑘𝑒𝑞4(𝑞4 𝑠𝑖𝑛𝑞5 +

𝑞5𝑐𝑜𝑠𝑞5) − 𝐶𝑠5𝑘𝑒−𝑞4(𝑞4 𝑐𝑜𝑠𝑞5 + 𝑞5𝑠𝑖𝑛𝑞5) + 𝐶𝑠6𝑘𝑒−𝑞4(−𝑞4 𝑠𝑖𝑛𝑞5 + 𝑞5𝑐𝑜𝑠𝑞5) = 𝑑𝑠𝑘,5    

−𝑞0
2𝐶𝑠1𝑘 𝑐𝑜𝑠( 𝑞0) − 𝑞0

2𝐶𝑠2𝑘 𝑠𝑖𝑛( 𝑞0) + 𝐶𝑠3𝑘𝑒𝑞4(𝑞4
2𝑐𝑜𝑠𝑞5−2𝑞4𝑞5𝑠𝑖𝑛𝑞5 − 𝑞5

2𝑐𝑜𝑠𝑞5)

+ 𝐶𝑠4𝑘𝑒𝑞4(𝑞4
2𝑠𝑖𝑛𝑞5 + 2𝑞4𝑞5 𝑐𝑜𝑠𝑞5 − 𝑞5

2𝑠𝑖𝑛𝑞5)+𝐶𝑠5𝑘𝑒−𝑞4(𝑞4
2𝑐𝑜𝑠𝑞5 + 2𝑞4𝑞5𝑠𝑖𝑛𝑞5

− 𝑞5
2𝑐𝑜𝑠𝑞5)+𝐶𝑠6𝑘𝑒−𝑞4(𝑞4

2𝑠𝑖𝑛𝑞5 − 2𝑞4 𝑞5𝑐𝑜𝑠𝑞5 − 𝑞5
2𝑠𝑖𝑛𝑞5)

= 𝑑𝑠𝑘,6                                                                                                                                                   (54c) 

Solving Eq. (54c), the 6 unknown constants 𝐶𝑠1𝑘, 𝐶𝑠2𝑘, 𝐶𝑠3𝑘, 𝐶𝑠4𝑘, 𝐶𝑠5𝑘, and 𝐶𝑠6𝑘 are obtained. 

Substituting them back into Eq. (54), 𝐺𝑠𝑘(𝑢) is obtained. 

Introducing the above obtained 𝐺𝑠0(𝑢) in Eq. (17) and 𝐺𝑠𝑘(𝑢) in one of the Eqs. (32)-(35), 

(38)-(43), and (51)-(54) into Eq. (10), the mathematical equations of  𝑠(𝑢, 𝑣)  (𝑠 = 𝑥, 𝑦, 𝑧)  are 

obtained and use them to create blending surfaces. In the following subsection, some examples are 

given to demonstrate the applications of the analytical solution developed in this subsection in 

surface blending. 
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3.2.3 Applications  

The example given below is to blend a top surface to a bottom surface. The parametric equations for 

the top and bottom surfaces are 

𝑥 = 𝑎𝑢 𝑠𝑖𝑛(2 𝜋𝑣) 

𝑦 = 𝑏𝑢 𝑐𝑜𝑠(2 𝜋𝑣) 

𝑧 = ℎ1 + ℎ2𝑢2
                                    (55) 

and 

𝑥 = 𝑐𝑢 𝑠𝑖𝑛(2 𝜋𝑣) 

𝑦 = 𝑑𝑢 𝑐𝑜𝑠(2 𝜋𝑣) 

𝑧 = −ℎ3𝑢3
                                                           (56) 

Assuming that the top boundary 𝑢 = 0 of the middle blending surface is taken to be at 𝑢 = 𝑢0 

of the top primary surface, letting 𝑢 = 𝑢0 in Eq. (55), the following boundary constraints between 

the top primary surface and the middle blending surface at the position 𝑢 = 𝑢0 of the top primary 

surface are obtained. 

𝑢 = 0       

𝑥 = 𝑎𝑢0 𝑠𝑖𝑛(2 𝜋𝑣)          𝑦 = 𝑏𝑢0 𝑐𝑜𝑠(2 𝜋𝑣)         𝑧 = ℎ1 + ℎ2𝑢0
2 

𝜕𝑥

𝜕𝑢
= −𝑎 𝑠𝑖𝑛(2 𝜋𝑣)      

𝜕𝑦

𝜕𝑢
= −𝑏 𝑐𝑜𝑠(2 𝜋𝑣)       

𝜕𝑧

𝜕𝑢
= −2ℎ2𝑢0 

𝜕2𝑥

𝜕𝑢2 = 0                        
𝜕2𝑦

𝜕𝑢2 = 0                         
𝜕2𝑧

𝜕𝑢2 = 2ℎ2                           (57a) 

where the minus symbol “−" is due to the opposite directions between the blending surface and the 

top primary surface. That is to say, when the parametric variable 𝑢 increases from 𝑢 = 0 to 𝑢 = 1, 

the isoparametric curve of the parametric variable 𝑣 of the top surface moves upwards, but the 

isoparametric curve of the parametric variable 𝑣 of the blending surface moves downwards.  
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Assuming that the bottom boundary 𝑢 = 1 of the middle blending surface is taken to be at 

𝑢 = 𝑢1  of the bottom primary surface, and letting 𝑢 = 𝑢1  in Eq. (56), the following boundary 

constraints between the bottom primary surface and the middle blending surface at the position 𝑢 =

𝑢1 of the bottom primary surface are obtained. 

𝑢 = 1       

𝑥 = 𝑐𝑢1 𝑠𝑖𝑛(2 𝜋𝑣)       𝑦 = 𝑑𝑢1 𝑐𝑜𝑠(2 𝜋𝑣)        𝑧 = −ℎ3𝑢1
3 

𝜕𝑥

𝜕𝑢
= 𝑐 𝑠𝑖𝑛(2 𝜋𝑣)      

𝜕𝑦

𝜕𝑢
= 𝑑 𝑐𝑜𝑠(2 𝜋𝑣)        

𝜕𝑧

𝜕𝑢
= −3ℎ3𝑢1

2 

  
𝜕2𝑥

𝜕𝑢2
= 0               

𝜕2𝑦

𝜕𝑢2
= 0                   

𝜕2𝑧

𝜕𝑢2
= −6ℎ3𝑢1                  (57b) 

The boundary constraints (57a) and (57b) indicate that the elementary functions for 𝑥 

component are 𝑓𝑥1(𝑣) = 𝑠𝑖𝑛 2 𝜋𝑣 , the elementary functions for 𝑦  component are 𝑓𝑦1(𝑣) =

𝑐𝑜𝑠 2 𝜋𝑣, and those for 𝑧 component are constants. Substituting 𝐺𝑥0(𝑢)= 𝐺𝑦0(𝑢) = 0 , 𝐾𝑥=𝐾𝑦 = 1 

for x and y components, 𝑓𝑥1(𝑣) = 𝑠𝑖𝑛(2 𝜋𝑣), 𝑓𝑦1(𝑣) = 𝑐𝑜𝑠(2𝜋𝑣), and 𝐾𝑧 = 0 for z component into 

Eq. (10), the following constructed functions of the blending surface are obtained 

𝑥(𝑢, 𝑣) = 𝐺𝑥1(𝑢) 𝑠𝑖𝑛(2 𝜋𝑣) 

𝑦(𝑢, 𝑣) = 𝐺𝑦1(𝑢) 𝑐𝑜𝑠(2 𝜋𝑣) 

   𝑧(𝑢, 𝑣) = 𝐺𝑧0(𝑢)

              

                                                  (58) 

With the method developed in the previous subsection, the unknown functions 𝐺𝑥1(𝑢) , 

𝐺𝑦1(𝑢), and 𝐺𝑧0(𝑢) are obtained. Substituting them back into Eq. (58), the functions defining the 

blending surface are obtained.  

The developed method provides a powerful tool in quickly creating different shapes of a 

blending surface but still satisfies boundary constraints. This will be demonstrated this with some 

examples below. For all these examples, the geometric parameters are 𝑎 = 2.6, 𝑏 = 4.5, 𝑐 = ℎ3 =

5, 𝑑 = ℎ1 = 2, ℎ2 = 3, 𝑢0 = 0.35, and 𝑢1 = 0.3. On average, the CPU time used to determine all 
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the unknown constants of a blending surface with the above closed form solutions is 20 

microseconds on a laptop with 2.5 GHz and 8 GB RAM.  

First, the shape control parameters 𝜂 = 𝜆 = 𝜌 = 1 are kept unchanged but the shape control 

parameter 𝛾 is set to 1, -0.9, -1.1, -1.3, -1.5, -1.6, -1.7, -1.75, and -1.8. Different shapes of the 

blending surface are obtained and depicted in Figure 2.  

 

             

                   (a) 𝛾 = 1                                  (b) 𝛾 = −0.9                        (c) 𝛾 = −1.1    

        

                      (d)𝛾 = −1.3                       (e)𝛾 = −1.5                            (f)𝛾 = −1.6  

   

             (g) 𝛾 = −1.7                      (h) 𝛾 = −1.75                              (i) 𝛾 = −1.8 

Figure 2: Different shapes of a blending surface determined by the shape control parameters  

η=λ=ρ=1 and different values of the shape control parameter γ 
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When the shape control parameter 𝛾 changes from 1 to -1.8, the shape of the blending surface 

changes from concave to convex. At the value 𝛾 = −1.5, the middle part of the blending surface 

becomes a straight cylinder with an almost constant radius along the height direction. When the 

shape control parameter 𝛾 changes from -1.5 to 1, the blending surface becomes more and more 

concave. When the shape control parameter 𝛾 changes from -1.5 to -1.8, the blending surface 

becomes more and more convex with a symmetry plane at the middle of the blending surface. 

Although different shapes of the blending surface are obtained by different values of the shape 

control parameter 𝛾, the same continuities at the two trimlines are exactly maintained.  

Second, the shape control parameters 𝛾, 𝜆 𝑎𝑛𝑑 𝜌 are set to 𝛾 = −1.8  and 𝜆 = 𝜌 = 1, and kept 

unchanged. Then, the shape control parameter 𝜂 is set to 1.2, 1.4, 1.6, 1.8, 2.2, 3, 4, 4.6, 4.9, 5, 6, 7, 

8, and 9. Different shapes of the blending surface are obtained and shown in Figure 3. 

 

              

(a) 𝜂 = 1.2                                            (b)𝜂 = 1.4                                (c)𝜂 = 1.6 

             

(d) 𝜂 = 1.8                                             (e) 𝜂 = 2.2                               (f) 𝜂 = 3   
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      (g)𝜂 = 4                                               (h)𝜂 = 4.6                               (i)𝜂 = 4.9 

           

             

      (j)𝜂 = 5                                                 (k)𝜂 = 6                                      (l) 𝜂 = 7             

            

 

                                             (m) 𝜂 = 8                                   (n) 𝜂 = 9   

Figure 3: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, λ=ρ=1 and different values of the shape control parameter η 

 

According to Figure 3, the shape change of the blending surface can be divided into four parts. 

The first part is Figures 3(a)-3(e). In this part, the value of the shape control parameter 𝜂 increases 

from 1.2 to 2.2, causing the blending surface to change its shape from a convex one to a straight 

cylinder with a same cross-section size. The second part is Figures 3(e)-3(g), in which the value of 
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the shape control parameter 𝜂 increases from 2.2 to 4, causing the blending surface to change its 

shape from the straight cylinder into the frustum of a cone with the lower part of the frustum 

becoming smaller and smaller. The third part is Figures 3(g)-3(j). In this part, the value of the shape 

control parameter 𝜂 increases from 4 to 5 which causes the following changes: 1) the lower part 

continues to become smaller and smaller, and 2) the upper part changes from a straight one into a 

convex one with bigger cross-section sizes. The fourth part is Figures 3(k)-3(n). There is a jump of 

the shape change between the third part and the fourth part. In the third part, the blending surface 

has a large cross-section size at the upper part and a small cross-section size at the lower part. After 

the jump, the shapes of the blending surface in the fourth part show that the cross-section size at the 

upper part becomes small, but the cross-section size at the lower part becomes large. In the fourth 

part, the value of the shape control parameter 𝜂 increases from 6 to 9 which makes the lower part of 

the blending surface become smaller and smaller.  

For one given combination of the shape control parameters 𝛾  and 𝜂 , changing the shape 

control parameter 𝜆  can obtain different shapes of the blending surfaces. For another given 

combination of the shape control parameters 𝛾 and 𝜂, changing the shape control parameter 𝜆 can 

obtain more different shapes of the blending surfaces. Here three different combinations of the shape 

control parameters 𝛾 and 𝜂 are used to demonstrate this.     

The first combination is the shape control parameters 𝛾 = −1.8 and 𝜂 = 6. The shape control 

parameter 𝜌 = 1 is unchanged. Then, the shape control parameter 𝜆 is set to 5, 4, 3, 2 and 0.5. The 

obtained shapes of the blending surface are shown in Figure 4.  

It can be seen from the above figure that when the shape control parameter 𝜆 reduces its value 

from 5 to 0.5, the upper part of the blending surface become smaller and smaller. At 𝜆 = 0.5, the 

upper part of the blending surface becomes very small.    

The second combination is the shape control parameters 𝛾 = −1.8 and 𝜂 = 1. The shape 

control parameter 𝜌 = 1 is also kept unchanged. Then, the shape control parameter 𝜆 is set to 1.1, 
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1.2, 1.3, 1.4, 1.6, 1.8, 2.2 and 2.6. The obtained shapes of the blending surface are shown in Figure 

5.       

                  

                  (a) 𝜆 = 5                              (b) 𝜆 = 4                                             (c) 𝜆 = 3  

 

                        

                                        (d) 𝜆 = 2                                                (e)  𝜆 = 0.5 

Figure 4: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, η=6,ρ=1 and different values of the shape control parameter λ 

 

The images depicted in the figure indicate that this combination leads to convex shapes with 

a biggest cross-section size at the middle of the blending surface. When the shape control parameter 

𝜆 increase its value from 1.1 to 2.6, the blending surface becomes less convex and the cross-section 

size at the middle of the blending surface becomes smaller and smaller.   
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   (a)𝜆 = 1.1                                     (b) 𝜆 = 1.2                              (c) 𝜆 = 1.3 

 

 

         

               (d) 𝜆 = 1.4                                 (e) 𝜆 = 1.6                               (f) 𝜆 = 1.8  

                                   

                      (g) 𝜆 = 2.2                                                          (h)  𝜆 = 2.6  

Figure 5: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, η=1,ρ=1 and different values of the shape control parameter λ 

 

The third combination is the shape control parameters 𝛾 = −1.8 and 𝜂 = 4.6. The shape 

control parameter 𝜌 = 1 is also kept unchanged. Then, the shape control parameter 𝜆 is set to 1.2, 

1.4, 1.6, 1.8, and 2. The obtained shapes of the blending surface are shown in Figure 6. 
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     (a) 𝜆 = 1.2                                           (b)  𝜆 = 1.4                                       (c) 𝜆 = 1.6 

 

 

                                       

                     (a) 𝜆 = 1.8                                                        (b) 𝜆 = 2 

Figure 6: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, η=4.6,ρ=1 and different values of the shape control parameter λ 

 

The above images indicate that for this combination and the different values of the shape 

control parameter 𝜆, the upper shape of the blending surface is convex and the lower shape of the 

blending surface is concave. When the value of the shape control parameter 𝜆 in Eq. (54c) increases 

from 1.2 to 2, the upper part of the blending surface becomes more and more convex, but the lower 

part of the blending surface becomes more and more concave. 

When the combinations change from two shape control parameters to three shape control 

parameters, more different shapes of the blending surface than the combinations of two shape control 

parameters can be obtained. Here, two different combinations of three shape control parameters 𝛾, 

𝜂, and 𝜆 are given to demonstrate this.     
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The first combination is the shape control parameters 𝛾 = −1.8 and 𝜂 = 𝜆 = 1. Then the 

value of the shape control parameter 𝜌 is set to 1.15, 1.2, 1.25, 1.3, 1.35, and 1.4. The obtained 

shapes of the blending surface are shown in Figure 7.  

                    

             (a)  𝜌 = 1.15                                   (b) 𝜌 = 1.2                                 (c) 𝜌 = 1.25 

 

             

              (d) 𝜌 = 1.3                                 (e)  𝜌 = 1.35                                (f)  𝜌 = 1.4  

Figure 7: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, η=λ=1 and different values of the shape control parameter ρ 

 

It can be observed from the images depicted in Figure 7 that the shape of the blending surface 

is convex at 𝜌 = 1.15, straight at 𝜌 = 1.3, and concave at 𝜌 = 1.4. When the value of the shape 

control parameter 𝜌 increases from 1.15 to 1.3, the blending surface becomes less convex. When the 

value of the shape control parameter 𝜌 increases from 1.3 to 1.4, the blending surface becomes more 

concave. 
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The second combination is the shape control parameters 𝛾 = −1.8, 𝜂 = 6, and 𝜆 = 1. Then 

the value of the shape control parameter 𝜌 is set to 0.1, 0.3, 0.5, 0.7, 1.3, and 2. The obtained shapes 

of the blending surface are shown in Figure 8.  

                  

                 (a) 𝜌 = 0.1                                (b) 𝜌 = 0.3                                  (c) 𝜌 = 0.5  

            

              (d) 𝜌 = 0.7                                    (e) 𝜌 = 1.3                                 (f) 𝜌 = 2 

Figure 8: Different shapes of a blending surface determined by the shape control parameters γ=-

1.8, η=6,λ=1 and different values of the shape control parameter ρ 

 

The images given in the above figure indicate that the upper part of the blending surface has a 

different shape change in comparison with the lower part of the blending surface. When the shape 

control parameter 𝜌 in Eq.(54c) increases from 0.1 to 2, the upper part of the blending surface almost 

maintains a similar shape, but the lower part of the blending surface reduces its cross-section size 

greatly until its front view shape changes from a convex curved one at 𝜌 = 0.1 into a triangle at 𝜌 =

2.     

From the above discussions, the following conclusions can be drawn.  (1) The proposed closed 

form solutions are correct and efficient. (2) Four shape control parameters involved in the closed 
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form solutions have a strong influence on the shape of blending surfaces and can be developed into 

useful shape control handles to obtain different shapes of a same blending surface, and 3) Different 

combinations of the four shape control parameters can create enormous shapes of a same blending 

surface.    

From Eqs. (29), (31), (37), and (48), we know 𝑞0 is the function of 𝑏3, 𝑞1 is the function of 𝑏1, 

and 𝑞2 − 𝑞5 are the functions of 𝑏1 and 𝑏2. From Eqs. (25)-(27), we know 𝑏1, 𝑏2 and 𝑏3 are the 

functions of 𝑎4, 𝑎5 and 𝑎6. From Eq. (21), we know 𝑎4, 𝑎5 and 𝑎6 are the functions of 𝑎0 − 𝑎3. 

From Eq. (13), we know 𝑎0 − 𝑎3 are the function of the shape control parameters 𝛾, 𝜂,  𝜆, and 𝜌. 

Therefore, there are no explicit relationships between 𝑥, 𝑦 and 𝑧 components defining a blending 

surface and shape control parameters 𝛾, 𝜂,  𝜆, and 𝜌, and it is difficult to theoretically formulate how 

shape control parameters 𝛾, 𝜂,  𝜆, and 𝜌 affect the shape of a blending surface. Even shape control 

parameters are kept unchanged, different sizes of blending surfaces and different blending boundary 

constraints also affect shape changes of blending surfaces. Taking all these factors, i. e., different 

combinations of shape control parameters, different sizes of blending surfaces, and different 

blending boundary constraints, into account, theoretically formulating how shape control parameters 

affect the shape of a blending surface would become more difficult.  

Although it is difficult to theoretically formulate explicit relationships between shape changes 

of blending surfaces and shape control parameters, in practice, it is not difficult to manipulate the 

shape of blending surfaces. For doing this, each of shape control parameters is implemented into a 

slider. By interactively manipulating four sliders representing the four shape control parameters 𝛾, 

𝜂,  𝜆, and 𝜌, users can see shape changes of a blending surface in real-time, choose their preferred 

shape, and obtain the values of the shape control parameters corresponding to the preferred shape.    
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3.3 Variable decomposition-based approximate analytical 

approach 

For the blending boundary constraints consisting of trigonometric functions and exponential 

functions, the differential property (8) is satisfied, and the closed form solution-based approximate 

analytical approach investigated in previous section is most accurate and efficient among the three 

surface blending methods developed in this thesis. It provides the best means for blending between 

time-independent constant parametric surfaces with 𝐶2 continuity investigated in the previous 

section.  However, when the blending boundary constraints consist of some other functions such as 

power functions of the parametric variable 𝑣 , these functions must be first converted into 

trigonometric functions. Such a conversion will cause tedious mathematical derivations, slow the 

resolving process, and reduce the performance of surface blending. To tackle this problem, this 

section will develop a new approach. It decomposes the functions in the blending boundary 

constraints according to different variables and constructs the corresponding blending surface 

functions accordingly. In what follows, such a variable decomposition-based approximate analytical 

approach will be introduced.   

The variables in the blending boundary constraints can be divided into the constants, the 

parametric variable v, the time variable t, and the combination of the parametric variable v and the 

time variable t. Accordingly, the functions in the blending boundary constraints can be divided into 

four types: constants, the functions of the time variable t, the functions of the parametric variable v, 

and the functions of the parametric variable v and the time variable t. According to the divisions, the 

blending surface functions are decomposed into four components accordingly. They are the 

functions of the parametric variable u, the functions of the parametric variable v and the time variable 

t, the functions of the parametric variables u and v, and the functions of the parametric variables u 

and v and the time variable t. For each of the decomposed functions, their closed form solutions or 
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approximate analytical solutions are derived. Finally, some examples are presented to demonstrate 

their applications in C2 continuous blending of constant and varying parametric surfaces. 

3.3.1 Converted mathematical model and its solution 

In order to simplify the solution, each of the functions in the blending boundary constraints is 

decomposed (1) into: constants 𝑪𝑛
(1)

, the functions 𝑪𝑛
(2)(𝑡) of the time variable 𝑡 , the functions 

𝑪𝑛
(3)(𝑣) of  the parametric variable 𝑣, and the functions 𝑪𝑛

(4)(𝑣, 𝑡) of the parametric variable 𝑣 and 

the time variable 𝑡.   

After the above decomposition, all the functions in the blending boundary constraints can be 

written as   𝑪𝑛(𝑣, 𝑡) =  𝑪𝑛
(1)

+  𝑪𝑛
(2)(𝑡) +  𝑪𝑛

(3)(𝑣) + 𝑪𝑛
(4)(𝑣, 𝑡) (𝑛 = 1, 2, 3, … , 6)  . If 𝑪𝑛

(2)
, 𝑪𝑛

(3)
, 

and 𝑪𝑛
(4)

 are used to indicate 𝑪𝑛
(2)(𝑡), 𝑪𝑛

(3)(𝑣), and 𝑪𝑛
(4)(𝑣, 𝑡), respectively, the blending boundary 

constraints (1) are changed into  

𝑢 = 0         𝜕𝑛𝑺(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = ∑ 𝑪𝑛+1
(𝑘)

4

𝑘=1

 

𝑢 = 1         𝜕𝑛𝑺(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = ∑ 𝑪𝑛+4
(𝑘)

4

𝑘=1

 

(𝑛 = 0,1,2)                                                                     (59) 

If 𝑤  is used to indicate 𝑥, 𝑦  and  𝑧 , the above blending boundary constraints (59) can be 

written in the following component form 

𝑢 = 0         𝜕𝑛𝑆𝑤(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = ∑ 𝐶𝑤𝑛+1
(𝑘)

4

𝑘=1

 

𝑢 = 1         𝜕𝑛𝑆𝑤(𝑢, 𝑣, 𝑡)/𝜕𝑢𝑛  = ∑ 𝐶𝑤𝑛+4
(𝑘)

4

𝑘=1

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0,1,2)                                                                 (59a) 
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Since the blending boundary constraints consist of  𝐶𝑤𝑛
(1)

, 𝐶𝑤𝑛
(2)

(𝑡), 𝐶𝑤𝑛
(3)

(𝑣), and 𝐶𝑤𝑛
(4)

(𝑣, 𝑡), the 

function of the blending surface should have the corresponding terms, i.e., 𝑆𝑤
(1)(𝑢), 𝑆𝑤

(2)(𝑢, 𝑡), 

𝑆𝑤
(3)(𝑢, 𝑣), and 𝑆𝑤

(4)(𝑢, 𝑣, 𝑡).  That is to say, the function of the blending surface should have the 

form  𝑆𝑤(𝑢, 𝑣, 𝑡) =  𝑆𝑤
(1)(𝑢) + 𝑆𝑤

(2)(𝑢, 𝑡) + 𝑆𝑤
(3)(𝑢, 𝑣) + 𝑆𝑤

(4)(𝑢, 𝑣, 𝑡) . Substituting it into Eq. (5) 

and using 𝑆𝑤
(1)

 , 𝑆𝑤
(2)

, 𝑆𝑤
(3)

, and 𝑆𝑤
(4)

 to replace 𝑆𝑤
(1)(𝑢), 𝑆𝑤

(2)(𝑢, 𝑡) , 𝑆𝑤
(3)(𝑢, 𝑣) , and 𝑆𝑤

(4)(𝑢, 𝑣, 𝑡) , 

respectively, 𝑆𝑤(𝑢, 𝑣, 𝑡) =  𝑆𝑤
(1)

+ 𝑆𝑤
(2)

+ 𝑆𝑤
(3)

+ 𝑆𝑤
(4)

 is obtained, and the partial differential 

equation (5) is changed into 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) [𝑆𝑤

(1)
+ 𝑆𝑤

(2)
+  𝑆𝑤

(3)
+ 𝑆𝑤

(4)
] = 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                                                           (60) 

Substituting 𝑆𝑤(𝑢, 𝑣, 𝑡) = 𝑆𝑤
(1)

+ 𝑆𝑤
(2)

+ 𝑆𝑤
(3)

+ 𝑆𝑤
(4)

 (𝑤 = 𝑥, 𝑦, 𝑧) into the blending boundary 

constraints (59a), the following blending boundary constraints are obtained. 

𝑢 = 0         𝜕𝑛[𝑆𝑤
(1)

+ 𝑆𝑤
(2)

+ 𝑆𝑤
(3)

+ 𝑆𝑤
(4)

]/𝜕𝑢𝑛  = ∑ 𝐶𝑤𝑛+1
(𝑘)

4

𝑘=1

 

𝑢 = 1         𝜕𝑛[𝑆𝑤
(1)

+ 𝑆𝑤
(2)

+ 𝑆𝑤
(3)

+ 𝑆𝑤
(4)

]/𝜕𝑢𝑛  = ∑ 𝐶𝑤𝑛+4
(𝑘)

4

𝑘=1

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0,1,2)                                                                 (60a) 

Solving the partial differential equation (60) subjected to the blending boundary constraints 

(60a) can be treated as solving the following equations.  

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤

(𝑖)
= 0 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 1, 2, 3, 4)                                                               (60b) 

subjected to the following blending boundary constraints 
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𝑢 = 0         𝜕𝑛𝑆𝑤
(𝑖)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+1
(𝑖)

 

𝑢 = 1         𝜕𝑛𝑆𝑤
(𝑖)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+4
(𝑖)

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 1, 2, 3, 4; 𝑛 = 0,1,2)                                   (60c) 

When 𝑖 = 1, Eq. (60b) becomes  

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤

(1)
= 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                        (61) 

and Eq. (60c) becomes  

𝑢 = 0         𝜕𝑛𝑆𝑤
(1)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+1
(1)

 

𝑢 = 1         𝜕𝑛𝑆𝑤
(1)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+4
(1)

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0,1,2)                                                       (62) 

where 𝐶𝑤𝑛
(1)

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 1, 2, 3, 4, 5, 6) are known constants.  

The closed form solution of the partial differential equation (61) subjected to the blending 

boundary constraints (62) can be taken to be the form of  

𝑆𝑤
(1)(𝑢) =  ∑ 𝑎𝑤𝑛

(1)

5

𝑛=0

𝑢𝑛 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (63) 

The above solution (63) has exactly satisfied the partial differential equation (61). Therefore, 

it is substituted into corresponding blending boundary constraints (62) to determine the unknown 

constants 𝑎𝑤𝑛
(1)

 (𝑤 = 𝑥, 𝑦, 𝑧). 

After substituting the determined vector-valued constants 𝑎𝑤𝑛
(1)

 (𝑤 = 𝑥, 𝑦, 𝑧) back to Eq. (63), 

𝑆𝑤
(1)(𝑢) is found to be  
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𝑆𝑤
(1)

(𝑢) = ∑ 𝑔𝑛(𝑢)𝐶𝑤𝑛
(1)

6

𝑛=1

 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (64) 

where 𝑔1(𝑢) − 𝑔6(𝑢) are the same as Eq. (18), i. e.,  

𝑔1(𝑢) = 1 − 10𝑢3 + 15𝑢4 − 6𝑢5 

𝑔2(𝑢) = (1 − 6𝑢2 + 8𝑢3 − 3𝑢4)𝑢 

𝑔3(𝑢) = (0.5 − 1.5𝑢 + 1.5𝑢2 − 0.5𝑢3)𝑢2 

𝑔4(𝑢) = (10 − 15𝑢 + 6𝑢2)𝑢3 

𝑔5(𝑢) = (−4 + 7𝑢 − 3𝑢2)𝑢3 

𝑔6(𝑢) = (0.5 − 𝑢 + 0.5𝑢2)𝑢3                                                (65) 

When 𝑖 = 2 , the boundary functions 𝐶𝑤𝑛
(2)

= 𝐶𝑤𝑛
(2)(𝑡) (𝑤 = 𝑥, 𝑦, 𝑧; 𝑛 = 1, 2, … , 6)  are the 

functions of the time variable t. Eq. (60b) becomes  

 

 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤

(2)
(𝑢, 𝑡) = 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                  (66) 

and Eq. (60c) becomes  

𝑢 = 0         𝜕𝑛𝑆𝑤
(2)

/𝜕𝑢𝑛  = 𝑪𝑤𝑛+1
(2)

 (𝑡) 

𝑢 = 1         𝜕𝑛𝑆𝑤
(2)

/𝜕𝑢𝑛  = 𝑪𝑤𝑛+4
(2)

(𝑡) 

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0, 1, 2)                              (67) 

The closed form solution can be taken to be the form of  

𝑆𝑤
(2)(𝑢, 𝑡) =  ∑ 𝑎𝑤𝑛

(2)

5

𝑛=0

(𝑡)𝑢𝑛  
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(𝑤 = 𝑥, 𝑦, 𝑧)                                                                    (68) 

Using the same method as i=1, the following closed form solution for i=2 is obtained. 

𝑆𝑤
(2)(𝑢, 𝑡) = ∑ 𝑔𝑛(𝑢)

6

𝑛=1

𝐶𝑤𝑛
(2)

(𝑡)  

(𝑤 = 𝑥, 𝑦, 𝑧)                                                          (69) 

where 𝑔𝑛(𝑢) are given in Eq. (65). 

When 𝑖 = 3, Eq. (60b) becomes  

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤

(3)
= 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                        (70) 

and Eq. (60c) becomes  

𝑢 = 0         𝜕𝑛𝑆𝑤
(3)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+1
(3)

 

𝑢 = 1         𝜕𝑛𝑆𝑤
(3)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+4
(3)

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0,1,2)                                                       (71) 

where 𝐶𝑤𝑛
(3)

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 1, 2, 3, 4, 5, 6) are known constants.  

After introducing 𝑑𝑤𝑙,𝑗
(3)

 (𝑙, 𝑗 = 1, 2, 3, 4, 5, 6) and letting 𝑑𝑤𝑙,𝑗
(3)

= 1 for 𝑙 = 𝑗 and 𝑑𝑤𝑙,𝑗
(3)

= 0 for 

𝑙 ≠ 𝑗, Eq. (71) can be further written as 

𝑢 = 0 

𝑛 = 0,        𝑆𝑤
(3)

= ∑[𝑑𝑤𝑙,1
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 1,       𝜕𝑆𝑤
(3)

/𝜕𝑢 = ∑[𝑑𝑤𝑙,2
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 2,      𝜕2𝑆𝑤
(3)

/𝜕𝑢2 = ∑[𝑑𝑤𝑙,3
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑢 = 1   
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𝑛 = 0,        𝑆𝑤
(3)

= ∑[𝑑𝑤𝑙,4
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 1,       𝜕𝑆𝑤
(3)

/𝜕𝑢 = ∑[𝑑𝑤𝑙,5
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 2,      𝜕2𝑆𝑤
(3)

/𝜕𝑢2 = ∑[𝑑𝑤𝑙,6
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

         (𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (71a) 

For each of 𝐶𝑤𝑙
(3)

= 𝐶𝑤𝑙
(3)(𝑣) (𝑙 = 1, 2, 3, 4, 5, 6)  in Eq. (71a), a trial function 𝑆𝑤𝑙

(3)
= 𝑆𝑤𝑙

(3)
(𝑢, 𝑣) 

can be constructed. Putting all 𝑆𝑤𝑙
(3)

(𝑢, 𝑣) (𝑙 = 1, 2, 3, 4, 5, 6) together, 𝑆𝑤
(3)(𝑢, 𝑣) = 𝑆𝑤1

(3)(𝑢, 𝑣) +

𝑆𝑤2
(3)(𝑢, 𝑣) + 𝑆𝑤3

(3)(𝑢, 𝑣) + 𝑆𝑤4
(3)(𝑢, 𝑣) + 𝑆𝑤5

(3)(𝑢, 𝑣) + 𝑆𝑤6
(3)(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙

(3)6
𝑙=1  is obtained. 

Substituting  𝑆𝑤
(3)

(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙
(3)6

𝑙=1  into Eq. (70), the following equation is obtained. 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) ∑ 𝑆𝑤𝑙

(3)

6

𝑙=1

= 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                                        (71b) 

Solving the partial differential equation (71b) can be treated as solving the following six partial 

differential equations 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤𝑙

(3)
(𝑢, 𝑣) = 0             

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                                    (71c) 

Substituting 𝑆𝑤
(3)

(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙
(3)6

𝑙=1  into (71a), the blending boundary constraints become 

𝑢 = 0 

𝑛 = 0,        ∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

= ∑[𝑑𝑤𝑙,1
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 1,        𝜕 [∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

] 𝜕𝑢⁄ = ∑[𝑑𝑤𝑙,2
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1
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𝑛 = 2,        𝜕2 [∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

] 𝜕𝑢2⁄ = ∑[𝑑𝑤𝑙,3
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑢 = 1   

𝑛 = 0,        ∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

= ∑[𝑑𝑤𝑙4
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 1,        𝜕 [∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

] 𝜕𝑢⁄ = ∑[𝑑𝑤𝑙,5
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

𝑛 = 2,        𝜕2 [∑ 𝑆𝑤𝑙
(3)

6

𝑙=1

] 𝜕𝑢2⁄ = ∑[𝑑𝑤𝑙,6
(3)

𝐶𝑤𝑙
(3)

]

6

𝑙=1

 

         (𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (71d) 

The blending boundary constraints (71d) can be treated as the following six groups of blending 

boundary constraints (71e) 

𝑢 = 0 

𝑛 = 0,        𝑆𝑤𝑙
(3)(𝑢, 𝑣) = 𝑑𝑤𝑙,1

(3)
𝐶𝑤𝑙

(3)
 

n=1, 𝜕[𝑆𝑤𝑙
(3)(𝑢, 𝑣)]/𝜕𝑢 = 𝑑𝑤𝑙,2

(3)
𝐶𝑤𝑙

(3)
 

n=2,    𝜕2[𝑆𝑤𝑙
(3)(𝑢, 𝑣)]/𝜕𝑢2  = 𝑑𝑤𝑙,3

(3)
𝐶𝑤𝑙

(3)
  

𝑢 = 1   

 𝑛 = 0,       𝑆𝑤𝑙
(3)(𝑢, 𝑣) = 𝑑𝑤𝑙,4

(3)
𝐶𝑤𝑙

(3)
           

n=1,    𝜕[𝑆𝑤𝑙
(3)(𝑢, 𝑣)]/𝜕𝑢 = 𝑑𝑤𝑙,5

(3)
𝐶𝑤𝑙

(3)
  

n=2,        𝜕2[𝑆𝑤𝑙
(3)(𝑢, 𝑣)]/𝜕𝑢2 = 𝑑𝑤𝑙,6

(3)
𝐶𝑤𝑙

(3)
 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5,6)                                              (71e) 

After adding Eq. (71e) for 𝑙 = 1, 2, 3, 4, 5, 6 together, Eq. (71d) is obtained. It indicates that 

Eq. (71d) can be treated as Eq. (71e).  
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After the above discussions, it is clear that solving the partial differential equation (70) 

subjected to the blending boundary constraints (71) can be transformed into solving the above partial 

differential equations (71c) subjected to the blending boundary constraints (71e).  

The analytical solution of the partial differential equation (71c) subjected to the blending 

boundary constraints (71e) can be taken to be the form below  

𝑆𝑤𝑙
(3)

= 𝑆𝑤𝑙
(3)(𝑢, 𝑣) = {∑ 𝑎𝑤𝑙,𝑛

(3)
𝑢𝑛−1

6

𝑛=1

− ∑ 𝑏𝑤𝑙,𝑚
(3)

𝑀

𝑚=1

𝑠𝑖𝑛 𝑚 𝜋𝑢} 𝐶𝑤𝑙
(3)(𝑣) 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                          (72) 

Substituting Eq. (72) into the blending boundary constraints (71e), solving for the unknown 

constants 𝑎𝑤𝑙,𝑛
(3)

 (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙, 𝑛 = 1, 2, 3, 4, 5, 6), and inserting the obtained unknown constants 

𝑎𝑤𝑙,𝑛
(3)

 (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙, 𝑛 = 1, 2, 3, 4, 5, 6) back into Eq. (72),  the following equation is obtained.  

𝑆𝑤𝑙
(3)(𝑢, 𝑣) = ℎ𝑤𝑙(𝑢)𝐶𝑤𝑙

(3)(𝑣) = {∑  𝑔𝑛(𝑢)𝑑𝑤𝑙,𝑛
(3)

6

𝑛=1

− ∑ 𝑏𝑤𝑙,𝑚
(3)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − 𝑠𝑖𝑛(𝑚 𝜋𝑢)]} 𝐶𝑤𝑙
(3)(𝑣) 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                         (73) 

 

where 𝑑𝑤𝑙,𝑛
(3)

= 1 for 𝑛 = 𝑙  and 𝑑𝑤𝑙,𝑛
(3)

= 0 for 𝑛 ≠ 𝑙 ; 𝑔𝑙(𝑢)  (𝑙 = 1, 2, … , 6) are the same as those 

given in Eq. (65); and 𝑓𝑚(𝑢) = 𝑔2(𝑢) + (−1)𝑚𝑔5(𝑢). 

The remaining unknown constants 𝑏𝑤𝑙,𝑚
(3)

  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6; m=1, 2, …, M) are 

determined by substituting Eq. (73) into the partial differential equation (71c) and minimizing the 

squared error sum at the points (𝑢𝑖, 𝑣𝑗) (𝑖 = 0, 1, 2, ⋯ , 𝐼; 𝑗 = 0, 1, 2, ⋯ , 𝐽) which leads to 

∑ ∑ ∑ 𝑏𝑤𝑙,𝑚
(3)

𝐽

𝑗=0

𝐼

𝑖=0

𝛼𝑤𝑙,𝑚
(3)

(𝑢𝑖 , 𝑣𝑗)𝛼𝑤𝑙,𝑘
(3)

(𝑢𝑖, 𝑣𝑗) = ∑ ∑ 𝜑𝑤𝑙
(3)

(𝑢𝑖 , 𝑣𝑗)𝛼𝑤𝑙,𝑘
(3)

𝐽

𝑗=0

𝐼

𝑖=0

(𝑢𝑖, 𝑣𝑗)

𝑀

𝑚=1

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, ⋯ ,6; 𝑘 = 1,2,3, … , 𝑀)                                          (74) 

In the above equation, 𝛼𝑤𝑙,𝑚
(3)

(𝑢𝑖 , 𝑣𝑗) and 𝛼𝑤𝑙,𝑘
(3)

(𝑢𝑖, 𝑣𝑗) are obtained as follows. 
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𝛼𝑤𝑙,𝑚
(3)

(𝑢𝑖, 𝑣𝑗) = {𝛾 [𝑚𝜋
 𝜕6𝑓𝑚(𝑢𝑖)

𝜕𝑢6
+ 𝑚6𝜋6(𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)] 𝐶𝑤𝑙

(3)
(𝑣𝑗)

+ 𝜂 [𝑚𝜋
 𝜕4𝑓𝑚(𝑢𝑖)

𝜕𝑢4
− 𝑚4𝜋4 (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]

𝜕2𝐶𝑤𝑙
(3)

(𝑣𝑗)

𝜕𝑣2

+ 𝜆 [𝑚𝜋
 𝜕2𝑓𝑚(𝑢𝑖)

𝜕𝑢2
+ 𝑚2𝜋2 (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]

𝜕4𝐶𝑤𝑙
(3)

(𝑣𝑗)

𝜕𝑣4

+ 𝜌[𝑚𝜋𝑓𝑚(𝑢𝑖) − (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]
𝜕6𝐶𝑤𝑙

(3)
(𝑣𝑗)

𝜕𝑣6
} 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, 3, 4, 5, 6; 𝑚 = 1, 2, … , 𝑀)                                            (75) 

and 𝜑𝑤𝑙
(3)

(𝑢𝑖, 𝑣𝑗) is determined by the following equation  

𝜑𝑤𝑙
(3)

(𝑢𝑖, 𝑣𝑗) = ∑ 𝑑𝑤𝑙,𝑛
(3)

[𝛾
 𝜕6𝑔𝑙(𝑢𝑖)

𝜕𝑢6
𝐶𝑤𝑙

(3)
(𝑣𝑗) + 𝜂

 𝜕4𝑔𝑙(𝑢𝑖)

𝜕𝑢4

𝜕2𝐶𝑤𝑙
(3)

(𝑣𝑗)

𝜕𝑣2
+ 𝜆

 𝜕2𝑔𝑙(𝑢𝑖)

𝜕𝑢2

𝜕4𝐶𝑤𝑙
(3)

(𝑣𝑗)

𝜕𝑣4

𝟔

𝒏=𝟏

+ 𝜌 𝑔𝑙(𝑢𝑖)
𝜕6𝐶𝑤𝑙

(3)
(𝑣𝑗)

𝜕𝑣6
] 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                       (76) 

 

By solving Eq. (74), all the unknown constants 𝑏𝑤𝑙,𝑚
(3)

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, 3, 4, 5, 6; 𝑚 =

1, 2, … , 𝑀)  are determined. Substituting them back into Eq. (73),  𝑆𝑤𝑙
(3)(𝑢, 𝑣)  is obtained. 

Substituting the obtained 𝑆𝑤𝑙
(3)(𝑢, 𝑣)  into 𝑆𝑤

(3)
(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙

(3)6
𝑙=1 , the following blending surface 

functions are obtained 

𝑆𝑤
(3)

(𝑢, 𝑣) = ∑ {∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑤𝑙,𝑛
(3)

− ∑ 𝑏𝑤𝑙,𝑚
(3)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]}

6

𝑙=1

𝐶𝑤𝑙
(3)(𝑣) 

 (𝑤 = 𝑥, 𝑦, 𝑧)                             (77) 

 

When 𝑖 = 4, the boundary functions 𝐶𝑤𝑛
(4)

= 𝐶𝑤𝑛
(4)(𝑣, 𝑡)( 𝑛 = 1, 2, … ,6) are the functions of the 

parametric variable 𝑣 and the time variable 𝑡. The partial differential equation (60b) becomes  

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤

(4)
= 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                                         (78) 

and the blending boundary constraints (60c) becomes 

𝑢 = 0         𝜕𝑛𝑆𝑤
(4)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+1
(4)
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𝑢 = 1         𝜕𝑛𝑆𝑤
(4)

/𝜕𝑢𝑛  = 𝐶𝑤𝑛+4
(4)

 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 0, 1, 2)                                       (79) 

where 𝐶𝑤𝑛
(4)

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑛 = 1, 2, 3, 4, 5, 6) are known constants.  

After introducing 𝑑𝑤𝑙,𝑗
(4)

 (𝑙 = 1, 2, 3, 4, 5, 6; 𝑗 = 1, 2, 3, 4, 5, 6) and letting 𝑑𝑤𝑙,𝑗
(4)

= 1 for 𝑙 = 𝑗 

and 𝑑𝑤𝑙,𝑗
(4)

= 0 for 𝑙 ≠ 𝑗, Eq. (79) can be further written as 

𝑢 = 0 

𝑛 = 0,        𝑆𝑤
(4)

= ∑[𝑑𝑤𝑙,1
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 1,        𝜕𝑆𝑤
(4)

/𝜕𝑢 = ∑[𝑑𝑤𝑙,2
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 2,        𝜕2𝑆𝑤
(4)

/𝜕𝑢2 = ∑[𝑑𝑤𝑙,3
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑢 = 1   

𝑛 = 0,        𝑆𝑤
(4)

= ∑[𝑑𝑤𝑙,4
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 1,        𝜕𝑆𝑤
(4)

/𝜕𝑢 = ∑[𝑑𝑤𝑙,5
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 2,        𝜕2𝑆𝑤
(4)

/𝜕𝑢2 = ∑[𝑑𝑤𝑙,6
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

         (𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (79a) 

For each of 𝐶𝑤𝑙
(4)

= 𝐶𝑤𝑙
(4)(𝑣, 𝑡) (𝑙 = 1, 2, 3, 4, 5, 6)   in Eq. (79a), a trial function 𝑆𝑤𝑙

(4)
=

𝑆𝑤𝑙
(4)

(𝑢, 𝑣, 𝑡) can be constructed. Putting all 𝑆𝑤𝑙
(4)

(𝑢, 𝑣, 𝑡) (𝑙 = 1, 2, 3, 4, 5, 6) together, 𝑆𝑤
(4)(𝑢, 𝑣, 𝑡) =

𝑆𝑤1
(4)(𝑢, 𝑣, 𝑡) + 𝑆𝑤2

(4)(𝑢, 𝑣, 𝑡) + 𝑆𝑤3
(4)(𝑢, 𝑣, 𝑡) + 𝑆𝑤4

(4)(𝑢, 𝑣, 𝑡) + 𝑆𝑤5
(4)(𝑢, 𝑣, 𝑡) + 𝑆𝑤6

(4)(𝑢, 𝑣, 𝑡) = ∑ 𝑆𝑤𝑙
(4)6

𝑙=1  

is obtained. 
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Substituting  𝑆𝑤
(4)

(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙
(4)6

𝑙=1  into Eq. (78), the following equation is obtained. 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) ∑ 𝑆𝑤𝑙

(4)

6

𝑛=1

= 0 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                                                        (79b) 

Solving the partial differential equation (79b) can be treated as solving the following six partial 

differential equations 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 𝑆𝑤𝑙

(4)
(𝑢, 𝑣, 𝑡) = 0             

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                                    (79c) 

Substituting  𝑆𝑤
(4)

(𝑢, 𝑣, 𝑡) = ∑ 𝑆𝑤𝑙
(4)6

𝑙=1  into (79a), the blending boundary constraints become 

𝑢 = 0 

𝑛 = 0,        ∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

= ∑[𝑑𝑤𝑙,1
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 1,        𝜕 [∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

] 𝜕𝑢⁄ = ∑[𝑑𝑤𝑙,2
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 2,        𝜕2 [∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

] 𝜕𝑢2⁄ = ∑[𝑑𝑤𝑙,3
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑢 = 1   

𝑛 = 0,        ∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

= ∑[𝑑𝑤𝑙,4
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 1,        𝜕 [∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

] 𝜕𝑢⁄ = ∑[𝑑𝑤𝑙,5
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

𝑛 = 2,        𝜕2 [∑ 𝑆𝑤𝑙
(4)

6

𝑙=1

] 𝜕𝑢2⁄ = ∑[𝑑𝑤𝑙,6
(4)

𝐶𝑤𝑙
(4)

]

6

𝑙=1

 

         (𝑤 = 𝑥, 𝑦, 𝑧)                                                                 (79d) 
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The blending boundary constraints (79d) can be treated as the following six groups of blending 

boundary constraints (79e) 

𝑢 = 0 

𝑛 = 0,        𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡) = 𝑑𝑤𝑙,1

(4)
𝐶𝑤𝑙

(4)
 

n=1, 
𝜕[𝑆𝑤𝑙

(4)
(𝑢,𝑣,𝑡)]

𝜕𝑢
= 𝑑𝑤𝑙,2

(4)
𝐶𝑤𝑙

(4)
 

n=2,    𝜕2[𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡)]/𝜕𝑢2  = 𝑑𝑤𝑙,3

(4)
𝐶𝑤𝑙

(4)
  

𝑢 = 1   

 𝑛 = 0,       𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡) = 𝑑𝑤𝑙,4

(4)
𝐶𝑤𝑙

(4)
           

n=1,    𝜕[𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡)]/𝜕𝑢 = 𝑑𝑤𝑙,5

(4)
𝐶𝑤𝑙

(4)
  

n=2,  
𝜕2[𝑆𝑤𝑙

(4)
(𝑢,𝑣,𝑡)]

𝜕𝑢2 = 𝑑𝑤𝑙,6
(4)

𝐶𝑤𝑙
(4)

 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5,6)                                                         (79e) 

Adding Eq. (79e) for 𝑙 = 1, 2, 3, 4, 5, 6 together, Eq. (79d) is obtained. It indicates that Eq. 

(79d) can be treated as Eq. (79e).  

After the above discussions, it is clear that solving the partial differential equation (78) 

subjected to the blending boundary constraints (79) can be transformed into solving the above partial 

differential equations (79c) subjected to the blending boundary constraints (79e).  

The analytical solution of the partial differential equation (79c) subjected to the blending 

boundary constraints (79e) can be taken to be the form below  

𝑆𝑤𝑙
(4)

= 𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡) = {∑ 𝑎𝑤𝑙,𝑛

(4)
𝑢𝑛−1

6

𝑛=1

+ ∑ 𝑏𝑤𝑙,𝑚
(4)

𝑀

𝑚=1

(𝑠𝑖𝑛 𝑚 𝜋𝑢)} 𝐶𝑤𝑙
(4)(𝑣, 𝑡) 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                          (80) 

Substituting Eq. (80) into the blending boundary constraints (79e), solving for the unknown 

constants 𝑎𝑤𝑙,𝑛
(4)

 (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6; n=1, 2, 3, …, 6), and inserting the obtained unknown 
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constants 𝑎𝑤𝑙,𝑛
(4)

 (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6; n=1, 2, 3, …, 6) back into Eq. (80), the following 

equation is obtained  

𝑆𝑤𝑙
(4)

= ℎ𝑤𝑙(𝑢)𝐶𝑤𝑙
(4)(𝑣, 𝑡) = {∑  𝑔𝑛(𝑢)𝑑𝑤𝑙,𝑛

(4)

6

𝑛=1

− ∑ 𝑏𝑤𝑙,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑤𝑙
(4)(𝑣, 𝑡) 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)                                                         (81) 

where 𝑑𝑤𝑛,𝑙 = 1 for 𝑛 = 𝑙  and 𝑑𝑤𝑛,𝑙 = 0 for 𝑛 ≠ 𝑙 ; 𝑔𝑙(𝑢)  (𝑙 = 1, 2, … , 6) are the same as those 

given in Eq. (65); and 𝑓𝑚(𝑢) = 𝑔2(𝑢) + (−1)𝑚𝑔5(𝑢). 

The remaining unknown constants 𝑏𝑤𝑙,𝑚
(4)

  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6; m=1, 2, …, M) are 

determined by substituting Eq. (81) into the partial differential equation (79c) and minimizing the 

squared error sum at the points (𝑢𝑖, 𝑣𝑗) (𝑖 = 0, 1, 2, ⋯ , 𝐼; 𝑗 = 0, 1, 2, ⋯ , 𝐽) and the given time 𝑡0 

which leads to 

∑ ∑ ∑ 𝑏𝑤𝑙,𝑚
(4)

𝛼𝑤𝑙𝑚

𝐽

𝑗=0

𝐼

𝑖=0

𝑀

𝑚=1

(𝑢𝑖, 𝑣𝑗 , 𝑡0)𝛼𝑤𝑙𝑘(𝑢𝑖, 𝑣𝑗 , 𝑡0) = ∑ ∑ 𝜑𝑤𝑙(𝑢𝑖 , 𝑣𝑗 , 𝑡0)𝛼𝑤𝑙𝑘

𝐽

𝑗=0

𝐼

𝑖=0

(𝑢𝑖, 𝑣𝑗 , 𝑡0) 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, ⋯ ,6; 𝑘 = 1,2,3, … , 𝑀)                                          (82) 

In the above equation, 𝛼𝑤𝑙𝑚(𝑢𝑖 , 𝑣𝑗 , 𝑡0) and 𝛼𝑤𝑙𝑘(𝑢𝑖, 𝑣𝑗 , 𝑡0) are obtained as follows. 

𝛼𝑤𝑙𝑚(𝑢𝑖 , 𝑣𝑗 , 𝑡0)

= {𝛾 [𝑚𝜋
 𝜕6𝑓𝑚(𝑢𝑖)

𝜕𝑢6
+ 𝑚6𝜋6 (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)] 𝐶𝑤𝑙

(4)
(𝑣𝑗 , 𝑡0)

+ 𝜂 [𝑚𝜋
 𝜕4𝑓𝑚(𝑢𝑖)

𝜕𝑢4
− 𝑚4𝜋4 (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]

𝜕2𝐶𝑤𝑙
(4)

(𝑣𝑗 , 𝑡0)

𝜕𝑣2

+ 𝜆 [𝑚𝜋
 𝜕2𝑓𝑚(𝑢𝑖)

𝜕𝑢2
+ 𝑚2𝜋2 (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]

𝜕4𝐶𝑤𝑙
(4)

(𝑣𝑗 , 𝑡0)

𝜕𝑣4

+ 𝜌[𝑚𝜋𝑓𝑚(𝑢𝑖) − (𝑠𝑖𝑛 𝑚 𝜋𝑢𝑖)]
𝜕6𝐶𝑤𝑙

(4)
(𝑣𝑗 , 𝑡0)

𝜕𝑣6
} 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, 3, 4, 5, 6; 𝑚 = 1, 2, … , 𝑀)                     (83) 

and 𝜑𝑤𝑙(𝑢𝑖, 𝑣𝑗 , 𝑡0) is determined by the following equation  
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𝜑𝑤𝑙(𝑢𝑖, 𝑣𝑗 , 𝑡0) = ∑ 𝑑𝑤𝑙,𝑛
(4)

6

𝑛=1

[𝛾
 𝜕6𝑔𝑙(𝑢𝑖)

𝜕𝑢6
𝐶𝑤𝑙

(4)
(𝑣𝑗 , 𝑡0) + 𝜂

 𝜕4𝑔𝑙(𝑢𝑖)

𝜕𝑢4

𝜕2𝐶𝑤𝑙
(4)

(𝑣𝑗, 𝑡0)

𝜕𝑣2

+ 𝜆
 𝜕2𝑔𝑙(𝑢𝑖)

𝜕𝑢2

𝜕4𝐶𝑤𝑙
(4)

(𝑣𝑗 , 𝑡0)

𝜕𝑣4
+ 𝜌 𝑔𝑙(𝑢𝑖)

𝜕6𝐶𝑤𝑙
(4)

(𝑣𝑗 , 𝑡0)

𝜕𝑣6
] 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑙 = 1, 2, 3, 4, 5, 6)       (84) 

 

By solving Eq. (82), all the unknown constants 𝑏𝑤𝑙,𝑚
(4)

 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑙 = 1, 2, 3, 4, 5, 6; 𝑚 =

1, 2, … , 𝑀) are obtained. Substituting them back into Eq. (81), 𝑆𝑤𝑙
(4)

(𝑢, 𝑣, 𝑡) is obtained. Substituting 

the obtained 𝑆𝑤𝑙
(4)(𝑢, 𝑣, 𝑡) into 𝑆𝑤

(𝟒)
(𝑢, 𝑣) = ∑ 𝑆𝑤𝑙

(𝟒)6
𝑙=1  , the following blending surface functions are 

obtained. 

𝑆𝑤
(𝟒)

(𝑢, 𝑣, 𝑡) = ∑ {∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑤𝑙,𝑛
(4)

− ∑ 𝑏𝑤𝑙,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]}

6

𝑙=1

𝐶𝑤𝑙
(4)(𝑣, 𝑡) 

 (𝑤 = 𝑥, 𝑦, 𝑧)                             (85) 

Substituting the obtained solutions (64), (69), (77), and (85) into 𝑆𝑤(𝑢, 𝑣, 𝑡) =  𝑆𝑤
(1)(𝑢) +

𝑆𝑤
(2)(𝑢, 𝑡) + 𝑆𝑤

(3)(𝑢, 𝑣) + 𝑆𝑤
(4)(𝑢, 𝑣, 𝑡) , the following function 𝑆𝑤(𝑢, 𝑣, 𝑡) defining a blending 

surface is obtained. 

𝑆𝑤(𝑢, 𝑣, 𝑡) = ∑ 𝑔𝑛(𝑢)[𝐶𝑤𝑛
(1)

+ 𝐶𝑤𝑛
(2)

(𝑡)]

6

𝑛=1

+ ∑ {{∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑤𝑙,𝑛
(3)

− ∑ 𝑏𝑤𝑙,𝑚
(3)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑤𝑙
(3)(𝑣)

6

𝑙=1

+ {∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑤𝑙,𝑛
(4)

− ∑ 𝑏𝑤𝑙,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑤𝑙
(4)(𝑣, 𝑡)} 

          (𝑤 = 𝑥, 𝑦, 𝑧)                                                                                            (86) 

In the following subsection, the obtained blending surface function will be used to create 

various blending surfaces of C2 continuity. 
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3.3.2 Accuracy, efficiency and effects of the second partial derivatives 

In this section, the developed approximate analytical solution will be implemented and compared 

with the corresponding accurate closed form solution to demonstrate its good accuracy and high 

efficiency, the influence of second partial derivatives with respect to the parametric variable 𝑢 on 

the continuity at timelines will be discussed, and constant surface blending with C2 continuity will 

be examined. 

3.3.2.1 Comparison between the obtained approximate analytical solution and 

the corresponding accurate closed form solution 

First, a surface blending example is used to make a comparison between the developed approximate 

analytical solution and the accurate closed form solution. The comparison aims to demonstrate good 

accuracy and high efficiency of the developed approximate analytical solution.  

This example is to create a time-dependent blending surface between two separate elliptic 

cylinders represented with time-dependent varying primary surfaces. The top primary surface for 

this example is defined by 

𝑥 = 𝑎𝑒𝑡sin (2𝜋𝑣) 

𝑦 = 𝑏𝑒−𝑡cos (2𝜋𝑣) 

𝑧 =  ℎ1 + ℎ2𝑢2                                                              (87) 

and the bottom primary surface is represented by the equation of  

𝑥 = 𝑐𝑒−𝑡sin (2𝜋𝑣) 

𝑦 = 𝑑𝑒𝑡cos (2𝜋𝑣) 

𝑧 =  −ℎ3𝑢3                                                                   (87a) 

Deriving the first and second derivatives of Eqs. (87) and (87a) with respect to the parametric 

variable 𝑢, setting 𝑢 =  𝑢1 in Eq. (87) and its first and second partial derivatives with respect to the 
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parametric variable 𝑢, and setting 𝑢 =  𝑢2 in Eq. (87a) and its first and second partial derivatives 

with respect to the parametric variable 𝑢, the blending boundary conditions are obtained as 

𝑢 =  0 

𝑆𝑥 = 𝑎𝑒𝑡sin (2𝜋𝑣)     𝑆𝑦 = 𝑏𝑒−𝑡cos (2𝜋𝑣)     𝑆𝑧 = ℎ1 + ℎ2𝑢1
2 

𝜕𝑆𝑥

𝜕𝑢
= 0                     

𝜕𝑆𝑦

𝜕𝑢
= 0                    

𝜕𝑆𝑧

𝜕𝑢
= −2ℎ2𝑢1 

𝜕2𝑆𝑥

𝜕𝑢2
= 0                  

𝜕2𝑆𝑦

𝜕𝑢2
= 0                  

𝜕2𝑆𝑧

𝜕𝑢2
= 2ℎ2 

𝑢 =  1 

𝑆𝑥 = 𝑐𝑒−𝑡sin (2𝜋𝑣)     𝑆𝑦 = 𝑑𝑒𝑡cos (2𝜋𝑣)     𝑆𝑧 = −ℎ3𝑢2
3 

𝜕𝑆𝑥

𝜕𝑢
= 0                     

𝜕𝑆𝑦

𝜕𝑢
= 0                    

𝜕𝑆𝑧

𝜕𝑢
= −3ℎ3𝑢2

2 

𝜕2𝑆𝑥

𝜕𝑢2 = 0                  
𝜕2𝑆𝑦

𝜕𝑢2 = 0                  
𝜕2𝑆𝑧

𝜕𝑢2 = −6ℎ3𝑢2                              (88) 

The functions in the blending boundary constraints (88) can be divided into 𝐶𝑥1
(4)

=

𝑎𝑒𝑡𝑠𝑖𝑛2𝜋𝑣 , 𝐶𝑥4
(4)

= 𝑐𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣 , 𝐶𝑦1
(4)

= 𝑏𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣 , 𝐶𝑦4
(4)

= 𝑑𝑒𝑡𝑐𝑜𝑠2𝜋𝑣 , 𝐶𝑧1
(1)

= ℎ1 + ℎ2𝑢1
2 , 

𝐶𝑧2
(1)

= −2ℎ2𝑢1 , 𝐶𝑧3
(1)

= 2ℎ2 , 𝐶𝑧4
(1)

= −ℎ3𝑢2
3 , 𝐶𝑧5

(1)
= −3ℎ3𝑢2

2 ,  𝐶𝑧6
(1)

= −6ℎ3𝑢2 , 𝐶𝑥2
(4)

= 𝐶𝑥3
(4)

=

𝐶𝑥5
(4)

= 𝐶𝑥6
(4)

= 𝐶𝑦2
(4)

= 𝐶𝑦3
(4)

= 𝐶𝑦5
(4)

= 𝐶𝑦6
(4)

= 0 , and 𝐶𝑥𝑛
(1)

= 𝐶𝑥𝑛
(2)

= 𝐶𝑥𝑛
(3)

= 𝐶𝑦𝑛
(1)

= 𝐶𝑦𝑛
(2)

= 𝐶𝑦𝑛
(3)

=

𝐶𝑧𝑛
(2)

= 𝐶𝑧𝑛
(3)

= 𝐶𝑧𝑛
(4)

= 0 (𝑛 = 1, 2, ⋯ , 6). 

Substituting 𝐶𝑥𝑛
(1)

= 𝐶𝑥𝑛
(2)

= 𝐶𝑥𝑛
(3)

= 0 ( 𝑛 = 1, 2, ⋯ , 6 ) into Eq. (86) for 𝑥  component, the 

following equation is obtained. 

𝑆𝑥(𝑢, 𝑣, 𝑡) = ∑ {∑  𝑔𝑛(𝑢)6
𝑛=1 𝑑𝑥𝑙,𝑛

(4)
− ∑ 𝑏𝑥𝑙,𝑚

(4)𝑀
𝑚=1 [𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]}𝐶𝑥𝑙

(4)(𝑣, 𝑡)6
𝑙=1   (89) 

Substituting 𝐶𝑥2
(4)

= 𝐶𝑥3
(4)

= 𝐶𝑥5
(4)

= 𝐶𝑥6
(4)

= 0 into the above equation, the above equation is 

further changed into the following equation 
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𝑆𝑥(𝑢, 𝑣, 𝑡) = {∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑥1,𝑛
(4)

− ∑ 𝑏𝑥1,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑥1
(4)(𝑣, 𝑡)

+ {∑  𝑔𝑛(𝑢)

6

𝑛=1

𝑑𝑥4,𝑛
(4)

− ∑ 𝑏𝑥4,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑥4
(4)(𝑣, 𝑡) 

Since 𝐶𝑥1
(4)

= 𝐶𝑥1
(4)

(𝑣, 𝑡) ≠ 0 , 𝑑𝑥1,1
(4)

= 1  and 𝑑𝑥1,𝑛
(4)

= 0   (𝑛 = 2, 3, ⋯ , 6) . Since 𝐶𝑥4
(4)

=

𝐶𝑥4
(4)

(𝑣, 𝑡) ≠ 0 , 𝑑𝑥4,4
(4)

= 1  and 𝑑𝑥4,𝑛
(4)

= 0   (𝑛 = 1, 2, 3, 5, 6 ). Substituting them into the above 

equation, the following equation is obtained. 

𝑆𝑥(𝑢, 𝑣, 𝑡) = { 𝑔1(𝑢) − ∑ 𝑏𝑥1,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑥1
(4)(𝑣, 𝑡) 

+ { 𝑔4(𝑢) − ∑ 𝑏𝑥4,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑥4
(4)(𝑣, 𝑡)            (89a) 

Setting  𝑤 = 𝑥 and 𝑙 = 1  in Eq. (82) and solving the 𝑀 linear algebra equations given by Eq. 

(82), 𝑏𝑥1,𝑚
(4)

 (𝑚 = 1, 2, ⋯ , 𝑀) is obtained. Setting  𝑤 = 𝑥 and 𝑙 = 4 in Eq. (82) and solving the 𝑀 

linear algebra equations given by Eq. (82), 𝑏𝑥4,𝑚
(4)

 (𝑚 = 1, 2, ⋯ , 𝑀) is obtained. Substituting the 

obtained 𝑏𝑥1,𝑚
(4)

 and 𝑏𝑥4,𝑚
(4)

 into Eq. (86), the 𝑥 component of the blending surface is obtained. 

With the same treatment, the  𝑦  component of the blending surface is obtained which has the 

form of   

𝑆𝑦(𝑢, 𝑣, 𝑡) = { 𝑔1(𝑢) − ∑ 𝑏𝑦1,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑦1
(4)

(𝑣, 𝑡) 

+ { 𝑔4(𝑢) − ∑ 𝑏𝑦4,𝑚
(4)

𝑀

𝑚=1

[𝑚𝜋𝑓𝑚(𝑢) − (𝑠𝑖𝑛 𝑚 𝜋𝑢)]} 𝐶𝑦4
(4)(𝑣, 𝑡)            (89b) 

Setting 𝑤 = 𝑧 , and substituting 𝐶𝑧𝑛
(2)

= 𝐶𝑧𝑛
(3)

= 𝐶𝑧𝑛
(4)

= 0 (𝑛 = 1, 2, ⋯ , 6) into Eq. (86), the 

following equation is obtained 
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𝑆𝑧(𝑢, 𝑣, 𝑡) = 𝑆𝑧(𝑢) = ∑ 𝑔𝑛(𝑢)𝐶𝑧𝑛
(1)

=

6

𝑛=1

(ℎ1 + ℎ2𝑢1
2)𝑔1(𝑢) − 2ℎ2𝑢1𝑔2(𝑢) + 2ℎ2𝑔3(𝑢) 

−ℎ3𝑢2
3𝑔4(𝑢) − 3ℎ3𝑢2

2𝑔5(𝑢) − 6ℎ3𝑢2𝑔6(𝑢)            (89c) 

Using the approximate analytical solution (89a), (89b) and (89c) and the geometric parameters 

𝑎 = 1.6, 𝑏 = 1.0, 𝑐 = 0.8, 𝑑 = 0.6, ℎ1 = 2.0, ℎ2 = 3.0, and ℎ3 = 5.0, and setting 𝑢1 = 0.2 for the 

top surface, 𝑢2 = 0.3 for the bottom surface, the time variable to 𝑡 = 0.2, and M in Eqs. (89a) and 

(89b) to 10, 15, and 20, and I and J in Eq. (82) to 100, which leads to 101 x 101 = 10,201 uniformly 

distributed vertices, the obtained blending surfaces are depicted in Figure 9. 

For this example, the boundary constraints for 𝑡 = 0.2 only involve constants, and sine and 

cosine functions. Therefore, the closed form solution is obtainable. Using the same geometric 

parameters, the mathematical expressions of the corresponding closed form solution is obtained as 

𝑆𝑥(𝑢, 𝑣, 𝑡) = [𝐶𝑥1𝑒𝑞0𝑢 + 𝐶𝑥2𝑒−𝑞0𝑢 + 𝑒𝑞1𝑢(𝐶𝑥3𝑐𝑜𝑠𝑞2𝑢 + 𝐶𝑥4𝑠𝑖𝑛𝑞2𝑢)

+ 𝑒−𝑞1𝑢(𝐶𝑥5𝑐𝑜𝑠𝑞2𝑢 + 𝐶𝑥6𝑠𝑖𝑛𝑞2𝑢)]sin (2𝜋𝑣) 

𝑆𝑦(𝑢, 𝑣, 𝑡) = [𝐶𝑦1𝑒𝑞0𝑢 + 𝐶𝑦2𝑒−𝑞0𝑢 + 𝑒𝑞1𝑢(𝐶𝑦3𝑐𝑜𝑠𝑞2𝑢 + 𝐶𝑦4𝑠𝑖𝑛𝑞2𝑢)

+ 𝑒−𝑞1𝑢(𝐶𝑦5𝑐𝑜𝑠𝑞2𝑢 + 𝐶𝑦6𝑠𝑖𝑛𝑞2𝑢)]cos (2𝜋𝑣) 

𝑆𝑧(𝑢) = ∑ 𝐶𝑧𝑛𝑢𝑛−16
𝑛=1                                                                                      (90) 

where the constants 𝑞0 ,  𝑞1 , 𝑞2 ,  𝐶𝑥𝑛,  𝐶𝑦𝑛 , and 𝐶𝑧𝑛 (𝑛 = 1, 2, 3, 4, 5, 6)  are determined by 

substituting Eq. (90) into the partial differential equation (5) and the blending boundary constraints 

(88). 

The blending surface obtained from the accurate closed form solution is also shown in Figure 

9 where CFS indicates the closed form solution. The second image of the second row of the figure 

shows the profile curves of the blending surface obtained from 𝑀 = 10,15, 𝑎𝑛𝑑 20 of the proposed 

approach and the closed form solution. The profile curves are magnified in the third image of the 

second row with the two innermost profile curves from M=10. The second row of Figure 9 shows 
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no visible difference between profile curves from M=15 and M=20 of the proposed approach and 

the closed form solution. 

        
  (a)M=10                                (b) M=15                               (c) M=20 

 
                     (d) CFS                                  (e)                                                (f) 

Figure 9: Blending surfaces generated by different values of 𝑀 in Eqs. (89a) and (89b) and closed 

form solution (90) where (a), (b) and (c) are from different values of M in Eqs. (89a) and (89b), (d) 

is from Eq. (90) of the closed form solution, and (e) and (f) depicts the profile curves of the blending 

surfaces shown in (a), (b), (c) and (d) where (f) is the middle part of (e), and (e) and (f) are used to 

show the differences between blending surfaces created with the closed form solution and the 

approximate analytical solution with 𝑀 = 10, 15 and 20. 

 

Next, the errors between the approximate analytical solution and the exact closed form solution 

are quantified. Since the blending surfaces obtained from the close form solution and the 

approximate analytical solution are the functions of the parametric variables 𝑢 and 𝑣, the errors 

between them are also the function of parametric variables 𝑢 and 𝑣. In order to quantify the errors 
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between them, we discretize the blending surfaces first. If the two methods give the same result, the 

points at the same parametric positions obtained with the two methods should be the same points. 

Therefore, the Euclidean distance between two corresponding points is the most suitable in 

evaluating the errors between the two methods. If 𝒑𝑖 and  𝒒𝑖 are used to indicate the thi  point on the 

blending surfaces respectively obtained from the developed approximate analytical solution and the 

exact closed form solution, i. e., 𝒑𝑖 = 𝑺𝑀(𝑢𝑖, 𝑣𝑖 , 𝑡 = 0.2)  and 𝒒𝑖 = 𝑺𝐶𝐹𝑆(𝑢𝑖 , 𝑣𝑖 , 𝑡 = 0.2) , the 

Euclidean distance between the thi  point on the two blending surfaces is 𝑑(𝒑𝑖, 𝒒𝑖) (Mora et al., 

2016). The errors between the proposed approximate analytical solution and the exact closed form 

solution are calculated with the following equations 

𝐸1 = 𝑚𝑎𝑥{ 𝑑(𝒑𝑖, 𝒒𝑖)}               𝐸2 =
1

𝐼
∑ 𝑑(𝒑𝑖, 𝒒𝑖)

𝐼

𝑖=1

 

𝐸3 = 𝑚𝑎𝑥 {
𝑑(𝒑𝑖, 𝒒𝑖)

𝐷
}              𝐸4 =

1

𝐼
∑

𝑑(𝒑𝑖, 𝒒𝑖)

𝐷

𝐼

𝑖=1

 

In the equation, 𝐸1, 𝐸2, 𝐸3, and 𝐸4 indicate absolute maximum error (AME), absolute average 

error (AAE), relative maximum error (RME), and relative average error (RAE), respectively, 𝐼 is 

the total number of all the points on a blending surface, and 𝐷 is the maximum distance between 

two points of the blending surface with the same parametric values 𝑢 but different parametric values 

𝑣 . The errors obtained from the above equation are given in Table 1. The computational time (CPU) 

used to determine all the unknown constants and generate the blending surfaces with 𝑀 = 10, 15 

and 20 is also given in the same table.  

The data in Table 1 demonstrate good accuracy and high computational efficiency of the 

proposed approximate analytical solution. When 𝑀 increases from 10 to 20, the relative average 

error (RAE) of the proposed approach decreases from 7.95 × 10−3 to 8.31 × 10−6. That is to say, 

when 𝑀 = 10, the average error is three orders smaller than the maximum distance 𝐷; and when 

𝑀 = 20, the average error is six orders smaller than the maximum distance 𝐷. They indicate the 
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errors are small and converge quickly. With the increase of M, the computational time for 

approximate analytical solution rises. When 𝑀 increases from 10 to 20, the computational time of 

the approximate analytical solution raises from 28.84 ms to 108.22 ms which is at about the same 

order as the accurate closed form solution (14.88 ms). Unlike the accurate closed form solution 

which is applicable to simple blending boundary constraints involving constants, sine and cosine 

functions, and exponential functions only, the proposed approach is applicable to various 

complicated blending boundary constraints. 

 

Table 1. Accuracy and efficiency of the variable decomposition-based approximate analytical 

approach at the time instant t = 0.2 

M 10 (Fig. 9a) 15 (Fig. 9b) 20 (Fig. 9c) CFS (Fig. 9d) 

AAE 1.71 × 10−2 1.65 × 10−3 1.79 × 10−5 0 

AME 4.55 × 10−2 4.85 × 10−3 6.40 × 10−5 0 

RAE 7.95 × 10−3 7.65 × 10−4 8.31 × 10−6 0 

RME 2.11 × 10−2 2.25 × 10−3 2.97 × 10−5 0 

Time (ms) 28.84 59.87 108.22 14.88 

 

3.3.2.2 Effects of second partial derivatives 

Unlike the surface blending with tangential continuity presented in (You et al., 2012), which only 

maintains the continuities of the position functions and first partial derivatives at trimlines, the 

surface blending with C2 continuity proposed in this thesis further introduces the second partial 

derivatives at trimlines to achieve higher order continuity. In this subsection, how the second partial 
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derivatives at trimlines affect the continuity between the blending surface and primary surfaces will 

be discussed. 

Setting 𝑡 = 0.05 and keeping all the position functions, all the first partial derivatives, and the 

second partial derivatives of the surface functions 𝑥 and 𝑦 for both blending surface and primary 

surfaces at the timelines same as those given in Eq. (89), the following three different cases of the 

second partial derivatives of the surface function 𝑧 shown in Table 2 are considered where TPS, BS 

and BPS stand for the top primary surface, blending surface, and bottom primary surface, 

respectively.  

Case 1: The blending surface and primary surfaces have the same second partial derivatives 

at both trimlines (Figure 10(a)). 

Case 2: The blending surface has the second partial derivative −10ℎ2 at 𝑢 = 0 and −5.4ℎ3 

at 𝑢 = 1 (Figure 10(b)). 

Case 3: The blending surface has the second partial derivative −20ℎ2 at 𝑢 = 0 and −10.8ℎ3 

at 𝑢 = 1 (Figure 10(c)). 

 

Table 2. Second partial derivatives of the surface function z with respect to 𝑢 at trimlines used in the 

variable decomposition-based approximate analytical approach 

 TPS 

𝑢 = 0.2 

BS 

𝑢 = 0 

BPS 

𝑢 = 0.3 

BS 

𝑢 = 1 

Figure 

 

2ℎ2 2ℎ2 −1.8ℎ3 −1.8ℎ3 10(a) 

2ℎ2 10ℎ2 −1.8ℎ3 −5.4ℎ3 10(b) 

2ℎ2 20ℎ2 −1.8ℎ3 −10.8ℎ3 10(c) 

 

𝜕2𝑧

𝜕𝑢2
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For all the three cases, the top primary surface has the second partial derivative 2ℎ2 at 𝑢 =

0.2 which is the trimline 𝑢 = 0 of the blending surface and the bottom primary surface has the 

second partial derivative −1.8ℎ3 at 𝑢 = 0.3 which is the trimline 𝑢 = 1 of the blending surface. 

The obtained results for the three cases are shown in Figure 10 where the surfaces in the bottom 

row show the blending shapes only. They are used to demonstrate how the second partial derivatives 

affect the continuity at the trimlines.  

Comparing these images, the following conclusions can be drawn: (1) When the blending 

surface and primary surfaces have the same second partial derivatives at the trimlines, good 

continuity between the blending surface and the primary surfaces is obtained as shown in Figure 

10(a); (2) Different second partial derivatives between the blending surface and primary surfaces 

will cause discontinuity at the trimlines as indicated in Figures 10(b) and 10(c); (3) The larger is the 

difference of the second partial derivatives between the blending surface and primary surfaces, the 

more serious is the discontinuity as demonstrated in Figure 10(c). 

          
 

             
                                  (a)                                         (b)                                           (c) 

Figure 10: Effects of second partial derivatives 
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3.3.3 Applications 

The proposed approach can be used to blend both time-dependent varying parametric surfaces and 

time-independent constant parametric surfaces. In the subsections below, some examples will be 

given to demonstrate the applications of the proposed approach in surface blending of varying and 

constant parametric surfaces. 

3.3.3.1 Blending of varying parametric surfaces 

Surface blending between time-dependent varying parametric surfaces can be well demonstrated 

with the primary surfaces defined by Eqs. (87) and (88). With the developed method and setting the 

time variable 𝑡 = 0, 𝑡 = 0.1, and 𝑡 = 0.2, the blending surfaces at these time instants are obtained 

and depicted in Figure 11 where (a)-(c) are from the front view and (d)-(f) are from the side view.  

        
(a) t=0.0                                   (b) t=0.1                                      (c) t=0.2 

                                                                   
(d) t=0.0                                   (e) t=0.1                                      (f) t=0.2 

Figure 11: Blending surfaces at different time instants 
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The images shown in Figure 11 indicate that at different time instants, the proposed approach 

always creates blending surfaces of C2 continuity to smoothly connect primary surfaces together. 

3.3.3.2 Blending of constant parametric surfaces 

In this section, how the developed approach can be used to blend constant parametric surfaces with 

C2 continuity will be investigated. This example is to blend two perpendicular planes which is a very 

common engineering problem. The blending boundary constraints for this surface blending can be 

taken to be 

𝑢 =  0 

𝑆𝑥 = 0                       𝑆𝑦 = ℎ0 + ℎ1𝑢1              𝑆𝑧 = 𝑝𝑣 

𝜕𝑆𝑥

𝜕𝑢
= 0                     

𝜕𝑆𝑦

𝜕𝑢
= −ℎ1                     

𝜕𝑆𝑧

𝜕𝑢
= 0 

𝜕2𝑆𝑥

𝜕𝑢2
= 0                  

𝜕2𝑆𝑦

𝜕𝑢2
= 0                

𝜕2𝑆𝑧

𝜕𝑢2
= 0 

𝑢 =  1 

𝑆𝑥 = 𝑠0 + 𝑠1𝑢2
2                 𝑆𝑦 = 0                       𝑆𝑧 = 𝑝𝑣 

𝜕𝑆𝑥

𝜕𝑢
= 2𝑠1𝑢2                     

𝜕𝑆𝑦

𝜕𝑢
= 0                    

𝜕𝑆𝑧

𝜕𝑢
= 0 

𝜕2𝑆𝑥

𝜕𝑢2
= 2𝑠1                   

𝜕2𝑆𝑦

𝜕𝑢2
= 0                  

𝜕2𝑆𝑧

𝜕𝑢2
= 0                                        (91) 

 The above blending boundary constraints can also be written as: 

𝑢 =  0 

[𝑆𝑥 𝑆𝑦  𝑆𝑧] = [0 ℎ0 + ℎ1𝑢1 𝑝𝑣] 

[
𝜕𝑆𝑥

𝜕𝑢

𝜕𝑆𝑦

𝜕𝑢
 
𝜕𝑆𝑧

𝜕𝑢
] = [0 −ℎ1 0] 

[
𝜕2𝑆𝑥

𝜕𝑢2

𝜕2𝑆𝑦

𝜕𝑢2
 
𝜕2𝑆𝑧

𝜕𝑢2
] = [0 0 0] 
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𝑢 =  1 

[𝑆𝑥 𝑆𝑦  𝑆𝑧] = [𝑠0 + 𝑠1𝑢2
2 0 𝑝𝑣] 

[
𝜕𝑆𝑥

𝜕𝑢

𝜕𝑆𝑦

𝜕𝑢
 
𝜕𝑆𝑧

𝜕𝑢
] = [2𝑠1𝑢2 0 0] 

[
𝜕2𝑆𝑥

𝜕𝑢2

𝜕2𝑆𝑦

𝜕𝑢2
 
𝜕2𝑆𝑧

𝜕𝑢2
] = [2𝑠1 0 0] 

The geometric parameters in Eq. (91) are taken to be ℎ0 = 𝑠0 = 0, ℎ1 = 1.9, 𝑠1 = 2 , 𝑝 = 2, 

𝑢1 = 0.3 and 𝑢2 = 0.6. The developed approximate analytical solution is used to create the blending 

surface which is shown in Figure 12 where Figure 12(a) shows the whole blending surface and 

Figure 12(b) shows a very small part of the blending surface. It is clear that the proposed approach 

is effective in blending constant parametric surfaces with C2 continuity.  

 

                             (a)  Blending surface                             (b) Part of blending surface 

Figure 12: Blending between perpendicular planes 

 

The second example is to blend the frustum of a declined circular cone and a declined plane 

at a specified circle with C2 continuity. The top parametric surface can be described by the following 

equations 

𝑥 = 𝑟𝑢2𝑐𝑜𝑠𝑣 
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𝑦 = 𝑟𝑢2𝑠𝑖𝑛𝑣 

𝑧 = ℎ0 + ℎ1𝑢 + ℎ𝑐𝑜𝑠𝑣                                               (92) 

and the bottom parametric surface is represented by the equation of 

𝑥 = 𝑅𝑢𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝑣 

𝑦 = 𝑅𝑢𝑠𝑖𝑛𝑣 

𝑧 = 𝑅𝑢𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝑣                                                           (93) 

If the top surface is to be connected to the blending surface at 𝑢 = 𝑢0, and the bottom surface is 

to be connected to the blending surface at 𝑢=𝑢1, the blending boundary constraints can be formulated as 

𝑢 =  0 

𝑆𝑥 = 𝑟𝑢0
2𝑐𝑜𝑠𝑣     𝑆𝑦 = 𝑟𝑢0

2𝑠𝑖𝑛𝑣     𝑆𝑧 = ℎ0 + ℎ1𝑢0 + ℎ𝑐𝑜𝑠𝑣 

𝜕𝑆𝑥

𝜕𝑢
= −2𝑟𝑢0𝑐𝑜𝑠𝑣      

𝜕𝑆𝑦

𝜕𝑢
= −2𝑟𝑢0𝑠𝑖𝑛𝑣    

𝜕𝑆𝑧

𝜕𝑢
= −ℎ1 

𝜕2𝑆𝑥

𝜕𝑢2
= 2𝑟𝑐𝑜𝑠𝑣                 

𝜕2𝑆𝑦

𝜕𝑢2
= 2𝑟𝑠𝑖𝑛𝑣                

𝜕2𝑆𝑧

𝜕𝑢2
= 0 

 

𝑢 =  1 

𝑆𝑥 = 𝑅𝑢1𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝑣     𝑆𝑦 = 𝑅𝑢1𝑠𝑖𝑛𝑣     𝑆𝑧 = 𝑅𝑢1𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝑣 

𝜕𝑆𝑥

𝜕𝑢
= 𝑅𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝑣    

𝜕𝑆𝑦

𝜕𝑢
= 𝑅𝑠𝑖𝑛𝑣          

𝜕𝑆𝑧

𝜕𝑢
= 𝑅𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝑣 

𝜕2𝑆𝑥

𝜕𝑢2 = 0                  
𝜕2𝑆𝑦

𝜕𝑢2 = 0                  
𝜕2𝑆𝑧

𝜕𝑢2 = 0                                 (94) 

Taking 𝑢0 = 0.6 and 𝑢1 = 0.8 in Eq. (94), and setting the geometric parameters to: 𝑟 = 1.8,

𝑅 = 2.0,  ℎ0 = 0,   ℎ = 0.5, ℎ1 = 3, and 𝛼 = −200,  the blending surface is obtained and depict in 

Figure 13 where the two images shown in Figure 13(a) and Figure 13(b) are from different view 

angles. 
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                                        (a)                                                                (b)          

Figure 13: Blending between the frustum of a declined circular cone and a declined plane at a 

specified circle 

3.4 Differential property-based approximate analytical 

approach 

The variable decomposition-based approximate analytical approach is effective in dealing with 

various 𝐶2 continuous blending between time-dependent and time-independent parametric surfaces. 

However, this approach can be improved further.  

In the decomposed boundary functions 𝐶𝑛
(3)

(𝑣) and 𝐶𝑛
(4)

(𝑣, 𝑡)(𝑛 = 1,2,3, … 6), some of them 

may have the differential properties 

𝜕2𝐶𝑛
(𝑖)

𝜕𝑣2
= 0 

(𝑖 = 3,4) 

Or 

𝜕2𝑘𝐶𝑛
(𝑖)

𝜕𝑣2
= 𝛽𝑛

𝑘𝐶𝑛
(𝑖)
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(𝑖 = 3,4) 

As discussed in Section 3.2, when the blending boundary constraints have the above 

differential properties, the closed form solutions are obtainable. According to this consideration, the 

variable-based decomposition discussed in section 3.3 may not be optimal. The optimal 

decomposition of the blending boundary constraints should consider the above differential 

properties to further simplify the mathematical treatment. 

In this section, this differential property-based decomposition will be investigated, and a 

differential property-based approximate analytical approach will be developed to tackle 𝐶2 

continuous blending between time-dependent and time-independent parametric surfaces. It 

integrates the advantage of the closed form solution-based approximate analytical approach in 

considering different differential properties and the strength of the variable decomposition-based 

approximate analytical approach in obtaining the approximate analytical solutions for the blending 

boundary functions which have no differential properties. 

3.4.1 Transformed mathematical model and its solution 

According to different differential properties, the blending boundary functions 𝑓𝜉(𝜉 = 𝑥, 𝑦, 𝑧; 𝑖 =

1,2, …) given in the blending boundary constraints (1) can be classified the following three groups 

𝐶�̅�𝑛 = 𝐶�̅�𝑛(𝑣, 𝑡) = ∑ �̅�𝜉𝑗,𝑛𝑓�̅�𝑗(𝑣, 𝑡)

𝑗

 

�̂�𝜉𝑛 = �̂�𝜉𝑛(𝑣, 𝑡) = ∑ �̂�𝜉𝑘,𝑛𝑓𝜉𝑘(𝑣, 𝑡)

𝑘

 

�̃�𝜉𝑛 = �̃�𝜉𝑛(𝑣, 𝑡) = ∑ �̃�𝜉𝑗,𝑛𝑓𝜉𝑙(𝑣, 𝑡)

𝑗

 

(𝑗, 𝑘, 𝑙 = 1,2, … ; 1,2, . . ,6)                                                         (95) 

where the overbar “ ⎺ ” indicates that the blending boundary functions have the following differential 

property (97), the overhead symbol “⌃” denotes that the blending boundary functions have the 
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following differential property (98), and the overhead symbol “  ͠  ” shows that the blending boundary 

functions have no the differential properties (97) and (98). 

The first group of functions 𝑓�̅�𝑗(𝑣, 𝑡)  (𝜉 = 𝑥, 𝑦, 𝑧; 𝑗 = 1,2, ⋯ ) has the following differential 

properties 

𝜕2�̅�𝜉𝑗(𝑣,𝑡)

𝜕𝑣2 = 0

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑗 = 1,2, ⋯ )
                                                     (96) 

The second group of functions 𝑓𝑘𝜉(𝑣, 𝑡)  

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑘 = 1,2, ⋯ ) has the following differential properties 

𝜕2�̅��̂�𝑘𝜉(𝑣,𝑡)

𝜕𝑣2𝑛 = 𝛽𝜉𝑘
�̅� 𝑓𝑘𝜉(𝑣, 𝑡)

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑘 = 1,2, ⋯ ; �̅� = 1,2,3)
                                        (97) 

The third group of functions 𝑓𝜉𝑙(𝑣, 𝑡)  (𝜉 = 𝑥, 𝑦, 𝑧; 𝑙 = 1,2, ⋯ ) has none of the differential 

properties (96) and (97). 

After decomposing the functions in the blending boundary constraints (1) into the above the 

three groups of boundary functions, the blending boundary constraints (1) become 

𝑢 = 0       𝑆𝜉(0, 𝑣, 𝑡) = �̄�𝜉1 + �̂�𝜉1 + �̃�𝜉1 

               ∂𝑆𝜉(0, 𝑣, 𝑡) 𝜕𝑢⁄ = �̄�𝜉2 + �̂�𝜉2 + �̃�𝜉2 

               ∂2𝑆𝜉(0, 𝑣, 𝑡) 𝜕𝑢2⁄ = �̄�𝜉3 + �̂�𝜉3 + �̃�𝜉3 

𝑢 = 1        𝑆𝜉(1, 𝑣, 𝑡) = �̄�𝜉4 + �̂�𝜉4 + �̃�𝜉4 

               ∂𝑆𝜉(1, 𝑣, 𝑡) 𝜕𝑢⁄ = �̄�𝜉5 + �̂�𝜉5 + �̃�𝜉5 

               ∂2𝑆𝜉(1, 𝑣, 𝑡) 𝜕𝑢2⁄ = �̄�𝜉6 + �̂�𝜉6 + �̃�𝜉6 

               (𝜉 = 𝑥, 𝑦, 𝑧)                                                                     (98) 

If the mathematical functions 𝑆𝜉(𝑢, 𝑣, 𝑡) (𝜉 = 𝑥, 𝑦, 𝑧) of the blending surface is decomposed 

into the corresponding three parts: �̄�𝜉 = �̄�𝜉(𝑢, 𝑣, 𝑡) , �̂�𝜉 = �̂�𝜉(𝑢, 𝑣, 𝑡)  and �̃�𝜉 = �̃�𝜉(𝑢, 𝑣, 𝑡) , and 

substitute 𝑆𝜉(𝑢, 𝑣, 𝑡) = �̄�𝜉 + �̂�𝜉 + �̃�𝜉 into Eq. (5), the following equation is reached. 
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(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
) 

[�̄�𝜉(𝑢, 𝑣, 𝑡) + �̂�𝜉(𝑢, 𝑣, 𝑡) + �̃�𝜉(𝑢, 𝑣, 𝑡)] = 0                             （99） 

On the trimlines 𝑢 = 0  and 𝑢 = 1 , �̄�𝜉(𝑢, 𝑣, 𝑡) , �̂�𝜉(𝑢, 𝑣, 𝑡)  and �̃�𝜉(𝑢, 𝑣, 𝑡)  correspond to 

�̄�𝑛𝜉(𝑣, 𝑡), �̂�𝑛𝜉(𝑣, 𝑡) and �̃�𝑛𝜉(𝑣, 𝑡), respectively. Solving Eq. (5) subjected to (1) can be transformed 

into solving each of the terms in the square bracket of Eq. (99) subjected to the blending boundary 

constraints consisting of the corresponding terms in Eq. (98).  

3.4.1.1 Resolution for the first group of boundary functions 

For the first group of boundary functions  𝑓𝑖(𝑣, 𝑡)  (𝑖 = 1,2, ⋯ ), the corresponding mathematical 

expressions of the blending surface can be taken to be 

�̄�𝜉(𝑢, 𝑣, 𝑡) = ∑ 𝐻𝜉𝑗

𝑗

(𝑢)𝑓𝜉𝑗(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧; j = 1,2, ⋯ )                                               (100) 

The partial differential equations (99) corresponding to the mathematical expressions 

�̄�𝜉(𝑢, 𝑣, 𝑡) are 

(𝛾
𝜕6

𝜕𝑢6 + 𝜂
𝜕6

𝜕𝑢4𝜕𝑣2 + 𝜆
𝜕6

𝜕𝑢2𝜕𝑣4 + 𝜌
𝜕6

𝜕𝑣6)�̄�𝜉(𝑢, 𝑣, 𝑡) = 0                 (101)
 

The blending boundary constraints (98) corresponding to the mathematical expressions 

�̄�𝜉(𝑢, 𝑣, 𝑡) are 

u = 0         �̄�𝜉(0, 𝑣, 𝑡) = ∑ �̄�𝜉𝑗,1𝑗 𝑓𝜉𝑗(𝑣, 𝑡)  

                 ∂�̄�𝜉(0, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̄�𝜉𝑗,2𝑗 𝑓𝜉𝑗(𝑣, 𝑡) 

               ∂2�̄�𝜉(0, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̄�𝜉𝑗,3

𝑗

𝑓𝜉𝑗(𝑣, 𝑡) 

𝑢 = 1        �̄�𝜉(1, 𝑣, 𝑡) = ∑ �̄�𝜉𝑗,4

𝑗

𝑓𝜉𝑗(𝑣, 𝑡) 
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               ∂�̄�𝜉(1, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̄�𝜉𝑗,5

𝑗

𝑓𝜉𝑗(𝑣, 𝑡) 

               ∂2�̄�𝜉(1, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̄�𝜉𝑗,6

𝑗

𝑓𝜉𝑗(𝑣, 𝑡) 

                                                       (𝜉 = 𝑥, 𝑦, 𝑧)                                                                         (102) 

Substituting Eq. (100) into (101) and considering the differential properties (96) and the 

blending boundary constraints (102), the following equation is obtained. 

𝜕6�̄�𝜉𝑗(𝑢)

𝜕𝑢6
= 0 

    (𝜉 = 𝑥, 𝑦, 𝑧; 𝑗 = 1,2, ⋯ )                                         (103) 

subjected to the following blending boundary constraints 

𝑢 = 0       �̄�𝜉𝑗(0) = �̄�𝜉𝑗,1 

               ∂�̄�𝜉𝑗(0) 𝜕𝑢⁄ = �̄�𝜉𝑗,2 

               ∂2�̄�𝜉𝑗(0) 𝜕𝑢2⁄ = �̄�𝜉𝑗,3 

𝑢 = 1        �̄�𝜉𝑗(1) = �̄�𝜉𝑗,4 

               ∂�̄�𝜉𝑗(1) 𝜕𝑢⁄ = �̄�𝜉𝑗,5 

               ∂2�̄�𝜉𝑗(1) 𝜕𝑢2⁄ = �̄�𝜉𝑗,6 

                                                                       (𝜉 = 𝑥, 𝑦, 𝑧; 𝑗 = 1,2, ⋯ )                                       (104) 

 The solution to the sixth order ordinary differential equation (101) can be taken to be 

�̄�𝜉𝑗(𝑢) = ∑ �̄�𝜉𝑗,𝑛𝑢𝑛

5

𝑛=0

 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑗 = 1,2, ⋯ )                                              (105) 

where �̄�𝜉𝑗,𝑛 (𝑛 = 1,2, ⋯ ,6) are unknown constants. 

Eq. (105) have exactly satisfied the sixth order ordinary differential equation (103). 

Substituting Eq. (105) into the boundary conditions (104), all the unknown constants �̄�𝜉𝑗 are 
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determined. Introducing the determined unknown constants �̄�𝜉𝑗  
into (105), and then substituting 

(105) into (100), the following equation is obtained. 

�̄�𝜉(𝑢, 𝑣, 𝑡) = ∑ ∑ 𝑔𝑛

6

𝑛=1

(𝑢)�̄�𝜉𝑗,𝑛

𝑗

𝑓𝜉𝑗(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧; j = 1,2, ⋯ )                                                     (106) 

where 

𝑔1(𝑢) = 1 − 10𝑢3 + 15𝑢4 − 6𝑢5 

𝑔2(𝑢) = (1 − 6𝑢2 + 8𝑢3 − 3𝑢4)𝑢 

𝑔3(𝑢) = (0.5 − 1.5𝑢 + 1.5𝑢2 − 0.5𝑢3)𝑢2 

𝑔4(𝑢) = (10 − 15𝑢 + 6𝑢2)𝑢3 

𝑔5(𝑢) = (−4 + 7𝑢 − 3𝑢2)𝑢3 

𝑔6(𝑢) = (0.5 − 𝑢 + 0.5𝑢2)𝑢3                                                        (107) 

3.4.1.2 Resolution for the second group of boundary functions  

For the second group of functions 𝑓𝜉𝑘(𝑣, 𝑡)  (𝑘 = 1,2, ⋯ ) , the corresponding mathematical 

expressions of the blending surface can be taken to be 

�̂�𝜉(𝑢, 𝑣, 𝑡) = ∑ �̂�𝜉𝑘

𝑘

(𝑢)𝑓𝜉𝑘(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧)                                                                        (108) 

The partial differential equations (99) corresponding to the mathematical expressions 

�̂�𝜉(𝑢, 𝑣, 𝑡) are 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
)�̂�𝜉(𝑢, 𝑣, 𝑡) = 0                          (109)

 

The blending boundary constraints (98) corresponding to the mathematical expressions 

�̂�𝜉(𝑢, 𝑣, 𝑡) are 
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𝑢 = 0       �̂�𝜉(0, 𝑣, 𝑡) = ∑ �̂�𝜉𝑘,1

𝑘

𝑓𝜉𝑘(𝑣, 𝑡) 

               ∂�̂�𝜉(0, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̂�𝜉𝑘,2

𝑘

𝑓𝜉𝑘(𝑣, 𝑡) 

               ∂2�̂�𝜉(0, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̂�𝜉𝑘,3

𝑘

𝑓𝜉𝑘(𝑣, 𝑡) 

𝑢 = 1        �̂�𝜉(1, 𝑣, 𝑡) = ∑ �̂�𝜉𝑘,4

𝑘

𝑓𝜉𝑘(𝑣, 𝑡) 

               ∂�̂�𝜉(1, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̂�𝜉𝑘,5

𝑘

𝑓𝜉𝑘(𝑣, 𝑡) 

               ∂2�̂�𝜉(1, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̂�𝜉𝑘,6𝑘 𝑓𝜉𝑘(𝑣, 𝑡)                             (110) 

 Substituting Eq. (108) into (109) and considering the differential properties (97) and the 

boundary constraints (110), the following equation is obtained. 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂𝛽𝑘𝜉

𝜕4

𝜕𝑢4
+ 𝜆𝛽𝑘𝜉

2 𝜕2

𝜕𝑢2
+ 𝜌𝛽𝑘𝜉

3 ) �̂�𝑘𝜉(𝑢) = 0 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑘 = 1,2, ⋯ )                                                                     (111) 

And the above equation is subjected to the following blending boundary constraints 

𝑢 = 0       �̂�𝑘𝜉(0) = �̂�𝑘𝜉,1 

               ∂�̂�𝑘𝜉(0) 𝜕𝑢⁄ = �̂�𝑘𝜉,2 

               ∂2�̂�𝑘𝜉(0) 𝜕𝑢2⁄ = �̂�𝑘𝜉,3 

𝑢 = 1        �̂�𝑘𝜉(1) = �̂�𝑘𝜉,4 

               ∂�̂�𝑘𝜉(1) 𝜕𝑢⁄ = �̂�𝑘𝜉,5 

               ∂2�̂�𝑘𝜉(1) 𝜕𝑢2⁄ = �̂�𝑘𝜉,6 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑘 = 1,2, ⋯ )

         

                                (112) 

The closed form solution of the sixth order ordinary differential equation (111) subjected to 

the boundary conditions (112) is obtainable. Due to the different combinations of  𝛾, 𝜂, 𝜆, 𝜌, and 
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𝛽𝜉𝑘, the closed form solution has many different forms. For the shape control parameters 𝛾 = 𝜂 =

𝜆 = 𝜌 = 1, and 𝛽𝜉𝑘 = −4𝜋2, the closed form solution has the form of  

�̂�𝜉(𝑢, 𝑣, 𝑡) = ∑[�̂�𝑘𝜉,1𝑒𝑞0𝑢 + �̂�𝑘𝜉,2𝑒−𝑞0𝑢 + 𝑒𝑞1𝑢 

𝑘

 

(�̂�𝑘𝜉,3𝑐𝑜𝑠(2+�̂�𝑘𝜉,4 𝑠𝑖𝑛 𝑞2 𝑢)
−𝑞1𝑢

(�̂�𝑘𝜉,5 

𝑐𝑜𝑠 𝑞2 𝑢 + �̂�𝑘𝜉,6𝑠𝑖𝑛 𝑞2 𝑢)]𝑓𝜉𝑘(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧)                                                                                     (113) 

where 𝑞0, 𝑞1 and 𝑞2 are determined by substituting Eq. (113) into the sixth order partial differential 

equation (111), and �̂�𝑘𝜉,𝑚  (𝑚 = 1,2, ⋯ ,6)  are determined by substituting Eq. (113) into the 

blending boundary conditions (112). 

3.4.1.3 Resolution for the third group of boundary functions 

Unlike the unknown function 𝑆�̅�(𝑢, 𝑣, 𝑡) and �̂�𝜉(𝑢, 𝑣, 𝑡) whose exact closed form solutions are 

obtainable; the exact closed form solutions do not exist for the unknown functions �̃�𝜉(𝑢, 𝑣, 𝑡). 

Here, their approximate analytical solutions are derived below. 

For the third group of functions 𝑓𝑙𝜉(𝑣, 𝑡), the corresponding mathematical expressions of the 

blending surface can be taken to be 

�̃�𝜉(𝑢, 𝑣, 𝑡) = ∑ �̃�𝜉𝑙

𝑙

(𝑢)𝑓𝜉𝑙(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧)                                                                      (114) 

The partial differential equations (99) corresponding to the mathematical expressions 

�̃�𝜉(𝑢, 𝑣, 𝑡) are 

(𝛾
𝜕6

𝜕𝑢6
+ 𝜂

𝜕6

𝜕𝑢4𝜕𝑣2
+ 𝜆

𝜕6

𝜕𝑢2𝜕𝑣4
+ 𝜌

𝜕6

𝜕𝑣6
)�̃�𝜉(𝑢, 𝑣, 𝑡) = 0                (115)

 

The blending boundary constraints (98) corresponding to the mathematical expressions 

�̃�𝜉(𝑢, 𝑣, 𝑡) are 
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𝑢 = 0       �̃�𝜉(0, 𝑣, 𝑡) = ∑ �̃�𝜉𝑙,1

𝑙

𝑓𝜉𝑙(𝑣, 𝑡) 

               ∂�̃�𝜉(0, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̃�𝜉𝑙,2

𝑙

𝑓𝜉𝑙(𝑣, 𝑡) 

               ∂2�̃�𝜉(0, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̃�𝜉𝑙,3

𝑙

𝑓𝜉𝑙(𝑣, 𝑡) 

𝑢 = 1        �̃�𝜉(1, 𝑣, 𝑡) = ∑ �̃�𝜉𝑙,4

𝑙

𝑓𝜉𝑙(𝑣, 𝑡) 

               ∂�̃�𝜉(1, 𝑣, 𝑡) 𝜕𝑢⁄ = ∑ �̃�𝜉𝑙,5

𝑙

𝑓𝜉𝑙(𝑣, 𝑡) 

               ∂2�̃�𝜉(1, 𝑣, 𝑡) 𝜕𝑢2⁄ = ∑ �̃�𝜉𝑙,6𝑙 𝑓𝜉𝑙(𝑣, 𝑡)                              (116) 

Substituting Eq. (114) into the partial differential equation (115), and considering the 

boundary conditions (116), the following equation is obtained. 

𝛾
𝑑6�̃�𝜉𝑙(𝑢)

𝑑𝑢6
𝑓𝜉𝑙(𝑣, 𝑡) + 𝜂

𝑑4�̃�𝜉𝑙(𝑢)

𝑑𝑢4

𝑑2𝑓𝜉𝑙(𝑣, 𝑡)

𝑑𝑣2
 

+𝜆
𝑑2�̃�𝜉𝑙(𝑢)

𝑑𝑢2

𝑑4𝑓𝜉𝑙(𝑣, 𝑡)

𝑑𝑣4
+ 𝜌�̃�𝜉𝑙(𝑢)

𝑑6𝑓𝜉𝑙(𝑣, 𝑡)

𝑑𝑣6
= 0 

(𝑙 = 1,2, ⋯ )                                                                                       (117) 

subjected to the following boundary conditions 

𝑢 = 0       �̃�𝜉𝑙(0) = �̃�𝜉𝑙,1 

               ∂�̃�𝜉𝑙(0) 𝜕𝑢⁄ = �̃�𝜉𝑙,2 

               ∂2�̃�𝜉𝑙(0) 𝜕𝑢2⁄ = �̃�𝜉𝑙,3 

𝑢 = 1        �̃�𝜉𝑙(1) = �̃�𝜉𝑙,4 

               ∂�̃�𝜉𝑙(1) 𝜕𝑢⁄ = �̃�𝜉𝑙,5 

               ∂2�̃�𝜉𝑙(1) 𝜕𝑢2⁄ = �̃�𝜉𝑙,6 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑙 = 1,2, ⋯ )

       

                                (118) 
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Since the boundary functions 𝑓𝜉𝑙(𝑣, 𝑡)  (𝑙 = 1,2, ⋯ ) are known, Eq. (117) is a sixth order 

ordinary differential equation for each of 𝑙 = 1,2, ⋯ . To solve Eq. (117) subjected to the 

corresponding blending boundary constraints (118), a trial function 𝐻𝜉𝑙(𝑢) is first constructed and 

make it meet the boundary conditions (118) exactly. Then, the trial function is introduced into Eq. 

(114) to obtain �̃�𝜉(𝑢, 𝑣, 𝑡). The obtained �̃�𝜉(𝑢, 𝑣, 𝑡) is substituted into Eq. (117) and the error of Eq. 

(117) is minimized to obtain the required solution.  

Since Eq. (118) involves six blending boundary conditions, the trial function �̃�𝜉𝑙(𝑢) can be 

taken to be a polynomial function of degree 5 plus a sine series, i. e.,  

�̃�𝜉𝑙(𝑢) = ∑ �̃�𝜉𝑙,𝑛

5

𝑛=0

𝑢𝑛 + ∑ �̃�𝜉𝑙,𝑚

𝑀

𝑚=1

𝑠𝑖𝑛( 𝑚𝜋𝑢) 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑙 = 1,2, ⋯ )                                                                 (119) 

where �̃�𝜉𝑙,𝑛 and �̃�𝜉𝑙,𝑚 are unknown constants to de determined by the boundary conditions (118) and 

the sixth order ordinary differential equations (117). 

Substituting Eq. (119) into the boundary conditions (118), solving for �̃�𝜉𝑙,𝑛, and inserting the 

obtained �̃�𝜉𝑙,𝑛 back into Eq. (119), the following function is obtained 

�̃�𝜉𝑙(𝑢) = ∑ �̃�𝜉𝑙,𝑛𝑔𝑛(𝑢)6
𝑛=1 − ∑ �̃�𝜉𝑙,𝑚[𝑚𝜋𝑓𝑚(𝑢) − 𝑠𝑖𝑛 𝑚 𝜋𝑢]𝑀

𝑚=1                    (120) 

where 𝑔𝑛(𝑢)  (𝑛 = 1,2, ⋯ ,6)  is determined by Eq. (107), and 𝑓𝑚(𝑢) = 𝑔2(𝑢) + (−1)𝑚𝑔5(𝑢) 

(𝑚 = 1,2, ⋯ , 𝑀). 

Substituting Eq. (120) into Eq. (114), then introducing Eq. (114) into Eq. (117), and 

formulating the squared error sum of Eq. (117) below 

𝐸𝜉𝑙 = [𝜙𝜉𝑙(𝑢, 𝑣) − ∑ �̃�𝜉𝑙,𝑚𝛼𝜉𝑙,𝑚

𝑀

𝑚=1

(𝑢, 𝑣)]

2

 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑙 = 1,2, ⋯ )                                                               (121) 

with 
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𝜙𝜉𝑙(𝑢, 𝑣) = ∑ �̃�𝜉𝑙,𝑛[𝛾𝑔𝑛
(6)

(𝑢)𝑓𝜉𝑙(𝑣, 𝑡) + 𝜂𝑔𝑛
(4)

(𝑢)

6

𝑛=1

 

𝑓𝜉𝑙
(2)

(𝑣, 𝑡) + 𝜆𝑔𝑛
(2)

(𝑢)𝑓𝜉𝑙
(4)

(𝑣, 𝑡) + 𝜌𝑔𝑛(𝑢)𝑓𝜉𝑙
(6)

(𝑣, 𝑡)]                          (122) 

and 

𝛼𝜉𝑙,𝑚(𝑢, 𝑣) = 𝛾𝑚6𝜋6𝑓𝜉𝑙(𝑣, 𝑡) 𝑠𝑖𝑛( 𝑚𝜋𝑢) + 𝜂[𝑚𝜋𝑓𝑚
(4)

(𝑢) 

−𝑚4𝜋4𝑠𝑖𝑛( 𝑚𝜋𝑢)]𝑓𝜉𝑙
(2)

(𝑣, 𝑡) + 𝜆[𝑚𝜋𝑓𝑚
(2)

(𝑢) + 𝑚2𝜋2 

𝑠𝑖𝑛( 𝑚𝜋𝑢)]𝑓𝜉𝑙
(4)

(𝑣, 𝑡) + 𝜌[𝑚𝜋𝑓𝑚
(0)

(𝑢) − 𝑠𝑖𝑛( 𝑚𝜋𝑢)] 

𝑓𝜉𝑙
(2)

(𝑣, 𝑡)                                                                                         (123) 

where 𝑔𝑙
(𝑘)

(𝑢) =
𝑑𝑘𝑔𝑙(𝑢)

𝑑𝑢𝑘 , 𝑓𝜉𝑙
(2)

(𝑣, 𝑡) =
𝑑𝑘�̃�𝜉𝑙(𝑣,𝑡)

𝑑𝑣𝑘 , 𝑓𝑚
(𝑟)

(𝑢) =
𝑑𝑟𝑓𝑚(𝑢)

𝑑𝑢𝑟 , and 𝑓𝑚
(0)

(𝑢) = 𝑓𝑚(𝑢) , (𝑙 =

1,2, ⋯ ;    𝑘 = 2,4,6;  𝑚 = 1,2, ⋯ 𝑀; 𝑟 = 0,2,4). 

The above error 𝐸𝜉𝑙  is a vector-valued continuous function. In order to quantify the error 

function, (𝐼 + 1) × (𝐽 + 1)  sample points in the solution region {0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1}  are 

uniformly allocated, which gives 𝛥𝑢 = 1 𝐼⁄ ,   𝛥𝑣 = 1 𝐽⁄ , 𝑢𝑖 = 𝑖𝛥𝑢 = 𝑖 𝐼⁄ , and 𝑣𝑖 = 𝑗𝛥𝑣 = 𝑗 𝐽⁄ . The 

squared error sum of the error function 𝐸𝜉𝑙 at these sample points can be formulated as 

𝐸𝜉𝑙 = ∑ ∑ [𝜙𝜉𝑙(𝑢𝑖 , 𝑣𝑗) − ∑ �̃�𝜉𝑙,𝑚𝛼𝜉𝑙,𝑚

𝑀

𝑚=1

(𝑢𝑖, 𝑣𝑗)]

2𝐽

𝑗=0

𝐼

𝑖=0

 

(𝜉 = 𝑥, 𝑦, 𝑧; 𝑙 = 1,2, ⋯ )                                                                    (124) 

With the least squared method, 𝜕𝐸𝜉𝑙 𝜕�̃�𝜉𝑙,𝑚⁄ = 0   (𝑙 = 1,2, ⋯ ;  𝑚 = 1,2,3,4, ⋯ , 𝑀)  are 

calculated, which changes Eq. (124) into the following equation 

∑ ∑ ∑ �̃�𝜉𝑙,𝑚𝛼𝜉𝑙,𝑚

𝐽

𝑗=0

𝐼

𝑖=0

𝑀

𝑚=1

(𝑢𝑖, 𝑣𝑗)𝛼𝜉𝑙,𝑞(𝑢𝑖, 𝑣𝑗) 

= ∑ ∑ 𝜙𝜉𝑙(𝑢𝑖 , 𝑣𝑗)𝛼𝜉𝑙,𝑞

𝐽

𝑗=0

𝐼

𝑖=0

(𝑢𝑖, 𝑣𝑗) 
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 (𝑞 = 1,2,3,4, ⋯ , 𝑀)                                                                  (125) 

There are 𝑀 linear algebra equations in (125) which can be used to determine 𝑀 unknown 

constants  �̃�𝜉𝑙,𝑚   (𝑚 = 1,2,3,4, ⋯ , 𝑀).  

Repeating the solution process for 𝑙 = 1,2, ⋯ , all the unknown constants �̃�𝜉𝑙,𝑚   (𝑙 =

1,2, ⋯ ;  𝑚 = 1,2, ⋯ , 𝑀) are obtained. Substituting them back into Eq. (120), and introducing Eq. 

(120) into Eq. (114), the mathematical expressions are obtained as 

�̃�𝜉(𝑢, 𝑣, 𝑡) = ∑ ∑ �̃�𝜉𝑙,𝑛𝑔𝑛(𝑢)

6

𝑛=1

− ∑ �̃�𝜉𝑙,𝑚

𝑀

𝑚=1𝑙

 

[𝑚𝜋𝑓𝑚(𝑢) − 𝑠𝑖𝑛 𝑚 𝜋𝑢]𝑓𝜉𝑙(𝑣, 𝑡) 

(𝜉 = 𝑥, 𝑦, 𝑧)                                                                                 (126) 

Putting the obtained �̄�𝜉(𝑢, 𝑣, 𝑡) , �̂�𝜉(𝑢, 𝑣, 𝑡) , and �̃�𝜉(𝑢, 𝑣, 𝑡)  together, the mathematical 

expression of blending surfaces is obtained. The applications of the proposed approach in time-

dependent surface blending will be demonstrated in subsection 3.4.4.1 and in time-independent 

surface blending will be demonstrated in subsection 3.4.4.2. 

3.4.2 Results and discussion 

In this subsection, the proposed approach is first implemented and compared with the exact closed 

form solution to demonstrate its good accuracy and high efficiency. Next, it is compared with the 

time-dependent 𝐶1 continuous surface blending in (You et al., 2012) to investigate the differences 

between  𝐶1  and 𝐶2  continuities. Finally, the influence of second partial derivatives on the 

continuity at timelines is examined. 

The obtained mathematical expressions (106), (113) and (126) of blending surfaces were 

implemented with C++ and OpenGL. All the examples were running on a same desktop with 3.5GHz 

CPU.  
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3.4.2.1 Accuracy and efficiency 

First, the accuracy and efficiency of the proposed approach are investigated by comparing it with 

the accurate closed form solution through creating a time-dependent blending surface between two 

separate elliptic cylinders represented with time-dependent primary surfaces. The parametric 

representation for the first (top) primary surface is 

𝑥 = 𝑎𝑢𝑒𝑡𝑠𝑖𝑛2𝜋𝑣      𝑦 = 𝑏𝑢𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣     𝑧 = ℎ1 + ℎ2𝑢2                              (127) 

And the parametric representation for the second (bottom) primary surface is 

𝑥 = 𝑐𝑢𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣      𝑦 = 𝑑𝑢𝑒𝑡𝑐𝑜𝑠2𝜋𝑣     𝑧 = −ℎ3𝑢3                                   (128) 

where 𝑎, 𝑏, 𝑐, 𝑑, ℎ1, ℎ2 𝑎𝑛𝑑 ℎ3 are the geometric parameters to be specified, and 0 ≤ 𝑢 ≤ 1.  

Setting the geometric parameters in Eqs. (127) and (128) to be: 𝑎 = 3.6 , 𝑏 = 5.5, 𝑐 = 6.0, 𝑑 =

3.0, ℎ1 = 2.0, ℎ2 = 6.0 and ℎ3 = 20.0,  the first primary surface between  𝑢 = 0.4 and 𝑢 = 0.75 

and the second primary surface between 𝑢 = 0.55  and 𝑢 = 0.65  at the time instants 𝑡 =

0, 0.2, 0.4, 0.6, 0.8, and 1.0 are depicted in the Figure 14 where the top and bottom primary surfaces 

are obtained from Eq. (127) and Eq. (128), respectively.   

 

𝑡 = 0                𝑡 = 0.2         𝑡 = 0.4              𝑡 = 0.6                𝑡 = 0.8                       𝑡 = 1 

Figure 14: Primary surfaces in cyan and brown at t=0,0.2,0.4,0.6,0.8,and 1 

 

If the trimline is taken to be 𝑢 = 𝑢0 in Eq. (127) for the top primary surface and 𝑢 = 𝑢1 in Eq 

(128) for the bottom primary surfaces, the boundary curves 𝐶1(𝑣, 𝑡) =

[𝑎𝑢𝑒𝑡𝑠𝑖𝑛2𝜋𝑣,     𝑏𝑢𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣, ℎ1 + ℎ2𝑢0
2]𝑇  and 𝐶4(𝑣, 𝑡) = [𝑐𝑢𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣,

𝑑𝑢𝑒𝑡𝑐𝑜𝑠2𝜋𝑣,  −ℎ3𝑢0
2]𝑇  are obtained.  With Eqs. (127) and (128), the first partial derivatives 
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𝜕𝑥 𝜕𝑢⁄ , 𝜕𝑦 𝜕𝑢,⁄  𝑎𝑛𝑑 𝜕𝑧 𝜕𝑢⁄ ,  and the second partial derivatives 

𝜕2𝑥 𝜕𝑢2⁄ , 𝜕2𝑦 𝜕𝑢2⁄ , 𝑎𝑛𝑑  𝜕2𝑧 𝜕𝑢2 ⁄ are derived. Setting 𝑢 = 𝑢0  for the first and second partial 

derivative from Eq. (127), 𝐶2(𝑣, 𝑡) = [−𝑎𝑢𝑒𝑡𝑠𝑖𝑛2𝜋𝑣,    − 𝑏𝑢𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣, −ℎ2𝑢0]𝑇  and 

𝐶3(𝑣, 𝑡) = [0  0 2ℎ2]𝑇 are obtained. Setting 𝑢 = 𝑢1 for the first and second partial derivative from 

Eq. (128), 𝐶5(𝑣, 𝑡) = [𝑐𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣,    𝑑𝑒𝑡𝑐𝑜𝑠2𝜋𝑣, −3ℎ3𝑢1
2]𝑇  and 𝐶6(𝑣, 𝑡) = [0  0 − 6ℎ3𝑢1]𝑇 are 

obtained. Substituting 𝐶𝑖(𝑣, 𝑡) (𝑖 = 1,2, … ,6)  into (1), the blending boundary constraints (1) 

become 

𝑢 =  0 

𝑆𝑥 = 𝑎𝑢0𝑒𝑡𝑠𝑖𝑛2𝜋𝑣     𝑆𝑦 = 𝑏𝑢0𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣     𝑆𝑧 = ℎ1 + ℎ2𝑢0
2 

𝜕𝑆𝑥

𝜕𝑢
= −𝑎𝑒𝑡𝑠𝑖𝑛2𝜋𝑣   

𝜕𝑆𝑦

𝜕𝑢
= −𝑏𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣        

𝜕𝑆𝑧

𝜕𝑢
= −2ℎ2𝑢0 

𝜕2𝑆𝑥

𝜕𝑢2
= 0                  

𝜕2𝑆𝑦

𝜕𝑢2
= 0                  

𝜕2𝑆𝑧

𝜕𝑢2
= 2ℎ2 

𝑢 =  1 

𝑆𝑥 = 𝑐𝑢1𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣     𝑆𝑦 = 𝑑𝑢1𝑒𝑡𝑐𝑜𝑠2𝜋𝑣     𝑆𝑧 = −ℎ3𝑢1
3 

𝜕𝑆𝑥

𝜕𝑢
= 𝑐𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣   

𝜕𝑆𝑦

𝜕𝑢
= 𝑑𝑒𝑡𝑐𝑜𝑠2𝜋𝑣       

𝜕𝑆𝑧

𝜕𝑢
= −3ℎ3𝑢1

2 

𝜕2𝑆𝑥

𝜕𝑢2 = 0                  
𝜕2𝑆𝑦

𝜕𝑢2 = 0                  
𝜕2𝑆𝑧

𝜕𝑢2 = −6ℎ3𝑢1                            (129) 

where the minus symbol “−" is due to the opposite directions between the blending surface and the 

top primary surface.  

The functions in the blending boundary constraints (129) can be divided into two types, i. e., 

�̄�𝜉(𝑢, 𝑣, 𝑡) and �̂�𝜉(𝑢, 𝑣, 𝑡). To investigate the accuracy and efficiency, both the exact closed form 

solutions (113) and the approximate analytical solutions (126) are used to obtain the unknown 

functions �̂�𝜉(𝑢, 𝑣, 𝑡). Using the same geometric parameters 𝑎 = 3.6,  𝑏 = 5.5,  𝑐 = 6.0,  𝑑 = 3.0,  

ℎ1 = 2.0,  ℎ2 = 6.0,  and ℎ3 = 20.0, and setting the shape control parameters to 𝛾 = 𝜂 = 𝜆 = 𝜌 =

1, the time variable  to 𝑡 = 0.1, and 𝑀  in Eq. (126) to 10, 15, and 20,  the blending surfaces 
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𝑆𝑀(𝑢, 𝑣, 𝑡 = 0.1) obtained from approximate analytical solution are depicted in Figure 15 where M 

indicates the total terms used in Eq. (126).  

Using the same geometric and shape control parameters, the blending surface 𝑆𝐶𝐹𝑆(𝑢, 𝑣, 𝑡 =

0.1) obtained from the exact closed form solution (113) is also shown in Figure 15 where CFS 

indicates the closed form solution.  

 

M=10                                      M=15                                        M20                                       CFS 

 

Figure 15: Blending surfaces generated by three different M values and the closed form solution 

(CFS) 

 

The first image of the second row of the figure shows the profile curves of the blending surface 

obtained from M=10, 15, and 20 of the proposed approach and the exact closed form solution, and 
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the profile curves are magnified in the second and third images of the second row with the two 

innermost profile curves in the last image of the second row from M=10 and the outer profile curves 

in the last image of the second row from 𝑀 = 15, 𝑀 = 20 and the closed form solution. The second 

row of Figure 15 shows no visible difference between profile curves from M=15 and M=20 of the 

proposed approach and the closed form solution.    

Next, the error calculations given in Subsection 3.3.2.1 are used to determine the absolute 

maximum error (𝐸1), absolute average error (𝐸2) relative maximum error (𝐸3), and relative average 

error(𝐸4), respectively, and the obtained errors are given in Table 3. The computational time (CPU) 

used to determine all the unknown constants and generate the blending surfaces with M = 10, 15 and 

20 and four different quad meshes is also given in the same table where T1, T2, T3 and T4 stand for 

the computational time for the quad meshes with 51 × 51, 101 × 101, 151 × 151, 𝑎𝑛𝑑 201 × 201 

vertices, respectively. 

Table 3. Accuracy and efficiency of the proposed approach 

M 10 15 20 CFS 

𝐸1 4.35 × 10−2 3.17 × 10−3 2.22 × 10−5 0 

𝐸2 1.82 × 10−2 1.31 × 10−3 1.10 × 10−5 0 

𝐸3 1.11 × 10−2 8.06 × 10−4 5.64 × 10−6 0 

𝐸4 4.63 × 10−3 3.34 × 10−4 2.80 × 10−6 0 

T(ms)(51 × 51) 35 60 98 47 

T(ms)(101 × 101) 69 112 197 109 

T(ms)(151 × 151) 118 184 288 187 

T(ms)(201 × 201) 183 269 394 339 

The data in Table 3 demonstrate good accuracy and high computational efficiency of the 

proposed approximate analytical solution. When M increases from 10 to 20, the relative average 

error (𝐸4) of the proposed approach decreases from 4.63 × 10−3  to 2.80 × 10−6  in comparison 
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with the closed form solution, which is the most accurate. With the increase of the total vertices, the 

computational time for both approximate analytical solution and exact closed form solution rises. 

When M=10, the approximate analytical solution is more efficient than the exact closed form 

solution for all the four meshes. When M=20, the computational time of the approximate analytical 

solution becomes larger than the exact closed form solution but still at the same order.  

With the developed approach and setting the time variable t = 0, 0.2, 0.4, 0.6, 0.8 and 1, the 

blending surfaces at these time instants are obtained and depicted in Figure 16 where the first and 

third rows are from the front view and the second and fourth rows are from the side view.  

 

 

           𝑡 = 0.0                         𝑡 = 0.2                         𝑡 = 0.4                                𝑡 = 0.6 
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𝑡 = 0.8                                           𝑡 = 1.0 

Figure 16:   Blending surfaces at different time instants 

 

The images shown in Figure 16 indicate that at different time instants, the proposed approach 

always create 𝐶2 continuous blending surfaces to smoothly connect time-dependent primary surface 

together. 

3.4.2.2 Comparison with time-dependent 𝑪𝟏 continuous surface blending 

In this subsection, the 𝐶2 continuous surface blending developed in this thesis is compared with the 

𝐶1  continuous surface blending introduced in (You et al., 2012) through a blending example. It 

creates a smooth transition between two time-dependent cylinders. 

The parametric equations for the first cylinder are 

𝑥 = 𝑎𝑒𝑡𝑠𝑖𝑛2𝜋𝑣      𝑦 = 𝑎𝑒−𝑡𝑐𝑜𝑠2𝜋𝑣     𝑧 = ℎ1 + ℎ2𝑢2                              (130) 

The parametric equations for the second cylinder are 
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𝑥 = 𝑏𝑒−𝑡𝑠𝑖𝑛2𝜋𝑣      𝑦 = 𝑏𝑒𝑡𝑐𝑜𝑠2𝜋𝑣     𝑧 = −ℎ3𝑢3                                   (131) 

In the above Eqs. (130) and (131), the geometric parameters are taken to be 𝑎 = 1.0, 𝑏 =

0.8, ℎ1 = 2.0, ℎ2 = 3.0 𝑎𝑛𝑑 ℎ3 = 5.0. The trimlines are at 𝑢0 = 0.2 𝑎𝑛𝑑 𝑢1 = 0.3 where 𝑢0 and 𝑢1 

stand for the isoparametric lines of the first and second cylinders, respectively.  

The position functions and the first partial derivatives at the timelines required by the blending 

boundary constraints described in (You et al., 2012) can be derived from Eqs. (130) and (131). All 

the shape control parameters are set to 1, the total terms are k = 10. The 𝐶1 continuous blending 

surface at the time instant t = 0 created by the approach proposed in (You et al., 2012) is depicted in 

Figure 17(a), and the computational time (CPU) is 145 milliseconds. 

With the approach proposed in this thesis, the second partial derivatives at the trimlines are 

derived from Eqs. (130) and (131) and added to the blending boundary constraints. All the shape 

control parameters are also set to 1, the total terms are M=10, and all the geometric parameters are 

kept unchanged. The 𝐶2  continuous blending surface at the time instant 𝑡 = 0  created by the 

approach proposed in this thesis is shown in Figure 17(b), and the computational time (CPU) is 178 

milliseconds. 

Since the two approaches uses different partial differential equations (fourth-order vs sixth 

order) and different blending boundary constraints (without and with the second partial derivatives), 

the shapes of the blending surfaces generated with the two different approaches are different and 

their shapes cannot be compared. Therefore, only the computational efficiency and how the second 

partial derivatives affect curvature continuity are compared. 
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(a) 𝐶1 continuity  (b) 𝐶2 continuity 

Figure 17: Comparison between C^1 and C^2  continuous surface blending approaches 

 

Although the approach proposed in this thesis uses sixth-order partial differential equations 

and more blending boundary constraints, i.e., the second partial derivatives, the computational time 

for the two approaches is at the same order. Without the constraint of the second partial derivatives, 

the curvature continuity at the trimlines cannot be maintained as shown in Figure 17(a). After 

applying the constraint of the second partial derivatives, good curvature continuity at the trimlines 

is achieved as shown in Figure 17(b). 

Good curvature continuity at the trimlines can also be demonstrated by the same curvature 

values on trimlines. Using the formulae given in the links3,4, the maximum curvature and minimum 

curvature obtained from 𝐶1 and 𝐶2 continuous surface blending approaches are given in Table 4.  

For the primary and blending surfaces shown in Figure 17, the maximum curvature is in the 

horizontal plane in which the cross-section curves are circles, and the minimum curvature is in the 

vertical direction. Since the upper and bottom primary surfaces are cylindrical surfaces, the 

minimum curvature are zero. Table 4 shows both maximum and minimum curvature values on the 

 
3 https://math.stackexchange.com/questions/3639320/find-out-the-maximum-principal-curvature-of-parametric-

surface-pu-v    
4 https://en.wikipedia.org/wiki/Parametric_surface     

https://math.stackexchange.com/questions/3639320/find-out-the-maximum-principal-curvature-of-parametric-surface-pu-v
https://math.stackexchange.com/questions/3639320/find-out-the-maximum-principal-curvature-of-parametric-surface-pu-v
https://en.wikipedia.org/wiki/Parametric_surface
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upper and bottom trimlines 𝑢 = 0 and 𝑢 = 1 obtained from the proposed 𝐶2 continuous approach 

are the same as those of primary surfaces . However,  the 𝐶1 continuous approach only keeps the 

same maximum curvature values, i. e., the same circles in the horizontal cross-sections at the 

positions of the trimlines, but has totally different minimum curvature values in the vertical direction 

as shown by 0 and 0.9811757 on the upper trimline 𝑢 = 0 and 0 and -0.631916 on the bottom 

trimline 𝑢 = 1, indicating that the 𝐶1 continuous approach cannot achieve curvature continuities in 

the directions crossing the trimlines.  

 

Table 4. Maximum and minimum curvature on trimlines 

Trimline 𝐶2  continuous approach 𝐶1  continuous approach 

𝑢 = 0 Top surface 1.0 0.0 1.0 0.0 

Blending surface 1.0 0.0 1.0 0.9811757 

𝑢 = 1 Blending surface 1.25 0.0 1.25 −0.631916 

Bottom surface 1.25 0.0 1.25 0.0 

 

The blending surface shown in Figure 17(b) is very concave. It indicates that for the surface 

blending between the two cylinders defined by Eqs. (130) and (131), when the area of the blending 

surface is to be minimized or the radius of curvature is to be maximized, 𝐶2 continuous surface 

blending may not be as good as 𝐶1 continuous surface blending. However, this problem can be 

effectively solved by optimizing shape control parameters whose effects on blending surfaces are 

discussed in the following subsection. With this treatment, the surface area can be minimized, and 

the radius of curvature can be maximized while the exact 𝐶2 continuity is still satisfied.  

3.4.2.3 Effects of second partial derivatives 

Unlike the 𝐶1 continuous surface blending presented in (You et al., 2012) which only maintains the 

continuities of the position functions and first partial derivatives at trimlines, the 𝐶2 continuous 
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surface blending developed in this subsection introduces second partial derivatives at trimlines to 

achieve higher order continuity. In this subsection, how second partial derivatives at trimlines affect 

the continuity between the blending surface and primary surfaces will be investigated.  

For the surface blending problem discussed in the above subsection, three different cases of 

the second partial derivatives for z component are considered. For all three cases, the z component 

of the primary surfaces and the blending surface always has the same position functions and first 

derivatives at the trimlines. For the first case, the blending surface and primary surfaces have the 

same second partial derivatives −2ℎ2 at the trimline u = 0 and −6ℎ3𝑢1 at the trimline u =1, and the 

obtained blending surface is shown in Figure 18(a). For the second case, the blending surface 

increases its second partial derivative to  −10ℎ2 at the trimline u = 0 and −18ℎ3𝑢1  at the trimline 

u =1, and the obtained blending surface is indicated in Figure 18(b). For the third case, the blending 

surface further raises its second partial derivative to −20ℎ2 at the trimline u = 0 and  −36ℎ3𝑢1 at 

the trimline u =1, and the generated blending surface is depicted in Figure 18(c). In the figure, the 

images in the bottom row show different shapes of the blending surface only. They are used to 

demonstrate how the second partial derivatives affect the continuity at the trimlines. 
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                          (a)                                             (b)                                             (c) 

Figure 18: effects of second partial derivatives 

 

It can be seen from the images that when the blending surface and primary surfaces have the 

same second partial derivatives at the trimlines, good continuity between the blending surface and 

the primary surfaces is obtained as shown in Figure 18(a). When the second partial derivatives of 

the blending surface and primary surfaces at trimlines are different, poor continuity from the 

blending surface to primary surfaces occurs as indicted in Figure 18(b). If the difference of the 

second partial derivatives between the blending surface and primary surfaces is bigger, the 

continuity between the blending surface and primary surfaces becomes worse as shown in Figure 

18(c). 

3.4.3 Shape control of blending surfaces 

One of the main advantages of the proposed approach is it provides useful shape control to obtain 

different shapes of blending surfaces in comparison with existing surface blending methods. If users 

do not want to use the shape control to manipulate blending surfaces, they can simply set all the 

shape control parameters to 1, i.e., 𝛾 = 𝜂 = 𝜆 = 𝜌 = 1. In this subsection, how to use different 

shape control parameters to create different shapes of blending surfaces will be investigated.  

In order to generate different shapes, the geometric parameters in Eqs. (127), (128) and (129) 

are changed to: 𝑎 = 2.6, 𝑏 = 4.5, 𝑐 = ℎ3 = 5.0, 𝑑 = ℎ1 = 2.0, and ℎ2 = 3.0, and the trimlines are 
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changed to 𝑢0 = 0.5 and 𝑢1 = 0.4. If it is not required to use the shape control parameters to 

manipulate blending surfaces, they can be set to 𝛾 = 𝜌 = 𝜆 = 𝜂 = 1 . The obtained blending 

surfaces at the time instants 𝑡 = 0.2, 0.4 and 0.6 are shown in Figure 19. 

 
                   𝑡 = 0.2                                 𝑡 = 0.4                                                      𝑡 = 0.6 

Figure 19: Blending surfaces with γ=η=λ=ρ=1 at different time instants 

 

If it is required to use the shape control parameters to create different shapes and select the 

desirable ones from them, the shape control parameters to different values. In what follows, the 

effects of the shape control parameters 𝛾, 𝜂, 𝜆 𝑎𝑛𝑑 𝜌 and on blending surfaces will be investigated.  

3.4.3.1 Effects of Shape Control Parameter 𝜸 

In order to investigate the effect of the shape control parameter 𝛾 , 𝜂 = 𝜆 = 𝜌 = 1  are kept 

unchanged, the time t is taken to be 0 and 𝛾 is set to different values shown in Figure 20. Different 

shapes of the blending surface are obtained and depicted in the same figure where the last image 

shows the profile curves of different shapes of a same blending surface. 

Examining the shapes of the blending surface in Figure 20, the following conclusions can be drawn. 

(1) When the shape control parameter 𝛾 changes from -10 to -2.6, the concave blending surface 

becomes straight and bigger. (2) With further changes from -2.6 to -2, the middle part of the blending 

surface becomes more and more convex. 



137 

 

 

𝛾 =-10.0                                                -4.0                                                  -3.0 

 

                           -2.6                                                      -2.4                                                        -2.3 

  

                           -2.2                                                  -2.0                                            Profile curves 

Figure 20: Effect of the shape control parameter γ on the blending surface with η=λ=ρ=1,  and t=0 
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3.4.3.2 Effects of Shape Control Parameter 𝜼 

Secondly, the shape control parameters 𝛾 = 𝜆 = 𝜌 = 1 are fixed, and 𝜂 is set to different values 

shown in Figure 21. The obtained shapes of the blending surface and their profile curves are shown 

in the same figure. 

The blending surfaces in Figure 21 indicate that when 𝜂 changes from -11.0 to -7.0, the middle 

part of the blending surface first becomes straight, then becomes more concave and smaller. With 

further changes from -7.0 to -4.5, the middle part of the blending surface is changed into a shape 

like the frustum of a cone first, and finally becomes most concave at 𝜂 = −4.5. 

                              

                    𝜂 =-11.0                                                  -9.0                                                  -7.0 

 

                           -6.0                                        -4.5                                    Profile curves 

Figure 21: Effect of the shape control parameter η on the blending surface with γ=λ=ρ=1,  and t=0 
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3.4.3.3 Effects of Shape Control Parameter 𝝀 

Thirdly, the shape control parameters 𝛾 = 𝜂 = 𝜌 = 1 are kept unchanged and the shape control 

parameter 𝜆 is set to different values shown in Figure 22. The obtained shapes of the blending 

surface and their profile curves are also given in the same figure.   

From Figure 22, it is found that the middle part of the blending surface is most concave at 𝜆 =

−0.5 among the 𝝀 values between -0.5 and 7.0. When 𝝀 changes from -0.5 to 7.0, the blending 

surface becomes less concave until it becomes a cylinder-like shape at 𝜆 = 7.0.  

 

                     = -0.5                                           0.0                                            1.0 

 

                       2.0                                            3.0                                              4.0 
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                     5.0                                           7.0                                      Profile curves 

Figure 22: Effect of the shape control parameter λ  on the blending surface with γ=η=ρ=1,  and t=0 

 

3.4.3.4 Effects of Shape Control Parameter 𝝆 

Finally, how the shape control parameter 𝜌 affects the shape of the blending surface is investigated. 

The shape control parameters 𝛾 = 𝜂 = 𝜆 = 1 are kept unchanged, and the shape control parameter 

𝜌 is set to different values shown in Figure 23. The generated shapes of the blending surface and 

their profile curves are also depicted in the same figure.   

After testing different values of the shape control parameter 𝜌, the range −1.5 ≤ 𝜌 ≤ 3.0 was 

chosen to demonstrate the effects of this shape control parameter. The blending surfaces shown in 

Figure 23 indicate that when the shape control parameter 𝜌 changes from -1.5 to -0.7, the straight 

middle part of the blending surface first becomes convex, and then changes back to the frustum of a 

cone but with a bigger cross-section size. When the shape control parameter 𝜌 changes from -0.7 to 

3.0, the blending surface becomes more and more concave and reaches most concave at 𝜌 = 3.0.   
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                         -1.5                                              -1.0                                          -0.7 

 

0.0                                             0.5                                             1.0 

 

                    2.0                                       3.0                                   Profile curves 

Figure 23: Effect of the shape control parameter ρ on the blending surface γ=η=λ=1 and t=0 

 

As discussed in Section 1.1, how to easily and quickly achieve a satisfactory shape of blending 

surfaces while keeping the same continuity on the trimlines is an unsolved problem. The above 

discussions indicate that all the four shape control parameters have a great influence on the shape of 

the blending surface. They can be developed into useful user handles to control the shape of the 

blending surface. 

3.4.4 Applications of surface blending 

In this section, the developed approximate analytical solution will be used to create two time-

dependent blending surfaces of 𝐶2 continuity. Then, the developed approximate analytical solution 
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will be employed to create some time-independent blending surfaces frequently met in engineering 

applications. 

3.4.4.1 Time-dependent surface blending 

First, the surface blending between linearly varying primary surfaces will be investigated. Then, a 

blending surface between non-linearly varying primary surfaces will be created. 

3.4.4.1.1 Surface blending between linearly varying primary surfaces 

For the first application example, two primary surfaces change their shapes linearly. The first 

primary surface varies from an open surface to a closed one, and the second primary surface changes 

from a plane to a cone shaped frustum. 

The parametric equations of the first primary surfaces are constructed as 

𝑥 = (1 − 𝑡)[𝑏1 sinh(𝑎1𝑣 + 𝑎2) + 𝑏2(1 + 𝑢3)sin (𝑎3𝑣)] + 𝑏3𝑡𝑐𝑜𝑠(−𝑣) 

𝑦 = (1 − 𝑡)[𝑏4 cosh(𝑎4𝑣) + 𝑏2(1 + 𝑢3)cos (𝑎3𝑣)] + 𝑏5𝑡𝑠𝑖𝑛(−𝑣) 

𝑧 = (1 − 𝑡)(ℎ0 + 𝑏6 + 𝑒𝑢) + (ℎ1 + ℎ2𝑢2)𝑡    (132) 

The parametric equations for the second primary surface are constructed as 

𝑥 = (0.8 + 𝑢)(1 − 𝑡)𝑏6 sin(𝑎5𝑣) + 𝑏7𝑡𝑐𝑜𝑠(−𝑣) 

𝑦 = 0.8(1 − 𝑡)𝑏6 cos(𝑎5𝑣) + 𝑏8𝑡𝑠𝑖𝑛(−𝑣) 

𝑧 = (1 − 𝑡)ℎ3 + [ℎ4 + ℎ5sinh (−𝑢)]𝑡          (133) 

The geometric parameters in the above Eqs. (132) and (133) are taken to be: 𝑎1 = 𝑎2 = 𝑏1 =

0.1, 𝑎3 = 𝑎5 = 𝑏6 = ℎ2 = ℎ5 = 0.1, 𝑎4 = 𝑏4 = 0.3, 𝑏2 = 1.5 , 𝑏3 = 1.2, 𝑏5 = 0.8, 𝑏6 = 1.6, 𝑏7 =

0.5 ,  𝑏8 = 0.7, ℎ0 = 0.75, ℎ1 = 1.7, 𝑎𝑛𝑑 ℎ3 =  ℎ4 =  −0.5.  The trimlines are taken to be at the 

isoparametric lines 𝑢0 = 𝑢1 = 0 where 𝑢0 𝑎𝑛𝑑 𝑢1 stand for the isoparametric lines of the first and 

second primary surfaces, respectively.  

From the parametric equations of the two primary surfaces, the position functions, and the first 

and second partial derivatives of the first surface at 𝑢0 = 0 and the second surface at 𝑢1 = 0 can be 
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obtained. They are taken to be the boundary constraints of the blending surface at its isoparametric 

lines u = 0 and u =1, respectively.  With the developed approach, the  𝐶2 continuous blending surface 

is generated whose shapes at the time instants 𝑡 = 𝑖 25⁄  (𝑖 = 0, 1, 2, ⋯, 24, 25) are depicted in Figure 

24. 

 

                  t=0                                              t=0.04                                          t=0.08 

 

                 t=0.12                                           t=0.16                                          t=0.20 

 

                 t=0.24                                           t=0.28                                          t=0.32 
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                          t=0.36                                  t=0.40                              t=0.44 

 

                              t=0.48                          t=0.52                                t=0.56 

 

                             t=0.60                              t=0.64                              t=0.68 
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                                 t=0.72                          t=0.76                            t=0.80 

 

                                 t=0.84                           t=0.88                            t=0.92 

 

                                                   t=0.96                                t=1 

Figure 24: Surface blending between linearly varying primary surfaces 

 

This example indicates that although the two primary surfaces continuously change their 

shapes, the proposed approach creates a blending surface, which connects the varying shapes 

together with 𝐶2 continuity. 
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3.4.4.1.2 Surface blending between nonlinearly varying primary surfaces 

For the second application example, two primary surfaces change their shapes following a nonlinear 

sine variation. The first primary surface initially has some wrinkles, and finally becomes the frustum 

of a smooth inclined circular cone. The second primary surface changes from a cone-shaped elliptic 

cylinder to an inclined plane. 

The parametric equations of the first primary surface are constructed as  

𝑥 = [(1 − sin(𝜋𝑡 2⁄ )](1 + 𝑘1𝑢2)[𝑟0cos𝑣 + 𝑟1 cos(𝑘𝑣)] + 𝑟 sin(𝜋𝑡/2) (𝑘2 + 𝑢)2 cos 𝑣 

𝑦 = [(1 − sin(𝜋𝑡 2⁄ )](1 + 𝑘1𝑢2)[𝑟0sin𝑣 + 𝑟1 sin(𝑘𝑣)] + 𝑟 sin(𝜋𝑡/2) (𝑘2 + 𝑢)2 sin 𝑣 

𝑧 = [(1 − sin(𝜋𝑡 2⁄ )](ℎ0 + ℎ1𝑢) + sin(𝜋𝑡 2⁄ ) [ℎ2 + ℎ3(𝑘2 + 𝑢) + ℎ4𝑐𝑜𝑠𝑣]      (134) 

The parametric equations for the second primary surface are constructed as 

 𝑥 = [(1 − sin(𝜋𝑡 2⁄ )]𝑎(𝑘3 + 𝑢)cos𝑣 + 𝑟2 sin (
𝜋𝑡

2
) (𝑘4 + 𝑢)cos (−𝛼) cos 𝑣 

𝑦 = [(1 − sin(𝜋𝑡 2⁄ )]𝑏(𝑘3 + 𝑢)sin𝑣 + 𝑟2 sin(𝜋𝑡/2) (𝑘4 + 𝑢) sin 𝑣 

𝑧 = [(1 − sin(𝜋𝑡 2⁄ )][ℎ5 − ℎ6(𝑘5 + 𝑢)] + sin (𝜋𝑡 2⁄ )[ℎ7 − ℎ8(𝑘4 + 𝑢)sin (−𝛼)𝑐𝑜𝑠𝑣] 

(135) 

The geometric parameters in the above Eqs. (134) and (135) are taken to be: 𝑎 = 0.64, 𝑏 =

𝑘2 = 0.6, ℎ0 = 0.3, ℎ1 = 1.5, ℎ2 = ℎ5 = −1.0, ℎ3 = 𝑟2 = 2.0, ℎ4 = 0.5, ℎ6 = 1.5, ℎ7 = 2.0,  ℎ8 =

2.0, 𝑘 = 12.0, 𝑘1 = 1, 𝑘3 = 2.5, 𝑘4 = 0.8, 𝑘5 = 0.5, 𝑟 = 0.8, 𝑟0 = 0.9, 𝑟1 = 0.05, and 𝛼 = −𝜋 9⁄ . 

For both primary surfaces, the trimlines are at 𝑢0 = 𝑢1 = 0 . Using the proposed method, 

different shapes of the blending surface at the time instants 𝑡 = 𝑖 25⁄ (𝑖 = 0,1,2, … 24,25)  are 

depicted in Figure 25.  

This example also demonstrates the capacity of our proposed approach in connecting two time-

dependent primary surfaces together with 𝐶2 continuity.  
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                              t=0                                t=0.04                              t=0.08 

 

                           t=0.12                                 t=0.16                               t=0.20 

 

                      t=0.24                                   t=0.28                                  t=0.32 
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                       t=0.36                                  t=0.40                                  t=0.44 

 

                    t=0.48                                     t=0.52                                     t=0.56 

 

                  t=0.60                                      t=0.64                                        t=0.68 
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                  t=0.72                                      t=0.76                                        t=0.80 

 

                  t=0.84                                        t=0.88                                        t=0.92 

 

                                           t=0.96                                          t=1.0 

Figure 25: Surface blending between non-linearly varying primary surfaces 

 

3.4.4.2 Time-independent surface blending 

Time-independent surface blending is easier than time-dependent surface blending. The proposed 

approach is also effective in time-independent surface blending. In this section, some examples will 

be presented to demonstrate this and its industrial applications.  

Blending surfaces which blend NURBS surfaces, intersecting planes, and intersecting 

cylinders are most common in geometric modeling, computer aided design, engineering 

manufacturing, and computer graphics. In what follows, how to use the above approach to tackle 

these surface blending problems will be investigated.  

3.4.4.2.1 Surface blending between NURBS surfaces 

A NURBS surface is a bivariate vector-valued piecewise rational function of the form 
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𝑺(𝑢, 𝑣) = ∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖𝑗𝑷𝑖𝑗
𝑚
𝑗=0

𝑛
𝑖=0 �̄�⁄ (𝑢, 𝑣)                                  (136) 

where 

�̄�(𝑢, 𝑣) = ∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖𝑗
𝑚
𝑗=0

𝑛
𝑖=0                                              (137) 

and 

𝑁𝑘,0(𝑡) = {
1
0

       
if(𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑁𝑘,𝑙(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑘+𝑙 − 𝑡𝑘
𝑁𝑘,𝑙−1(𝑡) +

𝑡𝑘+𝑙+1 − 𝑡

𝑡𝑘+𝑙+1 − 𝑡𝑘+1
𝑁𝑘+1,𝑙−1(𝑡) 

(𝑘 = 𝑖, 𝑗; 𝑙 = 𝑝, 𝑞; 𝑡 = 𝑢, 𝑣)                                                                       (138) 

where 𝑡 = 𝑢, 𝑣;  𝑙 = 𝑝 when 𝑘 = 𝑖; and 𝑙 = 𝑞 when 𝑘 = 𝑗. 

In the equation, 𝑝 and 𝑞 are the degrees in the 𝑢 and 𝑣 directions, respectively, 𝑷𝑖𝑗  are the 

control points, and 𝑤𝑖𝑗 are the weights.  

When two NURBS surfaces 𝑺1(𝑢, 𝑣) and 𝑺2(𝑢, 𝑣) are to be smoothly blended together by a 

blending surface 𝑺(𝑢, 𝑣)  at the trimlines 𝑪1(𝑣) = 𝑺1(1, 𝑣)  and 𝑪4(𝑣) = 𝑺2(0, 𝑣) , the first and 

second partial derivatives of the two NURBS surfaces are derived, and  𝑪2(𝑣) = 𝜕𝑺1(1, 𝑣) 𝜕𝑢⁄ , 

𝑪3(𝑣) = 𝜕2𝑺1(1, 𝑣) 𝜕𝑢2⁄ , 𝑪5(𝑣) = 𝜕𝑺2(0, 𝑣) 𝜕𝑢⁄ , and 𝑪6(𝑣) = 𝜕2𝑺2(0, 𝑣) 𝜕𝑢2⁄  are obtained.  

Substituting the obtained 𝑪𝑖(𝑣) (𝑖 = 1,2, ⋯ ,6) into Eqs. (122) and (123), and solving Eq. 

(125), all the unknown constants and the mathematical expression (126) of the blending surface are 

obtained. 

To tackle various NURBS surface blending problems, a general case where 16 control points 

and 8 knots were used to generate the first cubic NURBS surface 𝑺1(𝑢, 𝑣) highlighted in blue in 

Figure 26, and 25 control points and 10 knots were used to generate the second quartic NURBS 

surface 𝑺2(𝑢, 𝑣) highlighted in light blue. The obtained blending surface 𝑺(𝑢, 𝑣) was shown in grey 

in the same figure where the two images were obtained from two different viewpoints of a same 

blending surface.  
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Figure 26: Blending between a cubic NURBS surface and a quartic NURBS surface 

 

The images in Figure 26 show smooth transition from the blending surface to the two NURBS 

surfaces. It demonstrates the effectiveness of the proposed approach in blending NURBS surfaces 

with 𝐶2 continuity. 

3.4.4.2.2 Surface blending between intersecting planes 

Generating a smooth transition surface between two intersecting planes frequently appears in 

engineering design or manufacturing process to reduce stress concentration at the joint between the 

two planes. For this surface blending problem, the boundary constraints can be formulated as: 

𝑢 = 0      𝑥 = 0                𝑦 = ℎ0 + ℎ1𝑣                    𝑧 = 𝑝𝑣 

             
𝜕𝑥

𝜕𝑢
= 0              

𝜕𝑦

𝜕𝑢
= −(ℎ2 + ℎ3𝑣)           

𝜕𝑧

𝜕𝑢
= 0 
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𝜕2𝑥

𝜕𝑢2
= 0            

𝜕2𝑦

𝜕𝑢2
= −𝜂(ℎ2 + ℎ3𝑣)    

𝜕2𝑧

𝜕𝑢2
= 0 

𝑢 = 1    𝑥 = 𝑠0 + 𝑠1𝑣         𝑦 = 0                           𝑧 = 𝑝𝑣 

            
𝜕𝑥

𝜕𝑢
= 𝑠2 + 𝑠3𝑣      

𝜕𝑦

𝜕𝑢
= 0                       

𝜕𝑧

𝜕𝑢
= 0 

            
𝜕2𝑥

𝜕𝑢2
= 0              

𝜕2𝑦

𝜕𝑢2
= 0                    

𝜕2𝑧

𝜕𝑢2
= 0

                                 

(139) 

Setting the parameters in Eq. (139) to: ℎ0 = 0.9, ℎ1 = −0.4, ℎ2 = 1.1, ℎ3 = 𝑠3 = 0.01, 𝑠0 =

1, 𝑠1 = −0.5, 𝑠2 = 1.2and 𝑝 = 2, the blending surface demonstrated in Figure 27(a) for 𝜂 = −10 

and Figure 27(b) for 𝜂 = 0 is obtained where Figure 27(c) and 27(d) show a very small local part of 

the blending surfaces depicted in Figure 27(a) and 27(b). It can be seen that the second derivative in 

Eq. (139) determined by 𝜂 = 0 creates a smoother blending surface than that determined by 𝜂 =

−10.  

The proposed approach is advantageous over constant and variable radius rolling blends since 

it can achieve different levels of smoothness at trimlines and different shapes of blending surfaces. 

In contrast, constant and variable radius rolling blends cannot change both the smoothness and shape 

of the blending surface once the trimlines are specified.  
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                             (a): 𝜂 = −10                                                          (b): 𝜂 = 0 

 

(c): 𝜂 = −10                                                           (d) 𝜂 = 0 

Figure 27: Surface blending between perpendicular planes with inclined trimlines 

 

3.4.4.2.3 Surface blending between intersecting cylinders 

Creating a smooth transition between intersecting cylinders is also very common in engineering 

design and manufacturing. When blending two intersecting cylinders with 𝐶2  continuity, the 

boundary constraints can be written as 

𝑢 = 0       

𝑥 = 𝑠 𝑐𝑜𝑠 𝑣              𝑦 = 𝑠 𝑠𝑖𝑛 𝑣                   𝑧 = 𝑓2(𝑣) 

𝜕𝑥

𝜕𝑢
= 0                  

𝜕𝑦

𝜕𝑢
= 0                      

𝜕𝑧

𝜕𝑢
= 𝑓3(𝑣) 

𝜕2𝑥

𝜕𝑢2
= 0                

𝜕2𝑦

𝜕𝑢2
= 0                    

𝜕2𝑧

𝜕𝑢2
= 𝑓4(𝑣) 

𝑢 = 1      

𝑥 = (𝑠 + 𝑙1) 𝑐𝑜𝑠 𝑣       𝑦 = (𝑠 + 𝑙1) 𝑠𝑖𝑛 𝑣           𝑧 = 𝑓5(𝑣) 
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𝜕𝑥

𝜕𝑢
= (𝑠 + 𝑙1) 𝑐𝑜𝑠 𝑣     

𝜕𝑦

𝜕𝑢
= (𝑠 + 𝑙1) 𝑠𝑖𝑛 𝑣       

𝜕𝑧

𝜕𝑢
= 𝑓6(𝑣) 

𝜕2𝑥

𝜕𝑢2 = 0                  
𝜕2𝑦

𝜕𝑢2 = 0                    
𝜕2𝑧

𝜕𝑢2 = 𝑓7(𝑣)                                   (140) 

where 

𝑓2(𝑣) = √𝑓0(𝑣)          𝑓3(𝑣) = − (𝑟 + 𝑘1) √𝑓0(𝑣)⁄  

𝑓4(𝑣) = 1 √𝑓0(𝑣) − (𝑟 + 𝑘1)2 √𝑓0(𝑣)
3⁄⁄      

𝑓5(𝑣) = √𝑓1(𝑣)   

𝑓6(𝑣) = −(𝑠 + 𝑙1) 𝑐𝑜𝑠2 𝑣 √𝑓1(𝑣)⁄   

𝑓7(𝑣) = 𝑐𝑜𝑠2 𝑣 √𝑓1(𝑣) − (𝑠 + 𝑙1)2 𝑐𝑜𝑠4 𝑣 √𝑓1(𝑣)3⁄⁄                          (141) 

and 

𝑓 0(𝑣) = (𝑟 + 𝑘1)2 − 𝑠2 𝑐𝑜𝑠2 𝑣 

𝑓1(𝑣) = 𝑟2 − (𝑠 + 𝑙1)2 𝑐𝑜𝑠2 𝑣                                                       (142) 

Setting the shape parameters to 𝛾 = 𝜂 = 𝜆 = 𝜌 = 1 and geometric parameters to  𝑠 = 0.7, 

𝑙1 = 0.3, 𝑟 = 1.2, and 𝑘1 = 0.5, the blending surface depicted in Figure 28(a) and Figure 28(b) is 

obtained from 𝜕𝑧 𝜕𝑢⁄ = 𝑓3(𝑣) and 𝜕2𝑧 𝜕𝑢2⁄ = 𝑓4(𝑣) where the images shown in Figure 28(a) and 

Figure 28(b) are from different views of a same blending surface. 

How the first and second partial derivatives affect the smoothness and shape of the blending 

surface can be obtained by scaling them. Setting 𝜕𝑧 𝜕𝑢⁄ = 0.01𝑓3(𝑣)  and keeping 𝜕2𝑧 𝜕𝑢2⁄ =

𝑓4(𝑣) unchanged, the blending surface depicted in Figure 28(c) is obtained. Keeping 𝜕𝑧 𝜕𝑢⁄ =

𝑓3(𝑣) unchanged but setting 𝜕2𝑧 𝜕𝑢2⁄ = 10𝑓4(𝑣), the blending surface shown in Figure 28(d) is 

generated. These images demonstrate the effectiveness of the first and second partial derivatives in 

changing the smoothness and the shape of blending surfaces. 
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                                  (a): 𝑓3(𝑣), 𝑓4(𝑣)                                              (b): 𝑓3(𝑣), 𝑓4(𝑣) 

      

                                 (c): 0.01𝑓3(𝑣), 𝑓4(𝑣)                                       (d): 𝑓3(𝑣), 10𝑓4(𝑣) 

Figure 28: Surface blending between intersecting cylinders 

 

3.4.4.2.4 Surface blending between a cylinder and a plane 

The final example is to create a time-independent  𝐶2  continuous blending surface smoothly 

connecting a cylinder to a plane. It is widely applied in mechanical components and parts such as a 

transmission yoke - drive shaft shown in Figure 29(a) where the blending between the cylinders and 

planes in the highlighted region is required. The approximate analytical approach developed in this 



156 

 

section is used to obtain the blending surface which is shown in (b) and (c) of Figure 29 where (b) 

is rendered with a same colour and (c) is rendered with three different colours. 

 

Figure 29: Surface blending between a cylinder and a plane for a transmission yoke - drive shaft 

 

3.5  Conclusions and future work 

In this chapter, a unified mathematical model for 𝐶2  continuous blending between both time-

dependent and time-independent parametric surfaces has been proposed and three different surface 

blending approaches were developed to create 𝐶2 continuous blending surfaces. These three surface 



157 

 

blending approaches are: closed form solution-based approximate analytical approach, variable 

decomposition-based approximate analytical approach, and differential property-based approximate 

analytical approach. The closed form solution-based approximate analytical approach converts the 

functions in the blending boundary constraints without closed form solutions into those whose 

closed form solutions are obtainable. With such a treatment, the closed form mathematical 

expressions of blending surfaces are obtained and used to create various blending surfaces between 

two time-independent parametric surfaces. The variable decomposition-based approximate 

analytical approach groups the functions in the blending boundary constraints according to different 

variables, constructs blending surface functions accordingly, and develops the approximate 

analytical approach according to different blending surface functions and the corresponding 

blending boundary constraints. The differential property-based approximate analytical approach 

divides the functions in the blending boundary constraints according to different differential 

properties and obtains the corresponding functions of blending surfaces accordingly. 

The accuracy, efficiency, effects of the second derivatives, and how different shape control 

parameters affect the shape of blending surfaces were investigated. It was found: (1) the proposed 

approaches have good accuracy and high efficiency; (2) the second partial derivatives play an 

important role in achieving good continuity; (3) all the shape control parameters have a strong impact 

on the shape of the blending surface and can be developed into useful shape control handles, i. e. 

sliders, to achieve the required shapes of blending surfaces. Some examples of time-independent 

and time-dependent surface blending were presented to demonstrate industrial applications of the 

proposed approach. 

One of the main advantages of the proposed approaches is that the shape control parameters 

can be optimized to: (1) minimize stress concentrations in engineering applications, and (2) create 

user’s specified shapes for aesthetic or other requirements. Stress concentrations are related to the 

curvature of blending surfaces between primary surfaces such as two intersecting planes to be 
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smoothly connected. Small curvature causes low stress concentrations. Therefore, minimizing stress 

concentrations is to find optimal shape control parameters which minimize the curvature of blending 

surfaces. To create user’s specified shapes, one or more profile curves will be first drawn by users. 

The difference between the user’s drawn profile curves and the corresponding ones of blending 

surfaces is minimized to obtain the optimal shape control parameters and create the user’s specified 

shapes of blending surfaces. For example, when user draws a profile curve 𝑷(𝑢), the corresponding 

profile curve of the blending surface is 𝑺(𝑢, 𝑣0, 𝛾, 𝜂, 𝜆, 𝜌). The shape control parameters  𝛾, 𝜂,

𝜆, and  𝜌 can be optimized through 𝜕‖𝑺 − 𝑷‖ 𝜕⁄ 𝛾 = 0, 𝜕‖𝑺 − 𝑷‖ 𝜕⁄ 𝜂 = 0, 𝜕‖𝑺 − 𝑷‖ 𝜕⁄ 𝜆 = 0, 

and 𝜕‖𝑺 − 𝑷‖ 𝜕⁄ 𝜌 = 0 to make the blending surface approximate the user’s drawn profile curve. 
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4. Facial blendshapes with differential equation-based 

shape interpolation 

For facial blendshape animation, both realism and efficiency are important. In comparison with  

facial blendshape animation based on geometric interpolation, physics-based facial blendshape 

animation has better realism. However, physics-based facial blendshape animation involves heavy 

numerical calculations. Before this research, there are no research studies on analytical physics-

based blendshape animation. The work described in this chapter is the first one of developing such 

a technique. It makes a good compromise between realism and efficiency. Considering the previous 

work (Barrielle et al., 2016; Kozlov et al., 2017) on facial animation uses Newton’s second law of 

motion which does not take damping effects into account, the equation of motion adopted in (Park 

and Hodgins, 2008; Terzopoulos and Waters, 1993) was introduced to incorporate inertial effects, 

damping effects, and the resistance against shape deformations. The mathematical model of dynamic 

deformations is obtained by combining the equation of motion with the deformation constraints from 

source and target facial shapes. An analytical solution of the mathematical model is derived and used 

to develop an efficient blending force-based animation framework consisting of slider force-based, 

exponentiation force-based and random force-based facial blendshapes which can create various 

blended facial shapes highly efficiently. Unlike existing numerical methods that must process 

polygon models first such as converting polygon meshes into finite element or mass-spring meshes, 

the proposed analytical approach directly uses polygon vertices for physics-based facial blendshapes. 

First, the mathematical model consisting of the equation of motion and the constraints of 

source and target facial models will be proposed. Next, a simple and efficient closed form analytical 

solution of the mathematical model will be obtained. Finally, a blend force-based animation 
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framework will be developed from the obtained analytical solution and slider force-based, 

exponentiation force-based, and random force-based facial blendshapes. 

4.1 Mathematical model and analytical solution 

As stated in (Barrielle et al., 2016), “physics-based methods work off sound physical foundations 

and generally produce accurate skin motion”. In the paper by (Barrielle et al., 2016), a mass is 

specified to each of the polygon vertices of a facial mesh, and Newton’s second law is used to obtain 

the temporal evolution of the facial mesh. When the facial mesh changes its shape from a neutral 

pose to a deformed pose, each of the vertices has a displacement, velocity, and acceleration. The 

acceleration leads to an inertia force, the displacement results in an elastic restoring force to resist 

the changes of the positions and shapes, and the facial mesh is deformed from the shape at the neutral 

pose into the shape at the deformed pose by an external force called an actuation force. The 

equilibrium of these forces leads to Newton’s second law. The weakness of the proposed approach 

is that it does not consider the effect of the velocity of facial movements on facial deformations. 

To tackle this weakness, many other approaches introduce a damping force into Newton’s 

second law to consider the influence of the velocity. The approach proposed in (Warburton and 

Maddock, 2013) uses the principle of virtual work on the basis of the displacement-based finite 

element method to derive the equation of motion in matrix form which includes a mass matrix, 

damping matrix and stiffness matrix to simulate facial movements. The equation of motion involving 

a damping force is also used to obtain physics-based modelling of facial animation in (Terzopoulos 

and Waters, 1993; Lee et al., 1995) and combined with data-driven techniques to simulate skin and 

muscle deformation in (Park and Hodgins, 2008). 

Motivated by the existing work, the same equation of motion involving a damping force 

adopted in (Park and Hodgins, 2008; Terzopoulos and Waters, 1993; Warburton and Maddock, 2013; 
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Lee et al., 1995) was used to simulate facial deformations, and propose a data-driven technique for 

synthesizing skin deformation from skeletal motion. The equation of motion can be written as 

𝑚
𝑑2𝑥(𝑖)

𝑑𝑡2
+ 𝑐

𝑑𝑥(𝑖)

𝑑𝑡
+ 𝑘𝑥(𝑖) = 𝑓(𝑖) 

(𝑖 = 1,2,3)                                                                             (143) 

where 𝑚 denotes mass which is used to provide inertia effects, 𝑐 stands for the damping coefficient 

which is introduced to provide damping effects, 𝑘 means the stiffness coefficient which reflects the 

resistance of facial skin against facial deformations, 𝑡 is the time variable, the superscript 𝑖 indicates 

the 𝑖𝑡ℎ component, i. e., 𝑥(1) = 𝑥, 𝑥(2) = 𝑦, and 𝑥(3) = 𝑧 which represent the three components of 

deformations, and 𝑓(1) = 𝑓𝑥 , 𝑓(2) = 𝑓𝑦, and 𝑓(3) = 𝑓𝑧 indicate the three components of forces. 

Deforming a face model at the neutral pose likes moving an object at the rest position where 

the displacement and velocity of the object at the rest position are zero. The deformation 

(displacement) and deformation rate (velocity) of the face model at the neutral pose 𝑡 = 0 are also 

zero.  At the deformed pose 𝑡 = 1, the face model is deformed into various target shapes. Therefore, 

the following constraints can be obtained. 

𝑡 = 0     𝑥(𝑖) = 0     
𝑑𝑥(𝑖)

𝑑𝑡
= 0 

𝑡 = 1    𝑥(𝑖) = 𝑥2
(𝑖)

− 𝑥1
(𝑖)

 

                                   (𝑖 = 1,2,3)                                                                          (144) 

where the subscripts “1” and “2” indicate the neutral pose and deformed pose, respectively, and 𝑥1
(𝑖)

 

and 𝑥2
(𝑖)

stand for the vertex coordinate values of the undeformed and deformed face polygon models 

respectively.  

Eqs. (143) and (144) are the mathematical model of dynamic facial blendshapes. Various 

numerical methods can be used to solve the mathematical model. However, these numerical methods 
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have the problems discussed before. In this research, a simple and efficient analytical solution of the 

mathematical model has been developed. 

According to the theory of differential equations5, 6, the solution to nonhomogeneous second-

order ordinary differential Eq. (143) contains a general solution 𝑥ℎ
(𝑖)

to the homogenous version of 

Equation (143) and a particular solution 𝑥𝑝
(𝑖)

 caused by the right-hand-side mathematical expression. 

The general solution to the homogenous version of Eq. (143) can be converted into a characteristic 

equation by letting7  

𝑥𝑝
(𝑖)

=  𝑒𝑟𝑡 

                                                                           (𝑖 = 1,2,3)                                                         (145) 

Substituting Eq. (145) into the homogenous version of (143), the following equation is 

obtained.  

𝑚𝑟2𝑒𝑟𝑡 + 𝑐𝑟𝑒𝑟𝑡 + 𝑘𝑒𝑟𝑡 = 0 

After deleting 𝑒𝑟𝑡  the above equation, the homogenous version of the nonhomogeneous 

second-order ordinary differential equation (143) is changed into the following characteristic 

equation  

                                                        𝑚𝑟2 + 𝑐𝑟 + 𝑘 = 0                                                      (146) 

The two roots of Eq. (146) can be written in the following form 

𝑟1,2 =
−𝑐±√𝑐2−4𝑚𝑘

2𝑚
                                                    (147) 

Depending on the different values of 𝑐2 − 4𝑚𝑘, the roots given by Eq. (147) and the analytical 

solution to Eq. (143) subjected to the constraints (144) can be divided into the following three cases:  

First case: 𝑐2 − 4𝑚𝑘 = 0, 

 
5 https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(L

ebl)/2%3A_Higher_order_linear_ODEs/2.2%3A_Constant_coefficient_second_order_linear_ODEs  
6 https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/17%3A_Second-

Order_Differential_Equations/17.2%3A_Nonhomogeneous_Linear_Equations  
7 https://nrich.maths.org/11054   

https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/2%3A_Higher_order_linear_ODEs/2.2%3A_Constant_coefficient_second_order_linear_ODEs
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/2%3A_Higher_order_linear_ODEs/2.2%3A_Constant_coefficient_second_order_linear_ODEs
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/17%3A_Second-Order_Differential_Equations/17.2%3A_Nonhomogeneous_Linear_Equations
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/17%3A_Second-Order_Differential_Equations/17.2%3A_Nonhomogeneous_Linear_Equations
https://nrich.maths.org/11054
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Second case: 𝑐2 − 4𝑚𝑘 > 0, 

Third case: 𝑐2 − 4𝑚𝑘 < 0. 

The above three cases will be discussed in Subsections 4.1.1, 4.1.2, and 4.1.3 below, 

respectively. 

4.1.1 Analytical solution for the first case 

For the first case,  𝑐2 − 4𝑚𝑘 = 0, Eq. (147) gives two repeated real roots below  

𝑟1,2 =
−𝑐

2𝑚
= 𝑞                                                            (148) 

The general solution of the homogenous version of Eq. (143) for this case is8 

𝑥ℎ
(𝑖)

= (𝑐1 + 𝑐2𝑡)𝑒𝑞𝑡 

(𝑖 = 1,2,3)                                                                   (149) 

where 𝑐1 and 𝑐2 are two integration constants.  

substituting Eq. (149) into the equation 𝑚
𝑑2𝑥(𝑖)

𝑑𝑡2 + 𝑐
𝑑𝑥(𝑖)

𝑑𝑡
+ 𝑘𝑥(𝑖) = 0, it is proved that the 

equation 𝑚
𝑑2𝑥(𝑖)

𝑑𝑡2 + 𝑐
𝑑𝑥(𝑖)

𝑑𝑡
+ 𝑘𝑥(𝑖) = 0  is exactly satisfied. Therefore 𝑥ℎ

(𝑖)
= (𝑐1 + 𝑐2𝑡)𝑒𝑞𝑡  is the 

general solution of the homogenous version of Eq. (143). 

The particular solution of the nonhomogeneous second-order ordinary differential equation 

(143) can be9 

𝑥𝑝
(𝑖)

= 𝑐3 + 𝑐4𝑡 

(𝑖 = 1,2,3)                                                               (150) 

where 𝑐3and 𝑐4 are two unknown constants.  

Substituting Eq. (150) into (143), the two unknown constants are determined. Introducing 

them back into Eq. (150), the particular solution is obtained below. 

 
8 https://www.math.hkust.edu.hk/~machas/differential-equations-for-engineers.pdf    
9 https://www.efunda.com/math/ode/linearode_undeterminedcoeff.cfm   

https://www.math.hkust.edu.hk/~machas/differential-equations-for-engineers.pdf
https://www.efunda.com/math/ode/linearode_undeterminedcoeff.cfm
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𝑥𝑝
(𝑖)

= 𝑓(𝑖) 𝑘⁄  

(𝑖 = 1,2,3)                                                              (151) 

Putting Eqs. (149) and (151) together, the solution to Eq. (143) is found to be 

𝑥(𝑖) = 𝑥ℎ
(𝑖)

+ 𝑥𝑝
(𝑖)

= (𝑐1 + 𝑐2𝑡)𝑒𝑞𝑡 + 𝑓(𝑖) 𝑘⁄  

(𝑖 = 1,2,3)                                                                                      (152) 

The two integration constants 𝑐1 and 𝑐2 can be determined by substituting Eq. (152) into the 

constraints (144) which gives 

𝑥(𝑖) =
1 + (−1 + 𝑡𝑞)𝑒𝑞𝑡

𝑡
𝑓(𝑖) 

(𝑖 = 1,2,3)                                                                          (153) 

where 

𝑓(𝑖) =
𝑘[𝑥2

(𝑖)
− 𝑥𝑖

(𝑖)
]

1 + (−1 + 𝑞)𝑒𝑞
 

(𝑖 = 1,2,3)                                                                      (154) 

4.1.2 Analytical solution for the second case 

For the second case,  𝑐2 − 4𝑚𝑘 > 0, Eq. (147) gives two different real roots below 

𝑟1 =
−𝑐 + √𝑐2 − 4𝑚𝑘

2𝑚
= 𝑞1 

𝑟2 =
−𝑐+√𝑐2−4𝑚𝑘

2𝑚
= 𝑞2                                                       (155) 

The general solution of the homogenous version of Eq. (143) for this case is 

𝑥ℎ
(𝑖)

= 𝑐1𝑒𝑞1𝑡 + 𝑐2𝑒𝑞2𝑡 

(𝑖 = 1,2,3)                                                                    (156) 

Putting the above equation and Eq. (151) together, the solution to Eq. (143) is 

𝑥(𝑖) = 𝑐1𝑒𝑞1𝑡 + 𝑐2𝑒𝑞2𝑡 + 𝑓(𝑖) 𝑘⁄  
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(𝑖 = 1,2,3)                                                                            (157) 

Substituting Eq. (157) into the constraints (144) to determine the two integration constants 

𝑐1and 𝑐2, and introducing them back into Eq. (157), the following equation is obtained. 

𝑥(𝑖) =
𝑞1 − 𝑞2 + 𝑞2𝑒𝑞1𝑡 − 𝑞1𝑒𝑞2𝑡

𝑘(𝑞1 − 𝑞2)
𝑓(𝑖) 

(𝑖 = 1,2,3)                                                                                 (158) 

where  

𝑓(𝑖) =
𝑘(𝑞1 − 𝑞2)[𝑥2

(𝑖)
− 𝑥1

(𝑖)
]

𝑞1 − 𝑞2 + 𝑞2𝑒𝑞1 − 𝑞1𝑒𝑞2
 

(𝑖 = 1,2,3)                                                                            (159) 

4.1.3 Analytical solution for  the third case 

For the third case,  𝒄𝟐 − 𝟒𝒎𝒌 < 𝟎, Eq. (147) gives two different complex roots below 

𝑟1,2 = 𝑞3 ± 𝑗𝑞4                                                            (160) 

where 𝑗 is an imagery number, and 

𝑞3 = −
𝑐

2𝑚
      𝑞4 =

√4𝑚𝑘−𝑐2

2𝑚
                                         (161) 

The general solution of the homogenous version of Eq. (143) for this case is 

𝑥ℎ
(𝑖)

= 𝑒𝑞3𝑡(𝑐1𝑐𝑜𝑠𝑞4𝑡 + 𝑐2𝑐𝑜𝑠𝑞4𝑡) 

(𝑖 = 1,2,3)                                                                               (162) 

Putting the above equation and Eq. (151) together, the solution to Eq. (143) is obtained below. 

𝑥(𝑖) = 𝑒𝑞3𝑡(𝑐1𝑐𝑜𝑠𝑞4𝑡 + 𝑐2𝑐𝑜𝑠𝑞4𝑡) + 𝑓(𝑖) 𝑘⁄  

(𝑖 = 1,2,3)                                                                                      (163) 

Substituting Eq. (163) into the constraints (144) to determine the two integration constants 𝑐1 

and 𝑐2, and introducing the obtained unknow constants back into Eq. (163), the following solution is 

obtained. 
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𝑥(𝑖) =
𝑞4 + 𝑒𝑞3𝑡(𝑞3𝑠𝑖𝑛𝑞4𝑡 − 𝑞4𝑐𝑜𝑠𝑞4𝑡)

𝑘𝑞4
𝑓(𝑖) 

(𝑖 = 1,2,3)                                                                                      (164) 

where 

𝑓(𝑖) =
𝑘𝑞4[𝑥2

(𝑖)
− 𝑥1

(𝑖)
]

𝑒𝑞3(𝑞4𝑒−𝑞3 + 𝑞3𝑠𝑖𝑛𝑞4 − 𝑞4𝑐𝑜𝑠𝑞4)
 

(𝑖 = 1,2,3)                                                                                    (165) 

From one of Eqs. (154), (159) and (165), the force functions are obtained. Substituting them 

into the corresponding Eqs. (153), (158) or (164), the coordinate values of the blended shapes at 

time 𝑡 are calculated. In Section 4.3 below, Eqs. (153-154), (158-159) and (164-165) will be using 

them to develop an analytical blending force-based animation framework after the experiments and 

comparisons are investigated in Section 4.2. 

4.2 Experiments and comparisons 

In this section, the numerical method applied in (Lee et al., 1995) and the linear interpolation method 

employed in (Seo et al., 2011) will be used in this subsection for the same facial blend shape task. 

The deformation formulae (153), (158), and (164) and force functions (154), (159) and (165) of our 

proposed analytical solution, the numerical method, and the linear interpolation method will be 

implemented and elaborated below.  Some experiments are presented in this section to compare the 

blended shapes obtained from the proposed analytical solution, the numerical method, and the linear 

interpolation method, which are visualized in Maya. 

The numerical method proposed in (Lee et al., 1995) is well-known, explicit Euler method. It 

is widely used to solve the equation of motion. In order to validate the derived analytical solutions, 

this numerical method will be used to solve the same differential equation (143) subjected to the 

constraints (144). 
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Firstly, the time range [0,1] is uniformly discretized into 𝐽 equal time intervals leading to a 

time step length ∆𝑡 = 1/𝐽. If 𝑎𝑡𝑗

(𝑖)
 is used to replace the acceleration 𝑑2𝑥(𝑖)/𝑑𝑡2 , 𝑣𝑡𝑗

(𝑖)
 is used to 

replace the velocity 𝑑𝑥(𝑖) 𝑑𝑡⁄ , 𝑑𝑡𝑗

(𝑖)
  is used to replace the deformation 𝑥(𝑖), and 𝑓𝑛

(𝑖)
(𝑛 = 0,1,2,3, … ) 

is used replace the external forces 𝑓0
(𝑖)

in Eq. (143) at the instant 𝑡𝑗 = 𝑗 𝐽(𝑗 = 0,1,2,3, … , 𝐽)⁄ , Eq. (143) 

is changed into the following equation to determine the acceleration 𝑎𝑡𝑗

(𝑖)
 

𝑎𝑡𝑗

(𝑖)
= [

𝑑2𝑥(𝑖)

𝑑𝑡2
] =

1

𝑚
[𝑓𝑛

(𝑖)
− 𝑐𝑣𝑡𝑗

(𝑖)
− 𝑘𝑑𝑡𝑗

(𝑖)
] 

(𝑗 = 0,1,2,3, … , 𝐽 − 1; 𝑛 = 0,1,2,3, … ) 

(166) 

At the neutral pose, 𝑗 = 0, 𝑡0 = 0, the constraints (144) give 𝑣𝑡0

(𝑖)
= 0, and 𝑑𝑡0

(𝑖)
= 0. At the 

final pose, the vertex 𝑥1
(𝑖)

 is moved to 𝑥2
(𝑖)

.  The displacement between 𝑥2
(𝑖)

 and 𝑥1
(𝑖)

 is 𝑥2
(𝑖)

− 𝑥1
(𝑖)

. 

According to Hooke’s law, the restoring force caused by the displacement is 𝑓0
(𝑖)

= 𝑘[𝑥2
(𝑖)

− 𝑥1
(𝑖)

] 

where 𝑘 is the stiffness coefficient. As the first approximation, we take 𝑓0
(𝑖)

= 𝑘[𝑥2
(𝑖)

− 𝑥1
(𝑖)

], and 

obtain 𝑎𝑡0

(𝑖)
=

1

𝑚
[𝑓0

(𝑖)
− 𝑐𝑣𝑡0

(𝑖)
− 𝑘𝑑𝑡0

(𝑖)
] =

1

𝑚
𝑓0

(𝑖)
  from Eq. (166). Then the following equations are 

used to calculate 𝑣𝑡1

(𝑖)
and 𝑥𝑡1

(𝑖)
. 

𝑣𝑡𝑗+1

(𝑖)
= 𝑣𝑡𝑗

(𝑖)
+ ∆𝑡𝑎𝑡𝑗

(𝑖)
 

𝑥𝑡𝑗+1

(𝑖)
= 𝑥𝑡𝑗

(𝑖)
+ ∆𝑡𝑣𝑡𝑗+1

(𝑖)
 

𝑑𝑡𝑗+1

(𝑖)
= 𝑥𝑡𝑗+1

(𝑖)
+ 𝑥1

(𝑖)
 

(𝑗 = 0,1,2,3, … , 𝐽 − 1)                                                   (167) 

where 𝑣𝑡0

(𝑖)
= 0, 𝑥𝑡0

(𝑖)
= 𝑥1

(𝑖)
  

After obtaining 𝑣𝑡1

(𝑖)
and 𝑥𝑡1

(𝑖)
, Eq. (166) is used to obtain 𝑎𝑡1

(𝑖)
=

1

𝑚
[𝑓0

(𝑖)
− 𝑐𝑣𝑡1

(𝑖)
− 𝑘𝑑𝑡1

(𝑖)
] and 

Eq. (167) is used to obtain 𝑣𝑡2

(𝑖)
and 𝑥𝑡2

(𝑖)
. The calculations are repeated until 𝑗 = 𝐽 − 1. When 𝑗 = 𝐽 −
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1, 𝑥𝑡𝐽

(𝑖)
= 𝑥𝑡𝐽−1

(𝑖)
+ ∆𝑡𝑣𝑡𝐽

(𝑖)
 is obtained. Then we set  �̅�0

(𝑖)
 to 𝑥𝑡𝐽

(𝑖)
, i. e., �̅�0

(𝑖)
= 𝑥𝑡𝐽

(𝑖)
 and check whether 

𝑥2
(𝑖)

− �̅�0
(𝑖)

 satisfies the required accuracy 𝜀. If |𝑥2
(𝑖)

− �̅�0
(𝑖)

| ≤ 𝜀, �̅�0
(𝑖)

 is very close to 𝑥2
(𝑖)

 and the 

third constraints 𝑥(𝑖) = 𝑥2
(𝑖)

− 𝑥1
(𝑖)

 at 𝑡 = 1 is satisfied. The obtained 𝑥𝑡𝑗

(𝑖)
 (𝑗 =  1, 2, 3, ⋯ , 𝐽 − 1) 

corresponding to �̅�0
(𝑖)

 are the obtained blended shapes. If |𝑥2
(𝑖)

− �̅�0
(𝑖)

| > 𝜀, the assumed force 𝑓0
(𝑖)

 

should be modified to generate more accurate solutions 𝑥𝑡𝑗

(𝑖)
 (𝑗 = 1, 2, 3, ⋯ , 𝐽 − 1). When 𝑥2

(𝑖)
>

�̅�0
(𝑖)

, the assumed force is too small. We add a positive force increment  
𝑥2

(𝑖)
−�̅�0

(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖) 𝑓0

(𝑖)
 to 𝑓0

(𝑖)
 to make 

𝑓0
(𝑖)

 bigger and obtain the modified force 𝑓1
(𝑖)

= 𝑓0
(𝑖)

+
𝑥2

(𝑖)
−�̅�0

(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖) 𝑓0

(𝑖)
= [1 +

𝑥2
(𝑖)

−�̅�0
(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖)] 𝑓0

(𝑖)
. When 

𝑥2
(𝑖)

< �̅�0
(𝑖)

,  the assumed force is too big. We add a negative force increment   
𝑥2

(𝑖)
−�̅�0

(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖) 𝑓0

(𝑖)
 to 𝑓0

(𝑖)
 to 

make 𝑓0
(𝑖)

 smaller and obtain the modified force 𝑓1
(𝑖)

= [1 +
𝑥2

(𝑖)
−�̅�0

(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖)] 𝑓0

(𝑖)
.  

After determining 𝑓1
(𝑖)

, we obtain 𝑎𝑡0

(𝑖)
=

1

𝑚
[𝑓1

(𝑖)
− 𝑐𝑣𝑡0

(𝑖)
− 𝑘𝑑𝑡0

(𝑖)
] =

1

𝑚
𝑓1

(𝑖)
  from Eq. (166) and 

𝑣𝑡1

(𝑖)
 and 𝑥𝑡1

(𝑖)
 from Eq. (167). Then, we use Eq. (166) to obtain 𝑎𝑡1

(𝑖)
=

1

𝑚
[𝑓1

(𝑖)
− 𝑐𝑣𝑡1

(𝑖)
− 𝑘𝑑𝑡1

(𝑖)
] and 

Eq. (167) is used to obtain 𝑣𝑡2

(𝑖)
and 𝑥𝑡2

(𝑖)
. The calculations are repeated until 𝑗 = 𝐽 − 1. When 𝑗 = 𝐽 −

1, 𝑥𝑡𝐽

(𝑖)
 is obtained. Then we set  �̅�1

(𝑖)
 to 𝑥𝑡𝐽

(𝑖)
, i. e., �̅�1

(𝑖)
= 𝑥𝑡𝐽

(𝑖)
 and check whether 𝑥2

(𝑖)
− �̅�1

(𝑖)
 satisfies 

the required accuracy 𝜀. If |𝑥2
(𝑖)

− �̅�1
(𝑖)

| ≤ 𝜀, the obtained 𝑥𝑡𝑗

(𝑖)
 (𝑗 =  1, 2, 3, ⋯ , 𝐽 − 1) corresponding 

to �̅�1
(𝑖)

 are the obtained blended shapes. If |𝑥2
(𝑖)

− �̅�1
(𝑖)

| > 𝜀 , we use  𝑓2
(𝑖)

= [1 +
𝑥2

(𝑖)
−�̅�1

(𝑖)

𝑥2
(𝑖)

−𝑥1
(𝑖)] 𝑓1

(𝑖)
 to 

modify the force. Writing the force modification into an iterative form, we obtain 

𝑓𝑛
(𝑖)

= [1 +
𝑥2

(𝑖)
− �̅�𝑛−1

(𝑖)

𝑥2
(𝑖)

− 𝑥1
(𝑖)

] 𝑓𝑛−1
(𝑖)

 

(𝑛 = 1, 2, 3, … )            (168) 



169 

 

The above process is repeated until |𝑥2
(𝑖)

− �̅�𝑛
(𝑖)

| < 𝜀 . The 𝑥𝑡𝑗+1

(𝑖)
(𝑗 = 1, 2, 3, … , 𝐽 − 1) 

corresponding to �̅�𝑛
(𝑖)

are the obtained blended shapes.  

The linear interpolation method has two different versions: one is the linear blending between 

whole face shapes that can be mathematically written as: 𝑥 = ∑ 𝑤𝑗𝑥𝑗
𝑁
𝑗=0  (Lewis et al., 2014) where 

𝑥0 stands for the neutral shape, and 𝑥𝑗 (𝑗 = 1, 2, 3, … , 𝑁) indicate 𝑁 target shapes, and the other is 

the “delta” or offset blendshape formulation, which is most often used in the current commercial 

modelling and animation software packages for blendshape applications. The blendshape model used in 

(Seo et al., 2011) is based on the “delta” blendshape formulation which has the form of Equation 𝑥 =

𝑥0 + ∑ 𝑤𝑗(𝑥𝑗 − 𝑥0)𝑁
𝑗=1 . 

In this subsection, the proposed analytical solution is compared with the “delta” blendshape 

formulation used in (Seo et al., 2011).  

All the three methods: the proposed analytical solution, the numerical method, and the linear 

interpolation method, are implemented with C++ and OpenGL. In the remaining part of this subsection, 

a comparison among our proposed analytical solution, the numerical method, and the linear interpolation 

method will be made. 

The parameters 𝑞 and 𝑞𝑖(𝑖 = 1,2,3,4) involved in the proposed analytical solution, i.e., Eqs. 

(153)-(154), (158)-(159) and (164)-(165), and the numerical solution (166)-(168) depend on mass 

𝑚, damping coefficient 𝑐, and the stiffness coefficient 𝑘. It indicates that different mass, damping 

coefficient, and stiffness coefficient can be used to create different facial shapes. Here two groups 

of different values are used to demonstrate this, and the proposed analytical solution is compared 

with the numerical method. The first group is: 𝑚 = 1.5, 𝑐 = 8, and 𝑘 = 10, and the second group 

is: 𝑚 = 0.8, 𝑐 = 7.5, and 𝑘 = 20. These two groups of values are obtained by roughly referring to 

the papers by Liang and Boppert (2010) for density, Ulusoy et al. (2010) for damping coefficient, 

and Wei et al. (2017) for stiffness coefficient. The source shape of a cartoon face at the neutral pose 
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𝑡=0 and its target shape at the deformed pose 𝑡=1 obtained from the link10 are shown in the column 

(a) and column (f) of Figure 30. 

The proposed analytical solution is accurate. First, how the numerical solution converges to 

the proposed analytical solution is demonstrated. Compared with all the coordinates of the 

undeformed cartoon face shown in Figure 30(a) and the deformed cartoon face shown in Figure 

30(f), the 𝑦 coordinate of vertex 554 denoted with a small red dot in the first image in Figure 30(a) 

has the largest displacement since it moves from the position at lower eyelid in Figure 30(a) to the 

position at upper eyelid in Figure 30(f) when the eye closes. Here it is used to make the comparison. 

Taking 𝑚=1.5, 𝑐=8, and 𝑘=10 and setting the required accuracy to 𝜀 = 10−13 which is infinitesimal 

in comparison with the maximum size of the cartoon face, which is 40.11, the 𝑦 coordinate values 

at 𝑡=0.5 obtained from different time step lengths Δ𝑡 of the numerical method and the proposed 

analytical solution are given in Table 5 where AS indicated the proposed analytical solution, the 

second row is the obtained 𝑦 coordinate values, the third row is the errors of the numerical method 

relative to the proposed analytical solution, and the fourth row gives the CPU time used to obtain 

the 𝑦 coordinate values on a PC with Intel® Xeon® CPU E5-1650 V2 @ 3.5 GHz and 32 GB of 

memory. 

The data in Table 5 indicate that with the decrease of the time step length, the numerical 

solution converges very slowly to the proposed analytical solution, i. e., from 2.051713 to 1.750848,  

but the CPU time quickly increases. The slow convergence of the numerical method can be also 

concluded from the same reduction order. As shown in Table 5, when the step length reduces by one 

order, the error caused by the numerical method also reduces by one order. When the time step 

length ∆𝑡 = 10−1 , the error is 1.718 × 10−1, which is large, and the CPU time is 1.06 × 10−3 ms. 

When the time step length decreases to ∆𝑡 = 10−7, the error drops to 5.71 × 10−7, but the CPU 

time rises to 2,528 ms.  In contrast, the proposed analytical solution only takes to 8.6 × 10−8 ms. 

 
10 https://www.creativebloq.com/3d-world/download-files-3d-world-211-61420631 
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Table 5. Convergence and timing of the numerical method 

∆𝑡 10−1 10−2 10−3 10−4 

𝑦 2.051713 1.780207 1.753777 1.75114 

Error 1.718 × 10−1 1.68 × 10−2 1.67 × 10−3 1.67 × 10−4 

Time (ms) 0.00106 0.025 0.167 1.4 

∆𝑡 10−5 10−6 10−7 AS 

𝑦 1.750877 1.750850 1.750848 1.750847 

Error 1.71 × 10−5 1.71 × 10−6 5.71 × 10−7 0 

Time (ms) 16 218 2,528 8.6 × 10−8 

 

The above comparison can be extended to the whole cartoon face. Using 𝒙0𝑙 to indicate the 

𝑙𝑡ℎ vertex on the blended shapes obtained from the proposed analytical solution and 𝒙1𝑙 to indicate 

the corresponding 𝑙𝑡ℎ vertex on the blended shapes obtained from the above numerical solution, the 

Euclidean distance between 𝒙0𝑙 and 𝒙1𝑙 is 𝑑(𝒙0𝑙,  𝒙1𝑙) (Mora et al., 2016) and gives a measure of 

the error between two corresponding vertices. The average error and the maximum error between 

two blended shapes obtained from the numerical method and the proposed analytical solution can 

be calculated from the Euclidean distance through the equations below 

𝐸𝑀 = 𝑚𝑎𝑥{𝑑(𝒙0𝑙, 𝒙1𝑙)} 

𝐸𝐴 =
1

𝐿
𝑚𝑎𝑥{𝑑(𝒙0𝑙, 𝒙1𝑙)} 

 (𝑙 = 1,2,3, … , �̅�)                                                              (169) 

where �̅� is the number of the total vertices on a blended shape. 

Using the mass 𝑚=1.5, damping coefficient 𝑐=8, and stiffness coefficient 𝑘=10, the time step 

length ∆𝑡 = 10−2 and the required accuracy 𝜀 = 10−13, the blended shapes at the poses 𝑡 = 0.2, 

0.4, 0.6 and 0.8 obtained from the numerical method, the proposed analytical solution, and the 
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linear interpolation method are shown in the first, second and the third rows of Figure 30. To 

demonstrate different mass, damping coefficient, and stiffness coefficient can be used to achieve 

different facial shapes, the mass 𝑚=0.8, damping coefficient 𝑐=7.5, and stiffness coefficient 𝑘=20 

are used in the proposed analytical solution to create the blended shapes shown in the fourth row of 

Figure 30. 

The obtained average errors and the maximum errors between the numerical method and the 

proposed analytical solution are given in Table 5. In the table, the second to fifth column presents 

the errors of the numerical method with ∆𝑡 = 10−2  and 𝜀 = 10−13  relative to our proposed 

analytical solution. 

 

Table 6. Error comparison between the numerical method and the proposed analytical solution 

 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8 

𝐸𝐴1 4.1 × 10−2 3.5 × 10−2 4.2 × 10−2 3.4 × 10−2 

𝐸𝑀1 8.6 × 10−1 7.2 × 10−1 8.7 × 10−1 7.1 × 10−1 

 

Even if the time step length is not very small (∆𝑡 = 10−2), any visual differences among the 

blended shapes shown in the first and third rows of Figure 30 cannot be found. The data in Table 6 

also show small errors between the numerical method and the proposed analytical solution. The 

errors at different time instants are at the same order. It indicates the correctness of the calculations. 

The errors will be further reduced if a smaller time step length is used. The CPU time used to obtain 

the blended shapes are 0.87ms for the proposed analytical solution, 0.68ms for the linear 

interpolation method, and 14.42ms for the numerical method (Even if the required accuracy is set to 

𝜀 = 1 and the time step length keeps ∆𝑡 = 10−2 unchanged, the numerical method still requires 

14.42ms to generate the blended shapes). They indicate that the proposed analytical solution is very 
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efficient, achieves almost as high efficiency as the linear interpolation method, and creates blended 

shapes much more quickly than the numerical method. 

     

      𝑡 = 0                𝑡 = 0.2             𝑡 = 0.4             𝑡 = 0.6              𝑡 = 0.8              𝑡 = 1 

         (a)                     (b)                     (c)                     (d)                     (e)                    (f) 

Figure 30: Comparison of blended shapes obtained by the numerical method, the proposed 

analytical solution, and the linear interpolation method 

Numerical solution (𝑚=1.5, 𝑐=8, 𝑘=10) 

Proposed analytical solution (𝑚=1.5, 𝑐=8, 𝑘=10) 

Linear interpolation 

Proposed analytical solution (𝑚=0.8, 𝑐=7.5, 𝑘=20) 
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Comparing the images depicted in Figure 30, three conclusions can be drawn. First, the 

analytical approach of the dynamic facial blendshapes proposed in this thesis uses the first group of 

mass, damping coefficient, and stiffness coefficient to achieve the same visual results (Second row 

of Figure 30) of facial blendshapes as those generated by the linear interpolation method (Third row). 

It indicates that the proposed approach has a capacity to generate all the blended shapes generated 

by the linear interpolation method. Second, the analytical approach of the dynamic facial 

blendshapes uses the second group of mass, damping coefficient, and stiffness coefficient to achieve 

different results as clearly demonstrated by the images shown in (c), (d) and (e) of the fourth row. It 

indicates that the blended shapes generated by the linear interpolation method are a subset of the 

blended shapes generated by the approach proposed in this thesis. The proposed approach can 

generate a larger superset of blended shapes than the linear interpolation method. When two or more 

target shapes are blended together, the superset generated by the proposed approach will become 

much bigger than the subset generated by the linear interpolation method. Third, the linear 

interpolation method can only generate blended shapes with a same deformation rate. Differently, 

the proposed approach can generate blended shapes with different deformation rates, i. e., 

acceleration and deceleration effects stated in (Noh and Neumann, 1999). As shown in the figure, 

the shape changes from (b) to (d) of the fourth row generated by the proposed approach demonstrate 

a larger deformation rate than the linear interpolation method, and the shape changes from (d) to (f) 

of the fourth row generated by the proposed approach demonstrate a smaller deformation rate than 

the linear interpolation method. This feature is useful since it can be used to create special 

acceleration and deceleration effects (Noh and Neumann, 1999).  

The CPU time of generating a facial animation is also calculated and it is found that obtaining 

all the new coordinate values of 14,232 polygon vertices for a facial animation of 1,389 frames 

(1,389 blended facial shapes) only takes one second on the same PC with Intel® Xeon® CPU E5-

1650 V2 @ 3.5 GHz and 32 GB of memory. The numerical method based on the physics-based 
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model of soft tissues including muscle activation described in (Ichim et al., 2017) is powerful  since 

it has the capacity to model the physical interaction of passive flesh, active muscles, and rigid bone 

structures and integrate collision and contact handling into the simulation. However, it is not 

efficient since it takes more than two minutes on a laptop with a 3.1 GHz Intel Core i7 processor 

and 16 GB of main memory to generate a new facial shape for a model with 6,393 surface vertices 

and 8,098 volumetric vertices. Although the proposed analytical approach of physics-based facial 

blendshapes has not the capacity, it is highly efficient. 

4.3 Blending force-based animation framework 

As shown in Eqs. (153-154), (158-159) and (164-165),  𝒙1
(𝑖)

presents a source shape,  𝒙2
(𝑖)

 stands for 

a target shape, and 𝒙(𝑖) is a blended shape. Eqs. (153), (158) and (164) are the functions of time 

variable t only. Therefore, a time slider can be implemented for each of the combinations between 

one source shape and each of target shapes, and all the time sliders are manipulated to achieve the 

force interpolation and create new blended shapes. Such a method is called slider force-based facial 

blendshapes. It is different from existing geometric facial blendshapes which obtain new shapes by 

interpolating between one source shape and one target shape. The proposed approach uses the time 

variable t in Eqs. (153), (158) and (164) to interpolate the force, which continually deforms one 

source shape into one or more target shapes.  

A production ready blendshape model can involve 100 or more weights (Lewis et al., 2014). 

Manually manipulating such many weight sliders are time-consuming and can be difficult to find all 

or desired blended shapes. To avoid manually manipulating time sliders, exponentiation force-based 

and random force-based facial blendshapes will be proposed to automatically generate uniformly 

distributed blended shapes for animators to select from them. 
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The proposed blending force-based animation framework will integrate slider force-based, 

exponentiation force-based, and random force-based facial blendshapes, which will be introduced 

in Subsection 4.3.1, 4.3.2 and 4.3.3 below, respectively. 

4.3.1 Slider force-based facial blendshapes 

Facial blendshapes can be divided into two different types. One is between one source shape and 

one target shape, and the other is between one source shape and two or more target shapes. The 

slider force-based method is applicable to both types of facial blendshapes. In this subsection, two 

examples of facial blendshapes between one source shape and one target shape will be presented. 

The following two subsections will investigate facial blendshapes between one source shape and 

two or more target shapes. 

Equations (153), (158) and (164) have been implemented into time sliders to manipulate forces, 

which deform the source shape into the corresponding target shape. Figure 31 shows the applications 

of the proposed approach in creating blended shapes between one source shape (first column of 

Figure 31) and seven target shapes (last column). 

The source shape of a human face at the neutral pose 𝑡 = 0 and the target shapes at the 

deformed pose 𝑡 = 1 obtained from the link11   are also used to create facial blendshapes. The 

obtained blended shapes at the poses 𝑡 = 0.2, 0.4, 0.6 and 0.8 are depicted in Figure 32 where the 

first, second and third rows show fury, cry, and laugh expressions, respectively, and the first column 

shows the source shape, and the last column indicates the target shapes. These images indicate the 

proposed approach successfully created new blended shapes from a source and a target shape.  

 

 
11 http://people.csail.mit.edu/sumner/research/deftransfer/data.html 
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𝑡 = 0 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8 𝑡 = 1 

Figure 31: Blended facial shapes of a cartoon face created by using slider force-based facial 

blendshapes 

 

 

 

𝑡 = 0                𝑡 = 0.2              𝑡 = 0.4               𝑡 = 0.6               𝑡 = 0.8                  𝑡 = 1 

Figure 32: Blended facial shapes of a human face created by using slider force-based facial 

blendshapes 
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4.3.2 Exponentiation force-based facial blendshapes 

To avoid manually manipulate the implemented time sliders to generate new blended shapes 

for the situations with a lot of time sliders, this subsection and the following subsection will 

develop two methods to automatically generate blended shapes.  

First, 𝒙1
(𝑖)

 (𝑖 = 1, 2, 3, … , 𝑀) is used to indicate a source shape with M vertices, and 𝒙𝑗
(𝑖)

 

(𝑗 = 1, 2, 3, … , 𝑁;  𝑖 = 1, 2, 3, … , 𝑀)  are used to indicate 𝑗𝑡ℎ  target shape with  M vertices 

where  𝑁 is the total number of target shapes. By calculating the difference 𝒙𝑗
(𝑖)

− 𝒙1
(𝑖)

 between 

each of the 𝑁 target shapes 𝒙𝑗
(𝑖)

 and the source shape 𝒙1
(𝑖)

, one force 𝒇𝑗
(𝑖)

 is obtained from 

Equations (154), (159) and (165). In total, 𝑁 forces 𝒇𝑗
(𝑖)

(𝑗 = 1, 2, 3, … , 𝑁) are obtained. The 

blended force 𝒇𝑏
(𝑖)

 is obtained from the following linear combination of the 𝑁 forces 

𝒇𝑏
(𝑖)

= ∑ 𝑤𝑗𝒇𝑗
(𝑖)

𝑁

1

      

∑ 𝑤𝑗 = 1

𝑁

𝑖

 

(0 ≤ 𝑤𝑗 ≤ 1)                                                       (170) 

If each of the weight 𝑤𝑗 (𝑗 = 1, 2, 3, … , 𝑁) is uniformly discretised into 𝐿 discrete values 𝑤𝑗𝑙 =

𝑙 (𝐿 − 1)(𝑙 = 0, 1, 2, 3, … , 𝐿 − 1)⁄ , The total weight permutations with repetition will be 𝐿𝑁 . 

For example, if the left one of Figure 33 is taken to be a source shape, and the remaining 5 

shapes in the same figure are taken to be target shapes,  𝑁 = 5 is obtained.  If each of the weight 

𝑤𝑗  (𝑗 = 1, 2, 3, … , 𝑁)  is discretised into 𝐿 = 3  discrete values,  35 = 243  weight 

permutations in total are obtained.  

Here, L=3 and N=5 are used to explain how 𝐿𝑁 is obtained. Since L=3, 𝑤𝑗𝑙 =
𝑙

𝐿−1
=

𝑙

2
(𝑙 = 0,1,2), i.e.  𝑤𝑗𝑙 = 0, 𝑤𝑗2 = 0.5, and 𝑤𝑗2 = 1 (𝑗 = 1, 2, 3, 4, 5).  
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First, 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 0 are fixed. Only 𝑤5 is changed, 3 combinations (i. e., L 

combinations): 𝑤5 = 0, 𝑤5 = 0.5 and 𝑤5 = 1 are obtained. 

Then,  𝑤1 = 𝑤2 = 𝑤3 = 0  are fixed. For each of 𝑤4 = 0 , 𝑤4 = 0.5 , and 𝑤4 = 1 ,  3 

combinations (i. e., L combinations) are obtained. In total, 3*L combinations, i. e.,  𝐿 × 𝐿 = 𝐿2 

combinations are obtained. 

Next,  𝑤1 = 𝑤2 = 0  are fixed. For each of  𝑤3 = 0 , 𝑤3 = 0.5 and 𝑤3 = 1 , 𝐿2 

combinations are obtained. In total, 3 × 𝐿2 combinations, i. e., 𝐿 × 𝐿2 =  𝐿3 combinations are 

obtained. 

After that,  𝑤1 = 0 is fixed. For each of  𝑤2 = 0,  𝑤2 = 0, 𝑤2 = 0.5, and  𝑤2 = 1, 𝐿3 

combinations are obtained.  In total, 3 × 𝐿3 combinations, i.e., 𝐿 × 𝐿3 =  𝐿4 combinations are 

obtained. 

Finally, for each of 𝑤1 = 0,   𝑤1 = 0.5 and  𝑤1 = 1, 𝐿4  combinations are obtained. In 

total, 3 × 𝐿4 combinations, i. e.,  𝐿 × 𝐿4 =  𝐿5 combinations are obtained. Since 𝑁 = 5, 𝐿5 =

 𝐿𝑁. 

 

Figure 33: Source shape and target shapes used in exponentiation force-based facial 

blendshapes (Fig. 34) and random force-based facial blendshapes (Fig. 37 and 39) 

 

Since 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 =  𝑤5 = 0 leads to a zeroed blending force which will not 

generate any new shapes, the actual blended forces are 242 which can be used to create blended 

shapes at any poses in the time interval 0 ≤ 𝑡 ≤ 1. 
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At each time instant 𝑡, the 242 blended forces can be used to create 242 blended shapes. 

If the time instants 𝑡 = 0, 0.2, 0.4, 0.6, 0.8  and 1 are considered, 242 × 6 = 1,452  blended 

shapes are obtained. Figure 34 gives the 48 blended shapes taken from every 5 ones of the 

created 242 blended shapes at 𝑡 = 1.  
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Figure 34: Blended shapes created by using exponentiation force-based facial blendshapes 

 

For the human face shown in Figure 32, more expressions given in Figure 35 are used to 

demonstrate how to create new blended shapes with the approach of exponentiation force-based 

facial blendshapes. In Figure 35, the image from the left to the right shows the neutral, cry, fury, 

rage, surprise, and sad expressions, respectively.  

 

      Neutral                Cry                    Fury                  Rage              Surprise               Sad 

Figure 35: Source shape and target shapes of a human face used in exponentiation force-based 

facial blendshapes (Figure 36) and random force-based facial blendshapes (Figure 38 and 40) 
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With the same method used to generate blended shapes shown in Figure 34, the 5 facial 

expressions shown in Figure 35 determine 242 blended forces at each time instant, which are 

used to create 242 blended shapes at the time instant. If the time instants 0, 0.2, 0.4, 0.6, 0.8, 

and 1 are used to create blended shapes, 1,452 blended shapes in total are obtained. Figure 36 

gives 24 blended shapes taken from the 1,452 blended shapes.  
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Figure 36: Blended shapes of a human face created by using exponentiation force-based facial 

blendshapes 

 

The above method of determining new blended forces and creating new blended shapes 

involves exponentiation. It is named as exponentiation force-based facial blendshapes. 

4.3.3 Random force-based facial blendshapes 

The exponentiation force-based facial blendshapes give all 𝐿𝑁 blended shapes. However, when 

𝑁 and 𝐿 or one of them are very big, the exponentiation force-based facial blendshapes will 

generate a very large number of blended shapes. For example, when the discrete weights are 

increased from 0, 0.5 and 1 to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, the blended 

forces are increased from 242 to 161,050. If these 161,050 blended forces are used to create 

new blended shapes at 21 time instants 𝑡=0, 0.05, 0.1, 0.15, 0.2, ……, 0.95, and 1.0, 3,382,050 

blended shapes are obtained.  Viewing all 3,383,050 blended shapes and selecting some from 

them is a time-consuming task. This problem can be overcome by generating uniformly 

distributed random numbers and using the generated random numbers to create new blended 

shapes for animators to view and select from them. In what follows, two methods will be 

proposed to deal with this. 
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4.3.3.1 First method of random force-based facial blendshapes  

If there are 𝑁 target shapes, the weights will be 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 according to Eq. (170). All 

possible combinations of the N weights are all the permutations of 1, 2, 3, …, N respectively 

taken from the N numbers 1, 2, 3,…, N. The total number of all the permutations is �̅� =

∑ 𝑁𝑃𝑟
𝑁
𝑟=1  where 𝑁𝑃𝑟 =

𝑁!

(𝑁−𝑟)!
. All the permutations are kept in a 2D array 𝑃𝑒𝑟[𝑛1][𝑛2] (1 ≤

𝑛1 ≤ �̅�; 1 ≤ 𝑛2 ≤ 𝑁; ) For example, when N=5, the total number of all the permutations will 

be �̅� = ∑ 𝑁𝑃𝑟
𝑁
𝑟=1 = ∑

𝑁!

(𝑁−𝑟)!
=

5!

(5−1)!
+

5!

(5−2)!
+

5!

(5−3)!
+

5!

(5−4)!
+

5!

(5−5)!
= 5 + 20 + 60 +𝑁

𝑟=1

120 + 120 = 325, the permutations of 1 taken from the 5 numbers: 1, 2, 3, 4, 5 will be kept as 

Per[1][]={1, 0, 0, 0, 0}, Per[2][]={0, 2, 0, 0, 0},…, Per[5][]={0, 0, 0, 0, 5}, the permutations 

of 2 taken from the 5 numbers will be kept as Per[6][]={1, 2, 0, 0, 0},…, Per[25][]={5, 4, 0, 0, 

0}, and the last permutation of 5 taken from the total 5 numbers will be kept as Per[325][]={5, 

4, 3, 2, 1}. 

From the source shape and the N target shapes, the forces 𝑓𝑗
(𝑖)

(𝑗 = 1, 2, 3, … , 𝑁) can be 

obtained. If it is required to select L weight combinations from the total N  weight combinations 

to create new blended shapes, L uniformly distributed random numbers within the range 

between 1 and �̅� are generated, and the generated L random numbers are used to identify which 

weight combinations should be used. 

Taking N=5 as an example, if the generated random numbers contain 2, 25, and 325, the 

weight combinations Per[2][]={0, 2, 0, 0, 0}, Per[25][]={5, 4, 0, 0, 0,}, and Per[325][]={5, 4, 

3, 2, 1} are identified and converted into Per[2][]= {0, 2/2, 0, 0, 0}={0, 1, 0, 0, 0}, Per[25][]= 

{5/(5+4), 4/(5+4), 0, 0, 0} = {5/9, 4/9, 0, 0, 0} and Per[325][] ={5/(5+4+3+2+1), 

4/(5+4+3+2+1), 3/(5+4+3+2+1), 2/(5+4+3+2+1), 1/(5+4+3+2+1)}={5/15, 4/15, 3/15, 2/15, 

1/15}. 
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Introducing each of the three weight combinations into Equation (170), the three blended 

forces are: 𝑓2
(𝑖)

, [5𝑓1
(𝑖)

+ 4𝑓2
(𝑖)

] 9⁄ ,  and [5𝑓1
(𝑖)

+ 4𝑓2
(𝑖)

+  3𝑓3
(𝑖)

+ 2𝑓4
(𝑖)

+ 4𝑓5
(𝑖)

] 15⁄ , 

respectively. Substituting each of the three obtained blended forces into Eqs. (153), (158) and 

(164), the new blended shapes between 𝑡 = 0 and 𝑡 = 1 can be created.  

If taking L = 50 and using the source shape and the 5 target shapes shown in Figure 33, 

which gives N=5, 50 new blended shapes at each of 𝑡 values are obtained from 50 blended 

forces. Figure 30 gives the first 48 ones of the 50 new blended shapes at the pose 𝑡=1.  

. 
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Figure 37: Blended shapes created by using the first method of random force-based facial 

blendshapes 
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Still taking L = 50 but using the source (neutral) shape and the 5 target shapes shown in 

Figure 35, which gives N=5, 50 new blended shapes at each of 𝑡 values from 50 blended forces 

can be created. Figure 38 gives 24 blended shapes of the 50 new blended shapes at the time 

instant  𝑡 = 0.8. 
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Figure 38: Blended shapes of a human face created by using the first method of random force-

based facial blendshapes 

 

4.3.3.2 Second method of random force-based facial blendshapes 

If there are 𝑁 target shapes and one source shape, 𝑁 force 𝒇𝑗
(𝑖)(𝑗 = 1, 2, 3, … , 𝑁) can be 

obtained. The weight for each of the 𝑁 forces is discretized into 𝐿 discrete values. 𝑀 = 𝐿𝑁   

permutations are the total number of all possible weight combinations which will lead to 

𝐿𝑁   blended forces. Taking 𝑁 = 5and 𝐿 = 11  as an example, 𝑀 = 𝐿𝑁 = 115 = 161,051 

weight combinations are obtained. Here, 𝑤1,𝑖 = 𝑖 × 𝑑𝑤  (𝑖 = 0, 1, 2, … , 10) is used to indicate 

the 𝑖𝑡ℎ weight of the first force, ,  𝑤2,𝑗 = 𝑗 × 𝑑𝑤 (𝑗 = 0, 1, 2, … , 10) is used to indicate the  𝑗𝑡ℎ 

weight of the second force, 𝑤3,𝑘 = 𝑘 × 𝑑𝑤  (𝑘 = 0, 1, 2, … , 10) is used to indicate the 𝑘𝑡ℎ 

weight of the third force,  𝑤4,𝑙 = 𝑙 × 𝑑𝑤 (𝑙 = 0, 1, 2, … , 10) is used to indicate the 𝑙𝑡ℎ weight 

of the fourth force, and 𝑤5,𝑚 = 𝑚 × 𝑑𝑤(𝑚 = 0, 1, 2, … , 10) is used to indicate the 𝑚𝑡ℎ weight 

of the fifth force where 𝑑𝑤 =
1.0

10
= 0.1. if 𝑛𝑡ℎ  is used to indicate the index of the weight 

combination, 𝑛 = {[(11 × 𝑖 + 𝑗) × 11 + 𝑘] × 11 + 𝑙} × 11 + 𝑚 + 1, and the five weights for 

the 𝑛𝑡ℎ  weight combination can be kept in a two-dimensional array Per[0-161,050][0-4] as 

Per[𝑛][0]=𝑤1,𝑖, Per[𝑛][1]=𝑤2,𝑗, Per[𝑛][2]=𝑤3𝑘, Per[𝑛][3]=𝑤4,𝑙, and Per[𝑛][4]=𝑤5,𝑚 (𝑖, 𝑗, 𝑘,

𝑙, 𝑚 = 0, 1, 2, 3, … , 10;  𝑛 = {[(11 × 𝑖 + 𝑗) × 11 + 𝑘] × 11 + 𝑙} × 11 + 𝑚 + 1 ). Here, the 
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first subscript indicates the index of the five forces. For example, 𝑤1,𝑖 is the 𝑖𝑡ℎ weight of the 

first force.  

Creating and visualising all the 161,051 blended shapes is tedious and time-consuming. 

To tackle this problem, uniformly distributed random numbers are introduced to create new 

blended shapes. If �̃� blended shapes at the time 𝑡 = 𝑡0 are to be viewed among the blended 

shapes created from the 𝐿𝑁  blended forces,  �̃�   uniformly distributed random numbers are 

generated and used to determine �̃� weight combinations. Then, the �̃� weight combinations are 

used to determine �̃� blended forces, which are used to create �̃� blended shapes at 𝑡 = 𝑡0. For 

example, if an obtained random number is 19,337, it corresponds to 𝑖 = 1, 𝑗 = 3, 𝑘 = 5, 𝑙 = 8, 

and 𝑚 = 9 since 𝑛 = {[(11 × 𝑖 + 𝑗) × 11 + 𝑘] × 11 + 𝑙} × 11 + 𝑚 + 1 = {[(11 × 1 + 3) ×

11 + 5] × 11 + 8} × 11 + 9 + 1 = 19,337. Accordingly, the weight values 𝑤1,1 = 1 × 𝑑𝑤 =

1 × 0.1 = 0.1  from 𝑤1,𝑖 = 𝑖 × 𝑑𝑤  and 𝑖 = 1 , 𝑤2,3 = 3 × 𝑑𝑤 = 0.3 , 𝑤3,5 = 5 × 𝑑𝑤 = 0.5 , 

𝑤4,8 = 8 × 𝑑𝑤 = 0.8, and 𝑤5,9 = 9 × 𝑑𝑤 = 0.9 have already been kept in Per[19,337][0]=0.1, 

Per[19,337][1]= 0.3 , Per[19,337][2]= 0.5 , Per[19,337][3]= 0.8 , and Per[19,337][4]= 0.9 . 

Therefore, the value of the five weights can be determined from the obtained random number 

19,337. Since the sum of the five weights is not equal to 1.0, the sum of the five weights is 

calculated, which is 2.6, and each of the five weights is divided by the sum. After that, the 

normalized weights are used to obtain the blended force 𝒇𝑏 
(𝑖)

=
1

2.6
[0.1𝒇1 

(𝑖)
+ 0.3𝒇2 

(𝑖)
+

0.5𝒇3 
(𝑖)

+ 0.8𝒇4 
(𝑖)

+ 0.9𝒇5 
(𝑖)

], which corresponds to the obtained random number 19,337.  

Taking �̃� = 50, the above method was used to create 50 blended shapes at the time t =1.0 

from the chosen 50 blended forces. Figure 39 shows 48 blended shapes taken from the 50 

blended shapes.  
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Figure 39: Blended shapes created by using the second method of random force-based facial 

blendshapes 

 

Still taking �̃� = 50 but using the source (neutral) shape and the 5 target shapes shown in 

Figure 35, N=5 is obtained. New blended shapes from 50 blended forces at any time instants 

can be created. Figure 40 shows 24 blended shapes taken from the created 50 new blended 

shapes at the time instant 𝑡 = 1.0. 
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Figure 40: Blended shapes of a human face created by using the second method of random 

force-based facial blendshapes 

4.4 Conclusions and future work 

In this chapter, I have developed a novel approach of physics-based facial blendshapes. The 

approach is based on the analytical solution to the mathematical model integrating the equation 

of motion and the constraints of source and target facial shapes. It is used to develop an efficient 

facial animation framework which integrates slider force-based, exponentiation force-based, 

and random force-based facial blendshapes. 
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The experiments made in this thesis indicate that the proposed analytical physics-based 

approach and blending force-based animation framework can create a superset of blended 

shapes which not only contains the blended shapes generated by linear interpolation, but also 

those which cannot be generated by linear interpolation. They can create blended shapes with 

different deformation rates and overcome the limitation of linear interpolation which can only 

generate blended shapes with a same deformation rate. The analytical equations and their use 

in facial blendshapes demonstrate simplicity, easiness, low computer capacity requirement, and 

very high computational efficiency of creating facial animation. 

The proposed approach offers a rich set of opportunities for future research. First, the 

influences of facial muscle, other facial tissues, and rigid bone structures on facial deformations 

can be introduced into the proposed approach. As elaborated in Section 5.2, this can be achieved 

by transforming their influences into external forces to be included in the right-hand-side force 

functions. Second, the physical parameters, i.e., mass, damping coefficient and stiffness 

coefficient can be estimated to create realistic facial deformations. As detailed in Section 5.2, 

this can be achieved by minimizing the differences between the captured real facial shapes and 

the blended facial shapes created with the solution to the ordinary differential equation (143). 

Third, the developed analytical solutions are used as a shape blending tool in this thesis. 

Actually, they can be also extended as a shape manipulation tool. As explained in Section 5.2, 

this can be achieved by using the force functions as sculpting forces. The sculpting forces can 

be taken to be constants, linear variations, or nonlinear variations and the corresponding 

solutions can be derived and added to the general solutions to develop powerful physics-based 

shape manipulation handles and create different deformation effects. 
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5. Summary and future work 

This section summarizes the work presented in this thesis. It draws the conclusions from the 

work completed by this PhD research, and discusses the future work. 

5.1 Conclusion  

Through the work presented in this thesis, new differential equation-based shape interpolation 

techniques have been developed and applied in time-dependent and time-independent surface 

blending of C2 continuity and facial blendshapes. These new developed techniques tackle the 

problems of existing differential equation-based surface blending and physics-based facial 

blendshapes.  

For the new techniques of differential equation-based surface blending with 𝐶2 

continuity, a new mathematical model consisting of a vector-valued sixth-order partial 

differential equation and blending boundary constraints was proposed to unify both time-

dependent and time-independent surface blending of C2 continuity, and three approximate 

analytical approaches were derived to achieve time-dependent and time-independent surface 

blending of 𝐶2 continuity easily and efficiently. The comparisons between the approximate 

analytical approaches and the corresponding accurate closed form solution demonstrate that the 

developed approximate analytical approaches have good accuracy and high computational 

efficiency. How the second partial derivatives affect the continuity at trimlines was also 

investigated. It was found that the same second partial derivatives between the blending and 

primary surfaces guarantee good continuity at the trimlines, but different second partial 

derivatives between the blending and primary surfaces cause discontinuity at the trimlines. The 

developed three approximate analytical approaches were applied to blend time-independent 

constant surfaces whose positions and shapes do not change with the time and time-dependent 
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varying surfaces. And the developed variable decomposition-based approximate analytical 

approach and differential property-based approximate analytical approach were applied to 

create C2 continuous blending between both time-dependent and time-independent parametric 

surfaces. The applications demonstrate the developed approximate analytical approaches are 

effective and efficient in dealing with C2 continuous blending of both constant and varying 

parametric surfaces. 

For the new technique of differential equation-based facial blendshapes, a novel 

mathematical model consisting of the equation of motion and the constraints of source and 

target facial models was formulated and the analytical solution to the mathematical model was 

developed. It was used to develop an efficient facial animation framework, which integrates 

slider force-based, exponentiation force-based, and random force-based facial blendshapes. 

The experiments carried out in this thesis indicate that the proposed analytical physics-based 

approach and blending force-based animation framework can create a superset of blended 

shapes, which not only contains the blended shapes generated by linear interpolation, but also 

those which cannot be generated by linear interpolation. They can create blended shapes with 

different deformation rates and overcome the limitation of linear interpolation which can only 

generate blended shapes with a same deformation rate. Quite a number of examples were 

presented to demonstrate the applications of the developed technique. These application 

examples demonstrate that the developed technique is simple and has low requirements for 

computer resources and very high computational efficiency in generating a lot of facial 

blendshapes and creating facial animation. 
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5.2  Further work 

The new approaches developed in this thesis not only have a lot of applications in C2 continuous 

blending between time-dependent and time-independent parametric surfaces and physics-based 

facial blendshapes, but also provide many new opportunities for future research studies.  

As discussed in Section 1.1, both shape control of blending surfaces and exact satisfaction 

of blending boundary constraints without heavy numerical minimization calculations has not 

been addressed. The three new developed surface blending approaches involve four shape 

control parameters. They can effectively change the shapes of blending surfaces but still well 

maintain the required continuities between the blending surface and primary surfaces. This 

advantage can be developed into a useful shape control handle. With the developed shape 

control handle, the user can achieve their preferred shapes of blending surfaces and required 

continuities between the blending surface and primary surfaces. Stress concentration is a main 

problem in practical engineering problems. It is related to the curvature of blending surfaces. 

Small curvature, i. e. large curvature radius, causes low stress concentration. How to minimize 

the stress concentration in blending surfaces has not been solved in the existing surface 

blending approaches. An optimization method can be developed to find the optimal shape 

control parameters, which lead to the minimum curvature of blending surfaces and minimize 

stress concentration in blending surfaces. Aesthetic requirements are another aspect of blending 

surface design, which can be met by creating user’s specified shapes through one or more 

profiles drawn by users. Once these profiles have been drawn, the difference between the user’s 

drawn profiles and the corresponding ones of blending surfaces can be formulated, and a 

minimization algorithm can be developed to minimize the difference for obtaining the optimal 

shape control parameters.   

The developed differential equation-based facial blendshapes can be extended in many 

aspects. Here, I list three aspects and explain them below. 
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First, more complicated facial models can be investigated. These facial models not only 

include facial skin, but also rigid bone structures and other facial tissues such as facial muscles. 

The influences of these bone structures and facial tissues can be considered by transforming 

them into external forces and including them in the right-hand-side force functions. This can 

be achieved by combining the finite element method with the method extended from Section 

4.1. The finite element method can be used to simulate deformations of a finite element model 

consisting of skin, facial muscle, other tissues, and rigid bones. Since the finite element 

simulation involves heavy numerical calculations, a large time step can be used to reduce the 

time of numerical calculations and obtain the deformed shapes at the key poses defined by the 

large time step. Then, the forces are taken to be an unknown function of the time variable 𝑡 and 

the particular solution of the ordinary differential equation (143) is obtained with the method 

of undetermined coefficients. All the unknown constants involved in the solution of the 

ordinary differential equation (143) are determined by minimizing the differences between the 

deformed shapes obtained with the finite element simulation and those described with the 

solution of the ordinary differential equation (143). Once all the unknown constants in the 

solution of the ordinary differential equation (143)  are obtained, the solution is used to generate 

new skin shapes, which have not been obtained with the finite element simulation. With such 

a combination, the time used in finite element simulation can be greatly reduced and the 

influences of facial muscle, other facial tissues, and rigid bone structures on facial deformations 

can be considered.  

Second, a data-driven technique can be developed from the method proposed in Section 

4.1 and used to estimate the physical parameters, i. e., mass 𝑚, damping coefficient 𝑐, and 

stiffness coefficient 𝑘 for more realistic facial animation. This can be achieved by minimizing 

the differences between the captured real facial shapes and the blended facial shapes generated 

with Eqs. (153), (158), and (164). With this method, facial shapes at the time instants 𝑡𝑗 (𝑗 =



200 

 

0, 1, 2, … , 𝐽 + 1) are captured and reconstructed. The reconstructed facial shapes are indicated 

with 𝑥𝑗
(𝑖)

 (𝑗 = 0, 1, 2, … , 𝐽 + 1). As discussed in Section 4.1, 𝑥0
(𝑖)

 and 𝑥𝐽+1
(𝑖)

 are used to obtain 

the solutions (153), (158), and (164). Taking the solution (164) as an example, the solution 

involves 𝑞3 and 𝑞4, which are the function of mass 𝑚, damping coefficient 𝑐, and stiffness 

coefficient 𝑘. At the time instants 𝑡𝑗 (𝑗 = 1, 2, … , 𝐽) , the facial shapes determined by Eq. (164) 

are 𝑥(𝑖)(𝑡𝑗) (𝑗 = 1, 2, … , 𝐽). The squared error sum between the reconstructed facial shapes 𝑥𝑗
(𝑖)

 

and the facial shapes 𝑥(𝑖)(𝑡𝑗)  determined by Eq. (164) is 𝐸 = ∑ [𝑥(𝑖)(𝑡𝑗) − 𝑥𝑗
(𝑖)

]
2

𝐽
𝑗=1 . The mass 

𝑚, damping coefficient 𝑐, and stiffness coefficient 𝑘 can be determined by minimizing the 

squared error sum 𝐸, i. e., solving the equations 𝜕𝐸 𝜕𝑚 = 0⁄ , 𝜕𝐸 𝜕𝑐 = 0⁄ , and 𝜕𝐸 𝜕𝑘 = 0⁄ .  

Third, the sculpting forces involved in the solution of the ordinary differential equation 

(143) can be used as a shape manipulation handle. In Section 4.1, the sculpting forces are 

determined by the facial shapes at the neutral pose and target pose. Instead of this, the sculpting 

forces in the ordinary differential equation (143) can be input by users. These sculpting forces 

can be time-independent (constant) and time-dependent (linear variations and nonlinear 

variations with the time variable 𝑡). These sculpting forces can be expanded into a unified 

mathematical expression, i. e., Fourier series. The solution of the ordinary differential equation 

(143) can be obtained from the unified mathematical expression. When users select a position 

to apply for a sculpting force, the information is fed into the solution to create a new facial 

shape. By selecting different positions and applying different sculpting forces, different facial 

shapes are obtained to realize shape manipulation.  
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