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Abstract: Partial differential equation (PDE) based surfaces own a lot of advantages, compared
to other types of 3D representation. For instance, fewer variables are required to represent the
same 3D shape; the position, tangent, and even curvature continuity between PDE surface patches
can be naturally maintained when certain conditions are satisfied, and the physics-based nature is
also kept. Although some works applied implicit PDEs to 3D surface reconstruction from images,
there is little work on exploiting the explicit solutions of PDE to this topic, which is more efficient
and accurate. In this paper, we propose a new method to apply the explicit solutions of a fourth-
order partial differential equation to surface reconstruction from multi-view images. The method
includes two stages: point clouds data are extracted from multi-view images in the first stage,
which is followed by PDE-based surface reconstruction from the obtained point clouds data. Our
computational experiments show that the reconstructed PDE surfaces exhibit good quality and can
recover the ground truth with high accuracy. A comparison between various solutions with different
complexity to the fourth-order PDE is also made to demonstrate the power and flexibility of our
proposed explicit PDE for surface reconstruction from images.

Keywords: shape reconstruction; explicit fourth-order partial differential equation; point clouds
reconstruction from multi-view images; point cloud parameterization

1. Introduction

Surface reconstruction from images is the process of recovering the 3D geometry and
structure of objects and scenes based on the information of one or multiple images. It is a
widely and deeply researched topic that has been commonly adopted in many areas, such
as medical diagnosis, quality inspection, cultural heritage and scene understanding [1–3].
Generally, there are two types of methods to achieve this task. Methods of the first type
decompose the reconstruction process into two steps; in the first step, 3D point clouds
or volumetric data are extracted from multiple images or a single image, followed by
3D surface reconstruction from the 3D point cloud or volumetric data obtained from the
previous step [4–6]. Methods of the second type just reconstruct a 3D surface from multiple
images or a single image without generating intermediate datasets [7–9].

Regarding the types of representation of reconstructed surfaces, they mainly can be di-
vided into two classes: explicit surfaces (such as B-spline and NURBS surfaces) and implicit
surfaces (such as level set). Both have been widely adopted in surface reconstruction from
2D images, as discussed in Section 2. However, all these methods have some drawbacks in
common; specifically, they require big data storage and heavy geometry processing.

To overcome the limitations of the existing representation of the 3D surface, we pro-
pose to reconstruct a PDE-based 3D surface from multiple-view 2D images by applying
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the explicit solutions of a fourth-order PDE. Compared to other types of 3D representation,
PDE-based surfaces have many advantages. First of all, less data storage is required to
represent the same 3D shape. Furthermore, the position, tangent and even curvature conti-
nuity between adjacent PDE patches can be naturally maintained when certain boundary
conditions are met. Thirdly, parameters and sculpting forces in PDE can be adjusted and
applied respectively to make the PDE model more powerful and flexible, which can also be
achieved by combining the explicit solutions of PDE.

In this paper, we follow the scheme of the first type of method to reconstruct a 3D
PDE-based surface from multi-view images, as it is more suitable for our proposed model.
Figure 1 shows the general pipeline of our proposed method for PDE surface reconstruction
PDE from multiple images. It proceeds as follows: firstly, 3D point clouds data will be
reconstructed from multiple-view images; then, the PDE-based surface is obtained by
fitting it to the reconstructed point clouds data. To be more concrete, in the first step, many
algorithms reported in the literature can be applied to reconstruct 3D point clouds from
multiple 2D images of certain objects or scenes, and they have various characteristics, so
choosing a suitable algorithm for a certain object is necessary. Since multiple images of
certain objects or scenes are required to reconstruct 3D point clouds data, we also have
to consider how to obtain such multiple images. In this paper, we consider synthetic
multi-view 2D images data of a chosen 3D object as rendered from multiple views by using
the popular open-source 3D computer graphics software, Blender. When it comes to the
next step, reconstructing the PDE surface from point clouds data also consists of several
sub-steps, including filtering obtained point clouds data from the last step, segmenting the
point clouds into multiple subsets when necessary, parameterizing the point clouds in each
subset, and fitting the PDE patch to each parameterized point clouds subset; finally, the
PDE surface is reconstructed. Details about all these procedures are given in Section 3.

Figure 1. The pipeline of the proposed PDE-based 3D surface reconstruction method from multi-
view images.

Following the pipeline of surface reconstruction from multi-view images, the remain-
ing sections of this paper are structured as follows: In Section 2, related work about 3D
reconstruction, including 3D point clouds and 3D surfaces, from multiple images or a single
image is introduced. The proposed PDE model and its analytical solutions are given in
Section 3. We then focus on the proposed method of 3D point clouds reconstruction from
multi-view images and PDE-based 3D surface reconstruction from obtained point clouds
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data in Section 4. In Section 5, the empirical results and some analysis are shown, including
effects comparison between various combinations of explicit solutions to a fourth-order
PDE on the reconstructed result. Finally, we conclude this paper and give some ideas about
future work in Section 6.

2. Related Work

Several methods have been proposed for 3D surface reconstruction from images. They
can mainly be divided chronologically into two periods [10]. In the first period, researchers
tried to solve this problem from the perspective of geometry; specifically, they tried to find
the projecting relationship between 3D objects and their corresponding 2D images taken
from different angles, targeting at devising mathematical solutions to the ill-posed inverse
problem. Generally, such methods require multiple images covering the whole object to be
reconstructed. For example, a technique named structure from motion (SfM) [11–14] takes
images collections as input, and 3D sparse point clouds of targeted 3D objects or scene
is reconstructed. Dense point clouds from multiple images can be reconstructed using
a technique named multi-view stereo (MVS); related research about MVS can be found
in [15–18]. Then, the obtained 3D point clouds from this step are used to reconstruct the 3D
surface. For example, Wang [19] proposed a method to reconstruct curve networks from
unorganized spatial points, which can be used to reconstruct 3D surfaces. A survey of 3D
surface reconstruction from images can be found in [20]. A major drawback of these early
methods is that they require multiple images of the same 3D object or scene from various
viewpoints, which can be impractical in some scenarios.

To overcome these drawbacks, neural networks have been applied to 3D surface
reconstruction from a fewer number of 2D images or even just one image. Especially
with the availability of large data set, neural networks have been adopted to 3D surface
reconstruction in recent years and achieved promising results. From the perspective of the
chosen representation type of the output, there are mainly three types of representation
that have been adopted by neural networks: volumetric representation, surface-based
representation and intermediation. For example, Lei et al. [21] designed a novel neural
network capable of reconstructing 3D surfaces with high quality from one or more views
and preserving accurate 2D–3D correspondences. Kato et al. [22] proposed a method to
reconstruct a 3D shape from a single image by innovatively integrating mesh rendering into
neural networks; the reconstructed mesh can be obtained by applying learned deformation
to a generic template. Refs. [23,24] decomposed the task of 3D reconstruction from images
into sequential steps, and the modules in each step are trained together; the intermediate
representation is normally 2.5 depth maps. Concretely, Sun et al. [23] designed a novel
model that can reconstruct a 3D shape and estimate pose simultaneously; its 2.5D sketches
were first predicted, followed by regressing the 3D shape. The performance of the model
can be improved by integrating multi-task learning. Another study also applied neural
networks to 3D point clouds reconstruction from image collections or a single image,
followed by 3D surface reconstruction from point clouds. Fu et al. [25] conducted a
literature review about applying deep learning in 3D reconstruction from a single image.
Mandikal et al. [26] proposed a latent embedding matching approach for point clouds
reconstruction from a single image. The ill-posed problem of 3D reconstruction from a
single image is addressed by their proposed two-pronged method. Other methods about
3D point clouds reconstruction from a single image can also be found in [27–30].

Apart from the aforementioned methods, some other methods directly applied vari-
ous 3D surface representation-based methods to 3D reconstruction from images without
applying neural networks. For example, Saini [7] proposed a geometric inverse algorithm
to reconstruct NURBS curves and surfaces from their arbitrary perspective images, which
was achieved by fitting NURBS to the digital data in the input images. Zhao and Mohr [8,9]
proposed methods to reconstruct B-spline surface patches from image sequences. Some
works also applied PDE to 3D surface reconstruction from 2D images. Zaheer et al. [31]
used lines and planes to reconstruct multi-planar buildings and man-made structures
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from a single image. Zou [32] proposed a PDE model that took 2D parallel slices as input
and reconstruct 3D smooth surfaces, but this method assumed that the surfaces to be
reconstructed are defined by the zero isosurfaces of the volumes. Duan et al. [33] used
PDE-based deformable surfaces to evolve to fit the boundary and the topological structure
of the data, which can be volumetric data, 3D point clouds and 2D images; when multiple
views are available, their model can select the best view for reconstruction automatically.
Please refer to [34] for an overview of surface reconstruction using PDE.

As discussed above, the application of explicit solutions of PDEs to surface reconstruc-
tion from images has been scarcely addressed in the literature. Aimed at filling this gap, in
this paper, we propose a new method that uses explicit solutions of a fourth-order PDE to
solve the surface reconstruction problem from multi-view images.

3. PDE Model

In our previous work [35], we proposed a fourth-order partial differential equation,
obtained its closed form solutions, and used one of the obtained closed form solutions to
test the applicability of the proposed method in surface reconstruction by reconstructing
several simple surface patches from several sets of a few ordered points uniformly sampled
from a known surface. In this paper, we extend the closed form solutions obtained in [35]
from 16 vector-valued variables to 64 vector-valued variables to greatly raise the capacity
in surface reconstruction and improve reconstruction quality, propose a pipeline of surface
reconstruction from multi-view 2D images, and make a comparison between the method
proposed in this paper and a polygon-based surface reconstruction method to demonstrate
the effectiveness and advantages of the proposed method.

According to [35], the partial differential equation used for surface reconstruction can
be a fourth-order partial differential equation given in Equation (1) below. The solution
to the partial differential equation represents a parametric surface. In the equation, the
parametric variables u and v are typically defined on the unit interval [0, 1], forming the
four boundaries of the PDE-based surface patch.

a1
∂4X(u, v)

∂u4 + a2
∂4X(u, v)

∂v4 = F(u, v) (1)

where a1, a2, X(u, v), and F(u, v) are vectors of the x, y and z coordinates. F(u, v) can be
treated as a sculpting force to make our proposed PDE model more powerful regarding
reconstructing 3D surfaces; setting it to be zero, Equation (1) can be treated as a homogenous
partial differential equation. To solve it analytically, we suppose that the parametric
variables u, v of the solution of Equation (1) can be linearly separated. Then, applying the
separation of variables method, the solution X(u, v) can be written as

X(u, v) = f(u)g(v) (2)

Inserting Equation (2) into Equation (1) and solving it analytically under different
conditions, we obtain four closed-form solutions. More detailed solving procedures can be
referenced in our previous work [35]. We choose one of the solutions as the PDE model to
reconstruct the PDE-based surface from multi-view 2D images, shown in Equation (3).

X(u, v) =
16

∑
j=1

djfj(u, v) (3)
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where
f1(u, v) = eq2ueq4v cos(q2u) cos(q4v)
f2(u, v) = eq2ueq4v cos(q2u) sin(q4v)
f3(u, v) = eq2ueq4v sin(q2u) cos(q4v)
f4(u, v) = eq2ueq4v sin(q2u) sin(q4v)

f5(u, v) = eq2ue−q4v cos(q2u) cos(q4v)
f6(u, v) = eq2ue−q4v cos(q2u) sin(q4v)
f7(u, v) = eq2ue−q4v sin(q2u) cos(q4v)
f8(u, v) = eq2ue−q4v sin(q2u) sin(q4v)
f9(u, v) = e−q2ueq4v cos(q2u) cos(q4v)
f10(u, v) = e−q2ueq4v cos(q2u) sin(q4v)
f11(u, v) = e−q2ueq4v sin(q2u) cos(q4v)
f12(u, v) = e−q2ueq4v sin(q2u) sin(q4v)

f13(u, v) = e−q2ue−q4v cos(q2u) cos(q4v)
f14(u, v) = e−q2ue−q4v cos(q2u) sin(q4v)
f15(u, v) = e−q2ue−q4v sin(q2u) cos(q4v)
f16(u, v) = e−q2ue−q4v sin(q2u) sin(q4v)

(4)

where dj (j = 1, 2, 3, · · · , 16) are the vector-valued unknowns.
There are 16 vector-valued unknowns in Equation (3), which can be used to reconstruct

a single surface patch. However, complex shapes can rarely be represented accurately
through a single patch. Generally, multiple patches are required for complicated shapes,
each defined by Equation (3). Unfortunately, this solution may not be adequate in some
instances. For example, it is not easy to segment complicated 3D point clouds into an
appropriate number of subsets automatically. This problem can be addressed by enlarging
the number of unknown variables in Equation (3), thus providing extra degrees of freedom
to the problem. To achieve this, we can obtain more complex and powerful solutions by
combining the solutions to the fourth-order partial differential equation under different
conditions. Then, X(u, v) can be updated to X∗(u, v) as follows:

X∗(u, v) = [eq2u(c1 cos(q2u) + c2 sin(q2u)) + e−q2u(c3 cos(q2u) + c4 sin(q2u))+
eq5u(c5 cos(q5u) + c6 sin(q5u)) + e−q5u(c7 cos(q5u) + c8 sin(q5u))]
[eq4v(c9 cos(q4v) + c10 sin(q4v)) + e−q4v(c11 cos(q4v) + c12 sin(q4v))
+eq6v(c13 cos(q6v) + c14 sin(q6v)) + e−q6v(c15 cos(q6v) + c16 sin(q6v))]

(5)

Conducting the multiplication operations in Equation (5) and letting

f1(u, v) = eq2ueq4v cos(q2u) cos(q4v)
f2(u, v) = eq2ueq4v cos(q2u) sin(q4v)

f3(u, v) = eq2ue−q4v cos(q2u) cos(q4v)
f4(u, v) = eq2ue−q4v cos(q2u) sin(q4v)
f5(u, v) = eq2ueq6v cos(q2u) cos(q6v)
f6(u, v) = eq2ueq6v cos(q2u) sin(q6v)

f7(u, v) = eq2ue−q6v cos(q2u) cos(q6v)
f8(u, v) = eq2ue−q6v cos(q2u) sin(q6v)
f9(u, v) = eq2ueq4v sin(q2u) cos(q4v)
f10(u, v) = eq2ueq4v sin(q2u) sin(q4v)

f11(u, v) = eq2ue−q4v sin(q2u) cos(q4v)
f12(u, v) = eq2ue−q4v sin(q2u) sin(q4v)
f13(u, v) = eq2ueq6v sin(q2u) cos(q6v)
f14(u, v) = eq2ueq6v sin(q2u) sin(q6v)

f15(u, v) = eq2ue−q6v sin(q2u) cos(q6v)
f16(u, v) = eq2ue−q6v sin(q2u) sin(q6v)
f17(u, v) = e−q2ueq4v cos(q2u) cos(q4v)
f18(u, v) = e−q2ueq4v cos(q2u) sin(q4v)

(6)
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f19(u, v) = e−q2ue−q4v cos(q2u) cos(q4v)
f20(u, v) = e−q2ue−q4v cos(q2u) sin(q4v)
f21(u, v) = e−q2ueq6v cos(q2u) cos(q6v)
f22(u, v) = e−q2ueq6v cos(q2u) sin(q6v)

f23(u, v) = e−q2ue−q6v cos(q2u) cos(q6v)
f24(u, v) = e−q2ue−q6v cos(q2u) sin(q6v)
f25(u, v) = e−q2ueq4v sin(q2u) cos(q4v)
f26(u, v) = e−q2ueq4v sin(q2u) sin(q4v)

f27(u, v) = e−q2ue−q4v sin(q2u) cos(q4v)
f28(u, v) = e−q2ue−q4v sin(q2u) sin(q4v)
f29(u, v) = e−q2ueq6v sin(q2u) cos(q6v)
f30(u, v) = e−q2ueq6v sin(q2u) sin(q6v)

f31(u, v) = e−q2ue−q6v sin(q2u) cos(q6v)
f32(u, v) = e−q2ue−q6v sin(q2u) sin(q6v)

f33(u, v) = eq5ueq4v cos(q5u) cos(q4v)
f34(u, v) = eq5ueq4v cos(q5u) sin(q4v)

f35(u, v) = eq5ue−q4v cos(q5u) cos(q4v)
f36(u, v) = eq5ue−q4v cos(q5u) sin(q4v)
f37(u, v) = eq5ueq6v cos(q5u) cos(q6v)
f38(u, v) = eq5ueq6v cos(q5u) sin(q6v)

f39(u, v) = eq5ue−q6v cos(q5u) cos(q6v)
f40(u, v) = eq5ue−q6v cos(q5u) sin(q6v)
f41(u, v) = eq5ueq4v sin(q5u) cos(q4v)
f42(u, v) = eq5ueq4v sin(q5u) sin(q4v)

f43(u, v) = eq5ue−q4v sin(q5u) cos(q4v)
f44(u, v) = eq5ue−q4v sin(q5u) sin(q4v)
f45(u, v) = eq5ueq6v sin(q5u) cos(q6v)
f46(u, v) = eq5ueq6v sin(q5u) sin(q6v)

f47(u, v) = eq5ue−q6v sin(q5u) cos(q6v)
f48(u, v) = eq5ue−q6v sin(q5u) sin(q6v)
f49(u, v) = e−q5ueq4v cos(q5u) cos(q4v)
f50(u, v) = e−q5ueq4v cos(q5u) sin(q4v)

f51(u, v) = e−q5ue−q4v cos(q5u) cos(q4v)
f52(u, v) = e−q5ue−q4v cos(q5u) sin(q4v)
f53(u, v) = e−q5ueq6v cos(q5u) cos(q6v)
f54(u, v) = e−q5ueq6v cos(q5u) sin(q6v)

f55(u, v) = e−q5ue−q6v cos(q5u) cos(q6v)
f56(u, v) = e−q5ue−q6v cos(q5u) sin(q6v)
f57(u, v) = e−q5ueq4v sin(q5u) cos(q4v)
f58(u, v) = e−q5ueq4v sin(q5u) sin(q4v)

f59(u, v) = e−q5ue−q4v sin(q5u) cos(q4v)
f60(u, v) = e−q5ue−q4v sin(q5u) sin(q4v)
f61(u, v) = e−q5ueq6v sin(q5u) cos(q6v)
f62(u, v) = e−q5ueq6v sin(q5u) sin(q6v)

f63(u, v) = e−q5ue−q6v sin(q5u) cos(q6v)
f64(u, v) = e−q5ue−q6v sin(q5u) sin(q6v)

then Equation (5) can be expressed as follows:

X∗(u, v) = ∑64
j=1 djfj(u, v) (7)

We demonstrate how to fit our PDE models X(u, v) and X∗(u, v) to the reconstructed
3D point clouds data from multiple images in Section 4, which also means to find 16 un-
known vector-valued variables in X(u, v) and 64 unknown vector-valued variables in
X∗(u, v).
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4. PDE-Based Surface Reconstruction from Multi-View Images

As discussed in Section 1, the proposed method consists of the following steps: 1, gen-
eration of the multi-view images from the 3D object or scene; 2, point clouds reconstruction
from the multi-view images; and 3, PDE-based 3D surface reconstruction from the obtained
point clouds data.

4.1. Multi-View Images Generation

The first step consists of obtaining a collection of suitable multi-view images from a
given 3D object or scene. This task is more challenging than it seems at first sight, as it
requires the images to cover the entire surface of the object for a proper reconstruction. The
multi-view images can be obtained either manually or automatically; the former method
means we take multi-view images of a certain object with a professional camera or just
our smartphone, which is not easy and is inconvenient; we can also obtain multi-view
images of a certain object automatically by taking advantage of the rendering function of
the software. For example, Bianco et al. “created a plug-in module for the Blender software
to support the creation of synthetic datasets” [36], aiming to evaluate the performance of
the structure from motion pipelines. In this paper, the multi-view images are obtained
automatically using Blender software. However, there are also many factors that should be
taken into consideration before starting rendering multi-view images of an object. First of
all, the object to be reconstructed should own a varied texture; the number of rendering
images must cover the entire surface of the object, and the rendering images should be
of high quality to ensure better 3D point clouds data. We should set up the scene and
render details carefully to meet these requirements. Figure 2 shows the set-up scene and
the rendered multi-view 2D images by rotating the camera around the object every five
degrees, so 36 rendered images cover the whole object; only 9 of the 36 images are shown in
Figure 2b for clarity. These rendered images are used as the input of specialized algorithms
for point clouds reconstruction from multi-view images, as explained in the next section.

Figure 2. (a) Scene setting; (b) rendered multi-view 2D images.

4.2. Point Cloud Reconstruction from Multi-View Images

As discussed in Section 2, there are many algorithms suitable for point clouds re-
construction from multi-view images. In this paper, we consider three of them: Colmap,
VisualSFM [37] and Meshroom. Multi-view 2D images are fed into each algorithm, leading
to different 3D point clouds. Then, we compare the outputs to select the one that is most
complete among the three methods.

Figure 3b shows the reconstructed result obtained from the Meshroom algorithm.
As shown in Figure 3b, the point cloud reconstructed with the Meshroom algorithm
is incomplete. When using the VisualSFM algorithm, the reconstructed point cloud is
similar to the one obtained from the Meshroom algorithm. Therefore, both Meshroom and
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VisualSFM algorithms are not suitable. In contrast, the point cloud reconstructed with the
Colmap algorithm is complete as shown in Figure 3c.

Figure 3. (a) Reconstructed cylinder point cloud with the Meshroom algorithm; (b) magnified view of
the reconstructed point cloud in (a); (c) magnified view of the reconstructed point cloud in Figure 4c
with Colmap algorithm.

Figure 4. (a) Input to Colmap: multi-view 2D images; (b) 3D point cloud reconstruction from
multi-view 2D images; (c) reconstructed 3D point cloud.

As discussed above, the Colmap algorithm provides the best results among the three
algorithms. Therefore, this paper selects it to reconstruct point clouds from images. Figure 4
shows the process of 3D point cloud reconstruction from multi-view 2D images using the
Colmap algorithm.

4.3. PDE-Based Surface Reconstruction from Point Clouds
4.3.1. Segmentation and Parameterization of Point Cloud

When the 3D shape defined by the point cloud is complicated, it is necessary to
segment the point cloud into several smaller subsets; each subset is fitted through a PDE-
based surface patch, and the final PDE surface is obtained by combining those patches.

Some point cloud segmentation methods have been proposed. According to [38], they
can be divided into edge-based methods, region-growing methods, model-fitting methods,
hybrid methods, and machine-learning-based methods. Edge-based methods consist of
edge detection to divide a point cloud into different regions and grouping points inside
each of the regions to obtain segmented subsets. Region-growing methods grow one or
more seed points into a region with similar characteristics, such as surface orientation and
curvature. Model-fitting methods fit a primitive, such as planes, cylinders and spheres, onto
point cloud data and label the points conforming to the mathematical representation of the
primitive as one segment. Hybrid methods combine more than one segmentation method
to achieve the segmentation of point clouds. In recent years, machine-learning-based
segmentation has attracted growing interest. A comprehensive survey on segmentation of
point clouds with deep learning was made in [39].

Although various segmentation methods have been proposed, it is still a good ap-
proach to use different segmentation methods to target the segmentation of different point
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clouds. For the point clouds used in this paper, the point clouds for the cylinder, hat and
car models will be segmented into subsets for reconstructing their PDE surface-represented
models. For the point clouds of the bowl, bench and slide surfaces, a single PDE patch is
enough for reconstruction. Here, we take the cylinder and hat point clouds as examples to
briefly introduce different segmentation methods of point clouds.

For the cylinder point clouds, an automatic segmentation method is used. We first
find a symmetric plane oriented in the vertical direction for the cylinder point cloud. Then,
we use the plane to divide the point cloud into two groups. Each of the groups is a subset
of the cylinder point cloud. The obtained subsets are shown in Section 5.

For the hat point cloud, the points in the front part of the hat point cloud are detected
by using the RANSAC algorithm, which is a plane detection algorithm. In order to further
segment the top part of the hat point cloud into two subsets, we find a symmetric plane of
the top part and then use the plane to divide the top part into two subsets. The obtained
subsets are also shown in Section 5.

After segmenting the point clouds into a suitable number of subsets, parameterization
of point clouds in each subset is applied. Point cloud parameterization is related to surface
parameterization. Surface parameterization maps a complex surface onto a simple domain.
According to [40], various surface parameterization methods can be divided into area-
preserving parameterizations, which preserve the size of the area elements but not their
shape, and angle preserving parameterizations, which preserve the angles and hence the
local geometry of surfaces. Point cloud parameterization is more difficult than surface
parameterization since point clouds have no information about connectivity between
points. Due to this reason, only a few publications, such as Ref. [41], investigated the
parameterization of point clouds. Depending on the different shapes of point clouds, they
can be parameterized onto a cylinder, a sphere, and a base surface, including a plane.

For the shape of a cylinder model, the analytical parameterization of its point cloud is
carried out in a cylindrical coordinate system. The output of the parameterization is the
values of the angle and height as shown in Figure 5.

Figure 5. (a) Cylinder in the cylindrical coordinate system; (b) parameterizing point cloud of
cylinder shape.

For the shape of the bowl model, analytical parameterization of its point cloud is
carried out in a spherical coordinate system. The output of the parameterization is the
values of a polar angle and an azimuthal angle.

For 3D shapes that cannot be parameterized analytically, we use the base surface
method [42]. To be more specific, we fit a plane shown in Figure 6 to the points in each
of the segmented subsets and project the points onto the plane. For the points projected
onto the plane, we calculate its two main axes by applying a method called principal
component analysis to determine the u, v directions used for parameterizing the points.
With the base surface method, we obtain the parameterization of the point cloud of the
bench and slide models. For the hat and car models, we project the points in each of the
segmented subsets onto their fitted plane to obtain the parameterization of the points in
each of segmented subsets.
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Figure 6. (a) Fitting plane to the point clouds; (b) projecting points to the projecting plane (u, v plane).

4.3.2. Fitting PDE Model to Point Cloud

For point clouds in each segmented subset, we parameterize them to obtain para-
metric values un and vn for each point Xn. Then, the PDE surface can be fitted to each
subset of the point cloud. As we mentioned earlier, there are two PDE models with
various complexity that we can apply to PDE surface reconstruction from the point
cloud. One is X(u, v) = ∑16

j=1 djfj(u, v) with 16 vector-valued unknowns, the other is

X∗(u, v) = ∑64
j=1 djfj(u, v) with 64 vector-valued unknowns. Because X∗(u, v) has more

degrees of freedom, it is more powerful when reconstructing more complex 3D shapes.
In this paper, we compare these two PDE models and choose a more suitable one when
reconstructing the PDE surface from the point cloud of a certain type of object, which is
given in Section 5.

1 PDE model with 16 variables

Suppose that there are N points Xn (n = 1, 2, 3, · · · , N) in one segmented patch,
which is used to reconstruct a PDE surface patch X(u, v). To find the 16 unknown variables
that best approximate the underlying structure of the segmented point set, we have to min-
imize the distance between the point set defined by the PDE model and the reconstructed
point set from multi-view images, which can be defined as follows:

E =
N

∑
n=1

[X(un, vn)−Xn]
2 =

N

∑
n=1

[
16

∑
j=1

djfj(un, vn)−Xn

]2

(8)

To minimize the error E, we apply the method of least squares, which can be expressed
as the following equation:

∂E
∂dk

= 0 (k = 1, 2, 3, · · · , 16) (9)

Inserting Equation (8) into Equation (9), we can obtain the following equations that
determine the 16 vector-valued unknowns dj (j = 1, 2, 3, · · · , 16):

16

∑
j=1

dj

N

∑
n=1

fj(un, vn)fk(un, vn) =
N

∑
n=1

Xnfk(un, vn) (k = 1, 2, 3, · · · , 16) (10)

There are 16 equations in Equation (10), which can be used to solve the 16 vector-
valued unknowns dj (j = 1, 2, 3, · · · , 16). We also have to notice that fj(un, vn) and
fk(un, vn) in Equation (10) involve constants q2 and q4, which can be adjusted to obtain the
optimal PDE surface patch that best approximates the underlying structure of the point
Xn (n = 1, 2, 3, · · · , N); this leads to a difficult non-linear problem. To simplify it, we set
q2 = 0.1 and q4 = 0.1, which provides good results in our computational experiments.

2 PDE model with 64 variables
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Similar to the PDE model with 16 variables, we can fit the PDE model with 64 unknown
vector-valued to each segmented subset of a point cloud.

If there are N points, Xn (n = 1, 2, 3, · · · , N), in a subset to be reconstructed by
one PDE patch X(u, v), the squared sum of the errors between the known points Xn
(n = 1, 2, 3, · · · , N) and the unknown points X(un, vn) can be determined with the fol-
lowing equation:

E =
N

∑
n=1

[X∗(un, vn)−Xn]
2 =

N

∑
n=1

[
64

∑
j=1

djfj(un, vn)−Xn

]2

(11)

To minimize the error E and find the 64 vector-valued unknowns, we apply the method
of least squares, as shown in the following equation:

∂E
∂dk

= 0 (k = 1, 2, 3, · · · , 64) (12)

Substituting Equation (11) into Equation (12), the following equations can be obtained,
which determine the 64 vector-valued unknowns dj (j = 1, 2, 3, · · · , 64):

64

∑
j=1

dj

N

∑
n=1

fj(un, vn)fk(un, vn) =
N

∑
n=1

Xnfk(un, vn)(k = 1, 2, 3, · · · , 64) (13)

There are 64 equations in Equation (13), and they can be solved find the 64 vector-
valued unknowns dj (j = 1, 2, 3, · · · , 64). In this case, fj(un, vn) and fk(un, vn) in Equa-
tion (13) also involves constants q2, q4, q5 and q6. Here, we set q2 = 0.1, q4 = 0.15, q5 = 0.2
and q6 = 0.3, which shows good results.

5. Empirical Results

In this section, we use our proposed method to reconstruct the PDE surfaces from the
obtained point clouds, which are extracted from multi-view images. Because the capability
of reconstructing 3D surfaces for PDE with 16 variables and 64 variables is different, it
is necessary to choose a suitable approach for a certain type of object. To illustrate this
choice process, we also conduct a comparison between two PDE approaches regarding
reconstructing chosen 3D objects.

As a first example, we reconstruct the PDE surface from the point set of the cylinder
shape. To demonstrate their capability of reconstructing the 3D surface for these two PDE
models, we just use one PDE surface patch to reconstruct the cylinder shape in both cases.
Figure 7 shows the reconstructed result with the two proposed PDE models. We can see
from the reconstructed result in both cases that our proposed PDE model with 64 variables,
shown in Figure 7c, is more powerful in reconstructing 3D surfaces than the PDE model
with 16 variables, shown in Figure 7b. To reconstruct the cylinder using the PDE model
with 16 variables, we can firstly segment the cylinder into equal two parts, each of which
will be reconstructed using one PDE surface patch defined by the 16-variable PDE model.
The reconstructed result in this way is shown in Figure 7d.

Secondly, we choose to reconstruct a bowl and make a comparison with the polygon-
based method. We follow the pipeline of our method to obtain the 3D point cloud of the
chosen bowl shape from its multi-view 2D images. The PDE-based surface is reconstructed
from the obtained point cloud with both the 16-variable PDE model and the 64-variable
PDE model to demonstrate their capability to reconstruct more complex 3D shapes. In this
example, we use just one PDE patch under both conditions. To compare our proposed PDE-
based surface to the polygon-based surface, we also reconstruct a polygon surface from the
obtained point cloud using a classical surface reconstruction method called Poisson surface
reconstruction. Figure 8 shows the reconstructed results using these methods. As we can
see, the PDE model with 64 variables outperforms the PDE model with 16 variables. Note
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also that some areas are missing when reconstructing the 3D surface using the 16-variable
PDE, which are marked by red-colored circles in Figure 8c.

Figure 7. (a) Reconstructed 3D point cloud of a cylinder shape from multi-view 2D images; (b) re-
constructed PDE surface using a single PDE model with 16 variables; (c) reconstructed PDE surface
using a single PDE model with 64 variables; (d) reconstructed PDE surface using two PDE models
with 16 variables; (e) segmented point cloud.

Figure 8. (a) Point set of a bowl; (b) surface reconstructed using Poisson; (c) PDE-based surface using
single 16-variables PDE model; (d) PDE-based surface using single 64-variables PDE model.

To better demonstrate which model is better, we calculate the error between the
reconstructed surface and the ground truth surface. However, as the PDE-based surface
is defined by 64 or 16 vector-valued unknowns, it is not easy to just compare the distance
between the PDE-based surface and the ground truth, so we calculate the mean distance
between the obtained points cloud from the previous step named MVS and the point set
defined by 64 or 16 variables in PDE with the following Equation (14) [43] and the standard
deviation with Equation (15) below.

ErrA =
1
N

N

∑
n=1
|Xn − X(un, vn)| (14)

σ =

√
∑N

n=1(Err_n− ErrA)

N
(15)

where ErrA is the mean error between the two point sets, Xn is the point set obtained
from MVS, and X(un, vn) is the point set defined by the 64 or 16 variables. |·| indicates
the distance between two corresponding points of the two surfaces. We also calculate the
standard deviation of the distance between each corresponding points pair as Equation (15),
in which Err_n is the distance between each corresponding points pair. We use the same
method to calculate the distance between the ground truth surface and the reconstructed
polygon surface using the Poisson method by sampling the same number of points on
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both surfaces and calculating their mean error and standard deviation. To make the com-
parison fair, we also decrease the number of vertices for the polygon surface reconstructed
using the Poisson method to 66, which is roughly the same as the number of variables in
the more complex PDE model (64). Table 1 shows the comparison results, which indicates
that the PDE model with 64 variables is more powerful and accurate in reconstructing more
complicated surfaces, as both its mean distance and standard deviation are the smallest
among the three models.

Table 1. The mean distance and its standard deviation between the ground truth surface and the
PDE-based surface with polygon-based surface, respectively.

Methods Errors Ground Truth to Polygon
Surface

Ground Truth to PDE-Based
Surface with 16 Variables

Ground Truth to PDE-Based
Surface with 64 Variables

Mean distance 0.039 0.031 0.029

Standard deviation 0.016 0.021 0.015

Next, we will reconstruct some 3D surfaces from multi-view 2D images using the PDE
model with 64 variables, the PDE model with 16 variables and the Poisson reconstruction
method, respectively. Figures 9 and 10 show the reconstructed results.

Figure 9. (a) The ground truth of a bench surface; (b) point set of a bench surface; (c) surface
reconstructed using Poisson; (d) PDE-based surface using a single 16-variables PDE model; and
(e) PDE-based surface using a single 64-variables PDE model.

To better demonstrate the effects of different segments on reconstructed shapes and the
applicability of our proposed method in reconstructing complicated 3D shapes, we choose
to reconstruct a hat and a car model. Between them, the hat model is used to demonstrate
the effects of different segments on reconstructed shapes, and the car model is used to
demonstrate the applicability of our proposed method in reconstructing complicated
3D shapes.

In order to show how different numbers of segments affect the reconstruction quality,
we segment the top of the hat in to two different segments: one subset only as shown in
Figure 11b, and two subsets as shown in Figure 11d. The reconstructed models are shown
in Figure 11c,e, respectively. Comparing the shapes in Figure 11b,c, we can find that when
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the top of the hat has one segment, the top part of the reconstructed hat model is flat, which
is different from the round shape of the corresponding point set. In contrast, when the
top of the hat is segmented into two subsets, the top part of the reconstructed hat model
becomes round, which is the same as the shape of the corresponding point sets.

Figure 10. (a) The ground truth of a slide surface; (b) point set of a slide surface; (c) surface recon-
structed using Poisson after segmentation; (d) PDE-based surface using a single 16-variable PDE
model; (e) PDE-based surface using a single 64-variable PDE model.

Figure 11. (a) The point cloud of a hat; (b) segmented 2 subsets; (c) reconstructed PDE-based
surface using 2 PDE patches defined by the 64-variables PDE model; (d) segmented 3 subsets;
(e) reconstructed PDE-based surface using 3 PDE patches defined by the 64-variable PDE mode.
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For the car model, we segment its point cloud shown in Figure 12a into 10 subsets
shown in Figure 12b. For each of the segmented subsets, a PDE patch is reconstructed.
The reconstructed car model consisting of 10 PDE patches is shown in Figure 12c. This
reconstruction example indicates that for any complicated models, their point cloud can
be segmented into subsets with each of the segmented subsets having a less complicated
shape, and our proposed method can be used to reconstruct the shape from the points in the
subset and obtain the reconstructed shape of complicated models from their point clouds.

Figure 12. (a) The point cloud of a truck; (b) segmented subsets; (c) reconstructed PDE-based surface.

6. Conclusions and Future Work

In this paper, we introduce a new method that applies explicit solutions of a fourth-
order partial differential equation to PDE-based 3D surface reconstruction from multi-view
2D images. The reconstructed PDE-based surfaces look smoother compared to the polygon-
based surfaces with roughly the same data size. Additionally, the reconstructed PDE
surfaces are more accurate compared to the polygon-based method named Poisson recon-
struction. We also compared two explicit solutions to a fourth-order PDE in reconstructing
more complex 3D shapes, and found that the PDE model with 64 vector-valued unknowns
is more powerful and accurate than the PDE model with 16 variables. So, in some cases,
using multiple 16-variables PDE surface patches can be replaced by applying a single
64-variables PDE surface patch, like in the cylinder example. Lastly, we obtained high-
quality multiple 2D images of chosen 3D objects by setting the scene and rendering details
properly, which is the basis of 3D point cloud reconstruction from multi-view 2D images.

Some future works are worth exploring. First of all, we set q2, q4, q5, and q6 to be
constant values and the sculpting force F(u, v) to be zero in this paper, but they can be
tuned to make our PDE models more powerful in reconstructing more complicated 3D
surfaces. Secondly, we obtained the point cloud data of certain objects by applying a
method named MVS, which takes multiple 2D images, but it is not efficient to take multiple
pictures of 3D objects. The 3D point cloud can be alternatively obtained from just one
single image by applying neural networks. These are some research directions that we will
investigate in our future work.
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