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C-loss based Higher-order Fuzzy Inference Systems
for Identifying DNA N4-methylcytosine Sites

Yijie Ding, Prayag Tiwari ID , Quan Zou, Fei Guo, and Hari Mohan Pandey ID

Abstract—DNA methylation is an epigenetic marker, that1

plays an important role in the biological processes of regulating2

gene expression, maintaining chromatin structure, imprinting3

genes, inactivating X chromosomes, and developing embryos.4

The traditional detection method is time-consuming. Currently,5

researchers have used effective computational methods to improve6

the efficiency of methylation detection. This study proposes a7

fuzzy model with correntropy induced loss (C-loss) function to8

identify DNA N4-methylcytosine (4mC) sites. To improve the9

robustness and performance of the model, we use kernel method10

and the C-loss function to build a higher-order fuzzy inference11

systems (HFIS). To test performance, our model is implemented12

on six 4mC and eight UCI data sets. The experimental results13

show that our model achieves better prediction performance.14

Index Terms—DNA N4-methylcytosine, 4mC, Fuzzy model,15

Kernel method, Sequence classification.16

I. INTRODUCTION17

DNA N4-methylcytosine (4mC) is a form of DNA chemical18

modification that can change genetic performance without19

changing the DNA sequence. A large number of studies have20

shown that DNA methylation can control gene expression21

by changing the chromatin structure, DNA conformation,22

DNA stability, and DNA interactions with proteins. In the23

development of malignant tumors, the state of methylation is24

not static. The degree of hypomethylation of the whole genome25

in tumor cells is closely related to disease progression, tumor26

size, and malignancy. DNA methylation detection is effective27

for assessing tumor malignancy. The degree of judgment is of28

great significance. However, the traditional detection method is29

a wet experiment, which is time-consuming and labor-intensive.30

Therefore, it is necessary to propose an effective computational31

method for 4mC site identification.32
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In recent years, computational methods based on machine 33

learning (ML) have been proposed to solve 4mC recognition 34

[1], [2], [3]. Conventional statistical learning and deep learning 35

are the two main methods used to solve the 4mC identification 36

problem. For statistical learning methods, manual feature 37

extraction was used to represent DNA sequences. The support 38

vector machine (SVM) [4], random forest (RF), nave Bayes, 39

extremely randomized tree, AdaBoost and logistic regression 40

were utilized to build a predictive model. The iDNA4mC model 41

was first proposed to identify 4mC sites by Chen et al. [5]. The 42

iDNA4mC used nucleotide chemical properties and frequency 43

to represent features of DNA and fed them into SVM for 44

prediction. He et al. [6] developed 4mCPred via SVM and 45

position-specific trinucleotide sequence propensity (PSTNP), 46

which can extract key information of DNA sequences. Wei 47

et al. [7] proposed a two-step feature optimization strategy to 48

construct a predictive model. This method was called 4mcPred- 49

SVM. Based on multiple features of DNA sequences, Hasan 50

et al. developed two types of predictors, i4mC-ROSE[8] and 51

i4mC-Mouse [9], to identify 4mC sites in Rosaceae and mouse 52

genomes. To further improve the predictive performance of the 53

model, iDNA-MS[10], Meta-4mCpred [11] and DNA4mC-LIP 54

[12] integrated existing predictors to identify 4mC sites. 55

Deep learning can represent the features of DNA sequences 56

through multilayer networks. The 4mCCNN model, which 57

was based on one-dimensional convolutional neural network 58

(CNN), was proposed by Khanal et al. [13]. The DNC4mC- 59

Deep model [14] employed nucleotide frequency (NCPNF), 60

nucleotide chemical property, binary encoding (BE), nucleotide 61

chemical property (NCP) and Kmer as input features for CNN. 62

The long short-term memory (LSTM) was also used to develop 63

an effective deep model, called DeepTorrent [15]. 64

Fuzzy inference system (FIS) is an effective calculation 65

model to solve uncertain and vague problems. Zero-order and 66

first-order FIS (1-FIS), which are two of the more popular 67

FIS models, had been employed in data mining, pattern 68

recognition and automatic control. Classical fuzzy inference 69

systems have three types of models: Mamdani-Larsen [16], 70

Takagi-Sugeno-Kang (TSK) [17], [18] and generalized fuzzy 71

systems [19]. Among them, the TSK model is a popular fuzzy 72

system. Chen [20] and Chiang [21] proposed the zero-order 73

TS fuzzy systems based on SVM. Support vectors were used 74

to construct the antecedent and subsequent parts of fuzzy rules; 75

the kernel function of SVM was composed of fuzzy basis 76

functions, and the number of fuzzy rules was determined by 77

the number of support vectors (consistent). This method can 78

improve generalization ability, but with an increase in the 79

support vector, the fuzzy rules will also increase. Therefore, 80
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this strategy increased the complexity of the systems. Xu81

et al. [22] also developed a zero-order TS fuzzy systems,82

called enhanced soft subspace clustering and sparse learning-83

based concise TSK fuzzy systems (ESSC-SL-CTSK-FS), could84

generate the sparse subspace and antecedent in each fuzzy85

rule. Kerk et al. [23] developed a monotone zero-order TSK-86

based FIS via monotone fuzzy rule interpolation. The first-87

order TSK fuzzy systems used fuzzy clustering algorithm88

to construct the rule antecedent, and the latter was a linear89

function. When the data is insufficient, or a fuzzy system90

trained with an incomplete data set, the generalization ability91

of the model will be affected. To overcome this problem, Deng92

et al. [24] studied a fuzzy system based on knowledge-levers93

(KL-FS) from the perspective of transfer learning. Gu et al.94

[25] proposed Bayesian TSK fuzzy classifier (B-TSK-FC),95

which estimated the parameters by Markov-Chain Monte-Carlo96

technique. Rezaee [26] developed a data-driven TSK systems97

that automatically obtained the fuzzy rules and optimized98

parameters. To address the problem of regression, Zuo et99

al. [27] proposed a TS fuzzy regression transfer learning100

model. For the constrained monotonic scenarios, a monotonic101

relation-constrained TSK systems were proposed by Deng102

[28]. For the data sequence, it is more difficult to determine103

the fuzzy set and adapt changes in the data distribution. Yu104

et al. [29] designed a topology learning-based fuzzy random105

neural network (TLFRNN) to solve this problem. To improve106

the performance of predictive model, a patch learning (PL)107

algorithm was proposed to build fuzzy systems by Wu et108

al. [30]. For TSK systems, Wu et al. [31] also proposed109

an efficient and effective training algorithm with minibatch110

gradient descent (MBGD), AdaBound and regularization. For111

identification of epileptic EEG signals, Jiang et al. designed112

a multiview TSK fuzzy systems (MV-TSK-FS) [32], which113

weighted outputs of different views. Jiang also employed114

TSK fuzzy systems, semisupervised learning and transductive115

transfer learning models to detect epileptic seizures via EEG116

signals [33]. Wiktorowicz [34] constructed a high-order TSK117

fuzzy systems by the particle swarm optimization (PSO) and118

batch least squares (BLS).119

Although, FIS (based on TSK fuzzy systems) has been120

significantly developed, the above works lack consideration for121

the processing of high-dimensional feature spaces and noise122

samples. As the dimension of the feature space increases, the123

complexity of FIS will also increase. Noise samples will also124

affect the decision hyperplane of the model. Inspired by Chen125

[20], Chiang [21] and Wiktorowicz’s [34] works, we propose126

a correntropy induced loss-based kernelized higher-order FIS127

(C-KHFIS), which is an extension of TSK fuzzy systems [17],128

[18]. The correntropy induced loss (C-loss) function [35] was129

a loss function that could improve robustness against noise for130

classifier.131

The contributions of this work are as follows:132

(1) We use the fuzzy rule-based kernel to build a higher-133

order fuzzy inference systems, which is a kernelized134

model.135

(2) C-loss function is employed to improve the general-136

ization ability of fuzzy systems.137

(3) An effective iterative algorithm is proposed to opti- 138

mize our fuzzy systems. 139

This work is organized as follows: In section II, we introduce 140

first-order and high-order FIS models. In section III, we propose 141

a C-loss based higher-order fuzzy inference systems. In section 142

IV, we introduce the feature extraction of DNA sequences. In 143

section V, we test our method on several benchmark data sets. 144

Finally, the conclusion and future work are given in section 145

VI. 146

II. RELATED WORK 147

FIS is a nonlinear system, which is described by multiple sets 148

of if-then fuzzy rules. Each subsystem (corresponding to each 149

rule) is a local approximation to the target problem. Finally, 150

multiple subsystems are combined to jointly approximate the 151

objective function. By the fuzzy C-means (FCM) algorithm, 152

the subsystems of each fuzzy set obtain the distribution of 153

local samples. Compared with the traditional neural network 154

based on the backpropagation algorithm, FIS can reduce the 155

computational complexity of the model via local approximation. 156

A. First-order fuzzy inference systems 157

Suppose there is a training set X = [x1, ...,xi, ...,xN ] ∈ 158

Rd×N with N samples and d dimensions, where xi = 159

(xi1, xi2, ..., xid)
T ∈ Rd×1. In first-order fuzzy systems, the 160

k−th fuzzy rule Rk can be represented as: 161

If xi1 is A
k
1 ∧ xi2 is Ak

2 ∧ ... ∧ xid is Ak
d,

Than fk(xi) = pk0 + pk1xi1 + pk2xi2 + ...+ pkdxid,

k = 1, 2, ...,M,

(1)

where M denotes the number of fuzzy rules. Ak
j is the k−th 162

fuzzy set for the j−th input feature xij , ∧ represents a fuzzy 163

conjunction, and fk(xi) denotes the defuzzification function 164

for local output under k−th fuzzy set. In fact, fk(xi) is a 165

first-order polynomial. When fk(xi) is nonlinear function, the 166

above fuzzy systems belong to higher order fuzzy inference 167

systems. The decision formula of first-order FIS (1-FIS) can 168

be represented as: 169

y(xi) =

M∑
k=1

µk(xi)∑M
k′=1 µ

k′(xi)
fk(xi)

=

M∑
k=1

µ̃k(xi)f
k(xi),

(2)

where

µk(xi) =

d∏
j=1

µAk
j
(xij), (3a)

µ̃k(xi) =
µk(xi)∑M

k′=1 µ
k′(xi)

, (3b)

where µAk
j
(xij) denotes the fuzzy membership function, which 170

can be calculated by Gaussian function: 171

µAk
j
(xij) = exp(

−(xij − ckj )

2σk
j

), (4)
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where σk
j and ckj are the center and variance of k−th fuzzy172

set in j-th dimension and
∑M

k=1 µ̃
k(xi) ̸= 0. The models con-173

structed from Gaussian membership function can approximate174

nonlinear continuous systems with arbitrary precision, and this175

type of membership function has been widely used in the field176

of fuzzy control.177

For 1-FIS, the parameters of σk
j and ckj are in the if-parts.178

pk = [pk0 , p
k
1 , ..., p

k
d]

T ∈ R(1+d)×1 are the parameters of then-179

parts. The learning of the above two kinds of parameters is180

implemented independently. For if-parts, FCM algorithm [36]181

is utilized to estimate σk
j and ckj :182

ckj =

N∑
i=1

µikxij

N∑
i=1

µik, (5a)

σk
j =

1

2

N∑
i=1

µik(xij − ckj )
2

N∑
i=1

µik, (5b)

where µik is the membership value of sample xi belonging183

to cluster k. After if-parts learning, the parameters of of σk
j184

and ckj are determined. Next, the parameters of then-parts can185

be obtained by least squares method. Let the output of k−th186

fuzzy rule be:187

x̃i
k = µ̃k(xi)xe ∈ R(1+d)×1, (6a)

xe = (1, (xi)
T )T ∈ R(1+d)×1. (6b)

Therefore, the output of M fuzzy rules can be represented188

as follows:189

xgi =
(
(x̃i

1)T , (x̃i
2)T , ..., (x̃i

M )T
)T

∈ R[(1+d)∗M ]×1. (7)

For the k−th fuzzy rule, the the parameters of then-parts190

are defined as:191

pk = (pk0 , p
k
1 , ..., p

k
d)

T ∈ R(1+d)×1. (8)

The parameters of M then-parts are defined as:192

pg =
(
(p1)T , (p2)T , ..., (pM )T

)T ∈ R[(1+d)∗M ]×1. (9)

The output of the first-order fuzzy systems can be rewritten193

as:194

y(xi) = pT
g xgi. (10)

Then-parts learning can be regarded as a linear regression195

problem:196

J1−FIS(pg) =
λ

2
∥pg∥22 +

1

2

N∑
i=1

∥pT
g xgi − yi∥22. (11)

B. Higher-order FIS 197

For the higher-order FIS, the k−th fuzzy rule Rk can be 198

represented as: 199

If xi1 is A
k
1 ∧ xi2 is Ak

2 ∧ ... ∧ xid is Ak
d,

Than fk(xi) = pk0 +

d∑
j=1

pkjxij +

d∑
j,h

pkjhxijxih + ...

+

d∑
j1,j2,...,jm=1

pkj1,...,jmxij1xij2 ...xijm ,

k = 1, 2, ...,M,

(12)

where m ≥ 2 is the degree of a higher-order polynomial, which 200

means that the functions are nonlinear. 201

1-FIS, which is based on TSK fuzzy systems, uses multiple 202

linear systems to fit a nonlinear system and a fuzzy algorithm 203

to deconstruct the input variables. Then, the variables are 204

defuzzified through fuzzy calculus inference to generate the 205

equation of the relationship between inputs and outputs. The 206

identification of 4mC site is a complex classification problem. 207

We conduct research on the basis of 1-FIS and propose a C-loss 208

based higher-order fuzzy inference system. 209

III. C-LOSS BASED HIGHER-ORDER FUZZY INFERENCE 210

SYSTEMS 211

A. Kernelized higher-order fuzzy inference systems 212

The kernelized higher-order fuzzy inference systems (KHFIS) 213

can actually be regarded as a nonlinear problem, which 214

can be decomposed into M local nonlinear submodels. To 215

obtain the form of the then-part function fk(xi) for the 216

nonlinear submodel, we introduce the mapping function ϕ(·) for 217

ϕ(xi)
Tϕ(xj) = K(xi,xj) (kernel), where K(xi,xj) can be 218

constructed by a linear, radial basis function (RBF), polynomial. 219

The k-th fuzzy rule of the KHFIS can be represented as: 220

If xi ∈ Ak ∧ xi2 is Ak
2 ∧ ... ∧ xid is Ak

d,

Than fk(xi) = µ̃k(xi)(p
k)T (1, ϕ(xi)

T )T ,

k = 1, 2, ...,M.

(13)

Thus, the output of the higher-order FIS is: 221

f(xi) =

M∑
k=1

µ̃k(xi)(p
k)T (1, ϕ(xi)

T )T . (14)

The nonlinear problem of higher-order FIS is decomposed 222

into a linear combination of M local submodels in a high- 223

dimensional space. Suppose the output of the M if-parts is 224

Φgi: 225

Φgi =
{
(ψ(xi)

1)T , ..., (ψ(xi)
k)T , ...,

(ψ(xi)
M )T

}T ∈ R[(1+d′)∗M ]×1,

ψ(xi)
k = µ̃k(xi)((1, ϕ(xi)

T )T ) ∈ R(1+d
′
)×1,

k = 1, 2, ...,M,

(15)

where ψ(xi)
k is the output of the k−th if-parts and d′ is the 226

dimension of nonlinear projection. The objective function of 227

KHFIS is: 228
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JKHFIS(pg) =
λ

2
∥pg∥22

+
1

2

N∑
i=1

∥pT
g Φgi − yi∥22,

(16)

where pg ∈ R[(1+d′)∗M ]×1.229

We set yi − pT
g Φgi = ξi and Eq. (16) can be rewritten as:230

minJ(pg, ξi) =
1

2
pT
g pg +

1

2λ

N∑
i=1

ξ2i ,

s.t. yi − pT
g Φgi = ξi, i = 1, 2, ..., N.

(17)

The Lagrangian function of the optimization problem (17)231

is:232

L(pg, ξi, αi) =
1

2
pT
g pg +

1

2λ

N∑
i=1

ξ2i

−
N∑
i=1

αi(ξi − yi + pT
g Φgi),

(18)

where αi, i = 1, 2, ..., N is the Lagrange multiplier. The partial233

derivatives of L is found by:234  ∂L/∂pg = 0 ⇒ pg =
∑N

i=1 αiΦgi,
∂L/∂ξi = 0 ⇒ ξi = λαi,
∂L/∂αi = 0 ⇒ pT

g Φgi + ξi − yi = 0.
(19)

Similar to TSK fuzzy systems, KHFIS uses a two-step235

learning strategy. First, the FCM algorithm (unsupervised236

learning stage) is used to initialize the fuzzy subset; then the237

supervised learning method is employed to train the parameters238

of the model according to the error. In Eq. (19), the solution239

process is the supervised learning stage of our algorithm. We240

can obtain the following linear equation:241

(Ω+ λI)α = y, (20)

where α = (α1, α2, ..., αN )T and y = (y1, y2, ..., yN )T .242

Ω = ΦT
g Φg ∈ RN×N is a symmetric matrix, which can243

be called the fuzzy kernel. Φg = {Φg1, ...,Φgi, ...,ΦgN} ∈244

R[(1+d′)∗M ]×N . Ωij can be calculated by:245

Ωij = ΦT
giΦgj

=
[ (

ψ(xi)
1
)T
, · · · ,

(
ψ(xi)

M
)T ]

1×[(1+d′)∗M ] ψ(xj)
1

...
ψ(xj)

M


[(1+d′)∗M ]×1

=
M∑
k=1

(
ψ(xi)

k
)T

ψ(xj)
k

=

M∑
k=1

µ̃k(xi)µ̃
k(xj)

[
1, ϕ(xi)

T
]
1×(1+d′)

[
1

ϕ(xj)

]
(1+d′)×1

=

M∑
k=1

µ̃k(xi)µ̃
k(xj)(ϕ(xi)

Tϕ(xj) + 1)

=

M∑
k=1

µ̃k(xi)µ̃
k(xj)(K(xi,xj) + 1),

(21)

where µ̃k(xi)µ̃
k(xj)(K(xi,xj)+1) can be considered as the 246

element of the fuzzy kernel in the k-th fuzzy rule. 247

The kernel can be constructed by the radial basis function 248

(RBF): 249

KRBF (xi,xj) = exp(−γ∥xi − xj∥2), (22)

where γ denotes the kernel parameters. By a high-dimensional 250

dot product calculation, the RBF kernel function can project 251

samples from a low-dimensional space to a high-dimensional 252

space. The value of the RBF function is a good similarity 253

measure representation, and the range is between 0 and 1. The 254

value increases with decreasing Euclidean distance. 255

For a test sample xt ∈ Rd×1, the final output of KHFIS is: 256

y(xt) = pT
g Φgt

=

N∑
i=1

αi

[ (
ψ(xi)

1
)T
, · · · ,

(
ψ(xi)

M
)T ]

1×[(1+d′)∗M ] ψ(xt)
1

...
ψ(xt)

M


[(1+d′)∗M ]×1

=

N∑
i=1

αi

M∑
k=1

µ̃k(xi)µ̃
k(xt)(K(xi,xt) + 1).

(23)
For binary classification (y ∈ {+1,−1}), Eq. (23) can also 257

be represented as: 258

y(xt) = sign

[
N∑
i=1

αi

M∑
k=1

µ̃k(xi)µ̃
k(xt)(K(xi,xt) + 1)

]
. (24)

The process of KHFIS is shown in Algorithm 1 and Fig. 1.

Algorithm 1 Algorithm of KHFIS

Require: The training labels y ∈ RN×1, features X =
[x1, ...,xi, ...,xN ] ∈ Rd×N and testing sample xt ∈ Rd×1;
The parameters of regularization coefficient λ, number of fuzzy
rules M ;

Ensure: The prediction of y(xt);
1: Using FCM to calculate the parameters of if-parts;
2: Estimating µ̃k(xi), i = 1, 2, ..., N, k = 1, 2, ...,M by Eq. (3a)

and (3b);
3: Computing Ω by Eq. (22) and (21);
4: Estimating α via Eq. (20).
5: Predicting y(xt) by Eq. (23);

259

B. Correntropy induced loss based KHFIS 260

The C-loss function [35] can be expressed as: 261

lC(yi, f(xi)) = 1− exp

(
− (yi − f(xi))

2

2ρ2

)
, (25)

where ρ denotes the bandwidth. The C-loss is differentiable 262

and smooth. Fig. 2 shows the square loss and C-loss function 263

under different widths ρ. Obviously, the C-loss function can 264

effectively reduce the influence of large errors on the model. 265

The square loss increases as the error increases (the negative 266

error decreases), and the value of the loss function increases 267
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Fig. 1: Schematic of kernelized higher-order fuzzy inference systems.

quickly. In contrast, the incremental slope of the C-loss function268

is not as steep. We can adjust the width ρ to adapt the sensitivity269

to outliers.270

Error
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Fig. 2: C-loss with different widths.

We replace the square loss function with the C-loss function,271

and the mathematical model of the C-loss based KHFIS (C-272

KHFIS) is defined as:273

minJ(pg, ξi) =
1

2
pT
g pg

+
1

2λ

N∑
i=1

(
1− exp

(
− ξ2i
2ρ2

))
,

s.t. yi − pT
g Φgi = ξi, i = 1, 2, ..., N.

(26)

However, Eq. (26) is nonconvex and cannot be solved directly. 274

The half-quadratic (HQ) optimization algorithm [37] can be 275

used to solve the above problem. By introducing an auxiliary 276

variable, we first define a convex function: 277

g(ν) = −ν log(−ν) + ν, (27)

where ν < 0. The conjugate function of g(ν) is: 278

g∗(τ) = sup
ν

g′(ν), (28)

where 279

g′(ν) = τν − g(ν) = τν + ν log(−ν)− ν, (29)

When g′(ν) is a nonconvex function, let dg′(ν)
dν = 0: 280

τ + log(−ν) = 0 ⇒ ν = −exp(−τ) < 0. (30)

When formula (30) is combined into formula (28): 281

g∗(τ) = exp(−τ). (31)

Letting τ =
ξ2i
2ρ2 , we can obtain: 282
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g∗
(
ξ2i
2ρ2

)
= sup

ν

{
ξ2i
2ρ2

ν + ν log(−ν)− ν

}
= exp

(
− ξ2i
2ρ2

)
,

(32)

and the supremum is reached at ν = −exp
(
− ξ2i

2ρ2

)
.283

From Eq. (26) and (32), we obtain:284

min J(pg, ξi, νi)

=
λ

2
pT
g pg

+

N∑
i=1

(
1− sup

νi

{
exp

(
− ξ2i
2ρ2

)
νi − g(νi)

})
,

s.t. yi − pT
g Φgi = ξi, i = 1, 2, ..., N,

(33)

where N samples for ν = (ν1, ν2, ..., νN )T ∈ RN×1. Eq. (33)285

can also be simplified as:286

min J(pg, ξi, νi)

=
λ

2
pT
g pg

+ sup
ν

{
N∑
i=1

(
− ξ2i
2ρ2

νi + g(νi)

)}
,

s.t. yi − pT
g Φgi = ξi, i = 1, 2, ..., N.

(34)

We use an alternating algorithm to solve Eq. (34). Fixing287

p
(n)
g and ξ(n) to optimize ν(n+1), Eq. (34) becomes:288

min J(ν(n+1)) =

N∑
i=1

(
− (ξ

(n)
i )2

2ρ2
ν
(n+1)
i + g(ν

(n+1)
i )

)
,

(35)
where n is the n−th iteration, and ξ(n)i = yi−(p

(n)
g )TΦgi, i =289

1, 2, ..., N . According to Eq. (29), the closed-form solutions290

of Eq. (35) are:291

ν
(n+1)
i = −exp

(
− (ξ

(n)
i )2

2ρ2

)
< 0, i = 1, 2, ..., N. (36)

Fixing ν(n+1) optimizes p
(n+1)
g and ξ(n+1) by solving the292

following formula:293

min J(p(n+1)
g ,ξ(n+1))

=
λ

2
(p(n+1)

g )Tp(n+1)
g

+

N∑
i=1

(
− (ξ

(n+1)
i )2

2ρ2
ν
(n+1)
i

)
s.t. yi − pT

g Φgi = ξi, i = 1, 2, ..., N.

(37)

According to Eq. (37), the Lagrangian function is:294

L(p(n+1)
g , ξ(n+1),α(n+1))

=
λ

2
(p(n+1)

g )Tp(n+1)
g

+

N∑
i=1

(
− (ξ

(n+1)
i )2

2ρ2
ν
(n+1)
i

)

−
N∑
i=1

α
(n+1)
i

(
ξ
(n+1)
i − yi + (p(n+1)

g )TΦgi

)
.

(38)

We set the diagonal matrix V(n+1) = 295

diag(−ν(n+1)
1 ,−ν(n+1)

2 , ...,−ν(n+1)
N ) ∈ RN×N , and y = 296

(y1, y2, ..., yN )T , ξ(n+1) = (ξ
(n+1)
1 , ξ

(n+1)
2 , ..., ξ

(n+1)
N )T ∈ 297

RN×1. Then, Eq. (38) can be simplified as: 298

L(p(n+1)
g , ξ(n+1),α(n+1))

=
λ

2
(p(n+1)

g )Tp(n+1)
g

+
1

2ρ2
(ξ(n+1))TV(n+1)ξ(n+1)

+ (α(n+1))T
(
y −

(
(p(n+1)

g )TΦg

)T
− ξ(n+1)

)
.

(39)

The partial derivatives of L is found by:: 299
∂L

ξ(n+1) = 0 ⇒ ξ(n+1) = ρ2(V(n+1))−1α(n+1),
∂L

∂p
(n+1)
g

= 0 ⇒ p
(n+1)
g = 1

λΦgα
(n+1),

∂L
α(n+1) = 0 ⇒ y −

(
(p

(n+1)
g )TΦg

)T
= ξ(n+1).

(40)
Similar to KHFIS, Eq. (40) is the solution of C-KHFIS 300

and belongs to the supervised learning stage of our algorithm, 301

which uses the error to learn parameters. We can obtain α(n+1)
302

and p
(n+1)
g : 303

α(n+1) =

(
1

λ
(Φg)

TΦg + ρ2(V(n+1))−1

)−1

y

=

(
1

λ
Ω+ ρ2(V(n+1))−1

)−1

y.

(41)

p(n+1)
g =

1

λ
Φg

(
1

λ
Ω+ ρ2(V(n+1))−1

)−1

y. (42)

The process of C-KHFIS is listed in Algorithm 2. Theorem 304

1 indicates that Algorithm 2 converges. 305

Theorem 1: The values of Eq. (33) monotonically decrease 306

in each iteration until convergence. 307

Proof 1: Suppose J(p
(n)
g , ξ(n),ν(n)) is the value of the 308

objective function Eq. (33) in the n−th iteration. In the (n+ 309

1)−th iteration, p(n)
g is fixed, and the subproblem Eq. (35) is 310

solved to obtain the optimal ν(n+1). Since Eq. (35) is convex, 311

then 312

J(p(n)
g , ξ(n),ν(n+1)) ≤ J(p(n)

g , ξ(n),ν(n)). (43)

Fixing ν(n+1) and solving Eq. (37) via Eq. (42), we can achieve 313

the optimal p
(n+1)
g in the (n + 1)−th iteration. Eq. (37) is 314

convex problem, so we have 315
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Algorithm 2 Algorithm of C-KHFIS

Require: The training labels y ∈ RN×1, features X =
[x1, ...,xi, ...,xN ] ∈ Rd×N and testing sample xt ∈ Rd×1;
The parameters of regularization coefficient λ, number of fuzzy
rules M and width ρ;

Ensure: The prediction of y(xt);
1: Using FCM to calculate the parameters of if-parts;
2: Estimating µ̃k(xi), i = 1, 2, ..., N, k = 1, 2, ...,M by Eq. (3a)

and (3b);
3: Computing Ω by Eq. (22) and (21);
4: Randomly initializing α(1) ;
5: for n = 1 → nmax do
6: Calculating ξ(n) by ξ(n) = Ωα(n) − y;
7: Estimating ν(n+1)

i , i = 1, 2, ..., N by Eq. (36);
8: Constructing V(n+1) =
diag(−ν(n+1)

1 ,−ν(n+1)
2 , ...,−ν(n+1)

N );

9: Calculating α(n+1) =
(

1
λ
Ω+ ρ2(V(n+1))−1

)−1

y;
10: end for
11: Predicting y(xt) by Eq. (23);

J(p(n+1)
g , ξ(n+1),ν(n+1)) ≤ J(p(n)

g , ξ(n),ν(n+1)). (44)

Finally, we combine the above results and obtain the316

following:317

J(p(n+1)
g , ξ(n+1),ν(n+1)) ≤ J(p(n)

g , ξ(n),ν(n)). (45)

C. Robustness analysis318

To verify the robustness of C-KHFIS, we employ two319

experiments, which include classification and regression. The320

noise samples will affect the construction of the model and321

lead to poor prediction performance. In Fig. 3(a), we randomly322

generate two classes (blue and red points) of data under a323

Gaussian distribution. Each class contains 300 samples. C-324

KHFIS, KHFIS and 1-FIS have similar classification decision325

boundaries and separate the two classes easily. In Fig. 3(b), 50326

noise points are added to the data set. The 50 noise samples327

original belong to class 2. However, these points are regarded as328

class 1. With the addition of noise, the decision boundaries of329

the three models all change. The changes in KHFIS and 1-FIS330

are obvious. Due to the suppression of the robust loss function,331

the decision boundary of C-KHFIS is almost unaffected. In332

Fig. 4(a), there is no noise in the data set, which is generated333

by the sinc function. Each model has a good fitting effect. In334

Fig. 4(b), 30 random noise points are added to the original335

data set. The performance of each method is affected. Due336

to the kernel method (nonlinear), C-KHFIS and KHFIS are337

less affected than the 1-FIS method. Compared with KHFIS,338

C-KHFIS has a better fitting effect.339

IV. THE FEATURE EXTRACTION OF DNA SEQUENCES340

In this work, we utilize position-specific trinucleotide se-341

quence propensity (PSTNP) [6] to represent the features of342

DNA sequences. PSTNP is the extended version of pseudo343

K-tuple nucleotide composition (PseKNC) [38], [39], [40]. The344

DNA sequence generally includes four characters: ’A’, ’C’, ’G’,345

and ’T’. PSTNP generally uses trinucleotide (TriN) to locally 346

represent DNA sequences. The trinucleotide can be expressed 347

as: 348
TriN1 =′ AAA′;
TriN2 =′ AAC ′;
TriN3 =′ AAG′;

...;
TriN64 =′ TTT ′;

(46)

To represent a DNA sequence containing 4mC sites, a 349

PSTNSP profile is defined as: 350

Ci,j = F+(TriNi|j)− F−(TriNi|j),
i = 1, 2, ..., 64; j = 1, 2, ..., 39,

(47)

where i is the type of trinucleotide and j denotes the position 351

on the 4mC fragment. F+(TriNi|j) and F−(TriNi|j) are 352

the frequencies of the i−th trinucleotide of the j−th position 353

for positive and negative samples, respectively. The length of 354

the 4mC fragment was 41 in He’s study [6]. 355

V. EXPERIMENTS AND RESULTS 356

A. Data sets of 4mC 357

In Chen’s work [5], six types of data sets were collected. 358

There were Escherichia coli (E.coli), Caenorhabditis elegans 359

(C.elegans), Geoalkalibacter subterraneus (G.subterraneus), 360

Geobacter pickeringii (G.pickeringi), Arabidopsis thaliana 361

(A.thaliana) and Drosophila melanogaster (D.melanogaster). 362

The sizes of the six data sets are listed in Table I. Readers can 363

refer to Chen’s work [5] for the construction process. 364

TABLE I: The size of the 4mC
data sets .

Species Negative Positive

A.thaliana 1,978 1,978
C.elegans 1,554 1,554
D.melanogaster 1,769 1,769
E.coli 388 388
G.pickeringi 569 569
G.subterraneus 906 906

B. Measurement of performance 365

Matthew’s correlation coefficient (MCC), sensitivity (SN), 366

specificity (SP) and accuracy (ACC) are employed to evaluate 367

the models. They are: 368

MCC =
TP × TN − FP × FN√

(TP + FN) × (TN + FP ) × (TP + FP ) × (TN + FN)
,

(48a)

SN =
TP

FN + TP
, (48b)

Spec =
TN

FP + TN
, (48c)

ACC =
TN + TP

TN + FN + TP + FP
, (48d)

(48e)

, where FP , FN , TN and TP are the numbers of false 369

positives, false negatives, true negatives and true positives, 370

respectively. Ten-fold cross-validation (10-CV) is utilized to 371

verify the performance of classifiers. 372
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Fig. 3: The decision boundaries of different models.
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Fig. 4: The sinc function fitting curves of different models.

C. Convergence on 4mC data sets373

The convergence of C-KHFIS is also verified by means of374

experimental simulation. In Fig. 5, we calculate the objective375

value of C-KHFIS in each iteration. On all data sets, the C-376

KHFIS model can converge after 4 iterations. Therefore, our377

optimization algorithm is effective and the convergence speed378

of the C-KHFIS is fast.379

D. Comparison of FIS methods380

To show the robustness of C-KHFIS, we evaluate the381

performance of 1-FIS, KHFIS and C-KHFIS. The results of382

the comparison are shown in Table II. In all data sets, the383

kernel-based models (with RBF kernel) have higher accuracy.384

Compared with 1-FIS, KHFIS has improved ACC by 0.75%,385

3.19%, 1.13%, 2.52%, 3.19% and 1.8% on the six data sets,386

respectively. In Fig. 6, the area under the receiver operating 387

characteristic (AUC) curves also show the classification per- 388

formance of the models. On the six data sets, the C-KHFIS 389

achieves the best AUCs of 0.8944, 0.9392, 0.9394, 0.9891, 390

0.9621 and 0.9512, respectively. 391

E. Comparison with existing predictors for 4mC 392

Our method is compared with common 4mC predic- 393

tion model. These methods include 4mCPred [6], Meta- 394

4mCpred[11], iDNA4mC [5], 4mcPred-SVM [7], DeepTorrent 395

[15] and 4mCNN [13]. The classifiers of the above methods 396

mainly consist of SVM and convolutional neural network 397

(CNN). It can be seen from Table III that our method obtains 398

the best prediction accuracy on 6 data sets. Compared with the 399

second-best method (DeepTorrent [15]), C-KHFIS improves 400
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Fig. 5: The convergence curves of C-KHFIS on the 4mC data
sets.

TABLE II: Comparison of the prediction performance
between different FISs on six data sets (under 10-CV).

Species Method ACC SN SP MCC

A.thaliana
1-FIS 0.7951 0.8270 0.7630 0.5909

KHFIS 0.8026 0.7897 0.8155 0.6055
C-KHFIS 0.8270 0.8181 0.8356 0.6537

C.elegans
1-FIS 0.8239 0.8283 0.8211 0.6493

KHFIS 0.8558 0.8651 0.8517 0.7128
C-KHFIS 0.8692 0.8632 0.8769 0.7398

D.melanogaster
1-FIS 0.8390 0.8585 0.8191 0.6784

KHFIS 0.8503 0.8407 0.8593 0.7011
C-KHFIS 0.8712 0.8726 0.8692 0.7421

E.coli
1-FIS 0.9218 0.9405 0.8991 0.8441

KHFIS 0.9470 0.9510 0.9390 0.8941
C-KHFIS 0.9529 0.9616 0.9410 0.9056

G.pickeringi
1-FIS 0.8545 0.8795 0.8308 0.7104

KHFIS 0.8864 0.8818 0.8923 0.7732
C-KHFIS 0.9039 0.9032 0.9053 0.8083

G.subterraneus
1-FIS 0.8438 0.8619 0.8261 0.6894

KHFIS 0.8618 0.8608 0.8639 0.7238
C-KHFIS 0.8903 0.8866 0.8944 0.7812

ACC by 2.4%, 1.1%, 1%, 8%, 1% and 1%, respectively, on six401

data sets. DeepTorrent [15] was built based on a deep learning402

model, which was good at feature representation learning.403

However, the recognition rate of positive samples is much lower404

than that of negative samples on multiple data sets. As a result,405

the value of SP is much higher than that of other machine406

learning methods. Deep learning requires more samples to407

train the parameters of the network. When the number of408

samples is small and the selection of initialization parameters409

is unreasonable, the prediction results will be biased. Moreover,410

the loss function of the model is important. The C loss function411

is a bounded, nonconvex, smooth loss function. C-KHFIS is a412

C loss-based neuro-fuzzy systems that can effectively reduce413

the impact of outliers on classification. The gap between SN414

and SP is not very large.415

TABLE III: Comparison between different methods on six data
sets (under 10-CV).

Species Method ACC SN SP MCC

A.thaliana

Meta-4mCpred[11] 0.792 0.761 0.822 0.584
4mCPred [6] 0.768 0.755 0.780 0.536

iDNA4mC [5] 0.760 0.757 0.762 0.519
4mCNN [13] 0.797 0.804 0.792 0.623

4mcPred-SVM [7] 0.787 0.778 0.796 0.573
DeepTorrent [15] 0.803 0.703 0.903 0.620

C-KHFIS 0.827 0.818 0.836 0.654

C.elegans

Meta-4mCpred[11] 0.826 0.840 0.812 0.652
4mCPred [6] 0.826 0.825 0.826 0.652

iDNA4mC [5] 0.786 0.797 0.775 0.572
4mCNN [13] 0.842 0.895 0.825 0.694

4mcPred-SVM [7] 0.815 0.824 0.807 0.631
DeepTorrent [15] 0.858 0.810 0.906 0.719

C-KHFIS 0.869 0.863 0.877 0.740

D.melanogaster

Meta-4mCpred[11] 0.842 0.831 0.854 0.685
4mCPred [6] 0.822 0.824 0.821 0.646

iDNA4mC [5] 0.812 0.833 0.791 0.625
4mCNN [13] 0.854 0.864 0.854 0.687

4mcPred-SVM [7] 0.830 0.838 0.822 0.661
DeepTorrent [15] 0.861 0.834 0.889 0.724

C-KHFIS 0.871 0.873 0.869 0.742

E.coli

Meta-4mCpred[11] 0.848 0.869 0.827 0.697
4mCPred [6] 0.826 0.819 0.832 0.655

iDNA4mC [5] 0.799 0.820 0.778 0.598
4mCNN [13] 0.859 0.881 0.789 0.688

4mcPred-SVM [7] 0.833 0.858 0.807 0.666
DeepTorrent [15] 0.873 0.891 0.855 0.747

C-KHFIS 0.953 0.962 0.941 0.906

G.pickeringi

Meta-4mCpred[11] 0.891 0.884 0.898 0.782
4mCPred [6] 0.830 0.850 0.810 0.668

iDNA4mC [5] 0.831 0.824 0.838 0.663
4mCNN [13] 0.872 0.858 0.893 0.750

4mcPred-SVM [7] 0.860 0.863 0.858 0.721
DeepTorrent [15] 0.894 0.831 0.957 0.795

C-KHFIS 0.904 0.903 0.905 0.808

G.subterraneus

Meta-4mCpred[11] 0.855 0.856 0.854 0.711
4mCPred [6] 0.828 0.818 0.837 0.662

iDNA4mC [5] 0.815 0.822 0.808 0.630
4mCNN [13] 0.860 0.852 0.843 0.704

4mcPred-SVM [7] 0.837 0.840 0.837 0.674
DeepTorrent [15] 0.880 0.813 0.948 0.768

C-KHFIS 0.890 0.887 0.894 0.781

F. Comparison on UCI data sets 416

We further utilize eight data sets to evaluate KHFIS and 417

C-KHFIS from the UCI Machine Learning Repository [41]. 418

KNN, standard SVM [42], Kernel sparse representation-based 419

classifier (Kernel SRC) [43] and 1-FIS are performed on 420

these data via 5-CV. The results of the comparison are 421

shown in Table IV. C-KHFIS achieves the highest values of 422

accuracy on Australian (0.8757), ionosphere (0.9601), breast 423

(0.9801), blood (0.8002), hearts (0.8519), diabetes (0.7834), 424

and sonar (0.9150) data sets. In addition, Kernel SRC has the 425

best accuracy (0.7740) on German Credit. C-KHFIS is also 426

competent in other fields. 427

VI. CONCLUSION AND FUTURE WORK 428

In this study, we employ the position-specific trinucleotide 429

sequence propensity method to extract key information from 430

DNA sequences, propose the C-KHFIS model to construct a 431

classifier, and achieve competitive results. PSTNP can estimate 432
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Fig. 6: The ROCs of different models.

TABLE IV: The accuracy of different classifiers on UCI data sets.

Data set KNN RF SVM Kernel SRC 1-FIS KHFIS C-KHFIS

Australian 0.8565 0.8638 0.8623 0.8304 0.8609 0.8638 0.8757
Blood 0.7888 0.7687 0.7861 0.7928 0.7686 0.7861 0.8002
Breast Cancer Wisconsin (Original) 0.9722 0.9751 0.9736 0.9634 0.9327 0.9678 0.9801
Diabetes 0.7552 0.7591 0.7773 0.7785 0.7760 0.7708 0.7834
German Credit 0.7330 0.7690 0.7630 0.7740 0.7650 0.7660 0.7730
Hearts 0.8222 0.8370 0.8370 0.8037 0.8370 0.8407 0.8519
Ionosphere 0.8547 0.9430 0.9544 0.8746 0.8832 0.9459 0.9601
Sonar 0.8510 0.9002 0.8702 0.8942 0.8221 0.9038 0.9150

the composition of each nucleotide at each position of DNA433

sequences. In the data sets of 4mC sites, there are always434

some noise samples (outliers) that will affect the hyperplane435

of classification. C-KHFIS is a C loss-based neuro-fuzzy436

systems that can effectively reduce the impact of outliers on437

classification. In Tables III and IV, it can be seen that the C loss438

function plays a good role in improving the performance of439

4mC prediction. We first employ a kernel trick to solve higher-440

order fuzzy inference systems and propose kernelized higher-441

order fuzzy inference systems (KHFIS), which have a good442

ability to solve nonlinear fitting. Then, the extended KHFIS,443

which is called the correntropy induced loss based KHFIS (C-444

KHFIS), is developed to reduce the influence of noise samples445

on the model. From the results in Fig. 3 and Fig. 4, it can be446

found that C-loss plays a good role in reducing the influence447

of noise. The experimental results of 4mC show that C-KHFIS448

achieves the best ACC on A.thaliana (0.827), C.elegans (0.869),449

D.melanogaster (0.871), E.coli (0.953), G.pickeringi (0.904),450

and G.subterraneus (0.890). Moreover, C-KHFIS has good 451

results on eight UCI data sets. The introduction of the kernel 452

and C-loss method has greatly improved 1-FIS. 453

The 4mC site prediction is an important research direction 454

in DNA sequence analysis. The accuracy of biological data 455

affects the processing of the data. Therefore, high-quality 456

4mC site samples are the key to building high-precision 457

prediction models. The size of the training set is another factor 458

in developing new predictors. Therefore, fuzzy systems (C- 459

KHFIS) are very suitable for solving the problem of small 460

samples and noisy samples. In addition, the introduction of 461

multimodal DNA information is also a method to improve the 462

prediction performance of 4mC sites. 463

In fact, a variety of information sources and features can be 464

used to describe an object. To further improve the recognition 465

accuracy of 4mC, more features and information can be 466

introduced. Future work can consider multi-kernel learning 467

[44], [45], [46] and multi-view learning [32], [47] to effectively 468
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fuse features and further improve the prediction performance469

of the FIS model.470
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