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Abstract—Classifying complex human motion sequences is
a major research challenge in the domain of human activity
recognition. Currently, most popular datasets lack a specialized
set of classes pertaining to similar action sequences (in terms of
spatial trajectories). To recognize such complex action sequences
with high inter-class similarity, such as those in karate, multiple
streams are required. To fulfill this need, we propose MS-KARD,
a Multi-Stream Karate Action Recognition Dataset that uses
multiple vision perspectives, as well as sensor data - accelerometer
and gyroscope. It includes 1518 video clips along with their
corresponding sensor data. Each video was shot at 30fps and
lasts around one minute, equating to a total of 2,814,930 frames
and 5,623,734 sensor data samples. The dataset has been collected
for 23 classes like Jodan Zuki, Oi Zuki, etc. The data acquisition
setting involves the combination of 2 orthogonal web cameras and
3 wearable inertial sensors recording both vision and inertial
data respectively. The aim of this dataset is to aid research
that deals with recognizing human actions that have similar
spatial trajectories. The paper describes statistics of the dataset,
acquisition setting, and provides baseline performance figures
using popular action recognizers. We propose an ensemble-based
method, KarateNet, that performs decision-level fusion on the
two input modalities (vision and sensor data) to classify actions.
For the first stream, the RGB frames are extracted from the
videos and passed into action recognition networks like Temporal
Segment Network (TSN) and Temporal Shift Module (TSM).
For the second stream, the sensor data is converted into a 2-
D image and fed into a Convolutional Neural Network (CNN).
The results reported were obtained on performing a fusion of
the 2 streams. We also report results on ablations that use fusion
with various input settings. The dataset and code will be made
publicly available.

Index Terms—Action recognition, Multimodal, Karate and
martial arts, Sports and exercises, Deep learning, Vision and
wearable

I. INTRODUCTION

Human activity recognition (HAR) is a classification task in
which, based on the sensory input, the machine understands
and infers different activities performed by a subject. Out
of the many sports and fitness activities, martial art serves
as an excellent tool to promote physical and mental health.

Karate, which has Japanese roots, is one of the most popular
ancient martial arts. Practicing karate promotes improvement
in mobility control [1] and greater intensity of health behaviors
among individuals [2]. Karate is amongst the top 10 martial
arts performed and has over 100 million practitioners around
the globe [3]. It uses hand attacks more, and kicks are mainly
used as backup so legs mostly stay grounded. Karate thus fits
in the description wherein its move sequences have very high
inter-class similarity and the data can be easily collected.

Building a dataset for karate has several challenges. Firstly,
wearing an HMD [4], [5] or wearing many sensors on different
parts of the body [6] is not very convenient to the practitioner
in a realistic scenario, and hence a system with minimum
obtrusiveness must be proposed. Another challenge includes
gathering an adequate amount of quality data which has a
major impact on the model’s generalization performance. A
good quality training dataset requires professional martial
artists with several years of experience, to perform karate
moves skillfully [7]. The multiple modalities recording data
must be in complete synchronization in order to provide
consistent information to the training models. Also, the fast
and complex body movements of the karateka (practitioner
of karate) make tracking and classification of karate moves a
challenging task [8]. There is temporal correlation with the
movement of an action. To capture this, we use sensor data
from wearable devices.

We present MS-KARD, a Multi-Stream Karate Action
Recognition Dataset that includes visual and sensor data for
23 karate moves. The dataset uses two web cameras and
three inertial measurement units to record the motion data of
the karateka and infer the performed karate move. We also
propose KarateNet, a two-stream action recognition network,
that uses a composite deep learning architecture, where the
first sub-architecture processes visual cues by learning features
from the video sequence using CNN-based popular action
recognition networks to produce visual scores, and the second
sub-architecture learns the features of inertial cues using 2D-



CNNs to produce inertial scores. Finally, the model performs
decision level fusion of visual and inertial scores to produce
final class scores. The major contributions of this paper are
threefold:

• We propose a novel dataset, MS-KARD consisting of
multi-stream data for 23 karate action with 2,814,930
frames and 5,623,734 sensor data samples for karate
action recognition. To the best of our knowledge, it is
the first of its kind where data has been recorded with 2
orthogonal RGB cameras and 3 wearable inertial sensors.

• We propose KarateNet, which uses deep learning archi-
tectures (like TSN [9], TSM [10], INM) trained on the
vision and sensor streams of MS-KARD to classify the
karate actions.

• We utilize various mechanisms at the data and decision
levels to fuse the models in an attempt to improve results.
We provide baselines and other ablation results using
multiple fusion settings.

II. RELATED WORKS

This section provides details of related data acquisition
methods as well as information about the relevant action
recognition models.

A. Data Acquisition Techniques

Many researchers have used different data acquisition tech-
niques to come up with smart systems for analyzing karate.
Vision-based techniques are being focused in [4], [5], [7], [8],
[18], [19]. A virtual reality training system for karate is pre-
sented in [4] and [5]. Wu et al. [4] proposed a training system
based on 3D forecasting, using an RGB camera. Similarly,
Petri et al. [5] used MoCap recordings of professional karate
masters with a motion capture system, Vicon tracker with 12
cameras to animate virtual opponents. The practitioner wears
an HMD to fight against the virtual opponent.

Bianco et al. [18] used a Kinect sensor to obtain the 3D
image frames for 10 karate moves (5 blocking, 2 punching,
and 3 kicking). Sotirios et al. [8] used an RGB camera to
obtain 2D image frames for 5 basic kata sequences. Hachaj
et al. [19] emphasized automatically recognizing karate se-
quences, using a combination of three Kinect sensors for data
acquisition. The skeleton representation is performed by fusing
the body joints obtained from each Kinect sensor and karate
pose classification was performed using a gesture description
language (GDL) script. The data was recorded for seven karate
techniques (4 stances, 2 blocks, 1 kick). Further, the same
authors, [7] proposed a Kinect-V2-based dataset containing
10 karate techniques (3 stances, 3 kicks, and 4 blocks).

Alternatively, wearable-based data acquisition techniques
for karate analysis are being discussed in [20], and [6]. Pindari
et al. [20] proposed a ‘lexical-like’ approach for movement
classification, using five wearable inertial sensors from Xsens,
where each inertial sensor is having an accelerometer, gy-
roscope, and magnetometer. The method was tested on the
WARD and NIDA databases, which contains activities of daily
living and three karate actions, namely, ’karate punch’, ’karate

front kick’ and ’karate side kick’. Hachaj et al. [6] used
seventeen wearable inertial-sensors by Shadow 2.0 wireless
motion capture system to obtain data for Oyama and Shorin-
Ryu karate techniques.

A hybrid data acquisition technique is used in [21]. They
proposed an interactive learning system for karate that pro-
motes game-based learning by inducing two-way interaction
between the player and the computer. They used a combination
of two sensor modalities, i.e., a wireless wearable accelerom-
eter and a Kinect sensor.

B. Related Datasets

In the domain of video action recognition, many existing
popular datasets encompass a large, diverse set of activity
classes, which are generally coarse-grained. This is evident
when noting examples of classes in the widely researched
HMDB51 [22] or UCF101 [23] datasets, which include generic
class labels such as kick, punch, hit, basketball, etc. Moving to
more recent popular datasets such as Kinetics [24], the number
of classes drastically increases (up to 700 classes), however,
the class labels, such as abseiling, exercising arm, swing-
ing legs, wrestling, parkour, etc. are still generic in nature.
Datasets like Something-Something [25], while fine-grained in
nature, do not focus on Human activities. HAA500 [26], while
being both human-centric and fine-grained, contains a broad
list of classes in various domains. Our proposed dataset differs
from these, in the sense that the classes are derived from a
specific domain, i.e., Karate. Such a specialized, fine-grained
class set with high speeds of movement makes it a challenging
task to distinguish between the actions performed. Further, the
actions are human-centric. A necessity when considering a
specialized domain such as Karate is to have atomic actions
instead of generic class labels. An exemplar of this is the pro-
vision of disparate class labels for ’Zuki’ actions (punching),
such as Oi Zuki (lunge punch) which differs fundamentally
from Heiko Zuki (parallel punch), thereby making the classes
atomic.

In comparison to other present Karate datasets, MS-KARD
uses a new system of information capture, i.e., vision and
sensor streams, as well as a quantitatively larger information
pool in the form of 2,814,930 video frames and 5,623,734
sensor data samples. Table I lists the datasets which are
broadly related to Karate, along with their characteristics, such
as input modalities, number of subjects, number of frames,
etc. Although the datasets cannot be directly compared due
to the differences in factors like input streams, these metrics
demonstrate that the proposed dataset contains abundant data
with a sufficient number of subjects (13), classes (23), samples
(1518), and RGB frames (2,814,930) all collected from the
relatively narrow domain of Karate. Further, 2 camera views
were chosen to garner more visual information to be able to
distinguish between classes by fusion schemes. Additionally,
in practical scenarios, any trained model can be selected for
use, either front view, side view, or both. As seen by the results
of TSN and TSM, having 2 camera views and arriving at a
decision level consensus, a higher accuracy can be obtained.



TABLE I
COMPREHENSIVE LIST OF KARATE-RELATED DATASETS AND THEIR CHARACTERISTICS.

Dataset Modalities # of Subjects # of Karate Sequences # of Samples # of Frames

MS-KARD (ours), 2021 RGB, Sensors 13 23 1,518 2,8145,930
TUHAD [11], 2020 RGB, Depth, IR 10 8 1,936 99,982
iKarate [12], 2020 Skeleton 2 7 210 -

Blaszczyszyn et al. [13], 2019 Gait 26 1 - -
Karate Kicks [14], 2018 MoCap 4 4 320 -

MADS [15], 2017 RGB, Depth 2 6 216 53,000
Hachaj et al. [16], 2017 MoCap 2 28 560 -
Hachaj et al. [7], 2015 MoCap 6 10 1236 -

Hachaj et al. [17], 2015 Skeleton 1 7 350 -
Bianco et al. [18], 2013 Skeleton - 10 - -

MS-KARD

Subject-4 Subject-8Subject-5 Subject-6 Subject-7Subject-3

Oi Zuki Heiko DachiTeisho Geri Tobi Geri Soto UkeJodan Zuki Kiba Dachi

Trial-2Trial-1 Trial-3

Cam2Cam1 Wearables

GyroscopeAccelerometer

Fig. 1. Dataset Hierarchy of the proposed MS-KARD dataset.

III. DATASET BUILDING

This section presents the setup used to collect the dataset,
followed by the technical specifications and dataset details.

A. Experimental Setup

The MS-KARD dataset is collected using a novel combi-
nation of two RGB web cameras and three wearable inertial
sensors. The two cameras are placed orthogonal to each other,
to capture the front and side views of the performer. Each
wearable inertial sensor consists of a 3-axis accelerometer,
gyroscope, and magnetometer. The dataset has been collected
in a closed laboratory setup where the environment remains
the same and the cameras were fixed at the same position
throughout the data collection process.

B. Technical Specifications

Two Logitech cameras were used to record the videos. The
data from both the cameras were recorded at a resolution of

1080p and a frame rate of 30 frames per second (fps). Both
the cameras were fixed at a height of 4 feet from the ground
and the performer always remains within the frame of both the
cameras while performing the karate sequences, as presented
in the left of Fig. 3. The practitioner wore the three wearable
MbientLab Meta-Sensors on the left wrist, right wrist, and
right leg. The data from the 3-axis accelerometer, gyroscope,
and magnetometer are recorded at 100Hz, 100Hz, and 25Hz,
respectively. The data from the wearable sensors are stored in
CSV files containing the timestamp and the raw sensor values.

IV. DATASET HIERARCHY

The MS-KARD dataset was collected from 13 karateka
performing various karate sequences using two orthogonally
placed cameras and three sensors worn by the subject. The
dataset is divided into the test, train and validation splits
by subject. Subjects - 6,7,9 make up the test set, Subject
- 13 makes up the validation set and the rest (Subjects -
1,2,3,4,5,8,10,11,12) make up the train set.



Fig. 2. Snapshots from MS-Kard displaying sample RGB (Front, Side) and Sensor Data.

TABLE II
MS-KARD CLASSES AND DESCRIPTIONS

Class Description Category

Jodan Zuki Upper-Level Punch Hand
Heiko Zuki Parallel Punch Hand

Oi Zuki Lunge Punch Hand
Shuto Uchi Knife Hand Strike Hand
Teisho Uchi Palm Heel Strike Hand

Ura-ken Uchi Reverse Fist Strike Hand
Mawashi Empi Elbow Strike Hand

Yoko Geri Side Kick Kick
Tobi Geri Jumping Front Kick Kick

Ushiro Mawashi Geri Spinning Back Kick Kick
Yoko Tobi Geri Jumping Side Kick Kick

Mae Geri (Kokomi) Front Kick Kick
Hiza Geri Knee Strike Kick

Gedan Barai Uke Downward Block Block
Mawashi Uke Circular Block Block

Soto Uke Outside Block Block
Ageuke Upward Block Block

Heiko Dachi Natural Stance Stance
Heisuko Dachi Feet-Together Stance Stance
Musubi Dachi Attention Stance Stance

Kiba Dachi Horse Stance Stance
Zenkutsu Dachi Front Stance Stance

Kosa Dachi Cross Stance Stance

The dataset hierarchy as shown in Fig. 1 can be summarized
as follows:

• Each subject in the training and validation sets contains
23 action classes.

• Each action class contains 3 trials of a named karate
sequence.

• Unlike the training and validation sets, the test set only
comprises one trial per action class for each of the three
subjects.

• Each trial, in any case, includes one front view video
(camf ), one side view video (cams), and inertial sensor
readings (accelerometer and gyroscope).

• The names, descriptions, and categories of each class can
be found in Table II.

A. Dataset Details

The MS-KARD dataset is collected with the help of 13
Goju-Ryu practitioners (subjects). The 23 karate techniques
are composed of 6 kicking techniques (Yoko Geri, Tobi Geri,
Ushiro mawashi Geri, Yoko Tobi Geri, Mae Geri (Kokomi),
Hiza Geri), 6 basic stances (Heiko Dachi, Heisoku Dachi,
Musubi Dachi, Kiba Dachi, Zenkutsu Dachi, Kosa Dachi),
7 hand techniques (Jodan Zuki, Heiko Zuki, Oi Zuki, Shuto

Uchi, Teisho Uchi, Ura-ken Uchi, Mawashi Empi) and 4
blocking techniques (Gedan Barai uke, Mawashi uke, Soto
uke, Age uke). The age of the participants varies from 15 to
25 years. All the classes were decided based on the extensive
literature study and with the discussion of karate coaches. The
data is recorded under the guidance of a karate coach (black
belt). Every action is performed up to 3 times (trials) by a
subject, for a duration of about one minute each. The final
dataset contains 1564 minutes of video data from both RGB
cameras, equating to a total of 2,814,930 frames and 5,623,734
sensor data samples. The split ratio we have used is 9:1:1 for
train, test, and validation respectively. Subjects 6,7,9 belong
to the test set, subject 13 belongs to the validation set, while
the rest belong to the training set. Further details about the
dataset hierarchy are provided in the Appendix.

V. PROPOSED APPROACH

Our main objective is to identify the user’s action from
the video and the sensor data collected. No sensing modality
is perfect; no modality can completely describe the entire
information about an activity. In this paper, we propose the
KarateNet model which is constituted of two sub-architectures,
each of which handles one of the two input streams, i.e. RGB
and Sensors. The model employs various methodologies of
intra-stream and inter-stream fusion of its sub-architectures to
reach a final classification.

A. Vision Stream

This stream makes use of popular action recognition models
in order to handle the RGB video information. The models we
have used include TSN [9] and TSM [10], which are both
ResNet-based architectures. Input videos are first decoded,
then a number of frames (T ) are extracted from each video to
be resized, normalized, and reshaped, thereby giving a vector
of dimensions T × 3 × H ×W (initial number of channels
for RGB is 3, height is H and width is W ). Following the
convolution and pooling operations of the action recognizer,
an average consensus produces a 1× C vector of confidence
scores for each of the C classes. The datasets used for training
can have videos of the front view (camf ) or videos of the side
view (cams).
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Fig. 3. The proposed KarateNet architecture, which uses two sub-architectures the work on the vision and inertial streams. Note: In the figure, data level
decoupling is used as the fusion method for the vision stream.

B. Sensors Stream

The inertial sensor data, comprised of accelerometer (Acc)
and gyroscope (Gyr) readings, is a time-series signal. There-
fore an approach similar to that in speech recognition is used.
A 12 column wide input image is formed by combining the
3-axis acceleration and/or angular velocity to get the overall
acceleration and/or overall angular velocity for each of the 3
sensors at half the sampling frequency, thus a 50 × 12 image
is obtained. The data is also normalized. While preparing data,
a sliding window approach as a form of data augmentation is
used. We create a sub-architecture called InertialNet to handle
this sensor data.

InertialNet Model (INM): For the sensor data, a 2-D
CNN is used. The input image is passed serially into 3 2D
convolutional layers with 16, 32, and 64 filters. The output
of each of these convolutional layers is batch-normalized and
max-pooled with a 2 × 2 filter. The max-pooled output from
the third layer is then flattened and passed through a series
of fully connected layers with 256, 512, 128, and 23 units.
After the first fully connected layer a 50% dropout is applied.
ReLu activation is applied after the fully connected layers with
256, 512, and 128 units. The last fully connected layer is
based on the softmax activation. The data-level fusion and
the independent sensor models differ only in the first layer
wherein, they accept different input dimensions.

C. Fusion Scheme

Fusion between constituent models in KarateNet is twofold:
the fusion between models working on the same input modal-
ity and fusion between models working on different input
modalities, i.e. intra-stream fusion and inter-stream fusion
respectively. Note that we denote base models with ψ, where
ψ ∈ {TSN, TSM, INM} and input modalities with ϕ, where
ϕ ∈ {camf , cams, Acc,Gyr}. Here, a singular model trained
on a single modality would be represented by ψϕ.

Intra-Stream Fusion: There are primarily two strategies to
fuse predictions within a given stream based on how the input
data is to be handled by the model, which are described as
follows:

Data Level Fusion (DLF): To make models robust to rec-
ognizing highly similar inter-class actions (in terms of spatial

trajectories and environment), we propose data-level fusion
so as to generate a more challenging dataset for classifying
such activities. Fusion of information at the data level is done
between the two camera perspectives for the vision stream and
between the accelerometer and gyroscope data for the sensor
stream. DLF for the vision stream is done by jointly taking all
the captured videos as a single dataset and training the models.
Thus, the dataset that the action recognizer is trained on is a
large collection of videos of differing perspectives, i.e. Cam1

and Cam2. To implement DLF for the sensor stream, the
two independent images of the accelerometer and gyroscope
signals are joined together to form a 50 × 24 image. Thus,
multiple cues are presented simultaneously to the recognizer.
In either case, only a single model needs to be trained for the
respective stream, however, the diversity of the input datasets
makes it challenging to train on. We denote a data level fused
intra-stream model as ψDLF (ϕ1,ϕ2).

Data Level Decoupling with Late Fusion (DLD): Rather
than a single-step early fusion of the data, this second approach
involves two steps. For the vision stream, the first step is to
segregate the two camera inputs. This is done by initially
treating the two views as distinct datasets - one with only
camf video sequences, and the other with only cams video
sequences. Thus for each model type, two different trained
models are obtained. Each model, when tested on videos of
its respective view, will give output probabilities pertaining to
the confidence score of each class. Following this, the second
step is to fuse the results using a consensus method between
the scores. Similarly, for late fusion in the sensor stream, we
treat the two sensor data inputs (Acc and Gyr) as two separate
cues, and hence train 2 independent models. Let the two input
models for the late fusion be denoted by ψϕ1

and ψϕ2
. For a

given instance, let the predicted class probabilities be P and
Q, where

P = {(p1, ..., pC) ∈ NC : 0 ≤ pi ≤ 1} (1)

Q = {(q1, ..., qC) ∈ NC : 0 ≤ qi ≤ 1} (2)

In this work we consider two methods for arriving at a
consensus between the class scores, as follows:

Additive Consensus: This method is done by adding the



respective class scores between the two models, having an
equivalent effect as average consensus, as the predicted class
is that with the highest new class score. Thus, the new class
score N = {n1, ..., nC} is obtained where

ni = pi + qi ; 1 ≤ i ≤ C (3)

Thus intra-stream data level decoupling with late additive
consensus is denoted by
DLD+(ψϕ1

, ψϕ2
).

Multiplicative Consensus: Consensus is achieved in a sim-
ilar fashion to additive consensus, by using the product of
the respective class scores instead. The new class score N =
{n1, ..., nC} is obtained where

ni = pi ∗ qi ; 1 ≤ i ≤ C (4)

Thus intra-stream data level decoupling with late multiplicative
consensus is denoted by DLD∗(ψϕ1

, ψϕ2
).

Inter-Stream Fusion: Fusion between the two streams can
take place in a similar manner as the intra-stream data level
decoupling consensus methods. In this case, models that have
undergone intra-stream fusion can be taken as inputs to this
fusion mechanism. Therefore more than two models can simul-
taneously be plugged into the algorithm, which can be denoted
by ISF+(ψϕ1

, ..., ψϕn
), ISF ∗(ψϕ1

, ..., ψϕn
) for additive and

multiplicative consensus respectively. The computation can be
done using Equations 3 (for additive consensus) or 4 (for
multiplicative consensus), which can readily be extended to
support n models P1, ..., Pn.

VI. EXPERIMENTAL RESULTS

We provide experimental results on the MS-KARD dataset
using the proposed KarateNet method with its various settings
for fusion schemes. The specification for model training and
fusion schemes can be found in the Appendix.

A. Experimental Settings

Model Training: All the models are trained in an offline
setting from scratch and independent of each other.

Temporal Shift Module (TSM) and Temporal Segment
Network (TSN): We obtained the base models for TSN [9]
and TSM [10] from the MMAction2 repository [27]. The
ResNet architectures used for both the TSN and TSM derived
backbones had a depth of 50. The input spatial resolution
provided to the backbone is 224 × 224. For both TSN
and TSM, the value of the temporal resolution, i.e., frames
sampled was kept at 8. The optimizer chosen was SGD and
the dropout ratios were set to 0.4 for TSN and 0.5 for TSM.
The loss used was Cross-Entropy Loss. The learning rate was
set to 0.000625.

InertialNet Model (INM): For the sensors stream, the
SGDM optimization algorithm is used to train the model,
and one cycle learning rate scheduling policy is used. The
momentum value is set to 0.9 and the maximum learning rate
is set to 0.2, 0.25, and 0.15 for the accelerometer, gyroscope,
and the data level fusion models. Weight decay and gradient
clipping are also used. The loss used was Cross-Entropy Loss.

Fusion: During inter-stream fusion, the class scores re-
ceived from the sensor stream varied by a large margin in
terms of the standard deviation of the values, compared to
that of the vision stream. In order to reduce any untoward ef-
fect/inordinate bias towards the sensor stream, the class scores
were softmaxed, which brought them to a more comparable
range, while still maintaining the previous relative order of
confidence scores.

B. Baseline Results

Several observations can be made using the evaluations
of individual base models of TSN, TSM, and INM, when
independently trained on a singular input modality, i.e. camf ,
cams, Acc, Gyr. The different model configurations, as well
as their results, can be seen in the first two rows of Tables III,
IV, V. For the vision stream, we note that TSM outperforms
TSN on either input view. This is expected as TSM involves a
shifting mechanism to facilitate information exchanged among
neighboring frames and thus improves temporal understand-
ing. This demonstrates the temporal sensitivity of the fine-
grained actions performed in the MS-KARD dataset. Further,
for TSN there is an evident disparity between the performance
on front view videos in comparison to side view videos for
Top-1 accuracy, although the Top-3 accuracies are comparable.
This may be because the correct class predictions are predicted
with a confidence slightly lower than the requisite amount.
The intra-stream and inter-stream fusions would mediate these
confidence scores and boost accuracy. Results for the sensor
stream indicate that the InertialNet Model is able to achieve
5.88% higher accuracy when trained on Acc than Gyr. These
results serve as baselines in order to evaluate the effectiveness
of the different fusion schemes.

C. Data Level Fusion

This first method of intra-stream fusion is evaluated using
independently trained models on the fused datasets of camf

and cams for the vision stream models (TSN and TSM) and
Acc and Gyr for the sensor stream model (INM). The results
of data-level fusion can be seen in the third row of Tables III,
IV, V. Notably, each DLF scheme requires only one model to
train, however, the accuracies of all these models are unable
to provide greater accuracies than both of the corresponding
data decoupled models. For example, TSMDLF (camf ,cams)

is 11.59% and 10.14% lower than TSMcamf
and TSMcams

respectively and TSNDLF (camf ,cams) is 2.9% and 21.74%
lower than TSNcamf

and TSNcams
respectively. This drop in

performance is likely due to the model’s inability to generalize
over the front and side view videos of classes in the fused
dataset.

D. Data Level Decoupling

Data level decoupling with late fusion is implemented using
a consensus methodology on two models trained on differing
input modalities of the same stream, for example,
DLD+(TSNcamf

, TSNcams
). Other settings, as well as each

of their results, are shown in the last two rows of Tables III,



TABLE III
RESULTS USING TSN BASED METHODS

Model Top-1 Top-3
TSNcamf

44.93% 81.16%
TSNcams 63.77% 86.96%

TSNDLF (camf ,cams) 42.03% 73.12%
DLD+(TSNcamf

, TSNcams ) 66.67% 84.06%
DLD∗(TSNcamf

, TSNcams ) 63.77% 85.51%

TABLE IV
RESULTS USING TSM BASED METHODS

Model Top-1 Top-3
TSMcamf

73.91% 88.41%
TSMcams 72.46% 92.75%

TSMDLF (camf ,cams) 62.32% 82.61%
DLD+(TSMcamf

, TSMcams ) 75.36% 92.75%
DLD∗(TSMcamf

, TSMcams ) 75.36% 92.75%

TABLE V
RESULTS USING INM BASED METHODS

Model Top-1 Top-3
INMAcc 50.00% 73.53%
INMGyr 44.12% 61.76%

INMDLF (Acc,Gyr) 45.59% 73.53%
DLD+(INMAcc,INMGyr) 57.35% 76.47%
DLD∗(INMAcc,INMGyr) 51.47% 75.00%

TABLE VI
RESULTS USING INTER-STREAM FUSION

Model Top-1 Top-3
ISF+(TSNcamf

, TSNcams , INMAcc, INMGyr) 66.18% 86.76%
ISF∗(TSNcamf

, TSNcams , INMAcc, INMGyr) 73.53% 88.24%
ISF+(TSMcamf

, TSMcams , INMAcc, INMGyr) 76.47% 94.12%
ISF∗(TSMcamf

, TSMcams , INMAcc, INMGyr) 76.47% 94.12%

IV, V. The primary observation is that this method of fusion
produces results that are either equivalent or superior to both
the individually decoupled constituent models. This is apparent
in all cases; for example DLD+(INMAcc, INMGyr) produces
an accuracy of 7.35% and 13.23% higher than the constituent
models INMAcc and INMGyr. The improvement is seen for
both the additive and multiplicative consensus methods.

Further, the accuracies far surpass those of the DLF method
for all streams; an instance of this point can be seen by
DLD+(TSNcamf

, TSNcams
), whose accuracy exceeds that of

TSNDLF (camf ,cams) by a large margin of 24.64%. This shows
that late consensus of decoupled models is a better approach
to fusion rather than fusing the input modalities at the data
level.

Another pertinent result is that for intra-stream late fu-
sion, the consensus method that generally procures greater
accuracies on the MS-KARD dataset is based on the addi-
tive scheme rather than multiplicative. Results for TSM are
equal, but for TSN and INM, there is a loss of 2.9% and
5.88% respectively when using multiplicative over additive
consensus. This may be attributed to the fact that within
the stream, the models produce class probabilities of similar
scales. Thus, the addition of class probabilities between these
comparable scales provides an apposite estimate of an average
agreement between the two models. On the other hand, the
multiplicative consensus strategies may fail in cases where
predictions with high confidence scores are reduced to sub-
optimal values because of ’disagreement’ between the two
models, and thereby lose relevance while making the final
prediction; this would not happen in additive consensus as
the values would necessarily increase.

E. Inter-Stream Fusion

Having arrived at a fusion within the stream level, these
models can be further fused through inter-stream strategies
as described earlier. The two overall settings use either one of
DLD fused TSN or DLD fused TSM from the vision stream in
conjunction with the DLD fused INM from the sensor stream.
Further, each setting can be implemented using additive or

multiplicative consensus. The results of the evaluations using
this fusion scheme can be found in Table VI . Clearly,
inter-stream fusion provides an improvement over any of
its constituent models; an example of this can be seen by
ISF+(TSNcamf

, TSNcams
, INMAcc, INMGyr) being 21.25%,

2.42%, 16.18%, and 22.06% higher than TSNcamf
, TSNcams ,

INMAcc and INMGyr, respectively. However, in comparison
with DLD models, it is evident that improving results us-
ing the additive consensus version of inter-stream fusion is
challenging - it improved accuracy by 1.11% for the TSM
based model, while there was a drop of 0.49% for the TSN
based model. On the other hand, the multiplicative consensus
fared better for the TSN-based model, with an improvement
of 9.76% from its vision stream DLD counterpart. The rise in
accuracy using this fusion scheme may be imputed to the fact
that the class probabilities from the differing streams (vision
and sensor) may have varied scales, which is expected since
they arise from inherently different base models (eg. - TSN
vs INM). In such a situation, the product of the scores gives a
fairer balance as the output scores are largely independent of
the input scales, which is not the case for additive consensus.
This supports the findings of [28].

The greatest accuracy obtained is 76.47% Top-1 and 94.12%
Top-3 through inter-stream fusion between the vision stream
using TSM and the sensor stream using INM. A complete
table with all the acquired accuracies of various models has
been presented in Table VII for ease of reference.

VII. CONCLUSION

Most popular datasets lack a specialized set of classes
with similar spatial trajectories. To recognize such complex
action sequences with high inter-class similarity, like those
in karate, datasets, and models that use multiple streams are
required. In this paper, we presented MS-KARD, a Multi-
Stream Karate Activity Recognition Dataset as well as a
fusion-based action recognition network, KarateNet, to address
this need. KarateNet uses a combination of inertial cues from
3 inertial measurement units (IMUs) and visual cues from 2
web cameras. The network uses a deep learning architecture,



TABLE VII
COMPLETE LIST OF ABLATION STUDY RESULTS OBTAINED USING

VARIOUS MODELS ON OUR PROPOSED MS-KARD DATASET.

Model Top-1 Top-3

TSMcamf
73.91% 88.41%

TSMcams 72.46% 92.75%
TSMDLF (camf ,cams) 62.32% 82.61%

DLD+(TSMcamf
, TSMcams ) 75.36% 92.75%

DLD∗(TSMcamf
, TSMcams ) 75.36% 92.75%

TSNcamf
44.93% 81.16%

TSNcams 63.77% 86.96%
TSNDLF (camf ,cams) 42.03% 73.12%

DLD+(TSNcamf
, TSNcams ) 66.67% 84.06%

DLD∗(TSNcamf
, TSNcams ) 63.77% 85.51%

INMAcc 50.00% 73.53%
INMGyr 44.12% 61.76%

INMDLF (Acc,Gyr) 45.59% 73.53%
DLD+(INMAcc,INMGyr) 57.35% 76.47%
DLD∗(INMAcc,INMGyr) 51.47% 75.00%

ISF+(TSNcamf
, TSNcams , INMAcc, INMGyr) 66.18% 86.76%

ISF∗(TSNcamf
, TSNcams , INMAcc, INMGyr) 73.53% 88.24%

ISF+(TSMcamf
, TSMcams , INMAcc, INMGyr) 76.47% 94.12%

ISF∗(TSMcamf
, TSMcams , INMAcc, INMGyr) 76.47% 94.12%

trained on the MS-KARD dataset composed of 23 karate
moves for final predictions/inferences. KarateNet consists of 2
sub-architectures. The first computes the score of visual cues
by using popular action recognizers. The second computes the
scores of inertial cues by first learning features by mapping
inertial signals to an image, and then passing them to a
2D CNN. We also devised a consensus scheme describing
data-level fusion, data-level decoupling with late fusion and
discussed which fusion scheme is suitable for inter-stream and
intra-stream fusion.
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