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Abstract—Group Activity Recognition requires spatio-
temporal modeling of an exponential number of semantic
and geometric relations among various individuals in a
scene. Previous attempts model these relations by aggregating
independently derived spatial and temporal features. This
increases the modeling complexity and results in sparse
information due to lack of feature correlation. In this paper, we
propose Weighted Temporal Attention Mechanism (WTM), a
representational mechanism that combines spatial and temporal
features of a local subset of a visual sequence into a single
2D image representation, highlighting areas of a frame where
actor motion is significant. Pairwise dense optical flow maps
representing the temporal characteristic of individuals over a
sequence are used as attention masks over raw RGB images
through a multi-layer weighted aggregation. We demonstrate a
strong correlation between spatial and temporal features, which
helps localize actions effectively in a multi-person scenario.
The simplicity of the input representation allows the model
to be trained by 2D image classification architectures in a
plug-and-play fashion, which outperforms its multi-stream and
multi-dimensional counterparts. The proposed method achieves
the lowest computational complexity in comparison to other
works. We demonstrate the performance of WTM on two
widely used public benchmark datasets, namely the Collective
Activity Dataset (CAD) and the Volleyball Dataset. and achieve
state-of-the-art accuracies of 95.1% and 94.6% respectively. We
also discuss the application of this method to other datasets and
general scenarios. The code is being made publicly available.

Index Terms—Video Action Recognition, Human Activity
Recognition, Transformers, Temporal Attention, Consensus, Con-
volutional Neural Networks

INTRODUCTION

Group activity recognition aims to understand the collec-
tive behavior of a group of individuals, each involved in
independent activities. It is an important subtask of general
human action recognition [1], involving individual dynamics,
relations between multiple people in a single sequence [2]
as well as context [3]. The applications of group activity
recognition include automatic video surveillance, sports video
analysis, social behavior understanding, autonomous driving
systems, etc.

Group activity recognition is challenging as it requires an
understanding of higher-level relationships among individ-
uals [4]. Group activity is majorly determined by activity
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Fig. 1. Classification using weighted temporal attention mechanism (WTM).

occurring in a small fraction of the total area of the frame.
Even within the more important areas, different individual
activities contribute different amounts of information regarding
the group activity. These important areas of the frame can be
characterized by considering the temporal dynamics. Hence,
the model search space in learning algorithms can be directed
for activity recognition tasks, by developing methods that
identify important features through proper temporal feature
extraction. In this paper, temporal features have been used as
an attention mechanism to highlight certain important areas of
sequential frames.

This paper aims towards the prediction of activity through
a simplified approach, by combining spatial information and
temporal history into a single input representation, which
can be classified through a replaceable image classification
architecture. This provides the classification model with com-
plete and comprehensive information in a single input image.
The proposed method is highly efficient to extract scene-level
understanding of the general activity. Moreover, the method
is independent of the number of actors in the scene, and
the exponential number of corresponding relations between
various entities. To demonstrate this efficacy, the paper fo-
cuses on one of the harder subtasks of activity recognition -
group activity recognition. Apart from the information derived
through the proposed method, no explicit information (such
as individual activity labels, pairwise relation annotations,
bounding box annotations, etc.) is needed to identify group
activities. This makes the model more feasible for practical
real-world scenarios, where such labor-intensive annotations



are infeasible.
We use dense optical flow [5] approach to derive trajectory

maps corresponding to temporal movement. However, these
maps contain noise in the form of erratic movement. A thresh-
old filter has been implemented to suppress such noise. We
demonstrate that the resulting optical flow maps are correlated
with spatial representations. A layered weighted scheme is
proposed to superimpose these optical flow maps onto raw
images, acting as temporal attention over spatial distributions.
The trajectorial maps include information about movements,
directions, acceleration, etc. from immediate past as well as
immediate future. We build local sub-sequences containing
frames separated by a suitable frame stride. A brief description
of the proposed approach is depicted in Fig. 1.

The major contributions of this paper are as follows.
• A novel representational approach towards combining

and correlating spatial and temporal features has been
proposed for activity recognition. This reduces the prob-
lem to a single image, single-label classification prob-
lem, which can be modeled using a suitable 2D image
classification architecture, replaceable in a plug-and-play
fashion.

• We propose a temporal attention module that uses dense
optical flow to derive trajectory-based information from
the immediate frames, which is masked over raw RGB
images and pooled through a layered weighting scheme
to create a comprehensive representation of image se-
quences.

• The proposed approach results in reduced computational
complexity in terms of both space and time. This high-
lights the effectiveness and importance of cognitively
simpler approaches to information representation and
learning.

• The performance of the proposed method has been eval-
uated on two benchmark datasets, namely the Collective
Activity Dataset and the Volleyball dataset. The proposed
method outperformed the state-of-the-art and achieved
95.1 % and 94.6% testing accuracies on the two datasets,
respectively.

RELATED WORK

Many works of literature [6]–[8] present a general approach
of recognizing singular person activities and then building on
this prior knowledge to recognize group activities. [6] pro-
posed a spatiotemporal contextual relationship-based model,
learning features hierarchically. In [8], a real-time inference
framework is proposed for multi-person tracking and activity
recognition at multiple hierarchical activity levels. [9]–[11]
propose multi-stream convolutional networks as frameworks
for group activity recognition in which predictions from CNN
streams trained on different modalities are fused at the end. [7]
proposed a semi-supervised multi-level sequential GAN archi-
tecture for group activity recognition.

Some works rely on extracting spatio-temporal information
through recurrent neural networks. [12] presented a 2-stage
deep temporal model based on LSTM to capture group-level

dynamics for group activity recognition. Similarly, [13] pro-
posed a semantic scheme with an LSTM based two-stage cap-
tioning and prediction model. [14] proposed a single forward
pass architecture that performs localization and classification
using LSTMs.

[15] focused on building end-to-end learnable relation
graphs through matrix operations to simultaneously capture
the appearance and position relation between actors in a multi-
person scene. [16] proposed a CNN-based spatial relational
scheme for group activity recognition. In a multi-person sce-
nario, sometimes focussing on only a few key features suffices.
This can be addressed by filtering irrelevant features. [17]
proposed a reinforcement learning-based method to distill the
low-level and high-level relations of group activities. Their
approach involved constructing a relational graph for explicitly
modeling the relations among persons. [12], [18] exploited
RNN to detect only relevant events in videos by suppressing
irrelevant information. Their multi-stage RNN model learns
to detect events in videos while automatically attending to the
key actors responsible for an event.

Some researchers have proposed attention mechanisms for
group activity recognition. [18] proposed a soft attention-
based model for detecting key actors and high-level activity.
Tang et al. [19] assembled attention mechanisms to achieve
compact representations by assigning varying pooling weights
to a different person–group interactions. [20], [21] proposed
relative spatiotemporal attention which is determined by a key
actor. However, these methods treat and process attention in
the spatial and temporal domains separately. This creates an
information gap due to the independence of these features.
The relation between spatial and temporal features can also be
exploited through stronger visual representations to understand
the latent structure of the sequential input. This often helps
in better spatio-temporal correlation and results in lower
computational complexity. [22] proposed a temporal pooling
function to rank features of an entire video sequence in a
2D space, which can be classified through classifiers such
as SVMs. Similarly, [23] proposes a ranking method, which
creates alternative feature vectors corresponding to the entire
sequence. However, such an approach results in the loss of
the key original spatial distribution of images, including the
background information.

PROPOSED METHOD

Group Activity Recognition is ultimately a problem of
image classification. The approach used in this paper involves
the use of the classification of images with temporal attention,
which is fed into an image classification model for group
activity recognition.

Elementary Approach

Initially, we train a convolutional neural network without
any attention mechanism to understand the contribution of
superficial spatial features in the final results. This is done
by directly feeding single labeled images as input to the
CNN. We feed all the labeled images and augment them using
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Fig. 2. Proposed method for weighted temporal attention mechanism. A frame window Fi consisting of N temporally continuous frames separated by a
stride of s frames each. A batch Xb may contain image representations from various sequences since each sequence can be reduced to a single image with
a single group activity label.

standard image augmentation techniques such as cropping,
padding, rotation, and flipping. Along with this, we also add
temporally adjacent frames to the training batch corresponding
to a frame, as an equivalent of transformed images with
the same label. Corresponding to one image, we create an
augmented collection of 2N + 1 temporally adjacent frames
of images, each pair separated by a stride of s frames.

frame fi
augment−−−−−−→ frames {fi+ns}

∀n ∈ {−N,−N + 1, ..., N − 1, N}

s.t. dim(fi+αs) = dim(fi+βs) ∀ α, β ∈ n, α ̸= β

where N is the number of additional successive (or prede-
cessive) frames appended to a batch. Any frame with non-
uniform dimensions can be adjusted using an appropriate
cropping technique. A non-unity stride s is preferred since two
adjacent frames are more or less similar in spatial formation.
Thus no significant temporal shift would be observed in that
case. It is hypothesized that the addition of temporal informa-
tion of each individual person would be required and sufficient
to include the missing information needed to comprehensively
derive information from the data. The drawbacks of traditional
CNNs, in the context of group activity recognition, are (1)
Any single frame cannot factor in temporal information, and
its related features, such as trajectory, acceleration, speed,
and the direction of movements of different people. Temporal
information can be derived from a series of frames; and (2)
The features extracted by CNNs are abstract, which means,

it is difficult to guide the network to learn more meaningful
features. For example, it is difficult to guide the network in a
manner that gives more feature-based importance to the people
themselves, compared to relatively non-essential features such
as the setting of the background.

Weighted Temporal Attention Module

To include temporal information, we use Gunnar-
Farneback [5] based estimate for optical flow (also known as
dense optical flow) to find out movement-based details. Dense
optical flow highlights the pixels of an image where the change
in intensity of pixels is significant. In order to derive proper
temporal information, an aggregate of optical flows is derived
from a time window, including both immediate past frames
and immediate future frames.

We calculate optical flow in a sliding window for a span of
time ti, spanning from frame fi−ns to frame fi+ns, separated
by a stride of s frames since consecutive frames are likely to
be very similar in pixels. Thus, optical flow is applied over
a set of 2N + 1 images per window. A total of 2N pairwise
optical flow maps are obtained corresponding to each frame-
pair fi+ns and fi+(n+1)s ∀ n ∈ [−N,N − 1]. We represent
the optical flow map corresponding to the shift from frame
fi+ns and fi+(n+1)s as Ofi+ns−→fi+(n+1)s

.
The Gunnar Flow [5] method returns a Hue Saturation Value

(HSV) image, which is converted into an RGB image for better
handling and interpretation. A threshold-based filter is used to
remove noise from these optical flow maps. Raw OF maps
contain high amounts of noise due to factors such as constant
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Fig. 3. Effect of filtering optical flow maps using the thresholding mechanism.

camera movement and blurriness. Pixel values across all
channels are clipped within a range of values ∈ [amin, amax],
and scaled appropriately. This results in clean representations
of temporal movement in the sequence of frames. This filter
is represented as

ϕ(Ofi,fi+j
), and is defined as

ϕ(Ofi+ns−→fi+(n+1)s
) = uamin(x)− uamax(x)

∀ pixels x ∈ Ofi+ns−→fi+(n+1)s
(1)

where, ua(x) is a step function defined as

ua(x) =

{
1 x ≥ a

0 x < a
(2)

and amin and amax are the lower and upper thresholds of
the optical flow maps. This helps the representation in two
ways. (1) Noise appearing due to erratic visual movement,
sudden camera movement or blurriness, is suppressed. (2)
The optical flow maps contain minor pixel value shifts. This
can occur because of vibrating camera movement, or minute
movements in the background. Clipping these activations to
a zero value gives a clean representation of optical flow
corresponding to the local temporal shift. The result of filtering
can be seen in Fig. 3.

Out of the N frames in a sequence, we exclude the extreme
ends and superimpose the optical flow maps on the remaining
2N − 1 frames, to obtain the superimposed image representa-
tion Sft+i

, corresponding to frame ft+i, using the following
scheme.

Sfi+ns
=

fi+ns +
1

k

[
ϕ(Ofi+(n−1)s−→fi+ns

) + ϕ(Ofi+ns−→fi+(n+1)s
)
]

for n ∈ {−N + 1,−N + 2, ..., N − 2, N − 1}
(3)

where k is a scaling factor for the optical flow maps. The
superimposed images are weight pooled to obtain the final
representation corresponding to the middlemost frame fi. This
is given as:

xfi =

n=+N−1∑
n=−N+1

wnSfi+ns
(4)

where wn is a weight factor assigned to superimposed
images. The middlemost frame is given the highest weigh-
tage, followed by the immediate frames in decreasing order.
Successive and predecessive superimposed frames at equal
distances from the middlemost frames have equal weightage.
We define the weight factor wn as 1

2|n|+1 . The weighting factor
was chosen in the form of 1

2n , because of the convergence of
the corresponding infinite geometric series to unity. We assign
equal weights to temporally equidistant frames. However, this
is not strict and can be adapted depending on the dataset
used, since the Neural Network is capable of fitting arbitrary,
but reasonable data distribution. An equally valid weight
factor formulation would be a normalized inverse exponential
function 1

k.ea(|n|+1) or 1
k.xa(|n|+1) for some real number x,

where k is a suitable normalizing factor, that not only ensures
mathematical convergence of the corresponding infinite series
superimposition but also ensures that pixel values stay within
computational limits.

The parameters of WTM such as amin, amax, and wn have
been chosen to be compatible universally with any sequential
image data. These do not have a strict value and were simply
chosen through empirical logic. Therefore, experimentation
with these values is encouraged.

Finally, we normalize the weighted image within the com-
putation limit of the tensors. Additionally, we normalize
the inputs to ImageNet statistics across individual channels.
ImageNet Statistics enable us to use ImageNet pretrained 2D
models. However, this normalization can b for training. This
can be omitted if one decides to train the network from scratch.

x = N(xft/max(xft), µImageNet, σImageNet) (5)

This can be directly fed into an image classification model
with the target class y equal to the corresponding label of
frame fi. A single batch xb can thus contain data from multiple
sequences, with different labels. A schematic of this process
is illustrated in Fig. 2. A stronger hue is seen over portions
where there is a significant change in intensity, which may
occur by sudden movement, or shaking of the camera. The
thresholding mechanism suppresses the noise to a great extent,
as is seen in Fig. 3. We feed a batch of images with temporal
attention to an image classification network with single labels
and thus reduce the problem to a traditional 2-dimensional
image classification problem. Thus we have eliminated the
need for any multi-stream or augmented dimensional (such as
3-dimensional) architectures.

EXPERIMENTAL RESULTS

We evaluate the results and trends of our model with respect
to various experiments and hypotheses. We also provide a
critical analysis of the approaches used in this paper compared
to the approaches of other papers. However, before discussing



the performance of the model, we briefly analyze the datasets
upon which the model has been built.

Datasets

We train and compare our results over two widely used
benchmark datasets - the Collective Activity Dataset and the
Volleyball Dataset.
Collective Activity Dataset (CAD). The dataset contains 44
short sequences of five different collective activities, namely
- walking, talking, crossing, waiting, and queueing, recorded
through a handheld camera. Each short sequence contains
various continuous frames, that are sampled at a rate of 25
frames per second (fps). Every tenth frame is labeled. The
dataset contains a fairly balanced distribution of different
activities, background settings, and camera angles.
Volleyball Dataset This dataset is curated from publicly avail-
able Volleyball matches found on YouTube. It contains 4830
annotated frames from 55 different videos [12], containing 8
group activities specific to this sport, and 9 individual activity
labels. Labeled items are separated by 40 unlabeled frames,
exclusive of the labeled items, meaning for every labeled
frame, the authors provide 20 continuous succeeding unlabeled
frames and 20 continuous preceding unlabeled frames, which
are intended to be used along with the labeled frame to factor
in temporal motion within the sub-sequence. The quality of
the imagery is fairly good by modern standards.

Performance Evaluation

We present and compare the results over both the datasets
used. The proposed model achieves State-of-the-Art testing
accuracy on both datasets. The individual results of the
Group Activity Classification are 95.1% and 94.6% for CAD
and Volleyball datasets, respectively. The image classification
backbone is replaceable with any suitable backbone. As men-
tioned before, we demonstrate the results on two backbones
- ResNet [24] and EfficientNet [25]. The two architectures
demonstrate similar performances. However, the ResNet vari-
ant slightly outperforms the latter and also achieves state-of-
the-art results.

Fig. 4 demonstrates the performance of the model on the
most difficult cases. We illustrate through various examples
how the model has been able to identify the characteristics of
various activities despite underlying ambiguity in actions and
labels.

Ablation Study

Base Architecture Selection We primarily evaluate our
method on various architectural variations of the ResNet
and EfficientNet backbones. We perform experiments to ana-
lyze the contribution of spatial information in group activity
datasets. We initially train the CNN backbones on images
without optical flow-based temporal information. All other
data transformations and augmentation methods remain the
same. The model is trained using the same training method
as described in earlier sections. The only variation occurs
in hyperparameter selection [26]. The comparison of various

TABLE I
COMPARISON OF BASE ARCHITECTURE WITHOUT OPTICAL FLOW-BASED

ATTENTION MECHANISM BASED ON TESTING ACCURACY

Dataset ResNet18 ResNet34 ResNet51
Size 128 256 128 256 128 256
CAD 88.3 88.3 85.0 89.0 82.6 84.1

Volleyball 50.20 72.2 67.7 75.5 73.3 75.7

ResNet architectures is shown in TABLE I. We use an Im-
ageNet pre-trained ResNet architecture as the backbone for
training the image classification model. The table shows a
comparison of three ResNet variants, each tested on two size
variants of the input - 128× 128 pixels and 256× 256 pixels
sequentially. All values reported are testing accuracies as pre-
determined by the authors of the datasets.

We observe in TABLE I that a ResNet34 architecture
outperforms its related architectures for the Collective Activity
Dataset by a significant margin, while the ResNet51 archi-
tecture outperforms its related architectures for the Volleyball
dataset. However, the ResNet34 counterpart for the Volley-
ball Dataset only underperforms the ResNet51 architecture
by 0.2%. Hence we select the ResNet34 architecture as the
baseline for our model training. The table also shows the final
size of the pre-sized input image, over which the model is
trained. As mentioned before, we use the method of progres-
sive resizing, meaning the image size is increased in stages,
starting from size 128 × 128, followed by size 256 × 256
pixels. This not only helps train the network faster but helps
train essential features with a smoother contour, hence giving
better overall accuracy at the end of the training.
Architecture performance with WTM Following this, we
add temporal attention to input images through WTM. This
involves optical flow-based attention maps overlayed on top
of the raw input RGB images. This completes the information
representation of our proposed method. We train the model
over multiple parametric variants of the WTM module to
analyze the effect of all contributing temporal attention repre-
sentations within the input image. For symmetry, N assumes
a positive odd integer value not equal to 1 (since 1 frame per
subsequence would not account for any temporal information),
while s can be any positive integer. However, we set an upper
limit for experiments on N , such that the corresponding weight
factor wn does not exceed a value of 1000 since beyond that,
the contribution of temporal representation becomes insignifi-
cant. In other words, N takes a maximum value of 9. Similarly,
we set an upper limit on s equal to 5, since, beyond that, the
noise in the optical flow maps becomes significant, and affects
the attention mechanism, even after careful thresholding. A
detailed analysis of experiments on the weighted temporal
attention module is shown in TABLE III.

The results can be seen in TABLE IV and TABLE V.
The proposed weighted temporal attention mechanism beats
the state-of-the-art results on both datasets. These results
have been compared with previous works in the following
subsection.
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Fig. 4. Model prediction on difficult cases. Green: Actual Label in the dataset. Red: Model Prediction. The figure illustrates wrong predictions on the two
datasets. Collective Activity Dataset: The figure illustrates that the model has correctly learned features of activities such as talking, crossing, queuing, etc.,
despite ambiguity and error in labeling logic. Volleyball Dataset: Most errors occur in cases where two activities have similar actions. For example, the
majority of misclassification pairs constitute win points vs spikes. Both actions have similar physical characteristics.

TABLE II
EXPERIMENTS ON THE PROPOSED WTM ATTENTION METHOD. WE VARY

THE NUMBER OF FRAMES PER SUBSEQUENCE N AND THE STRIDE
BETWEEN TWO CONSECUTIVE FRAMES s. THE ACCURACIES ON BOTH

CAD AND VOLLEYBALL DATASETS HAVE BEEN TABULATED.

s N
3 5 7 9

Accuracy on Collective Activity Dataset (%)
1 89.3 92.3 91.9 89.0
2 91.4 92.4 92.8 91.9
3 93.1 95.1 94.9 92.5
4 91.0 94.3 93.7 89.1
5 87.6 89.4 89.9 88.8

Accuracy on Volleyball Dataset (%)
1 75.7 81.9 80.6 73.0
2 87.5 87.8 89.3 83.4
3 93.9 91.3 87.2 77.2
4 94.6 94.2 84.3 82.7
5 81.3 87.4 89.0 74.6

TABLE III
EXPERIMENTS ON THE PARAMETERS OF WTM.

Testing Accuracy on Testing Accuracy on
CAD (%) Volleyball Dataset (%)

s N N
3 5 7 9 3 5 7 9

1 89.3 92.3 91.9 89.0 75.7 81.9 80.6 73.0
2 91.4 92.4 92.8 91.9 87.5 87.8 89.3 83.4
3 93.1 95.1 94.9 92.5 93.9 91.3 87.2 77.2
4 91.0 94.3 93.7 89.1 94.6 94.2 84.3 82.7
5 87.6 89.4 89.9 88.8 81.3 87.4 89.0 74.6

Discussion and Comparison

The proposed method achieves the state-of-the-art results
of 95.1% and 94.6% on the collective activity dataset and
volleyball dataset, respectively. The results are tabulated in
the TABLE IV and TABLE V, along with a comparison with
various past works. All reported values are testing accuracies
as pre-determined by the authors of the datasets.

Space-Time Complexity Analysis : For a proper gener-
alization and comparison with various models, we define
computational complexities in terms of some general variables,

16 17 18 19 20 21 22
Logarithmic Space Complexity

16

17

18

19

20

21

22

23

Lo
ga

rit
hm

ic 
Ti

m
e 

Co
m

pl
ex

ity

Gavrilyuk et al.

Wu et al. Ehsanpour et al.

Li et al.

Shu et al.

Ours+EfficientNet

Ours+ResNet

Fig. 5. Space Time Complexity Analysis for various models.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART ON THE COLLECTIVE ACTIVITY
DATASET. RED DENOTES THE BEST AND BLUE DENOTES THE SECOND

BEST RESULTS.

Method Backbone 2D/3D Single/ Group
Multi-Stream Activity

[27] N/A N/A N/A 79.7%
[28] N/A N/A N/A 80.4%
[2] AlexNet 2D Multi 81.2%
[12] AlexNet 2D Single 81.5%
[29] N/A N/A N/A 83.4%
[16] I3D 3D Multi 85.8%
[13] Inception-v3 2D Multi 86.1%
[14] VGG16 2D Multi 87.2%
[21] VGG16 2D Multi 89.1%
[30] I3D 3D Single 89.4%
[15] Inception-v3 2D Multi 91.0%
[31] I3D 3D Multi 92.8%

Ours (WTM) EfficientNet-B4 2D Single 95.0%
Ours (WTM) ResNet-34 2D Single 95.1%

as follows.
• d: dimensional (pixel) size (height or the width) of

the input. This affects the number of convolutions in a
convolutional neural network through a squared relation.

• l: average number of layers across all streams.
• m: number of streams used in the model. Thus the total



TABLE V
COMPARISON WITH STATE-OF-THE-ART ON THE VOLLEYBALL DATASET.

RED DENOTES THE BEST AND BLUE DENOTES THE SECOND BEST
RESULTS.

Method Backbone 2D/3D Single/ Group
Multi-Stream Activity

[12] AlexNet 2D Single 81.9%
[14] VGG16 2D Multi 83.3%
[21] VGG16 2D Multi 89.3%
[32] VGG19 2D Single 89.5%
[33] Inception-v3 2D Single 90.6%
[15] Inception-v3 2D Multi 92.5%
[16] I3D 2D Multi 93.0%
[30] I3D 3D Single 93.1%
[31] HRNet + I3D 3D Multi 94.4%

Ours (WTM) EfficientNet-B4 2D Single 92.2%
Ours (WTM) ResNet-34 2D Single 94.6%

number of layers in the model is lm, which increases the
computational complexity linearly.

• N : The number of frames used to derive temporal infor-
mation. The computational complexity increases linearly
with the number of frames considered per sequence to
model temporal representations.

• p: average number of parameters in the model accross
all streams. Hence the total number of parameters in the
model equals pm This constitutes the space complexity
of the model directly.

Time Complexity: We initially analyse the time complexity
of the group activity recognition model architecture. For a
convolutional neural network based architecture, a forward
pass constitutes of O(d2) convolutions per layer. Hence for
lm layers in the model, there are O(d2lm) convolutions. If
we consider a kernel size k, the time complexity of a single
forward pass can be expressed as

O(d2k2lm)

Considering the effect of multi-dimensional convolutional
network based approaches, a forward pass constitutes of
O(Nd2) convolutions per layer. This expression also applied
to 2 dimensional approaches, that convolute over multiple
frames independently. Hence, in such cases, the time com-
plexity of a single forward pass can be expressed as

O(d2Nk2lm) (6)

Besides this, any extra component in the architectural
pipeline (if exists), such as graphs, can be expressed through
a separate term as follows.

O(d2Nk2lm+A) (7)

The proposed method eliminates many factors from the
above complexity expression. The classification architecture
uses a single stream 2D convolutional neural network, the time
complexity of which can be expressed as

O(d2k2l)

The addition of the proposed weighted temporal attention
module introduces an additional time complexity of the order
of O(Nd2). Hence the overall time complexity of the proposed
method is expressed as

TABLE VI
COMPARISON OF SPACE-TIME COMPLEXITY OF A GENERAL GROUP

ACTIVITY RECOGNITION MODEL VS THE PROPOSED MODEL.

General Model Proposed Model
Time Complexity O(Nd2k2lm) O(d2k2l + N)

Space Complexity O((p + l)m + Nd2) O(p + l + Nd2)

O(d2(k2l +N)) (8)

Space Complexity: The general space complexity of a
group activity recognition model is directly proportional to
the total parameters in the model. There is also an O(lm+1)
space complexity corresponding to additional hyperparame-
ters, which results in a total architectural space complexity
of

O(pm+ lm+ 1) ≈ O((p+ l)m)

Apart from this, the memory requirements of the input data
are of the order of O(Nd2).Hence, the total space complexity
of a general model can be expressed as

O((p+ l)m+Nd2) (9)

The proposed architectural approach, by virtue of being
single-stream in nature, reduces the architectural space com-
plexity to

O(p+ l)

The memory requirements corresponding to input data along
proposed weighted temporal attention module is an additional
O(Nd2) order memory per subsequence. Hence the proposed
model has an overall space complexity of

O(p+ l +Nd2) (10)

A side by side comparison of the expressions of space
and time complexities of a general group activity recognition
model versus the proposed method is presented in Fig. VI.

Following this scheme, we compare the space and time
complexities of various works in Fig. 5. As can be seen,
WTM based image classification achieves a lower space and
time complexity in comparison to other previously proposed
methods. For uniformity, it has been assumed that a single
forward pass is carried out on an image of size d = 128
pixels over convolutions of kernel size k = 3.

The proposed model effectively reduces time and space
complexity in comparison to multi-stream networks and multi-
dimensional (3D) models. In comparison to general single
stream, 2D networks, the proposed approach has a reduced
time complexity and no additional space complexity. This
proves the efficiency of the proposed method.

SUMMARY AND FUTURE WORK

In this paper, we propose WTM, a novel temporal attention-
based method that combines spatial and temporal information
for the task of group activity recognition. This method uses



temporal flow as an attention mask, which can be overlayed
on raw input images using a layered weighted scheme. The
resulting input images can be fed into any suitable image
classification model. The proposed method achieves state-of-
the-art results on two benchmark datasets. We demonstrate
how a simple and intuitive approach towards information
representation is effective in extracting high-level features
from data. Further work can explore the effect of temporal
attention in feature derivation, and how the search space for ef-
fective features can be further reduced while retaining maximal
information from the data. The method described in this paper
provided flexibility in the selection of image classification
model architecture, which can be replaced with any suitable
architecture in a plug-and-play fashion. We also discussed
the features and limitations of the two benchmark datasets
that are widely used to evaluate group activity recognition
models. There is a need to layout guidelines about identifying
and prioritizing activities. The quality of datasets is another
concern that needs to be addressed, especially in modern times,
where image quality standards are improving every day.
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