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A B S T R A C T

Cryptocurrency blockchain data encounter a class-imbalance problem due to only a few known labels of illicit or
fraudulent activities in the blockchain network. For this purpose, we seek to compare various resampling methods
applied to two highly imbalanced datasets derived from the blockchain of Bitcoin and Ethereum after further
dimensionality reductions, which is different from previous studies on these datasets. Firstly, we study the per-
formance of various classical supervised learning methods to classify illicit transactions or accounts on Bitcoin or
Ethereum datasets, respectively. Consequently, we apply various resampling techniques to these datasets using
the best performing learning algorithm on each of these datasets. Subsequently, we study the feature importance
of the given models, wherein the resampled datasets directly influenced on the explainability of the model. Our
main finding is that undersampling using the edited nearest-neighbour technique has attained an accuracy of
more than 99% on the given datasets by removing the noisy data points from the whole dataset. Moreover, the
best-performing learning algorithms have shown superior performance after feature reduction on these datasets in
comparison to their original studies. The matchless contribution lies in discussing the effect of the data resampling
on feature importance which is interconnected with explainable artificial intelligence (XAI) techniques.
1. Introduction

Imbalanced classification is a typical problem in machine learning,
which can be encountered in many wide-ranging applications, such as
financial services (Makki et al., 2019; Zhang and Trubey, 2019),
healthcare (Akinnuwesi et al., 2021; Fan et al., 2021), biomedical (Oh
et al., 2011) and blockchain (Harlev et al., 2018). In particular, block-
chain technology has gained growing attention in the last few years
whereby a machine learning approach is required to deal with the vast
amount of data generated by this technology. Weber et al. (2019) and
Farrugia et al. (2020) proposed that the machine learning approach has
revealed promising outcomes to detect fraudulent activities (e.g., scams
and money laundering) in the public blockchain data. The latter studies
have contributed two real-world datasets derived from the Bitcoin and
the Ethereum networks, respectively, to classify suspicious records of the
public blockchain data. One of these datasets derived from Bitcoin, the
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so-called Elliptic dataset, takes the highly imbalanced graph-structured
data of Bitcoin transactions as nodes, and edges as payments flow,
which is released by Elliptic company, and studied in its original
contribution by Weber et al. (2019). This dataset provides two different
types of features called local features which belong to the transactions
and global features that correspond to the topology of the graph network
of the Elliptic data. In their original study, Weber et al. (2019) bench-
marked various classical supervised learning methods against graph
convolutional networks to classify the licit (e.g., transactions belonging
to miners) and illicit (e.g., transactions belonging to scams) transactions
in the Elliptic data.

They also examined the different combinations of local and global
features on the classification results. As a result, the random forest out-
performed the graph convolutional network with an accuracy of 97.7%
using the whole set of local and global features that count to 166 features.
Another dataset is the Ethereum account data that was introduced by
outh.ac.uk (S. Prakoonwit).
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Farrugia et al. (2020), which inherits the class-imbalance problem. This
study performed classification using XGBoost to detect illicit accounts
over the Ethereum blockchain. This study achieved an accuracy of 96.3%
as well as provided insights about the most important features.

Subsequently, these datasets undergwent a variety of studies to
improve the classification or to study the model’s uncertainty of illicit
Bitcoin transactions as in the previous research (Alarab et al., 2020a, b,
2021; Alarab and Prakoonwit, 2021; Bynagari and Ahmed, 2021; Sun
et al., 2022; Tasharrofi and Taheri, 2021) or illicit Ethereum accounts as
in the studies (Alarab and Prakoonwit, 2021; Bynagari and Ahmed, 2021;
Ibrahim et al., 2021).

As a result, tree-based learning algorithms performed the best on
these cryptocurrency datasets. Regardless of the promising results pro-
vided by the preceding contributions, there is no comprehensive study
that addresses the high class-imbalance embedded in these datasets.
Dealing with such types of datasets is challenging due to their high
dimensionality and class imbalance. On the other hand, resampling
techniques have evolved starting from the generic Synthetic Minority
Oversampling Technique (SMOTE) and its variants to the recent adaptive
oversampling techniques to tackle the class-imbalance problem
(Fern�andez et al., 2017; He and Garcia, 2009; Kov�acs, 2019b; Verbiest
et al., 2014). Addressing class imbalance using SMOTE and its variants
has shown significant success in the literature due to its simplicity and
outperformance. For this purpose, we aim to carry out a comprehensive
study using a variety of resampling techniques using Bitcoin and Ether-
eum datasets to point out the impact of resampling techniques on feature
importance, which influences the explainability of the model. Firstly, we
perform feature reductions, and then we apply various classical super-
vised learning methods to classify illicit transactions of Elliptic in the
Bitcoin dataset and fraud accounts in the Ethereum dataset. It shows that
random forest and XGBoost provide the best performance, on the data
derived from Bitcoin and Ethereum, respectively. Moreover, we claim
our achievement by applying data preprocessing and feature reductions,
which revealed significant outperformance in comparison to the models
used in the original contributions of the given datasets. Using the latter
algorithms on the relevant datasets, we address the class imbalance by
applying a variety of oversampling and undersampling techniques,
wherein we evaluate and compare the performance of the given models
using accuracy, precision, recall, F1-score, receiver operation curve
(ROC), and area under curve (AUC) scores. We discuss our best results
using Edited Nearest Neighbors (ENN) applied to the whole dataset that
admits an accuracy greater than 99% in both datasets. On the other hand,
feature importance in blockchain datasets is indispensable and plays a
pivotal role in the explainability of the classification model. Therefore,
we point out the influence of resampling techniques on feature impor-
tance that have a significant impact on the explainability of the used
models. We verify the preceded statement by performing the Wilcoxon
signed-rank test, a non-parametric statistical hypothesis test, where we
can provide evidence that the scores of the feature importance are
different before and after applying the resampling technique.

The rest of this paper is organised as follows: Section 2 discusses the
related work; Section 3 demonstrates the methods used in our experi-
ments that are provided in Section 4. A discussion and conclusion are
provided in Sections 5 and 6, respectively.

2. Related work

Cryptocurrency blockchain has received a growing interest in the
surveillance and analysis of its transactions flow to detect illicit activities
in the blockchain (Liu et al., 2021). Since then, many studies have
adopted visual analytics tools to trace the sources of illicit funds, such as
the case in the Bitcoin blockchain (Meiklejohn et al., 2013; Reid and
Harrigan, 2013). However, the rapid increase of blockchain data has
required machine learning models to handle the massive amount of data
generated. Ostapowicz and _Zbikowski (2020) proposed different super-
vised methods to detect fraudulent activities in the blockchain. This work
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focused on referring the malicious actors to applying well-known soft-
ware or fake emails to steal money. Weber et al. (2019) performed
classification on data derived from Bitcoin, known as the Elliptic dataset,
to detect illicit transactions, wherein random forest showed superior
performance on this dataset against all other learning algorithms, such as
logistic regression, multi-layer perceptrons, tree-based learning methods
and graph convolutional networks (Alarab et al., 2020a, b; Lorenz et al.,
2020; Weber et al., 2019). Farrugia et al. (2020) introduced Ethereum
account data where XGBoost classifier admittedly classified fraud ac-
counts based on their transaction history with good performance. Other
applications that adopted machine learning approach using datasets
derived from the cryptocurrency blockchain also exist as Pham and Lee
(2016) who performed the K-means clustering algorithm to detect the
most suspicious users, Bartoletti et al. (2018) who used data mining for
detecting Ponzi schemes, Harlev et al. (2018) who performed the clas-
sification of the non-identified entities on Bitcoin using various classical
supervised learning methods and Bhowmik et al. (2021) who conducted
a comparative study of supervised learning algorithms to detect fraud in
the blockchain.

2.1. Resampling of blockchain data

Despite the promising results provided by the preceded studies, only a
few of them have considered resampling techniques to address the class-
imbalance problem in the given datasets. The classification results of the
blockchain datasets proposed by Bartoletti et al. (2018) and Harlev et al.
(2018) have shown a further improvement with the random under-
sampling or oversampling techniques and SMOTE technique,
respectively.

In addition, Bynagari and Ahmed (2021) applied data sampling
techniques to the Elliptic data (Weber et al., 2019) and the Ethereum
account data (Farrugia et al., 2020) where the classification of the
resampled data revealed effective results on the data derived from the
blockchain.

However, the preceded studies lack a comprehensive discovery of the
wide range of the existing resampling techniques, such as SMOTE-
variants on the data derived from the blockchain. The class-imbalance
problem can be tackled through oversampling by adding new in-
stances, undersampling by removing noisy instances, or hybrid sampling
as the combination of oversampling and undersampling methods. The
main idea of oversampling is to increase the number of instances in the
positive class near the decision boundary that is already subject to vast
class skews. SMOTE is a well-known technique that blindly interpolates
positive instances to address class imbalance (Chawla et al., 2002). Other
SMOTE-variants that are more guided than SMOTE also exist, e.g.,
borderline-SMOTE (Han et al., 2005) in which these variants take into
consideration the informative areas near the decision boundary to
generate new data points.

2.2. Feature importance and model’s explainability

The scarcity of the labelled datasets is a key challenge in the machine
learning domain where the researchers have limited knowledge about
the fraudulent accounts or transactions in the public blockchain and
generally in the financial sector. On the other hand, explainable artificial
intelligence (XAI) is an emergent research direction that assists the user
in interpreting the predictions provided by the machine learning models
(Kute et al., 2021).

The study proposed by Weber et al. (2019) addressed the explain-
ability of the machine learning predictions through visualisations to
support anti-money laundering. On top of that, Farrugia et al. (2020)
provided insights into the importance of all involved features to analyse
the activity of the fraudulent accounts in the dataset derived from
Ethereum.

Motivated by the preceded studies on the blockchain, we perform a
comprehensive study using various oversampling (SMOTE and its
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variants) and undersampling techniques to address class imbalance on
Bitcoin and Ethereum datasets that appeared in Weber et al. (2019) and
Farrugia et al. (2020), respectively, as the largest labelled datasets in
their relevant networks. Since feature importance is one of the popular
XAI techniques, we will study the effect of the resampled data on the
feature importance which directly influences the explainability of the
machine learning models.

3. Methods

In this Section, we provide the necessary details of the experiments
that are carried out using Bitcoin and Ethereum blockchain datasets.
Firstly, we study the classification of these datasets after necessary
feature reductions using various supervised learning algorithms,
including Random Forest, Extra Trees, Gradient Boosting, XGBoost, Lo-
gistic Regression, and Multi-Layer Perceptron (MLP).

Basically, a random forest chooses randomly a subset of features in
order to construct a decision tree with the best split over its nodes,
wherein multiple trees are formed to provide an ensemble of decision
trees (Breiman, 2001). Extra Trees algorithm is similar to the random
forest that constructs a decision tree but with a random split over the
nodes (Guerts et al., 2006). These bagging algorithms are known to
reduce overfitting. XGBoost is an optimisation of gradient boosting al-
gorithm (Chen and Guestrin, 2016). Gradient boosting is formed of a
sequential number of trees as a weak classifier to obtain a strong classifier
using gradient descent. Lastly, logistic regression and MLP are function
approximations, where the former models a linear decision boundary to
classify the data (Wright, 1995), whereas the latter handles non-linearly
separated data (Gardner and Dorling, 1998). These learning methods
have gained popularity in blockchain data (Alarab et al., 2020a; Farrugia
et al., 2020; Weber et al., 2019). In what follows, we describe the
necessary details of the datasets used to train the learning models, then
we discuss the resampling techniques applied in our experiments. A
Fig. 1. Schematic representation of
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schematic representation summarising the overall process in this paper is
depicted in Fig. 1.

3.1. Data preprocessing

3.1.1. Bitcoin transaction data
Elliptic data are one of the largest labelled available data derived from

Bitcoin (Weber et al., 2019). Initially, Elliptic data are a subset of the
Bitcoin transaction graph that comprises more than 203,000 nodes as
transactions and 234,000 edges as the payments flow. Elliptic data ac-
quire licit and illicit transaction labels as well as unknown labels. As we
only consider the labelled transactions, the number of data points be-
comes 46,564 distributed as shown in Fig. 2.

The data comprise 166-dimensional features that involve 94 local
features belonging to Bitcoin transactions, including timestamp (e.g.,
input degree, output degree…), and 72 aggregated features derived from
the neighbouring nodes of the Bitcoin transaction graph. Moreover, there
are 49 unique timestamps where each timestamp corresponds to a set of
nodes belonging to a connected graph network that is extracted at a
certain time from the blockchain. Since the features are anonymised, we
refer to them as follows:

(1) F)irst local feature: timestamp
(2) Remaining local features: local_feat_2, local_feat_3, …, local_feat_94
(3) Aggregated features: aggre_feat_1, aggre_feat_2, …, aggre_feat_72

We exclude the correlated features with a correlation coefficient
greater than 0.9 chosen empirically, wherein the feature space is reduced
to 91 features. An additional preprocessing step has been applied to the
columns to remove the features with non-informative distributions. In
other words, we empirically remove the features that have a number of
unique values less than 10 as the case in local_feat_16 which acquires 6
unique values, whereas most of the data points correspond to a single
the method used in this study.



Fig. 2. Target distribution of Bitcoin (Elliptic) dataset.
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value as depicted in Fig. 3. This eliminates further dimensions resulting
in a dataset of 85 features. Further information about the used features
like the correlation matrix after feature reduction are represented in
Fig. 10 in Supplementary data.

The dataset is then divided between train and test sets according to
the temporal split in which the first 34 timestamps belong to the train set
Fig. 3. Boxplot of some features in Bitcoin (Elliptic) dataset (I
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and the remaining 15 timestamps belong to the test set, to perform licit or
illicit transaction classifications using supervised learning algorithms.

3.1.2. Ethereum account data
This dataset comprises known fraud accounts and valid transaction

history over the Ethereum blockchain extracted by a combination of two
sources, i.e., a local Geth client and the EtherscamDB linked to the
Ethereum network for normal and scam accounts, respectively (Farrugia
et al., 2020). The various accounts are labelled by the Ethereum com-
munity for illicit behaviour in several cases, e.g., scams, Ponzi schemes
and phishing. This dataset involves 9,841 labelled accounts distributed as
non-fraud or fraud in Fig. 4 associated with 49 numerical and categorical
features, e.g., “total number of sent or received transactions” and
“average value of ether ever sent”.

As this dataset includes some missing values in its features, these
features, e.g., categorical ones are disregarded in our experiments.
Further feature reduction is applied by removing the correlated features
whose correlations are greater than 0.9, chosen empirically, as well as
features with zero variance. Moreover, another feature reduction is done
by empirically removing the features with unique numerical values of
less than 10 values as in the case of the feature “Distribution of max val
sent to contract” depicted in Fig. 5. Thus, the overall number of features
of this dataset is reduced to 28. The summary of the used features in this
study are shown in Fig. 11, the Supplementary data.

We split the dataset randomly after fixing the random seed to zero
with a 70/30 split for train/test sets, respectively, to classify fraud ac-
counts using supervised learning methods on the Ethereum account
dataset.
ndication of how the features in the data are spread out).



Fig. 4. Target distribution of Ethereum account data.
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3.2. Resampling methods

We studied the effect of more than 80 resampling techniques on both
datasets using SMOTE, its variants, and other recent resampling methods
(see Supplementary data); however, we adopted the best performing
techniques, including SMOTE applied to both datasets as follows: K-
means SMOTE, AHC, Borderline-SMOTE1, Borderline-SMOTE2, SOMO,
SMOTE-TomekLinks, DEAGO, Safe-level-SMOTE, TRIM-SMOTE, CURE-
Fig. 5. Boxplot of some features in Ethereum dataset (Indica
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SMOTE, LLE (Kov�acs, 2019a) for a comprehensive overview and the
most recent techniques SMOTE-SF (SMOTE using subset features (Mal-
donado et al., 2019) and OSCCD (Over Sampling-based Classification
Contribution Degree) (Jiang et al., 2021). These techniques oversample
new instances near the decision boundary in more guided and more so-
phisticated ways than SMOTE. For instance, K-means SMOTE is a com-
bination of clustering algorithms and SMOTE, Borderline-SMOTE selects
the most informative regions near the class boundary to oversample the
minorities, and SMOTE-SF tackles high dimensional datasets by using
SMOTE on a subset of features. Regarding undersampling, we include the
ENN technique to remove noisy instances in overlapping distributions.

4. Experiments

4.1. Experimental settings

In our experiments, we use sklearn (Pedregosa et al., 2011) and
smote-variant packages (Kov�acs, 2019b) in Python programming lan-
guage. Firstly, we train various supervised learning methods on Bitcoin
and Ethereum datasets, wherein the hyperparameters are empirically
chosen in these models as summarised in Table 1. We evaluate supervised
learning algorithms on these datasets using accuracy, F1-score and
AUC-score as provided in Table 2. Subsequently, we apply resampling
methods to Bitcoin and Ethereum datasets, wherein we perform training
and evaluations using the same supervised learning algorithm per dataset
for a fair comparison.

Thus, we opt for the best performing algorithms which are random
forest on the Bitcoin dataset to classify illicit transactions and XGBoost on
Ethereum dataset to classify fraud addresses, referring to Table 2. Af-
terwards, we apply the abovementioned oversampling and under-
sampling methods to study the effect of the class-imbalance problem on
these datasets.
tion of how the features in the dataset are spread out).



Table 1
Hyperparameters of the given models.

Dataset Model Hyperparameters

Bitcoin Random Forest Number of trees ¼ 50; max depth ¼ 50; max
features ¼ 5

Extra Trees Number of trees ¼ 50
Gradient
Boosting

Learning rate ¼ 0.1

XGBoost Number of trees ¼ 300; max depth ¼ 50; learning
rate ¼ 0.1

Logistic
Regression

C ¼ 10; epochs ¼ 50

MLP Adam optimiser; hidden layer size ¼ 50; epochs ¼
50

Ethereum Random Forest Number of trees ¼ 100
Extra Trees Number of trees ¼ 100; max features ¼ 9
Gradient
Boosting

Number of trees ¼ 300; max depth ¼ 4; learning
rate ¼ 0.1

XGBoost Number of trees ¼ 300; max depth ¼ 4; learning
rate ¼ 0.1

Logistic
Regression

C ¼ 10; epochs ¼ 100

MLP Adam optimiser; hidden layer size ¼ 50; epochs ¼
100

Table 2
Classification results of supervised learning models on Bitcoin and Ethereum
datasets.

Dataset Model Accuracy (%) F1-score (%) AUC-score (%)

Bitcoin Random Forest 98.02 82.39 91.90
Extra Trees 97.84 80.34 92.40
Gradient Boosting 96.79 74.30 89.90
XGBoost 97.70 80.20 93.50
Logistic Regression 88.33 41.72 87.60
MLP 96.11 67.95 90.50

Ethereum Random Forest 98.06 95.70 99.70
Extra Trees 97.76 94.99 99.70
Gradient Boosting 98.47 96.63 99.80
XGBoost 98.91 97.61 99.80
Logistic Regression 79.58 20.96 70.50
MLP 95.56 90.14 60.60

Table 3
Comparison between resampling techniques applied to Bitcoin dataset using
random forest.

Bitcoin dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

ENN-all 99.42 99.31 89.10 93.93
NoSMOTE 98.02 97.96 71.09 82.39
K-means SMOTE 98.02 97.96 71.09 82.39
LLE-SMOTE 98.02 97.96 71.09 82.39
DEAGO 98.02 97.96 71.00 82.33
ENN 98.01 99.34 69.89 82.05
AHC 97.96 96.38 71.37 82.01
CURE-SMOTE 97.95 96.96 70.72 81.79
Safe-Level-SMOTE 97.96 97.93 70.17 81.76
OSCCD 97.82 95.34 69.89 80.66
SMOTE-SF 97.65 90.13 71.74 79.89
TRIM-SMOTE 97.66 90.72 71.37 79.89
SMOTE 97.57 88.87 71.56 79.28
SOMO 97.66 97.01 66.02 78.57
SMOTE-
TomekLinks

97.41 86.14 71.74 78.28

Borderline-
SMOTE1

97.25 84.00 71.28 77.12

Borderline-
SMOTE2

97.35 88.12 68.51 77.09

Table 4
Comparison between resampling techniques applied to Ethereum dataset using
XGBoost.

Ethereum dataset Accuracy (%) Precision
(%)

Recall (%) F1-score (%)

ENN-all 99.38 98.75 97.93 98.34
NoSMOTE 98.91 99.09 96.17 97.61
SMOTE-SF 98.71 98.05 96.32 97.18
K-means SMOTE 98.71 98.63 95.73 97.16
SMOTE 98.67 97.34 96.91 97.12
LLE-SMOTE 98.67 98.19 96.02 97.10
OSCCD 98.61 98.04 95.88 96.95
SOMO 98.57 98.33 95.44 96.86
DEAGO 98.54 98.33 95.29 96.78
AHC 98.54 98.47 95.14 96.78
CURE-SMOTE 98.51 97.74 95.73 96.73
Borderline-SMOTE1 98.40 97.02 96.02 96.52
SMOTE-TomekLinks 98.34 96.87 95.88 96.37
Borderline-SMOTE2 98.34 96.87 95.88 96.37
Safe-Level-SMOTE 98.06 96.01 95.58 95.79
TRIM-SMOTE 97.05 92.78 94.55 93.66
ENN 96.61 96.47 88.52 92.33
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To resample the datasets, we keep the default hyperparameters for all
oversampling methods except for the following methods which are
empirically tuned:

(1) OSCCD: Number of clusters is set to 3.
(2) LLE: Number of components of the embedded feature space is set
to 5.
(3) SMOTE-SF: Number of selected features is chosen 40 and 10 in
Bitcoin and Ethereum datasets, respectively.

ENN is applied twice on both datasets. We distinguish between both
ways by ENN and ENN-all. ENN corresponds to undersampling applied to
the training set only, whereas ENN-all is applied to the whole dataset.
The latter way allows us to provide more discussion regarding the noisy
data points in the feature space. The experimental results using accuracy,
precision, recall and F1-score derived from different resampling tech-
niques are tabulated in Tables 3 and 4 for Bitcoin and Ethereum datasets,
respectively. Consequently, we plot ROC-AUC curves to analyse the
goodness of classification with the resampled datasets as shown in Figs. 6
and 7 for Bitcoin and Ethereum, respectively. We also compute the
feature importance scores of the resampled datasets derived from ENN-
all, SMOTE-SF and K-means SMOTE resampling techniques that are
arbitrarily chosen. We compare the most important features of the model
derived from non-resampled dataset (i.e., represented by NoSMOTE)
with other resampled datasets using the latter three resampling tech-
niques. The feature importance scores are computed for the train and test
71
sets of each of the Bitcoin and Ethereum datasets using the feature per-
mutation method.

4.2. Evaluation and comparison of feature importance

The feature permutation method (Breiman, 2001) shuffles the data of
each feature to amass the prediction error with respect to a baseline
model (i.e., the model with a non-shuffled dataset). The overall process is
repeated several times to find the average of the importance of each
feature. In our experiments, we perform feature permutation, using
sklearn package (Pedregosa et al., 2011), with five repetitions to mitigate
the biasedness caused by random shuffling. The feature importance on
each of the train and test sets of the used datasets are depicted in Figs. 8
and 9. As mentioned above, we arbitrarily choose four resampling
techniques to study feature importance; however, the concept is viable
with other resampling techniques and datasets. Moreover, we only
visualise a set of six features (with the highest scores) since the visual-
isation of all features is quite large and non-informative. In addition, we
use the Wilcoxon signed-rank test (Wilcoxon, 1945), a statistical method
that tests the null hypothesis between two related paired samples derived
from the same distribution. Using a paired sample test, the data can be
expressed as: ðPðf1Þ; Qðf1ÞÞ; ðPðf2Þ; Qðf2ÞÞ; …; ðPðfnÞ; QðfnÞÞ; where n is



Fig. 6. ROC-curve analysis of random forest with various data resampling methods in Bitcoin.

Fig. 7. ROC-curve analysis of XGBoost with various data resampling methods in Ethereum.
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the number of features, fi is the feature at the ith-dimension, PðfiÞ is the
importance (i.e., scores) of the feature fi on the resampled dataset using a
certain resampling technique, and QðfiÞ is the importance of the feature fi
using the original dataset which we refer to NoSMOTE as the baseline
model.

The terms of the preceded expression can be replaced by the differ-
ence of scores as D1; D2; …; Dn, such that:

Dn ¼PðfnÞ � QðfnÞ (1)

Henceforth, the steps to perform the Wilcoxon test are listed as
follows:

(1) Find jD1j; jD2j; …; jDnj, where j:j is the absolute value notation.
(2) Arrange jD1j; jD2j; …; jDnj in the increasing order.
(3) Assign ranks to the sorted values in the step 2 as R1;R2; …; Rn,

where Ri is the rank corresponding to jDij at feature i. The ranks
are assigned such that the smallest jDij correspond to rank 1, and
the second smallest to rank 2, etc.
72
(4) Find the test statistic of the signed rank sum T as:

T ¼
Xn

i¼1

signðDiÞRi ; (2)

where sign (.) denotes the sign function that returns 1 when the input
value is positive and �1 otherwise.

(5) Find the p-value (probability value) given that null hypothesis is
true by comparing the test statistic T to Student’s t-distribution.

To test if the feature importance scores have changed after applying
the resampling technique, we can formulate the hypothesis test as fol-
lows:

(1) Null Hypothesis (H0Þ: Feature importance scores (before resam-
pling) are equal to feature importance scores (after resampling).



Fig. 8. Effect of resampling techniques on feature importance in Bitcoin.
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(2) Alternative Hypothesis (H1Þ: The importance of features is influ-
enced by the resampling technique.

We then choose the values of α, the significance level, to be equal to
0.05. This value is an area in the t-distribution where we can reject the
null hypothesis with confidence level of 95%. Consequently, the p-value
smaller than the significance level αmeans that we have strong evidence
against the null hypothesis, and we can accept the alternative one which
states that the importance of features is influenced by the resampled
technique. For instance, we refer to the Wilcoxon test of the feature
importance after using SMOTE resampling technique as follows:

WilcoxonðSMOTE;NoSMOTEÞ ;

where Pðf Þ is derived from the feature importance after using SMOTE and
Qðf Þ is derived from the feature importance using the original dataset
under the same model.

We perform the Wilcoxon test for the resampling technique shown in
Figs. 8 and 9 for the Bitcoin and Ethereum datasets, respectively. The p-
values of the Wilcoxon test are computed for the three resampling
techniques in each dataset as tabulated in Table 6.
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5. Discussion

5.1. Results of classifications and resampling techniques

As shown in Tables 3 and 4, ENN-all, undersampling method, has
outperformed all other resampling techniques as well as the non-sampled
data (NoSMOTE) on Bitcoin and Ethereum datasets. Regarding the Bit-
coin dataset, the experimental results with ENN-all have shown a
remarkable increase in the accuracy and F1-score, respectively, from
98.02% to 99.42% and from 82.39% to 93.93% in comparison to NoS-
MOTE. This increase explains the high number of noisy instances that are
removed by ENN-all to provide a good decision boundary that works for
the whole data. The remaining resampling techniques have revealed a
trade-off between the number of false positives and false negatives, either
in improving precision or recall referring to Table 3. In comparison to
NoSMOTE, ENN has boosted the precision from 97.96% to 99.34%;
however, this comes at the cost of decreasing recall from 71.09% to
69.89%. This happens because ENN has removed noisy instances that are
derived from the illicit transactions on the train set resulting in fewer
false positives. Oversampling methods have played a remarkable role in
improving recall, such as in the SMOTE-SF technique that attained a



Fig. 9. Effect of resampling techniques on feature importance in Ethereum.

Table 5
Comparison between our experiments and the original contribution of Bitcoin
and Ethereum datasets. These tables highlight the effect of data preprocessing in
our experiments.

Dataset Methods Accuracy
(%)

F1-score
(%)

Bitcoin
Dataset

Random Forest (Weber et al., 2019) 97.70 78.80
Preprocessing þ Random Forest
(Ours)

98.02 82.39

Ethereum
Dataset

Preprocessing þ XGBoost (Farrugia
et al., 2020)

96.30 96.00

Preprocessing þ XGBoost (Ours) 98.91 97.60
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recall of value 71.74% wherein the train set is randomly oversampled on
a particular subset of features. Regarding the Ethereum dataset, we
highlight the slight increase from 98.91% to 99.38% for accuracy and
from 97.61% to 98.34% for F1-score using ENN-all undersampling
technique as provided in Table 4. This slight increase in the model’s
performance illustrates the few noisy instances that already exist in the
Ethereum dataset, in contrast to the Bitcoin dataset. Consequently, all
resampling techniques on the Ethereum dataset have revealed good
decision-making due to a smaller number of noisy instances. SMOTE has
recorded the highest recall on this data of value 96.91%. However, this
reduces the precision from 99.09% to 97.34%. Accordingly, over-
sampling is not able to reduce the misclassified instances, while still able
to provide a better classification rule by improving AUC scores by
different oversampling techniques as depicted in ROC-curve analysis in
Figs. 6 and 7. Normally, oversampling influences the model’s perfor-
mance when the generated data lie near the decision boundary of the
used model.

On the other hand, we highlight the outperformance of the supervised
learning algorithms on Bitcoin and Ethereum datasets, respectively, after
data preprocessing in comparison to their original works proposed by
Weber et al. (2019) and Farrugia et al. (2020).

The random forest has attained an accuracy of 98.02% instead of
97.70% to classify the Bitcoin dataset using 85 features instead of 166
features. Similarly, data preprocessing on the Ethereum dataset has
provided an increased performance with accuracy and F1-score of
98.91% and 97.60%, respectively, referring to Table 5.
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5.2. Feature importance

We discuss the influence of resampling techniques on the feature
importance using the given supervised learning models. Mainly, feature
permutation method provides the highest scores for the most important
features used by the classifier to perform predictions. Particularly,
feature permutation method with the test set is tied with the explain-
ability of the model’s predictions.

For the Bitcoin dataset, random forest reveals different feature
importance on train and test sets with different resampling methods
referring to Fig. 8. However, the feature “local_feat_55” has revealed the
highest importance score which means that the latter feature plays an
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important role in providing decisions on the test set. We also notice that
the local features on the Bitcoin dataset have appeared with higher
importance than the aggregated ones.

For the Ethereum dataset, “Total ERC20 tnxs” feature has played an
important role in the whole dataset using SMOTE-SF as shown in Fig. 9,
whereby this resampling technique oversamples a subset of features that
are selected with the highest Fisher-score. Meanwhile, the feature “Time
Diff between first and last (Mins)” reflects the total duration of account
usage in Ethereum which reveals a high impact on the classification of
fraud accounts.
5.3. Influence of resampling techniques on feature importance

As explainability of the models in this field is highly desirable, the
change in feature importance caused by resampling methods affects the
explainability of the model, as it is highly tied with the feature impor-
tance. We verify this statement by performing the Wilcoxon test for the
feature importance between the resampled and non-sampled datasets.
This statistical method provides the p-values as revealed in Table 6. The
p-values with less than 0.05 shows strong evidence to reject the null
hypothesis and eventually accept the alternative one. For Bitcoin test set,
the Wilcoxon test for the resampling technique SMOTE-SF has revealed
that a p-value equals to 0.001 which means that the test was statistically
significant. For Ethereum train set, the hypothesis test for SMOTE-SF and
ENN-all is statistically significant where we have evidence to reject the
null hypothesis. For the Bitcoin train set and the Ethereum test set, there
is no evidence to highlight the effect of the given resampling techniques
on the feature importance referring to Table 6. In general, the difference
of feature importance means that the data distribution is changed after
applying the resampling methods using the same classification model.
Furthermore, the model with the highest performance should produce
more accurate feature importance, and hence better explainability. This
is reasonable because an explainable machine learning method seeks to
interpret the predictions of a given model.

6. Conclusion

Based on our conducted experiments, we have shown that random
forest has performed the best in detecting illicit transactions in the Bit-
coin dataset, whereas XGBoost has shown superior success in capturing
fraud accounts in the Ethereum dataset. We have then studied the class-
imbalance problem on these datasets by applying various resampling
techniques (oversampling, undersampling and hybrid resampling). ENN-
all, an undersampling technique, has provided the best performances on
Table 6
Wilcoxon test for the feature importance between resampled and non-sampled
datasets of Bitcoin and Ethereum using different resampling techniques.

Model Dataset Wilcoxon test P-
values

Random
Forest

Bitcoin train set Wilcoxon (SMOTE-SF, NoSMOTE) 0.995
Wilcoxon (ENN-all, NoSMOTE) 0.354
Wilcoxon (K-means SMOTE,
NoSMOTE)

0.999

Bitcoin test set Wilcoxon (SMOTE-SF, NoSMOTE) 0.001
Wilcoxon (ENN-all, NoSMOTE) 0.227
Wilcoxon (K-means SMOTE,
NoSMOTE)

0.999

XGBoost Ethereum train
set

Wilcoxon (SMOTE-SF, NoSMOTE) 0.013
Wilcoxon (ENN-all, NoSMOTE) 0.003
Wilcoxon (K-means SMOTE,
NoSMOTE)

0.564

Ethereum test set Wilcoxon (SMOTE-SF, NoSMOTE) 0.061
Wilcoxon (ENN-all, NoSMOTE) 0.866
Wilcoxon (K-means SMOTE,
NoSMOTE)

0.259
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these datasets with an accuracy greater than 99%. Moreover, we have
also provided the experimental results of other resampling techniques
using accuracy, precision, recall, F1-score and ROC-AUC score. As a
result, oversampling techniques have improved the model’s recall at the
cost of its precision and vice versa. Meanwhile, most oversampling
methods have revealed a remarkable increase in AUC scores on the given
datasets. We also claim the outperformance of the usedmodels on Bitcoin
and Ethereum datasets after data preprocessing in comparison to the
results in their original contributions. On the other hand, we have also
studied the effect of data resampling on feature importance. For that, we
have used the feature permutation method to compute the feature
importance of each of the used models on the train and test sets using
Bitcoin and Ethereum datasets. The provided results have depicted
changes in feature importance among different resampling techniques
which influence the explainability of the model, where the model’s
explainability is more reliable with high performing models. To show
that resampling methods affect the feature importance, we have per-
formed the Wilcoxon statistical method to test the statistical evidence to
reject the null hypothesis which states that the feature importance scores
remain the same before and after data sampling. For some resampling
techniques, the test was statistically significant to reject the null hy-
pothesis with a confidence level of 95%. This means that we have enough
evidence to say that the feature importance scores are influenced by the
resampling techniques under the given null hypothesis.

In this study, none of the oversampled data has shown better per-
formance in terms of the model’s accuracy. In future work, we will
explore generative algorithms for data oversampling using artificial
neural networks as well as study the model’s explainability using other
XAI techniques (e.g., local surrogate models) rather than the feature
permutation method.
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