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Artificial Partners to Understand Joint Action:
Representing Others to Develop

Effective Coordination
Cecilia De Vicariis , Giulia Pusceddu , Vinil T. Chackochan , and Vittorio Sanguineti

Abstract— In the last years, artificial partners have been
proposed as tools to study joint action, as they would
allow to address joint behaviors in more controlled exper-
imental conditions. Here we present an artificial partner
architecture which is capable of integrating all the available
information about its human counterpart and to develop
efficient and natural forms of coordination. The model uses
an extended state observer which combines prior informa-
tion, motor commands and sensory observations to infer
the partner’s ongoing actions (partner model). Over tri-
als, these estimates are gradually incorporated into action
selection. Using a joint planar task in which the partners
are required to perform reaching movements while mechan-
ically coupled, we demonstrate that the artificial partner
develops an internal representation of its human counter-
part, whose accuracy depends on the degree of mechanical
coupling and on the reliability of the sensory information.
We also show that human-artificial dyads develop coordi-
nation strategies which closely resemble those observed
in human-human dyads and can be interpreted as Nash
equilibria. The proposed approach may provide insights for
the understanding of the mechanisms underlying human-
human interaction. Further, it may inform the development
of novel neuro-rehabilitative solutions and more efficient
human-machine interfaces.

Index Terms— Joint action, human–robot interaction,
partner model, game theory.

I. INTRODUCTION

JOINT action is pervasive in our daily life – two per-
sons carrying a heavy object together or folding a sheet,

a therapist interacting physically with a patient are just a
few examples [1]. Joint action implies a dynamic interplay
between self and other [2]; within an ensemble, individuals
adapt their behaviors to adeptly exchange information and
coordinate with others [3], [4]. As their behaviors are inter-
dependent, it is difficult to experimentally disentangle the
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individual contributions and the way each participant reacts
to their partner’s actions.

A way to overcome this problem is to design experi-
ments in which human participants interact with simulated,
human-like artificial partners (AP), whose personal traits and
interaction strategies can be manipulated experimentally [5].
This approach is often referred to as Virtual Partner Interac-
tion (VPI) [6] or Human Dynamic Clamp (HDC) [5], as it
resembles the dynamic clamp technique in cellular neuro-
science [7] which uses virtual, simulated ion channels with
specific biophysical properties to understand the complexity
of neuron dynamics. The original HDC approach relied on
a theoretical model of coordination dynamics which involves
coupled non-linear oscillators – the Haken-Kelso-Bunz (HKB)
model [8]. Originally introduced to model the dynamics of
the relative phase between two fingers or limbs performing
rhythmic movements, the HKB model was later extended to
capture basic aspects of social coordination between two indi-
viduals. Early applications of the HDC concept [5], [6] focused
on real-time, rhythmic bidirectional interaction and involved
human subjects coordinating their hand movements with an
avatar. In conjunction with high-density EEG recordings, this
paradigm has been used to investigate the neural foundations
of social interaction [9]. The VPI/HDC paradigm has provided
important contributions to the study of discrete joint action.
However, crucial determinants of sensorimotor interaction,
like perception, decision-making and control mechanisms need
to be explicitly modeled to develop more versatile artificial
agents. APs have been also used in applications involving
decision-making, with no actual movements. For instance,
when a human participant interacts with a simulated partner
whose risk-sensitivity is modulated depending on model uncer-
tainty [10].

Here we propose a biomimetic artificial partner (AP) archi-
tecture which can develop collaborative strategies with a
human partner. The model builds upon previous work [11]
on computational modeling of joint action. In particular, we
assume that the AP behaves optimally at both perceptual and
control level. These assumptions rely on a large body of evi-
dence from perceptual and motor control literature [12], [13],
but have been rarely applied to joint action [14]. We specif-
ically argue that individuals involved in a joint action builds
an internal representation of their partner’s ongoing actions
and/or intentions (partner model) and use it to establish an
interaction [11]. The proposed AP architecture can be used
to compare actual (human) and idealized (artificial) partners
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in order to test different assumptions on how we develop a
coordination. We assessed the AP performance in an interac-
tion paradigm where two agents are mechanically connected
through a virtual spring, and are instructed to perform reach-
ing movements from the same start and target points, but
through different via-points.

II. MODELING FRAMEWORK

In this section we provide the background ideas, and the
empirical basis for the proposed AP architecture. We specifi-
cally focus on (i) optimality in perception and control; (ii) the
need to represent partners in joint action; and (iii) the way
a coordination strategy can be developed through repeated
practice.

A. Optimality in Perception and Action

Sensorimotor control is the end result of two inter-related
processes, i.e. estimation of the state of the body and the
external environment, and movement control. Motor com-
mands - muscle activations - are generated on the basis of our
movement goals and our belief in the current state (position,
velocity) of our own body and the external environment. Both
state estimation and movement control can be understood in
terms of optimality principles. There is indeed ample evidence
that our nervous system exhibits a close-to-optimal perfor-
mance in both sensorimotor integration [12] and movement
control [13]. Hence the combination of optimal estimation and
optimal control is the ideal framework for the development of
biomimetic artificial partners.

Sensorimotor integration is believed to optimally combine
prior beliefs and sensory feedback - e.g. visual, acoustic and/or
haptic - to minimize the prediction uncertainty [12]. Prior
belief about body and environment dynamics is believed to
rely on an internal representation of the causal relationship
between the motor command and the body and environment
state – the notion of ’forward model’ of the body – and
between the body state and its sensory consequences – a model
of the sensory system, or ’sensory model’.

Optimal control posits that humans aim at maximizing
their subjective utility, i.e. a trade-off between task-dependent
movement cost – in reaching movements, it may simply be
the endpoint error – and the perceived effort associated to
movement. Hence actions result from a subjective evalua-
tion of their associated costs and/or benefits. This subjective
aspect can be summarized by a cost function that incorpo-
rates the task goals and requirements and accounts for effort
[15], [16]. It is natural to extend this framework to joint
action [11], [17], [18].

B. Partner Representation

Sharing information is a key determinant of successful joint
action [3]. Information exchange implies verbal or non-verbal
communication. If the participants are physically connected,
haptic channel constitues a powerful source of information
about the partner [11], [19]–[21]. More reliable information
generally leads to more efficient interaction [11]. However,

stronger coupling provide more information but makes control
more difficult, whereas weaker coupling facilitates coordi-
nation but provides less reliable information about partner
actions [21].

During interactions, individuals not only observe and react
to partner actions but they also need to predict the actions
of their partner and their expected consequences [3], [22].
To this purpose, joint action crucially requires that partici-
pants develop an internal representation of their partner or,
using terminology from the sensorimotor control field [23], a
’partner model’.

C. Game Theory and Fictitious Play

In a joint action, the subjective utility of a participant
typically depends on the state of all partners involved. Game
theory provides the analytic and computational substrate for
the underlying control processes . Therefore, it can be seen
as an extension of optimal control to multi-agent scenarios.
A game involves two or more individuals whose interests
are neither completely opposed, nor completely coincident.
In some joint action scenarios, agents agree on a shared
strategy – for instance, through verbal communication – before
the action takes place, thus behaving as a collective [24].
In other scenarios there is no explicit prior agreement on
a shared strategy. In these situations, coordination emerges
gradually as each agent collects information about their oppo-
nent’s actions, their outcomes and possibly their ultimate
goals, using various mechanisms [3] during continuous or
repeated interaction. In motor control scenarios, differential
non-cooperative games [25] can model situations in which
humans deal with their counterpart without speaking and by
communicating just through sensory cues (visual, acoustic or
haptic), but they independently determine their actions. It has
been observed [11], [17], [18], [26] that when both agents
have perfect information about the partner and the environ-
ment, they converge to a Nash equilibrium, i.e. a situation
in which none of the players can unilaterally improve their
benefit [27]. When the players have competing goals, coor-
dination develops gradually. They gradually gain knowledge
about dyad dynamics, the task requirements, and partner’s
actions. Hence coordination (if any), is a result of learning and
adaptation.

One possible solution of the problem of iteratively calculat-
ing a Nash equilibrium is represented by the classical learning
process known as fictitious play [28], [29]. In fictitious play,
two agents play the game repeatedly. After arbitrary initial
moves in the first round, in every round each agent determines
its best response against the empirical strategy distribution
of their partner. Fictitious play posits that the players use a
stationary strategy and only requires a model of the strategy
distribution. However, the players do not have to know
anything at all about their opponent’s payoffs. All they do is to
form beliefs about how their opponents will play [30]. Because
of its minimal requirements, fictitious play has been proposed
as a candidate mechanism for the development of optimal
coordination in joint action, either involving movements [11]
or not [10].
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Fig. 1. Artificial partner architecture. The artificial partner has a body and a sensory system. The control architecture includes a task representation,
a feedback controller and a state observer, which also includes a partner model. This is the minimal architecture to support the development of an
interaction. The control architecture is integrated into a robotic platform which supports the physical interaction with the human partner.

III. MATERIALS AND METHODS

A. Artificial Partner Architecture

The proposed artificial partner architecture directly derives
from the computational model of joint action proposed in [11].
As in ’solo’ behavior, each motor command is generated by
a feedback controller which relies on a state observer which
predicts the overall dyad state. The only addition to the ’solo’
model is that, in order to correctly account for dyad dynamics,
the state observer also needs to estimate the partner’s ongoing
actions and/or movements. Based on the above computational
model, a minimal but general AP architecture – see Figure 1
– should involve a task representation, a feedback controller,
a state observer and a partner model. Interaction with its
human counterpart also requires that the AP have its own body
and sensory system. These can take different forms. The AP
body may be physical – for instance, a humanoid robot –
or virtual – an avatar moving in a VR or AR environment.
Interaction may be visual – this requires that the AP is
equipped with an artificial visual system – and/or physical – in
this case, the AP may also involve a haptic interface, which
exchanges interaction forces with the human player. Haptic
channel provides additional information about partner move-
ments, hence it is also part of AP’s sensory system. Although
this AP concept is quite general, in this study we demonstrate
it in a simplified situation. Both human and artificial partners
move on a horizontal plane. The human partner (HP) grasps
the handle of a planar robotic manipulandum, through which
the AP and HP are physically coupled. Although very simple
from the geometric and mechanical point of view, this scenario
is central in many studies on computational motor control and
in many rehabilitation robotics applications.

1) Dyad Dynamics: We describe the dynamics of both the
human and the artificial partner as two planar arms with two
degrees of freedom (qs for shoulder, qe for elbow). We lin-
earized arm dynamics around configuration q0 = [45◦, 90◦]
and expressed it in Cartesian space:

MH p̈H + bH ṗH = fH + fAH

MA p̈A + bA ṗA = fA + fH A (1)

where pA and pH are the hand position vectors of, respec-
tively, the artificial (A) and the human (H) partner and
MA and MH are their respective inertia matrices. We set

Mi = Ji (q0)
−T Mi (q0)Ji (q0)

−1 with i ∈ {A, H }, where Ji (q)
is the jacobian of the forward kinematic transformation and
Mi (q) is the arm inertia matrix in joint space. Eq. 1 reflects the
assumption that both partners are subjected to a small viscous
force accounting for muscles and soft tissue damping. The
interaction force fH A:

fH A = k · (pH − pA) (2)

is applied to the AP. An opposite force fAH = − fH A ,
is applied to the human partner through the robot handle. The
position of the human partner, pH , coincides with the position
of the robot handle. As in [13], we modelled the dynamics of
muscle force generation ( fA and fH ) as a second order system:

τ 2
H f̈H + 2τH ḟH + fH = u H

τ 2
A f̈A + 2τA ḟA + fA = u A (3)

where u A and u H are the activation vectors of human and
artificial partners, which are taken as the dyad inputs, and
τA, τH are the activation time constants (we set τA = τH =
40 ms). Eqs. 1, 2 and 3 can be expressed in state-space
form by defining x = [

xT
A x T

H

]T
, as the state vector, where

xi = [pT
i ṗT

i f T
i ḟ T

i ]T , with i ∈ {A, H }. The system has two
control inputs, namely AP and HP muscle activations (u A and
u H ). In state-space form, Eqns. 1, 2 and 3 can be expressed
as:

ẋ =
[

AAA AAH

AH A AH H

]
· x +

[
BA

0

]
· (u A + wA) +

[
0

BH

]

· (u H + wH ) (4)

where wA ∼ N(0,�w
A ) and wH ∼ N(0,�w

H ) are the
‘motor’noise processes associated to, respectively, the artificial
and the human partner, and Ai , Aij , Bi , with i, j ∈ {A, H },
i �= j , are defined as follows:

Aii =

⎡
⎢⎢⎣

02 I2 02 02

−k · M−1
i −bi · M−1

i M−1
i 02

02 02 02 I2

02 02 −I2/τ
2
i −2I2/τi

⎤
⎥⎥⎦ (5)

Aij =

⎡
⎢⎢⎣

01 02 02 02

k · M−1
i 02 02 02

01 02 02 02
01 02 02 02

⎤
⎥⎥⎦ Bi =

⎡
⎢⎢⎣

02
02
02

I2/τ
2
i

⎤
⎥⎥⎦ (6)
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where I2 and 02 denote, respectively, the 2 × 2 identity and
zero matrices.

2) Artificial Partner Dynamics and Sensory System: Eq. 4
captures the dynamics of both the artificial and the human
partner and their physical coupling. This general formulation
will be used to simulate the artificial partner dynamics, which
can be expressed as:

ẋ A = AAA · x A + AAH 1 · pH + BA · [u A + wA] (7)

where AAH 1 denotes the first column of AAH . For simulation
and control purposes, the above equations were translated in
discrete-time form:

xA(t + 1) = Ad
AA · x A(t) + Ad

AH 1
· pH + Bd

A

· [u A(t) + wA(t)] (8)

where Ad
AA , Ad

AH 1
and Bd

A are calculated from their continuous
counterpart. To simplify the notation, in the following we
will drop the ’d’ but we will always refer to the discretized
equations. The artificial partner’s sensory system provides
information about itself, its human counterpart (i.e., the whole
dyad) and the external environment. Information about the
human partner can be gathered both directly, e.g. through
vision, thus observing pH and ṗH , and through the interaction
force fH A . Hence the vector yA of the sensory signals takes the
form yA = [pA, ṗA, pH , ṗH , fH A]T and the sensory system
is described as:

yA = HA · x + vA (9)

The HA matrix reflects the portion of sensory information
which depends on system state:

HA =

⎡
⎢⎢⎢⎢⎣

I2 02 02 02 02 02
02 I2 02 02 02 02
02 02 02 I2 02 02
02 02 02 02 I2 02

−k I2 02 02 k I2 02 02

⎤
⎥⎥⎥⎥⎦ (10)

The reliability of the sensory information is determined by
the magnitude of the sensory noise, assumed to be Gaussian,
vA(t) ∼ N(0,�v

A), with �v
A = diag(σ 2

x · I2, σ
2
xd · I2, σ

2
x ·

I2, σ
2
xd · I2, σ

2
f · I2). We set σx = 1.7 mm, σxd = 35 mm/s and

σ f = 2 N.
3) State Observer and Partner Model: Consistent with a

large body of literature [12], we assume that the artificial
partner optimally integrates sensory information its and own
motor command (efferent copy) in order to estimate its own
state, the state of its human partner, and possibly the state
of the environment (for instance, target positions). Estimating
human partner state is crucial in order to establish a success-
ful interaction. While many studies agree that humans can
form models of their opponents and/or they ‘understand’their
intentions, the exact nature of these models remains elusive.
Interacting agents may simply estimate the ongoing partner
movements. Or, they may additionally account for the partner’s
body dynamics, e.g. inertial properties, thus estimating the
past motor commands [11]. Further, interacting agents may
be able to infer their partner’s control policy, i.e. the mapping
between the state of both players and the partner’s motor

command [18]. This can be seen as a representation of the
partner’s ultimate goal or intentions [31]. Whatever its form,
estimating partner state requires a forward model of the human
partner’s dynamics and the availability of suitable sensory
information – e.g. vision, proprioception, audition, etc.

In the current AP implementation, the partner model fully
accounts for the human partner’s dynamic behavior. In par-
ticular, we assume that the state observer maintains a model
of the whole dyad dynamics – which includes both artificial
and human partner and their mechanical coupling. The state
observer estimates the AP state x A and the HP state, xH .
However, the latter is determined by the HP’s motor command,
u H . Hence the state observer must be extended to predict
the partner’s motor command. Motor commands have sensory
consequences, therefore the sensory consequences of move-
ment carry information about the ’past’ motor command. The
complete set of ‘prior’assumptions is summarized as:
x A(t + 1) = AAAx A(t) + AAH xH (t) + BA [u A(t) + wA(t)]

xH (t + 1) = AH Ax A(t)+ AH H xH (t)+BH [u H (t)+wH (t)]

u H (t + 1) = u H (t) + wu(t) (11)

where wu(t) ∼ N(0,�u
x ). The last equation reflects the prior

belief that the human partner’s input is an integrated Gaussian
noise. In all experiments we set �u

x = 0.5N2. The state
observer is defined in terms of the augmented state vector
X A = [

x T
A x T

H uT
H

]T
as:

X̂ A(t + 1) = AA · X̂ A(t) + BA · u A(t)

+ K A(t) ·
{

yA(t) − [HA 0] X̂ A(t)
}

(12)

where AA is defined as:

AA =
⎡
⎣AAA AAH 0

0 AH BH

0 0 Au

⎤
⎦ (13)

The Kalman gain K A(t), t = 1, · · · , T of the innovation term
reflects the trade-off of the reliability of the prediction and
correction terms.

4) Task Representation, Optimal Controller and Fictive Play:
The AP task is specified by a quadratic cost functional:

JA[u A, u H ] = x(T )T · QT · x(T )

+ 1

T

T −1∑
t=0

x(t)T · Q(t) · x(t)

+ 1

T

T −1∑
t=0

u A(t)T · R(t) · u A(t) (14)

The above cost functional completely specifies AP’s control
policy if the human motor command is known.

Consistent with the fictitious play notion, we assumed that
the HP’s motor commands (dynamic partner model) or the
movements (kinematic partner model) do not change from the
previous trial. In other words, at each trial the AP ‘sees’a plant
that incorporates the partner’s state estimated at the previous
trial. This results in an affine linear dynamical system, and the
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resulting LQG controller has a feedback and a feedforward
component:

u A(t) = −Ltr
A (t) · x(t) − ltr

A (t) (15)

In conclusion, the artificial partner autonomously determines
its own control policy with no explicit agreement with the
human counterpart, which in game theory is called a non-
cooperative scenario. This implementation of fictitious play
only uses the most recent estimate of partner’s input. This is
less robust than estimating the distribution of partner inputs
over multiple repetitions, but may be adequate for practical
purposes.

In this formulation of the controller movement duration
is specified in advance. This constraint may be relaxed by
including temporal discount terms in an infinite-horizon cost
functional.

5) Temporal Synchronization: Temporal synchronization is
one basic feature of any joint action [32] – first and foremost,
partners synchronize the start of their movements. Entrain-
ment - i.e. the tendency to fall on the same rhythm - has
been observed in unintentional action or when people are not
required to synchronize. However, in intentional joint action,
entrainment cannot fully explain temporal synchronization as
the latter requires mutual adaptation [33]. To provide the
artificial partner with the capability of synchronizing their
movements with its human counterpart, we defined a simple
mechanism which adapts the AP’s start time, on a trial by trial
basis, to the human start time:

T S A(tr + 1) = T S A(tr) + α ·
[
T SH (tr) − T S A(tr)

]
(16)

where tr is the trial number, and T S A and T SH are the start
times (measured from target onset) of, respectively, artificial
and human partner. The artificial partner uses a simple thresh-
old mechanism (speed grater than 0.1 m/s) to estimate T S A(tr)
at each trial. Parameter α specifies the trade-off between
stability and plasticity. In all experiments we set α = 1, i.e.
the AP sets its start time to that observed in the human partner
on the previous trial.

6) Implementation: The AP architecture has been imple-
mented with two distinct haptic interfaces: a planar ser-
ial manipulandum with two degrees of freedom (braccio di
ferro, [34]) and a planar cartesian manipulandum (H-MAN,
Articares Ltd) [35]. In both cases, the implementation con-
sists of two interconnected Simulink Desktop Real-Time and
MATLAB applications. The Simulink application carries out
real-time control of the artificial partner; the MATLAB appli-
cation updates the optimal controller at the end of each trial
on the basis of the estimated partner model. Within this
implementation, the update rate of the artificial partner was
1 kHz. In the case of the H-MAN robot, the AP position was
updated at 200 Hz. The refresh rate of the graphic display
was 40 Hz and the data (position of both human and artificial
partner and interaction forces) were saved at 100 Hz for further
analysis.

B. Experiments

Although very simple, the proposed AP architecture is
suitable for use in all finite-horizon scenarios that involve

Fig. 2. Two-via point joint action task. Each player has the same starting
and end point but different via-points (VP1, VP2). Each player seat in front
of a computer screen and has to grasp the handle of a 3D haptic interface
(Novint Falcon). They are mechanically coupled by a virtual spring and
instructed to perform planar point-to-point movements through different
via-points. Each player can only see the final target and his/her own
via-point. The players can not see each other or communicate verbally.
Modified from [11].

planar movements in the horizontal plane. These include sit-
uations investigated in several experimental studies of joint
action and many robot-assisted rehabilitation protocols. In this
preliminary study, we focused on two aspects of the AP: (i) its
ability to unveil the ongoing movements of the human partner,
and (ii) its ability to adapt its behaviors in order to optimize
the interaction. To test these functionalities, we focused on
a joint action scenario in which two partners – mechanically
connected through a virtual spring – are required to perform
reaching movements from the same starting point to a common
target, by crossing an intermediate via-point (VP) which is dif-
ferent for each subject. The players can only see their own VP
but cannot see or speak to each other and they are instructed
to keep the interaction force to a minimum, so that they must
somehow coordinate in order to accomplish their respective
goals. The task can be interpreted as a non-cooperative coor-
dination game. A recent study [11] reported that human players
gradually develop a form of coordination which tends to the
theoretical Nash equilibrium for that game – corresponding to
both partners following the same trajectory through both VPs.
The experimental setup and task are summarised in Figure 2.

In all experiments, the human participant sits in front of a
computer screen. The subject grasps the robot handle and so
that, when the hand is located approximately at the center of
the workspace (origin of the reference system), the shoulder
joint is flexed at about 45◦ with respect to the left-right
shoulder direction and the forearm is flexed at about 90◦
with respect to the elbow. As in the human-human interaction
experiments [11], the subject can see the start and target point,
its own via-point and their own hand position (a cursor on
the screen), and is instructed to grasp the robot’s handle with
the right hand and to control the cursor motion, moving it
from the start point to the target by crossing the via-point
and keeping the interaction force low. Participants were not
informed that he/she would have performed a joint task with
a partner – either human or artificial. The AP has identical
requirements, which are completely specified by the following
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cost function:
JA[u A, u H ] = wp · ‖pT − pA(T )‖2

+ wv · ‖ ṗ(T )‖2

+ wvp · ‖pV P A − p(T CA)‖2

+ w f · 1

T

T∑
t=1

‖pH (t) − pA(t)‖2

+ r · wu · 1

T

T∑
t=1

u A(t)2 (17)

The cost function has five terms. The first two terms enforce
stopping on target at the end of the movement. The third
term reflects the requirement to pass through the via-point.
The fourth term accounts for minimising the distance between
agents throughout the movement. The last term penalises the
effort incurred during the movement, i.e. it encourages the
AP to keep the interaction force low. The weight coefficients
determine the relative importance of the corresponding con-
straint. We set these weights by assuming (Bryson’s rule) a
maximum acceptable displacement (in the via-point and in
the final target) equal to, respectively, the radius of the via-
point (rT = 2.5 mm) and that of the target (rV P = 5 mm).
Similarly, we calculated the value of the ‘velocity’ weight
by assuming a maximum acceptable speed at the target of
dv = 5 mm/s. We made a similar normalisation in the
maximum inter-agent distance (rAH = 15 mm) and maximum
activation (umax = 10 N). In all experiments we used the
following weights: wp = 1/r2

T , wvp = 1/r2
V P , wv = 1/d2

v ,
w f = 1/rAH and wu = 1/u2

max . The scalar coefficient r -
which specifies the trade-off between task-related accuracy and
effort - was set to 1. Greater r implies a greater sensitivity to
effort and therefore lower controller gain. The time of crossing
of the via-point is also part of the optimization. Based on
some prior evidence that VP crossing times are approximately
proportional to the fraction of path length covered at the time
of crossing (P L), at each trial we set the crossing time as
T Ctr+1 = P Ltr · MT tr

A , where MT tr
A is the total movement

duration.
1) Experiment 1 – Partner Model: We expect that AP’s ability

to correctly estimate HP movements is affected by the strength
of the physical connection and by the reliability of the haptic
channel. We systematically varied the stiffness of the virtual
spring k and the variance σ 2

f of the haptic sensory channel.
During this experiment, the human subject could see both
via-points and was instructed to perform reaching movements
from the start to the end point, by crossing both VPs. The
robot force was switched off, i.e. fAH = 0. In this way, the
human subject was free to move with no AP intervention, but
physical connection with the partner was always present on
the AP side (so that fH A �= 0). The AP was programmed to
make reaching movements through their own VP according to
the cost functional of Eq.17. The simulated AP sensory system
provided information about own movements, own VP, the tar-
get and the interaction force with the human subject, fH A , but
no direct information about position and velocity of the human
subject. In summary, the human subject performs unperturbed

reaching movements through two VPs but does not participate
in the interaction. In contrast, the AP aims at adapting its
movements in order to keep its goals (crossing its own VP)
and to minimize the interaction force. As HP performance is
almost stationary, accomplishing the task by the AP solely
depends on its ability to predict own and partner actions. The
experiment was organized in 30 epochs of 10 trials each. Each
epoch corresponded to a different combination of stiffness
and noise variance, in random balanced order. Specifically,
we used six stiffness values: 100, 150, 200, 300, 400, 500 N/m
and five noise standard deviation values: 0.1, 1, 2, 3, or 4
N (6 × 5 = 30). Only one human subject (28 y, female)
participated in this experiment as the focus here was on AP
performance.

2) Experiment 2 – Learning Coordination: The goal of this
experiment was to test various aspects of AP performance,
in particular its capability to develop coordinated movements
with a HP and whether they resemble those observed in
two human partners. The experimental protocol was identical
to [11]. Mechanical connection between AP and HP was now
bi-directional, so that their movements were inter-dependent.
Both AP and HP could only see their own via-point, and
the only information about their partner was provided by the
interaction force. The experiment was organized in 13 epochs
of 12 trials each (a total of 156 trials). In the first epoch
(baseline phase), mechanical coupling was turned off, and
AP and HP acted alone. During epochs 2-11 the partners
were mechanically connected. During epochs 12-13 (after-
effect phase) the force was removed again. At the end of
each trial, the human subject was provided a 0-100 score
reflecting their performance (a combination of distance to own
via-point and average interaction force - the lower the better).
The experimental session lasted approximately one hour. The
only difference with respect to the original experimental pro-
tocol was an additional control on movement time. This was
necessary because of the finite-horizon implementation of the
current AP (MT = 2.5 s in the current experiment). If the
human participant’s movement time was 2 s < MT < 3 s,
at the end of the trial the target color turned green (appropriate
duration); otherwise it turned red (wrong duration). A total of
four subjects (25-27 y, 3M+1F) participated in this experiment.
Their performance was compared with the data from five
human-human dyads [11], haptic (H) condition (25 ± 5 y,
9 M + 1 F).

The research conforms to the ethical standards laid down
in the 1964 Declaration of Helsinki and was approved by
the competent ethical committee (Comitato Etico Regione
Liguria). Each participant signed a consent form conforming
to these guidelines.

C. Data Analysis

The recorded AP and HP movements and forces were
smoothed and differentiated (4th order Savitzky-Golay, win-
dow size 370 ms).

1) Experiment 1: AP and human player are connected
through a virtual spring. As a measure of interaction, for each
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Fig. 3. Experiment 1 - Partner model. Left: The interaction force increases with stiffness. Each bar corresponds to an individual epoch and therefore
to a specific stiffness-noise pair. The bars were reordered for increasing stiffness and noise values. Noise magnitude is denoted by grey level (light
grey: σf = 0.5 N; dark grey: σf = 4 N). Middle: Trajectory estimation accuracy (PE), for HP (red) and AP (blue) . Data are reordered as for interaction
force. All error bars denote standard errors. Right: AP (red) and HP (blue) trajectories in selected subject and trials, with different stiffnesses (K) and
different noise standard deviation value σf. The continuous and dashed lines denote, respectively, the actual trajectories and the corresponding AP
predictions.

trial (tr ) we calculated the mean interaction force:

I F(tr ) = 1

T (tr )

T (tr)−1∑
t=0

| fH A(t) | (18)

where T (tr) is the number of samples at trial tr . For each
combination of stiffness and haptic noise magnitude, we took
the I F average, standard deviation and coefficient of variation.

For each trial tr , we also computed the trajectory error P E
between the actual and predicted trajectory of both the human
and the artificial partner:

P Ei (tr) =
√√√√ 1

T (tr )

T (tr)−1∑
t=0

∣∣pi(t) − p̂i(t)
∣∣2 (19)

where pi(t) is the position of player i , with i ∈ {A, H },
and p̂i(t) is the position predicted by the AP’s state observer.
Likewise, we calculated the speed error SE between the actual
and predicted speed profile of both the human and the artificial
partner:

SEi (tr) =
√√√√ 1

T (tr )

T (tr)−1∑
t=0

∣∣vi (t) − v̂i (t)
∣∣2 (20)

where vi (t) = | ṗi(t)| is the speed profile. To examine the
dependence of the above indicators on stiffness and noise level
of the haptic channel, we used a repeated-measures ANOVA
with two factors (stiffness and haptic noise magnitude). Due to
the stochastic nature of AP behavior, we took each individual
repetition of each condition (N = 10 trials per epoch) as
an independent sample of AP behavior. We also corrected
(Bonferroni-Holm) for multiple comparisons.

2) Experiment 2: We first assessed whether AP’s temporal
synchronization mechanism induced a mutual adaptation of
the starting times of the two players, similar to that observed
in human dyads. To do this, we compared the start times
over trials of both artificial (T S A) and human (T SH ) part-
ners with those observed in previously reported human dyad
experiments [11]. To analyze the overall dyad performance
and convergence to joint coordination, we also evaluated the
time course of spatial variability and of the minimum via-point
distances.

Spatial variability was calculated as in [36]. We re-sampled
all movements for a given subject at a fixed number of
points equally spaced along the path, and found the average
trajectory. Then, for each point along the average trajectory,
we found the nearest sample point from each individual tra-
jectory. These nearest points were averaged to recompute the
corresponding point along the average trajectory, and the pro-
cedure was repeated until convergence. Hence this is a measure
of path spatial variability, independent of time fluctuations.

The minimum via-point distances, M Dij , were defined as
the minimum distances at which player i gets closest to the
j -th via-point.

To examine the dependence of the above indicators on
training, we used paired-sample t-test comparing the indicators
averaged over the initial and final epoch of the connected
phase - epoch 2 and 11 respectively. As in Experiment 1,
we corrected (Bonferroni-Holm) for multiple comparisons.

IV. RESULTS

A. Experiment 1 - Partner Model

We first assessed the AP ability to predict its own move-
ments and those of the human partner under various conditions
(stiffness and noise level of the haptic channel). Figure 3
summarizes the partner model performance over conditions.
As expected, the interaction force increases with stiffness;
see Figure 3 (left). The observation was confirmed by sta-
tistical analysis. We observed a significant effect of stiffness
(p< 0.0001), but no effect of noise or stiffness × noise
interaction. The AP’s state observer reliably predicts its own
movements. As expected, prediction of the trajectory of the
HP is significantly less reliable (greater PE: 0.25 ± 0.13 cm
for HP vs 0.03 ± 0.0018 cm for AP); see Figure 3 (center).
Stiffness and noise level affect prediction accuracy. As regards
HP trajectories, the prediction error decreases significantly
as stiffness increases ( p < 0.0001) and noise decreases
(p < 0.0001). We also found a significant stiffness × noise
interaction ( p < 0.0001). The AP prediction error increases as
the sensory noise increases (p < 0.0001), but is not affected
by stiffness. Similar results were observed for speed. The pre-
diction accuracy is less reliable for HP (speed prediction error,
SE, is about 5.76 ± 2.25 cm/s for HP vs 0.72 ± 0.22 cm/s for
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Fig. 4. Top: Artificial and human partner gradually learn to synchronize,
i.e. to start their movements at the same time (left) in a way that is
qualitatively similar to H-H dyads (right). Bottom: temporal evolution of
spatial variability over epochs. The artificial partner (right) is in red. H-H
data taken from [11]. All panels report mean ± SE.

AP). The speed prediction error (SE) for HP decreases as the
stiffness increases ( p < 0.0001) and the noise level decreases
(p < 0.0001). The error also increases with both stiffness
(p < 0.0001) and noise level (p < 0.0001) for AP’s speed
estimation. We also observed a significant stiffness × noise
interaction for both HP ( p < 0.0001) and AP (p = 0.0014).

B. Experiment 2 - Learning Coordination

The ability to synchronize the timing of the movements
is crucial for the development of collaborative strategies [3].
Figure 4 (top) compares the effect of AP-HP (A-H) synchro-
nization with corresponding observations from human-human
dyads. Synchronization is qualitatively similar in A-H and H-H
dyads. A-H and H-H also exhibit similar amounts of inter-trial
variability; see Figure 4 (bottom).

We then looked at the trajectories and speed profiles that the
A-H dyad exhibits over repeated trials. During the baseline
phase, AP and HP are not mechanically coupled and they
simply perform reaching movements through their respective
via-points; see Figure 5 a,c (top). The A-H and H-H dyads
exhibit movements that are qualitatively similar in path, speed
profile and inter-trial variability. During the adaptation phase,
when mechanical coupling was turned on, both partners in a
dyad gradually tend to move along similar paths by crossing
their VP and getting closer to their partner’s; see Figure 5a,c
(bottom). Again, the behavior of A-H dyads is qualitatively
similar to their H-H counterparts.

In H-H dyads, both subjects decrease their distance from
their opponent’s via-point and maintain the distance from own
via-point low along all epochs; see Figure 5b. This indicates
that both players prioritize their own goals and gradually

improve coordination with their partners; see [11]. This behav-
ior is a signature of the development of a coordination.

The same behavior is observed in A-H dyads. Over trials,
both the AP and the HP gradually decrease their distance from
their opponent’s via-point, while at the same time keeping
the distance from their own via-point low; see Figure 5d.
During interaction the HPs behave as in H-H dyads, by sig-
nificantly decreasing their minimum distance to their partners
(p < 0.0001); in APs the improvement is only partial (no
significant decrease). At population level, we also found no
significant change in start time and spatial variability.

V. DISCUSSION

We presented a general computational framework for the
development of artificial partners which are capable of estab-
lishing a coordination with a human partner. The architecture
involves three main components: (i) a simulated body and
sensory system, (ii) a state and partner observer, which
includes an internal representation of the partner (partner
model); and (iii) a feedback controller, based on a represen-
tation of the task in terms of a quadratic cost function. This
formulation is rooted on probabilistic (bayesian) sensorimotor
integration [12] and optimal control [13]. We extend these
principles – summarized in section II.A – in two directions.
First, we argue that during joint action each participant
infers their partner’s intentions and/or ongoing actions; see
II.B [3], [4]. Building upon an experimentally confirmed
model [11], we formulate a sensorimotor integration model
which predicts not only the dyad state, but also the ongoing
partner actions. Second, consistent with the optimal control
framework, we propose that coordination strategies emerge
gradually through a simple adaptive process (fictitious play)
which, in the case of perfect information, leads to a Nash
equilibrium [30]. We present a specific implementation, which
focuses on planar hand movements with finite duration , where
the human and artificial partner are mechanically connected
through a haptic interface. Under these assumptions, dyad
dynamics and their sensory systems are described by linear
time invariant dynamical models, with Gaussian noise. The
artificial partner’s task is described by a quadratic cost func-
tional. Although simple, this formulation is applicable to a
variety of experimental joint action scenarios, and its predic-
tions can be directly compared to the observed human-human
interaction outcomes.

A. The Artificial Partner Estimates the Actions of Its
Opponent

We tested AP’s ability to estimate the actions of a human
opponent. As expected, we found that estimation improves as
the strength of the coupling increases and as the noise variance
decreases; see Figure 3. In the current implementation the AP
keeps a dynamic model of the human, which fully accounts for
its dynamic behavior. This is motivated by our previous report
that players simply estimate the ongoing partner actions [11].
Other studies suggested that players develop more general
partner representations, also accounting for intentions and
ultimate goals [31]. Humans are indeed very good at extrapo-
lating higher order information by observing the motion of
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Fig. 5. Trajectories and speed profiles during baseline and the last training epoch, for typical H-H (a) and A-H (c) dyads. In the A-H dyad, AP is
depicted in red, HP in blue. Both H-H and A-H dyads gradually develop a coordination. Temporal evolution of the minimum distance from via-point
in human-human (b) and human-artificial (d) partner interaction (respectively, in blue and in red).

their peers [37]. Alternative partner model formulations –
for instance, the AP could use a ’kinematic’ representation
which only accounts for some specific features of human
movements, like smoothness, but does not explicitly account
for the underlying mechanisms. APs could serve as general
tools to investigate what we represent about a partner and how
we develop that representation.

B. Artificial and Human Partner Learn to Coordinate

Consistent with previous work [11], [20], we found that
mechanical coupling can be exploited by interacting partners
to exchange information and achieve a certain degree of
coordination. Players in both A-H and H-H dyads tend to
synchronise their start times and exhibit similar amounts of
inter-trial variability; see Figure 4. In H-H dyads, over trials
the participants gather information about dyad dynamics and
about the partner and adjust their actions accordingly. In the
2-via point task, this is reflected in the gradual decrease of
the trajectory distances from both via-points; see Figure 5.
Although very simple, fictitious play reproduces this behavior
in A-H dyads. Human participants interacting with the AP
develop a coordination which is very similar to that observed
in human-human dyads. However, APs converge less often
to the trajectories corresponding to Nash equilibria. In fact,
the observed trajectories suggest that the AP does not fully
compensate for the HP. A systematic exploration of this issue
– for instance, by systematically varying stiffness and sensory
noise levels – is beyond the scope of this study which only
aims at a technical validation of the basic AP architecture.

C. A General Platform to Study Joint Action

The proposed experiments focus on a specific sensorimotor
interactive task, but the architecture and underlying assump-
tions – see Figure 1 – can be extended to investigate different
tasks and scenarios. AP behavior is completely specified by a
set of parameters, related to body dynamics (AAA , AAH and
BA), sensory system (HA), perceptual and motor uncertainty
(�v

A, �w
A ), assumptions on partner model (dynamic, kinematic,

or other), and personal traits like vigor (r ) and willingness to
establish a coordination. Other personal traits like risk sensi-
tivity [38] can be easily incorporated. Parameters selection is
crucial for determining the AP attitude toward the interaction.
For instance, manipulating the weights of the ’effort’ compo-
nent of the AP cost function would lead the AP to prefer
more or less effortful movements (and therefore smoother
trajectories). Further, manipulating the start time adaptation
rate (parameter α) would control AP’s ability to synchronize
with the human partner. The use of realistic APs with different
attitudes and personal traits toward the interaction simplifies
the study of joint action. In the A-H experimental paradigm
one mind is a completely specified, thus allowing to charac-
terize how the human counterpart responds.

D. Artificial Partners as Diagnostic and
Rehabilitation Tools

Biomimetic partners with a realistic, predictable behavior
may be used to characterize the ability of a human partner to
establish an interaction [5].The inherently human capability to
build representations about the partner and integrate them with
own internal representation is altered in some pathologies, e.g.
autism spectrum disorders or schizophrenia [39], and a better
understanding of these alterations would help improving the
diagnosis and suggest ways to contrast their consequences.
However, APs may be useful not only to investigate joint
action. They can also be used to facilitate skill learning and
neuromotor recovery. Rehabilitation robots have been often
described as ’artificial therapists’ and many of the developed
technological solutions are somehow inspired by the observed
mechanics of therapist-patient interaction. Patient and therapist
constantly exchange information during a session. Looking
at their actions and at the response to micro-perturbations,
the therapist gradually develops an understanding of patient
impairment and recovery potential. In the case of rehabilita-
tion, interaction should aim at maximising recovery, making
it faster and more durable. When interacting with assistive
robots, humans tend to incorporate assistive forces in their
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motor plan, thus reducing their active contribution to move-
ment, which may have adverse effects on recovery [40].
To counteract this, several heuristic mechanisms have been
proposed to provide ’assistance-as-needed’ [41]. A robot with
an inherent ability to develop optimal forms of interaction
would provide assistance ’as needed’ by design. Also, it would
automatically adapt to patient recovery.

VI. CONCLUSION

The proposed AP architecture is intended as a general
modeling framework. The current formulation makes a number
of specific assumptions – on representation of the partner’s
actions , on the way coordination is achieved – which clearly
require further empirical examination. To this purpose, the
model may constitute a valuable experimental tool to test dif-
ferent hypotheses. The presented model formulation is limited
to planar arm movements and linear dynamics, but can be
extended to more complex, higher dimensional non-linear sce-
narios, for which mathematical tools and numerically tractable
implementations are now available [42].
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