

www.h2020first.eu

FIRST – Project Number: 734599

H2020-MSC-RISE-2016 Ref. 6742023

On-the-fly Service-oriented Process

Verification and Implementation

Project Coordinator: Lai Xu, Bournemouth University, UK

With contributions from:

John Kasse, Oyepeju Oyekola, Lai Xu, Paul de Vrieze, Bournemouth

University (BU), UK

Revision History 10/08/2020 Layout BU

11/08/2020 First Draft of D4.1 by BU

14/09/2020 Completed Draft of D4.1 by BU

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Skłodowska-Curie grant

agreement No 734599

H2020-MSC-RISE-2016 Ref. 6742023

Ref. Ares(2020)7099218 - 25/11/2020

H2020-MSC-RISE-2016 Ref. 6742023 Page 2

Table of Contents

1. Introduction .. 3

1.1. Contributing partners .. 3

2. Process Verification and Compliance for Collaborative Business Processes 4

3. Example Use case and Requirements .. 6

4. Expression and Specification of Compliance Constraints .. 9

4.1. Constraints .. 9

4.2. Constraints for Collaborative Business Processes .. 9

4.3. Constraint Expressions .. 13

4.3.1. Description Logic ... 13

4.3.2. Control Flow Constraint Expressions .. 14

4.3.3. Resource Constraints Expressions ... 16

4.3.4. Data Constraint Express ... 16

4.4. Composite Predicate Constraint Expressions ... 17

4.4.1. Expressions Between Control Flow and Resource Constraints 17

4.4.2. Expressions for Control Flow, Resource, Data and Temporal Constraints 18

5. Compliance Verification Approach (Definition and Algorithms) ... 19

5.1. Categories of Constraint Verification ‘ ... 19

5.2. Control Flow Verification ... 20

5.2.1. Control Flow Verification Requirements ... 20

5.2.2. Specification of Control Flow Constraints .. 21

5.2.3. Control Flow Verification Algorithm .. 25

5.3. Resource Compliance Verification ... 29

5.3.1. Specification of Resource Constraints ... 29

5.3.2. Definitions for Resource Constraints ... 30

5.3.3. Resource Compliance Verification Algorithms ... 30

5.4. Data Compliance Verification .. 32

5.4.1. Specification of Data Constraints .. 33

6. Process Driven Access Control and Authorisation (PDAC) .. 38

6.1. Implementation architecture for Process Driven Access Control and Authorization 39

6.2. User Authentication .. 40

6.3. GDPR Implementation .. 40

7. Compliance Checking and Verification with Use Case ... 41

7.1. The Abstracted Pick and Pack Use Case .. 41

7.1.1. The Internal Requirements of the Business Process .. 42

7.1.1. Constraint Elicitation and Expressions .. 43

8. Conclusion ... 53

References .. 54

H2020-MSC-RISE-2016 Ref. 6742023 Page 3

1. Introduction

The rapid change in customer demands and intensified competition in the market have pushed

manufacturers across the globe to embrace the trend of automation and data exchange in production

technology. These intelligent technologies are integrated with traditional manufacturing and capable

of collecting and analysing data from every stage of the manufacturing and distribution process to

improve efficiency, increase automation, improve productivity, and reduce costs. In addition, they

enable new business and service models covering the entire lifecycle of a product. The concept of

Virtual Factories vF in the context of manufacturing plays an important role in achieving these goals.

vF requires the integration and compatibility of related product design processes and manufacturing

processes to support automated design. Notably, the notion of vF goes beyond manufacturing

processes for single enterprise processes, as it presents businesses that operate in a global context i.e.

Joint collaborative business process (CBP) specified, designed and verified to take advantage of the

pool of skills, resources and technology.

By the nature of both collaborative business processes and virtual factories, achieving compliance

of CBP in vF setting is complex and requires unique characteristics and requirements due to the

design principles for decentralized decision making. For instance, in a CBP, different partners

combine resources and skills to design and execute a business opportunity and at the same time act

independently from each other. The fact that each partner is geographically distributed makes them

distinct from partners in the same location. In particular, besides the internal policies regulations

regulating each partner process, their process is also governed by contractual obligations as well as

external regulations guiding their overall process operations. Achieving compliance in such a network

environment will be challenging and especially when process structure is changed by a partner

independently, or when policy or regulations change. For instance, the on-going BREXIT in the UK,

once finalized can bring about new laws and regulation, which might have a knock-on effect on CBP

across Europe. When these changes happen, it might have a direct effect on the entire business

collaboration and its existing processes resulting in significant costs as well as causing an

organization needing to modify its entire process or part of it to achieve compliance.

In reality, compliance can be fulfilled before a change in CBP, but this might not remain satisfied

after any change occurs. Therefore, after a change has been applied to a process or compliance rules,

it is imperative to identify changes in the policy, follow a formal method to re-evaluate the compliance

rules, identify the components of the process that are affected by the amendments, and recheck the

correctness the process model specifically checking if the existing or redesigned collaborative process

still complies with all compliance rules. Falling to manage or constantly monitor these changes can

lead to penalties and potential legal issues. However, a knowledge gap exists in supporting the

compliance checking of CBPs and the impact of changes in regulation to the business process, with

policies beyond control flow to external regulations, laws and standards.

1.1. Contributing partners

The report is based on Deliverable 1.3 as well as PhD thesis of Kasse JP (Kasse, 2019), research

papers (Kasse, Xu and de Vrieze, 2017; Kasse et al., 2018, 2020; Oyekola and Xu, 2020). The report

is mainly contributed by John Kasse, Oyepeju Oyekola, Dr Lai Xu, Dr. Paul de Vrieze from

Bournemouth University.

H2020-MSC-RISE-2016 Ref. 6742023 Page 4

2. Process Verification and Compliance for Collaborative Business Processes

Figure 1 presents the general relationship between collaborative process verification and

collaborative process compliance checking. While the process verification is done at the process

design stage, the process compliance check is applied for both process design and process running

stages. At the process design time, a business process model is designed to comply with different

rules, during process running time; the process compliance is monitored and related according to the

changed rules.

Figure 1. The relation between verification and compliance

Naturally, process models may exhibit undesired properties in form of errors which can prevent

successful execution. It, therefore, becomes crucial to verify the correctness of the collaborative

model before implementation as an erroneous model can result in behavioural anomalies within the

entire process. (El Gammal, Sebahi and Turetken, 2014) describes three levels of correctness in

process model i.e. (i) syntactical correctness – checking the correct use of element (such as tasks,

gateways, swim lanes, events), (ii) behavioural correctness (i.e. business process verification) – are

the correctness of a model with regards to a set of properties such as deadlock, livelock, or dataflow

errors, and (iii) semantics correctness (Business Process Compliance) – checking whether a business

process model complies with applicable standards, law and/or regulations. These levels of correctness

interlinked with each other and must be considered to fully achieve error-free model.

To formally verify the correctness of a model, several verification approaches have been identified

in the literature as well as different supporting tools. Preliminary works geared towards the

verification of syntactical and behavioural correctness i.e. soundness and weak soundness constraints

(Robol, Salnitri and Giorgini, 2017). The general approaches of the process verification are based on

Petri Net or its variables (transformation) (Governatori and Sadiq, 2009; Knuplesch et al., 2013; Von

Rosing et al., 2014; El Gammal et al., 2016) anti-behavioural patterns (Awad, Weidlich and Weske,

2009; Wynn et al., 2009; Roa, Chiotti and Villarreal, 2015, 2016; Knuplesch, Reichert and Kumar,

2017) and direct formalization (Corradini et al., 2017; Houhou et al., 2019). However, despite the

several approaches identified in the literature, there are still some gaps in the capabilities of these

approaches to verifying the correctness of, in particular, collaborative business processes. For

instance, the stated approaches do not fully extend the formalism of complex issues like multiple

instances, subprocesses; error handling, loops and data object representation which is important in

CBP. Studies that do not abstract data in verification are either required to state-bound domains which

are subject to state-explosion or rely on animation than a complete verification (Corradini et al., 2018)

making it difficult to verify a model for any possible initial value of the data (Houhou et al., 2019).

While initial works focus on the process verification of syntactical and behavioural correctness,

recent work addressed issues relating to semantic correctness (processes compliance). Business

process compliance requires checking that business processes are compliant with applicable corporate

Rules Change
cooperate guidelines,

standards, best practices,
legal regulations, etc.

Process Design Stage Process Running Stage

Collaborative Process Compliance Monitoring

Collaborative Process Verification

Soundness(Option to complete, proper completion,
no deadlock), Safeness, Correctness, etc.

Multiple Rule Activations

Collaborative Process Compliance Checking

Control flow, Data, Time, Resource, Interaction

Event Collection Event Correction

Process
Adaptationss

H2020-MSC-RISE-2016 Ref. 6742023 Page 5

guidelines, standards, best practices, legal regulations etc. The regulatory requirements are elicited

from the general regulatory document and form constraints that restrict the impermissible behaviour

of an organization business process. Though, elicitation of relevant requirement from the source

document is not sufficient, as the requirements need to be transformed and translated into a formal

form i.e. compliance rules to enable compliance verification over business process models.

It is worth noting that business processes compliance relates to conformance to different process

perspective that is different phases of the process life cycles such as control flow, data, time and

resources perspectives (Borrego and Barba, 2014; Taghiabadi et al., 2014). The different process

perspectives help to establish a relationship which facilitates derivation and categorization of

compliance rules from the general policies and regulations. Compliance rules must be

comprehensible and at the same time should have a precise semantics to enable automated processing

and avoid ambiguities. Hence, several researchers have placed their focus on enabling the

specification of compliance rules using different approaches with differences in the level of

formalism

So far, Business process compliance has received substantial research attention over the last two

decades focusing on checking the complaint behaviour of business processes against several policies

and regulations. Most of the reviewed studies (Finkel and Schnoebelen, 2001; Goedertier and

Vanthienen, 2006; Governatori and Sadiq, 2009; El Gammal et al., 2016; Roa, Chiotti and Villarreal,

2016) mostly focus on the business process within one single organization using different approaches.

The approaches focus on different phases of the process life cycle using different languages to support

checking in terms of structural behaviour, contractual obligations and privacy and security

(Knuplesch et al., 2013). In the same vein, the existing approaches mostly focus on verifying the

control flow aspects while abstracting from other process perspectives like data. It is worthy to note

that data is a major input for smart devices and machines in a vF supporting automated execution of

processes. For instance, with the existing technological innovation comes along with an

overwhelming amount of material and product data collected and analysed from every stage of the

manufacturing and distribution process and beyond. Particularly, future factories demand a close

integration between shop-floor, Manufacturing Execution System (MES) and Enterprise Resource

Planning system (ERP) to obtain real-time access to data at production level for real-time execution

and vice versa. Hence, it becomes imperative to address other process perspectives, particularly the

data perspectives due to its importance in virtual factories settings.

H2020-MSC-RISE-2016 Ref. 6742023 Page 6

3. Example Use case and Requirements

This section describes an example use case as used in D1.2. It provides in detail the applicable

policy and regulatory requirements of the case.

Figure 2: Pick and Pack Use Case

To create orders, customers register on the store’s online system. Once a customer order is received,

a notification is received at the store while the customer receives a confirmation. At the Store stock

levels are checked for item availability. Where stock is below a threshold, a purchase order is issued

to the supplier, otherwise, order processing of progress. A staff selects an order, picks items and packs

the order. Before packing, the order is verified for conformity with order details, and after it's handed

over to customer service. One or more staff may be assigned to an order depending on its size. For

items that are out of stock, the order is suspended for a period until stock is available. An item can be

substituted with another (for instance, substituting fresh vegetable items with tinned vegetables).

Supervisors can contact customers to seek opinion either to wait, change or cancel an order in case

items cannot be substituted. A customer can cancel an order delayed beyond a specific time. Ready

orders are either picked up by the customers or home delivered by the store. For further

understanding, the following assumptions are made: The process model is adopted by stores of

different size and capacity; Stores are in different regions where different laws and regulations apply;

Stores vary the model to suit local policies.

The above pick and pack business process (displayed in Figure 2) is subject to different applicable

policies and regulations which form constraints restricting it to specific behaviour and determine how

the operations are been conducted. The applicable policies are amalgamated into a set of policy

requirements as presented in Table 1 below. The policy requirements are categorized based on the

different process perspectives that are control flow, data flow, resources and time-based.

H2020-MSC-RISE-2016 Ref. 6742023 Page 7

Categories Constraints

Control flow • Some activities can be combined and executed together depending on

store size. E.g. Pick items and pack items

• Pack Order immediately follows verifies order. Ready orders are

either picked by the customer or delivered by the store

• Delays are communicated to customers.

• Pick items are repeated until all items are picked.

• Notify customer order details immediately after submission

Data Flow • Customers register on the system before creating orders.

• Users must be authenticated to access system.

• System must be up to date with all relevant data.

• Customers can track their orders via the System.

• Access to customer data is restricted by privacy constraint. Bulky

orders e.g. with orders above £5000 can pay by cheque

Resources • Resources are assigned to tasks.

• Resources must be uniquely identified and authenticated.

• Where resources are assigned work based on shifts, access to data is

also based on shifts.

• Resources like packers and pickers are binding of duty constrained.

• Some resources like pickers are restricted from executing some tasks

e.g. verify the order.

• Some resources like Verifiers are Separation of duty constrained.

• Some tasks like Handover order can be delegated.

Time-based • The system must be available 24/7.

• Each task is time-bound and the total process duration is aggregated

from task durations.

• Some tasks can be delayed for not more than one hour.

• Resources are allocated according to time shifts e.g. dayshift or

nightshift

Table 1: General Policy Requirements

The internal policies stated above are established as operational guidelines, which may vary from one

store to another to suit specific requirement provided that there are no violations to the reference

policies or regulations. Besides the internal policies, some relevant external regulations apply to the

process that is:

• The Sarbanes Oxley Act and Base III with requirements for separation of duty and biding of

duty.

• The GDPR with requirements for security and data privacy.

• The consumer protection Act 2015 UK specifies service level requirements to protect

consumers.

H2020-MSC-RISE-2016 Ref. 6742023 Page 8

• NIST-National Institute of Standards and Technology

Compliance documents are written in natural languages with associated ambiguity. The ambiguity

leads to false interpretations, misunderstandings and confusion. Moreover, regulations are stated in a

prescriptive manner, i.e. they specify what is required but are silent on how it should be achieved. As

a consequence, organisations have perceived compliance as a tedious burden and a complex task,

especially where skills or automated compliance tools are not available to support enforcement and

verification. This report presents a compliance approach to support: (1) the elicitation of new

compliance requirements arising out of the changes in policy and regulations, (2) Formalisation of

the requirements into compliance constraints and (3) Checking and verifying compliance of the

business process with the constraints.

The first step in achieving compliance involves the ability to identify the relevant policies and

regulations that the process model should conform to. These are derived from the relevant regulations

as stated earlier. The identified changes are formalised and used to check the business process for

conformity. Changes committed in the process can be a source of non-compliance. Checking the

impact of policy and regulatory changes over the business process is essential to determine its

compliance. Verification techniques like theory proving, model checking, and simulation are used to

achieve verification. Hence, this report presents how a simulation technique is used to assess the

impact of changes in policy and regulatory requirements over the performance of the business

process.

H2020-MSC-RISE-2016 Ref. 6742023 Page 9

4. Expression and Specification of Compliance Constraints

This section presents concepts related to compliance requirements, their expression and translation

into constraints. It presents an illustration of elicitation and categorization of requirements based on

the requirements from the use case presented in section 3. To express and represent the compliance

requirements, a Descriptive Logic is introduced and used, whereas the translation of requirements

into constraints is enforced by the integration of Description Logic (DL) and Linear Temporal Logic

(LTL) to achieve formalised constraints to which reasoning can be applied to achieve compliance

verification.

4.1. Constraints

Constraints restrict processes to specific behaviour as required by policies and regulations. Without

the restrictions, models would execute any desired behaviour or end-users would be at liberty to

undertake any desired operations. However, the existence of constraints creates restrictions on

process behaviour. A constraint is a rule prescribing behaviour as conditions that a business process

must conform with. Mandatory constraints must be satisfied by the execution of the model otherwise

a violation occurs. ‘The optional constraints may be satisfied or not, their lack of satisfaction does

amount to a compliance violation. ‘The choice to execute activities with optional constraints may

depend on the availability of time, computation complexity requirements like time or added value

that may be derived from the business or customer. During process execution, the constraint

conditions become active and are evaluated by the process engines to guide further execution.

Compliance is achieved when the constraint conditions are fulfilled i.e. the outcome of the process

behaviour matches the prescribed behaviour.

4.2. Constraints for Collaborative Business Processes

Based on the characteristics of collaborative business processes, which are bound to comply with

constraints from various external regulations. In this section, a formal structure of categories of

constraints binding to collaborative business processes is summarized in Figure 3 based on

constraints categorizations described in (van der Aalst, ter Hofstede and Weske, 2003; van der Aalst,

2004; Weske, 2007)

Figure 3: Constraint categories based on Structural Perspectives of the business process

H2020-MSC-RISE-2016 Ref. 6742023 Page 10

Figure 3 is a constraint relationship model illustrating logical relations between collaborative

business process constraint categories. At the core of the model lie the control flow constraints which

form a basis for all other internal constraints. It borders with the temporal, functional, operational,

resource and data constraints which all form internal constraints. Beyond the internal constraints are

contractual obligations; these integrate policies from partners. Next are constraints originating from

the external regulatory agencies outside the business environment. External constraints are

regulations, standards, best practices and laws that to regulate the behaviour of the process beyond

its borders or contractual obligations. Example categories based description of the constraints follow:

Pattern

/condition

Description Purpose for checking Example

Existence An activity must

occur in an instance

or otherwise

Occurrence or absence

of an activity

Activity C must exist in every

instance of the process. E.g.

every order must be verified

Bounded

Existence

An activity must

occur for a specific

number of times

Multiple occurrences of

activities

Activity B executes several times

until a required condition is

fulfilled. E.g. the pick items

activity is repeated until all items

are picked.

Dependency Execution of an

activity based on

occurrence or non-

execution of another

Occurrence or absence

of dependent activity

For activity C to occur, activity B

and A must-have executed

successfully or otherwise. E.g.

shipment of the goods depends

on confirmation of payment

Parallel A set of activities

must occur in

parallel

Activities that are

bound to occur in

parallel

Activities C and D are mutually

exclusive. E.g. upon order

confirmation, an invoice is sent to

the customer while the order is

being processed.

Bounded

Sequence

Number of times a

chain of activities

must occur

Number of occurrences

of chained activities or

otherwise

Activity B and C execute several

times until the required condition

is fulfilled

Precedence An activity must

occur before

another. ‘is also true

for chained

precedence for

limiting a chain of

activities

Order of occurrence i.e.

activities that must

occur before other(s)

Activities A and B are followed

by C. E.g. every account balance

checking is preceded by

successful Login of the account

holder

Response An activity that

must occur due to

the occurrence of

another. ‘is also true

for a chained

response for

limiting a chain of

activities

Order of occurrence i.e.

activities that must

occur after other(s)

Activity E will occur if activity C

occurred. E.g. payment by

cheque activates the cheque

processing activity

Table 2: Control Flow Constraints Categories

H2020-MSC-RISE-2016 Ref. 6742023 Page 11

Constraints Description Example

Data Visibility Definition of data

elements based on the

structure of the process

and scope of accessibility

of data

Task data: Describes data elements accessible

by the task or by each of the components of the

corresponding tasks blocks.

Scope Data: Data elements defined which are

accessible by a subset of the tasks in a case or

defined according to several tasks that are

coordinated.

Multiple Instance Data: Tasks that occur

multiple times in a case can define data specific

to an individual execution instance

Case Data: Data accessible by all components

during the execution of the case.

Workflow Data: Data elements are accessible by

all components in each case of the process and

its context.

Environment Data: Process components have

access to external data

Data interaction

i.e. internal &

external

Definition of data

elements based on how

data is exchanged between

process components and

how their characteristics

determine data flow

Data Interaction between

Task to task

Block Task to Sub Workflow decomposition

sub-Workflow Decomposition to Block Task

Multiple Instance Task

Data validity Definition of data in a

state that is useful and

meaningful for task

execution

Controls necessary to keep data up to date

Data availability Definition of data in a

format that is ready for

use and application

Defining which data has universal access and

ensuring its universal availability

Data

accessibility.

Definition of data

elements that make data

accessible.

Access control and authorization, regulation and

legitimization

Data privacy Definition of data

elements that preserve the

privacy of data

Permissions: Represents a set of permissions

granted to users to access data such as

Permitted, Forbidden, and permitted if the

condition is true. Permissions are linked to

actions performed only if one has permission to

do so. Also, the purpose is linked to permission;

permission cannot be given unless a purpose is

specified. It is also used to represent user

consent.

Conditions: Conditions that must be true to

allow an action to be performed on data.

Data Retention: Defines the period data is kept

at the requester end

Two – Three –

Four-way

matching

Requires values of two

different data objects to

match

Received goods must match the payment

invoice.

H2020-MSC-RISE-2016 Ref. 6742023 Page 12

Authenticity Requires Identification

management for

controlling the data access

All users are identified and authenticated by the

system

Table 3: Data Flow Constraints Categories

Constraint Description Example

Instance duration Instance duration A set of activities from a. . . .n must be

executed within one (1) hour from the

time execution starts. E.g. the processing

of an order should last for one (1) hour

from the time the order is submitted.

Delay Period within which an activity

can be delayed

Activity b will execute after exactly two

(2) hours once execution of activity a is

complete. E.g. after customer payment,

shipment will be delayed for two (2)

hours until payment is confirmed or

reflected on the system

Validity Period within which an activity

can be executed

Activity b will execute between 12:00

and 14:00 hours every day of the week.

E.g. the shipment of goods takes place

between 12:00 and 14:00. Or customer

care service is available only during

normal working hours.

Duration The period for which an activity

is scheduled to execute from

start to completion

Activity a will execute for 45 minutes.

Or activity a execution takes between 20

and 50 minutes

Repetition The period between which an

activity can be repeated

After initially failed execution, activity a

can be repeated for twice, otherwise, it is

restarted after 1 hour. E.g. log on can be

tried for three (3) successive times, if it

still fails it is restarted after one (1) hour

Overlap Period within which an activity

can start and complete

regarding another activity’s

start and completion period.

Activity b is scheduled to start 30

minutes after activity a has started but

can complete together, however, b should

not complete before a completes. E.g.

pack items can start 3 minutes after

verify order has started but cannot

complete before verify order completes.

Table 4: Temporal Constraints Categories

Constraint Description Example

Segregation of duty Requires separate execution of high-

risk tasks by different actors

Cheque processing is executed by

two different actors.

Binding of Duty Requires 2 or more related tasks to be

executed by the same resource.

The Doctor who diagnoses a

patient must also prescribe drugs.

Delegation Share or transfer permissions and

associated responsibility from one

actor to another.

A supervisor can delegate verify

order to pickers.

Table 5: Resource Constraints Categories

H2020-MSC-RISE-2016 Ref. 6742023 Page 13

Tables 2 to 5 present set of general compliance patterns as observed from the literature (Dwyer,

Avrunin and Corbett, 1998; Wong and Gibbons, 2011; El Gammal et al., 2016; Ramezani

Taghiabadi, 2016). For example, Table 2 presents example control flow constraints patterns

including existence, bounded existence, dependency, precedence, and response inter alia. Table 3

describes data constraints with examples. Data constraints include data visibility, data validity,

availability and accessibility, privacy among others. Table 4 presents temporal constraints

described with examples namely Duration, instance duration, delay, validity among others. In

Table 5, resource constraints are listed with examples given including separation of duty, binding

of duty and delegation. Lastly, because temporal constraints do not exist independently, Table 6 is

a matrix matching temporal constraints with other constraints to benefit a combination of

constraints during their expression and specification. In subsequent sections, the constraint patterns

are described formally by deriving logical relations using description Logic and LTL.

Temporal

constraints

Delay Validity Duration Repetition Deadline

Control

flow

Existence

Precedence

Response

Existence Parallel Dependency

Bounded

Existence

Bounded

Sequence

Existence

Precedence

Response

Resource

flow

Authentication Authentication SoD Binding

of Duty

Two-three -

Four-way

matching

Authentication

Privacy SoD

BoD

Data flow Data

accessibility

Data validity

Data

availability

Data

accessibility

Data

availability

Data visibility

Data privacy

Data

interaction

Data

accessibility

Data

accessibility

Data

availability

Data visibility

Data privacy.

Table 6: Temporal Constraints and Combinations with other Constraints

4.3. Constraint Expressions

In literature different forms of logic are used to define, express and specify constraints. For instance,

studies by (Pesic, 2008; El Gammal et al., 2016; Groefsema, 2016; Ramezani Taghiabadi, 2016) use

different forms of logic that compose their proposed languages. However, this formalism remains

difficult to comprehend by ordinary end users like compliance officers and other stakeholders. This

is especially significant for stakeholders who are the subject matter experts yet lack technical

knowledge of defining and specifying constraints. Hence, the application of descriptive logics (DL)

is generally adopted and adapted as less complex constraint expression formalism, upon which we

base to compose a mechanism to express and specify constraints. ‘The motivation to use DL is based

on its rich syntactical and semantical vocabulary, which is yet easy to understand and use by ordinary

users due to its closeness to natural language. Constraints expressed and specified in DL are easy for

human intuition, understanding and interpretation. Besides, DL remains expressive enough to support

reasoning over constraints and their eventual checking.

4.3.1. Description Logic

DL is a language used for formal representation of knowledge by facilitating formal expression and

specification of requirements of knowledge base systems. DL extends into different types like spatial,

temporal and fuzzy logics with different features to support various forms of expressivity and

H2020-MSC-RISE-2016 Ref. 6742023 Page 14

reasoning complexity. Here, we highlight concepts relevant for application to policy and regulatory

requirements definition. In Figure 4, a set of DL applicable syntax and semantics are given.

Constructor DL Syntax Semantics

Universal, top ⊤ Δ𝛪
Bottom ⊥ ∅

Intersection 𝐶1 ⊓ 𝐶2 C1
I ∩ C2

𝛪

Union 𝐶1 ⊔ 𝐶2 C1
I ∪ C2

𝛪

Negation ¬𝐶 Δ𝛪/𝐶𝛪
All values from ∀𝑃. 𝐶 {a ∈ Δ𝛪|∀𝑏. (𝑎, 𝑏) ∈ 𝑃𝛪 → 𝑏 ∈ 𝐶𝛪}
Some values ∃𝑃. 𝐶 {a ∈ Δ𝛪|∃𝑏. (𝑎, 𝑏) ∈ 𝑃𝛪 ∧ 𝑏 ∈ 𝐶𝛪}
Max cardinality ≤ 𝑛𝑃 {a ∈ Δ𝛪 ∥ {𝑏 ∈ Δ𝛪|(𝑎, 𝑏) ∈ 𝑃𝛪}| ≥ 𝑛}
Min cardinality ≥ 𝑛𝑃 {a ∈ Δ𝛪 ∥ {𝑏 ∈ Δ𝛪|(𝑎, 𝑏) ∈ 𝑃𝛪}| = 𝑛}
Qualified at-most restriction ≤ 𝑛𝑃 𝐶 {a ∈ Δ𝛪 ∥ {𝑏 ∈ Δ𝛪|(𝑎, 𝑏) ∈ 𝑃𝛪 ∧ 𝑏 ∈ 𝐶𝛪}| ≤ 𝑛}
Qualified at-least restriction ≥ 𝑛𝑃. 𝑐 {a ∈ Δ𝛪 ∥ {𝑏 ∈ Δ𝛪|(𝑎, 𝑏) ∈ 𝑃𝛪 ∧ 𝑏 ∈ 𝐶𝛪}| ≥ 𝑛}

Figure 4: DL Syntax and Semantics

4.3.2. Control Flow Constraint Expressions

In this section, the presentation of constraints is categorised according to DL unary, binary and

composite predicates. Unary predicates represent atomic constraints while binary and composite

predicates represent combinations between constraints.

Unary Predicate Expressions for control flow Constraints

 Control flow unary predicates are used to represent control flow-based constraints expressing

ordering relations involving atomic activities or tasks. To fulfil the ordering relations, LTL operators

and quantifiers are used for the purpose. The expressions are presented in Table 7. Activity

combinations are required to express relations between one or more activities. Such relations are

represented by forming combinations between constraints using combinations of predicates known

as binary predicates.

Binary Predicate Expressions for Control Flow Constraints

Two additional logical symbols are composed to achieve purposeful and meaningful expressions.

These are: ≪← to represent ‘precede’, →≫ to represent ‘leads to’, ∥ to represent parallel, and ↦ to

represent dependence. Table 8 presents binary expressions specifying constraints defined with

examples from use case 1.

H2020-MSC-RISE-2016 Ref. 6742023 Page 15

Table 7. Unary Expressions for Control Constraints

Table 8. Example Binary Expressions for Control Flow Constraints

H2020-MSC-RISE-2016 Ref. 6742023 Page 16

4.3.3. Resource Constraints Expressions

For simplicity and convenience, abbreviations are adopted for use in expressions representing

resource constraints as follows: Available - Avail, Segregation of duty - SoD, binding of duty - BoD

and Delegation - Del.

Unary Resource Constraint Expressions

Unary expressions representing resource constraints and their implications using description logic are

as follows: •

• Resource.SoD – Resources constrained with SoD constraint

• Resource.BoD – Resource is constrained with BoD constraint

• Resource.Del – A resource that can be delegated

Binary Resource Constraint Expressions

Binary combinations between resource constraints is possible under guiding principle that no

combination between BoD and SoD for same activity executions at the same time. This comprises

the access control restrictions, i.e. a resource cannot be constrained as BoD and SoD at the same time

of allocation to an activity. This could otherwise result into deadlocks. Similarly, a resource cannot

be available and unavailable at the same time. These restrictions must be observed at design time and

verified to prevent violations that result into noncompliance or deadlocks. Some of the realistic

constraint combinations are:

• Resource.Avail ∩ SoD – Resource available for assignment as SoD.

• Resource.SoD ∩Del – Resources constrained with SoD and can be delegated.

• Resource.BoD ∩Del – Resource is constrained for BoD but can be delegated.

• Resource.Avail ∩ Validity [time] – Resource’s availability is valid for a specific time.

4.3.4. Data Constraint Express

Unary Data Constraint Expressions

The section presents data constraints expressions based on Unary predicates using description

language:

• Data.visible – Data items visible for each activity.

• Data.¬ visible – Data items not visible

• Data.interactive – Data items that can be interacted with.

• Data.valid - Valid data items

• Data.available - Available data items

• Data.¬available – Data items unavailable

• Data.accessible - All accessible data items

• Data.¬accessible – Data items inaccessible.

• Data.Privacy – Data items classified as private data

• Data.2-3-4WM – Data that requires matching to enable execution.

• Data.Authentication - Data items that require authentication.

H2020-MSC-RISE-2016 Ref. 6742023 Page 17

Data constraints restrict the creation and access of the data by activity tasks and resources (roles and

applications) over time.

4.4. Composite Predicate Constraint Expressions

This section presents composite predicate combinations involving all constraint categories to fulfil

compliance requirements. They include the following:

4.4.1. Expressions Between Control Flow and Resource Constraints

Combination between control flow and resource constraints expresses conditions restricting

assignment of resource actors to activities. The expressions specify activity behaviour in relation to

their actors. The DL based expressions are represented as follows:

• Exists.Activity → Resource.Avail – The occurrence of an activity is assigned to an available

resource actor. For example:

𝐻𝑜 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝐴𝑣𝑎𝑖𝑙] is a valid expression assigning any actor that will be available to

execute the activity. Such activities assigned to any available actor are non-critical or, they are

already within the category of authorized actors.

• Exists.Activity → Resource.SoD – The occurrence of the activity is assigned to a resource actor

constrained by separation of duty. For example:

𝑉𝑜 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝐴𝑣𝑎𝑖𝑙] is a valid expression assigning the actor or role Verifier constrained

by SoD to verify order activity.

• 𝐸𝑥𝑖𝑠𝑡𝑠. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦1 ⊓ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦2 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. 𝐵𝑜𝐷 – The occurrence of the activity is assigned

to a resource actor constrained by binding of duty. For example:

𝑆𝑜 ⊓ 𝑃𝑖𝑡 → 𝑃𝑖𝑐𝑘𝑒𝑟. [𝐵𝑜𝐷] is a valid expression assigning the actor role Picker constrained by

BoD to execute Select order and Pick items activities. This implies that the actor executes both

activities.

• 𝐸𝑥𝑖𝑠𝑡𝑠. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒1. 𝐷𝑒𝑙: 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒2 – The occurrence of the activity is assigned

to a resource actor that can delegate to another actor. For example:

𝑃𝑜 → 𝑃𝑎𝑐𝑘𝑒𝑟. [𝐷𝑒𝑙]: 𝑃𝑖𝑐𝑘𝑒𝑟 is a valid expression assigning the actor of role Packer who can

delegate to actor Picker. Therefore a given activity 𝐻𝑜 can be delegated to several actors such

that 𝐻𝑜 → ⨆[𝑅1, 𝑅2, … 𝑅𝑛] implies that Hand over order is assigned to 𝑅1, 𝑅2 and 𝑅3.

• 𝐸𝑥𝑖𝑠𝑡𝑠. ∀𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. 𝑆𝑜𝐷 – The occurrence of a set of activities is assigned to a set

of resource actors constrained by separation of duty. For example:

𝑉𝑜,𝑀𝑜, 𝐶𝑎𝑙𝑙𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝐷𝑢𝑡𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑟. [𝑆𝑜𝐷] is a vali expression

assigning resource actors of role Verifier, Supervisor and Duty Manager constrained by SoD to

a set of activities: Verify order, modify order and call customer.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. Several occurrences of an activity are

assigned to the same resource. For example:

𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘. 𝑃𝑖𝑐𝑘𝐼𝑡𝑒𝑚𝑠 → 𝑃𝑖𝑐𝑘𝑒𝑟. All the number of times within an instance of

pick items are executed by the same actor with picker role.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒[𝑆𝑜𝐷] – The number of times an activity can

occur it is executed by a different resource. For example:

𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘. 𝑉𝑒𝑟𝑖𝑓𝑦𝑂𝑟𝑑𝑒𝑟 → (Verifier1 ⊓ Verifier2). [SoD]. All the number of

times the event instance of verify order is executed by a different actor (verifier1 or verifier2)

of the assigned role (Verifier).

H2020-MSC-RISE-2016 Ref. 6742023 Page 18

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘∃𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 →⊓ ∃𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠[𝐵𝑜𝐷] – Several occurrences of activities

are assigned to the same resource constrained through binding of duty for all occurrences.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘∃𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 →⊓ ∃𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠[𝑆𝑜𝐷] – Several occurrences of activities

are assigned to different resources, constrained as separation of duty for all their event instances.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑘∃𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → ∃𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠. [𝑆𝑜𝐷] – Activities occur as a chain for a

number of times are assigned to different resources constrained by separation of duty.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑘∃𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → ∃𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠. [𝐵𝑜𝐷] – - Several activities occur as a chain

for a number of times are assigned to a resource actor constrained by binding of duty.

Other expressions for control flow and resource constraints can be defined and specified following

the same syntax and semantics. The above expressions are for illustration purposes.

4.4.2. Expressions for Control Flow, Resource, Data and Temporal Constraints

This section presents predicate combinations for all constraint categories. The combinations represent

means for complete constraint specifications that is close to natural language. This way, non-expert

end users can extract compliance requirements from source policy and regulatory documents and

represent them as constraints to be complied with by the business processes.

• 𝐸𝑥𝑖𝑠𝑡𝑠. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝑆𝑜𝐷] ⊓ 𝐷𝑎𝑡𝑎. [𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒] ⊓ 𝑇𝑖𝑚𝑒. [𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛] – The expression

specifies that an activity is assigned to some resource constrained by separation of duty, and

data access as available for a specific duration.

• 𝐸𝑥𝑖𝑠𝑡𝑠. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝐵𝑜𝐷] ⊓ 𝐷𝑎𝑡𝑎. [𝑃𝑟𝑖𝑣𝑎𝑡𝑒] ⊓ 𝑇𝑖𝑚𝑒. [𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛] – The expression

specifies that an activity will occur, assigned to a resource constrained as binding of duty, with

data constrained with privacy for a duration of time.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑠(𝑛+1)=𝑘. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝐵𝑜𝐷] ⊓ 𝐷𝑎𝑡𝑎. [𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛] ⊓
𝑇𝑖𝑚𝑒. [𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛] – The expression specifies an activity that will occur several times, with each

time to be executed by a resource constrained by binding of duty, and to access data by

authentication for a specific duration of time.

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑘∃𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 → 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒. [𝐷𝑒𝑙] ⊓ 𝐷𝑎𝑡𝑎. [𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛] ⊓ 𝑇𝑖𝑚𝑒. [𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛]
– A set of activities to be executed for a number of times in sequence are assigned to resources

which can delegate and share execution rights to other resources.

H2020-MSC-RISE-2016 Ref. 6742023 Page 19

5. Compliance Verification Approach (Definition and Algorithms)

Figure 5 presents an overall compliance verification approach showing three main steps. The first

step is compliance constraints specification, in this step the relevant rules and policies are extracted

from source documents and compiled into a set of compliance requirements, defined to guide process

behaviour. The set includes all requirements relevant for an organization’s business processes to

comply with as sourced from all policies, contractual obligations and external regulations. To support

reasoning, model logic is used to translate the requirements into formal compliance constraints. In

this case both Description logic and linear temporal logic are used.

 The second step is compliance verification; here, the business process model is verified for its

compliance with formalized constraints. The goal is to check and ensure that the business process

conforms to the required policies and regulations. Relatedly, in this step simulation analysis is used

to illustrate the impact of change and variation in policy and regulations over the business process.

The Third step is the outcome of the verification forms the feedback reports displayed for users

about compliancy or violation of the constraints. Outcome from simulation analysis shows the

scenario reports and key performance indicators.

Figure 5: Overall Compliance Verification Approach

5.1. Categories of Constraint Verification ‘

The verification component of the compliance approach is formed of 2 types of checking:

The Simulation component:Simulation is undertaken to generate traces to facilitate analysis and

verification. The analysis involves predictive performance assessment of the business process based

on variations in policy and regulations. Differing scenarios are generated and outcomes are

analysed to support informed decision making.

The verification algorithm component: ‘This component is formed of algorithms that identify and

detect compliance constraints violations. Various algorithms are composed for categorical

constraint verification applicable in different ways, e.g. if a policy changes, users may want to

check for compliance of existing processes with the changed policy. This way, only the relevant

algorithm applies. An alternative is using the overall verification algorithm that combines all

categories. Procedurally a business process is checked for compliance with all relevant constraints.

‘this applies to new business process or those that have been modified significantly. In either case,

the checking procedure in Figure 3 is followed. A business process is checked by detecting

compliancy or violations to required behaviour expressed as constraints. Further, details of the

checking are described in the algorithms presented in subsequent sections.

Figure 6 illustrates the compliancy verification procedure. ‘The existing or new business

processes are checked for conformance with defined constraints. If the process model is compliant,

feedback is given, otherwise detection of non-compliant behaviour proceeds. Where the algorithms

H2020-MSC-RISE-2016 Ref. 6742023 Page 20

detect non-compliant behaviour, specific or general feedback is given about the violations. To enable

independent constraint checking, algorithms are composed according to same categories to permit

constraint specific checking without need to follow a step wise procedure every time. The following

section presents the algorithms according to their categories.

Figure 6: Compliance verification procedure

5.2. Control Flow Verification

The compliance verification algorithms that will be introduced later facilitate business process

designers to check for the well-connectedness of the models to ensure that there are no errors like; 1)

deadlocks, 2) improper termination, and 3) live locks. A well-connected model facilitates checking

for other system model properties like safety and liveness. Safety is a notion that nothing will go

wrong in the model while liveness principle states that something good will happen. This section

presents the definitions and specifications for the functions that are used by the verification

algorithms. The definition follows the constraints categories.

5.2.1. Control Flow Verification Requirements

Connectedness of the process model: Verification of how a process model is well connected is based

on the modelling constructs like Sequence, AND, XOR and OR. It is important for the model to be

well- formed from the design point of view even before other properties can be checked. This way,

if a model’s structural requirements are satisfied, then its soundness is consequently achieved (van

der Aalst, 1997, 2002; Wynn et al., 2009). At this level, verification targets to check how structurally

well formed a model is in terms of sequence, parallelism, exclusive and inclusive choice constructs.

In this section the structural requirements are defined and later we show how to verify for their

conformance.

• Sequence: checking sequential connection between model objects. A valid sequence is given

by:

H2020-MSC-RISE-2016 Ref. 6742023 Page 21

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝜎𝑖(𝑎1 +⋯+ 𝑎𝑛) ∈ 𝑃i

A sequence is a trace of activities from the initial to the nth activity in a process instance

satisfying a predefined order.

• Parallelism: checking connection between objects representing two or more tasks executed

simultaneously and the possibility to converge at another object.

𝐴𝑁𝐷 = 𝜎𝑖((𝑎1 − 𝑎2) ∧ (𝑎1 − 𝑎3)) ∈ 𝑃𝑖

For a given trace in a process instance, any two interleaving tasks with no partial order relation

conform to execution constraints if both tasks execute as per the constraint requirement.

• Exclusive choice: checking connection between objects representing disjoint tasks where one

of them should execute.

𝑋𝑂𝑅 = 𝜎𝑖((𝑎1 − 𝑎2) ∨ (𝑎1 − 𝑎3)) ∈ 𝑃𝑖

For a given trace in process instance, any two disjoint tasks with no partial order relation

conform to execution constraints if either of the tasks executes as per the constraint

requirements.

• Inclusive choice: checking for connection between objects representing tasks where one or more

alternative tasks can execute from a set of alternative paths.

• 𝑂𝑅 = 𝜎𝑖((𝑎1 − 𝑎2) ∧ (𝑎1 − 𝑎3) ∧ (𝑎1
′ − 𝑎3

′)) ∈ 𝑃𝑖

For a given trace in a process instance, any two joint tasks with no partial order relation conform

to execution constraints if one or of the tasks executes as per the constraint requirements.

5.2.2. Specification of Control Flow Constraints

Control flow constraints include among others, existence and bounded existence, dependency,

bounded sequence and precedence. Compliance to these constraints is verified in relation to temporal

constraints to ensure that task ordering and occurrence follow time requirements. To facilitate the

checking, we make the following definitions:

Specification for Existence (and Bounded Existence)

Existence constraint restricts an activity to occur in a specific order or time within a trace of a process

instance. It also specifies ordering relations where specific activity events must start (einit) or end

(eend) an instance. ‘This way, the validity of an instance can be checked. To this effect definition

5.2 refers.

Definition 5.2.1 Existence (and Bounded Existence)

1. Existence for process instance validity.

𝐶ℎ𝑒𝑐𝑘. 𝐸𝑥𝑖𝑠𝑡: (𝑒. 𝑎𝑐 = 𝑖𝑛𝑖𝑡) ∩ (𝑒. 𝑎𝑐 = 𝑒𝑛𝑑) ∈ 𝜎 Where: 𝑒. 𝑎𝑐 is the event of an activity. The

expression specifies a function to check initial and end activity events in a trace.

2. Existence of an activity within a process instance checked in reference to the control structures

3. If (𝑒. 𝑎𝑐 = 𝐴𝑁𝐷) Return ⨄((𝑎1, 𝑎2) ⊓ (𝑎1, 𝑎3))

4. If (𝑒. 𝑎𝑐 = 𝑋𝑂𝑅) Return ⨄((𝑎1, 𝑎2) ⊔ (𝑎1, 𝑎3))

5. If (𝑒. 𝑎𝑐 = 𝑂𝑅) Return ⨄((𝑎1, 𝑎2) ⊓ (𝑎1, 𝑎3) ⊓ (𝑎1, 𝑎4))

H2020-MSC-RISE-2016 Ref. 6742023 Page 22

Application of the function

To illustrate the application of the function above, data in Table 6 is used to check the constraint

requirements.

for each 𝜎 ∈ 𝑃𝑖 do

𝐶ℎ𝑒𝑐𝑘. 𝐸𝑥𝑖𝑠𝑡𝑠: (𝑒. 𝑎𝑐 = 𝑖𝑛𝑖𝑡) ⊓ (𝑒. 𝑎𝑐 = 𝑒𝑛𝑑)
end for

Return

𝑒. 𝑎𝑐 = 𝑖𝑛𝑖𝑡 ∉ 𝑠𝑒𝑒𝑛 /*Initial event is not in ’seen’ events of the instance */

𝑒. 𝑎𝑐 = 𝑒𝑛𝑑 ∉ 𝑠𝑒𝑒𝑛 /* End event is in ’seen’ events of the process instance. */

Using data populated in Table 6 with events, activities and process instances, we show the application

of existence constraint specification and checking for its compliance or violation. Figure 7.4 shows

resultant state graphs generated from the constraint checking of existence and bounded existence for

all structural constructs (sequence, AND, exclusive and inclusive choices). The following verification

requirements are addressed:

Requirement 1: All process instances start and end with activities a and z respectively.

Requirement 2: Between activities a and z, a set of other activities execute as part of the process

instance.

Requirements 1 and 2 in the section above can be checked in the following way using the specified

expressions.

for 𝜎 ∈ 𝑃𝑖 do 𝐶ℎ𝑒𝑐𝑘. 𝐸𝑥𝑖𝑠𝑡: (𝑒. 𝑎𝑐 = 𝑖𝑛𝑖𝑡) ∩ (𝑒. 𝑎𝑐 = 𝑒𝑛𝑑)
Return

𝑖𝑛𝑖𝑡 = 𝑎∀𝑃𝑖 /*Returns activity a as initial activity for all process instances*/

end for

Based on the expressions, it follows that activity a is the initial activity for each process instance, so

is activity z for end activity in each process instance. In terms of soundness, it shows compliance to

termination is achieved by the possibility that each instance can start at a and end with z. However,

the checking is not complete until we check for any possible violations of the behaviour.

Instances Pi1 Pi2 Pi3 Pi4 Pi5

Events e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 E21

Activities a b e z a e c z a b f g h Z a i m z a z m

time 2 4 3 5 2 3 6 5 2 4 6 4 8 4 3 4 3 5 3 3 3

H2020-MSC-RISE-2016 Ref. 6742023 Page 23

Figure 7: Resultant State Graphs

Constraint Satisfaction Checking

We adopt to predicate functions for representing constraint satisfaction or violation.

• seen - Represents running activity events. If it is True that an activity event or set of activity

events is in seen (e.g. ac ∈ seen), then the constraint is satisfied (True ⊨ 𝐶). Otherwise it is

violated (True ⊭ 𝐶).

• finished - Represents executed activity. If it is True that an activity event or set of activity events

is in finished (e.g. ac ∈ finished), then the constraint is satisfied (True ⊨ 𝐶). Otherwise it is

violated (True ⊭ 𝐶) events.

Detecting violation to existence constraint

Violations to existence constraint are detected by checking for instances in which activities a and z

are not initial and end activities respectively, and where the initial time assignments are not observed

for all events. Circumstances leading to violation are checked from:

1. Process instances where activity a is not the initial activity in a set of process executions, i.e.

a ∈ seen

From Table 6, it shows that events (e15, 3, P i4) partially satisfy the constraint since a is the

initial activity for all instances. However, in terms of the temporal requirement the activity

executes for longer time than scheduled, i.e. 3 units of time instead of 2 units.

2. Process instances where activity z is not the end activity in all process executions,

i.e. z ∉ finished

H2020-MSC-RISE-2016 Ref. 6742023 Page 24

From Table 6, it shows that trace (e20, 5, Pi5) involves constraint violating event. Activity z is

not the end activity for the constraint. There is a variance in execution duration where less than

time is used 3 units are used compared to what was scheduled 5 units). This saves time as

opposed to being a violation.

Specifications for Precedence and Dependence Constraints Verification

Precedence and dependence constraints are verified for activities whose existence has been

confirmed. To verify that activity b is preceded by a and that the occurrence of b determines

occurrence or non-occurrence of another activity c, we check for occurrence of b and return its

preceding activity as well as the activity that occurs after its execution as its dependent activity, in

other words activity c occurrence depends on activity b. ‘The constraint is specified as the expression

below:

Definition 5.2.2. Precedence and Dependence

𝐶ℎ𝑒𝑐𝑘. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒 = (𝑎 ≪← 𝑏) /* checks for precedence of a over b*/

𝐶ℎ𝑒𝑐𝑘. 𝐷𝑒𝑝𝑒𝑛𝑑 = (𝑐 ↦ 𝑏) /*checks for dependence c on b*/

The expressions define activity a as a preceding activity to b, while occurrence of activity c is

dependent on b such that c occurs if and only if b has occurred (Xu, 2003; Xu and Jeusfeld, 2003).

The definition is used to specify constraint checking expression for the different control structures

which are afterwards used in the algorithms. The checking involves:

1. Checking if an activity has occurred in the trace 𝑒. 𝑎𝑐 ∈ 𝜎.

Return error if 𝑒. 𝑎𝑐 ∈ 𝜎. stop checking.

2. Check for precedence and dependence constraints and returns outcome based on the routing

constructs:

While 𝑒. 𝑎𝑐 ∈ 𝜎 do
 ((𝑒. 𝑎𝑐 = 𝑎) → Precedes(𝑒. 𝑎𝑐 = 𝑏)) ∧ ((𝑒. 𝑎𝑐 = 𝑐) → Depends(𝑒. 𝑎𝑐 = 𝑏)): (∃𝑐) ↔ (∃𝑏)

Return (𝑒(𝑖 <= 𝑗)) ∈ 𝑃𝑖 /* Returns events satisfying or violating the constraints e.g. c

 occurs if and only if b occurs. Otherwise it is a violation*/

i. If AND /*output based on AND construct */

{
∩𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∩𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

While verifying precedence constraint for activities based on AND construct, the checking

returns a false if there are no seen events where activity a precedes activity b.

{
∩𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑐. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∩𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑐. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

While verifying dependence constraint for activities based on AND construct, the checking

returns a false if there are no seen events in which activity c depends on b

ii. If XOR construct */output based on XOR construct

{
∪𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∨ (𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏′)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∪𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∨ (𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏′)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

Outcome for events satisfying or violating the precedence constraint on disjoint activities b

and b’ over activity a. A violation occurs when activity a is not seen among activities

preceding activity b for all instances

H2020-MSC-RISE-2016 Ref. 6742023 Page 25

{
∪𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑐. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∨ (𝑐′. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∪𝑖≤𝑗
𝑒 𝑒. 𝑎𝑐(𝑐. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∨ (𝑐′. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

Set of events satisfying or violating the dependence constraint for disjoint activities c and c’

over activity b. A violation occurs when activity b is not in seen activities where activities

c and c’ are seen among activities for the process instances.

iii. If OR /*Outcome based on OR construct*/

{
∪𝑒+1
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∨ (𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏′n)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∪𝑒+1
𝑒 𝑒. 𝑎𝑐(𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏)) ∨ (𝑎. 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑏′n)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

The occurrence of activity b is preceded by activity a where more than one alternative paths

are permissible. If events of activity a are in seen and finished, then the precedence

constraint is satisfied. Otherwise it is violated.

{
∪𝑒+1
𝑒 𝑒. 𝑎𝑐(𝑎. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏′𝑛)) ∨ (𝑎. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏′n)) ∈ 𝑠𝑒𝑒𝑛 = 𝑇𝑟𝑢𝑒 ⊨ 𝐶

∪𝑒+1
𝑒 𝑒. 𝑎𝑐(𝑐. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(𝑏)) ∨ (𝑐′𝑛. 𝐷𝑒𝑝𝑒𝑛𝑑𝑠(b)) ∉ 𝑠𝑒𝑒𝑛 = 𝐹𝑎𝑙𝑠𝑒 ⊭ 𝐶

}

The occurrence of activity b is preceded by activity a. If events of activity a are in seen and

finished occurring before activity a, then the dependence constraint between a and b for all

alternative paths is satisfied. Otherwise it is violated.

iv. If Sequence: constraint checking based on sequence construct is checked in the same way

as specified expressions illustrated above.

Definition 5.2.3. Other control flow constraints

The illustration involved the definition and specification of existence, bounded existence, precedence

and dependence constraints. However, other control flow constraints like Response, bounded

response inter alia can be extended into definitions and specifications in the same way as illustrated

in sections above. For time and space limitations not all control flow constraints are specified. After

the definitions and specification of constraints and checking functions, control flow compliance

checking algorithms are composed.

5.2.3. Control Flow Verification Algorithm

Based on the above discussions, specifications and function definitions, a set of control flow based

algorithms are composed to check compliance of the business process with control flow constraints.

To make the algorithms self-contained and independent the definitions below are used for all

algorithms. The general assumption is that events are ordered in a total order over time.

Predicate Functions

• Business process: = 𝐵𝑃

• Process Instances: 𝑃𝑖 = {𝜎𝑖. . . , 𝜎𝑛}

• Trace (𝜎): Logical activity events.

• Events in a trace = started, seen, € Finished where;

 – started = {} − Set of started activity events.

 – seen = {} − Set of seen or running activity events.

 – finished = {} − Set of finished activity events.

• e.ac: Activity

H2020-MSC-RISE-2016 Ref. 6742023 Page 26

 Events Verifying for Basic Process Instance Validity

Sub-algorithm 1 checks for the basic validity of the model based on activity events that start and end

a process instance. ‘e algorithm checks for activity events designated to start or end a process instance.

If start events are not in a set of ‘started’ events (e.ac ∉ started), it implies the activity has not started.

If it is not in ’seen’ activities (e.ac ∉ seen), or ’finished’ (e.ac ∉ finished), it implies that the activity

is not in execution or not completed. The same principle applies for the end activity events. In this

case a violation is reported for activities not started, not in seen and not in finished.

Verifying for Compliance with Existence constraint

The existence constraint refers to constraints that restrict the occurrence behaviour of an activity. The

algorithm verifies for occurrence of activity events in a process instance as per required behaviour

specified by the policies governing operations. The events are fully ordered by time. It is intended to

address the following verification requirements;

Requirement 2.1: Check out activities scheduled to occur but never execute.

Requirement 2.2: Detect deadlocks by checking activities that start but never complete execution.

Based on algorithm 2, violation of the existence constraint is detected if any of the event activity

states is not among the events that are started, executing or completed within the seen and finished

event sets.

H2020-MSC-RISE-2016 Ref. 6742023 Page 27

Verifying for Compliance with Precedence constraint

Precedence constraints restrict the ordering relations between activities based on occurrence of a

previous activity. In collaborative business processes characterized by multi-party executions,

checking the precedence of activities benefits transparency in partner responsibility by knowing

which activities must occur before others and who should execute them. In case of deadlocks, it is

possible to point to the source of the problem. To facilitate verification of compliance with precedence

constraints for activities, algorithm 3 is composed and presented addressing the following

requirements:

Requirement 3.1: Detect activities that are potential sources of precedence violation.

Requirement 3.2: Use compliant behaviour to determine any likely violations based on the

routing constructs.

The algorithm checks precedence condition activity event over an action event. Violation occurs

where the condition does not lead to the action or where the action occurs without the condition

activity. For example, activity a1 is the precedence condition for occurrence of activity a2. The

occurrence of a2 before occurrence of a1 is a precedence constraint violation that algorithm 3

identifies.

H2020-MSC-RISE-2016 Ref. 6742023 Page 28

Verifying for Compliance with Response constraint

Response constraint restricts execution of activities based on evaluation of a condition on the current

activity. The activity will then execute in response to the outcome of that condition e.g. If a cheque

is approved, then it can be issued. Issue cheque is a response activity from approve cheque. Execution

issues arise if the condition is not evaluated or evaluates falsely leading to deadlocks or live locks.

Algorithm 4 in this section checks for compliancy with response constraint over a set of activities.

The following verification requirements are addressed:

Requirement 4.1: Detect activities likely to lead to response-based violations.

Requirement 4.2: Detect deadlocks resulting from non-responsive activities.

Algorithm 4 checks for Response constraint between activity events where an activity condition

(e.ac.Condition) responds to an action activity event (e.ac.Action) where, occurrence of the action

activity in the seen and finished events not as a response from the conditional activity event violates

the response constraint.

H2020-MSC-RISE-2016 Ref. 6742023 Page 29

5.3. Resource Compliance Verification

Verification for compliance with resource constraints aims at checking for the fulfilment of the

resource requirements by the business process such that no violations exist in its behaviour.

5.3.1. Specification of Resource Constraints

This section specifies the resource constraints as formal expressions and functions applicable in the

resource verification algorithms to detect violations. The constraints are separation of duty, binding

of duty and delegation.

• Separation of Duty (SoD): Requires two disjoint activities (a1, a2) to be executed by different

resource actors (r1, r2). Such assignment is based on preliminary specification for actor (user)

and task assignment. In light of the above, SoD specification for r1, r2 over (a1, a2)) is defined

as:

Definition 5.3.1. SoD

∄𝑟1 ∈ 𝑈: ((𝑎1, 𝑎2), 𝑟1)) ∈ 𝑅𝑃

The assignment of SoD constraint serves as a guard preventing a single actor in a role from

executing two disjoint activities. It follows therefore that there should not exist any assignment

of an actor r1 to execute both activities (a1) and (a2) in a user task assignment. The contrary is a

constraint violation.

• Binding of Duty (BoD): BoD requires two tasks (a1, a2) to be executed by the same resource

actor (r1). BoD verification checks to ensure compliance to this requirement, the contrary of

which is a violation. Following preliminary definitions above, specification for activities (a1)

and (a2)) as BoD i.e. BoD (a1, a2) is given by the definition:

Definition 5.3.2. BoD

𝑟1 ∈ 𝑅𝑃: ∀((𝑎1, 𝑎2), 𝑟1) ∈ 𝑅𝑃

For each actor assignment involving activities (a1) and (a2), one actor should be assigned for

their execution. Contrary to the assignment is a constraint violation.

• Delegation: For tasks designated to specific resource actors, delegation enables sharing of

execution rights with other actors. Two scenarios result where; the delegator shares and retains

H2020-MSC-RISE-2016 Ref. 6742023 Page 30

execution rights to the object or completely delegates and retains no execution rights to the

delegate. Delegation is a practice in business operations to ensure business continuity. It also

guards against activity dead locks that result from over constrained resources that create time

lags and delays, or improper implementation of constraints like the four-eye principle.

Specification of the delegation constraint requires information about subjects (users who

delegate and those delegated to), and objects. Therefore, given two (2) users r1 and r2 where r1

delegates activity a to r2, the expression below specifies the delegation constraint:

Definition 5.3.3. Delegation

(𝑎, 𝑟1) ∈ 𝑈𝑇|𝑟1 → 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑎, 𝑟2): (𝑎, 𝑟1 ∧ 𝑟2)

User (r1) with rights to activity a delegates rights to user r2 but retains execution rights such that

both users are now assigned to activity a. (a, r1) ∈ UT|r1 → Delegate (a, r2) Similarly, the above

specification indicates that User (r1) with rights to activity a delegates to (r2) by passing on all

the execution rights such that the delegator can no longer execute the activity.

5.3.2. Definitions for Resource Constraints

To facilitate the checking of compliancy to resource constraints, the following definitions are

relevant. Given a trace σ ∈ (a1, a2, a3) and a set of two users’ r1 and c of instance Pi1, the following

functional definitions are employed by the algorithm during resource constraints compliance

verification

While 𝜎 ∈ (𝑎1, 𝑎2, 𝑎3), (𝑟1, 𝑟2) = 𝑃𝑖1 do

 𝐶ℎ𝑒𝑐𝑘. 𝑆𝑜𝐷 = ((𝑎1, 𝑟1) ∧ (𝑎2, 𝑟2)) /* checks compliance to user assignment over

 activities 𝑎1 and 𝑎2 based on SoD constraint*/

 𝐶ℎ𝑒𝑐𝑘. 𝐵𝑜𝐷 = ((𝑎1, 𝑎2), 𝑟1) /* checks compliance to actor assignment over

 activities 𝑎1 and 𝑎2 based on SoD constraint */

 𝐶ℎ𝑒𝑐𝑘. 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒 = (𝑎, 𝑟1 ∧ 𝑟2) /* checks compliance to delegation constraint

 for activity 𝑎 between actors 𝑟1 and 𝑟2 */

Return is used to generate the outcome from compliance checking showing whether compliance or

violation is achieved based on the different structural controls i.e. AND, Parallelism, OR and XOR.

5.3.3. Resource Compliance Verification Algorithms

The resource verification algorithms apply the specifications and definitions in previous section to

check process behaviour. The previous definitions are applicable for algorithm 5:

Algorithm for SoD Constraint Verification

Verifying for this constraint involves checking traces of the process instances to ensure compliancy

to its requirement. The SoD algorithm is composed for this purpose. Where non-compliant behaviour

is detected the algorithm returns a violation. The following verification requirements are addressed:

Requirement 4.1: Identify and detect resource assignment violations that lead to role conflicts based

on SoD.

Requirement 4.2: Identify and detect roles and tasks upon which SoD violations are likely to occur.

H2020-MSC-RISE-2016 Ref. 6742023 Page 31

While running, algorithm 5 checks for all users constrained by the SoD constraint SoD (user) and

are assigned to a set of activities. The execution of activities (e.ac) by the constrained resource actors

must observe the SoD constraint requirements. The activity events of (c.ac) should exhibit the

behaviour to satisfy the constraint. On contrary, if the activity events in the process instances are not

the same as the activities described in the behaviour, then the SoD constraint is violated. The

behaviour is not seen (SoD user is missing). Otherwise no violation if the same user executed activity

event e.ac.

Algorithm for BoD Constraint Verification

Verifying for BoD constraint involves checking the traces in the process instances to ensure

compliance with its requirements by the business process. A BoD checking algorithm is composed

to detect non- compliant behaviour. The following verification requirements are addressed by the

algorithm:

Requirement 5.1: Identify and detect resource assignment violations that may lead to role

conflicts based on BoD.

Requirement 5.2: Identify and detect roles and tasks upon which BoD violations are likely to

occur to prevent deadlocks.

H2020-MSC-RISE-2016 Ref. 6742023 Page 32

Similar to SoD, if the constraint assigned as part of the activity, the events of that activity should

exhibit the behaviour to satisfy the constraint. If the behaviour is not seen (constrained user is missing)

then the constraint is violated. Otherwise no violation if the same user executes the assigned activities.

Algorithm for Delegation Constraint Verification

For a role to delegate to another it must have exclusive rights to the activity. Verifying for delegation

constraint involves checking the traces in the process instances to ensure that all delegated actors

have assumed their responsibilities to prevent task and resource redundancy where resources or tasks

become idle, or deadlocks resulting from no resources assigned to execute tasks. A delegation

checking algorithm is composed to check non-compliant behaviour. The following verification

requirements are addressed by the algorithm:

Requirement 6.1: Verifying that all delegated roles assume their execution responsibilities.

Requirement 6.2: checking for violations likely to lead to role conflicts or idle roles as well as

permission leakages.

Delegated users become valid users to execute activities not initially assigned. If a delegated user is

not part of the valid user set, or if such users are not the ones that executed the running activities or

finished activity set, then the delegation constraint is violated.

5.4. Data Compliance Verification

Verification of compliance with data constraints checks for how a model conforms with data

requirements. Such requirements include: data availability and accessibility, Authentication and

Privacy. Other requirements forming data constraints include; visibility, interaction and validity

security requirements (Russell et al., 2004, 2005; El Gammal et al., 2016). For convenient checking

and verification enforcement, the different patterns are compounded into the subcategories discussed

below:

1. Data availability and accessibility (AA) constraints: Besides exclusive access requirements,

data should be available and accessible to a basic level to facilitate work progress. Besides, data

should be available and accessible whenever required. Verification of AA constraint requires

checking for compliance with availability and accessibility data requirements.

2. Data Privacy constraint: the requirement to observe privacy of data justifies the establishment

of access control and authorization. Privacy constraint originates from the GDPR data privacy

H2020-MSC-RISE-2016 Ref. 6742023 Page 33

principle where organisations are required to build data privacy as part of their systems.

Verifying for data privacy involves checking for enforcement of privacy controls over data.

3. Authentication constraint: Authentication is a constraint to achieve basic security of data and

systems by requiring users to be identified and given access. Authentication involves the process

of validating the identity of a registered user before allowing access to the protected resource.

As a data constraint, authentication restricts access to data by requiring prior user login and

profile authentication. It is based on identity management where digital identities are managed

based on organisational security policies to ensure that only necessary and relevant data is

shared using user identity and profile data as well as data governance functions.

Similar to privacy, compliancy to security constraint is demanded by many regulatory standards like

GDPR and Anti money laundering. Specifically, GDPR emphasizes security by design. Integrating

security constraints and checking for their compliance in the process model is therefore important to

meet policy and regulatory requirements.

5.4.1. Specification of Data Constraints

Boolean conditions are used to evaluate data access conditions are true or false. Depending on the

outcome, access is granted or denied. If a trace is true to the conditions specified, then it satisfies the

constraint. Otherwise it is false and violates the constraint. To that effect, the following specifications

and definitions are useful for the data checking algorithm. Given a set of activities a1, a2 and a3,

assigned to resource actor (r1) and requires access to product catalogue data (Pcd). Access to this data

is constrained by access and availability, i.e. only ’Read’ action can be granted. If the assignment is

true according to the executed behaviour, then the trace (σ) satisfies (|=) the constraint.

Definition 5.4.1. Accessibility and Availability (AA)

𝜎 ∈ (((𝑎1, 𝑎2, 𝑎3), 𝑟1):(𝑃𝑐𝑑. [𝑅𝑒𝑎𝑑]):𝐴𝐴)

If (𝜎 = 𝑇𝑟𝑢𝑒) then 𝜎 ⊨ 𝐴𝐴

The definition specifies accessibility and availability constraints for Pcd data object with action read

granted to r1 for execution of activities a1, a2, and a3. During verification, the data compliance

verification algorithm checks for compliance to the constraint for the data object, action by the user

and tasks. If the outcome shows that the trace is true to the constraint requirement, then the trace

satisfies the availability and accessibility constraint. Otherwise, it is a violation detected for the AA

constraint.

Definition 5.4.2. Authentication

𝜎 ∈ (((𝑎1, 𝑎2, 𝑎3), 𝑟1):(𝑃𝑐𝑑. [𝑇𝑟𝑢𝑒|𝐹𝑎𝑙𝑠𝑒]):𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

If (𝜎 = 𝑇𝑟𝑢𝑒) then 𝜎 ⊨ 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛

The definition specifies access control by authentication granted for accessing Pcd data with actions

to read and write for role actor (r1) who executes activities a1, a2 and a3. Satisfaction of the

authentication constraint is achieved if the traces of the executed events show exhibit the specified

behaviour. Otherwise, a violation is detected for the authentication constraint.

Definition 5.4.3. Privacy (Prv)

𝜎 ∈ (((𝑎1, 𝑎2, 𝑎3), 𝑟1), 𝑃𝑐𝑑. [𝑅𝑒𝑎𝑑]) :𝑃𝑟𝑣)

If (𝜎 = 𝑇𝑟𝑢𝑒) then 𝜎 ⊨ 𝑃𝑟𝑣

H2020-MSC-RISE-2016 Ref. 6742023 Page 34

The definition specifies Privacy constraint for accessing Pcd data where action to read private data is

to be granted to the resource actor r1 who executes activities a1, a2 and a3. During verification, the

privacy compliance verification algorithm checks the constraint for its satisfaction before access can

be granted to read private data. If the trace is true for the specification, then the constraint is satisfied

and thus compliance achieved. Otherwise, it is a violation detected for the privacy constraint.

Algorithm for Access and Availability Constraint Verification

Verifying for data access and availability Constraints ensures that basic non-exclusive data is

accessible and available with less restriction to enable accomplishment of basic tasks. Algorithm 8 is

composed to the effect. Violation occurs if role actors or tasks are denied access to data constrained

by AA or where the permitted action type differs from the initial assignment, e.g. modify action type

instead of read action type. The verification requirements addressed by algorithm 8 are:

Requirement 7.1: Ensure that required data is available and accessible for all tasks and role actors as

required by AA constraint. This prevents events from executing without access to data. This prevents

deadlocks where running events have no access to data or data is not available and events keep waiting

for it.

Requirement 7.2: Identify and detect AA constraint violations likely to lead into data access denial.

Violation of AA constraint as per algorithm 8 exists when tasks or their actors (r, e.ac) are denied

access to data whose constraint is AA. This violation leads to a deadlock or livelock. Deadlock occurs

if running activities are denied access to data necessary for the process to continue in execution.

Whereas the livelock occurs when a task is denied access to data stays in waiting mode stagnating

process execution. The other form of violation may occur when the activity finishes execution without

necessary data. This leads to wrong outcomes which do not comply with specifications.

Algorithm for Verifying Compliancy with Authentication Constraint

Authentication verification algorithm 9 verifies for compliance by checking that role actor

credentials match the credentials stored in a database of authorized actors as well as the database for

access privileges over tasks. The algorithm checks for three forms of Authentication errors which are

the sources of authentication related violations:

• Access leakage which occurs when non-authenticated users gain access to data.

• Deadlocks which occur when users are authorized to execute activities but access to data is

denied for technical or logical reasons e.g. improper configurations. •

H2020-MSC-RISE-2016 Ref. 6742023 Page 35

• Authentication breach which occurs when non-authenticated activities or users intentionally

gain access to data. This is traced from running or finished events.

The following verification requirements are addressed by the algorithm:

Requirement 8.1: Prevent security lapses or leakages by checking actor identify and detect

unauthenticated access to data by task executors or roles.

Requirement 8.2: Detect authentication violations upon tasks based on access types.

Actors are permitted or denied access to data by authentication. Where data constrained by

authenticity is accessed by non-authenticated actors, it implies access leakage i.e. data is accessed by

actors without authentication. Similarly, where access to data is denied to authentic actors, it leads to

a deadlock since they cannot execute the current work in progress. Authenticity compliancy checking

algorithm checks for permitted or denied access to restricted data based on actor identities and roles.

Where the assignment to data does not match the prescribed access policies, a violation is detected.

Similarly, violations are identified from traces where transactions have occurred if the assignment

does not match the traces

Algorithm for Verifying Compliancy with Privacy Constraint

Privacy constraint is enforced by means of access control and authorization. Authorization involves

the process of validating that the authenticated user is granted permission to access the requested

resources. Privacy as a data constraint restricts access to data regarded private as defined by GDPR.

Data that is not available to the public is accessible by fulfilling authorization requirement. Violation

to privacy constraint is checked targeting two forms of errors; deadlocks and privacy breach.

• Deadlocks occur when the executing events authorized to access data are denied access for

technical or logical reasons e.g. improper configurations,

• Breach to privacy i.e. non-authorized activities eventually access private data and execute.

To verify for these errors in a business process, algorithm 10 is composed. Authorized actors are

granted permission to Read/Write/Modify private data items. Therefore, compliant traces or

transactions are those where the Assignment is equivalent to the authorized actions (Assign ≡

Authorize). Violations are detected or identified in traces where authorized permissions differ from

the assigned (Assign ≠ Authorize).

H2020-MSC-RISE-2016 Ref. 6742023 Page 36

The other form of violation is where privacy constrained data exists outside the restricted boundary.

This leads to a leakage since it is accessible by non-authorized actors. Similarly, where authorized

data is not visible in ‘seen’ and ’finished’ events it signifies a violation in form of a deadlock where

data was not available or accessible to facilitate task execution. Authentication and privacy

constraints are enforced by means of process driven access control and authorization (PDAC) (Kasse

et al., 2020). Section 6 discusses the PDAC concept in detail.

Overall Compliance Verification Algorithm

The overall compliance verification algorithm is a general algorithm that integrates the specific

constraint checking algorithms into a single algorithm to check the entire business process behaviour.

The application of this algorithm is twofold:

• It can be applied to verify a business process where a large amount of modifications has been

made necessitating checking the entire model for constraints compliancy, or

• Where a business process is designed from scratch automatically requiring full scale verification

for compliance with policy and regulatory requirements.

H2020-MSC-RISE-2016 Ref. 6742023 Page 37

H2020-MSC-RISE-2016 Ref. 6742023 Page 38

6. Process Driven Access Control and Authorisation (PDAC)

PDAC is a concept proposed in (Kasse et al., 2018, 2020) as a mechanism towards realization of an

automated and agile, yet less complex solution to overcome the challenges of non-compliance to

security and privacy constraints. The motivation and rationale were based on the compliancy demands

of the 2018 revised GDPR. At the dawn of the May 2018 launch of the revised GDPR version, big

companies like Facebook, Inc. (Patterson, 2020) and Google LLC (Satariano, 2019) were already

faulted for data privacy breaches. The GDPR articles of interest to this study are the principles of

security by design and privacy by design. ‘The former principle requires security of the data to be

built within the information system design. The latter principle requires transparency from the data

protector and processor to make known to the data owner the status of their data i.e. when it is being

collected, processed and transmitted. Before collection and processing, the data owner’s consent must

be sought.

PDAC leverages existing solutions to enhance access control and authorizations to achieve

automated compliancy, especially with dynamic policies and regulations. It ensures regulated and

legalized data access based on its need to accomplish a specific process instance. As a divergent

access control mechanism from existing access control mechanisms, access under PDAC is based on

the entire process instance by assessing the purpose, time and instance as opposed to the subject,

object or action to be committed. This is a paradigm shift from the traditional access control models

based on tasks (Thomas and Sandhu, 1994), roles (Thomas and Sandhu, 1994; Sandhu, 1995;

Ferraiolo et al., 2001) and attributes (Jin, Krishnan and Sandhu, 2012; Hu et al., 2014, 2015) which

grant and authorize more access than what is required. This violates the data privacy principle.

Despite their role in security and privacy administration, classical access control mechanisms are

unable to support modelling and enforcement of security and privacy requirements presented by

current workflows which must as well comply with many other regulations. Relatedly, workflows

supporting collaborative business processes present more complex and dynamic security and privacy

requirements that require agility to implement which is not provided in the current mechanisms. They

grant roles more authority and permissions beyond what may be required.

Figure 8. Illustration of PDAC vs. Traditional access control mechanisms

Figure 8 part (a) illustrates authorized users in a call centre granted full access to all customer

records indiscriminately. They have access to records all time. Part (b) illustrates PDAC where users

are granted access to a single record per session of time a customer is being served. Various

extensions to the classical access control mechanisms have been suggested. In Table 9, a summarized

description of mechanism extension is presented together with PDAC. It is noticeable that the most

common constraints dealt with are SOD and BoD. The suggested PDAC mechanism differs from the

classical ones to address privacy and authentication constraints

H2020-MSC-RISE-2016 Ref. 6742023 Page 39

Table 9. Research on extensions of Access control mechanisms

6.1. Implementation architecture for Process Driven Access Control and

Authorization

Access to data is granted by authorization and revoked automatically in two ways i.e. i) Once the

purpose for which access was granted is accomplished, and ii) When the assigned duration expires.

In either case, the resource actor ceases to have access to data. For example, in Figure 9 user is

assigned access to a single customer’s data for an instance of a call and access will cease the moment

the call ends. During execution, when access to data is required, the authorization service is invoked

to check the assigned access privileges. It then provides feedback for granted or denied access and

provide message to the user via the dashboard.

Figure 9. PDAC Authorization Service Architecture

H2020-MSC-RISE-2016 Ref. 6742023 Page 40

1. Activity started

2. User accepts tasks

3. BPMS work list handlers’ issues data authorization token

4. Authorisation engine validates request token with policy and customer databases

5. Token validated and issued to BPMS

6. The token is stored in the browser/ user client

7. Actor executes activity

Within the business process management system an activity event is initiated as step (1) shows the

activity is then assigned to a resource actor which will accept it in step two (2). The activity now

exists in the work list of the actor (system user) in the BPMS. The BPMS issues an authorization

token request to access the required data in step (3). In step (4) the authorization service is managed

by the authorization engine implemented by underlying technologies like identity and access

management (IAM) and Security Assertion Markup Language (SAML).The authorization involves

validation of the request against user identities, policies and customer data in their specific databases.

A collection and validation of a combination of these parameters legitimizes access authorization.

The token is validated either offline with a short duration session token or with digital signature online

validation. In step (5) a validated token is returned to the BPMS authorizing activity execution by the

actor and stored in the browser or user client profile in steps (6) and (7).

6.2. User Authentication

SAML technology supports enforcement of user identification and authentication. The user signs into

the client portal e.g. a browser which sends an authentication request to the user identity database.

The database authenticates the user by generating SAML authentication assertions that identify the

users and their information. The browser contacts the validation service with the SAML assertion

which requests temporary security credentials and creates session for sign in. The sign in is sent to

the browser granting access to the users based on policies in the policy database.

6.3. GDPR Implementation

The customer self-service point is for implementation and fulfilment of GDPR requirements.

Enforcing compliance to GDPR requirements is achieved by enabling:

• Data owners have access to personal data by means of automated access.

• Restrict processing of data by data owners by directly interacting with data processors.

• Data modification and deletion through a self-service interface.

• Data portability to enable data transfer serviced by the data owner.

• Audit and monitoring of data by its owner at any point in time.

H2020-MSC-RISE-2016 Ref. 6742023 Page 41

7. Compliance Checking and Verification with Use Case

This section presents the application of the artifacts, i.e. the compliance verification algorithms to

check the compliance of a business process with the required constraints. The formalization and the

design of the compliance verification algorithm followed a stepwise approach based on use case 1

which was described in section 3. To demonstrate artifact applicability, we still apply the use case 1

but in a different way. For this purpose, understandability and space reasons, use case 1 is abstracted

to represent internal process operations of the store, and verified using the overall compliance

verification algorithm in section 8.4 specifically, the order processing instance is considered.

7.1. The Abstracted Pick and Pack Use Case

The process starts with arrival of orders in the store’s order catalogue. The orders are sorted, assigned

and processed to completion. The order processing Eco system is composed of the orders, customers,

staff, policies and regulations, and regulatory agencies among others. These play different roles:

• Orders are placed by customers and pick them when they are ready or wait for delivery.

• Staff process orders at the store e.g. Pickers, Packers, supervisors among others.

• Policies and Regulations guide operations of the business process.

• Regulatory agencies specify and monitor enforcement of policies and regulations.

The activities in the abstracted pick and pack business process are briefly described as follows:

• Select Order (So): the order is selected from the pending orders by a staff who will process it.

This is the initial activity which signals the start of order processing instance.

• Pick items (Pit): The items are picked by the store staff. A store may have one or more store

departments and staff may cross between departments or are restricted to one.

• Verify order (Vo): This is a quality check to ensure the order is fulfilled in terms of the right

items and quantities.

• Pack order (Po): The order is packed and made ready for delivery or pickup by the customer.

• Hand over (Ho): The ready order is handed over to customer service unit

• Customer Pick up or Delivery (Cpd): if the order is not picked up the delivery, staff will deliver

the item within the specified duration.

Based on the process activity brief description above, consequently the model in Figure 10 is

realized.

H2020-MSC-RISE-2016 Ref. 6742023 Page 42

Figure 10: Abstracted pick and pack business process model

7.1.1. The Internal Requirements of the Business Process

As described, the business process must conform to a set of policies specific for a store. Some of the

relevant policies include:

Control flow and temporal policies to guide process executions are as follows:

1. Each order must start with the select order activity and end with customer pick up or delivery.

The total order processing time is 3 hours.

2. During order processing, big orders are picked by more than one staff. This activity duration

should not exceed one hour.

3. Every order must be verified before it is packed. Verification of each order depending on the

size within 20 minutes.

4. Packed orders are ready for handover to customer service section

5. Orders are picked by customers or delivered to customer premises. Delivery takes one hour

whereas the customers must pick their orders within a day otherwise they are put in the storage.

In addition, resource-based policies to guide allocation resources are as follows:

• Pickers are allocated to pick items and cannot execute verify orders.

• Packers are allocated to pack order task. However, they also execute verify order task.

• Pickers can be delegated to participate in order hand over to customers if they are free or when

there are high volumes.

• Supervisors oversee other employees and can execute any task.

• Supervisors can execute delegate tasks. E.g. supervisors can delegate pickers to pack items.

H2020-MSC-RISE-2016 Ref. 6742023 Page 43

The specified tasks are executed if access to necessary data is provided. To this effect, policies to

guide access control to data are specified as follows:

• Supervisors have full access to data and can grant data access to staff based on organisational

roles and tasks they execute in the business process.

• Basic data must be accessible and available for staff to execute tasks that do not need much

restriction and control. For example, order list data should be accessible and available to pickers,

verifiers and packers.

• Access control and authorization must be observed for data privacy. For example, customer

personal data, financial data among others

• Customer data is considered as private data to which the principle of privacy must be observed.

• Security of the data and system is important and worth observation. To this effect, users and

staff must be authenticated to use the system.

The internal policies are superseded by the external regulations. The super store being cross regional,

several external regulations apply. Such as:

• The European union general data protection act (GDPR) which emphasizes data privacy and

security

• The Sarbanes Oxley Act (SOX) which emphasizes the separation of duty and binding of duty.

• The UK consumer protection act which emphasizes consumer protection rights like right to

quality products and services, right to return goods, right to be refunded.

• The Health Insurance Portability and Accountability Act (HIPAA) or the NHS equivalent which

defines basic security and privacy practices for health care and pharmaceutical dispensaries.

The act applies to the stores since many of them operate pharmacies.

• Trade laws limiting sale of restricted products to specific groups of customers like those in

underage category. For example, sale of alcoholic products. Also, sale of health products that

require drug prescriptions.

• Service level agreements for acceptable business transactions and customer relations.

Both internal policies and external regulations must be complied with by the business process.

Because of the collaboration, contractual obligations are composed and agreed upon by the parties as

guiding principles for business operations. A collection of requirements from applicable policies,

rules, laws, standards and regulations forms a set of all compliance requirements that the business

process must conform with. This document is updated as change in policies and regulations occur.

As earlier indicated, policies and regulations are stated in natural language and thus bound to suffer

the challenges of natural language such as ambiguities and inconsistency. The extracted requirements

form the compliance constraints that are verified with the business process model. The verification is

only possible with formalized constraints. From this point, the artifacts put forward by this paper are

applied. In the next sections, the application of constraint expression mechanism is illustrated.

7.1.1. Constraint Elicitation and Expressions

In consideration of the above, a list of requirements and constraints are for the pick and pack process

as presented in Table 10 below. The next step is to formalize the listed constraints through formal

specifications in section 7.2 based on DL.

H2020-MSC-RISE-2016 Ref. 6742023 Page 44

Table 10. Requirements and Constraint Lists

Requirement Expressions

DL Based Specification

This section illustrates requirements representations using DL based on the constraint expression

mechanism describe in section 4. The symbols used include:

• u Conjunction of constraints

• t Disjunction of constraints

H2020-MSC-RISE-2016 Ref. 6742023 Page 45

• → Assignment of an activity to a constraint

• : Assignment of subsequent constraints after the initial (control flow) constraint

• [,] Brackets holding constraint attributes

Constraint Representations using Unary Expressions

The unary expressions represent individual category-based constraints:

1. Example control flow and temporal constraint expressions Requirement 1 specifying that the

select order activity Starts every order processing instance, executed within 10 minutes,

assigned to Pickers but can be delegated and data access is limited access to order catalogue. ‘is

requirement can be expressed as follows:

So → (Exist) ∩ Duration: (10mins)

Pit → [So] Precede ∩ BoundedExit (n−1) ∩ Duration: (20 − 50mins)

Vo → [Pit] Precede ∩ BoundedExit[n] → Duration: (≤ 20mins)

P o → [Vo] Response ∩ Precede ∩ Valid: (10mins)

Ho → [Po] Precede ∩ Delay :(20mins)

Cpd → [Ho] Precede ∩ BoundedExit[n] ∩ (Duration: [1−2hrs] ∩ Repetition: [10mins])

2. Example Resource constraint expressions

So → (Supervisor) ∩ Delegate: (Supervisor → Pickers)

Pit → (Pickers, Supervisors) ∩ Delegate: (Supervisor → Packers)

Vo → SoD: (Supervisors, ¬Pickers) ∩ Delegate: (Supervisor)

Po → BoD: (Supervisors, Packers)

Ho → BoD (Supervisors, Deliverystaff)

Cpd → BoD (Supervisors, Deliverystaff)

3. Example Data constraint expressions

So → ACA ∩ Authentication: (Ordercatalogue)

Pit → AA: (Itemorderlists) ∩ ACA: (Departmentitemlists)

Vo → ACAAuthentication: (Itemorderlists)

 P o → Authentication (Ordercatalogue)

Ho: (Ordercatalogue)

Cpd → Visible ∩ AA: (Ordercatalogue)Privacy: (Customeraddress)

Constraint Representations Using Binary Expressions Binary expressions are composite

representations involving combinations between sets of constraints. The requirements in Table ‰

involve combinations of constraints that guide execution behaviour. This subsection illustrates

expression of requirements involving binary constraints per activity.

1. Select order execution constraints expression

𝑆𝑜 → (𝐸𝑥𝑖𝑠𝑡 ∩ ¬𝑃𝑟𝑒𝑐𝑒𝑑𝑒) ∩ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛:[<10𝑚𝑖𝑛𝑠]𝐵𝑜𝐷[𝑃𝑖𝑐𝑘𝑒𝑟] ∩ 𝐼𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡[𝐴𝑢𝑡ℎ]
∩ [𝐴𝐶𝐴]

Requirement 1 specifying that the select order activity starts every order processing instance,

executed within 10 minutes, assigned to Pickers as BoD but can be delegated and data access is

limited access to order catalogue by access control and authorization.

H2020-MSC-RISE-2016 Ref. 6742023 Page 46

2. Expressions of Pick items execution requirements

𝑃𝑖𝑡 → (¬Exist[𝑆𝑜] ⊓ 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡[𝑛𝑛−1]) ⊓ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛: [20 − 50𝑀𝑖𝑛𝑠]
⊓ (𝐵𝑜𝐷: [𝑃𝑖𝑐𝑘𝑒𝑟] ⊓ [𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒: (𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑖𝑐𝑘𝑒𝑟, 𝑃𝑎𝑐𝑘𝑒𝑟))

⊓ 𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: [𝐴𝐴] ⊓ [𝐴𝐶𝐴]

The expression specifies that pick items activity is preceded by select order and can be repeated

several times until all items on the order list are picked. The scheduled duration is between 20

and 50 minutes, with a BoD resource constraint for the picker, and access to item order list data

granted by access and availability, and by access control and authorization.

3. Expressions of Verify order execution requirements

𝑉𝑜 → (Precede[Pit] ⊓ BoundedExist[𝑛𝑛−1]) ⊓ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛: [< 20Mins]
⊓ (𝑆𝑜𝐷: [¬𝑃𝑖𝑐𝑘𝑒𝑟𝑠] ⊓ 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒: (𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑎𝑐𝑘𝑒𝑟))

⊓ itemorderlist: ([𝐴𝐴] ⊓ [𝐴𝑢𝑡ℎ])

The expression specifies that verify order activity is preceded by Pick items and its conditions

must be satisfied before the process continues to the next level which implies that it is repeated

several times. The scheduled duration is less than 20 minutes, with SoD resource constraint for

the pickers and supervisor who can delegate to pickers. Access to item order list data is granted

by authentication, and by access control and authorization.

4. Pack Order execution constraints expression

𝑃𝑜 → (𝑃𝑟𝑒𝑐𝑒𝑑𝑒[𝑉𝑜] ⊓ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) ⊓ 𝑉𝑎𝑙𝑖𝑑[=30𝑀𝑖𝑛𝑠] ⊓ (𝐵𝑜𝐷: [𝑃𝑎𝑐𝑘𝑒𝑟𝑠] ⊓
𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒[𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑖𝑐𝑘𝑒𝑟] ⊓ 𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: ([𝐴𝐴] ⊓ [𝐴𝑢𝑡ℎ])

The expression specifies that pack order activity is preceded by verify order and occurs as a

response to verify order. Its execution is valid for 30 minutes. The assigned resource constraint

is BoD for the packers and supervisor who can delegate to pickers. Access to item order list data

is granted by accessibility and availability, and access control and authorization.

5. Handover Order execution constraints expression

𝐻𝑜 → (𝐸𝑥𝑖𝑠𝑡 ∩ 𝑃𝑟𝑒𝑐𝑒𝑑𝑒[𝑃𝑜]) ∩ 𝐷𝑒𝑙𝑎𝑦[20𝑀𝑖𝑛𝑠] ∩ 𝑅𝑜𝑙𝑒:[𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑆𝑡𝑎𝑓𝑓]
∩ 𝐼𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡𝑠[𝐴𝐴] ∩ [𝐴𝐶𝐴]

The expression specifies that handover order activity is preceded by Pack order. Its execution

is delayed for 30 minutes to allow batch processing of handover. The assigned resources are

supervisors and delivery staff. Access to item order list data is granted by accessibility and

availability, and by authentication.

6. Customer pick-up or Delivery execution constraints expression

Cpd → (Exist ∩ Precede[Po]) ∩ (Duration:[1−2HoursMins] ∩ Repetition[10mins]) ∩

[Supervisors, DeliveryStaff] ∩ (Itemorderlists : [AA], customeraddresses : ∩ [ACA]) The

expression specifies that order delivery or customer pick-up activity is preceded by handover

order, executed for a duration of 1-2 hours and it is repeated every 10 minutes in case the order

is rejected. The assigned resources are supervisors and delivery staff with access to order list

data granted by accessibility and availability, while customer address data is granted by

satisfying privacy data constraints.

Example Formal Constraints

To enhance the reasoning capacity, DL was extended with integration of basic constructs of LTL

i.e. operators and quantifiers to obtain more formal constraint expressions. The model logic created

facilitates compliance verification and checking of business process and constraints. The section

below presents the example formal expressions.

1. Select order execution constraint expression

𝐺(𝑆𝑜[𝑖𝑛𝑖𝑡] ∧ [< 10𝑚𝑖𝑛𝑠] ∧ [𝑝𝑖𝑐𝑘𝑒𝑟, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟: 𝐵𝑜𝐷] ∧ [𝐼𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: (𝐴𝐴, 𝐴𝑢𝑡ℎ)]

H2020-MSC-RISE-2016 Ref. 6742023 Page 47

The expression specifies So as an initial activity whose duration is less than 10 minutes. It is

assigned to pickers and supervisor as resources constrained by BoD which implies that the

picker can participate in another activity. Access to item order data is controlled by access and

availability as well as authentication.

2. Pick Items execution constraint expression

𝐺(𝑃𝑖𝑡𝑛
𝑛−1
→ ∧ [20 − 50𝑀𝑖𝑛𝑠] ∧ [𝑃𝑖𝑐𝑘𝑒𝑟: 𝐵𝑜𝐷, (𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑎𝑐𝑘𝑒𝑟: 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒)]

∧ [𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: (𝐴𝐴, 𝐴𝐶𝐴)]

The expression specifies Pit as an activity that can be repeated for n times, for duration between

20-50 minutes. It is assigned to pickers and supervisor as resources constrained by BoD which

implies that the picker can participate in another activity. The supervisor can delegate task to

packers. Access to item order list data is controlled by access and availability as well as

authentication.

3. Verify order execution requirements

𝐺(𝑉𝑜𝑛
𝑛−1
→ ∧ [< 20𝑚𝑖𝑛𝑠] ∧ [𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟𝑠[𝑆𝑜𝐷])(𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑎𝑐𝑘𝑒𝑟𝑠: [𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒])

∧ 𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: (𝐴𝐴, 𝐴𝑢𝑡ℎ)])

The expression specifies Vo as an activity that can be repeated for n times until it passes, for a

duration between of less than 20 minutes. It is assigned to packers as resource constrained by

SoD. ‘e supervisor can delegate task to packers. Access to item order list data is controlled by

access and availability as well as authentication.

4. Pack Order execution constraint expression

𝐺(𝑃𝑜 →∧ [30𝑀𝑖𝑛𝑠] ∧ [𝑃𝑎𝑐𝑘𝑒𝑟𝑠: 𝐵𝑜𝐷(𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠, 𝑃𝑖𝑐𝑘𝑒𝑟: 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒)] ∧
[𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡]: (𝐴𝐴, 𝐴𝑢𝑡ℎ))

The expression specifies Po as an activity to be executed for duration of 30 minutes or less by

packers and supervisor as resources constrained by BoD which implies that the packers execute

Po in relation to another activity. The supervisor can delegate the activity to pickers. Access to

item order list data is controlled by access and availability as well as authentication.

5. Handover Order execution constraint expression

𝐺(𝐻𝑜 → [20𝑀𝑖𝑛𝑠] ∧ [(𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠), 𝑃𝑖𝑐𝑘𝑒𝑟𝑠: 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒] ∧ [𝑖𝑡𝑒𝑟𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: (𝐴𝐴, 𝐴𝐶𝐴)])

The expression specifies Ho as an activity scheduled for duration of 20 minutes. It is assigned

to supervisors who can delegate to pickers. Access to item order list data is controlled by access

and availability as well as authentication.

6. Customer pick-up or Delivery execution constraint expression

𝐺(𝐶𝑝𝑑 →∧ [1 − 2𝐻𝑜𝑢𝑟𝑠𝑀𝑖𝑛𝑠, 10𝑀𝑖𝑛𝑠] ∧ [Supervisors,DeliveryStaff]
∧ [𝑖𝑡𝑒𝑚𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑠𝑡: 𝐴𝐴, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠: 𝐴𝐶𝐴])

The expression specifies Cpd as an activity scheduled for duration between 1- 2 hours. It is

assigned to supervisors and delivery staff. Access to item order list data is controlled by access

and availability while customer addresses data is controlled by privacy constraint as well as

authentication

7. if Duration >=24 hours then Action “Take package to store”

When the orders are not picked for the day, they are taken to the store for storage. The

expressions in this section demonstrate the converted formal expressions making use of binary

relations among the constraints to specify behaviour of the process. To illustrate the reasoning,

a set of verification requirements are specified as follows:

H2020-MSC-RISE-2016 Ref. 6742023 Page 48

Verification Scenario – Requirements

In this scenario, the following verification requirements are listed, their specification and formal

expressions:

1. Every order processing instance starts with select order and ends with delivery or customer pick

up.

𝐺((𝑆𝑜), 𝐹(𝐶𝑝𝑑))

For purpose of checking termination of instances, each terminating case starts with selects order

and ends with order delivery or pickup.

2. Every order processing instance must be verified. Verify order must exist in every instance.

𝐺(∀𝜎 ∈ 𝑃𝑖 ∃𝑉𝑜)

For every case of order processing instance must always be verified

3. Supervisors have rights to every task and can delegate tasks to other users.

𝐺(∀𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 → (𝐴𝐶𝐴. [𝑅𝑒𝑎𝑑]) ∧ 𝐹(𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒))

For each activity, always the supervisor has access control and authorization, and can eventually

delegate permissions.

4. A set of activities are BoD and SoD respectively

𝐺((𝑃𝑖𝑐𝑘𝑒𝑟𝑠, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠). 𝐵𝑜𝐷 → (𝑆𝑜, 𝑃𝑖𝑡)

Activities select order and Pick item are always executed by resource actors pickers and

supervisors constrained as BoD. ‘ e roles meet resource actors selection conditions for the

execution of So and Pit.

𝐺((𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟𝑠, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑠) ∧ (¬𝑃𝑖𝑐𝑘𝑒𝑟𝑠). 𝑆𝑜𝐷 → (𝑉𝑜)

Activity verifies order is always executed by verifiers or supervisors as designated role actors

that meet resource selection conditions for its execution. Pickers are excluded from roles that

can execute verify order.

5. Verify Order must wait until Pick order is completed. Pick order is repeated until all items are

picked.

𝐺((𝑉𝑜)𝑊(Σ𝑛−1
𝑛 𝑃𝑖𝑡𝑛) → 𝑛 = 𝑘

Verify order must wait until pick items executes for a specified number of times i.e. until all

items are picked where k = number of items.

6. Where stock of items is not available for an order, suspend order and contact customer

𝐺 (Σ𝑛+1𝑛
𝑛 𝑃𝑖𝑡, 𝐹(𝑆𝑢𝑠𝑝𝑒𝑛𝑑 ∧ 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟))

If the items picked do not sum up to the items ordered (if no more items are available), the order

is suspended, and the customer is contacted.

7. Unavailable items can be substituted upon permission from the customer

𝐺(𝑃𝑖𝑡 → [Item − unavailable], (Contactcustomer ∧ Replace) ∨ 𝐹(alternativeitemsatdelivery))

Where items on the order are not available, the customer is contacted to replace the items or

alternative items are carried and offered during the order delivery.

8. The total order processing time is approximately 3 hours. The total duration for processing each

case of the order is given by: Total process duration =

∑(𝑆𝑜, 𝑃𝑖𝑡, 𝑉𝑜, 𝑃𝑜, 𝐻𝑜, 𝐶𝑝𝑑)

𝑡

H2020-MSC-RISE-2016 Ref. 6742023 Page 49

Using the formal specified verification requirements, the next section shows how to check for

their fulfilment and compliance through application of the verification algorithms.

Application of Compliance Verification

To verify the business process’s compliance with above constraints, the overall compliance

verification algorithm 12 is applied. The specific properties verified in this case include the following:

Termination property: this property is used to check the possibility that a model has start and end

points, i.e. a model can start and end. To check this property, the algorithm 12 checks for existence

of initial and end activity events for each complete case in a process instance. Absence of initial and

end events indicates lack of termination which is also a source of deadlocks i.e. tasks that start and

never complete. It also violates the constraints for initial and end activities specified in requirement 1.

Deadlocks: checking for these deadlocks in models ensures that no activities remain stuck,

incomplete or unexecuted due to lack of resources, resource overutilization or unintended lock out or

denial to data access. For example, due to SoD restrictions, situations may arise where no resource is

available to execute a task. The algorithm checks to detect deadlocks likely to be caused by resource

allocation. This is enforced by checking constraints related to resource allocation to process activities

such that deviant behaviour leading to violations can be detected early in time. From the use case, at

least the supervisor role is assigned to each task as a continuity strategy. The algorithm further checks

for the existence of roles that can free over allocated resources or execute tasks that may exist without

assigned resources or whose resources may be busy. From the use case, the supervisor role is assigned

for each task as specified in requirement 3, thus the algorithm checks for its existence. The non-

existence of supervisor role assignment over tasks is considered a violation.

Livelocks: checking for livelock in the model ensures that no instances are trapped in infinite

loops. For example, sources of livelocks in the use case are: orders that remain pending because of

non-availability of stock items, orders that do not pass verification and executions that remain

pending due to denied data access. Specification 7 allows item substitution where an ordered item is

not available. ‘is helps to prevent order suspension which is a likely source of livelocks. The algorithm

in this case will verify for existence and permission to execute the substitute item activity in the

model. Absence or lack of necessary resource assignments to execute this activity amounts to a

violation.

Temporal conflicts checking: the verification of temporal constraints checks for conflicts related

to temporal assignments where resources (roles) may be assigned to different tasks whose execution

occurs at the same time, or activities that start and end at the same time yet assigned to same resource.

This would imply that only one task may be attended to due to conflicts in execution time causing a

delay in the entire process duration. The algorithm checks for conformance to temporal requirements

and detecting likely deviations based on the total process duration.

Where the duration is beyond the total activity scheduled times, it implies a delay. The algorithm

will proceed to check and identify the activities likely to cause delays and thus violating the temporal

constraints. Requirement 8 specifies total order process instance duration to be 3 hours. The algorithm

sums up the specific activity durations and delays to determine the compliancy to the required process

cycle time. If the execution time exceeds the scheduled time, then a temporal violation is reported.

Permission lock Property: the property relates to checking of conflicts relating to access control and

authorizations where permissions may be granted and denied at the same time, or permit and authorize

the same role for the same activity at the same time. ‘is leads to permission locks which the algorithm

assists to identify by assessing the data constraint assignments concerning access control and

authorization, security and privacy.

From the case, access to data requires access and availability for the specific assigned roles except

where customer data which is considered private as requirement 6 and 7 specify. Access to customer

addresses is controlled by privacy constraint. The algorithm checks for compliance to this constraint.

H2020-MSC-RISE-2016 Ref. 6742023 Page 50

To facilitate further evaluation of the artifacts’ outcomes, a practical implementation of a prototype

is necessary.

H2020-MSC-RISE-2016 Ref. 6742023 Page 51

H2020-MSC-RISE-2016 Ref. 6742023 Page 52

H2020-MSC-RISE-2016 Ref. 6742023 Page 53

8. Conclusion

This deliverable provides an initial work for supporting end users to verify collaborative business

processes for compliance with policy and regulatory requirements. The outcome is a compliancy

verification approach supporting elicitation, specification and analysis of policy and regulatory

requirements, their translation into formal constraints that are verifiable with collaborative business

processes for compliance in the context of virtual factory.

In Chapter 2, we summarized process verification and compliance approaches of collaborative

business processes based on our publications (Kasse, Xu and de Vrieze, 2017; Kasse et al., 2018;

Oyekola and Xu, 2020) and D1.3.

In Chapter 3, an example case and related to compliance issues and requirements are provided as

a base to explain the motivation and the design of the approaches. The requirements are from different

dimensions of processes and polices.

In Chapter 4, the different compliance constraints are expressed and specified using different

formalizations.

In Chapter 5, the compliance verification is designed for verifying the control flow, resource flow

and data flow respectively. Related definitions and algorithms are included.

In Chapter 6, process driven access control and authorisation are discussed for collabrative

business processes. The example case is used for explaining the approaches.

In Chapter 7, the designed verification approaches are explained by using the example cased

mentioned in Chapter 3.

The virtual factory will shift business processes from processes within one organization to

collaborative business processes cross-organisations involving various partners, cutting across

borders, and required to satisfy numerous policies, standards and regulations. This calls for stable,

affordable yet usable supportive applicable tools, techniques and methods to support design and

verification of collaborative business processes that are compliant to not only internal requirements

but also external regulations. D4.1 presented a mechanism and algorithm to support the specification

of data constraints and verifying for their compliancy with collaborative business processes.

The data constraint verification algorithm is designed based on an example business process case

and evaluated with another example case. Besides, the algorithm's time performance requirements

are also evaluated. To provide meaningful verification, feedback is provided on compliance or

violation of relevant constraints. For future work, we target to integrate compliance verification for

other process perspectives based on resource requirements in collaborative business processes.

Moreover, a practical implementation prototype is of the algorithms forms our next step.

H2020-MSC-RISE-2016 Ref. 6742023 Page 54

References

van der Aalst, W. M. P. (1997) ‘Verification of workflow nets’, in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Springer Verlag, pp. 407–426. doi: 10.1007/3-540-63139-9_48.

van der Aalst, W. M. P. (2002) ‘Workflow Verification: Finding Control-Flow Errors Using Petri-

Net-Based Techniques’, in Business Process Management. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, pp. 161–183. doi: 10.1007/3-540-45594-9_11.

van der Aalst, W. M. P. (2004) ‘Business Process Management Demystified: A Tutorial on Models,

Systems and Standards for Workflow Management’, in Desel Jörgand Reisig, W. and R. G. (ed.)

Lectures on Concurrency and Petri Nets: Advances in Petri Nets. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 1–65. doi: 10.1007/978-3-540-27755-2_1.

van der Aalst, W. M. P., ter Hofstede, A. H. M. and Weske, M. (2003) ‘Business process

management: A survey’, Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 1–12. doi:

10.1007/3-540-44895-0_1.

Awad, A., Weidlich, M. and Weske, M. (2009) ‘Specification, verification and explanation of

violation for data aware compliance rules’, in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer,

Berlin, Heidelberg, pp. 500–515. doi: 10.1007/978-3-642-10383-4_37.

Borrego, D. and Barba, I. (2014) ‘Conformance checking and diagnosis for declarative business

process models in data-aware scenarios’, Expert Systems with Applications, 41(11), pp. 5340–5352.

doi: 10.1016/j.eswa.2014.03.010.

Corradini, F. et al. (2017) ‘BProVe: A formal verification framework for business process models’,

in ASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering. Institute of Electrical and Electronics Engineers Inc., pp. 217–228. doi:

10.1109/ASE.2017.8115635.

Corradini, F. et al. (2018) ‘Animating multiple instances in BPMN collaborations: From formal

semantics to tool support’, in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 83–101.

doi: 10.1007/978-3-319-98648-7_6.

Dwyer, M. B., Avrunin, G. S. and Corbett, J. C. (1998) ‘Property specification patterns for finite-

state verification’, in Proceedings of the Workshop on Formal Methods in Software Practice. New

York, New York, USA: ACM, pp. 7–15. doi: 10.1145/298595.298598.

Ferraiolo, D. F. et al. (2001) ‘Proposed NIST Standard for Role-Based Access Control’, ACM

Transactions on Information and System Security, 4(3), pp. 224–274. doi: 10.1145/501978.501980.

Finkel, A. and Schnoebelen, P. (2001) ‘Well-structured transition systems everywhere!’,

Theoretical Computer Science, 256(1–2), pp. 63–92. doi: 10.1016/S0304-3975(00)00102-X.

El Gammal, A. et al. (2016) ‘Formalizing and appling compliance patterns for business process

compliance’, Software and Systems Modeling, 15(1), pp. 119–146. doi: 10.1007/s10270-014-0395-

3.

El Gammal, A., Sebahi, S. and Turetken, O. (2014) Business Process Compliance Management: An

Integrated Proactive Approach. International Business Information Management Association

(IBIMA).

Goedertier, S. and Vanthienen, J. (2006) ‘Designing compliant business processes with obligations

and permissions’, in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 5–14. doi:

H2020-MSC-RISE-2016 Ref. 6742023 Page 55

10.1007/11837862_2.

Governatori, G. and Sadiq, S. (2009) ‘The Journey to Business Process Compliance’, in Handbook

of Research on Business Process Modeling. IGI Global, pp. 426–454. doi: 10.4018/978-1-60566-

288-6.ch020.

Groefsema, H. (2016) Business Process Variability A Study into Process Management and

Verification. Rijksuniversiteit Groningen.

Houhou, S. et al. (2019) ‘A First-Order Logic Semantics for Communication-Parametric BPMN

Collaborations’, in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 52–68. doi:

10.1007/978-3-030-26619-6_6.

Hu, V. C. et al. (2014) ‘Guide to attribute based access control (abac) definition and

considerations’, NIST Special Publication, 800, p. 162. doi: 10.6028/NIST.SP.800-162.

Hu, V. C. et al. (2015) ‘Attribute-Based Access Control’, Computer, 48(2), pp. 85–88. doi:

10.1109/MC.2015.33.

Jin, X., Krishnan, R. and Sandhu, R. (2012) ‘A unified attribute-based access control model

covering DAC, MAC and RBAC’, in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin,

Heidelberg, pp. 41–55. doi: 10.1007/978-3-642-31540-4_4.

Kasse, J. P. et al. (2018) ‘The Need for Compliance Verification in Collaborative Business

Processes’, in IFIP Advances in Information and Communication Technology, pp. 217–229. doi:

10.1007/978-3-319-99127-6_19.

Kasse, J. P. (2019) Supporting Compliance Verification for Collaborative Business Processes.

Bournemouth University.

Kasse, J. P. et al. (2020) ‘Process Driven Access Control and Authorization Approach’, in

Advances in Intelligent Systems and Computing. Springer, pp. 313–322. doi: 10.1007/978-981-15-

0637-6_26.

Kasse, J. P., Xu, L. and de Vrieze, P. (2017) A comparative assessment of collaborative business

process verification approaches, IFIP Advances in Information and Communication Technology.

doi: 10.1007/978-3-319-65151-4_33.

Knuplesch, D. et al. (2013) ‘Towards Compliance of Cross-Organizational Processes and Their

Changes’, in. Springer, Berlin, Heidelberg, pp. 649–661. doi: 10.1007/978-3-642-36285-9_65.

Knuplesch, D., Reichert, M. and Kumar, A. (2017) ‘A framework for visually monitoring business

process compliance’, Information Systems, 64, pp. 381–409. doi: 10.1016/j.is.2016.10.006.

Oyekola, O. and Xu, L. (2020) ‘Verification and Compliance in Collaborative Processes’, in PRO-

VE 2020: 21th IFIP Working Conference on Virtual Enterprises. Valencia, Spain: Springer.

Patterson, D. (2020) Facebook data privacy scandal: A cheat sheet, TechRepublic. Available at:

https://www.techrepublic.com/article/facebook-data-privacy-scandal-a-cheat-sheet/ (Accessed: 5

October 2020).

Pesic, M. (2008) Constraint-based workflow management systems: shifting control to users. doi:

Urn:nbn:nl:ui:25-638413.

Ramezani Taghiabadi, E. (2016) Understanding Non-compliance. Technische Universiteit

Eindhoven.

Roa, J., Chiotti, O. J. A. and Villarreal, P. D. (2015) ‘Detection of Anti-Patterns in the Control Flow

of Collaborative Business Processes’, in Roa, J., Chiotti, O. J. A., and Villarreal, P. D. (eds)

Simposio Argentino de Ingeniería de Software (ASSE 2015) - JAIIO 44. Rosario.

H2020-MSC-RISE-2016 Ref. 6742023 Page 56

Roa, J., Chiotti, O. and Villarreal, P. (2016) ‘Specification of behavioral anti-patterns for the

verification of block-structured Collaborative Business Processes’, Information and Software

Technology, 75, pp. 148–170. doi: 10.1016/j.infsof.2016.01.001.

Robol, M., Salnitri, M. and Giorgini, P. (2017) ‘Toward GDPR-compliant socio-technical systems:

Modeling language and reasoning framework’, in Lecture Notes in Business Information

Processing. Springer Verlag, pp. 236–250. doi: 10.1007/978-3-319-70241-4_16.

Von Rosing, M. et al. (2014) ‘Business process model and notation-BPMN’, in The Complete

Business Process Handbook: Body of Knowledge from Process Modeling to BPM. Elsevier Inc., pp.

429–453. doi: 10.1016/B978-0-12-799959-3.00021-5.

Russell, N. et al. (2004) Workflow Data Patterns. Brisbane.

Russell, N. et al. (2005) ‘Workflow data patterns: Identification, representation and tool support’, in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, pp. 353–368. doi:

10.1007/11568322_23.

Sandhu, R. (1995) ‘Rationale for the RBAC96 family of access control models’, in Proceedings of

the ACM Workshop on Role-Based Access Control. New York, New York, USA: ACM, pp. 1–8.

doi: 10.1145/270152.270167.

Satariano, A. (2019) Google Is Fined $57 Million Under Europe’s Data Privacy Law - The New

York Times, The New York Times. Available at:

https://www.nytimes.com/2019/01/21/technology/google-europe-gdpr-fine.html (Accessed: 5

October 2020).

Taghiabadi, E. R. et al. (2014) ‘Compliance checking of data-aware and resource-aware compliance

requirements’, in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 237–257. doi:

10.1007/978-3-662-45563-0_14.

Thomas, R. K. and Sandhu, R. S. (1994) ‘Conceptual foundations for a model of task-based

authorizations’, in Proceedings of the Computer Security Foundations Workshop. Franconia, NH:

IEEE Computer Society, pp. 66–79. doi: 10.1109/CSFW.1994.315946.

Weske, M. (2007) Business process management: Concepts, languages, architectures, Business

Process Management: Concepts, Languages, Architectures. Springer Berlin Heidelberg. doi:

10.1007/978-3-540-73522-9.

Wong, P. Y. H. and Gibbons, J. (2011) ‘Formalisations and applications of BPMN’, in Science of

Computer Programming. Elsevier, pp. 633–650. doi: 10.1016/j.scico.2009.09.010.

Wynn, M. T. et al. (2009) ‘Business process verification - Finally a reality!’, Business Process

Management Journal, 15(1), pp. 74–92. doi: 10.1108/14637150910931479.

Xu, L. (2003) ‘Monitorable electronic contract’, in Proceedings - IEEE International Conference

on E-Commerce, CEC 2003. Institute of Electrical and Electronics Engineers Inc., pp. 92–99. doi:

10.1109/COEC.2003.1210238.

Xu, L. and Jeusfeld, M. A. (2003) ‘Pro-active monitoring of electronic contracts’, Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2681, pp. 584–600. doi: 10.1007/3-540-45017-3_39.

