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Abstract— In this paper, a underlay cognitive radio inspired non-
orthogonal multiple access (CR-NOMA) network assisted by the recon-
figurable intelligent surface (RIS) technique is conceived to maximize
the energy efficiency (EE), while all the cognitive users (CUs) are
located in the “dead zone”. In particular, the CUs could only receive
the information from the cognitive base station (CBS) via RIS. The EE
maximization optimization problem which is a non-convex problem has
been constructed to realize joint beamforming design at both the CBS
and RIS with the constraints of the primary user’s (PU) interference
power restriction and the CUs’ rate fairness. Moreover, we propose the
alternating pragmatic iterative algorithm (APIA) to optimize the non-
convex optimization problem until the final value of EE converges. Based
on the simulation results, our proposed algorithm attains the significant
gain than the two benchmarks of the random phase scheme as well as
the fixed phase scheme on the RIS.

Index Terms— Reconfigurable Intelligent Surface, Cognitive Radio,
Non-orthogonal Multiple Access, Energy Efficiency.

I. INTRODUCTION

In the sixth-generation (6G) wireless networks, the frequency range
will migrate to higher frequency bands such as terahertz (THz) due
to the resource shortage problem. Hence, it is imperative to develop
disruptively new and innovative technologies in order to achieve a
sustainable capacity growth with low and affordable overhead, com-
plexity, as well as the energy consumption [1]. Non-orthogonal multi-
ple access (NOMA) has been introduced as a promising radio access
technology to efficiently improve utilization of spectrum resources for
6G wireless networks. The key idea of NOMA technique is to serve
multiple users in the same spectrum, where superposition coding
(SC) and successive interference cancellation (SIC) can be utilized
at the transmitter and receiver respectively [2]. Moreover, underlay
cognitive radio (CR) has been treated as another potential research
direction of improving the spectrum efficiency and mitigating the
shortage of spectrum for the future wireless networks. The key idea
of underlay CR networks is that the cognitive users (CUs) are allowed
to access the spectrum of the primary users (PUs) as long as the
interference caused by CUs meets a certain demand [3]. In order to
jointly exploit the benefits offered by the above two techniques, many
researches have been conducted on underlay CR-NOMA networks.

In the future, the communication range will become smaller due
to various attenuations. However, the underlay CR-NOMA networks
cannot provide services when CUs are in the “dead zone” of the
communication. To solve this intractable problem, reconfigurable
intelligent surface (RIS) is introduced as a novel technique for the
6G wireless networks [4]. The surface contains a large number of
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reconfigurable passive components, each of which can be used to
control the phase and amplitude of the incident signal. Therefore,
the RIS can provide supplementary communication links between
the cognitive base station (CBS) and CUs when the line-of-sight
(LoS) path is not available. Additionally, the existing works have
been proved that the networks with RIS can improve the channel
capacity and the system security [5], [6].

At present, there are several works focusing on the beamforming
design with the RIS. But there are many distinctions compared with
our works. The system model of [5] have not established in CR-
NOMA networks and the optimization variable only involves the
passive beamforming on the RIS after some simplifications. Thus,
the process of optimization is different in comparison with ours.
Then, due to the different optimization problem of [7], even if the
similar conventions are used, there are many distinctions in the
approximation process. Finally, the considered algorithm of [8] is
completely different from ours, although our aims are to maximize
energy efficiency.

In this letter, we consider a downlink underlay CR-NOMA network
assisted by RIS which aims to maximize the energy efficiency (EE)
while the CUs are located in the “dead zone” of the communication.
In our conceived networks, we construct a non-convex optimization
problem to realize joint beamforming design at both the CBS and
RIS with the constraints of the PU’s interference power limit, the
CUs’ rate fairness, and the users’ quality of service (QoS). Then,
the alternative pragmatic iterative algorithm (APIA) is proposed to
calculate both the active and passive beamforming. In the simulations,
the proposed APIA algorithm is capable of improving the network’s
energy efficiency and reducing the power consumptions.

II. SYSTEM MODEL

Fig. 1. System model of RIS assisted CR-NOMA networks.

In this paper, we consider a RIS-assisted underlay CR-NOMA
network, which assists of a primary network, multiple single-antenna
CUs Ui, i = 1, 2 and a M-antenna cognitive base station (CBS).
Without loss of generality, two single-antenna CUs at the destination
receive the information simultaneously by employing the NOMA
technique. As shown in Fig. 1, both of the CUs are in the “dead
zone” and they could not successfully receive the information from
CBS due to building occlusion. However, the RIS is capable of
reflecting the information from CBS to ensure that CUs could receive
the information wherever they located. Without loss of generality,
the CBS can perfectly estimate the channel state information (CSI)
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between CBS and CUs, and then the quasi-static flat-fading model is
considered [9].

Let Θ = diag(γ) ∈ CN×N as the diagonal reflection coefficients
matrix of the RIS with γ = [γ1, γ2, · · · , γN ] and γn = βne

jθn ,
where βn ∈ [0, 1] and θn ∈ [0, 2π) denote the amplitude and phase
shift of the nth RIS element, respectively. In our conceived networks,
the non-ideal RIS scheme is considered, that is, each element of RIS
has a fixed amplitude, such as βn = 1 [9].

The channel gain from CBS to RIS and from RIS to Ui are denoted
by G ∈ CN×M and FH

r,i ∈ C1×N , respectively, where FH denotes
the conjugate transpose of F . The channel gain from the RIS to PU
and from primary base station (PBS) to RIS are denoted as HH

PI ∈
C1×N and HBP I ∈ CN×1, respectively. In order to utilize the SIC
technology in NOMA, the channel gain of the CUs should sort as∣∣FH

r,1ΘG
∣∣2 ≥

∣∣FH
r,2ΘG

∣∣2, where |•| represents the modulus of a
complex scalar. Therefore, the decoding order is U2 > U1.

Moreover, si and sP denote the information-bearing symbol for the
ith CU and the PU with zero mean and unit variance. The complex
baseband signal transmitted from the CBS is given by X = w1s1 +
w2s2 , where wi ∈ CM×1 is the active beamforming vector for the
ith CU. Thus, the received signal at Ui can be expressed as

yi = FH
r,iΘGX + FH

r,iΘHBP I

√
PP sp + ni, (1)

where the transmission power of the PBS is defined as PP and ni ∼
CN(0, σ2) is the additive white Gaussian noise (AWGN) at user i
with zero mean and variance σ2.

Thus, the interference power received by the PU can be expressed
as

yP = HH
PIΘG (w1s1 +w2s2) . (2)

Then, the interference power constraint imposed on the PU should
be constrained as [10]∣∣∣HH

PIΘGw1

∣∣∣2 + ∣∣∣HH
PIΘGw2

∣∣∣2 ≤ PP,th, (3)

where PP,th is the maximum interference power at the PU’s receiver.
Furthermore, the users rate fairness need to be fully considered

in the NOMA group. Thus, the following constraints have been
considered ∣∣∣FH

r,iΘGw2

∣∣∣2 ≥
∣∣∣FH

r,iΘGw1

∣∣∣2 , i = 1, 2. (4)

Based on the NOMA principle, the user with higher channel gain
can use the SIC to eliminate the interference from other users.
Therefore, the signal-interference-plus-noise ratio (SINR) to decode
Ui’s information at the Uj’s receiver can be computed as

ϕj,i =

∣∣FH
r,jΘGwi

∣∣2∣∣FH
r,jΘGwi−1

∣∣2 + ∣∣FH
r,jΘHBP I

∣∣2PP + σ2
, j ≤ i, (5)

where
∣∣FH

r,1ΘGw0

∣∣2 = 0. Then, the corresponding rate is expressed
as Rj,i = log2 (1 + ϕj,i). In order to guarantee the achievable rates
of the CUs are greater than their minimal rate requirement Ri,min =
log2 (1 + ϕi,min), which are

Ri = min (Rj,i) ≥ Ri,min, j ≤ i. (6)

The min{•} means the Ui’s achievable rate meets the minimize rate
requirement at any receiver.

The goal of this paper is to maximize the networks’ EE by
jointly optimizing the active beamforming at the CBS and the passive
beamforming on the RIS. The EE is defined as the ratio of the sum
rate to the total power consumption. The total power consumption
consists of two parts, one used to transmit signal and the other is the
circuit consumption at the CBS. The power amplifier efficiency is
defined as η ∈ [0, 1]. Pl is the total circuit consumption at the CBS.

PCBS is the maximum transmission power of the CBS. Therefore,
the energy efficiency optimization problem can be established as [11]

(P1) : max
(w1,w2,Θ):θn∈[0,2π],∀n

R1 +R2

1
η

2∑
i=1

∥wi∥2 + Pl

, (7)

s.t. Ri ≥ Ri,min, i = 1, 2, (7a)
2∑

i=1

∥wi∥2 ≤ PCBS , (7b)

(3), (4), (7c)

where ∥•∥ represents the Euclidean norm of a vector. Eq.(7a)
guarantees the CUs’ QoS. Eq.(7b) describes the maximum transmis-
sion power of the CBS. Eq.(3) guarantees the PU’s QoS that the
interference power caused by CUs do not exceed the tolerable limit.
Eq.(4) ensures the CUs rate fairness within a NOMA group. However,
the expression of Ri is not jointly convex with respect to {wi} and
Θ. Then, Eq.(7) is not the concave function. It is hard to obtain the
global solution for this non-convex problem.

III. BEAMFORMING OPTIMIZATION SOLUTION
In this section, by decomposing the original problem into active

beamforming optimization and passive beamforming optimization,
APIA algorithm based on successive convex approximation (SCA)
and semi-definite relaxation (SDR) is proposed in order to solve these
two sub-optimization problems.

A. Active Beamforming Optimization
For the given passive beamforming on the RIS, the original

problem can be converted into problem (P2) by introducing the slack
variable α

(P2) : max
w1,w2,α

α (8)

s.t.
R1 +R2

1
η

2∑
i=1

∥wi∥2 + Pl

≥ α, (8a)

(7a), (7b), (7c). (8b)

Without loss of generality, the non-convex constraint (8a) can
equivalently be decomposed into the following two constraints by
introducing another slack variable ν

R1 +R2 ≥ αν, (9)

ν ≥ 1

η

2∑
i=1

∥wi∥2 + Pl. (10)

Obviously, Eq.(10) can be transferred into convex set by using
second-order cone (SOC)∥∥∥∥∥∥

ην−ηPl−1
2

w1

w2

∥∥∥∥∥∥ ≤ 1− ηPl + ην

2
. (11)

Additionally, by introducing slack variable {φi} to express the Ri,
then Eq.(9) can be represented as follows

2∑
i=1

log2(φi) ≥ αν, (12)

1 + ϕi ≥ φi, i = 1, 2, (13)

where ϕi is the corresponding SINR of Ri. To eliminate the log
function of Eq.(12), we introduce another slack variable {γi}, then

2∑
i=1

γi ≥ αν, (14)

2γi ≤ φi, i = 1, 2. (15)
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By using these slack variables, Eq.(9) can be equivalently trans-
ferred to Eq.(13), Eq.(14) and Eq.(15). Although Eq.(13) is linear, ϕi

is non-convex with respect to the optimization variable wi. Therefore,
further optimization is required in the following. Moreover, by
calculating the Hessian matrix, we conclude that Eq.(15) is a convex
function about γi and φi.

To handle the non-convex function of Eq.(13), slack variable {ρj,i}
is using to reformulate it, as shown in the following two expressions∣∣∣FH

r,jΘGwi

∣∣∣2 ≥ (φi − 1) ρj,i, (16)∣∣∣FH
r,jΘGwi−1

∣∣∣2 + ∣∣∣FH
r,jΘHBP I

∣∣∣2PP + σ2 ≤ ρj,i, j ≤ i.

(17)

However, Eq.(17) can be proved that it is a convex set. By considering
the arbitrary rotation to the phase of beamforming vector wi, then the
imaginary part of FH

r,jΘGwi is zero. Thus, Eq.(16) can be converted
into

Re(FH
r,jΘGwi) ≥

√
(φi − 1) ρj,i, (18)

Im(FH
r,jΘGwi) = 0. (19)

The right side of Eq.(18) can be approximated by the first-order
Taylor series, then use SCA to transfer this non-convex constraint
to convex expression. Thus, Eq.(18) can be equivalently transferred
into

Re(FH
r,jΘGwi) ≥

√(
φ

(n)
i − 1

)
ρ
(n)
j,i +

1

2

√√√√ ρ
(n)
j,i

φ
(n)
i − 1(

φi − φ(n)
i

)
+

1

2

√√√√φ
(n)
i − 1

ρ
(n)
j,i

(
ρj,i − ρ(n)

j,i

)
, (20)

where φ(n)
i

and ρ(n)
j,i

are the nth iteration values of φi and ρj,i,
respectively. Similarly, Eq.(14) can be transferred as

2∑
i=1

γi ≥ α(n)ν(n) + ν(n)
(
α− α(n)

)
+ α(n)

(
ν − ν(n)

)
, (21)

where α(n) and ν(n) are the nth iteration values of α and ν. There-
fore, for given the nth optimized values, the (n + 1)th optimized
values can be obtained by using Eq.(20) and Eq.(21).

Then, similar to Eq.(11), Eq.(3) and Eq.(7a) can be transformed
by SOC algorithm, which are given by the following expressions
respectively ∥∥∥∥ HH

PIΘGw1

HH
PIΘGw2

∥∥∥∥ ≤
√

PP,th, (22)

and ∥∥∥∥∥∥∥∥∥∥∥

FH
r,jΘGw1

...
FH

r,jΘGwi−1

FH
r,jΘHBP I

√
PP

σ

∥∥∥∥∥∥∥∥∥∥∥
≤

Re
(
FH

r,jΘGwi

)√
ϕi,min

. (23)

Additionally, due to Eq.(19), Eq.(4) can be equivalently converted
into

Re
(
FH

r,jΘGw2

)
≥ Re

(
FH

r,jΘGw1

)
, j = 1, 2. (24)

By incorporating all of these approximations, the optimization
problem (P2) can be formulated into the following problem

(P3) : max
wi,α,ν,φ,γ,ρ

α (25)

s.t.(7b), (11), (15), (17), (19)− (24). (25a)

For the optimized variables initialization, we need to guarantee
the feasibility and convergence in the process of optimization. Firstly
find the suitable wi

(0) by using Eq.(7a) Eq.(7b) and Eq.(7c). Then,
ρ(0)
j,i

, φ(0)
i

, ν(0) and α(0) are found by Eq.(17), Eq.(16), Eq.(10) and
Eq.(8a) respectively. Additionally, γ(0)

i and EE(0) can be computed
by Eq.(14) and Eq.(7). In each iteration, we utilize the above all
variables’ value to get new variables’ value, until the optimization
problem satisfies the convergence criteria δ.
B. Passive Beamforming Optimization

In this section, we optimize the passive beamforming vector on the
RIS by the given active beamformation vector {wi}. The original
energy efficiency optimization problem (P1) can be transformed to

(P4) : max
(Θ):θn∈[0,2π],∀n

R1 +R2 (26)

s.t.(7a), (7c). (26a)
For convenience of subsequent processing, let FH

r,jΘGwi =
µHbj,i, HH

PIΘGwi = µHci and FH
r,jΘHBP I = µHdj ,

where µH =
[
ejθ1 , · · · , ejθN

]
, bj,i = diag

(
FH

r,j

)
Gwi, ci =

diag
(
HH

PI

)
Gwi and dj = diag

(
FH

r,j

)
HBP I . Then, due to the

data transmission rate Ri is a min{•} function, we introduce the
slack variable ξ to transform the original problem into the following
equations

(P5) : max
(ξ,Θ):θn∈[0,2π],∀n

ξ (27)

s.t.R1 +R1,2 ≥ ξ, (27a)

R1 +R2,2 ≥ ξ, (27b)

(7a), (7c). (27c)

However, this is still a non-convex problem due to Eq.(27b). But if
the lower bound of R1 + R2,2 can be found, the ξ could infinitely
approach to its lower bound. According to the sort of channel gain,
we can obtain

∣∣µHb1,1
∣∣2 ≥

∣∣µHb2,1
∣∣2. Expand the expression of

R1 +R2,2 and let ξ approach its lower bound, then we obtain

R1 +R2,2 ≥ log2

(∣∣µHb2,2
∣∣2 +

∣∣µHb2,1
∣∣2 +

∣∣µHd2

∣∣2PP + σ2∣∣µHd1

∣∣2PP + σ2

)
≥ ξ. (28)

The R1 +R1,2 can be further simplified as the following

R1 +R1,2 = log2

(
1 +

∣∣µHb1,1
∣∣2 +

∣∣µHb1,2
∣∣2∣∣µHd1

∣∣2PP + σ2

)
≥ R1 +R2,2.

(29)

Thus, another slack variable Γ = 2ξ − 1 can be used to eliminate
the log function. After that the problem (P5) can be equivalently
expressed as

(P6) :max
µ,Γ

Γ (30)

s.t.

∣∣µHb2,2
∣∣2 +

∣∣µHb2,1
∣∣2 +

∣∣µHd2

∣∣2PP −
∣∣µHd1

∣∣2PP∣∣µHd1

∣∣2PP + σ2
≥ Γ,

(30a)∣∣µHb1,1
∣∣2∣∣µHd1

∣∣2PP + σ2
≥ ϕ1,min, (30b)∣∣µHbj,2
∣∣2∣∣µHbj,1

∣∣2 +
∣∣µHdj

∣∣2PP + σ2
≥ ϕ2,min, j = 1, 2, (30c)∣∣µHc1

∣∣2 +
∣∣µHc2

∣∣2 ≤ PP,th, (30d)∣∣µHbj,2
∣∣2 ≥

∣∣µHbj,1
∣∣2, j = 1, 2. (30e)

Since variables in the right hand of Eq.(30a) can be expressed as
Γ
(∣∣µHd1

∣∣2PP + σ2
)

, it is the non-convex expression and SCA is
applied to tackle this by introducing the slack variable κ which is
similar to Eq.(20) and Eq.(21). Then, all the constraints can be trans-
formed into quadratic constraints, then we apply SDR algorithm to
approximately solve problem (P6). Let U = µµH , Bj,i = bj,ib

H
j,i,
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Ci = cic
H
i and Dj = djd

H
j . Additionally, U should satisfy U ⪰ 0

and Rank(U) = 1. Albeit the constraint of rank 1 is a non-convex
constraint. By applying SDR, the problem (P6) can be rewritten as

(P7) :max
U,Γ

Γ (31)

s.t. T r (UD1)PP + σ2 ≤ κ, (31a)

Tr (UB2,2) + Tr (UB2,1) + Tr (UD2)PP

− Tr (UD1)PP ≥ f
(
Γ(n), κ(n)

)
, (31b)

Tr (UB1,1)

Tr (UD1)PP + σ2
≥ ϕ1,min, (31c)

Tr (UBj,2)

Tr (UBj,1) + Tr (UDj)PP + σ2
≥ ϕ2,min, j = 1, 2,

(31d)

Tr (UC1) + Tr (UC2) ≤ PP,th, (31e)

Tr (UBj,2) ≥ Tr (UBj,1) , j = 1, 2, (31f)

Ukk = 1, k = 1, · · · , N, (31g)

U ⪰ 0, (31h)

where f
(
Γ(n), κ(n)

)
= Γ(n)κ(n) + Γ(n)

(
κ− κ(n)

)
+

κ(n)
(
Γ− Γ(n)

)
at the given feasible point

(
Γ(n), κ(n)

)
and

Tr(x) is the trace of x. U is a positive semidefinite matrix and
the diagonal elements become 1. Additionally, problem (P7) is an
instance of semidefinite programming (SDP). Then we could use
CVX program to solve problem (P7). After obtaining the optimized
variable U∗’s value, the singular value decomposition (SVD) or
Gaussian randomization method can be applied to get µ∗.

C. Complexity and Convergence of APIA
In the above analysis, we decompose the original problem (P1) into

two optimization subproblems which are (P3) and (P7). The details of
APIA algorithm are summarized in Algorithm 1. In this section, we
explain the complexity and convergence of our proposed algorithm.

For the problem (P3), we convert it into second-order cone
programming (SOCP) form, and use SCA algorithm to calculate
iteratively. The number of decision variables n is in the order of
2M+10. Therefore, the total complexity based on the SCA algorithm
is given by [12]

O
(
nL1

√
30
(
12n+ (2M + 2)2 + 112 + n2

)
ln (1/ϵ)

)
, (32)

where L1 is the number of iterations and ϵ denotes the computation
accuracy.

For the problem (P7), it consists of N + 8 linear constraints and
one linear matrix inequality (LMI) constraint with the size of N . The
number of decision variables n is on the order of N2 +1. Therefore
the total complexity can be expressed as

O

(
nL2

√
2N + 8

(
nN2 + 8n+ nN + 8 +N +N3 + n2

)
ln (1/ϵ)

)
, (33)

where L2 is the number of iterations.
Combining the above two parts, we can obtain the total complexity

of APIA algorithm which is

O

(
INite

(
nL1

√
30
(
12n+ (2M + 2)2 + 112 + n2

)
ln (1/ε) + nL2

√
2N + 8

(
nN2 + 8n+ nN + 8 +N +N3 + n2

)
ln (1/ε)

))
,

(34)

where INite denotes the number of iterations for APIA algorithm.
Let EE

(
wl,µl

)
, EEw

(
wl,µl

)
and EEµ

(
wl,µl

)
be the opti-

mization problems (P1), (P3) and (P7) respectively at the lth iteration,

then we have [9]

EE
({

wl
i

}
,µl
) (a)
= EEw

({
wl

i

}
,µl
) (b)
≤ EEw

({
w

l+1
i

}
,µl
)

(c)

≤ EE
({

w
l+1
i

}
,µl
) (d)

≤ EEµ

({
w

l+1
i

}
,µl+1

)
(e)

≤ EE
({

w
l+1
i

}
,µl+1

)
. (35)

Step (a) means the first-order Taylor series for given local point
are compact in optimization problem (P3). Step (b) holds since the
optimization problem (P3) is solved by

{
wl+1

i

}
. Step (c) illustrates

the optimization problem (P3) as the lower bound of optimization
problem (P2). Then, step (d) and step (e) are similar to step (b) and
step (c). Although the optimization variables involve three matrices,
Eq.(35) indicates that the optimization problem (P1) calculated by
APIA algorithm is non-decreasing after each iteration. Meanwhile,
the value of EE cannot increase indefinitely due to the constraints of
the maximum CBS’s transmission power and the interference power
restriction at PU’s receiver. Therefore, the proposed algorithm is
guaranteed to be convergent.
Algorithm 1: APIA algorithm for obtaining beamforming

1 Initialization: the passive beamforming µ(0) on the RIS and
the outer iteration, i = 1.

2 Set
{
w(0), α(0), ν(0), φ(0), γ(0), ρ(0), EE(0)

}
and the

inner iteration, j = 1.
3 repeat;
4 Solve Problem (P3) by using the given µ(i), where the

optimal solution is denoted by
{
wj

∗, α∗
j , ν

∗
j , φ

∗
j , γ

∗
j , ρ

∗
j

}
.

5 if
∣∣∣α∗

j − α(j−1)
∣∣∣ ≤ δ

6 Output: α∗
j and wj

∗,
7 else
8 Set

{
w(j), α(j), ν(j), φ(j), γ(j), ρ(j)

}
={

wj
∗, α∗

j , ν
∗
j , φ

∗
j , γ

∗
j , ρ

∗
j

}
and let j = j + 1 then return to

step 3.
9 end if

10 Set
{
Γ(0), κ(0)

}
, l = 1 and solve problem (P7) by using

the given wj
∗, where the optimal solution is denoted by U∗

until
∣∣∣Γ(l) − Γ(l−1)

∣∣∣ ≤ δ.

11 Utilize the SVD or the Gaussian randomization method to
obtain µ∗.

12 Calculate EE(i) by µ∗ and wj
∗.

13 if
∣∣∣EE(i) − EE(i−1)

∣∣∣ ≤ δ

14 Output: EE∗ = EE(i),
15 else
16 Let i = i+ 1 and return to step 2.
17 end if

IV. SIMULATIONS RESULTS AND ANALYSIS
In this section, the simulation results are obtained to illustrate

the effectiveness of our proposed algorithm. The CBS and RIS are
equipped with a uniform linear array (ULA) and uniform rectan-
gular array (URA) respectively. Then all the channel conditions are
assumed as Rician fading model [5]. The path loss exponents of CBS-
RIS and RIS-CU are set as 3.2 and 2 respectively. In our simulations,
one of the CUs is located near the CBS, and the other is located
at the edge of the cell. So the distance between RIS and CUs are
about 10m and 28m respectively, then, the distance between RIS
and CBS is 10m. Furthermore, let us set up: 1) the noise power
is σ2 = −60dBm, 2) the transmit power of the CBS and PBS
are PCBS = 20dBm and PP = 40dBm, 3) the power amplifier
efficiency is η = 0.7, 4) the maximum interference power is at the
PU’s receiver PP,th = −70dB, 5) the convergence criteria δ=0.01.
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Fig. 2. EE versus number of RIS elements N .

Fig. 2 illustrates the relationship between the number of RIS
elements and system’s EE under the different antenna numbers
at the CBS. We set the total circuit power at the CBS, Pl =
10dBm. Additionally, the random phase scheme and the fixed phase
scheme refer to the EE calculated by optimizing active beamforming
with the random and fixed passive beamforming. The fixed passive
beamforming means θn = π, n = 1, · · · , N . By increasing the
number of RIS elements, the system’s EE of proposed algorithm is
increasing. However, for the other two schemes, the corresponding
EE is hardly increased. So that, these two schemes do not achieve the
best match between active beamforming and passive beamforming in
the process of optimization. Then the destructive interference occurs
after reflection by the RIS, which leads to a decreasing total rate.
Subsequently, it can be found that increasing the number of CBS
antennas achieves a performance gain of the system’s EE.
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Fig. 3. Transmission power versus number of RIS elements N .

In Fig. 3, the relationship between the number of RIS elements and
the transmission power at the CBS for different schemes is dedicated.
In particular, the simulation parameters are consistent with Fig. 2.
Fig. 3 shows that the APIA scheme requires lower power to obtain
the maximum EE at the CBS than other schemes under any number of
RIS elements. Furthermore, it is interesting to note that no matter how
large the number of RIS elements is, the CBS’s transmission power
is almost constant based on the random phase scheme and the fixed
phase scheme. Only optimize the active beamforming, which leads
to the waste of energy. Therefore, we conclude that the proposed
algorithm obtains a higher system’s EE and power consumption
performance compared with other two benchmarks.

As shown in Fig. 4, the relationship between the circuit power at
the CBS and the system’s EE by using different schemes, while the
CBS antenna sets M = 3. As the number of RIS elements increases,
the EE also increases. Simultaneously, when the circuit power at the
CBS is small, the optimized beamforming brings greater changes to
the EE. Therefore, as Pl increases, the slope of energy efficiency
becomes decreasing. From this, we can obtain that when the value
of the circuit power is low, the system’s beamforming is dominant
in the EE. Additionally, the proposed algorithm can achieve higher
system’s EE under different circuit power. We conclude that the
system with the proposed algorithm always outperforms the system
with the random phase scheme and the fixed phase scheme.

4 6 8 10 12 14 16 18 20

Circuit Power at the CBS (dBm)

0

200

400

600

800

1000

1200

E
ne

rg
y 

E
ffi

ci
en

cy
(B

its
/J

ou
le

/H
z) APIA N=25

APIA N=50

Fixed Phase N=50

Random Phase N=50

11.95 12 12.05

36

38

40

42

44

46

Fig. 4. EE versus circuit power Pl at the CBS.

V. CONCLUSIONS

In this paper, a CR-NOMA network assisted by RIS has been
developed aiming to maximize the system’s energy efficiency. To
achieve maximum energy efficiency, the original problem can be
decomposed into two subproblems, which are active beamforming
optimization problem and passive beamforming optimization prob-
lem. In particular, the APIA algorithm is proposed to optimize
both the active and passive beamforming. Based on the simulation
results, our proposed algorithm achieves a higher energy efficiency
compared with the fixed phase scheme and random phase scheme. As
for transmission power, the proposed algorithm could require lower
power at the CBS compared with these two benchmarks. Additionally,
the system performance is improved as the number of antenna at the
CBS or RIS elements increase.
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