
Computer Vision with Machine

Learning on Smartphones for Beauty

Applications

submitted by

Valentin Miu

for the degree of Doctor of Engineering Digital Media

of

Bournemouth University

Centre for Digital Entertainment

November 2021

COPYRIGHT

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and due

acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Abstract

Over the past decade, computer vision has shifted strongly towards deep learning tech-

niques with neural networks, given their relative ease of application to custom tasks,

as well as their greatly improved results compared to traditional computer vision tech-

niques. Since the execution of deep learning models is often resource-heavy, this leads to

issues when using them on smartphones, as these are generally constrained by their com-

puting power and battery capacity-limited energy consumption. While it is sometimes

possible to conduct such resource-heavy tasks on a powerful remote server receiving

the smartphone user’s input, this is not possible for real-time augmented reality appli-

cations, due to latency constraints. Since smartphones are by far the most common

consumer-oriented augmented reality platforms, this makes on-device neural network

execution a highly active area of research, as evidenced by Google’s TensorFlow Lite

platform and Apple’s CoreML API and Neural Engine-accelerated iOS devices. The

overarching goal of the projects carried out in this thesis is to adapt existing desktop

computer-oriented computer vision techniques to smartphones, by lowering the com-

putational requirements, or by developing alternative methods. In concordance with

the requirements of the placement company, this research contributed to the creation

of various beauty-related smartphone and web apps using Unity, as well as TensorFlow

Lite and TensorFlowJS for the machine learning components. Beauty is a highly valued

market, which has seen increasing adoption of augmented reality technologies to drive

user-customized product sales. The projects presented include a novel 6DoF machine

learning system for smartphone object tracking, used in a hair care app, an improved

wrinkle and facial blemish detection algorithm and implementation in Unity, as well

as research on neural architecture search for facial feature segmentation, and makeup

style transfer with generative adversarial networks.

2

Contents

List of Figures 7

List of Tables 9

Declaration 10

1 Introduction 11

1.1 Motivation of research . 12

1.1.1 Technological gaps in smartphone AR 13

1.2 Aims and objectives . 15

1.3 Contributions . 15

1.3.1 Theoretical contributions . 15

1.3.2 Implementations and practical contributions 16

1.4 The placement company . 17

1.4.1 The codebase . 17

1.5 Ethical considerations . 17

2 Literature review and background 19

2.1 Occlusion implementation and SLAM for augmented reality 20

2.2 Monocular depth estimation on mobile phones 21

2.3 Adaptation of machine learning to mobile platforms 22

2.3.1 MobileNetV2 and depthwise separable convolutions 23

2.3.2 Tools and challenges for machine learning on mobile platforms . 25

2.4 Integration of TensorFlow Lite with Unity3D 26

2.4.1 Overview of the TensorFlow Lite API 27

2.4.2 Comparison of TensorFlow Lite with similarly-purposed APIs . . 27

2.4.3 Latency reduction techniques in TensorFlow Lite 29

2.4.4 Creation of our TensorFlow Lite plugin for Unity 31

2.4.5 TensorFlow-Lite-Tester . 32

3

2.5 Six degree of freedom object pose estimation 35

2.6 Generative adversarial networks . 38

2.6.1 GANs for image style transfer . 40

2.6.2 GANs for makeup style transfer 42

2.7 Wrinkle and blemish detection . 44

2.8 Neural architecture search for segmentation 48

2.8.1 Differentiable architecture search and latency awareness 49

2.8.2 Segmentation-specific neural architecture search 51

2.8.3 State-of-the-art and emerging methods 53

3 6DoF Object Pose Estimation on Smartphones 55

3.1 Motivation and value of this research . 56

3.2 Commercial context of this research . 56

3.3 State of the art in 6DoF object pose detection 57

3.4 Data collection with manual and interpolated annotation 58

3.5 Automatic data collection with a VIVE VR system 58

3.5.1 Background removal and randomization 61

3.5.2 Generalizability of the data collection method 63

3.6 Underlying work for 6DoF pose network architecture 63

3.7 Adaptation of single-shot-pose for mobile platforms 65

3.7.1 Attempts at automatic machine learning model conversion 65

3.7.2 Initial results . 67

3.8 Improved pose detection scheme using tracking 67

3.8.1 Results using the tracking scheme 68

3.8.2 Evaluation on the YCB dataset 70

3.8.3 Interpretation of overall results 71

3.9 Alternative method using sparse segmentation and dense alignment . . . 74

3.10 Ethical considerations . 77

3.11 Conclusions . 80

4 Face Makeup Transfer with Generative Adversarial Networks 81

4.1 Restriction of BeautyGAN makeup transfer to user-defined regions . . . 83

4.1.1 Vector-encoded region method 84

4.1.2 Filter separation method . 84

4.1.3 Multiple generator method . 85

4.2 Instance normalization issues . 86

4.2.1 Droplet artifacts from instance normalization 87

4.3 Optimizations for lower latency on smartphones 89

4

4.3.1 Latency-improved generator . 89

4.3.2 GPU-friendly instance normalization layer implementation . . . 89

4.4 Mirrored inputs for mitigating effect of face shadows 93

4.5 Mitigation of checkerboard artifacts in BeautyGAN output 95

4.6 Output quality assessment and results 99

4.6.1 Training and evaluation method 99

4.6.2 BeautyGAN architecture variant comparison 100

4.6.3 Estimating output quality with the Frechet Inception Distance . 102

4.6.4 General output issues and limitations 103

4.7 Ethical considerations . 105

4.8 Conclusions and future work . 105

4.8.1 Alternative approach through makeup overlay generation 106

4.8.2 Potential improvements to the filter separation method for region

selection . 106

4.8.3 Sub-pixel convolutions for decreased checkerboard artifacts . . . 107

4.8.4 Custom TensorFlow Lite instance normalization operation for

faster GPU inference . 107

5 Wrinkle and Blemish Detection 108

5.1 Jerman’s enhancement filter method . 109

5.2 Wrinkle and blemish detection implementation based on Jerman’s en-

hancement filter . 110

5.2.1 Selection of evaluation images . 110

5.2.2 Algorithm and code implementation 111

5.2.3 Estimation of skin scores . 114

5.2.4 Quality of results . 115

5.2.5 General shortcomings of method and future work 121

5.3 Detecting and boosting wrinkles with Gabor filters and a direction ex-

pectation map . 122

5.3.1 Background of Gabor filters for wrinkle detection 124

5.3.2 Gabor filter test for stray hair filtering 125

5.3.3 Implementation of Gabor filters with a direction map 126

5.3.4 Initial tests for Gabor filters with a direction map 127

5.3.5 Discussion . 128

5.4 Ethical considerations . 130

5.5 Conclusions . 131

6 Hardware-aware Neural Architecture Search for Segmentation in Mo-

5

bile and Web Apps 133

6.1 Background of the FBNet neural architecture search method 134

6.2 Experiments with FBNet variants for segmentation 136

6.2.1 Non-NAS model architecture and training 136

6.2.2 Partial FBNet encoder with fixed decoder 138

6.2.3 Partial FBNet encoder with reversed encoder as decoder 140

6.2.4 Overall results . 141

6.2.5 Known and potential causes of issues of the method 147

6.3 Notes on state-of-the-art . 147

6.4 Ethical considerations . 148

6.5 Conclusions . 149

7 Conclusions and future work 150

7.1 Adaptation of TensorFlow Lite for Unity 151

7.2 Handheld object pose estimation on smartphones 151

7.3 Face makeup transfer with generative adversarial networks 152

7.4 Wrinkle and blemish detection . 153

7.5 Hardware-aware neural architecture search for segmentation in mobile

and web apps . 154

7.6 Discussion and future work . 154

References 156

A Publications 184

B Extending TensorFlow Lite with new GPU operations 185

B.1 Graph optimizations for op fusion or removal 186

B.2 Ops added . 187

B.3 Cost analysis . 190

Abbreviations 192

6

List of Figures

1 MobileNetV2 blocks . 25

2 Virtual try-on output . 33

3 Latent vector arithmetic with DCGAN 40

4 Results of CycleGAN . 41

5 CycleGAN training scheme . 41

6 Poisson blending step of wrinkle and blemish removal 47

7 Auto-DeepLab network-level search space 51

8 Search space and search scheme of DCNAS 53

9 Real curler dataset samples . 59

10 VIVE setup for pose data collection . 60

11 Segmentation mask edges when using a bad greenscreen 61

12 The raw curler dataset processing pipeline 62

13 Structure and logic of the single-shot-pose network 64

14 Results of cropped curler tracking network 69

15 Results of segmentation-based pose network on test set 76

16 Results of segmentation-based pose network on unseen data 77

17 Results of segmentation-based pose network on crops on the test set . . 78

18 Results of segmentation-based pose network on crops on unseen data . . 79

19 BeautyGAN training scheme. 82

20 Perceptual loss. 83

21 Single region makeup transfer attempt for lips 86

22 Single region makeup transfer attempt for eyes 86

23 ESRGAN droplet artifacts . 88

24 StyleGAN droplet artifacts . 88

25 BeautyGAN artifacts . 88

26 Graph of TensorFlow Lite GPU-compatible instance normalization im-

plementation . 91

27 GAN outputs when using mirrored images 94

7

28 Failed outputs when using mirrored images 96

29 Checkerboard artifacts when using transpose convolutions in BeautyGAN 97

30 Artifacts when not using transpose convolutions in BeautyGAN 98

31 BeautyGAN variant output comparison. 100

32 BeautyGAN variant output comparison close-up. 101

33 Wrinkle and blemish detection pipeline 112

34 Bright and dark wrinkles . 113

35 Wrinkle outputs using Unity implementation of Jerman’s enhancement

filter . 116

36 Blob outputs using Unity implementation of Jerman’s enhancement filter 117

37 Closeup of blob outputs using Jerman’s enhancement filter 118

38 Bad wrinkle outputs using Unity implementation of Jerman’s enhance-

ment filter . 119

39 Bad blemish outputs using Unity implementation of Jerman’s enhance-

ment filter . 120

40 Wrinkle types and regions . 123

41 Initial Gabor filter results . 125

42 Houdini direction map . 127

43 Results using Gabor filter with direction map 132

44 UNet architecture . 137

45 96× 48-input size FBNet segmentation model output quality comparison 139

46 Zoom levels used for segmentation model training preprocessing 141

47 FBNet segmentation model results on easy video (1) 143

48 FBNet segmentation model results on easy video (2) 144

49 FBNet segmentation model results on difficult video (1) 145

50 FBNet segmentation model results on difficult video (2) 146

8

List of Tables

1 MobileNetV2-6D results when using tracking 68

2 On-device latency comparisons for 6DoF pose models 70

3 MobileNetV2-6D results on unseen video, using tracking 70

4 ADD accuracies for PoseCNN and our MobileNetV2-6D 72

5 ADD-S accuracies for PoseCNN and our MobileNetV2-6D 73

6 On-device YOLOv3 latencies . 75

7 Comparison between full-frame segmentation-driven-pose and MobileNetV2-

6D accuracies . 75

8 Comparison between segmentation-driven-pose and MobileNetV2-6D ac-

curacies, for cropped inputs . 77

9 Latency comparison between original and modified BeautyGAN variants 90

10 On-device latencies of instance normalization implementation variants . 92

11 Frechet Inception Distances for BeautyGAN variants 103

12 General directions of facial wrinkles . 122

13 Accuracy and latency results for the FBNet-Seg NAS models 142

9

Declaration

This report has been created by myself and has not been submitted in any previous

application for any degree. The work in this report has been undertaken by myself

except where otherwise stated.

10

Chapter 1

Introduction

Augmented reality (AR) is the process of introducing virtual, computer-generated ele-

ments to a real environment. This generally has the goal of enhancing the environment

with additional sensory information, particularly visual, and often interactive. It has

seen applications both in industry, for training and military applications, as well as in

entertainment, through smartphone AR games.

In order to adapt the virtual elements to the real environment in a believable,

seamless way, the computer must be able to process the environment based on sensor

inputs. This is known as scene understanding, which is a subset of computer vision

(when the sensory input is purely visual). Computer vision itself refers to the extraction

of meaningful information from visual inputs, like images, videos or video feeds, by

a computing device. This could be a desktop computer, server, or smartphone, for

example.

Over the past decade, computer vision techniques have increasingly relied on

machine learning with deep convolutional neural networks. Machine learning refers to

algorithms which can be iteratively improved through the use of data and experience

(Mitchell 1997). This avoids the need to explicitly program the computer for a certain

task, which provides an alternate solution where traditional, fixed algorithm-driven

approaches would be too complex to develop, as is often the case in computer vision.

In computing, neural networks are machine learning systems based on biological

neural networks in animals (Hopfield 1982). Convolutional neural networks are specif-

ically based on the biological visual cortex, replicating it as a sequence of convolution

operations, with the capability to automatically learn visual features (Valueva et al.

2020). They are currently the most common technique for object detection, human

and vehicle pose detection, semantic segmentation, and facial keypoint detection, all of

which can aid in scene understanding for augmented reality tasks.

11

In this thesis, focus is put on computer vision and augmented reality techniques,

generally using machine learning, aimed specifically at smartphones running either

Android or iOS. These devices have significantly more stringent computational and

power consumption limits than normal computers and servers, which leads to significant

challenges in designing neural networks and algorithms for the required tasks. The

computer vision techniques in this thesis specifically target applications in the beauty

sector, as required by the placement company under which the research was carried

out. These apps using the techniques needed to be implemented in the Unity3D game

engine (Unity Technologies 2022b), due to it being used in the existing codebase of the

company, due to the complex graphical requirements of some of the applications, and

due to its good support for mobile platforms like Android and iOS (Unity Technologies

2022a).

1.1 Motivation of research

While the cutting edge of mixed reality hardware is formed of augmented reality (AR)

headsets like the Hololens (Garon et al. 2017), Magic Leap One (Magic Leap 2021) and

Nreal Light (Nreal 2021), smartphones currently number about 3.3 billion users, accord-

ing to Statista Research Department (2018), making them the largest augmented reality

platform by far. Especially in the consumer market, AR headsets and glasses have a

relatively small presence. As such, smartphone platforms are the domain in which novel

research is most likely to have the greatest impact, which is why they are the focus of

the AR and computer vision (CV) research in this thesis. Furthermore, both smart-

phones and smartglasses are relatively low-powered devices, with some smartglasses

even using the smartphone as the compute device (Nreal Light (Nreal 2021) and likely

the upcoming Apple glasses (Lynch and Peckham 2022)). As a result, research aimed

at smartphone-optimized computer vision and machine learning techniques should also

be largely applicable to smartglasses as well.

The focus of this thesis on the beauty sector was dictated by the requirements

of the placement company under which the research was undertaken. As such, a focus

purely on advancing the state of the art was not possible, as the company aimed to

use the research to bring its products to market, which limited research time in favor

of implementation. Despite this, to the extent possible, a focus on novel research was

kept when choosing the methods through which the required augmented reality and

computer vision problems were tackled, in line with the academic requirements of the

thesis.

Due to its current and potential profitability, the beauty industry as a point of

12

focus also makes sense from a research perspective. This is because much of the existing

research on application-oriented augmented reality and computer vision with machine

learning (CVML) is driven by market presence and the ability to turn a profit, in order

to fund continuing research efforts. Beauty is a very lucrative industry, valued at over

half a trillion USD worldwide (Biron 2019). And due to the traditional reliance on

brick-and-mortar stores, there is great opportunity for technological advancement in

the sector. A greater demand for mobile and browser experiences was also generated

by the pandemic of 2020, when the traditional in-store experiences became impossible.

In parallel, both augmented reality and the beauty-oriented apps on smartphones have

been in part driven by the rise of applications like Snapchat and Instagram, which

offer a variety of AR filters, many geared towards beautification (Haines 2021). This

illustrates the consumer interest for beauty-related smartphone AR experiences, which

can in turn lead to investor funding for research efforts.

Another motivation was that many of the project outputs of this thesis can be

used for general applications beyond beauty. For example, the integration of the Ten-

sorFlow Lite machine learning library into the Unity game engine (Section 2.4) can be

used for any mobile games or graphically intensive applications that require computer

vision or augmented reality. The six degree of freedom object pose detection technique

in Chapter 3 is usable for any object, so it can be used for anchoring virtual objects into

a real scene, or tracking various objects of interest. The makeup style transfer method

in Chapter 4 is an experiment in bringing generative adversarial networks to smart-

phones, which have already seen very successful use for various filters in the Snapchat

app (Harbison 2019; Snap Inc. 2021). The wrinkle detection project in Chapter 5 may

have applications in smartphone-based face tracking, for more human-like expressions.

Finally, the mobile-oriented neural architecture search for semantic segmentation re-

search in Chapter 6 can be used for other augmented reality tasks like object occlusion

and background substitution or removal.

1.1.1 Technological gaps in smartphone AR

Aside from the value of the targeted industry sector, the research in this thesis is also

motivated by the lack of AR and CV/ML methods for particular tasks on smartphone

platforms. While there has been significant work to bring machine learning to mobile,

with smartphone-oriented frameworks such as Caffe2 (Facebook 2021c) and TensorFlow

Lite (Lee et al. 2019), as well as lightweight smartphone-friendly neural networks such

as SqueezeNet (Iandola et al. 2016) and MobileNet (Howard et al. 2017), ensuring both

precision and speed on these platforms remains a challenge for many tasks.

Initially, one difficulty in ensuring low neural network latency on mobile was the

13

lack of hardware acceleration on mobile platforms. This refers to the use of the graphical

processing units (GPUs) or other specialized chips (digital signal processors or DSPs)

of smartphones, which generally leads to much faster inference than on the CPU. This

ceased to be an issue several months after the start of the work in this thesis, when

hardware acceleration was added to TensorFlow Lite (the machine learning framework

for smartphones used in this thesis), using OpenGL on Android and Metal on iOS.

While some older Android models had insufficient OpenGL support for TensorFlow

Lite hardware acceleration, the later addition of the OpenCL delegate increased the

number of supported Android devices, and provided a significant speedup over the

OpenGL delegate.

Despite this, many neural network operations available on the CPU were not

available or more limited when using hardware acceleration. While it was often pos-

sible to work within these limitations, some operations required either the addition of

functionality to TensorFlow Lite GPU, or relegating these operations to Unity shaders

or optimized CPU operation using OpenCV, a C++ library for computer vision tasks

(Gary 2008).

The greatest issue encountered was the lack of mobile-friendly counterparts to

computer-oriented machine learning models for specific tasks, such as six degree of free-

dom object pose estimation and fast or real-time generative adversarial networks for

images and video. While mobile-oriented feature extractors exist, like the aforemen-

tioned MobileNet and SqueezeNet, these are generally targeted mainly at classification

and segmentation. While these do offer a starting point for extension to other tasks,

the variety of desktop-oriented models in existing research is still far greater than that

of mobile-oriented models. In our research, this made it necessary to construct new

neural network architectures for six degree of freedom object tracking (Chapter 3) and

generative adversarial networks (GANs) for style transfer (Chapter 4). Other times,

mobile network variants exist but are insufficiently precise or fast, which led to the

efforts in Chapter 6, for neural architecture search for improved semantic segmentation

on mobile and web platforms.

As a result, the overarching goal of this thesis is to create smartphone-friendly

machine learning models, or optimize existing models for smartphone use, for a variety

of augmented reality tasks required by the placement company. All of the applications

targeted the beauty sector, as this was the target of the placement company under

which the research took place.

14

1.2 Aims and objectives

The various sub-projects of this thesis follow two general aims: the creation of a frame-

work for efficient machine learning inference on smartphones in Unity applications, and

creating various machine learning models or algorithms for specific, company-required

applications in the beauty sector, then implementing them using the aforementioned

framework.

These overall goals resulted in the following objectives:

• Creation of a cross-platform framework to allow computer vision machine learning

(CVML) models to be run on the CPU and GPU in smartphone Unity apps, in

real-time for applications that demanded it (Section 2.4).

• Extension of the GPU capabilities of the framework, to allow more CVML smart-

phone models for various tasks to be run with hardware acceleration (Appendix

B).

• Real-time six degree-of-freedom (6DoF) pose tracking of a handheld object on

Android and iOS smartphones (Chapter 3). 6DoF means the 3D position and

3D rotation of the object.

• Smartphone-friendly makeup style transfer for faces, meaning the transfer of an

unseen target style in a face image to another unseen face image (Chapter 4).

• Fast detection of wrinkles and blemishes on smartphones, using classical computer

vision methods, without machine learning (Chapter 5).

• Generation of faster and more accurate machine learning architectures for real-

time semantic segmentation of faces on smartphones, using neural architecture

search with on-device latency awareness (Chapter 6).

1.3 Contributions

In general, the previously mentioned goals were meant to result in a tangible imple-

mentation, usable in a product. To reach this stage, they required research, data

preparation, training, testing, incorporation in the Unity system, and refining. These

resulted in practical contributions. While not all projects reached the final stages, some

still had theoretical contributions resulting from research and design.

As a result, this work has the following contributions:

1.3.1 Theoretical contributions

• A novel architecture for 6DoF object pose detection, based on the single-shot-

pose method from Tekin et al. (2018), capable of running in real-time on mid to

15

high-end Android and iOS smartphones (Chapter 3).

• An extension of a method for wrinkle detection from Elbashir and Yap (2020)

to allow for generic blemish detection (like acne and moles), based on the blob

detection method from Jerman et al. (2016), and the description of a potential

alternate method using Gabor filters, similar to Batool and Chellappa (2015)

(Chapter 5). By not relying on machine learning datasets, this method had lower

implementation difficulty than existing machine learning-based methods.

• A mobile-friendly version of the makeup style transfer network from Li et al.

(2018b), with several improvements to the output quality (fewer output artifacts

and resistance to poorly lit faces with heavy shadows) (Chapter 4).

• Several new, mobile-friendly segmentation supernet architectures based on the

FBNet classification network from Wu et al. (2019), and several resulting final

network architecture variants (Chapter 6).

1.3.2 Implementations and practical contributions

• A prototype C++ plugin that could run TensorFlow Lite models on the CPU

on Android, which aided in the creation of a production-grade plugin capable of

running models on Android and iOS, both on the CPU and GPU (Section 2.4).

For development purposes, it also supported CPU inference on desktop platforms

(MacOS and Windows). This became the groundwork for most of the projects of

this thesis, as well as other projects done by the company.

• A real-time 6DoF hair curler tracking system using two machine learning models,

with good accuracy aside from the roll angle, integrated into a Unity app by means

of the TensorFlow Lite plugin (Chapter 3). A version of this app with a single

pose detection model and no tracking was delivered to the client company that

had ordered its creation.

• The implementation of both wrinkle and blemish detection as a Unity C++

plugin, integrated with the face segmentation and tracking system of the company

(Chapter 5).

• A Unity implementation for the new variant of the makeup style transfer, capable

of running on the CPU on Android and iOS (Chapter 4). Furthermore, a variant

of the instance normalization layers, required for this and many other generative

adversarial networks, was created. This worked on TensorFlow Lite GPU on both

Android and iOS, albeit slowly.

• A working Unity implementation for the FBNet segmentation network, using

the existing TensorFlow Lite Unity plugin, which however did not have better

accuracy than the non-NAS versions (Chapter 6).

16

1.4 The placement company

Given the target industry of the company, all the projects included in the doctorate

were beauty-oriented, and generally targeted mobile phone operation. The result-

ing augmented reality applications mainly used the selfie (front-facing) camera of the

smartphone, and targeted the face of the user.

1.4.1 The codebase

The software used by the placement company was generally centered on Unity. While

reasonably heavy on computational resources, Unity allows for simple integration of

complex 3D elements, and is the most commonly used game engine on smartphones.

In general, Unity is relatively easy to program for, as its scripting uses C#. By contrast,

Unreal Engine, another commonly used game engine, uses C++, which is a middle level

language, requiring more boilerplate code, careful optimization, and custom memory

management. However, using C# leads to a small performance hit relative to C++,

which raises both a direct need for performance-critical components to be written as

C++ plugins, as well as an indirect need, since many performance-oriented third-party

libraries, such as OpenCV, are C++ libraries. As a result, the company’s Unity projects

are written as a combination of C# code and C++ plugins.

Through multi-platform targets in the C++ plugin builds, use of Unity, and

efforts in the core code, simple cross-platform use is generally ensured at the high

C# level, for iOS, Android, multi-platform Internet browser, MacOS, and Windows

support (the latter two generally for development purposes).

Multiple forms of apps using this codebase were created by the company, either

for presenting to other companies as demos or commissioned works, or for integrating

into the company website as part of the direct-to-consumer (D2C) web apps. For the

purposes of testing different computer vision implementations and machine learning

models, a tester Unity project was used, which we here refer to as Tensorflow-Lite-

Tester or TFLT (Subsection 2.4.4).

1.5 Ethical considerations

Foremost, beyond the academic goals and value to the scientific community, the purpose

of the work in the thesis projects, particularly those aimed at facial beauty, was to drive

users to purchase either the apps themselves, or beauty products displayed in the apps.

This was unavoidable due to the nature of the thesis as a collaboration with a company

with commercial interests.

17

In addition, it was ethically necessary to ensure the fairness of the machine learn-

ing and computer vision outputs. When dealing with computer vision or machine learn-

ing methods aimed at ascertaining human features and traits, a common ethical pitfall

is the lack of a sufficiently diverse dataset. In our case, of particular concern was good

output precision for human faces of different skin colors, ethnicities, and ages. This

concern was mainly caused by the observed lack of diversity in some training datasets,

for example that used for the face makeup transfer experiments in Chapter 4, for which

the non-makeup dataset was exclusively formed of light-skinned Asian faces, and the

makeup dataset was formed only of light-skinned faces. To mitigate this when possible,

efforts were made to supplement insufficiently diverse datasets with additional data,

using manually or automatically annotated data, or even CGI faces.

A section on project-specific ethical considerations, particularly regarding dataset

diversity and accuracy on underrepresented groups, is provided at the end of each

chapter. Additionally, given that the value of the research to the greater scientific

community is also an ethical consideration, we also discuss possible applications of the

project research beyond the beauty industry.

18

Chapter 2

Literature review and

background

Over the past decade, machine learning with convolutional neural networks has trans-

formed computer vision, leading to significantly improved capabilities in robotics, au-

tonomous driving, and augmented reality. All of these areas require various forms of

machine learning for the different perception tasks they address. For example, au-

tonomous driving may require pose estimation and classification for objects on the

road (to avoid other cars or pedestrians), pattern recognition for street signs, as well

as depth perception and mapping in order to navigate the road itself.

In all cases, many of the required machine learning tasks need to be made real-

time, since the perceived environment may rapidly change, or the camera may change

its position with respect to the environment. In the case of autonomous driving, this

can be due to the motion of the car, other cars, or pedestrians on the road, and in the

case of augmented reality, due to the need to maintain virtual objects tracked to the

real world as the camera moves.

Given these requirements, and the general tendency of convolutional neural net-

works to be slow and resource-heavy without significant optimization efforts, there have

been many works on real-time machine learning for many computer vision tasks, such

as classification (Howard et al. 2019), semantic segmentation (Yu et al. 2021), and

human pose estimation (Google 2018; Bazarevsky et al. 2020).

Optimization issues are even more apparent in many augmented reality applica-

tions for which the target running hardware is not a desktop computer or a powerful

mobile GPU, but instead just a smartphone, or even augmented reality glasses. While

optimized frameworks and machine learning models have been created for a number

of common tasks for smartphone AR, some less common tasks require novel methods,

19

or optimization of existing methods designed for more powerful hardware. While es-

pecially true for real-time neural networks, the constraints can also affect execution of

models that do not need to be real-time, as unoptimized models may be too large to

fit in smartphone memory, or may run too slowly for even a single inference to take

an acceptable amount of time. Another significant drawback of smartphones is that

they only come with integrated GPUs, all of which share memory resources with the

CPU, unlike the dedicated desktop GPUs with their own VRAM. Since GPU execu-

tion is most often required both on desktop computers and smartphones for real-time

applications, this is a further significant limitation for smartphone machine learning.

Some existing works are detailed below for augmented reality tasks that be-

came relevant in the research of this thesis, comprising methods both not smartphone-

oriented, as well as smartphone-oriented if available. In some cases, these may not

involve machine learning, but instead traditional computer vision tasks, if they are

better suited for the required purpose.

2.1 Occlusion implementation and SLAM for augmented

reality

One of the most significant challenges faced by augmented reality is the implementation

of occlusions, through which a virtual object in a real scene is made to appear behind

real objects that are closer to the camera. While anchoring virtual objects to 3D

positions in the real world does contribute significantly to the illusion of AR, and can

be made to work reasonably well even on mobile devices currently, lack of occlusion

handling tends to break immersion.

Rough occlusion can be implemented via SLAM (Simultaneous Localization And

Mapping) algorithms. SLAM methods create a coarse 3D mesh reproduction of the

environment of the sensing equipment, while simultaneously tracking the position of

the sensor in the environment (Jamiruddin et al. 2018). This can be accomplished by

detecting and analyzing the motion of landmarks between subsequent frames (Durrant-

Whyte and Bailey 2006). The resulting mesh can then be used to create occlusions

for the desired virtual objects (Holynski and Kopf 2018). While not traditionally

machine learning-driven, some of the more recent approaches do use neural networks

for improved results (Mittal et al. 2021; Zhang et al. 2018; Bahraini et al. 2019).

In spite of its computational cost, research for simultaneous localization and

mapping (SLAM) on smartphones has existed for over a decade (Klein and Murray

2009). Given the availability of low-precision inertial measurement units (gyroscopes

and accelerometers) on most current mobile phones, these can also be leveraged to

20

further inform the SLAM system through Kalman filters. Following the former Google

Tango project (Marder-Eppstein 2016), Google’s ARCore (Google 2020a) and Apple’s

ARKit (Apple 2021) are as of 2021 the main platforms for mobile phone augmented

reality with SLAM (Nowacki and Woda 2020).

A large issue with SLAM approaches is that they require at least part of the

environment to be scanned first. This is because camera motion is required to create

the mesh when using monocular RGB input, the environment being re-created using

structure-from-motion (Mungúıa and Grau 2012). Furthermore, subsequent updates

to this environment mesh are generally slow, especially on mobile devices. A machine

learning approach for depth estimation could instead allow for occlusion handling from

a single frame, with subsequent frame detections potentially improving the overall

precision of the environment scan.

2.2 Monocular depth estimation on mobile phones

Monocular depth estimation is only a small subset of research on depth estimation

in general (Bhoi 2019; Liu et al. 2020; Laga et al. 2020). Robotics and autonomous

driving applications generally use stereo (Li et al. 2018a) or multi-view cameras (Chen

et al. 2017b) at runtime, as well as radar (Dickmann et al. 2016; Kim et al. 2015),

ultrasonic sensors (Borenstein and Koren 1988), or LIDAR (Royo and Ballesta-Garcia

2019), sometimes combined (Taraba et al. 2018, Tesla 2021), as multiple sensors greatly

simplify the task. Estimating depth only from a single monocular 2D frame is by nature

an ill-posed problem, since there are an infinite number of 3D scenes that produce the

same 2D image projection. But by training on real color images with depth (RGB-D)

or stereo images, the most probable depth map can be inferred by machine learning

models (Poggi et al. 2018; Kuznietsov et al. 2017; Godard et al. 2019).

Many monocular depth estimation works are geared towards autonomous driving

applications (Neven et al. 2017; Godard et al. 2017; Harisankar et al. 2020), using

mainly the KITTI dataset (Geiger et al. 2012). This dataset offers LIDAR laser scanner

depth data, as well as stereo video. For datasets of indoor scenes, Kinect data is often

used (Hodaň et al. 2017; Lai et al. 2014, 2011; Silberman and Fergus 2011; Silberman

et al. 2012; Song et al. 2015; Xiao et al. 2013), with some stereo video also being

available (Scharstein et al. 2014). Following the work of Godard et al. (2017), use of

stereo video for network training by enforcing left-right consistency has been generally

favored over using depth data directly, as this provides better results and is easier to

capture. Given that sequential frames offer significant depth cues, both for machine

learning and traditional approaches, many depth estimation networks are recurrent

21

(Wang et al. 2019b), or are trained on stacks of frames (Zhou et al. 2017).

There is some research targeting embedded-system monocular depth estimation,

but this mainly targets NVIDIA Jetsons (Oh et al. 2020; Wofk et al. 2019), and occa-

sionally Raspberry Pi CPUs (Poggi et al. 2018; Peluso et al. 2019). Some approaches

have been ported to mobile, such as Pydnet (Poggi et al. 2018; Aleotti et al. 2021),

which achieves about 30 fps on an iPhone X. Also, the approach in FastDepth (Wofk

et al. 2019) achieves about 41 fps on an iPhone X in their example video (Wofk et al.

2020), but shows a lack of temporal coherence, as it only does single-frame inference.

As of June 2020, monocular mobile-oriented depth perception is also available

through ARCore via the Depth API (Google 2020a). ARKit also offers its own Depth

API, which also provides a mesh reconstruction of a real scene, but this relies on

Light Detection and Ranging (LIDAR) scanners (a type of depth detector using lasers),

currently available on only 2 iPad Pro models as of August 2020 (Apple 2021).

Non-realtime monocular depth estimation for still images on mobile is achievable

with a multi-frame focal stack (multiple images of a target taken with a different focal

length) as in Suwajanakorn et al. (2015). On certain recent mobile phones, such as the

Google Pixel, a approximate form of depth estimation for depth of focus simulation

can be accomplished for portrait pictures, by using human segmentation with neural

networks (which can be made real-time) and selective blurring, as was accomplished in

Wadhwa et al. (2018). In this same work, when using cameras with dual-pixel auto-

focus hardware, a weak disparity map could be obtained in close-up (macro) photos,

allowing for post-processing depth of focus effects in close-up shots as well. Since almost

all front-facing (selfie) cameras are fixed-focus, the latter tactic is generally restricted

to the rear-facing camera.

Given these existing works on monocular depth perception, there was a desire

to attempt implementation on a mobile device, primarily for the purpose of improved

occlusion handling. This did not materialize into a full-on project, beyond the initial

literature review.

2.3 Adaptation of machine learning to mobile platforms

While applying machine learning to mobile platforms still carries significant challenges,

many tools and techniques for this purpose appeared before or during the work in this

thesis, which significantly eased our research efforts.

In all the machine learning-based projects in this thesis, most of our optimiza-

tion work for creating mobile-friendly neural network architectures was based on Mo-

bileNetV2 (Sandler et al. 2018), a feature extractor and classification network specifi-

22

cally designed for fast smartphone inference. The speed and precision of this network

was due to its reliance on depthwise separable convolutions, a powerful but low-latency

alternative to normal convolutional blocks of desktop-oriented networks.

2.3.1 MobileNetV2 and depthwise separable convolutions

The MobileNetV2 network built upon the earlier MobileNetV1 (Howard et al. 2017),

which used depthwise separable convolutions as a central component. These convolu-

tions and variations on them are a fundamental ingredient in most smartphone-oriented

vision models today. Originally introduced in Sifre and Mallat (2014), also for com-

puter vision models, depthwise separable convolutions had already seen usage prior

to MobileNetV1 in XCeption (Chollet 2017). Depthwise separable convolutions are in

fact formed of two convolutions - a (normal) depthwise convolution, and a pointwise

convolution.

As shown in their respective implementations in the PyTorch machine learning

platform (Paszke et al. 2019), both normal and depthwise convolutions are special cases

of grouped convolutions. In a normal convolution operation, each channel of the input

tensor is convolved with each of the filters of the convolution weights. In a grouped

convolution with two groups, each half of the input tensor (along the channel axis)

is convolved with the grouped convolution kernel, and the two resulting outputs are

concatenated. This results in a lower computational cost. To be able to exactly divide

the input tensor, the number of groups in a grouped convolution must be a divisor of

the number of input channels. If it is equal to the number of input channels itself, it is

a depthwise convolution. Analogously, the original standard convolution is a grouped

convolution with a single group.

As an example, in PyTorch, the type of grouped convolution is controlled by

setting the groups argument of the Conv2D constructor to 1 in the case of normal

convolutions, and to the number of input tensor channels in the case of depthwise

convolutions. This leads to the example implementation of a depthwise separable

convolution in Code Listing 2.1.

class DepthwiseSeparableConvolution(nn.Module):

def __init__(self , in_layers , out_layers , kernel_size_dw =3):

super(depthwise_separable_conv , self). __init__ ()

self.depth_wise = nn.Conv2d(in_layers , in_layers , \

kernel_size=kernel_size_dw , padding=1, groups=in_layers)

self.point_wise = nn.Conv2d(in_layers , out_layers , \

kernel_size =1)

23

def forward(self , x):

out = self.depthwise(x)

out = self.pointwise(out)

return out

Listing 2.1: Example depthwise separable convolution implementation in PyTorch

MobileNetV2 modified the depthwise separable convolution block of MobileNetV1 by

using linear bottlenecks. This involves a second pointwise convolution before the depth-

wise layer, and the removal of the ReLU6 activation for the second pointwise convolu-

tion, making it a linear operation. Since the number of input and output channels of

the depthwise convolution can now be any multiple of the input channel counts of the

block itself, this creates a new parameter known as the expansion factor, equal to the

ratio of the filter numbers of the output and input of the first pointwise convolution.

These blocks put a greater limit on the size of intermediate tensors, thereby

reducing memory consumption, which is important for smartphones. As a result, the

largest intermediate tensor in MobileNetV2 is four times smaller than the largest in

MobileNetV1.

MobileNetV2 also improved on the original MobileNet by using residual connec-

tions, also known as skip connections. These involve adding the input of a sequence

of layers to its output, creating a residual block. These were introduced in He et al.

(2016), where they were demonstrated to counteract the degradation problem, in which

the accuracy of networks hits a saturation point as the network becomes deeper, after

which the accuracy quickly degrades. This was later shown to also mitigate the vanish-

ing gradient problem (Veit et al. 2016), which had already been partially mitigated by

the introduction of batch normalization and normalized network initialization. This is

because residual networks effectively create shorter paths in deep networks, effectively

becoming multiple shallow networks working in tandem. Residual networks also have a

stable backpropagation (Zaeemzadeh et al. 2021), leading to a stable training, because

residual connections are norm-preserving. This means that in the backward path, the

norm of the gradient with respect to the input of the residual block is equal to the

norm of the gradient with respect to the output.

While originally residual blocks usually contained standard convolutions, Mo-

bileNetV2 applied these residual connections to its bottleneck depthwise separable

convolution blocks, forming the residual blocks seen in Figure 1.

MobileNetV2 also removed the fully connected layer from the end of MobileNetV1,

which helped decrease the parameter count. Overall, with its cumulative improvements

over MobileNetV1, MobileNetV2 was shown to reduce the parameter count from 4.2

to 3.4 million, while improving the top 1 ImageNet classification result from 70.6% to

24

Figure 1: Residual block (a) and inverted residual block (b), both used in MobileNetV2.
In both block types, the input is added to the output. Figure from Sandler et al. (2018).

72.0%.

The existence of MobileNetV2 and derivative works allowed us to focus on mobile-

friendly network design based on combining MobileNet-based feature extractors or

convolutional blocks with task-based elements of desktop-oriented networks, such as

YOLO-based end layers for 6DoF object pose tracking (Chapter 3) or UNet-style con-

nections for semantic segmentation (Chapter 6). This allowed us to place greater focus

on implementation work.

2.3.2 Tools and challenges for machine learning on mobile platforms

In terms of implementation for mobile devices, we were again able to greatly rely on

existing work, such as the TensorFlow, TensorFlow Lite and TensorFlowJS platforms

(see Section 2.4). These also allowed for various optimizations such as quantization

and hardware acceleration out of the box, in many cases with minimal changes or

restrictions to our models. The optimized TensorFlow Lite or TensorFlowJS models

can be created automatically from TensorFlow models, allowing for a relatively seamless

transition from network training to desktop inference to on-device inference.

Despite this, several implementation issues still arose, requiring additional work.

One was the difficulty of converting PyTorch-trained networks to TensorFlow Lite,

which ultimately had to be done manually for the 6DoF object pose estimation and

face makeup transfer projects (Chapters 3 and 4, respectively).

Another was the lack of TensorFlow Lite GPU support for some of the layers in

our networks, despite support for those same layers in TensorFlow Lite CPU. Given

that we became largely reliant on hardware (GPU) acceleration due to its significantly

lower latency, this was a significant problem, and using different supported layers for

25

the problem networks was not always feasible. After some efforts to add new operations

to TensorFlow Lite GPU (Appendix B), the required functionality was implemented

using Unity HLSL shaders and OpenCV CPU operations.

Another issue was the large number of different smartphones that needed to be

supported by the resulting Unity apps, not all of which supported GPU operation,

and had varying degrees of computational power and network latency. Based on the

neural architecture search project in Chapter 6, we intended to eventually generate

multiple variants of our networks for different devices, using the on-device latencies of

different candidate network building blocks. Given the negative results of the method,

we instead relied on manual testing on multiple smartphones, sometimes using Google

Firebase Test Labto partially automate this using cloud computing and remote devices

(Google 2021b).

Finally, and most importantly, TensorFlow Lite (and later TensorFlowJS) needed

to be integrated into Unity before any of the thesis projects could be finalized, to allow

the required Unity apps to have machine learning-based capabilities. This is described

in the next section, along with the rationale for using the TensorFlow Lite library for

our work.

2.4 Integration of TensorFlow Lite with Unity3D

Almost all the projects in this work use machine learning for computer vision and scene

understanding. Given the requirement to implement the research on real hardware,

as well as the innate engineering aspects of modern machine learning for computer

vision, the choice of the appropriate API for these tasks was very important. The

most significant requirement of this API was support for smartphone applications, as

mobile hardware is significantly different from desktop computers or servers. A further

requirement was significant inference speed, given the real-time execution needed for

some of the projects.

These requirements lead to the choice of TensorFlow Lite (Google 2021h), which

we discuss in this chapter, and outline the changes necessary to make it applicable

for the goals set in this work. The reasoning for using it over the other potential

mobile-oriented APIs is shown in Subsection 2.4.2.

TensorFlow Lite is offered as part of the TensorFlow API. Introduced in late 2015,

TensorFlow (Abadi et al. 2016) is a machine learning platform created by Google, for

neural network training and inference on a variety of running environments, generally

desktop computers or powerful servers. Alongside PyTorch (Paszke et al. 2019), it is

one of the most well-known machine learning platforms.

26

For the purposes of inference on low-powered devices like smartphones, while it

was possible to build and operate TensorFlow on iOS and Android in a similar fashion

to desktop use (Google 2019, 2020c), this has been deprecated in favor of TensorFlow

Lite. TensorFlow Lite is an inference-only lightweight framework specifically tailored

for low-powered devices, such as Android and iOS smartphones, as well as embedded

Linux devices and microcontrollers (Google 2021h).

2.4.1 Overview of the TensorFlow Lite API

The main benefit of TensorFlow Lite, relative to just the desktop version of TensorFlow

built for smartphone platforms, is improved model inference speed. This partially

results from basing the machine learning model format on Flatbuffers serialization

(Google 2021c). For mobile inference, this is superior to the TensorFlow protocol

buffer format, given its smaller file size and direct data access capabilities, which help

speed up inference and lower resource consumption (Google 2021i).

Another significant factor in TensorFlow Lite inference speed is mobile hardware

acceleration support. Desktop computers use discrete GPUs (Nvidia or AMD) or var-

ious machine learning-oriented accelerators (like Google’s Tensor Processing Units),

much unlike smartphones, which use integrated GPUs to keep the power consumption

low. As a result, normal desktop-oriented TensorFlow does not support hardware ac-

celeration on smartphones, unlike TensorFlow Lite. The latter’s hardware acceleration

capabilities are discussed in Subsubsection 2.4.3.

While generally providing less of a speedup than hardware acceleration, faster

model inference can be achieved through quantization. This involves using lower-

precision tensor arithmetic during inference, instead of the usual 32-bit float precision.

This is discussed in Subsubsection 2.4.3.

To ease implementation, TensorFlow Lite provides Java, Swift, Objective-C,

C++, and Python bindings to its low-level C/C++ code, and employs Metal, OpenGL,

and OpenCL for hardware acceleration on iOS and Android smartphones (Google

2021h). For testing purposes, it also allows for model inference on desktop comput-

ers, using the Python API, with some support for using the low-level C/C++ API’s

directly.

2.4.2 Comparison of TensorFlow Lite with similarly-purposed APIs

Given the lightweight nature, focus on smartphone inference, and mobile hardware ac-

celeration support of TensorFlow Lite, any alternative API must at least have these

same capabilities. A potential further benefit would be already implemented integra-

27

tion with Unity3D. All smartphone or Unity-oriented machine learning APIs we could

identify are described below, with justification given as to why they were not chosen

over TensorFlow Lite.

Caffe2

Before the advent of TensorFlow Lite, Caffe2 (Jia et al. 2014; Facebook 2021c) appears

to have been the primary mobile-oriented machine learning model execution library,

providing an alternative to simply building desktop-grade libraries for mobile targets

(such as the deprecated TensorFlow for Android). Currently, Caffe2 is offered as part

of PyTorch (Facebook 2018).

While Caffe2 does offer support for both Android and iOS (Facebook 2021c),

development appears to have stagnated. Some effort appears to have been made to

add Android GPU support through Vulkan and OpenCL, but the results seem to exist

only as unmaintained stubs (Facebook 2020b,a). Given the advent of PyTorch Mobile

in late 2019 (Facebook 2021a), which offers similar but improved functionality, Caffe2

appears to have been superseded as a smartphone machine learning platform.

Barracuda

Barracuda (Unity Technologies 2021a) is a machine learning model execution frame-

work specifically for Unity, which supports iOS and Android execution, on both CPU

and GPU (Metal on iOS and Vulkan on Android). Its training capabilities are mainly

geared towards AI elements in Unity games, as part of the ML-Agents project (Unity

Technologies 2021b), but it can be used as a general-purpose neural network inference

system.

While this is likely the best alternative to TensorFlow Lite for use with Unity,

as its tight integration removes the need for constructing all the required C++-C#

bindings, Barracuda appears to have been made public in May 2019, when our attempts

at a TensorFlow Lite implementation had already been underway for several months,

and GPU support with OpenGL and Metal had already been added to TensorFlow

Lite (Lee et al. 2019). Furthermore, Barracuda appears to be a significantly smaller

project than TensorFlow Lite, with development occuring at a slower pace, which is

likely to lead to it being a less robust and stable framework.

Finally, given our increased use of TensorFlow as opposed to PyTorch, using

TensorFlow Lite greatly simplified the conversion from training model to on-device

inference model, as Barracuda uses the open-standard ONNX format instead of the

TensorFlow Lite .tflite format. While compatible with PyTorch and many other frame-

28

works, the ONNX format is not fully compatible with TensorFlow, as has been observed

in our efforts in converting PyTorch models to TensorFlow Lite (Subsection 3.7.1).

PyTorch Mobile

PyTorch released PyTorch Mobile in October 2019 for neural network inference on

Android and iOS devices (Facebook 2021a). While it supports 8-bit quantization,

GPU support has not yet been added as of August 2020, but appears to be in the

roadmap, for both Android and iOS (Facebook 2021b). This makes it unsuitable for

our purposes, even barring the TensorFlow Lite-analogous C++ to C# bindings that

would need to be added for use with Unity. But in general, after GPU support is

added, PyTorch’s ease of use compared to TensorFlow could give it an edge in training

networks for mobile platforms, although TensorFlow 2 has caused this ease-of-use gap

to shrink.

As a result, TensorFlow Lite was the most suitable framework for this research.

2.4.3 Latency reduction techniques in TensorFlow Lite

Given the focus on real-time performance in some of the thesis projects, there was a need

to ensure inference speed as much as possible, while maintaining sufficient accuracy.

In TensorFlow Lite, there are a number of ways to speed up model execution,

relative to the default 32-bit precision inference on the smartphone CPU. These include

using multiple CPU threads, model quantization, hardware acceleration, or alternate

execution backends like XNNPACK (Google 2021d). These are presented and discussed

below.

8-bit quantization for fast CPU inference

It has been observed (Jacob et al. 2018) that a model with lower-precision weights and

operations is often still capable of inference with just a small accuracy hit. This is

known as model quantization. TensorFlow offers INT8 quantization through the tensor

arithmetic shown in Equation (2.1) (Google 2021j), which is a variation of the method in

Jacob et al. (2018). While quantized weights cannot be used directly during training,

as this breaks backpropagation, quantized inference can be achieved either through

training-time quantization (which uses quantization nodes during later training stages

to determine the zero point and scale values for each op), or post-training quantization

(which uses post-training inference on a representative dataset to determine those same

values). The latter was found to be easier to implement, so it was our preferred method.

While it is possible to use even lower than 8-bit precision in inference without

29

losing too much accuracy (Choukroun et al. 2019), TensorFlow Lite does not support

this.

real value = (int8 value− zero point) · scale (2.1)

While generally superseded by hardware-accelerated inference, INT8 quantiza-

tion can be a significant latency optimization technique for some older devices, which

cannot use the TensorFlow Lite GPU or DSP delegates listed in the next section. This

is the case for Android devices without valid OpenCL libraries and OpenGL ES ver-

sions below 3.1, and some very old iOS versions. INT8 quantization is also used by

other machine learning frameworks for smartphones that do not have full support for

hardware acceleration, like PyTorch Mobile, as of April 2021 (Facebook 2021b).

Different types of quantization have been added to TensorFlow Lite during the

duration of this project (such as the INT8 quantization with INT16 activations, for

certain more accuracy-sensitive applications), but these are outside our scope, as our

main focus was hardware accelerated inference on the smartphone GPU. This was ob-

served to be consistently faster than INT8-quantized CPU inference, which is consistent

with the latency benchmarks reported in for multiple off-the-shelf models often used

for inference on smartphones (Google 2021e,f).

GPU inference

By default, the tensor calculations required for inference are done on the smartphone’s

CPU. In TensorFlow Lite, there are a number of alternate executors which override this

default CPU model execution, generally with the goal of providing faster inference, by

performing the calculations in a different way. These are known as delegates, and

generally involve leveraging the smartphone GPU.

On Android, the OpenCL and OpenGL GPU delegates are available, while the

Metal GPU delegate is used for iOS. Each of these provide inference execution on the

GPU by using the shading language they are each named after. In addition, the Neural

Network API delegate for Android and the CoreML delegate for iOS, specified in the

next subsubsection, may also internally leverage GPU execution.

The GPU delegates can speed up inference additionally by restricting precision

to 16-bit (half) float instead of the default 32-bit float operation.

Other delegates

To ensure a complete review of all possible acceleration methods with TensorFlow Lite

delegates, as to not miss any potential options for our real-time inference projects,

30

all of the remaining delegates were briefly tested on a OnePlus 6 Android device and

an iPhone XS. Later tests were carried out on a larger amount of devices by other

placement company employees.

On iOS devices, the CoreML delegate can use the Neural Engine, or fall back

to GPU or CPU inference if this is not available or does not support the model. The

fallback GPU inference uses Metal internally. In most of our tests, it did not show any

benefit over just using the Metal delegate outright.

On Android devices using certain Snapdragon processors, the Hexagon digital

signal processor (DSP) delegate is available. This provides a hardware acceleration

alternative to using the GPU. In some of our tests on a OnePlus 6 Android device,

the Hexagon delegate was observed to outperform the OpenCL and OpenGL delegates

in several off-the-shelf models. This is due to it both providing hardware acceleration

and by using, and being restricted to using, integer-quantized models. Despite this,

given the significant amount of devices that did not support it, as well as the model

quantization requirement, this delegate was generally not taken into consideration.

The XNNPACK delegate runs on Android and iOS CPUs. While it required full-

float models at the time of testing, it was observed to be slightly faster than quantized

CPU inference on multiple Android devices, and could occasionally outperform the

OpenGL delegate when multiple execution threads were used. However, it virtually

never outperformed the OpenCL delegate when using full float precision.

Some later tests, after quantized model inference support was added to XN-

NPACK, showed the delegate to outperform the OpenCL delegate as well in some

cases, when using sufficient execution threads.

The Neural Network API of the Android NDK has its own delegate, supporting

both quantized and unquantized models. At the time of our tests (around mid-2018),

attempting to use this delegate led to abnormally large latency increases, with some

models with sub-second 32-bit CPU inference taking multiple seconds to run with the

NNAPI delegate. As a result, it was generally disconsidered. Given the more reasonable

latency values noted in Google (2021g) for the NNAPI delegate on the Pixel 3, retrieved

in late 2021, these issues may have been fixed. The NNAPI delegate may therefore be

more relevant for future work.

2.4.4 Creation of our TensorFlow Lite plugin for Unity

As mentioned in Subsection 1.4.1, the existing company codebase was based on Unity3D,

which is the most commonly used game engine for 3D smartphone applications, includ-

ing augmented reality ones (Bonfiglio 2018). Despite the support for mobile operation,

Unity apps can still be a significant resource and power drain. Since simple graphical

31

elements can be drawn without a game engine on both iOS and Android, using Unity is

not always the best option. For some of the projects in the thesis, with relatively simple

graphics, this was arguably the case. However, given the additional development effort

required to adapt the codebase to not rely on Unity, the implementations of all the

machine learning and computer vision projects in this thesis were based on Unity. As

a result, in order to allow for machine learning inference, integrating TensorFlow Lite

with Unity was required. This was done in a manner similar to the already existing

C++ Unity plugins of the company, by taking advantage of the C/C++ API offered

by TensorFlow Lite.

Creating a C++ plugin involves building the required C++ functions into a native

library, meaning a separate version of the library must be built for every target platform.

This allows these C++ functions to be called from Unity through C# bindings (extern

functions), as programming in Unity is done in C#.

The company already employed a variety of C++ Unity plugins in its codebase,

largely as part of its proprietary augmented reality platform. This is because despite

the added complexity of C and C++ code compared to C#, such plugins allow for

speed increases crucial to augmented reality applications, in part due to the use of

highly optimized C++ libraries such as OpenCV.

The resulting system is capable of running models on multiple platforms from

within Unity, and has been used both for thesis projects, as well as a number of the

company’s custom apps and web apps, either for clients or for company-hosted projects.

This system allows for inference of arbitrary models within Unity on the CPU (Android,

iOS, MacOS, Windows) and the GPU (Android, iOS, MacOS), as long as they are

supported in TensorFlow Lite. It has been used for real-time facial segmentation, facial

keypoint detection, and fingernail segmentation with internally designed and trained

models.

To test and benchmark TensorFlow Lite models directly on smartphones, the

main devices used were a OnePlus 6 Android device (running Android 8, 9 or 10 over

the thesis period) and an iPhone XS iOS device (running iOS 12, 13 and 14 over

the thesis period). For more in-depth testing for production-ready applications, some

manual testing on multiple other devices was done by other company employees. This

was later replaced with an automated system, using Google Firebase Test Lab, which

allows for testing on remote devices in the cloud (Google 2021b).

2.4.5 TensorFlow-Lite-Tester

In terms of implementation in the company codebase, the integration of TensorFlow

Lite into Unity resulted in an overarching Unity project called TensorFlow-Lite-Tester.

32

Figure 2: Outputs from TensorFlow-Lite-Tester, showing the makeup virtual try-on
capability. Original image by ℵ (Aleph) under CC BY-SA 2.5 (Aleph 2008). Image
has been cropped (left), and the crop shown with various overlays (others).

While this was more of a testing project for various computer vision tasks, eventually

turning into an amalgamation of different subprojects, the primary focus of this Unity

project was the alignment of different pre-designed makeup styles onto a person’s face,

in real-time. This is referred to as a virtual try-on, illustrated in Figure 2, and is sought

after for the purposes of offering makeup trials remotely, not in-store, thereby driving

sales. Similar capabilities are implemented in other beauty apps, such as Perfect365

(Perfect365 2021) and YouCam Makeup (PerfectCorp 2021). In the TFLT project, the

virtual try-on is handled mainly through machine learning models, and allows for the

application of makeup, lipstick, and changes in hair color.

From a development perspective, TFLT allows for the testing of machine learn-

ing models, mainly for face tracking and semantic segmentation, but also traditional

computer vision algorithms, like the wrinkle and blemish detection system described in

Chapter 5. It supports iOS, Android, Windows, MacOS, and browsers, both for run-

ning the models on the CPU, as well as the GPU. Given that it uses much of the same

code as the various makeup apps created by the company, TFLT provided a testing

ground and benchmarking capabilities for the various machine learning and computer

vision tasks listed in the following chapters.

Unlike normal Unity GPU operations, which are written in the HLSL shading

language and automatically compiled to the target device shading languages, GPU

operations in TensorFlow Lite need to be written in the target languages directly,

requiring OpenGL and OpenCL implementations for Android, and Metal implementa-

tions for iOS and MacOS. While cross-platform shaders for Windows, Android, iOS,

MacOS, and even Linux could be possible using Vulkan, using MoltenVK in the case

of iOS and MacOS, TensorFlow Lite does not yet have Vulkan implementations of

the existing GPU ops, and their addition is not currently part of the roadmap, as of

July 2021 (Google 2021k). As a result, implementation of new TensorFlow Lite GPU

ops is comparatively considerably more work-intensive, relative to implementing Unity

33

shaders.

The browser support of TensorFlow-Lite-Tester was added later for the company’s

direct-to-consumer (D2C) web apps, and required some significant changes. While

Unity does allow for in-browser experiences through WebGL, the machine learning

API needs to be switched from TensorFlow Lite to TensorFlowJS, a JavaScript-based

inference library for converted TensorFlow models. This often resulted in a significant

performance hit, particularly when using a smartphone browser. A result of this in-

creased constraint was our attempt at using neural architecture search (NAS) to aid

in attempts to find lower-latency networks without compromising accuracy too much,

initially with only TensorFlowJS in mind, but later with TensorFlow Lite in mind as

well (Chapter 6).

Browser support needed to be added because, while beauty smartphone apps are

a popular way to present tech to consumers, a browser app is easier and faster to use,

requiring no installation. It may also be more suitable for a simpler experience, like

a tech demo. Such capabilities have been implemented into the websites of multiple

beauty product vendors, such as L’Oreal and Garnier, for hair color preview (L’Oréal

2021; Garnier 2021).

Most of the projects listed in this thesis, with the exception of the non-Unity or

non-ML wrinkle and blemish detection project, rely on this system, as do other projects

carried out by other company employees. While in general, the capabilities of the C++

API of TensorFlow Lite were sufficient for this system, with engineering work focused

on integration into Unity, some potential projects would have benefited from changes

to the API itself. One of these projects, involving a scheme for faster face tracking

and segmentation, was initially dependant on custom GPU operations being added to

TensorFlow Lite.

The addition of these ops proved too difficult to maintain, and ultimately handled

with OpenCV and HLSL operations instead.Our TensorFlow Lite op addition attempts

are detailed in Appendix B. Particularly notable is the use of the operation fusion

mechanism to remove tensors with unsupported data types, and to remove dynamic

(variable-sized) tensors, in the case of the CROP RESIZE operation.

This system was required for the wrinkle and blemish detection project (Chapter

5, in order to be able to extract only the targeted skin regions with a segmentation

model, as well as the neural architecture search for segmentation project (Chapter 6),

since it aimed to replace the segmentation model with a latency and accuracy-improved

version. Furthermore, the system was used for the makeup style transfer experiments in

Chapter 4, as it required bounding box detection of the face in the image frame during

use. Finally, it further saw use in other company projects, not directly contributed to

34

by the author of this thesis.

2.5 Six degree of freedom object pose estimation

Given its applications in robotics and self-driving cars (Pauwels and Kragic 2015;

Gualtieri et al. 2016; Li et al. 2018a), in which stereo cameras (Fan et al. 2020), depth

cameras (Biswas and Veloso 2012; Suay and Chernova 2011) or LIDAR scanners (Royo

and Ballesta-Garcia 2019) can be used to provide both RGB and depth data, a signifi-

cant amount of object pose estimation approaches use RGB and depth data combined

as inputs (Choi and Christensen 2012a; Aldoma et al. 2013; Wang et al. 2019a; He

et al. 2020). The extra depth data makes methods using it significantly more precise

and easier to implement than methods solely using RGB. However, most smartphones

are only capable of depthless color input from a single camera, so only monocular RGB

methods are relevant to the purposes of this thesis. Due to the additional constraints

of the associated project in Chapter 3, as well as a desire to provide generalizable

research, focus is placed on markerless pose tracking of custom objects.

The problem of monocular pose detection goes back to the 1980s, with graph

and tree-based approaches using the appearance of the object from many viewpoints

(Plantinga and Dyer 1986; Ikeuchi 1987; Munkelt 1994; Flynn and Jain 1991). This

was later followed by methods using local descriptors, which used perspective-and-point

algorithms to extract the 3D pose from the 2D positions of detected features (Collet

et al. 2009; Wagner et al. 2010).

Currently, most approaches are based on convolutional neural networks. As in

object detection approaches, pose estimation networks can be two-stage (slower but

more accurate) or single-shot (faster but less accurate). Examples of the latter are

SSD-6D (Pandey et al. 2018) and single-shot-pose/YOLO6D (Tekin et al. 2018). The

former is based on the SSD object detection scheme from Liu et al. (2016b), and works

by quantizing the pose space, treating it as multiple object detection classes. This only

provides a coarse pose, and needs post-inference edge-based refinement to allow for

competitive precision.

An example of a two-stage method is BB8 (Rad and Lepetit 2017), which uses

a coarse-to-fine rough segmentation mask in the first step, then a neural network to

locate the corners of the 3D bounding box, as a second step. The PoseCNN approach

in Xiang et al. (2018) is a two-stage method which segments the objects with a higher

resolution than BB8, and then regresses the centroid position and rotation (as two

quaternions) in separate branches. The position branch uses Hough voting by doing

pixel-wise semantic labeling of the direction from that pixel to the centroid, and the

35

rotation branch regresses the rotation by selecting the regions of interest and pooling

the features. However, given the limited precision of the output on monocular images,

PoseCNN relied on depth data using iterative closest point optimization to obtain the

final, higher-precision pose data, which is not possible with only a monocular image.

More recent approaches do not attempt to determine pose directly, but use 2D feature

or patch detection, and subsequently project the pose to 3D via perspective-and-point

(PnP) or a similar projection method. Single-shot-pose (Tekin et al. 2018), based on

the YOLOv2 object detection network (Redmon and Farhadi 2017), outputs the 2D

projection positions of the 3D bounding box corners, and applies perspective-and-point.

The betapose approach (Zhao et al. 2018) instead localizes SIFT-selected keypoints of

the objects as a second step, after cropping the input with a YOLOv3 bounding box

detector, and uses the highest-confidence keypoints in the PnP step.

More recently, focus has been put on using segmentation methods to estimate

pose, by querying the pixels in the segmentation mask for the position of the bounding

box points. PVNet (Peng et al. 2018) uses a confidence-aware per-segmentation-mask-

pixel Hough voting scheme to query the position of SURF feature points on objects

with given CAD models, following a prior rough object segmentation step. In general,

segmentation models such as this (Hu et al. 2019; Barowski et al. 2019) are shown to be

more robust to occlusions and truncations than single-shot. However, segmentation is

generally slower than single-shot methods, in spite of the lower-resolution output mask

required for segmentation-based pose estimation, as opposed to generic segmentation.

In addition, for handheld objects, the ground truth segmentation mask cannot be

estimated solely by means of posing the CAD model over the object, as the hand will

virtually always be occluding the object, and we have observed it to not be easy to mask

out well without significant manual labour. Finally, in our particular use case (shown

in Section 3.9), initial attempts using the method in Hu et al. (2019) often picked up

background elements as mask, which caused the output pose predicted by the pixel-

wise outputs to be completely incorrect. This was especially true for experiments using

the entire frame as input, but seemed to be mitigated by using tracked crops as input.

Investigation may be considered future work.

Some algorithms try to improve output precision with a modified post-processing

projection step. Aside from the modified postprocessing in PVNet, the DeepHMap++

method (Fu and Zhou 2019) offers an improved PnP method based on the heat map

generated by the feature extractor, rather than the explicit point position outputs.

Given that the pose is extracted from single frames, all the aforementioned meth-

ods generally lead to lack of smoothness in output, and do not make use of temporal

coherence when inferring on video.

36

For the specific case of object detection in video, several methods take advantage

of temporal coherence through long short-term memory (LSTM) methods, which use

intermediate layer outputs from previous network inferences to aid current frame de-

tection. One such method is ROLO (Ning et al. 2017), which uses a single LSTM unit

following the heatmap output of a YOLO detection network. To avoid the memory in-

crease normally associated with LSTMs, the approach in Zhu and Liu (2018) introduces

a mobile-friendly network with Bottleneck-LSTM layers. This does not however lead

to our desired reduction in required input resolution. Furthermore, the ConvLSTM

is a custom network operation, requiring custom GPU kernels to run on smartphones

with TensorFlow Lite.

Another method of reducing latency is to perform tracking in the compressed

domain directly (Ujiie et al. 2018; Liu et al. 2019d), as compression schemes such

as H.264 reduce inter-frame information redundancy by encoding motion information

in block vectors. However, it requires already compressed offline video (Wang et al.

2019c) or compressed feeds (Ujiie et al. 2018), with the latter generally being restricted

to security cameras, not smartphones.

Tracking can serve in aiding bounding-box object detection for unseen objects,

if the initial position is provided. While some networks accomplish this by partially

training the network at runtime (online) (Hare et al. 2011; Babenko et al. 2009; Wang

et al. 2015; Kalal et al. 2011), this comes at a performance cost (Held et al. 2016).

Others, like the GOTURN tracker (Held et al. 2016), are trained entirely before runtime

(offline), using random pairs of a large number of objects, leading to fast performance

during actual use.

For non-LSTM pure machine learning approaches to object tracking, some meth-

ods use separate models for detection and tracking. The BlazeFace tracking method

(Bazarevsky et al. 2019) uses an improved single-shot bounding box detector with

sparse keypoints, which provides a cropped region of interest for a second network with

more keypoints. This differs from traditional region-of-interest models in that the sec-

ond network subsequently specifies the input for itself on the next frame (a padded crop

centered around the detected keypoints). This method has also been applied to 2D and

3D hand pose estimation, as part of the MediaPipe framework (Google 2020b). It is

also used in our single-shot-pose-based approach in Chapter 3, to achieve acceptable

accuracy.

Explicitly focusing on the tracking of handheld objects has also received some

attention, in part due to applications in the visual or visual-odometric tracking of

handheld virtual or augmented reality controllers. However, being VR/AR-oriented,

they generally address egocentric head-mounted cameras. Pandey et al. (2018), building

37

on SSD-6D, investigate different variants of hybrid quantized space and extra bounding

box parameter approaches, to track a small handheld tracker. The approach in Tekin

et al. (2019) does joint 3D hand-object pose estimation, bypassing the PnP step by

using a 3D grid with sparse depth cells, and using an recursive sub-network to also

perform action recognition. As of September 2019, it appears to currently be the only

joint hand-object estimator that uses only monocular RGB data.

The above techniques, with the exception of Bazarevsky et al. (2019) and some of

the implementations in Google (2020b), generally address desktop computer operation.

At the time of the project, no monocular 6DoF pose networks were identified, so the

single-shot-pose approach (Tekin et al. 2018) was adapted in this thesis for smartphone

inference, and extended to use simple tracking for better accuracy. This is detailed in

Chapter 3.

2.6 Generative adversarial networks

Generative adversarial networks, or GANs, were introduced in Goodfellow et al. (2014).

These are characterized by two subnetworks, the generator and discriminator, with loss

functions minimized by each other’s failure. The discriminator is fed both data from a

real dataset, as well as data output by the generator, and is trained to classify the data

as either real or fake (generated), being penalized when it classifies a generated image

as real, or a real image as fake. The generator is at the same time trained to output

data that the discriminator classifies as real, being penalized when the discriminator

correctly classifies its output as fake. The global loss function is mathematically defined

as in Equation (2.2) (Goodfellow et al. 2014).

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

This loss allows for balanced, concurrent training of the generator and discrimi-

nator, through which the former will learn to output data that closely matches the real

dataset, but is not part of it. Using this technique, Goodfellow et al. (2014) successfully

generated realistic hand-written digits and low-resolution human faces, based on the

MNIST and TFD datasets, respectively.

Later, the work in DCGAN (or Deep Convolutional GANs, introduced in Radford

et al. (2016)) became a significant step in the development of realistic image generation

with GANs. Through extensive experimentation, the authors formulated a number

of significant architectural guidelines for both the generator and discriminator, vastly

improving the output quality and laying the base for many subsequent image-generating

38

GANs. These included:

• the use of batch normalization in both the generator and discriminator (later

replaced with instance normalization and derivatives in the case of the generator,

following Ulyanov et al. (2016))

• removal of fully connected layers (which may have aided in reducing latency, in

the smartphone-targeting attempts in this thesis)

• ReLU activation (ReLU(x) = max(0, x)) everywhere in the generator except for

the output

• LeakyReLU activation (see Equation (2.3)) everywhere in the discriminator

• replacement of the pooling layers with strided convolutions in the discriminator

• fractionally-strided convolutions (also known as transpose convolutions) in the

generator

LeakyReLU(α, x) =

x x ≥ 0

αx x < 0, for a constant α, generally smaller than 1
(2.3)

With the exception of the use of instance normalization instead of batch normal-

ization for the generator, and the testing of replacing transpose convolutions due to

their suspected introduction of artifacts in the output, all of these guidelines were also

used in the BeautyGAN-based research in Chapter 4.

The authors of DCGAN further discovered that interpolating the latent repre-

sentations of the output images (meaning the corresponding GAN inputs, which are

vectors) resulted in a relatively smooth interpolation between the resulting outputs

as well. By averaging out the latent representations corresponding to outputs with

certain visual traits, trait vectors can be generated, meaning inputs corresponding to

a certain facial trait or attribute, like smiling or woman. When traveling from the

latent representation vector of an output without the trait in the direction of this trait

vector, the output was modified to obtain the trait, as shown in Figure 3 for the trait

vector smile = smiling woman − neutral woman. This smoothness, as well as the

latent trait vector concept, are both crucial to generating user-controllable outputs,

and would later be more strictly enforced in works such as StyleGAN (Karras et al.

2019) and related works, with significantly superior output quality.

There has been much research on controllable GAN outputs (He et al. 2019; Liu

et al. 2019c). A commonly addressed example involves taking an input image and

generating an output with only a specific feature modified and no other changes, either

based on a target image (Li et al. 2018b), a predefined image style (Zhu et al. 2017),

39

Figure 3: Latent vector arithmetic with DCGAN. Figure from Radford et al. 2016.

or a target descriptor, like one or more slider-controlled scalar values (He et al. 2019;

Liu et al. 2019c).

AttGAN (He et al. 2019) is a generative adversarial network that allows for

modifying features of a person, while keeping the rest of his image nearly identical.

The dataset for this network contains images of faces, as well as a binary vector of

attributes (such as black hair, blond hair, or presence of beard). The generator in this

case has an encoder-decoder structure, with the decoder taking a the attribute vector

as an extra input. The decoder half is run twice, once with the attribute vector of

the input, and once with a randomly chosen target attribute vector. The first run is

trained to output the unchanged input through reconstruction loss, while the second

is trained both to fool the discriminator, as well as get a pre-trained attribute vector

classifier to output the same attribute vector.

STGAN (Liu et al. 2019c) improves upon AttGAN by reducing the effect of the

network outside the region of the target attribute to change. For example, applying

lipstick to a target image causes fewer unwanted modifications in background, face or

hair, that normally occur due to the network picking up correlations between different

attributes in the training dataset.

2.6.1 GANs for image style transfer

For the purpose of style transfer using an image instead of an attribute vector as the

style target, much of current research is built on CycleGAN (Zhu et al. 2017). This

40

network has successfully been used for tasks such as turning images of horses into

images of zebras, or turning photographs into paintings of a certain artist’s style (see

Figure 4). For a collection X of source (horse) images and a collection Y of target style

(zebra) images, CycleGAN uses two generators G (X to Y) and F (Y back to X). G

learns to fool the target style discriminator DY by taking Xi as input and generating

a fake Yi, and F learns to fool the source style discriminator DX by taking G’s fake Yi

and reverting it to an X-style X ′i. The cycle consistency is the additional constraint

that F ’s X ′i must match as closely as possible the original Xi that G took as input.

These constraints are also applied in reverse, with Y as the original input. The overall

scheme is illustrated in Figure 5.

Figure 4: Some results of Zhu et al. (2017)

Figure 5: The adversarial scheme (a), forward cycle consistency (b), and reverse cycle
consistency (c) in CycleGAN (figure from Zhu et al. (2017))

There appears to be at least one example of CycleGAN-based adversarial net-

works in smartphone augmented reality, which is the gender-swapping camera filter of

the popular messaging app Snapchat (Snap Inc. 2020), introduced in early 2019 (Harbi-

son 2019). While this is not explicitly known to be GAN-based, observed filter outputs

are consistent with those expected from a GAN applied to a rotated crop of the user’s

face, subsequently pasted back onto the input frame. Similarly to CycleGAN, passing

41

the filter output through the filter a second time has been observed to result in an

image similar to the original, although this has not been robustly proven (Jang 2019).

The main caveats of this filter appear to be a lack of temporal consistency, particularly

observable in the hair output, followed by truncation of long-haired outputs due to the

limited face cropping area in the GAN input, as well as sensitivity to face occlusion or

face paint.

Snapchat appears to have at least one other GAN-based face filter, also operating

in real-time, that transforms the user’s face into an anime-style equivalent (Snap Inc.

2021). The limitations and failure cases are similar to the aforementioned gender-

swapping filter. Given the closed-source nature of the application and method, the

existence of this GAN filter does not significantly reduce the importance of public

research on the topic of low-latency, mobile-friendly generative adversarial networks,

whether human face-oriented or otherwise. Furthermore, as competing applications,

including that of the placement company, often seek to obtain feature parity with

other augmented reality apps, continued research into the topic is also relevant to

the industry. The rarity of mobile applications using real-time image-based GANs

(Snapchat is the only one that could be identified as of September 2021) further proves

this point.

Even for desktop and non-realtime applications, the original CycleGAN has some

notable issues. Firstly, it has the tendency to modify images outside the target area

when doing localized changes. An example of this can be observed in Figure 4, as the

horse-to-zebra transform often changes the color of the grass. The simplest way to

combat this is through a segmentation network applied to the output of a CycleGAN-

based network. However, this requires a well-trained custom segmentation network, so

most region-aware GAN approaches instead use segmentation masks at training time,

while not requiring them during inference. For GANs with the purpose of face editing,

the CelebAMask-HQ dataset (Lee et al. 2020) is often used, as it contains segmentation

maps for high-quality aligned face images (512 × 512 resolution). Examples of GAN

projects using this dataset are MaskGAN (Lee et al. 2020) and SPADE-TensorFlow

(Kim 2021), which allowed for the editing and generation, respectively, of images fol-

lowing a user-defined or manipulated segmentation map. This allowed for controllable

outputs, like the addition of glasses, or changing the length of the hair in the input.

2.6.2 GANs for makeup style transfer

While it is common for makeup apps to allow predefined or user-configurable makeup

styles to be tracked to a user’s face (PerfectCorp 2021; Perfect365 2021), a makeup

style might also be defined by an image of a face wearing it. Since this requires less

42

effort on the user’s part to configure and preview, several works have attempted to

implement it.

While later methods used GAN methods similar to CycleGAN for makeup style

transfer (Liu et al. 2016a; Li et al. 2018b), Guo and Sim (2009) relied on gradient-

domain editing (Pérez et al. 2003), given the face skin region. Unlike previous methods

such as Tong et al. (2007), it did not require both a before and after image (denoting

the same face with and without the target makeup style, respectively).

The first method to use machine learning for the purpose of makeup style transfer

was Liu et al. (2016a), based on the image style transfer work in Gatys et al. (2015)

(which predated the cycle-consistency tactic of CycleGAN). To prevent differences be-

tween input and output in regions without makeup, Liu et al. (2016a) restricted the

effect to the makeup regions (eyes, lips, and the rest of the face), using different con-

figurations for each.

A further example is BeautyGAN (Li et al. 2018b), which during training uses an

input face mask defining the target areas to apply makeup to (lips, face, area around

eyes), and histogram loss to enforce those areas to match the target color distribution

in those same areas. The other regions of the image are therefore left unaffected.

The method in Zhang et al. (2019) disentangled facial appearance from makeup

style, by creating separated encoders and encodings for each. Using vector arthmetic

with the makeup encodings enabled the combination of multiple styles in the output,

as well as making a style lighter or heavier.

The approach in Li et al. (2020) is notable for the use of UV loss to ensure dense

correspondence between points on faces, so that the makeup is correctly placed and its

texture properly retained. This technique is noted as a potential future step for our

research in Subsection 4.6.4. However, the overall method of the work requires makeup

and non-makeup pictures of the same person in the training dataset.

Given the results and the availability of code, BeautyGAN was chosen as the base

of the research carried out to enable makeup style transfer on smartphones, presented

in Chapter 4. In its original form, made available in Jiang (2021), the model was too

large for sufficiently quick operation in our tests (see Section 4.3). This occurred even

when single-image inference was the target, as opposed to real-time frame-by-frame

inference. Furthermore, due to the instance normalization layers present in this and

many other generative adversarial networks, the models could only be run on the CPU

in TensorFlow Lite, not on the GPU, regardless of the GPU delegate used (OpenGL,

OpenCL or Metal). This type of normalization requires full precise calculation at

inference time as well as training time, as opposed to the technique used for batch

normalization (Ulyanov et al. 2016). This, by contrast, uses the running mean of

43

the average and standard deviation, calculated during training, to approximate batch

normalization at inference time, which significantly increases inference speed. Since

calculating the mean and standard deviation of the tensor values are atomic operations,

instance normalization is not easily implemented on the GPU with low latency, which

probably explains its non-existence in the available TensorFlow Lite GPU ops. Instance

normalization is not easily replaced with other lower-latency normalization types, since

image stylization-oriented generative adversarial networks have been shown to perform

significantly worse without instance normalization (Ulyanov et al. 2016).

Even when BeautyGAN was tested without instance normalization purely as a

latency test, it still proved unsufficient for suitable GPU inference, as shown in Section

4.3. Even on MacOS, the original BeautyGAN network was observed to be quite slow,

even when attempting to run it on the GPU after removing these instance normalization

layers (Table 9). This version ran even more slowly on an iPhone XS running iOS, and

on a OnePlus 6 using Android, it did not run at all. As a result, a partially improved

version was developed, using low-latency depthwise separable convolution blocks, as

encountered in MobileNetV2 (Subsection 4.3.1). Given the insufficient performance of

even the original BeautyGAN network on unseen data, deemed to be partially because

of the limitations of using histogram loss, as well as the limited size of the dataset used,

the research was terminated before a fully mobile-friendly variant could be developed.

These findings are described in more detail in Chapter 4.

2.7 Wrinkle and blemish detection

Detection of face wrinkles has been the subject of a fair amount of research, either for

dynamic skin folds (which are required to animate virtual human faces realistically) or

static wrinkles (for face age and skin quality estimation). While some techniques for

dynamic skin folds (Li et al. 2015; Cao et al. 2015; Huang et al. 2011) were looked into

shortly for attempted use for the detection of static wrinkles, particularly the facial per-

formance capture technique in Cao et al. (2015), they generally involved high-resolution

3D and 4D face scans, which were not available to the company. This restricted the re-

search to purely image-based detection algorithms, which could involve either machine

learning techniques (Alarifi et al. 2017; Alrabiah et al. 2019), or traditional computer

vision methods (Batool and Chellappa 2012a, 2014; Cula et al. 2013), using various

filters or line tracing or both. Given the dataset requirements of machine learning

approaches, which are difficult to satisfy, particularly for semantic segmentation tasks

such as wrinkle and blemish detection, the focus of the research in this thesis was on

traditional computer vision techniques. An overview of these for both wrinkles and

44

blemishes is presented below.

One of the older techniques for detecting wrinkle-like structures is the Frangi

filter. While originally used for detection of blood vessels for medical applications, the

Frangi filter (Frangi 2001) can be used for any continuous edges, including rivers and

wrinkles. An improvement on this was the approach from Cula et al. (2013), which

was based on a fingerprint image enhancement algorithm (Lin Hong et al. 1998). After

generating a low-resolution direction map roughly following the wrinkle directions, it

identified the wrinkles using Gabor filters tuned to these directions. However, this was

tested using a special polarized lighting system that greatly improved wrinkle contrast,

and would need testing on real-use images to compare with other methods, as mentioned

in Ng et al. (2015b). Gabor filters were also used in Batool and Chellappa (2015), by

combining multiple such filters set to angles equally spaced over the first two quadrants,

and choosing the maximum output for each pixel. It followed this with several steps,

including line tracing and double detection removal, to improve this output. This

method was built upon in the latter part of the research conducted in Chapter 5 of

this thesis. The Hybrid Hessian Filter, introduced in Ng et al. (2015a), was shown to

improve on both the Frangi filter and Cula et al. (2013). Hessian Line Tracking (Ng

et al. 2015b) was later shown to be better than all three in most conditions, obtaining

an accuracy of 84%.

Wrinkle detection can also be used to estimate face age automatically, even with-

out the use of heavy machine learning models. However, wrinkles generally have a

higher effect on perceived age rather than real. Aznar-Casanova et al. (2010) analysed

the perceived age relative to the number of wrinkles, by varying the wrinkle counts on

composite images. It noted factors other than age that could affect wrinkle formation,

such as exposure to sunlight and amount of exercise of facial muscles, which separates

the concepts of age and perceived face age. More recently, the approach in Ng et al.

(2016) uses sequential minimal optimization after detecting the wrinkles using Hessian

Line Tracking, in order to obtain the age’s relationship to the wrinkles.

For the purposes of the research in Chapter 5, including the limitations of what

the methods looked into can detect, blemishes are understood as undesirable skin con-

ditions, characterized by relatively small circular or amorphous color discontinuities,

such as acne, warts, skin tags, moles, and blackheads. Normally this is extended to

other skin conditions, characterized by larger skin structures, such as more serious cases

of hives, psoriasis, and eczema, or general reddened skin. However, large-area skin color

variations are not picked up by short-range detection schemes targeting sudden color

discontinuities, as were used in Chapter 5 for small blemish detection, and would have

required a significantly different approach (Lu et al. 2010; Roy et al. 2019; Muhimmah

45

et al. 2021). As a result, they were not addressed in this thesis.

For detection of the types of blemishes addressed in Chapter 5, there are many

medical dermatological datasets available for detecting skin diseases such as cancer, and

differentiating it from benign skin conditions. These classes of blemishes are unsuitable

for differentiating benign skin conditions relevant to beauty care (acne, blackheads,

moles), but they could be used for generic blemish segmentation. A skin dataset could

be tagged in a coarse manner by using rough manually annotated segmentation regions

with the blemish classes noted, while our generic blemish detector could provide finer

segmentation masks based on these regions.

For most beauty apps, there is a demand for retouching capabilities, for the

removal of wrinkles and blemishes. Ideally, the retouching experience must be made

as simple as possible for an unexperienced user, while providing enough user control

for a satisfactory result. In its simplest form, a retouching process may just detect

the skin regions and blur the skin, thereby removing high-frequency discontinuities

such as relatively small wrinkles and blemishes. The Perfect365 (Perfect365 2021),

PicBeauty (Active Beans Inc. 2021) and Beauty Camera (IJoysoft 2021) apps appear

to be examples of this. However, the results are too visibly manipulated, in part due

to lacking any replacement high frequency elements of healthy skin texture, such as

pores, giving an unrealistic blurry look to the face.

Of the available third party beauty apps identified, the most advanced appears

to be YouCam Makeup (PerfectCorp 2021). Aside from the hair coloring effects and

virtual try-ons of different makeup styles, it also allows for various face beauty metrics,

including wrinkles and blemishes. It further allows for photo retouching to reduce

wrinkles, spots, and excessive skin texture.

A superior result such as this can be achieved by sampling the texture of a healthy

patch of skin, in order to paint over affected regions, while maintaining a smooth

blending between the painted regions and the regions left unchanged. The latter can

be achieved through Poisson blending, which combines source elements in the gradient

domain for seamless compositing (Pérez et al. 2003). This is the algorithm used by

Adobe Photoshop’s healing tool, which uses manual sampling of “correct” regions by

the artist to cover up the “wrong” ones. In a beauty app, however, the sampling

of healthy skin needs to be automatic. On such approach, using Poisson blending

combined with automatic segmentation and removal of both wrinkles and blemishes,

is Batool and Chellappa (2014). This combined the Gabor filter bank method also

used in Batool and Chellappa (2015) with Markov random fields, creating an improved

filter giving fewer false positive areas than Gabor filter banks alone. By considering

the image as a grid of square patches, each patch containing a region to be removed

46

Figure 6: Patched image (with wrinkles and blemishes covered) before and after Poisson
blending step. Image from Batool and Chellappa (2014).

used the closest “clean” patch as a texture source, and Poisson blending was used to

smoothen the resulting image and remove the “checkerboard” aspect (Figure 6).

A large amount of skin blemish analysis is rooted in the medical industry, for

detection of skin cancers, and classifying skin marks as dangerous or benign (Hoshyar

et al. 2014; Alfed et al. 2015; Jain et al. 2015; Alquran et al. 2017). These approaches

generally rely on high-resolution imaging, generally containing a single blemish, and

employ machine learning and large dermatology datasets. As such, these methods

generally have limited applicability to the purposes of face retouching on a potentialy

low-resolution image of a user’s entire face.

The approach in Alamdari et al. (2016) addresses acne detection specifically for

mobile application use, and therefore unlike many of the previous methods, focuses

on low-resolution images with multiple acne lesion zones, which is different from most

dermatology datasets. The work compared several different methods for acne seg-

mentation (k-means clustering, texture analysis and HSV colorspace segmentation), as

well as classification of normal skin, inflammatory acne and acne scars (fuzzy c-means

clustering and support vector machines), achieving the best precision with two-level

k-means clustering and fuzzy c-means, respectively. This was however observed on a

relatively small dataset of 35 images.

In both the case of wrinkles and blemishes, if the detection of affected skin regions

is done through classical machine learning methods, there needs to first be a step to

identify the skin regions. In Batool and Chellappa (2014), for example, the skin regions

to be corrected were provided by the user through a polygonal selection tool, which

would be feasible on a smartphone. In existing apps, like YouCam Makeup (PerfectCorp

2021), this is sometimes handled by asking the user to align their face with a face-shaped

graphic overlay on top of the camera feed on the phone. A more user-friendly method

would use an automated facial keypoint detector, potentially in combination with the

manual alignment method. In this thesis, facial segmentation is already provided as

part of the virtual try-on system, and is used in the wrinkle and blemish detection

47

implementation.

While it initially appears to only be relevant to wrinkle detection, we note the

approach used in Elbashir and Yap (2020), based on the vessel-detection scheme in

Jerman et al. (2016), both of which detect long structures. This is what the majority

of our work on blemish detection is based on, as it is shown to be similarly applicable to

detecting circular structures such as most blemishes, using the variant for cross-section

of blood vessel detection also described in Jerman et al. (2016), but not previously

considered with respect to dermatology. Given the similarity between the blemish

and wrinkle detection implementations when using this algorithm, much of the code

required for the two is the same, which simplifies code implementation and maintenance.

This is built upon in Chapter 5, along with rough estimation of age and skin

quality based on the outputs of this method. As mentioned previously, the wrinkle

detection implementation is built upon using a Gabor filter approach similar to the

initial step in Batool and Chellappa (2015), initially as a postprocessing step, but

subsequently also considered as a single detection step.

2.8 Neural architecture search for segmentation

Neural architecture search (NAS) involves the optimization of the structure of the

network and the choices of operations it uses, not only the trainable weights of the

layers, as in traditional network training. This seeks to remove the difficult art of

manual neural network design, which requires highly specialized work, and may be

highly dependant on the target operational hardware. As will be relevant to the research

in Chapter 6, neural architecture search can sometimes allow for crafting multiple

variants of a model to target different inference-time hardware, so custom versions for

multiple smartphones, as well as both CPU and GPU versions, can be created simply

by changing parameters in a lookup table used by the search process. The desired

end result of neural architecture search is in general primarily high accuracy, combined

with lowering the latency and computational requirements of model inference.

Aside from early NAS approaches, which constructed the whole network directly

from base layers, a two-hierarchy approach is used in most of the more recent works,

formed of a cell-level, and a network-level search. A cell is understood as a group

of candidate base blocks, formed of one, more, or even zero operations (to allow the

cell to be skipped, as in the FBNet approach in Wu et al. (2019)). On the cell-level

search, the optimal block for each cell is chosen. On the network level, the cells and

the connections between them are optimized, eventually giving the final network as the

result of the search. In some cases, the network level is fixed, as is the case for FBNet

48

(Wu et al. 2019).

2.8.1 Differentiable architecture search and latency awareness

While many successful neural architecture search schemes use reinforcement learning

(Zoph and Le 2017; Tan et al. 2019), these are too computationally intensive to be

attempted with the resources available to us. As an example, the CIFAR10 search of

Zoph and Le (2017)) required “800 networks being trained on 800 GPUs concurrently

at any time”.

An alternative which has seen increased popularity is differentiable architecture

search, which allows the search process to be optimized in a manner similar to tradi-

tional network training. One of the first attempts was DARTS (Liu et al. 2019b), which

defines a supernetwork of individual cells, in turn formed of a set of edge sub-operations

(basic ones like convolution, max pooling etc.) between nodes (input/output tensors

to sub-operations). The search converges towards an optimal mixture of edges, derived

through training with a softmax operation on the outputs of the candidate edges, and

picks the edges with the largest mixing weight. The best edges in each cell are selected,

giving the final full network, which is fine-tuned in a second training run.

The search scheme of DARTS has been brought into question by Wang et al.

(2021a), that showed the poor quality of the architectures selected by the DARTS

scheme, and offered an improved version based on estimating the importance of opera-

tions by removing them from the candidate architecture and measuring the performance

impact.

While the lower computational cost of differentiable architecture search is signif-

icant for our research, it is even more important to attempt optimizing for latency as

well as accuracy, given our target of designing mobile-friendly networks through archi-

tecture search. While inference speed is less important for desktop-oriented approaches,

many neural architecture search methods do also partially optimize for lower latency

or computational requirements. When the target inference device is unknown, this can

be accomplished by aiming to lower the number and overall complexity of the network

operations, more specifically by reducing the multiply-add or FLOP (floating point op-

eration) count, as in EfficientNet (Tan and Le 2019). The MAdd count is understood

as the total number of multiply-add operations during one inference run of the model,

while the FLOP count is understood as the total number of floating point operations

during one inference run. Evidently, these counts can at best only be a rough proxy

for the latency of the model. While they have the benefit of being hardware-agnostic,

which may allow them to be the best representation of latency on average, they are not

the best estimate when the target device is known, and getting the on-device latencies

49

of the network components is possible.

The most precise solution to this is to run the converted candidate models directly

on the target device, a tactic used for MNasNet (Tan et al. 2019). However, it is difficult

to implement even when optimizing for a single device. Conversion has a significant

amount of overhead, as does pushing and running the model on device, likely requiring

multiple device instances, as was the case for MNasNet. And since it would be common

to try to optimize the search over a range of possible target devices, to obtain a “best

overall” version for that range, on-device measurement would require multiple instances

of each device in the range.

It was observed that even when the latency of candidate models is explicitly

and precisely measured on the target devices, differences in the on-device execution

environment can result in poorer results. For examples, while MNasNet achieved state

of the art latency results for execution on the big CPU core of a Pixel 1 phone, it was

slower than a non-NAS MobilenetV2 variant of comparable precision when timed on

the GPU of the same phone (based on the Mobilenet V2 1.0 224 and MnasNet 1.0 192

latencies reported in Google (2021g)).

A better proxy for model latency is used in FBNet (Wu et al. 2019), which

allows for latency-aware searching by timing every block of every cell on the target

device, and using the sum of the blocks in the currently sampled candidate network

as the model latency proxy. The two values were shown to have a good correlation by

testing on a large number of randomly sampled networks. Latency awareness aside,

the search scheme of FBNet is similar to ProxylessNAS (Cai et al. 2018) and NAS-

UNet (Weng et al. 2019). FBNet samples a single candidate network per iteration, and

uses the Gumbel-Softmax trick to obtain a differentiable, stochastic approximation

to the sampling process, thus allowing the entire search scheme to be differentiable.

The supernetwork defining the search space is a linear sequence of cells, formed of a

small number of candidate blocks, or a skip, which is merely an identity operation, to

allow cells unwanted by the search scheme to be removed from the final architecture.

Similarly to DARTS, each block in the cell is associated with a θ value, which increases

or decreases depending on how optimal its corresponding block is to the overall network

accuracy and latency, and defines the probability of the block being sampled in a

candidate network on a certain iteration. After the search process is completed, the

blocks with the highest theta value are sampled from each cell, and the resulting final

network architecture is fine-tuned until convergence.

50

Figure 7: The network-level search space in Auto-DeepLab, shown on the left. Each
blue node is a searchable cell, and each possible path through them is a candidate
architecture. The right shows the densely connected cell structure, which forms part
of the cell-level search space, that tends to a single optimized candidate block for each
cell. Figure from Liu et al. 2019a.

2.8.2 Segmentation-specific neural architecture search

In general, neural architecture search approaches focus on classification (Zoph et al.

2018; Real et al. 2019; Liu et al. 2018). However, several approaches focusing explicitly

on image segmentation exist, such as Auto-Deeplab (Liu et al. 2019a). This used a

generalized search space, which included but was not limited to the DeepLabv3 (Chen

et al. 2017a), Conv-Deconv (Noh et al. 2015), and Stacked Hourglass (Newell et al.

2016) architectures as subspaces. As its search method was differentiable, it allowed

for a short search time (3 P100 GPU days), comparable to DARTS (Liu et al. 2019b).

While keeping the cell-level search of previous NAS approaches, in which different

blocks were tested for each node in a larger fixed architecture, it also added a network-

level search step. This implies modification of the larger architecture, in this case by

optimizing a path between nodes at multiple resolutions, as shown in Figure 7. Each

path corresponds to a single network-level architecture. This approach enables Auto-

DeepLab to produce several variants with precision similar to DeepLabv3, with varying

but significant levels of improved multiply-add counts.

More recently, NAS for segmentation has been the subject of study particularly in

the medical domain, generally also by employing differentiable search (Zhu et al. 2019).

This often deals with segmentation in three and even four dimensions, for example in

tomography scans, which generally require 3D and 4D convolutions. V-NAS (Zhu

et al. 2019) tackles 3D segmentation with NAS by making the search choose between

3D, 2D and pseudo-2D convolutions, and improves upon non-NAS architectures such

as 3D-UNET (Çiçek et al. 2016).

Basing itself on UNet, the approach in NAS-UNet (Weng et al. 2019) leaves the

network-level architecture fixed to a UNet structure, and groups all the operations

between two scaling operations (downscaling or upscaling) into a searchable cell, where

51

the latter scaling operation is considered part of the cell. This gives two types of cells,

downscaling (DownSC) and upscaling (UpSC) type. Both cell types are directed acyclic

graphs representing an over-parameterized network formed of all the candidate paths,

as in DARTS, in which the edges are chosen from multiple candidates during the cell

search. The search is differentiable, but differs from DARTS by choosing a single path

at each iteration, as in ProxylessNAS (Cai et al. 2018), instead of using a weighted sum

of all of them. This is equivalent to a one-hot-weighted sum, and has the benefit of

significantly reducing memory use during training. This method was shown to improve

on existing segmentation methods on medical segmentation datasets.

Several works have been identified that train specifically for segmentation, and

also use on-device latency to guide the architecture search. These are known as proxy-

less neural architecture searches, as they do not search on a proxy task such as classi-

fication, and then simply re-use the architecure with an added segmentation tail (like

the segmentation MobileNetV3 variant from Howard et al. (2019)). SqueezeNAS (Shaw

et al. 2019) is such a method, similar to FBNet in its latency-aware architecture search.

A further similarity is its measurement of candidate cell latencies for each searched

block, and using the overall sum of these to inform the search. The main difference lies

in the segmentation decoder, which is fixed (not searched) to ASPP (Atrous Spatial

Pyramid Pooling), and LRASPP (Lite Reduced Atrous Spatial Pyramid Pooling), in

separate versions of SqueezeNAS. A fixed-decoder approach is also leveraged in the

adaptation of FBNet to segmentation, in Chapter 6.

While an Nvidia Xavier (a Jetson-family GPU for embedded applications) is

the target of the SqueezeNAS search in the paper, the depthwise-convolution-based

candidate cells it uses makes application to smartphones feasible, requiring only a

smartphone-tuned latency table. Despite this, in our research, due to its similarity to

one of the FBNet-based approaches studied, as well as its implementation in PyTorch

being a barrier to TensorFlow Lite deployment, an implementation of SqueezeNAS was

not attempted.

As a suitable segmentation-specific and mobile-friendly approach was not imme-

diately found, an attempt was instead made in this thesis to adapt an existing on-device

latency-aware classification method (FBNet) for lip segmentation. This used several

variants with multiple input sizes, and several different supernet architectures of differ-

ent lengths, both with a fixed (unsearched) and searched decoder. It was the eventual

intention, if this approach was successful, to also attempt this for other networks used

by the company, like the coarse full-face segmentation and keypoint model, the eye

segmentation networks, and a newer version of the lip model that also provided key-

points. However, while the latencies of the resulting lip segmentation networks were

52

smaller or comparable to that of the non-NAS network, none of them outperformed it

in accuracy. These FBNet-based experiments are detailed in 6.

2.8.3 State-of-the-art and emerging methods

The advent of differentiable neural architecture search seems to have led to an increase

in segmentation approaches through neural architecture search at the cutting edge,

some of which also focus on latency awareness. We note several approaches that ap-

peared or we discovered after and during our work with FBNet, thus being too recent

to be tackled in our efforts, or too difficult to implement given our needs.

A more recent approach than FBNet, which does not leave the network-level

architecture fixed, is FasterSeg (Chen et al. 2019). This proposes an improved network-

level search algorithm, which incorporated multiresolution branches, instead of using

a fixed network-level backbone like FBNet. Furthermore, it introduces a new latency

regularization method, which corrects the claimed issue of latency-aware NAS methods

collapsing to low-latency but low-precision architectures.

Figure 8: The search space and searching scheme of DCNAS. Image from Zhang et al.
(2021).

The block-domain search of FasterSeg introduces a candidate block called a

zoomed convolution, formed of a ×2 bilinear downsampling, one or two normal con-

volutions, and an ×2 bilinear upsampling. This is shown by the original authors to

be preferable to MobileNetV2-style depthwise separable convolutions, but only on the

work’s target platform of an Nvidia 1080Ti running TensorRT. This must also be ver-

ified for smartphones to be considered for purposes similar to those in this thesis.

FasterSeg was given some consideration for use for the same lip segmentation

model as our FBNet segmentation approach, but these did not go beyond an attempt

53

to adapt it for the lip dataset, given implementation difficulties and time contraints.

This is detailed further in Section 6.3.

Another recent relevant work is DCNAS, or Densely Connected Neural Architec-

ture Search (Zhang et al. 2021), which aimed to increase the search space compared

to previous works, while continuing to use differentiable search. This is particularly

relevant for image prediction tasks, which require representations at multiple scales

(although for lower-resolution input networks for real-time execution such as our own,

fewer resolution scales are required). Therefore, DCNAS uses dense connections over

multiple scales as candidates for the final architecture, as given by the search space

illustrated in Figure 8.

54

Chapter 3

6DoF Object Pose Estimation on

Smartphones

Object tracking and pose estimation is a common problem in augmented reality and

computer vision. It can be used to offer information to the user about relevant objects

(like in a military targeting system), to allow a computer to interact with objects in

the environment (as in autonomous driving applications), or to allow virtual and real

objects to interact in a believable way. In this chapter, an example of the first case is

addressed.

In this project the object to be tracked was a handheld hair curler, which needed

full six degree of freedom pose to be inferred in real-time on mobile devices (Android and

iOS). Aside from the difficulty of these latency and target hardware requirements, the

tracking also required robustness to occlusions by the hand and hair. While occlusions

are a common issue in object detection, they are particularly significant when tracking

handheld objects, as the hand is almost always partially occluding the object.

In this chapter, we present an approach for real-time 6DoF pose tracking for ob-

jects in monocular RGB video. By using a modified set of mobile-specific convolutional

neural networks, as well as temporal coherence, we were able to achieve real-time perfor-

mance on high and mid-range smartphone GPUs (Android and iOS), without low-level

optimizations like custom GPU operations. We show how tracking a moving region of

interest, a technique previously used for real-time face and hand detection (Bazarevsky

et al. 2019; Google 2020b), can drastically improve the performance of 6DoF pose esti-

mations with machine learning. The tracking method can be applied to pose detection

for both handheld and non-handheld objects, as well as other generic AR applications,

such as semantic segmentation of small objects. While we targeted TensorFlow Lite

inference of the machine learning model in Unity, the tracking system is applicable to

55

any augmented reality platform, on both smartphones and desktop computers.

3.1 Motivation and value of this research

Aside from being required by the placement company for a commissioned app, this was

the first project to use our integration of TensorFlow Lite into Unity, and therefore the

first proper test of this plugin. It further gave insight into what improvements could

and should be done to improve the system, and what needed to be implemented on the

Unity side to properly support it on all required devices.

Furthermore, it determined the basic architecture and blocks that would be used

for many of the company’s machine learning models going forward, including those

required for the projects in this thesis. This mainly consisted of MobileNetV2 and

MobileNetV3-based models, containing residual blocks with depthwise separable convo-

lutions for faster execution. The sequential use of multiple models, as used in the track-

ing form of the 6DoF object pose detector, was also used in other company projects,

as well as the use of temporal coherence to reduce jitter in outputs in subsequent video

feed frames.

With regards to the value to the greater scientific community, the resulting 6DoF

object pose tracking system can be used for any object, handheld or not, which broad-

ens the applicability of the method. On smartphones, it could be used for various

augmented reality experiences and games, for example to overlay textures or particles

onto real objects, to allow virtual objects or agents to interact with real objects, or to

replace real objects with virtual ones.

3.2 Commercial context of this research

The goal for the placement company, as required by another client company that com-

missioned the project, was to create a smartphone app for the education of users in the

proper use of a new type of hair curler, whose use differed from existing curler models.

For example, for a beach wave curl, the new curler needed to be be clamped onto a

lock of hair close to the root, while being held diagonally relative to the direction of

the hair, and slowly pulled down the lock of hair. This would give the lock of hair a

helical shape. By contrast, to achieve the same style with a traditional hair curler, the

lock must be wrapped around the curler in a helical shape, and maintained there for

an extended period of time.

The client company observed during focus group testing that these differences

caused users to employ the incorrect, traditional ways of use, without attempting to

56

follow the instructions available in the box or online. It was therefore the hope of

the client company that an app associated with the curler might inspire users to fol-

low the instructions. They also sought to gauge how well the users were performing,

which required six degree of freedom (3D location and 3D rotation) pose detection of

the curler, leading to the machine learning efforts in this chapter. The app included

other elements such as presentation of new styles, marketing integration, and various

gamification and reward systems, but these were outside of the scope of this thesis.

For the placement company, this was an initial beauty project, which led to a

singular focus on beauty applications. As a result, the work in this chapter is somewhat

separate from the subsequent projects in the thesis, as these all focus specifically on

the face of the user. This is due to their reliance on a face tracking system developed

after the curler project. Nevertheless, as mentioned previously, it gave the technical,

software, and design basis of later computer vision with machine learning work in this

thesis and at the placement company.

3.3 State of the art in 6DoF object pose detection

As specified in Chapter 2, at the time of the beginning of this project (late 2018),

there was no existing 6DoF pose detection work using neural networks that specifically

targeted smartphones, only desktop computers and higher-power mobile GPUs (like

Nvidia Jetsons). Therefore, several state-of-the-art (SOTA) desktop-oriented networks

were looked into for adaptation for smartphones. Due to the effort required to create

the pose datasets and fully implement the curler pose detection system in Unity, the

project needed to start from an existing code implementation if possible. Furthermore,

the code implementation needed to have a permissive license, as the placement company

aimed to use the resulting network for commercial purposes.

The more relevant SOTA pose detection approaches identified were single-shot-

pose (Tekin et al. 2018), PVNet (Peng et al. 2018), and segmentation-driven-pose (Hu

et al. 2019), all of which have previously been discussed in Chapter 2. Single-shot-pose

uses a variant of the YOLOv2 2D bounding box object detection network, modified

to output the positions of the 3D bounding box corners, from which the pose can

be extracted using perspective-and-point. Both PVNet and segmentation-driven-pose

generate a coarse (low-resolution) segmentation map of the detected object, each pixel

of which gives the positions of the 3D bounding box points. All these outputs are

reduced to an overall pose using RANSAC-based perspective-and-point. Both of these

methods have been shown to be more resistant to occlusions and truncations, due to

the segmentation element, which should make them more suited for the hand-occluded

57

objects like the curler. However, none of the two had sufficiently permissive licenses,

so the single-shot-pose was the main method used. Still, the segmentation-driven-pose

method was still tested, but gave inferior results to single-shot-pose in our attempts,

as shown in Section 3.9.

For the purposes of our implementation, a dataset of images of the tracked object

with associated pose data needed to be collected. This was achieved through two

methods, listed in Section 3.4 and Section 3.5.

3.4 Data collection with manual and interpolated anno-

tation

This involved an annotation system created in Unity, in which the CAD model of

the curler was manually posed to align with frames of the video feed. To reduce the

amount of manual annotation, an optical flow algorithm based on Choi and Christensen

(2012b) was used to automatically set the pose between nearby manually annotated

frames. This method was specifically designed for tracking textureless objects, which

suited the curler well, as it was a matte black object, and could not be redesigned by

the client company to have more easily trackable features. This led to a dataset of

about 19000 frames total. Some example images are shown in Figure 9.

The method cannot be described in detail, as it was not implemented by the

author of this thesis.

3.5 Automatic data collection with a VIVE VR system

As manual annotation was time-consuming, a new automatic pose data collection tech-

nique was employed, using an alternative VIVE-based setup, illustrated in Figure 10.

In this figure, the VIVE tracker tc rigidly attached to the curler c gives the curler’s

pose Pc,v in the VIVE system space of origin v, while a second VIVE tracker attached

to a calibration pattern at a known point gives the calibration pattern’s pose Pp,v in

this space. Since the pose of the calibration pattern in the camera space Pp,cam can be

retrieved through perspective-and-point, the camera-relative pose Pc,cam of the curler

can be calculated as in Equation (3.1). While this could in theory also be achieved

with a cube with ArUco markers on its surface, tracking would be more easily lost.

Furthermore, the cube would need to always be in the line of sight of the camera, but

would often be below it in the training data, if attached at the same point as the curler

tracker.

Pc,cam = Pc,tcPtc,vP
−1
tp,vP

−1
p,tpPp,cam (3.1)

58

Figure 9: Samples from the real dataset, using the manual and semi-automatic anno-
tation in Unity.

59

Figure 10: The VIVE setup. Not shown are v (the VIVE space origin) and cam (the
camera origin). The relative poses between calibration pattern and pattern VIVE
tracker, as well as between curler origin and curler-attached tracker, are retrieved
through manual alignment.

To avoid overfitting on the object-and-VIVE-attachment system, the VIVE at-

tachment was masked out using the tracking data, by applying the pose data to a rough

3D mesh of the attachment system in Blender, and rendering it as a segmentation mask.

This mask was treated as a “hole” in the image, and filled using a patch-based method

in a batch Adobe Photoshop operation.

For this task, we had previously tried a feature in Adobe After Effects that en-

abled the re-filling the “hole” left after an unwanted object (like out curler attachment)

was masked out (a technique known as inpainting). This is a machine learning-based

feature called content-aware fill, and allows for temporally smooth, believable inpaint-

ing. However, for our task of removing the attachment from a large number of frames,

it proved to be too unreliable and hard to automate.

This automated VIVE annotation method has the caveat that the curler is greatly

occluded by the attachment when the base faces the camera. Therefore, some manual

annotation with the VIVE attachment removed is needed to cover these edge cases.

Most of the training images (about 47000 in total) were taken against a green-

screen, to allow for augmentation with random backgrounds from the Pascal VOC

dataset (Everingham et al. 2010).

60

Figure 11: Segmentation mask edges when using a bad greenscreen that requires the
Rotobrush and/or aggressive keying with a sharp cutoff. Top left shows the original
image, top right is the clipping mask if using only greenscreen keying. Bottom left
shows the roughness of this mask around the curler. Bottom center shows the regions
that require manual Rotobrushing - the large clamp of the curler, due to the reflective
component, and the small clamp, due to the roughness of the keyed mask. Bottom right
shows the region in the combined final mask, which also requires a manual polygonal
mask to remove the spot on the left and the timecode in the full mask (top right).

3.5.1 Background removal and randomization

For both the manually annotated and VIVE-annotated footage, most of the source

videos were greenscreened with at least partial background coverage. In general, this

was removed by using the Keylight and Linear Color Key effects in After Effects.

Additional irrelevant background elements (like the checkerboard calibration pattern)

were able to be removed with varying degrees of success, using manual masking.

During the new VIVE-aided data collection, in order to increase the robustness

of trained networks to extreme lighting conditions, bright lights were shone on the

subjects for part of the ground truth footage. This had the unfortunate effect of also

brightening sections of the green screen, complicating the color keying process, and

leading to frame-by-frame Rotobrush effect use and manual masking in many cases.

This also led to foreground elements having rough edges. The silvery elements of the

curler also tended to reflect the greenscreen, requiring manual Rotobrushing, although

this would be required regardless of the quality of the greenscreen. These issues are

illustrated in Figure 11.

This background removal was used to create grayscale foreground masks, which

were used during network training to composite the foreground on top of scaled images

61

Figure 12: The processing steps used to create the curler dataset. Initially, the patch-
based filling mechanism removes the unwanted attachment, and the resulting image
is color corrected with green-screen despilling, through which reflected light from the
green screen is muted. The resulting image, as well as the two masks, are used to
retrieve the interpolated mask. The image and background are then blended using this
mask. It can be observed that the foreground has higher opacity near the hand holding
the curler. Background in right image from Pascal VOC dataset (Everingham et al.
2010).

from the Pascal VOC 2012 dataset (Everingham et al. 2010). This was done as a

preprocessing step during training, in order to make the trained network more robust

to new backgrounds at test time.

For further diversity in augmentation, an interpolation scheme using a color

difference-weighted distance function was used for the foreground mask at training

time. Through this scheme, the mask varied between including just the curler, and the

entire subject. This interpolation was designed to favor including the hand, as it gives

localization features that will still be present and relevant at test time, while the rest

of the human features are less relevant, and are more likely to vary during real-life use.

The complete preprocessing pipeline is illustrated in Figure 12.

In our case, it was initially also a requirement that the network verify whether

the curler was open or closed. Two different bounding boxes were used for the open and

closed case. It was observed that the open/closed status was more accurately retrieved

by choosing the bounding box that gave the minimum reprojection error, rather than

treating the open and closed curler as two different classes and using the highest class

62

confidence. We note that training with the same bounding box for both open and

closed would likely have decreased the reprojection error, giving better overall results.

3.5.2 Generalizability of the data collection method

Both here and in general, the collection of ground truth is often hampered by the need

to match the in the wild (real-life use) domain, since the network may learn features

specific only to the training dataset. This generally prevents the collection of ground

truth pose using object-attached markers, or retrieving face pose using facial tracking

markers, as the network will generally pick them up as features.

If in a marker-based ground truth collection scheme, all markers can be detected,

and are not too large, then a method similar to ours could be used to obtain pose data

automatically, by getting the approximate marker segmentation masks using the pose

data, and filling the resulting “holes” believably. This could allow for similar automatic

pose data retrieval, significantly reducing dataset creation time and effort.

3.6 Underlying work for 6DoF pose network architecture

The structure of the model used for our pose detection project draws from a desktop

computer-oriented 6DoF pose detector known as single-shot-pose (Tekin et al. 2018),

and the mobile-oriented feature extractor of MobileNetV2 (Sandler et al. 2018).

The single-shot-pose (YOLO6D) network is illustrated in Figure 13. YOLO6D is

based on the YOLOv2 object detection network (Redmon and Farhadi 2017), using the

same Darknet-19 feature extractor and grid-based detection, but modified to output

9 value pairs per object hypothesis, corresponding to the 2D projections of the object

centroid and the corners of its 3D bounding box, instead of the 2 value pairs defining

the bounding box position and size relative to the upper-left grid corner, as in YOLOv2.

In the general YOLOv2 2D bounding box object detection network, given an

RGB image of dimensions (X,Y) as input, the output is a (W,H,A · (5 + C)) grid of

cells, where the cells are of identical size (WC , HC). Here, A is the number of anchors

of the output, and C is the number of object classes to be detected (Redmon et al.

2016; Redmon and Farhadi 2017). An anchor is a box of predefined width and height

relative to the cell, which shares its center point (XAi , YAi) with that of the cell. For

each anchor Ai of width WAi and height HAi , a confidence value for each class is

predicted (the certainty that an object of that class is in this anchor box), an overall

confidence value for the anchor box itself (indicating the likelihood that some object is

in that box), and four values (wi, hi, xi, yi) such that

63

Figure 13: The single-shot-pose network, with the architecture shown in (a). For an
input image (b), the output (e) is a set of S × S cells, containing the overall detection
probability, the (X,Y) position of the object centroid in the cell (c), the (X,Y) positions
of the projections of the eight 3D bounding box vertices (relative to the centroid but
not necessarily inside the cell) (d), and the class probabilities. Figure from Tekin et al.
(2018).

1

1 + e−wi
·WAi ,

1

1 + e−hi
·HAi (3.2)

are the predicted dimensions of the bounding box of the detected object, and(
1

1 + e−xi
− 0.5

)
·WC +XAi ,

(
1

1 + e−yi
− 0.5

)
·HC + YAi (3.3)

are the xy-coordinates of the bounding box.

Unlike the original YOLO (YOLOv1), which has a fully connected layer at the

end, YOLOv2 is fully convolutional, and can be adapted to any input size multiple

of 32, both during training and inference. The single-shot-pose network modified the

YOLOv2 output structure by using a single anchor of size (1.0, 1.0), and only limiting

the object centroid to the anchor area by means of the sigmoid function, while out-

putting the raw cell-relative positions of the eight 3D bounding box corners directly

(as in Figure 13c,d).

While YOLOv1 was simply a sequential model (with no branching), YOLOv2

64

and single-shot-pose have one branching close to the end of the feature extractor, as in

Figure 13a. This is not a skip connection, as it has one convolution on the secondary

branch before the two are merged through the reorg layer, specific to the DarkNet

framework. Despite this, it is mentioned in the YOLOv2 paper (Redmon and Farhadi

2017) that this change is a response to the noted improvements brought by the skip

connections in residual networks.

3.7 Adaptation of single-shot-pose for mobile platforms

To lower the latency and computational requirements of the single-shot-pose network,

two new network architectures were created, both involving the replacement of the

Darknet-19 feature extractor with a more lightweight backbone.

The first architecture replaced Darknet-19 with the feature extractor of the tinyY-

OLOv2 network (Redmon and Farhadi 2017), which has fewer operations (32.01 million

per output cell instead of YOLOv2’s 174.3 million per output cell). This was done par-

tially due to the tinyYOLOV2 network being part of the same Darknet framework as

Darknet19, therefore simplifying backbone replacement by editing the configuration

files. TinyYOLOV2 is a relatively simple feature extractor, formed of a linear sequence

of convolutions.

The second architecture instead used the MobileNetV2 backbone, which has bet-

ter latency on smartphones than both Darknet-19 and tinyYOLOv2, as shown in Table

2, as well as the numerous architecture improvements shown in Subsection 2.3.1.

For both networks, variants for both 224 × 224 and 512 × 512 input sizes were

trained, to verify the effect on accuracy, and use the smaller input size if possible, for

even faster smartphone inference.

To test the latency of the resulting networks on-device, and verify that they

worked with the Unity and TensorFlow Lite system described in Chapter 2.4, the

resulting model needed to be converted from its PyTorch-readable format to the Ten-

sorFlow Lite .tflite format. Given that TensorFlow to TensorFlow Lite conversion can

be done automatically by TensorFlow, the issue was reduced to PyTorch to TensorFlow

conversion.

3.7.1 Attempts at automatic machine learning model conversion

In order to simplify migration between machine learning frameworks, the .onnx format

was introduced by the Open Neural Network Exchange (The Linux Foundation 2021).

This aimed to offer a standardized representation of neural networks, working as an

intermediate step during conversion to and from various machine learning frameworks.

65

As a result, we attempted to use it for automatic conversion from PyTorch to Tensor-

Flow, for subsequent conversion to TensorFlow Lite. For our use case, this ultimately

failed due to improper support for depthwise convolutions, and lack of support for

channel-last (NHWC) tensor axis ordering.

The use of depthwise convolutions in the curler pose models resulted in issues

when attempting automatic conversion from PyTorch to TensorFlow via ONNX. The

initial PyTorch-ONNX conversion was successful, with the ONNX network structure

appearing as expected when studied in Netron, a neural network visualization tool

(Roeder 2021). However, converting from ONNX to TensorFlow caused the depthwise

convolutions to be broken into a large amount of operations. These were formed of

a channel-wise splitting of the input tensor, followed by a regular convolution of each

split using a separate copy of the original depthwise convolution weights, and the

concatenation of the outputs. While these are technically equivalent to depthwise

convolutions, and the network output did match the PyTorch model, this resulted in a

very large increase in the latency of the resulting TensorFlow Lite model on both the

CPU and GPU, too large for it to be usable on mobile devices. This appears to be

a result of TensorFlow not officially supporting ONNX, even though support for it is

built into PyTorch. As a result, automatic conversion with ONNX did not work for

our purposes.

We note that due to channel ordering differences between PyTorch and Tensor-

Flow Lite, ONNX would not have worked for conversion even in the absence of depth-

wise convolutions. This is due to the differing NHWC and NCHW formats, referring to

the axis ordering of the input, output, and intermediate tensors in memory. The two

tensor formats are illustrated in Equations (3.4) and (3.5), showing how the memory

offsets are affected for a tensor element in batch b, at y-coordinate h, x-coordinate w,

and channel coordinate c.

offsetNHWC(n, h,w, c) = nHWC + hWC + wC + c (3.4)

offsetNCHW (n, h,w, c) = nCHW + cHW + hW + w (3.5)

PyTorch did not support channels-last (NHWC) tensors at the time of this exper-

iment, and it is unclear if they have been implemented properly even as of April 2021.

Inversely, TensorFlow Lite only supports channels-last (NHWC). Even though Tensor-

Flow itself supports both NHWC and NCHW (channels-first), it cannot automatically

re-arrange the weight channel ordering during conversion to TensorFlow Lite, making

a successful NCHW PyTorch-ONNX-TensorFlow conversion useless for this purpose.

We concluded that ONNX should not be used for PyTorch to TensorFlow Lite

66

conversion, at least at the time of testing (December 2019). As such, manual conversion

from PyTorch to TensorFlow was carried out, by fully re-creating the network structures

in TensorFlow, and channel-shuffling the weights of the PyTorch layers and copying

them to the TensorFlow layers.

3.7.2 Initial results

For both networks, results on the test set were generally good, with the 5-pixel accuracy

(the fraction of bounding box coordinates within 5 pixels of the ground truth) being

around 90% for both networks, for both the 224 × 224 and 512 × 512 input sizes.

However, the precision of both networks proved insufficient during testing on unseen

data, including on-device testing. The output points did not form a proper 3D bounding

box, making it impossible to extract the pose through perspective-and-point. The

points were only sufficiently precise to give the rough 2D positions of the two ends and

the centroid of the curler, which effectively reduced it to a 2D pose estimator.

Loosely based on the work of Suwajanakorn et al. (2018), we attempted to achieve

better precision by increasing the number of points predicted, and placing the points

on the surface of the curler itself rather than at the corners of the bounding box. This

would cause the points to be closer to the cell outputting their positions, in theory

reducing the error. While this method failed to improve precision, this is believed to

have been caused by coding errors, so the results are deemed inconclusive.

3.8 Improved pose detection scheme using tracking

As a further attempt to increase accuracy of the pose detection, a tracking scheme

was used, consisting of two architecturally identical networks, but with differing input

sizes and training parameters. The first is the detection network, with an input size of

X × Y = 384× 224, to roughly match the landscape 16x9 aspect ratio required during

use. It is trained on the entire input frame, with more aggressive random scaling

and XY offset (jitter) augmentations. The second is the tracking network, which is

trained on a square crop around the 9 keypoints of the 3D bounding box (8 corners and

the object’s 3D centroid). Jitter and scaling augmentations were done within closer

limits on this second network. Given its improved latency and structure, only the

MobileNetV2-6D architecture was tested in this scheme.

The tracking scheme follows a simplified version of that in BlazeFace (Bazarevsky

et al. 2019). This uses the detection network once and the tracking network on every

subsequent frame, the latter running on a crop around the previously detected key-

points.

67

In the BlazeFace scheme, the object is first detected in the whole frame with an

object detection network. Here, we use the 16x9 version of the same model trained

on uncropped frames, but this could be replaced with any sufficiently small and fast

bounding box detector, such as MobileNetV2-SSD. After the detection stage, a 224×224

square crop of the frame encompassing the 2D/3D bounding box (with additional

padding to account for movement) is used as the input of the tracking network. This

is then repeated, but using the tracking detector outputs to get the next input crop

region. If the tracked detection confidence drops below a threshold, the full-frame

detection network is run again to re-detect the object.

The crop region selection could be improved by fitting multiple previous tracking

detections to prognosticate the future position. This would improve detection at low

framerates or during more rapid motion. For our purposes, this was not necessary, as

the tracked object was always moved slowly during use.

3.8.1 Results using the tracking scheme

The system was trained and used to track handheld curlers from an RGB video stream,

with both the detection and tracking networks being trained for 100 epochs. The results

on isolated frames and frame crops (done without tracking on video) are summarized

in Table 1, and some visual results are shown in Figure 14.

Table 1: Average per-keypoint precision and orientation error after perspective-and-
point, given as angular offsets from the ground-truth axes. The 224× 224 input-sized
networks are the tracking (square crop) networks, while the 384×224 are the full-frame
detection networks. The test-time inference was done with the same augmentations as
the training, so values may be lower than during normal in the wild use.

Backbone Input 2D kp. error X-axis error Y-axis error Z-axis error

MobileNetV2 224× 224 8.88 px 20.438◦ 20.758◦ 21.749◦

MobileNetV2 384× 224 8.29 px 35.445◦ 34.924◦ 29.522◦

The results show the increased precision when using the tracking network, as

opposed to just the full-frame detection network. In Table 2, we evaluate the latency

of these networks on several phones, on both the CPU and GPU, using the Android

benchmarking tools offered as part of TensorFlow. Given the additional strain of run-

ning the rest of the Unity app, the in-app performance is slightly worse. On iOS, while

precise latencies were not recorded, the networks were always faster on an iPhone XS

than on the OnePlus 6.

While neither full-frame model can accurately predict pose on unseen data, as

shown in the non-tracking tests, it is sufficiently accurate to provide a region of interest

68

Figure 14: Some evaluation results for the tracking network (left four), and detection
network (right four, run in these examples at 224 × 224 on square inputs). Ground
truth is shown in green, prediction in red. Background images are from the Pascal
VOC dataset (Everingham et al. 2010).

to be tracked. To demonstrate and evaluate the tracking scenario itself, we use a group

of 597 unseen VIVE-annotated frames and isolate frame sequences with some degree

of temporal coherence (that is, the time difference between subsequent frames is less

than 0.5 seconds). We use a confidence threshold of 0.4 for the tracking network, under

which we fall back to the full-frame detection network. The results are shown in Table

3.

In these sequences, the subject was far from the camera, leading to high difficulty

in estimating pose by the full-frame network, as shown by the high axis errors. Still, it

was generally able to provide a crop region on which the tracking network could provide

a reasonably accurate result for our real-life purposes in the app. Except in instances of

high occlusion, the tracking network was able to follow the curler with higher-confidence

and more accurate predictions, showing the superiority over the non-tracking method

in this case.

The failure of the full-frame network in providing pose shows that it can be

replaced with a more performant bounding box detector without sacrificing relevant

information.

69

Table 2: The latency of the networks, on a newer OnePlus 6 model (Android P, 2018)
and an older Nexus 5x (Android 6, 2015), denoted OP6 and N5x, respectively. The fea-
ture extractor of the original single-shot-pose network (Darknet-19) with the Darknet-
19 is provided for comparison. The whole network (naturally slower) could not immedi-
ately be converted to TensorFlow Lite due to certain nonstandard layers in the Darknet
framework. The 224× 224 input network is the tracking (square crop) network, while
the 384 × 224 input network is the full-frame detection network. The CPU times use
4 threads, and use 32-bit floating point inference. Tests with post-training quantized
models (8-bit integer weights and tensor calculations) ran at roughly 0.65-0.7 the la-
tency of the floating point models. The relative performance gains generally decreased
as the models got smaller and faster.

Backbone Input OP6 GPU OP6 CPU N5x GPU N5x CPU

MobileNetV2 224× 224 10.41 ms 22.70 ms 62.43 ms 87.24 ms
MobileNetV2 384× 224 14.06 ms 38.36 ms 106.69 ms 153.64 ms
tiny 224× 224 16.47 ms 59.97 ms 160.53 ms 225.50 ms
tiny 384× 224 22.95 ms 88.90 ms 323.08 ms 336.23 ms
Darknet-19 224× 224 32.96 ms 136.40 ms 436.48 ms 400.78 ms
Darknet-19 384× 224 49.21 ms 220.13 ms 618.63 ms 595.44 ms

Table 3: Average errors of the tracking and detection networks during tracking on
unseen video, both with MobileNetV2-6D architecture. The 224 × 224 input-sized
networks are the tracking (square crop) networks, while the 384 × 224 are the full-
frame detection networks. Mean intersection over union (mIOU) is provided for the
detection network only, as it is relevant to the quality of the tracking crop region.

Input mIOU X-axis error Y-axis error Z-axis error

224× 224 - 37.529◦ 37.538◦ 21.617◦

384× 224 0.817 82.006◦ 89.553◦ 58.145◦

3.8.2 Evaluation on the YCB dataset

To compare with other networks, we train and evaluate the tracking network on the

YCB dataset (Xiang et al. 2018), since it offers per-frame poses in videos. Due to time

constraints, we do not train or evaluate the detection network, but merely reset the

tracking to the ground truth position whenever the tracking network loses the object.

We use only the real training data, without generating any new virtual data from the

textured 3D models of the objects. This may have lowered accuracy.

Benchmarking is done using the ADD and ADD-S metrics, as defined in Xiang

et al. (2018). The ADD metric is the mean distance between the ground truth 3D vertex

positions of the 3D bounding box, and the predicted 3D corner locations (reprojected

to 3D from the 2D corner predictions using the pose from the perspective-and-point

solver). The ADD-S metric uses the mean distance between the closest pairs of 3D

70

vertices of the ground truth and predicted 3D bounding boxes, to account for ambiguous

vertex matching for symmetric objects (such as eggbox and glue). As was done for

PoseCNN (Xiang et al. 2018), the work that introduced the dataset, we use a threshold

of 10 cm to calculate the accuracies using these metrics.

Results are shown in Table 4 and Table 5, for a single network trained to de-

tect all objects, but evaluated on one object at a time. Even when using tracking,

our method is generally shown to be weaker than PoseCNN and the state-of-the-art

PoseRBPF++ (Deng et al. 2021), and appears to be highly susceptible to occlusions

and truncations (which cause the low or zero accuracies). While this may be partially

due to lack of occlusion augmentations during training on YCB, single-shot methods

such as ours have been noted to be more sensitive to occlusions and truncations than

dense segmentation methods (Peng et al. 2018). However, given that PoseCNN and

all other 6DoF pose networks we have identified are unsuitable for smartphone infer-

ence, our network remains to our knowledge the best current option for 6DoF in this

hardware domain.

3.8.3 Interpretation of overall results

Generally, the more significant errors observed were rotational, as the 2D positioning

of the curler could be detected accurately enough even with the detection model. We

note that the Z-positioning of the object (the distance from the camera) cannot be

properly determined if the bounding box is malformed, as the perspective-and-point

method will not be able to resolve the pose with such bad inputs. While the detection

model also failed in this regard, this was less important for our particular application.

The tracking model showed better accuracy in both rotation and position along all

axes.

When comparing the results on the test set (Table 1) and the unseen video (Table

3), there is a large difference between the rotational errors of the full-frame (detection)

model. This is due to the curler in the unseen video being further away from the

camera, on average, than in the test set. During real-life use, the average distance of

the curler from the camera more closely matched the test set than the unseen video,

so the test set results are a better approximation of real-life accuracy of the full-frame

model.

However, the unseen video results also show a reduction in accuracy of the track-

ing (224 × 224) model, as again seen in Tables 1 and 3. This is due to the greater

similarity between the test set and the training set, than between the unseen video and

the training set. As such, the tracking model accuracies for the unseen video are more

representative of real-life use.

71

Table 4: ADD accuracies for PoseCNN and our MobileNetV2-6D. We use the RGB
results of PoseCNN (without the Iterative Closest Point method), and the 200-particle
PoseRBPF++.

Object
PoseCNN

ADD
PoseRBPF++

ADD
OURS
ADD

002 master chef can 50.9 63.3 63.9
003 cracker box 51.7 77.8 1.0
004 sugar box 68.6 79.6 60.3
005 tomato soup can 66.0 73.0 68.8
006 mustard bottle 79.9 84.7 57.1
007 tuna fish can 70.4 64.2 39.7
008 pudding box 62.9 64.5 0.0
009 gelatin box 75.2 83.0 48.5
010 potted meat can 59.6 51.8 57.3
011 banana 72.3 18.4 0.6
019 pitcher base 52.5 63.7 56.7
021 bleach cleanser 50.5 60.5 50.8
024 bowl 6.5 28.4 0.0
025 mug 57.7 77.9 33.1
035 power drill 55.1 71.8 18.8
036 wood block 31.8 2.3 0.0
037 scissors 35.8 38.7 4.1
040 large marker 58.0 67.1 7.4
051 large clamp 25.0 38.3 0.0
052 extra large clamp 15.8 32.3 0.0
061 foam brick 40.4 84.1 0.6

When using tracking, for the purposes of the training app for correct curler use,

the tracking model accuracies are sufficient. Since the app mainly only needs to check

that a sequence of actions is being done with the curler, there is a fair amount of leeway

for pose errors. Furthermore, when using in the app, the user is not presented with

the exact pose output of the model. Instead, a virtual ghost model of the curler is

overlaid on the screen, showing the correct actions required, and the detected pose is

only roughly compared with that of the ghost model, to give the user feedback on the

correctness of their actions. Regarding the more difficult requirement for rotation along

the long axis, the tracking model is capable of detecting the twist motion required for

creating certain hair styles, which again renders the method sufficiently accurate for

our purposes.

For other applications requiring pose estimation of an object, there is often less

room for error. For example, in the case of overlaying a texture on a pose-detected

object, or placing a virtual character on the object, inaccuracies lead to jitter in the

72

Table 5: ADD-S accuracies for PoseCNN and our MobileNetV2-6D. We use the RGB
results of PoseCNN (without the Iterative Closest Point method), and the 200-particle
PoseRBPF++.

Object
PoseCNN
ADD-S

PoseRBPF++
ADD-S

OURS
ADD-S

002 master chef can 84.0 87.5 84.2
003 cracker box 76.9 87.6 1.4
004 sugar box 84.3 89.4 72.2
005 tomato soup can 80.9 83.6 72.6
006 mustard bottle 90.2 92.0 65.8
007 tuna fish can 87.9 82.7 49.5
008 pudding box 79.0 77.2 0.0
009 gelatin box 87.1 90.8 70.4
010 potted meat can 78.5 66.9 64.1
011 banana 85.9 66.9 13.9
019 pitcher base 76.8 82.1 60.0
021 bleach cleanser 71.9 74.2 54.7
024 bowl 69.7 85.6 0.2
025 mug 78.0 89.0 46.6
035 power drill 72.8 84.3 26.9
036 wood block 65.8 31.4 3.7
037 scissors 56.2 59.1 25.9
040 large marker 71.4 76.4 38.5
051 large clamp 49.9 59.3 1.5
052 extra large clamp 47.0 44.3 16.7
061 foam brick 87.8 92.6 4.0

positioning of the virtual elements, which is illusion-breaking. While a tracking scheme

is still required if the objects to be detected are small or far from the camera, more

precise models than our curler networks would be required for these tasks. This is

also reflected in most of the results on the YCB dataset (Tables 4 and 5), which

show low pose accuracy on some objects, and complete failure on others, showing that

improvements are required for usable general-purpose pose detection.

Furthermore, for fast-moving objects or a rapidly rotating camera, as may appear

in autonomous driving or headset-based applications, our tracking method would be

likely to fail. This is because the object may move outside the bounding box provided by

the detection network before the tracking network can start inference. Such applications

would require a more complex predictive tracking system based on multiple past object

detections, to determine the region that the tracking network will operate on.

73

3.9 Alternative method using sparse segmentation and

dense alignment

As mentioned in 2.5, in the search for an improved pose estimation method, we tested

the approach in Hu et al. (2019) on the curler dataset. In this method, the pose

model outputs a sparse segmentation map for the curler, and for each pixel in the map,

outputs a prediction for the position of each corner point, as well as a confidence value

for each prediction. By selecting the 10 highest-confidence values for each keypoint,

the pose is then retrieved through the RANSAC variant of the perspective-and-point

implementation of OpenCV. Unlike the single-shot-pose version, only the eight corners

were detected, not the centroid as well.

The purpose of generating the segmentation map is to handle occlusions better

than methods that directly attempt to give the corner point positions, like the single-

shot-pose method. Given the hand and hair occlusion issues of our curler detection

project, this method could therefore be well suited for our purposes.

In its original form, this alternate model, referred to as segmentation-driven-pose,

used a single encoder and two decoders: one for the segmentation, and one for the

keypoints. It is based on the Darknet-53 architecture used in YOLOv3 (Redmon and

Farhadi 2018), with the duplicated decoders reduced to 2 upsampling layers instead of

5, as the segmentation mask required is coarse (low-resolution), and the YOLO-based

object detection decoder already does not require very high resolution.

While the Darknet-53 based architecture is unsuitable for real-time inference on

smartphones, due to its depth and use of standard convolutions instead of depthwise

separable, we trained it on our curler dataset to check its original precision on the test

set and unseen data. Due to the manual conversion required to convert the PyTorch

model to TensorFlow Lite, exact latencies for the original form were not benchmarked.

For a rough estimation, a YOLOv3 model of the same input size (608 × 608), as well

as a reduced 224 × 224 size to match the tracking network of the single-shot-pose

method, were converted to TensorFlow Lite and benchmarked on the CPU and GPU

of a OnePlus 6 Android smartphone. As is evident from Table 6, the models are too

slow to be suitable, as expected, given that real-time execution is desired.

For our dataset, we maintained the different bounding boxes for the open and

closed curler classes. As with the single-shot-pose model, this may have decreased the

quality of the results, but this could not be verified due to time constraints.

To compare the segmentation-driven-pose model with the single-shot-pose model

fairly, a version of the latter with the same 608× 608 input size was trained. The new

method gave slightly worse results on the test set, as shown in Table 7 and Figure 15,

74

Table 6: TensorFlow Lite YOLOv3 latencies on a OnePlus 6 (GPU uses the OpenCL
delegate, CPU uses XNNPACK with 4 threads and no quantization). The lack of exact
latency values on the GPU is due to a few operations near the end of the models not
being supported on the GPU. The networks were therefore tested with the unsupported
layers removed in the GPU case.

Model Input size GPU time (ms) CPU time (ms)

YOLOv3 608× 608 >567 2631
YOLOv3 224× 224 >106 395

where the latter focuses on the failure cases of the segmentation model.

Table 7: Average per-keypoint precisions, both pixel-relative and input size-relative,
of the segmentation-driven-pose method and a full-frame variant of the MobileNetV2-
backboned single-shot-pose method, with the same input size. No augmentations were
used for either model during testing, to ensure parity.

Backbone Input 2D kp. error
Input-normalized

2D kp. error

segmentation-driven-pose 608× 608 22.86 px 0.0376
MobileNetV2-6D 608× 608 16.14 px 0.0266

In practice, when using unseen data, it was observed that this method was sig-

nificantly less accurate than single-shot-pose, and more susceptible to occlusions, trun-

cations, and background elements. This is shown in Figure 16, compared to the lower-

resolution 384× 384 detection version of single-shot-pose, used in the tracking system.

Despite the lower resolution of this single-shot-pose variant, it visibly and consistently

outperforms the segmentation-driven-pose model on this unseen data.

To check the effect of the perspective-and-point algorithm implementation, we

tried using various numbers of points for the corners, and also tried using a global con-

fidence cutoff (through which only high-confidence points were considered). The latter

tactic was attempted due to the potential benefit of removing noise in the detection,

with the potential drawback of leaving too few points for the RANSAC perspective-

and-point algorithm. In practice, the results on unseen data were too poor for any

improvement with any perspective-and-point method to be observed, and for seen data,

the original PnP scheme performed the same as or better than the alternate variants.

Detection errors were observed to be mitigated somewhat by using the same

tracking method described for the single-shot-pose method previously implemented,

although not to the extent required for it to outperform the single-shot-pose tracking

model on unseen data during use. This improvement is likely due to there being fewer

background elements to confuse the model in the tracked crop, which increased the

75

Figure 15: Some results of the non-tracking version of the 608 × 608 input size
segmentation-driven pose network (white), compared to the output of the 608 × 608
input size single-shot-pose network (green), and the ground truth (red). Images show
the keypoints without the perspective-and-point step applied, as to not mask the
strengths or weaknesses of the models themselves. Images a-c show good results for
the segmentation-based model, outperforming single-shot-pose in image b (in which
the latter is confused by a background element) and c, despite both b and c having
the curler partially out of frame. Images d-f show failure cases of the segmentation
model, in which the single-shot-pose model gave better results. These may be due to
the segmentation maps picking up parts of the dark shirt (d,e) and the dark watch (f),
which are the same color as the curler. Images g-i show larger failures of the segmen-
tation model, despite the single-shot-pose variant performing relatively well. These
again appear to be caused by background elements confusing the network, which is
compounded in i by the curler being largely out of frame (truncated).

76

Figure 16: Some results of the non-tracking version of the segmentation-driven pose
network (white, 608 × 608 input size) compared to the non-tracking version of the
single-shot-pose version (green, 384 × 384 input size), when using square-padded un-
seen data. Results are virtually always considerably worse, showing general inaccu-
racy (a), sensitivity to background elements like the sleeved arm (b), and sensitivity
to hand occlusions, reflected in the bounding box only encompassing the unoccluded
part of the curler in (c), despite robustness to occlusions being a stronger point of
segmentation-based 6DoF pose detection methods, according to the original work and
similar approaches. The perspective-and-pose step has not been enforced in this image,
as it would be unable to correct the bounding box pose due to the very low accuracy
of the network-output keypoints.

accuracy of the tracking model. These were initial results, and were not pursued to a

greater degree due to the curler project being put on hold indefinitely, and not restarted

before the end of the degree. Initial results for the best cropped input (tracking) model

are presented in Table 8 and Figure 17 for the test set, and Figure 18 for unseen data.

Table 8: Average per-keypoint precision of the crop-input segmentation-driven-pose
model, without perspective-and-point, compared to the crop-input single-shot-pose
model.

Backbone Input 2D kp. error
Input-normalized

2D kp. error

segmentation-driven-pose 256× 256 19.48 px 0.0761
MobileNetV2-6D 224× 224 7.796 px 0.0348

3.10 Ethical considerations

Given that in the training dataset, the curler was almost always hand-held, the trained

networks may learn to associate the location of a hand with the location of the curler.

As a result, it is possible that the network may have different accuracies depending of

77

Figure 17: Results of the cropped-input segmentation-driven-pose model (the track-
ing model, with a 256 × 256 input size, middle column), compared to the full-frame
segmentation-driven-pose model (608 × 608 input size, left column), and the crop in-
put single-shot-pose model (224 × 224 input size, right column). Generally, the crop
segmentation-driven-pose is more accurate than the full-frame version, but the im-
provement is not as great as for the single-shot-pose model, possibly due to the greater
change in input size. It can be seen in (c) that the output can instead be worse if the in-
put crop is not exact (with truncations). The crop (tracking) variant of single-shot-pose
is still more accurate than either segmentation-driven-pose model.

78

Figure 18: Results of the cropped-input segmentation-driven-pose model (the track-
ing model, with a 256 × 256 input size, middle column), compared to the full-frame
segmentation-driven-pose model (608 × 608 input size, left column), and the crop
input single-shot-pose model (224 × 224 input size, right column). Again, the crop
segmentation-driven-pose is generally more accurate than the full-frame version, but
the improvement is not as great as for the single-shot-pose model, possibly due to the
greater change in input size. The crop (tracking) variant of single-shot-pose is still
more accurate than either segmentation-driven-pose model.

79

the skin tone of the hand, either due to skin tone biases in the input dataset or the

lower contrast between dark skin tones and the dark-colored curler, which could lead

to the network confusing the hand features with curler features.

This could not be verified, since the training dataset only had white and light

brown skin tones available, given which people the contracting company was able to

recruit for the dataset creation. In addition, no unannotated images with dark-skinned

users holding the required curler model existed, that could be used for visual comparison

of output quality.

In the future and for similar projects, this could be mitigated either with a more

diverse dataset, or by complementing the dataset with CGI images, using photorealistic

humans and the well-textured CAD model of the curler. The virtual human tactic was

used in some later facial attribute estimation projects at the placement company, but

not for any of the projects in this thesis.

In terms of applications to areas other than beauty, the method could be used

to track the pose of any object on low-powered devices or otherwise, although it may

require improvements for accuracy. With such improvements, it could be used for

autonomous driving in small unmanned ground vehicles, or for various augmented

reality projects requiring the tracking of real objects. The tracking method could also

be used for other tasks such as 2D object tracking and semantic segmentation, in any

domain where it might be required.

3.11 Conclusions

By using a simple tracking scheme, we were able to retrieve the six degree of free-

dom pose of a custom object, in real-time, on both iOS and Android smartphones,

with acceptable accuracy. This was accomplished by combining the lightweight and

low-latency MobileNetV2 (Sandler et al. 2018), and the single-shot-pose 6DoF pose

detection network (Tekin et al. 2018). While the object tracked here was a hair curler,

the method can be extended to any object, handheld or not. We were unable to achieve

better accuracy using the segmentation-based pose model of Hu et al. (2019).

Future work could involve using a better object detector for the detection net-

work, and improving the pose detection model, potentially by using the improved

YOLOv3 architecture (Redmon and Farhadi 2017) as a base, or by modifying a single-

shot multibox detector (SSD) model (Liu et al. 2016b) to output keypoints, similarly

to how single-shot-pose modified YOLOv2. In addition, motion along the difficult roll

angle of the curler could be detected by tracking the hand keypoints as well as the

curler, similarly to the approach in Tekin et al. (2019).

80

Chapter 4

Face Makeup Transfer with

Generative Adversarial Networks

While many virtual try-on or photoediting apps, such as YouCam Makeup (PerfectCorp

2021) and Perfect365 (Perfect365 2021), allow for a broad range of customization for the

types of makeup colors and styles applied to the user’s face, they require a significant

amount of manual interaction. The end user needs to choose the various colors or details

of the style, or limit themselves to a list of developer-predefined styles. Furthermore, a

user may want to try and replicate a particular style employed by a celebrity or makeup

artist, without figuring out how to craft the details. In such cases, it would be useful to

have a system that simply allows for the scanning of a face wearing the target makeup

style desired by the user, and the application of that style to the user’s face. This is

the goal of face makeup transfer, which this chapter attempts to implement on mobile

devices, as they are the main target device for virtual try-on apps.

As mentioned in Subsection 2.6.2, this task can be achieved through machine

learning with generative adversarial networks, using the technique from BeautyGAN

(Li et al. 2018b). This approach takes the user’s face and a face wearing the target style

as inputs, and outputs the user image wearing that style. To achieve the effect, it uses

GAN loss to ensure the output is a believable instance of a face with makeup, histogram

loss to ensure the colors and general location of the makeup matches the target style

(for the eye shadow, lips and skin foundation), and perceptual loss to ensure this output

otherwise matches the input face of the user without makeup. It furthermore enforces

cycle consistency loss similarly to CycleGAN, as shown in 2.6. This is illustrated in

Figure 19.

In the BeautyGAN scheme, there are two Isrc and Iref inputs to the GAN net-

work, where the former is the user’s face (with no makeup) and the latter is a face

81

Figure 19: The BeautyGAN training scheme. Figure from Li et al. (2018b).

wearing the target makeup style. The network gives the outputs IBsrc and IAref , respec-

tively, which are the user’s face wearing the makeup style, and the target face with

the makeup removed. For these two outputs, respectively, the discriminators DA and

DB are trained to enforce the similarity to real non-makeup (user) and makeup (style

target) images, respectively. Since this does not by itself enforce that the user’s face has

the same makeup style as the target, this is instead enforced by histogram loss (makeup

loss) over three regions (skin, lips, and around eyes), which ensures color consistency.

To ensure that the input faces stay the same outside of the makeup addition or removal,

perceptual loss is used between inputs and outputs. IBsrc and IAref are then reused as

inputs for the generator network, giving the outputs Irecsrc and Irecref , respectively. The

similarity between Isrc and Irecsrc , as well as Iref and Irecref , is then also enforced by per-

ceptual loss. This is the same cycle consistency scheme used by CycleGAN, except

using perceptual loss instead of L1 loss, and using two inputs and outputs instead of

one of each, to allow for a settable style instead of CycleGAN’s fixed one.

Perceptual loss was originally introduced in Johnson et al. (2016). It was shown

to be an improvement upon L1 and other direct losses. Instead of calculating the

difference in the image pixel space, it uses the distance in the high-level feature space

of networks trained on image datasets. In the case of BeautyGAN, a 16-layer VGG

82

Figure 20: Perceptual losses at different feature depths, as studied in Johnson et al.
(2016) (note that the relu 4 1 layer used in BeautyGAN is not shown). Image from
Johnson et al. (2016)

network pretrained on ImageNet (for classification) is used. The perceptual loss in this

case is the L1 distance between the relu 4 1 feature layers when the two images being

compared are inputs to the VGG16 network. This is illustrated in Figure 20.

We base our code on the official PyTorch implementation of BeautyGAN (Jiang

2021), which has an architecture slightly different from the the Li et al. (2018b) paper,

but shows similar positive results. Several modifications were attempted, to create a

variant more suited for integration into the company’s beauty apps, and to try to fix

certain observed output issues.

4.1 Restriction of BeautyGAN makeup transfer to user-

defined regions

In BeautyGAN, there are three face regions treated separately when applying the his-

togram loss: the eye region, on which the eye shadow and eye liner is applied, the lip

region, on which the lipstick is applied, and the skin region, on which the blusher and

other skin products are applied. These loss components are illustrated in Figure 19 as

Lshadow, Llips and Lface, respectively.

Since a user might want to transfer only one or two of these three makeup types,

some attempts were made to modify BeautyGAN to allow for selective transfer of

makeup regions. While the simplest approach would be to merely select the regions

using clipping masks on a face mesh fitted to an image of the user, eye shadow and

blusher are often smoothly blended at the edges. As a result, these regions may be

considered as semitransparent overlays, which when cropped would contain some of the

83

underlying skin color, which would cause issues if the destination face has a different

color or brightness. Furthermore, at the time that this part of the research was carried

out, the company’s Unity implementation of the face mesh fitter was too limited and

approximate for this approach. As such, attempts were made to modify the Beauty-

GAN network to directly output the user’s face with only the selected makeup regions

applied.

4.1.1 Vector-encoded region method

Initially, an effort was made to encode the desired regions as a 3-element vector, which

was expanded in the X and Y directions to give a (X,Y, 3) shape, such that each

element (i, j, k) was 1 if region k was to have the makeup applied, and 0 if it was

to be left unmodified. The resulting tensor was fused onto the result of the merging

of the two input branches. Aside from the required modification to the subsequent

convolution, to keep all following intermediate tensors have the same shape as before,

there were no further changes to the network. The training scheme was modified to

use a randomized region vector with at least one nonzero element, and the number of

iterations in an epoch was increased 7 times, corresponding to the 7 possible region

vectors.

This method was however unable to learn to only focus on desired regions based

on the input vector. It simply resulted in a more faded application of makeup on

the user’s face, which would be the same expected result as randomly not applying

histogram loss to some regions during training, without any input region vector at all.

4.1.2 Filter separation method

Another region-based method attempted involved using separate parts of the filters in

the convolutions of the trunk of the model (that is, the part between the input and

output branches) for each region. This was done simply by replacing each convolution

with three parallel convolutions with the same input, with filter count F1, F2, F3, such

that F1 + F2 + F3 = F , with F being the number of filters of the original convolution.

The outputs of these three convolutions were then concatenated along the channel axis,

which allowed the architecture of the model outside these split convolutions to stay the

same. In order to ensure that each convolution only affected the features of its respec-

tive region, the training of the convolutions for undesired regions was frozen at each

training step (meaning that the weights of the convolutions were not updated during

backpropagation), depending on the corresponding element of the Boolean region vec-

tor at that step. The region vector is naturally still required as an input, and was

84

inserted in the same place as for the previous region vector-based method, with the

same expansion and channel merging technique described in the previously attempted

method.

Implementation and testing of this method were done by a different company

employee, and while the results were reported to be unsatisfactory, explicit visual re-

sults and proper details of implementation and testing were not communicated before

termination of the project. Noted observations were the unwanted regions still being

slightly affected, and the desired regions having lower output quality, probably due to

the smaller amount of convolution filters applied to each region. It was further ob-

served, however, that increasing the amount of filters used by each region (such that

F1 + F2 + F3 > F) did not sufficiently improve the results.

Given the lack of explicit results, in-depth testing of this method is left as future

work, including several potential improvements described in Subsection 4.8.2.

4.1.3 Multiple generator method

A more crude but straightforward method to allow for user-chosen regions is to train a

version of BeautyGAN for each possible choice of enabled and disabled regions. Since

all regions being disabled is naturally excluded as an option, this results in seven

BeautyGAN variants, in the case of three separate regions. To achieve this exclusion,

the histogram loss associated with the unwanted regions is removed from the overall

loss. Given the failure of the input-vector based method, this simpler version was

attempted in order to obtain a minimum viable method.

When using this method, several issues were noted for the single-region variants,

in the case of the eyes and lips. In the case of different skin brightnesses or colours

between the non-makeup (user) and makeup (style target) images, a severe brightness

change was observed around the lips or eyes, as in Figure 21 and Figure 22. In the case

of the eye shadow, this is due to the histogram loss partially taking the skin color into

account, due to the aforementioned issue of semitransparent makeup regions and soft,

blended makeup edges. While the lip regions should in theory not be affected by this,

in practice the same issue was generally observed. This is believed to be due to the

inability of the model to precisely segment the lip and eye regions precisely, leading to

color changes outside these areas. It should be noted that without an improved loss

function that addresses these issues, no region-aware version of BeautyGAN, whether

using a single model or seven, could escape this brightness changing effect.

While in the case of the lips, this could be corrected with a lip segmentation

network, this largely defeats the purpose of using BeautyGAN for lipstick transfer, as

this can be approximated more simply through histogram or tone matching.

85

Figure 21: A result from trying to only transfer the lip makeup. The lighter skin
around the lips is the aforementioned brightness changing effect. It can be noticed that
the overall skin color is also slightly changed, despite only the lip region being set to
be changed. Inputs from MT dataset (Li et al. 2018b).

Figure 22: A result from trying to only transfer the eye makeup, showing a similar
effect to Figure 21, but around the eyes instead of the lips. Inputs from MT dataset
(Li et al. 2018b).

For the eye shadow, this brightness change effect shows that the issue of crop-

ping semitransparent regions remains. To some extent, this could be combatted using

seamless compositing, such as with OpenCV’s seamless clone function based on Pois-

son blending (Pérez et al. 2003), as attempted previously for mirroring the target style

input. This was not looked into due to discontinuation of the project.

4.2 Instance normalization issues

The instance normalization layers of BeautyGAN became a research focus in this chap-

ter, both due to the artifacts it created in the output, as well as the difficulties encoun-

tered when attempting to implement instance normalization on the GPU in TensorFlow

Lite.

86

The latter emerges from instance normalization not using the running mean and

variance as batch normalization does, which at inference time turn batch normalization

into an easily parallelizable linear GPU operation (Ioffe and Szegedy 2015), which can

be fused into the weights of the preceding biased convolution. Instance normalization,

by contrast, requires the use its exact form during both training and inference (Ulyanov

et al. 2016). This makes it slower than inference-time batch normalization, and more

difficult to implement on the GPU in TensorFlow Lite. This is because there is no

instance normalization operation implemented for any GPU delegate, probably due to

the calculation of the exact mean and variance being atomic, as for training-time batch

normalization. A GPU-supported TensorFlow Lite instance normalization implemen-

tation is described in 4.3.2, using a combination of supported layers, in an attempt to

allow for faster BeautyGAN inference on smartphone GPUs.

4.2.1 Droplet artifacts from instance normalization

More recently, instance normalization has been avoided in some works such as ES-

RGAN (Wang et al. 2019d) due to droplet artifacts, caused by high-signal features

permeating the normalization layers (Figure 23). Perhaps more notably, the adaptive

instance normalization (AdaIN) layers in StyleGAN (Karras et al. 2019) were observed

to produce similar artifacts (Figure 24), as observed in Karras et al. (2020). In this

work, we also observed similar artifacts in the outputs of the BeautyGAN network, but

generally in the form of dark spots, likely strong negative signals instead of the positive

ones in StyleGAN (Figure 25).

As expected from ESRGAN and StyleGAN, the BeautyGAN droplets vanished

once the instance normalization layers were removed. However, use of no normaliza-

tion at all resulted in a poorer result outside the artifact region. Using normal batch

normalization again resulted in the same artifacts, as well as reduced output quality.

With regards to droplet artifact prevention, the most promising form of normal-

ization we encountered was StyleGAN2’s modulation-demodulation normalization, as

it completely removed these artifacts. This form of normalization has also been success-

fully used in a more lightweight version of StyleGAN2 (Belousov 2021), which replaced

the normal convolution operations with depthwise separable convolutions, similarly to

our attempts in Subsection 4.3.1.

Alternative normalization methods such as this could not be looked into due to

the project ending, but are deemed to be valuable future work for creating droplet-free

variants of BeautyGAN with good output quality.

87

Figure 23: Droplet artifacts in ESRGAN experiments when using batch normalization.
Image from Wang et al. (2021b), based on Wang et al. (2019d).

Figure 24: Droplet artifacts in the original StyleGAN. Image from Karras et al. (2020).

Figure 25: Artifacts observed in outputs of the original BeautyGAN architecture (ob-
servable in the top-left portions of the two middle images from each row). The recon-
structed original images (the two rightmost on each row, created for cycle consistency)
show even more prominent artifacts in the same location. Original input images (the
four leftmost) are from the MT dataset of the original BeautyGAN paper (Li et al.
2018b).

88

4.3 Optimizations for lower latency on smartphones

Before our experiments with instance normalization layers shown in 4.3.2, we tested

the original BeautyGAN network with these layers removed, in order to obtain a rough

estimation of this network’s on-device latency. We found that the speed was acceptable

for single-image inference in the case of higher-end phones, as shown in Table 9. In order

to decrease latency on lower-end phones, and potentially obtain real-time inference on

higher-end ones, several optimizations were tested in this work. These are detailed

below.

4.3.1 Latency-improved generator

The first optimization involved replacing the convolutions in the BeautyGAN gener-

ator network with bottleneck residual blocks with depthwise convolutions, as used in

MobileNetV2 (Sandler et al. 2018). The network contained two transpose convolutions

at the end of the trunk, which were left unmodified in all the variants used in these

latency improvement tests. The transpose convolutions were later only replaced with

normal (not depthwise separable) convolution residual blocks and an upscaling layer,

solely with the purpose of testing if certain artifacts in the output were mitigated (see

Section 4.5). Latency benchmarking for these versions without transpose convolutions

could not be carried out due to time constraints.

As the base code was written in PyTorch, we manually re-created the trained

networks in TensorFlow to allow for conversion to TensorFlow Lite, in the same manner

as in Subsection 3.7.1. To reiterate, this is done by creating equivalent TensorFlow

layers with NHWC ordering, and converting the convolution weights from PyTorch

NCHW tensors to Numpy NHWC arrays and loading them into the TensorFlow layers.

As mentioned previously in Subsection 3.7.1, while TensorFlow supports both NHWC

and NCHW axis ordering, TensorFlow Lite only supports NHWC, and the TensorFlow

to TensorFlow Lite converter is unable to automatically reorder the axes, so the axis

reordering must be done manually.

The resulting latencies of the networks are shown in Table 9. Comparison between

the output quality of the different network architectures is done in Subsection 4.6.2,

showing improvements for some of the latency-optimized variants.

4.3.2 GPU-friendly instance normalization layer implementation

When replicating an instance normalization layer through available TensorFlow Lite

GPU operations, summing over the height and width (HW) dimensions can be ac-

complished through a series of average pooling operations, where the final output is of

89

Table 9: Latencies of original BeautyGAN architecture (without inference-time instance
normalization) and the modified version with depthwise separable convolutions (also
without instance normalization). The Android benchmark binary and iOS benchmark
app were available from the official TensorFlow repository (Google 2021l). The Unity
app failed to run the model on the Android GPU for both OpenGL and OpenCL,
probably due to an implementation bug, not lack of sufficient GPU resources.

Platform/Regime Latency (ms)

MacOS Unity Player
iOS Unity
Android Unity
iOS Benchmark app
Android benchmark (CL/GL)

CPU OG CPU Mod. GPU OG GPU Mod.

2240 1067 600 493
1860 crash 115 -
2750 1335 -/- -/-
1860 3293 115 76.36

x 704 x 161/484

shape (B, 1, 1, C), followed by a multiplication by H ·W . For example, for a series of

length 1, this involves a pooling operation of kernel size (H,W). This is basically an

application of GPU sum reduction techniques, but with restriction to existing Tensor-

Flow Lite GPU ops. While this technique only applies if the batch size is 1, this is the

case for most machine learning models during inference.

An example network for the ops replicating an instance normalization is shown in

Figure 26, using a pooling series of length 2. Since an instance normalization requires

two summations (one to get the mean, one to get the variance), there are two pooling

series with the same input size.

As of March 2021, there is still no dedicated TensorFlow Lite operation for in-

stance normalization for mobile GPUs, so the research carried out in this section re-

mains relevant for attempts at real-time GAN inference.

The latency of instance normalization graphs with different pooling series lengths

is tested on a OnePlus 6 GPU using the OpenCL delegate, and an iPhone XS using

the Metal delegate, and compared to the CPU results on these same platforms (using

4 threads, with XNNPACK enabled). The input shapes tested were the same as the

input shapes of the instance normalization layers that appeared in the 256× 256-input

BeautyGAN model (64× 64× 64, 128× 128× 128, and 256× 256× 256). All possible

pooling series were tested on Android, but only three series for each input size on the

iPhone XS. This was due to the lack of ability to batch test TensorFlow Lite models

on iOS, given the differing benchmarking applications, requiring that they instead be

tested one by one. The results for both smartphones are shown in Table 10, including

the average Android latencies for each input size.

With respect to the optimal chain of average pooling operations used, the results

on both Android and iOS GPUs showed that the single-pooling chain generally has the

90

Figure 26: Graph of TensorFlow Lite GPU-compatible instance normalization imple-
mentation, rendered with Netron (Roeder 2021).

91

Table 10: Latencies for the instance normalization implementation on iOS (iPhone
XS) and Android (OnePlus 6), with various pooling op sequences, on the GPU (Metal
and OpenCL delegates, respectively) and CPU (4 threads, with XNNPACK and no
quantization). The pooling factors represent the x and y kernel sizes in the sequences
of average pooling operations. Sequences are left identical for both the sum and sum
of squares calculations.

Input size Pooling factors
iOS GPU

latency (ms)
iOS CPU

latency (ms)
Android GPU
latency (ms)

Android CPU
latency (ms)

64x64 2,2,2,2,4 9.557 4.105 25.533 2.502
64x64 2,2,2,2,2,2 9.658 4.465 27.653 2.376
64x64 64 10.120 3.885 27.921 4.587
64x64 average - - 27.425 2.459

128x128 2,2,2,2,2,4 13.204 9.691 37.370 5.399
128x128 2,2,2,2,2,2,2 17.339 9.630 37.449 5.404
128x128 128 25.795 8.326 44.305 8.864
128x128 average - - 37.852 5.189

256x256 2,2,2,2,2,2,4 22.553 23.142 57.644 12.755
256x256 2,2,2,2,2,2,2,2 26.628 23.211 59.247 12.636
256x256 256 32.249 20.754 88.930 14.348
256x256 average - - 67.055 12.646

highest latency. Since the longer pooling chains take more advantage of parallel sum

reduction, it was expected that they would have the lowest latencies, but this pattern

was not observed experimentally. This is probably due to the counteracting effect of

the increased cumulative overhead of using multiple TensorFlow Lite GPU operations.

The tests also demonstrate the unexpected result of the GPU implementation

being slower than the CPU one, which is likely due to the overhead of using multiple

separate GPU operations for the instance normalization. This is somewhat similar

to the slow multi-operation depthwise convolution equivalent resulting from the auto-

mated PyTorch-TensorFlow conversion attempts in Subsection 3.7.1. This raises the

question as to whether falling back to the CPU solely for the execution of the instance

normalization layers would result in faster overall performance of the model, despite the

overhead of the GPU-CPU and CPU-GPU tensor memory copies required to do this.

However, TensorFlow Lite does not perform CPU fallback this way, instead executing

the model on the GPU until the first unsupported op, and then executing the entire

remainder of the model on the CPU.

These results show that while instance normalization can be accomplished on

any GPU delegate of TensorFlow Lite through this method, it is likely too slow for

any significant improvement over CPU inference, especially on Android. As such,

integration into the BeautyGAN model was not done. Better GPU inference speed for

instance normalization layers could potentially be accomplished by implementing them

92

as a single custom layer, similarly to the efforts in Appendix B. This is left as future

work, and detailed in Subsection 4.8.4.

Aside from latency improvements, certain issues in the original BeautyGAN’s out-

puts offered opportunities for visual improvements as well. One issue with face shadows

is addressed and mitigated in Section 4.4, and another, regarding checkerboard-like ar-

tifacts in the output, is addressed in Section 4.5. The other observed issues are noted

in Subsection 4.6.4, with their resolution left as future work.

4.4 Mirrored inputs for mitigating effect of face shadows

A very noticeable output issue consistently arose when the input face with the target

style was partially in shadow. This caused the output user’s face to have a dark patch

corresponding to that shadow, affecting mainly the skin and often one eye (see Figure

27, third column).

This can be mitigated by mirroring the style target face, and keeping the half

with the higher overall intensity. We implemented this by using the PRNet face mesh

fitter (Feng et al. 2018a,b), which allows a morphable 3D model of a face to be aligned

to a 2D image or video automatically, using a convolutional neural network. This

allows for face swapping by fitting a face mesh to a source and target image, projecting

the source face onto the mesh, and compositing the transformed mesh onto the second

image. By setting both the source and target image to the style target, and mirroring

the remapped texture associated with the PRNet fitted face mesh, the shadowed part

of the face can be replaced with the lighter side.

In the initial mirroring attempt, Poisson image editing (Pérez et al. 2003) was

attempted when pasting the mirrored face back into the image. This prevents hard

edges between the mirrored half and the original image, by seamlessly compositing

the two. However, this often caused the shadow to be maintained, due to the original

image being dark in the region near the mirrored half. As a result, the mirrored face

was simply pasted back on with no blending.

When using the same BeautyGAN network with the mirrored style target image

as an input, it appeared to improve the shadow issue in most cases, as shown in Figure

27. This improvement occurred without retraining BeautyGAN on the mirrored images.

While maintaining only the brighter half of the target style face tends to brighten

shadows in the user’s face image, generally this has a lesser negative effect on the

perceived quality of the image. A possible exception can be seen in the bottom row of

Figure 28, in which the final output is brightened too much, particularly on the right

side of the image. This could possibly be improved by checking if the user’s face image

93

Figure 27: Improved GAN outputs using the mirrored makeup dataset, without seam-
less cloning. Source and target inputs from MT dataset (Li et al. 2018b).

and the style target image are in shadow on the same side, and not mirroring in this

case.

Several failure cases of this technique are shown in Figure 28. As observed in

the top row, dark or incorrectly colored patches can occur if the style target face is

occluded, for example by a hand or hair. Given that facial occlusion detection outside

the lips was limited in our Unity facial segmentation models at the time, this would not

have been easy to detect or handle in any mirroring implementation that could be built

94

on our existing software. Furthermore, it is not trivial to handle the case where one side

of the style target face is shadowed and the other is occluded, as occlusion handling in

mirroring would likely result in a face with both sides in shadow. This is also observed

in the top row of Figure 28, given the dark patch on the left side of the output image,

for the mirrored target. Given that making the user choose an unoccluded style target

image is deemed to be a reasonable request, finding a suitable solution was not looked

into.

Aside from resulting in an overly bright output, the final image in the second row

of Figure 28 has a noticeable out-of-place dark region on the bottom right. This is due

to the neck being in shadow, which is evidently not handled by the face mirroring. This

could be handled by recompositing the face onto a different image, in which the neck

is not in shadow. Since the remapped mirrored face is more realistic if the pose of this

different image matches the style target, the face could even be pasted on a CGI torso

with roughly matched lighting and skin color, to remove any possibility of excessively

shadowed regions. While this may complicate execution, the target system being Unity

does allow for relatively simple inclusion of a posed 3D head model in the scene. This

might also fix the observed persisting shadow issue when trying to use seamless cloning

for face recompositing.

A more general issue with the technique is that the makeup in the output image

appears to be slightly blurrier when using the mirrored style target, due to the lowered

effective resolution of the style target face after mirroring. This can be corrected with

higher resolution style target images, as well as improved interpolation when projecting

and recompositing the mirrored style target face.

Finally, another issue with this mirroring approach is that some makeup styles

are not symmetrical, but this is a relatively rare occurrence.

4.5 Mitigation of checkerboard artifacts in BeautyGAN

output

In assessing the output quality of the original BeautyGAN, as well as some variants,

we observed checkerboard-like artifacts in the output, as shown in Figure 29. These

appeared to increase in intensity as training progressed, becoming noticeable before

the generator was sufficiently trained. In all observed cases of these artifacts, they

appeared near the eyes or on the lips, as these are the regions most strongly modified

by BeautyGAN. Furthermore, the chance of occurrence, as well as the noticeability

of the artifacts, appeared to increase if the changes in color required in these regions

were large (for example, when trying to apply heavy eye shadow or dark lipstick).

95

Figure 28: Subpar GAN outputs using the mirrored makeup dataset, without seamless
cloning. Source and target inputs from MT dataset (Li et al. 2018b).

Overall, for the original generator architecture, only about 20% of the outputs were

not observably affected, while about 30% were heavily affected, with artifacts appearing

in more than one of the three regions of possible appearance (left eye, right eye and

mouth). With these rates of occurrence, the artifacts would be observable by any user

of the app given only a few attempts.

Similar artifacts have been observed in a number of image-generating networks,

as shown in Odena et al. (2016), and are attributed to the use of transpose convolutions

(also called fractionally-strided convolutions, or, somewhat incorrectly, deconvolutions).

We attempted to correct this by replacing the transpose convolutions with an upscal-

ing layer followed by a normal convolution operation, using the original BeautyGAN

architecture as the base (without the new MobileNetV2-based depthwise separable

convolution blocks).

However, retraining with these changes resulted in slightly different but heavily

increased artifacts, as can be shown in Figure 30. As in the case of the version with

transpose convolutions, the artifacts appeared to be exacerbated as training progressed.

The artifacts appear to always be worse than those in the transpose convolution version,

for the same amount of training epochs. We theorized that the instance normalizations

could have exacerbated these artifacts, but removing the normalization layers and

retraining did not remove the artifacts, showing this to not be the case.

Another effect of replacing the transpose convolutions was an increased incidence

of dark droplet artifacts. These were most noticeable in the variant with normal (not

depthwise separable) convolution residual blocks, but were also more common in the

96

Figure 29: Eye and mouth crops of BeautyGAN outputs showing checkerboard arti-
facts, originally suspected to be caused by the transpose convolutions. Input images
from MT dataset (Li et al. 2018b).

depthwise separable variant with upscaling in the output branches, as observed in the

top two rows of Figure 31. While most observable in the reconstructed original inputs,

they are also present as completely dark spots in the makeup-transferred outputs.

While simply removing the transpose convolutions did not fix the checkerboard

artifact problem, both latency-improved versions using MobileNetV2-style depthwise

separable convolution blocks were unexpectedly observed to significantly mitigate the

checkerboard artifacts. This is further detailed in the architecture variant comparison

in 4.6.2.

97

Figure 30: Eye and mouth crops of BeautyGAN outputs showing artifacts in the output
of the model without transpose convolutions, with exacerbated but somewhat different
artifacts. Input images from MT dataset (Li et al. 2018b).

98

4.6 Output quality assessment and results

4.6.1 Training and evaluation method

The various networks were compared using purely visual comparison, given the failure of

our attempts to use automatic numerical methods with the Frechet Inception distance

(Subsection 4.6.3). Given the large number of combinations of inputs, at least 50

combinations for each network version were checked. While the sets of inputs were not

always the same for each network, for the outputs with issues, the same inputs were

tested with all the other networks, for comparison purposes. The training and test

datasets were provided with the official PyTorch implementation of the BeautyGAN

projects (Jiang 2021), and contained only Asian and Caucasian face images. This

dataset contained 335 non-makeup test set images, 780 non-makeup training set images,

816 makeup test set images, and 1903 makeup training images.

In order to optimize for latency and size, lessen output artifacts, or both, and to

compare them to the original architecture, four different non-region-aware BeautyGAN

versions were tested, based on the proposals in Subsection 4.3.1 and Section 4.5. Two

were modified to use depthwise separable convolution blocks instead of normal convolu-

tions, and two with the original normal convolutions and residual blocks. Each pair was

formed of a version with the original transpose convolutions at the end of the trunk,

and one version with the upscaling and normal convolutions instead. Each network was

trained for 300 epochs, and the output was monitored to check that the checkerboard

artifacts did not start worsening after a certain number of training epochs, as a bad

loss function could potentially cause this.

In terms of qualitative comparison with methods not based on BeautyGAN, this

was already undergone in the original BeautyGAN work. As such, only the retrained

architecture from the official BeautyGAN PyTorch implementation (Jiang 2021) was

used as a baseline for judgment of output quality of our new network variants.

Given that the output quality needs to be judged based on human perception, and

given the inability for the automated perception-mimicking Frechet Inception Distance

method to be used in our case, no quantitative analysis could be done for this project.

In terms of qualitative analysis, we were unable to do a proper multi-user per-

ception study on the quality of the outputs, as in the 84-volunteer study in the original

BeautyGAN paper (Li et al. 2018b). In our case, we were limited to multi-user analysis

solely in the form of general output quality impressions, supplied by other company

employees for some of the network variants, due to time constraints and abandonment

of the project. The remainder of the output quality analysis was based on manual

impressions by the thesis author.

99

Figure 31: Comparison between the different BeautyGAN variants. The top two rows
correspond to the transpose convolution-free variants, while the bottom two have the
same output branches as the original architecture. The second and fourth row variants
use the depthwise separable convolution blocks, while the other two use the original
architecture. Concordantly, the original BeautyGAN architecture is on the third row.
Input images from MT dataset (Li et al. 2018b).

Given the variable degree of output quality, as well as the shortcomings of the

method, we do not measure a success rate for the variants, but merely note and discuss

the observed output issues for different network variants and preprocessing methods,

such as target style image mirroring (Section 4.4).

4.6.2 BeautyGAN architecture variant comparison

Since the effects of the transpose convolutions and the upscaling with normal convolu-

tion versions have already been discussed, focus is put on the effects of the depthwise

separable convolution (MobileNetV2-style) residual blocks used in the modified gen-

erator. These are illustrated in Figure 31, with the relevant GAN outputs being on

the third column. Close-up views of the eyes, illustrating the presence or absence of

artifacts, are shown in Figure 32.

The most notable effect of the depthwise separable convolution versions was the

100

Figure 32: Comparison between the different BeautyGAN variants, with close-up on
left eye, right eye and mouth. BeautyGAN variants from left to right: a. with normal
convolutions and without transpose convolutions; b. with depthwise separable con-
volutions and without transpose convolutions; c. with normal convolutions and with
transpose convolutions; d. with depthwise separable convolutions and with transpose
convolutions. Input images from MT dataset (Li et al. 2018b).

101

lessened presence of the artifacts mentioned in Section 4.5, for both the transpose

convolution versions and the upscaling ones. In the upscaling versions, the artifact

severity appears to be reduced greatly in virtually all images, while in the transpose

convolution versions, the artifacts appear to be missing completely, although there do

still appear to be some faint grid-like structures around the makeup application regions.

While both full convolution variants appears to otherwise give slightly better

larger scale results on average, such as improved shading when one or more of the

inputs has bad lighting, and slightly less blurriness in the makeup of the output, the

depthwise separable convolution version with the transpose convolutions is considered

to give the best output overall. This variant is therefore both generally faster (given

Table 9) and more accurate than the original architecture.

4.6.3 Estimating output quality with the Frechet Inception Distance

So far in this project, the quality of the output has been determined manually through

visual inspection, without any hard numerical quality estimate for more rigorous variant

comparison. Although this is in line with quality assessment in the original BeautyGAN

paper, some form of automated quantitative measurement would be preferable.

For GANs that solely aim to replicate a given training dataset, like how StyleGAN

aims to generate realistic faces based on Flickr-Faces-HQ (Karras et al. 2019), the

similarity of the GAN output to the training dataset can be estimated numerically with

the Frechet Inception Distance (FID), a scalar value which shrinks as the perceptual

difference between two datasets shrinks (Heusel et al. 2017). The FID is based on

the value of an internal output of the ImageNet-trained InceptionV3 network (Szegedy

et al. 2016), when taking the training dataset and GAN outputs as inputs. If µGAN and

ΣGAN are the covariance matrix and mean vector of the InceptionV3 internal outputs

when taking the GAN outputs as inputs, and µreal and Σreal the equivalent for the real

training images, then the FID follows Equation (4.1).

FID = |µGAN − µreal|2 + tr(ΣGAN + Σreal − 2(ΣGANΣreal)
1/2) (4.1)

In this case, the 2048-element internal output of InceptionV3 is used, which is im-

mediately before the final fully connected layer giving the ImageNet class probabilities.

It needs to be noted that the FID is meant to be calculated using larger datasets, with

a number of samples at least equal to the number of elements in the output it uses, here

2048 (Heusel et al. 2017; Johannes Kepler University Linz Institute of Bioinformatics

2017). This was not possible due to the small size of the datasets available to us in

this project, meaning that the resulting values are not comparable to FID values from

102

other works.

The FID is calculated for the variants with MobilenetV2-style blocks, and the

variants with the original normal convolution blocks. Both types have two architectures

tested: one with transpose convolutions at the end of the trunk, and one with the

upscaling and normal convolutions instead. The results are shown in Table 11. For each

architecture, four FID values are calculated, using 2002 GAN output images generated

from the makeup and non-makeup test sets, and each of four real image sets - the 335

non-makeup test set images, 780 non-makeup training set images, 816 makeup test set

images, and 1903 makeup training images.

Table 11: Frechet Inception Distances for the training and test datasets, for all the
non-region-selectable BeautyGAN variants trained.

MobileNetV2
blocks

Transpose
convolutions

Makeup
test FID

Non-makeup
test FID

Makeup
training FID

Non-makeup
training FID

no no 39.24 45.12 51.93 47.15
yes no 37.68 43.14 50.86 46.03
yes yes 33.17 42.47 57.31 53.21
no yes 37.72 45.53 54.65 50.23

While this suggests that the transpose convolution variants are better than their

corresponding variants with upscaling and normal convolutions, it was observed that

randomly dividing the combined set of makeup and non-makeup datasets in two gave

an FID of 8.37 between the two halves, which can be considered a rough margin of error

for BeautyGAN FID calculations. Since this is greater than the difference between any

two of the four variants, the results are deemed inconclusive, and the FID deemed

unsuitable for BeautyGAN output quality measurement, at least using the datasets

available to us. Output quality can therefore only be estimated using manual user

perception, as the original BeautyGAN work did for assessment and comparison with

prior methods (Li et al. 2018b).

4.6.4 General output issues and limitations

Due to multiple unresolved issues eventually noticed with the output of even the original

network, the attempts at making the network more mobile-friendly were discontinued.

These are general issues, that affect the model regardless of whether transpose con-

volutions were used, and whether depthwise separable convolutions were used in the

encoder and trunk of the model.

The most significant issue of this approach is the inability of the GAN to extend

to unseen makeup styles, which was the main reason this project was discontinued.

103

This is likely at least partially a result of the small dataset size. Due to this, there

were some efforts made to boost the dataset with frames from YouTube videos. Aside

from increasing the dataset size, this also decreases the chances of the images being

photoedited, as videos are not modified as often or as easily as still images. However,

when attempting to restrict the collected images to permissively licensed videos, which

are only a small fraction of YouTube videos, not enough high-definition videos were able

to be found. Furthermore, since uploaders tend to set the license channel-wide, many

of the sampled videos were of the same person, leading to a insufficiently varied face

dataset. The dataset quality was further affected by YouTube’s relatively low bitrate,

which is required for streamed videos. This increased the sizes of faces required, and

by extension the minimum video resolution we needed to search for. Also, even if non-

permissively licensed videos were to be used, a significant annotation effort would have

been needed to separate the makeup and non-makeup images.

Another issue plaguing most of the output images is the apparent blurriness of

the makeup on the user’s face in the output image. We believe this to be a limitation of

the histogram loss, as this only enforces the distribution of the colors in the histogram,

not the spatial layout of the colors in the region. As an example, shuffling the locations

of the pixels in a region would give the same histogram loss, even though the visual

appearance would clearly not be correct in most cases. To mitigate this, an alternative

to the histogram loss would be required, that enforces the spatial distribution of the

makeup colors on the face. This is similar to the more recent approach in Li et al.

(2020), which uses a UV loss term for this purpose.

We further observed that many images from the makeup style dataset were heav-

ily photoedited, as is the case for many glam shots. This was much more rarely the case

for the no-makeup dataset. This induces a systematic difference between the makeup

dataset and the output of the GAN, that no amount of training and accuracy can

overcome. This will likely inflate the loss value unfairly and affect the training, and

will likely also affect the FID score.

Another important issue can be noticed in almost all the example figures in

this chapter: the target style, especially for the original non-region-based BeautyGAN,

imposes its own skin color on the user’s face. For dark-skinned targets and light-skinned

user faces, or vice versa, the BeautyGAN method fails completely. This failure has

ethical ramifications, discussed in the next section. This same failure is also observed

when the lighting conditions of the user and style images vary, which occurs often, with

many user images being poorly lit. A secondary effect of this is the unrealistic face

lighting in many of the outputs, since the shading of the target style image is adopted

by the output. This remains an issue even when the target style image is mirrored,

104

sometimes causing the output to appear ”flat”, and have unrealistically symmetric and

bright shading.

Finally, given the slowness of the GPU-runnable instance normalization variant

suggested in Subsection 4.3.2, none of the network variants can run in real-time, or

benefit from hardware acceleration on smartphones.

4.7 Ethical considerations

The makeup transfer system was a feature of the placement company’s makeup apps,

which aimed to contain personalized makeup product suggestions with the purpose of

driving product sales, and to tune a recommendation engine for this purpose. While

this does carry ethical concerns, the author of this thesis was not involved with these

parts of the resulting apps, no in-depth ethical analysis can be made.

With respect to fairness in output quality, the datasets available for training

the networks contained solely light-skinned people (Asian and Caucasian) for both the

makeup and non-makeup images. As the network is unable to transfer makeup properly

when the input makeup and non-makeup images have noticeably different brightnesses,

it would not be able to transfer makeup if the images had different skin tones either.

The case of both the makeup and non-makeup images having dark skin could

be supported if the appropriate training data were added, but it is unlikely that users

would be content with being restricted to using a target makeup style that matches

their skin color.

These issues cannot be solved without a much more powerful method of extracting

the makeup color without retaining any of the skin color. Some form of Poisson image

editing could potentially be used for this purpose in future work.

Regarding the value of this research to the greater scientific community, Beauty-

GAN-like region-based control of GAN influence has applications beyond beauty, for

example in the domain of GAN-based art, as seen in tools such as Artbreeder (Simon

2021). By restricting the influence of changes, it could allow for better fine-tuning

of outputs through combination of local elements from different generated images, as

combining them in latent space would result in an undesirable global mixture of the

images.

4.8 Conclusions and future work

Despite the termination of the project, a modified variant of the architecture was able to

be created that improved both speed and output quality, by replacing the convolutions

105

and convolutional residual blocks with depthwise separable convolution blocks, while

keeping the transpose convolutions unchanged. While this resulting architecture could

not be run on the GPU due to the instance normalizations, with the GPU-supported

instance normalization variant we proposed adding too much latency, slower Android

phones should benefit from the increased CPU inference speed, given the results in

Table 9.

But given the general issues noted with the method in Subsection 4.6.4, mainly

poor generalization and blurriness of output makeup, this method is not deemed to

be suitable for use in apps in its current form, even with a larger dataset. We discuss

several avenues of improvement below.

4.8.1 Alternative approach through makeup overlay generation

For the purposes of beauty apps using our virtual try-on system, another potentially

superior way of tackling the makeup transfer task is to use a GAN to deduce a makeup

overlay matching the target style, as opposed to generating the entire face of the user

with the makeup applied. This would allow the makeup style to be tracked to the

user’s face, using the same face mesh fitter used for the regular virtual try-on. Since

this task was further displaced from the approach in the original work we based our

research on, and application of the style onto a single frame was deemed to be enough

by the company, this was not attempted. It is considered to be potentially valuable

future work.

4.8.2 Potential improvements to the filter separation method for re-

gion selection

The failure of the filter separation method in Subsection 4.1.2 may have been due

to not properly enforcing the lack of makeup transfer on unwanted regions, as the

training was always frozen for the convolutions associated with the unwanted regions.

This could potentially be corrected by disabling the effect of the unwanted region

convolutions at inference time, perhaps by multiplying their outputs by the respective

element of the region vector (zero for wanted, one for unwanted). Alternatively, a two-

step backpropagation scheme could be attempted, with the first step optimizing the

wanted region convolutions using local histogram loss and non-local perceptual loss,

while keeping the unwanted region convolutions frozen. The second step would do the

opposite, by freezing the wanted region convolutions and optimizing the unwanted ones

with perceptual loss outside the wanted regions. As this does not enforce the global

effect of all convolutions working at once, a third step could be added if necessary, that

106

would freeze nothing and optimize the global effect.

4.8.3 Sub-pixel convolutions for decreased checkerboard artifacts

A different potential solution to the checkerboard artifacts noted in Section 4.5 is using

sub-pixel convolution, as noted in Aitken et al. (2017), which has been used in super-

resolution tasks. This appears to be implementable using a normal convolution and

a depth-to-space operation, both of which appear to be supported both on the CPU

and GPU in TensorFlow Lite. This could perhaps improve the output of the original

architecture, by changing only the transpose convolutions.

4.8.4 Custom TensorFlow Lite instance normalization operation for

faster GPU inference

Given the results of the GPU implementation of instance normalization in Subsection

4.3.2, a better custom implementation as a single GPU op, as in Appendix B, is likely

still required for real-time GAN inference on smartphone GPUs. Such an op would also

be implemented using parallel sum reduction, but probably use only two GPU buffers

using ping-pong buffering - the destination buffer of the previous parallel sum becomes

the input of the current one, and the source of the previous is re-used as the output of

the current parallel sum. This is a technique commonly used in shader programming

(Guha 2015).

107

Chapter 5

Wrinkle and Blemish Detection

In the application of makeup, as well as in beauty in general, significant focus is placed

on the obscuring of various skin blemishes, like acne, blackheads, or birthmarks, as well

as obscuring the effects of aging, like the presence of wrinkles. The detection of such

skin artifacts can be exploited to drive the user to purchase beauty products. This has

lead to a significant amount of research on the subject, as well as beauty and photo

retouching applications with blemish and wrinkle detection or removal capabilities (see

Section 2.7). Such a detector can also be used to estimate an overall skin score, offering

the user a simplified overview, for the same purpose.

As a result, the work described in this chapter is focused on automated detection

of both facial wrinkles and blemishes (acne, moles, etc.), for potential use in a smart-

phone beauty application. Given that wrinkle and blemish detection tasks require

semantic segmentation, and no suitable datasets could be found and used, purely ma-

chine learning-based approaches would have required new, expensive-to-create datasets.

As a result, the main focus of this chapter is on traditional computer vision techniques,

which do not use machine learning. Some existing machine learning functionality from

the Unity and TensorFlow Lite system was however still required.

In this chapter, the work of Elbashir and Yap (2020), based on Jerman’s enhance-

ment filter from the blood vessel detection work of Jerman et al. (2016), is extended

from just wrinkle detection to blemish detection as well, and implemented and evalu-

ated using forward-facing female faces from the IMDb-WIKI (Rothe et al. 2018, 2015)

and FFHQ (Karras et al. 2019) datasets. This was implemented as a C++ Unity plu-

gin, similarly to the Unity and TensorFlow Lite system detailed in Chapter 2.4, and can

be run on smartphone CPUs. While the detection step itself uses classical computer

vision techniques with OpenCV, the skin region to be tested is retrieved using the skin

segmentation network from the Unity and TensorFlow Lite system.

108

The main experimental contribution was showing that the blob detection from

Jerman et al. (2016) can be, to some extent, used for the detection of generic facial

blemishes and point-like structures in skin texture. From this, a largely shared im-

plementation of both wrinkle and generic blemish detection was created, detailed in

Section 5.2.

As a second contribution, based on the first step of an existing wrinkle detection

work (Batool and Chellappa 2015), we propose a variation of Gabor filter banks for

wrinkle detection, using an expected direction map. This method is based on our

observation that wrinkles, when present, generally follow the same directions from

person to person, depending of the part of the face they are on. This approach could

be used both as a post-processing step to Jerman’s enhancement filter for wrinkles, for

the removal of noise, as well as on its own, as described in Section 5.3. This did not

lead to a full implementation and was not extensively tested due to time constraints.

5.1 Jerman’s enhancement filter method

In the work of Jerman et al. (2016), variations in image intensity with elongated or

blob-like shapes, corresponding to transverse and cross sections of blood vessels in

angiographic images, are detected based on the eigenvalues of the Hessian matrix.

The transverse and cross section detection filters are referred to as the vesselness and

blobness filters, respectively.

As shown in Equation 1 of Jerman et al. (2016), here restricted to a two-

dimensional image, the 2D Hessian matrix H1,2(x, s) of the grayscale image intensity

I(x) at coordinate x = (x1, x2) and scale s is given by Equation (5.1), where G(x, s) is

a 2-variate Gaussian defined by Equation (5.2).

H1,2(x, s) = s2I(x) ∗ ∂2

∂x1 ∂x2
G(x, s) (5.1)

G(x, s) =
1

2πs2
exp

(
−xTx

2s2

)
(5.2)

The two eigenvalues of this Hessian matrix, λ1 and λ2, are defined so that λ1 < λ2.

In Jerman et al. (2016), the case of 3D (volumetric) images is also described, for

which the 3D Hessian matrix has a third eigenvalue λ3. Assuming λ3 > λ2 > λ1, the

2D version can be extracted from the general 3D case by setting λ3 = λ2.

In Elbashir and Yap (2020), only the detection of elongated structures is ad-

dressed, corresponding to wrinkles. This is the same as the two-dimensional vesselness

filter from Jerman et al. (2016). This defines a value λρ as in Equation (5.3), where

109

(x, y) is the pixel location in the image, and σ and τ are the scalar scaling and thresh-

olding controls, respectively. This leads to the final response function in Equation

(5.4).

λρ(s) =

λ2 if λ2 > τmaxx,yλ2(x, y, σ)

τmaxx,yλ(x, y, σ) if 0 < λ2 ≤ τmaxx,yλ2(x, y, σ)

0 otherwise

(5.3)

VP =

0 if λ2 <= 0 ∨ λρ <= 0,

1 if λ2 >= λρ > 0,

λ2
2(λp − λ2)

(
3

2λ2+λp

)3
otherwise

(5.4)

In the original vascular structure detection paper of Jerman et al. (2016), a variant

for 2D blob detection (in their case, for detection of cross-sections of blood vessels) is

presented. The corresponding equation is shown in Equation (5.6), which differs from

Equation (5.4) only in the eigenvalue used, and the new value of λρ (Equation (5.5))

being relative to the new eigenvalue. We have found this to be useful for detection of

blob-like blemishes, such as acne and birthmarks.

λρ(s) =

λ1 if λ1 > τmaxx,yλ1(x, y, σ)

τmaxx,yλ(x, y, σ) if 0 < λ1 ≤ τmaxx,yλ1(x, y, σ)

0 otherwise

(5.5)

VP =

0 if λ1 <= 0 ∨ λρ <= 0,

1 if λ1 >= λρ > 0,

λ2
1(λp − λ1)

(
3

2λ1+λp

)3
otherwise

(5.6)

5.2 Wrinkle and blemish detection implementation based

on Jerman’s enhancement filter

5.2.1 Selection of evaluation images

The datasets used for evaluation of the method, as well as optimizing the input param-

eters, were part of the IMDb-WIKI dataset (Rothe et al. 2018, 2015), which offered

precise age, and the FFHQ dataset (Nvidia 2021), which offered higher-quality images,

but only approximate age using cloud machine learning inference (from DCGM and

Nvidia (2020)). Only female faces were considered, as facial hair is picked up by both

110

the wrinkle and blemish detectors.

While the IMDb-WIKI dataset offered cropped and aligned faces, these had been

resized, making it difficult to filter out low-resolution faces. Therefore, we re-cropped

and re-aligned the images from the originals with our minimum size constraints, using

an offline face detector and keypoint estimator.

The algorithm was run solely on faces roughly facing the camera. Images were

filtered by placing limits on the maximum face pose angle relative to the camera plane

normal, as well as the face size (measured as the crop size of the Dlib face detector).

We evaluated using 20 degrees and 300 pixels, as well as the more stringent 10 degrees

and 500 pixels.

When selecting dataset images, we did not take into account that face wrinkles

tend to vary with facial expression. While this is not relevant in use, as the user can

be asked to keep a neutral face, it does cause some unwanted variation when running

on available datasets. This could be mitigated to some extent through annotation

with an emotion detector, and using only the images with a neutral expression. Cloud

annotation services like Azure and Google’s Cloud Vision AI both offer facial expression

estimation (Microsoft 2021a; Google 2021a), so they could be used for this purpose.

5.2.2 Algorithm and code implementation

The original MATLAB code from Jerman et al. (2020, 2016) was ported to C++ using

OpenCV (Gary 2008). This was used to create a Unity plugin, which operated on

inputs provided by the Unity and TensorFlow Lite system specified in Chapter 2.4,

using its face keypoint detection, face mesh fitting, and facial feature segmentation

capabilities.

The full procedure is shown in Figure 33. The algorithm takes the detected

face a, facial skin segmentation map b, face-aligned region mask c, and eye and mouth

keypoints d from the Unity system. The images a, b, c are rescaled based on the keypoint

positions (d), to ensure similar scaling in wrinkle and blemish detection, for all input

faces. The segmentation map is eroded (shrunk from the edges) to prevent unwanted

regions from being included due to imprecision in the segmentation map and aligned

region mask, giving the eroded segmentation map e. This is intersected with the region

mask c, giving the final mask f . The initial, grayscaled image a is then normalized

based on the pixels in this region (shown in g), giving the output h. The wrinkle and

blemish detection algorithms are applied to the whole image h, giving the outputs i and

k, respectively, which can be overlaid onto the original image in Unity, giving outputs

similar to j and l.

The original MATLAB algorithm implementation (Jerman et al. 2020), as well as

111

Figure 33: Inputs, intermediate outputs, and final outputs of the wrinkle and blemish
detection pipeline. Input image from Yakobchuk (2021).

112

Figure 34: Result of detecting dark wrinkles on a light background, bright wrinkles
on a dark background, and both cases overlaid. Duplicate detections can be observed
when both are overlaid. Image from FFHQ dataset (Karras et al. 2019).

the C++ port, allowed for the detection both of dark features on a light background, as

well as light features on a dark background, for both elongated and blob-like structures.

In general, both wrinkles and blemishes are examples of the former: dark on light.

However, under some circumstances, for example when the light falls perpendicular

to the wrinkle direction, and the face is somewhat greasy, there may also be a bright

line at the wrinkle location. While this may suggest that running the algorithm once

for each may give more complete results, in practice it was observed that overlaying

the two caused duplicate wrinkle detections, as can be observed in Figure 34. These

duplicates are not exactly in the same place, but run parallel, and therefore are not

removed when calculating the maximum of both detection outputs, and are non-trivial

to remove through any other method. As a result, only the version for dark features

on a light background was used for the entire remainder of this research.

As mentioned in the pipeline description, in order to maintain consistent wrinkle

and blemish outputs, the scaling of the faces needs to be made similar before the

detection filter is applied. To do this, the average keypoint position for the keypoints

of each eye, as well as the mouth, are calculated. With these three average keypoints,

the image is scaled so that the distance between the mouth keypoint and the midpoint

between the eye keypoints is kept constant between images. Since this could cause a

very large intermediate image if the face is somewhat far from the screen, the image

is cropped to the result of the final region mask before it is scaled. The final wrinkle

result is moved and scaled back to the crop area, so that it overlays properly on the

original image. We note that, for simplicity and because it was deemed an acceptable

constraint based on other wrinkle detection approaches in other beauty apps, the input

face is expected to be facing forward, not be tilted, and not be too far from the camera,

113

so that the face fills the captured portrait image well. If this were to be extended to

a real-time version (with the wrinkles being updated on every frame), this might no

longer be a safe assumption.

On the Unity side, as shown in Figure 33, we needed to generate the segmentation

mask, three keypoints for the eyes and mouth, and a mask for the regions of the face

to be used. While the regions are shown color-coded, allowing for separate handling of

each region if desired, the algorithm simply took all the regions together.

For the purposes of generating makeup overlays for beauty apps, the Unity and

TensorFlow Lite framework had a system in which a morphable face mesh was fit to

the face in real-time, and the overlays rendered onto it as textures. By creating an

overlay mask texture and rendering it onto the face mesh, the region mask (image c in

Figure 33) could be fit onto the input face, and the result used as a plugin input.

The keypoint and segmentation results were retrievable without such exploits,

allowing all the required algorithm inputs to be provided to the plugin.

5.2.3 Estimation of skin scores

It was observed that other makeup apps, such as YouCam (PerfectCorp 2021), allowed

for the calculation of certain skin scores, to gauge overall skin quality. Based on the

wrinkle and blemish detection outputs, scores can be created for perceived face skin

age, and face skin health, respectively.

As a result, our plugin was modified to allow for rough estimation of face skin

age score and face skin health. The former was estimated by using the sum of the

output wrinkle mask pixels (from Figure 33i) divided by the sum of the overall input

mask pixels (from Figure 33f). When there are many or deep wrinkles (characteristic

of old age or high skin age), the output becomes more dense and intense, increasing

the aforementioned value. This results in a value between 0 and 1, that increases as

the number and depth of wrinkles, and therefore also skin age, increase. Since a user

would likely expect skin scores to increase for better skin, the value was subtracted

from 1 to give the final skin age score.

The face skin health score was calculated in the same fashion, except this time

using the blemish output mask instead of the wrinkle output mask.

To obtain a value for the perceived skin age itself, the skin age score values were

plotted linearly against the ages, using the age values provided in the IMDb dataset.

The linear relationship, while present, was relatively weak, but still allowed for a rough

estimation of skin age.

It was observed that both the face skin age score and the health score tended to

be overly close to 1 (above 0.9 in most cases). To rebalance the scores, an alternate

114

overall scoring system was devised, based on the position of the original scores in a

percentile distribution, based on the same portion of the IMDb-WIKI dataset. This

resulted in more user-friendly values.

An issue with both these scoring systems is their sensitivity to the σ and τ

input parameters. A solution to this would be to run the algorithm on sufficient

combinations of single σs and single τs to fit a multidimensional percentile distribution.

For simplicity, the other variable input parameters (primarily the keypoint-relative

image scaling) should be kept fixed.

In the absence of a machine learning solution, these were the tactics we used to

score the face skin age and health. While the scoring methods presented are somewhat

crude, the wrinkle and blemish detectors were not implemented in a public release app

before the end of the project, so the scoring system was not refined or tested further.

As future work, for face age, a simple network taking the output wrinkle mask and

trained to output the age values could perhaps offer a more realistic estimate.

5.2.4 Quality of results

Using the Unity implementation to batch process the IMDb dataset subset and the

FFHQ dataset for multiple σ and τ values, the outputs are found to be of acceptable

quality for a method using only a filter, without line tracing for wrinkles. Some outputs

are shown in Figure 35 for wrinkles and in Figure 36 for blemishes, with a close-up of

a blemish output in Figure 37. Several common issues with the outputs are noted, and

illustrated in Figure 38 for wrinkles and Figure 39 for blemishes.

Given the lack of a tracing step after the filter is applied, which helps filter

out short, weak signals corresponding to natural skin texture, the wrinkle outputs are

generally noisy. This becomes more noticeable in faces that are smooth, in which

skin texture noise is predominant over stronger wrinkle signals, or faces that are badly

lit or dark-skinned, since this increases image noise or compression artifacts after the

normalization step. One possible tracing method is shown in a later step of Batool and

Chellappa (2015), which uses a method similar to the Marked Point Processing model

from Batool and Chellappa (2012a,b).

Output noise is even more pronounced in blemish outputs, as shown in Figure 39.

As with wrinkles, the noise is more noticeable for badly lit, dark-skinned, and smooth

faces. This could be mitigated somewhat by more careful tuning of the τ and σ values

used. Further significant improvements are unlikely to be possible without resorting to

machine learning methods.

Another issue is the noticeable overlap in the detected wrinkle output and the

blemish output, as the paths around or among blemishes can appear vascular to the

115

Figure 35: Wrinkle outputs using Unity implementation of Jerman’s enhancement filter,
for different values of σ, and τ = 0.5. Images from FFHQ dataset (Karras et al. 2019)
and IMDb-WIKI dataset (Rothe et al. 2018, 2015).

116

Figure 36: Blemish outputs using Unity implementation of Jerman’s enhancement
filter, for different values of σ, and τ = 0.5. Images from FFHQ dataset (Karras et al.
2019) and IMDb-WIKI dataset (Rothe et al. 2018, 2015).

117

Figure 37: Output of Jerman’s enhancement filter implementation in MATLAB, using
only a portion of the face. a is the original image. Output b is the pixel-wise maximum
of the outputs for multiple σ values (0.5, 1.0, 1.5, 2.0, 2.5), with τ = 0.5. Output
is overlaid on the original image in c abd d, with the latter showing how the overlay
covers the blemishes (note the absence of the blackheads on the chin). Image from Cliff
Dermatology (2021).

118

Figure 38: Wrinkle outputs with issues, for σ = 1.5, and τ = 0.5. Outputs a − c are
noisy, due to input blurriness (a), and likely dark, low contrast inputs for b and c,
although excess sensitivity may have been caused by the normalization in these cases.
Outputs d − g show issues due to occlusion from hair (d,e) or other objects (f and g,
the latter being due to failure of the segmentation map). While the outputs in h and i
are generally correct, the mask obtained from fitting the face mesh includes the chin,
which is incorrectly marked as a wrinkle. This may however be due to the training
dataset of the face mesh fitter not containing many child faces, in which case such
failures should be rare during real-world use, where adult females are targeted. Images
from FFHQ dataset (Karras et al. 2019) and IMDb-WIKI dataset (Rothe et al. 2018,
2015).

119

Figure 39: Blemish outputs with issues, for σ = 2.5, and τ = 0.5. a− c show masking
issues, similar to the bad wrinkle outputs in Figure 38 (hat, occluding object, and lower
chin, respectively). Outputs d and e show blemish outputs in regions with wrinkles
(under the eye on the left side for d, and on the nasolabial folds on the sides of the
lower nose in e). Present in most cases is the noise in the output, which is particularly
noticeable in outputs f − i, where relatively smooth skin wrongly gives an intense
output. We note the bad lighting case of h, and the dark skin case of i, which seem
to worsen the noise. The noise could be to some extent corrected by increasing the τ
value, but this value is difficult to tune well. Images from FFHQ dataset (Karras et al.
2019) and IMDb-WIKI dataset (Rothe et al. 2018, 2015).

120

algorithm, and corners or thicker points of the wrinkles can appear as blemishes to

it. This is particularly noticeable for large blemishes like moles, which appear in the

wrinkle output as ring shapes for all σ detection scales, as can be seen in Figure 38d.

Since it is possible for both blemish areas to appear in the wrinkle output, and vice

versa, attempting to remove false negatives through subtraction of one output from the

other will likely cause some true positives to also get removed.

Using the postprocessing method proposed in Section 5.3, some of the noise for

the wrinkle outputs could potentially be removed. However, as for the tracing, the

method only applies to wrinkles, not blemishes.

5.2.5 General shortcomings of method and future work

This blemish detection algorithm cannot differentiate between different blob or point-

like features. While some such features like acne and blackheads are generally deemed

to be facial blemishes, freckles are arguably not. Such differentiation would probably

take a machine learning approach. As mentioned in Section 2.7, the Jerman filter

method detailed could aid in the annotation of a dataset tailored to this purpose,

removing the need to tag every blemish, by allowing the human annotator to define

large skin regions containing specific types of blob-like facial features, which would then

be passed through the Jerman filter to give the final segmentation map for that region.

This annotation tactic could also be used to create a wrinkle dataset.

As the method relies on the contrast between the dark wrinkles and the lighter

surrounding skin, this makes handling of wrinkles on very dark skin difficult. While this

is partially mitigated by the normalization method, the effectiveness on dark skin tones

should be more explicitly verified, and the sensitivity of the filter calibrated differently

in these cases if necessary.

As mentioned previously, the faces considered were only female, as the facial hair

of some male faces showed up as detections for both the wrinkle and blemish filters.

The beard could be excluded with a semantic segmentation network, but a simpler

method could just use a classifier for beard presence, and restrict the wrinkle and blob

detection regions to the upper part of the face, when the beard is present. A third

method would be to interpret unusually dense detections on the lower part of the face

relative to the upper part as the presence of beard hair, which could function as a beard

presence classifier without using machine learning. All these possibilities, as mentioned,

are outside the scope of this research, but could be addressed in future work.

121

5.3 Detecting and boosting wrinkles with Gabor filters

and a direction expectation map

In searching for improvements for the Jerman enhancement filter method for wrinkles,

we observed that while the amount and distribution of wrinkles on faces can vary

greatly, the directions of the wrinkles on people’s faces generally follow a known pattern.

For example, the wrinkles on the forehead are generally horizontal, as are the wrinkles

under the lower eyelid (the tear troughs) and those at the outer edges of the eyes (the

crow’s feet). We identify the various types of wrinkles in Figure 40, and mention their

expected directions in Table 12. From this, we can generalize to expected directions

for the entire face, and create a direction map for face wrinkles.

Table 12: General directions of facial wrinkles.

Region General direction

forehead horizontal, vertical above bridge of nose
frown lines horizontal, vertical at top of region
tear troughs horizontal
bunny lines diagonal from tear duct to bridge of nose
nasolabial folds diagonal, from nose to edges of mouth
crow’s feet horizontal
mental crease horizontal
cheeks rare wrinkles, no well-defined direction

Since long structures with specific orientations can be detected with Gabor filters

(Batool and Chellappa 2015), the direction map can be used to boost wrinkles con-

forming to the map directions. This could aid in the removal of noise from the result,

since most of the noise will not conform to the required direction.

Using a direction map was initially intended to be used as a potential postpro-

cessing step for the Jerman enhancement filter-based wrinkle detector in Section 5.2.

However, given the use of Gabor filter banks for wrinkle detection in Batool and Chel-

lappa (2015), it was also looked into as a standalone wrinkle detection method. A

Gabor filter bank consists of multiple filters with different parameter values, generally

for orientation, with the pixel-wise maximum of the filter outputs giving the final bank

output.

The theory behind Gabor filters, as well as an overview of their use for wrinkle

detection in Batool and Chellappa (2015), is detailed below.

122

Figure 40: The relevant wrinkle regions. 1 - forehead, 2 - frown lines, 3 - tear troughs,
4 - bunny lines, 5 - nasolabial folds, 6 - crow’s feet, 7 - mental crease, 8 - cheeks. Image
from Travelwayoflife (2012) (licensed CC BY-SA 2.0), modified by cropping and adding
an overlay showing the different wrinkle regions.

123

5.3.1 Background of Gabor filters for wrinkle detection

Gabor filters are dependent on the direction angle, and are defined as in Equation (5.7)

(Fogel and Sagi 1989).

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
(5.7a)

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x
′2 + γ2y′2

2σ2

)
sin

(
2π
x′

λ
+ φ

)
(5.7b)

where

x′ = x cos θ + y sin θ (5.8a)

y′ = −x sin θ + y cos θ (5.8b)

In the discrete domain, these transform into Equation (5.9) (Ramakrishnan et al.

2002).

Gc[i, j] = B exp

(
− i

2 + j2

2σ2

)
cos(2πf(i cos θ + j sin θ)) (5.9a)

Gs[i, j] = C exp

(
− i

2 + j2

2σ2

)
sin(2πf(i cos θ + j sin θ)) (5.9b)

The B and C values are normalizing factors, which are here set to 1, with the

image normalized to the float [0, 1] range. By having a variable value of θ determined

by the direction map at every position in the UV-space (2D surface space) of the face,

or every point of a forward-facing face in image space, we can adapt this for use in our

direction-based wrinkle detection approach.

Use of Gabor filters for wrinkle detection has been done previously in Batool and

Chellappa (2015). Instead of using a coordinate-varying θ, this simply used a filter

bank formed of an array of Gabor filters with different θ values, at equal intervals

between 0 and 180 degrees. The output of the filter bank is the pixel-wise maximum

of all the filters. This allowed for the detection of wrinkles along all directions, given

enough filters.

The method in Batool and Chellappa (2015) subsequently applied a tracing step

to determine the length and number of the wrinkles, and used a binary dilation step

to remove double detections and congestion in the output. These steps are not done

124

in our implementation, as they appear to lead to high latencies (a reported average of

9 seconds), at least for images of reasonably high resolution.

The direction-based wrinkle detection is similar to the process used in Cula et al.

(2013). This relied on a sparse direction map, similar to ours, and the same Gabor

filters. However, it relied on controlled, polarized lighting, and estimated the direction

map on the fly for each image, by choosing the direction orthogonal to the dominant

direction of the Fourier spectrum, as in Lin Hong et al. (1998).

5.3.2 Gabor filter test for stray hair filtering

An initial test of Gabor filters for wrinkle detection is conducted for forehead wrinkles,

using the code in Lessel (2021), written in C++, using OpenCV. Since forehead wrinkles

are horizontal, we set θ to approximately zero degrees relative to the horizontal.

For the test image in Figure 41a, the directions of the hair strands are diagonal

and vertical, so the response for a Gabor filter with a horizontal-relative θ of 0 should

be small for the hair, and large for the forehead wrinkles.

This is shown to be the case in Figure 41. The top row shows the response for the

input image a, when the Gabor filter angle θ matches the forehead wrinkle direction (b),

and the Gabor filter output when θ matches the direction of diagonally oriented hair

patch (c). The bottom row shows the result of our Unity implementation of Jerman’s

enhancement filter (d), the output of the forehead wrinkle-oriented Gabor filter on the

Jerman filter output d (e), and the output of the hair patch-oriented Gabor filter on

the Jerman filter output (f). On the top-right of the Gabor filter outputs (b, c, e, f),

the Gabor filters themselves are shown, scaled 4x in both ther X and Y dimensions. In

the filters, background gray corresponds to 0, black to -1, and white to 1.

Figure 41: Gabor filter results, both on original image and Jerman enhancement filter
result (top and bottom rows, respectively). Input image cropped from Yakobchuk 2021.

Both in Figure 41b and e, this is observed to limit the influence of hairs with

angles different from our chosen θ. When the angle is changed to match the direction

of a nearby patch of hair, this patch increases in intensity in the output instead (Figure

41c and f). This enables filtration of differently oriented elongated features.

125

While it is evident that this does not rid us of the need for the hair segmentation

map, as much of the nearby hair patches will match the horizontal direction of the

forehead wrinkles, it can mute the influence of stray hairs that are much too fine for

any reasonable segmentation map to resolve. This has the drawback of some of the

features of the Jerman-only result being lost, even when the wrinkle orientations match,

especially if the scaling parameters of the Jerman and Gabor filters do not correspond.

This test illustrates the operation of fixed-angle Gabor filters. Use of variable

angles based on a direction map is discussed below.

5.3.3 Implementation of Gabor filters with a direction map

Both in the Gabor filter test in Subsection 5.3.2, as well as in many placement company

projects, implementation was done in C++ using the OpenCV library (Gary 2008).

But in OpenCV it is nontrivial, and more computationally expensive, to create a filter

that depends on the coordinates of the pixel in the image, as the filter2D function of

OpenCV used for Gabor filters requires a fixed kernel.

An implementation using a 180-filter bank is shown in Subsection 5.3.4, but it is

too slow to be used in production. Two improved approaches are described below for

the CPU and GPU, respectively, but not implemented as part of this pilot study.

A reasonably fast approximation of the direction map approach with OpenCV

can be accomplished with a filter bank and a per-filter influence map. For each filter in

the filter bank with angles in the set Θ, the outputs Yθ are given by Equation (5.10),

which are combined through the elementwise maximum. Depending on what is being

implemented, the input X is given by the original image of the user’s face, the UV-

unwrapped face mesh texture, or the Jerman output of either two. For each filter, there

is an influence map Dθ which has an effect analogous to the directionality map of the

θ-mapped version.

Y (x, y) = Yθ(x, y) = max
θ∈Θ

Dθ(x, y)Gabor(X(x, y), θ) (5.10)

An improved GPU shader version using a single Gabor filter per pixel, instead

of a filter bank, is described by the equation (5.11). As inputs, this uses the input

image or Jerman filter output X (potentially UV-unwrapped to a mesh texture), and

the direction map Θ, generating the output texture Y .

Y (x, y) = Gabor(X(x, y),Θ(x, y)) (5.11)

126

5.3.4 Initial tests for Gabor filters with a direction map

As an initial test, the general directions are annotated manually, based on a single

perfectly forward-facing, vertical, heavily wrinkled face, shown in Figure 40. This was

created in Houdini (SideFX 2021), as this allowed for the live painting of a direction

map to drive an array of arrows, for quick validation of drawn map updates, as shown

in Figure 42a. The resulting direction map itself is displayed in Figure 42b.

Figure 42: The direction map, shown as a mirrored array of arrows (a) and a scalar map
(b), where black is 90 degrees and white is -90 degrees off the horizontal (since positive
and negative directions are equivalent, this is the only relevant range). The arrow map
is mirrored, so the right side has the positive angular direction being clockwise, and
the left side counterclockwise.

A simple but slow way to implement the direction map is to generate the Gabor

filter responses for a very large number of equally distanced θ values. Since the direction

map gives the required θ value for each pixel, the pixel can be retrieved from the Gabor

filter response with the closest θ. For a large enough number of responses, this gives a

sufficiently close approximation.

This method was used in the test in Figure 43, for 180 values of θ (θi = i◦, for

0 ≤ i < 180).

While the result does generate the expected Gabor filter response (Figure 43b),

it is comparable to the two-filter Gabor bank response (0◦ and 90◦) in Figure 43c, and

less good than the four-filter Gabor bank response (0◦, 45◦, 90◦, and 135◦) in Figure

43. As expected, the best result is obtained by using the bank formed of all 180 filters

127

(Figure 43e).

We note that due to the high number of wrinkles in the face image used, there

are many wrinkles that do not follow the direction map, and a better result is likely

for more common, less extreme cases. However, given its added complexity, for the

method to give an improvement over simply using equally spaced Gabor filter banks,

it would need to have comparable latency, or significantly reduce noise in the output.

5.3.5 Discussion

Given that the direction map-based Gabor filter approach was meant as a pilot study,

it was not implemented or tested in its full intended form. This full method is described

in the following subsubsections.

Addition of directionality map

The wrinkles on specific parts of the face do not always follow a single direction, which

can cause the direction map-based approach to miss wrinkles in these areas. The degree

to which wrinkle directions vary in each area can be mapped onto the face similarly to

the wrinkle direction map, creating a directionality map.

Zones in which wrinkles generally follow only the direction specified by the di-

rection map, like the top of the forehead and under the lower eyelids, are referred to

as strong directionality zones. Some parts of the face do not have well-defined direc-

tions, either because there are normally no wrinkles on those parts of the face (like

the cheeks), or because the wrinkles can appear along multiple directions, sometimes

completely randomly. This is understood as weak directionality.

This directionality map could be represented as a 2D matrix of scalar values

between 0 (weak directionality) and 1 (strong directionality). When the Gabor filter is

applied as a post-Jerman filter effect, the directionality map can be used as a weighting

variable between the Gabor and Jerman outputs. Since low directionality would cause

any single Gabor filter to remove too much, a near-1 directionality value would favor

Jerman. In the case of high directionality, the Gabor filter is more likely to filter out

noise than wrinkles from the Jerman output, given the rarity of wrinkles that do not

conform to the general direction in that region. In this case, the Gabor filter output

would have a greater weight.

When not used as a post-processing effect, the directionality map could be used

to inform a multi-filter variant of the direction map-based Gabor wrinkle detector. For

a two-filter bank using angles θ1(x, y) and θ2(x, y), at a point (x, y) in the direction

map where the required Gabor angle is θ(x, y), the bank angles would be θ1,2(x, y) =

128

θ(x, y)± (1− d(x, y))π/4, where d(x, y) is the directionality at point (x, y).

Data-driven wrinkle direction and directionality map

To generate more thorough direction and directionality maps, a data-driven approach

can be used. This can be done using a high-quality dataset like CelebAMask-HQ. After

cropping and aligning the faces from the dataset using Dlib, the faces are restricted to

a direction ±5 degrees from the camera axis (so that they are forward-facing or close).

In order to determine both directionality and direction, there are two possible

methods, both using all or part of the current Jerman-based Unity system for wrinkle

detection. In the first method, the segmented and cropped face image is passed to a

Gabor filter bank with a large number of filters, where if N is the number of filters, the

ith filter is set to a θ angle of π/N ∗ i. This is similar to the initial step of the wrinkle

detection method in Batool and Chellappa (2015), but in this case, the filters with the

highest response are used to determine the direction of the angle that will be used in

the final filter, while the variance of the responses over all the filters determines the

directionality.

The second method is similar, except that the input to the Gabor filter is the

output of Jerman’s filter, which is more appropriate when trying to use the Gabor

filter map as a postprocessing effect. In both cases, in order to account for the differing

widths and heights of faces, the facial keypoints detected by the face mesh fitter are

used to squash or stretch the resulting Gabor outputs, to obtain universal face maps.

Extension to more face poses

While restriction to forward-facing faces is a limitation many similar beauty apps ac-

cept, and not only for wrinkle detection, it might nevertheless be considered limiting

by the user. Furthermore, allowing for turned faces, perhaps even from profile, would

better expose the wrinkles on the side of the face, allowing for multiple passes for a

better map of the user’s wrinkles. It should be noted that for our face mesh fitter and

keypoint detectors, the greater the angle of the face from forward facing, the greater

the errors of the fitter and detector. Since the wrinkle detectors rely on these, it may

not be possible to properly handle turned faces through wrinkle detection algorithm

improvements alone. Nevertheless, an extension of the Gabor methods is presented,

which could allow for a greater array of face angles.

First, the wrinkle map must be changed from a plane to the surface of the face

mesh. In order to apply the Gabor filter bank, this curved surface space must be

mapped to a flat space independent of the face orientation. This is simply a UV space,

129

which can be constructed in Blender in such a way as to keep the mappings of equal

areas in face mesh space roughly equal in this UV space. This requires that the face

image be UV-projected onto the face mesh surface. Since this is not trivial to code as

a shader in Unity, it can first be implemented using the Blender Python API, merely

for the direction and directionality map construction. Given the reduced resolution of

the skin areas not parallel to the camera plane (like the sides of the face in the case

of forward-facing faces), these can be excluded within some tolerance by using the dot

product between the mesh normals and the camera plane normal, and using a low-pass

threshold.

Given the limitations of the face mesh fitter, the fitting and segmentation can

be verified manually for the general case with multiple face angles. Additionally, the

output of Jerman’s enhancement filter was verified manually in both the forward facing

face variant, as well as the general case.

Implementing the UV projection step in Unity would also enable the creation

of a wrinkle texture tracked to the face, implemented similarly to the virtual makeup

try-on textures.

GPU implementation

Since the CPU implementations with OpenCV may be slow, they could be implemented

on the GPU as in Equation (5.11). While this could be implemented using a custom

TensorFlow Lite GPU operation, as in Appendix B, implementation using Unity HLSL

shaders would likely be less complex. This removes the requirement of implementing the

custom GPU operations in OpenGL, OpenCL and Metal, as required for TensorFlow

Lite GPU, since Unity translates the shaders internally to the languages required.

5.4 Ethical considerations

In terms of fairness in output quality, accuracy was again observed to be lower for

darker-skinned individuals, due to the lower contrast between blemishes or wrinkles

and normal skin. This could be to some extent mitigated by using an improved nor-

malization system and requesting that the users use good lighting for the input face

image. However, it is expected that lower contrast due to dark skin tone will always

make wrinkle and blemish detection work slightly worse.

As for the face makeup transfer project, the wrinkle and blemish detection was

intended for use in the placement company’s beauty apps, which was also intended

to make beauty product purchase recommendations, and tune a makeup style recom-

mendation engine. For this project in particular, as many beauty products have the

130

purpose of hiding wrinkles and blemishes, this system could easily be used to exploit

user’s insecurity about their appearance in order to drive product sales. As for the face

makeup transfer project, the author of this thesis was not involved in these aspects of

the apps, so no additional ethical analysis can be made.

Given that all methods presented are very specifically aimed at detecting wrin-

kles, they have no obvious applications beyond this. However, the detection of wrinkles

could have applications outside beauty, for example for driving skin deformation in face

rigs for virtual characters, to ensure more human-like facial expressions.

5.5 Conclusions

The Jerman enhancement filter method was shown to give acceptable results for both

wrinkles and generic blemishes, but particularly the former. This resulted in the im-

plementation of both detectors in Unity with a C++ plugin. The blemish detector

may however have limited application in beauty apps, given its inability to distinguish

between different blemish types. A fully machine learning-based approach would be

required in this case.

The Gabor filter and direction map method for wrinkle detection was not imple-

mented beyond initial limited tests. The benefits appear to be limited both when used

as a postprocessing step for the Jerman filter output, due to the dampening of valid

signals, as well as when used as a separate method, due to the increased implementa-

tion difficulty and limited benefit over using normal Gabor filter banks, as in Batool

and Chellappa (2015). While several future improvements have been suggested, like

the directionality map and extension to more face poses, these will further increase the

implementation difficulty.

As mentioned in 5.2.5, greatly improved results could be obtained with machine

learning if the suitable datasets were available, particularly in the blemish case, and the

classical computer vision methods discussed could significantly aid in the annotation

of such datasets. This is likely the most valuable future work that could be undertaken

based on the research in this chapter.

131

Figure 43: Results using Gabor filter with direction map, compared to several Gabor
filter banks. Original image is shown in a, with the direction map response shown in b.
Images c, d and e show the response using Gabor filter banks for θi = iπ/N , 0 ≤ i < N ,
for N = 2, N = 4, and N = 180, respectively. Base image from Travelwayoflife (2012)
(CC BY-SA 2.0), modified by cropping and scaling, and shown with different outputs.

132

Chapter 6

Hardware-aware Neural

Architecture Search for

Segmentation in Mobile and Web

Apps

As has been observed previously, one of the most challenging aspects of designing

networks for use in smartphones is ensuring fast inference, particularly when the models

need to operate in real-time, as in many of our use cases. This was further exacerbated

by the placement company’s desire to offer some of the machine learning functionality

of the Unity and TensorFlow Lite system (Chapter 2.4) as part of a web app, capable of

functioning on both desktop and smartphone browsers. In this case, TensorFlow Lite

cannot be used, but TensorFlow instead allows for inference in web browsers through

the TensorFlowJS library (Smilkov et al. 2019). While this also allows for hardware-

accelerated inference using WebGL and potentially WebGPU, we observed that the

inference speeds, particularly on mobile web browsers, were too slow for real-time

operation. This therefore required the design of even faster versions of many of our

machine learning models, while sacrificing as little accuracy as possible. As a result,

some experimentation was conducted with neural architecture search, using latency

and accuracy awareness.

Neural architecture search (NAS) aims to automate the development of improved

neural networks by allowing the network architecture to vary, in addition to the weights.

The space formed of all possible architectures of the scheme is “searched” through to

find the best one, by means of some optimization process. By relying on previously

discovered optimal characteristics and building blocks of manually crafted networks, the

133

prohibitively large space of possible neural network architectures can be significantly

reduced, making the search task feasible. This generally leads to a trade-off between

search simplicity and likelihood of finding novel, improved architectures.

As mentioned in Section 2.8, neural architecture search methods using reinforce-

ment learning are too computationally intensive to be attempted without access to a

significant amount of powerful hardware, which made it unfeasible for use here. As a

result, the current most popular approaches, due to their much shorter search time,

involve selecting a differentiable search space, so that the search process is similar to

the traditional training of a fixed network.

Since it is generally desirable for networks to be both accurate and lightweight,

many neural architecture search methods attempt to both increase accuracy and keep

the FLOP or MAdd count low (Chu et al. 2020; Lu et al. 2019; Wan et al. 2020).

Despite being commonly used as a proxy for low latency and low memory usage, the

FLOP count has been observed to be a poor estimate of the former (Wu et al. 2019; Ma

et al. 2018). Especially in the case of mobile phone inference, the speed performance

of a model is heavily dependant on the hardware and software executing the model.

Given all the observations on available methods in 2.8, the requirement for the

base of our neural architecture search efforts is a differentiable architecture search with

latency awareness, using a fast but strongly correlated on-device latency proxy.

6.1 Background of the FBNet neural architecture search

method

The work in this chapter is based on FBNet (Wu et al. 2019), which is a NAS method

for generating classifiers. This uses a relatively small search space, by restricting the

candidate models to a sequence of 26 blocks. 22 of these are sampled from 9 candidate

blocks, one of which is a no-op (output equal to the input), which allows unneeded

or suboptimal blocks in the sequence to be skipped. To avoid having to measure

the latency of every candidate architecture, FBNet assumes that the latency of the

candidate models is a monotonous function of the sum of the block latencies, which

it shows to be generally true in practice. Therefore, to optimize for on-device latency,

only the unique blocks need latency benchmarking on the target device. The block

latencies are then retrieved by the FBNet scheme at search time, by using a lookup

table.

In addition to being differentiable, FBNet is also a one-shot neural architecture

search scheme. In one-shot NAS, the search space encompasses all possible subgraphs of

a supergraph, and allows for a rough estimate of the efficiency of the possible subgraphs

134

by simply training the supergraph. This is quite efficient in reducing both the search

space and the memory requirements, as for any two subgraphs, any identical portions

use shared weights. After the training of the supergraph, the subgraph with the highest

overall efficiency is selected as the search result, and is trained until convergence.

At each search step, FBNet uses a single candidate block from each cell, randomly

sampled with a certain sampling probability. This probability is given by the softmax

function, as in Equation (6.1), where θl,i is a value associated with block i of layer l,

that is optimized over the search period to be larger for the best blocks. When used

for random sampling, this results in a cell output tensor xl+1 given by Equation (6.2),

where ml is a one-hot vector indicating the sampled block for cell l, and bl is the array

of block functions, taking the input tensor xl. Since for a single training step, the value

of ml,i is 0 or 1, which makes it discrete, the loss function is not differentiable. FBNet

overcomes this by replacing ml,i with a randomly sampled variable from a Gumbel-

Softmax distribution, which is a continuous, differentiable function (Equation (6.3)).

Pθl(bl = bl,i) = softmax(θl,i; θl) =
exp(θl,i)∑
i exp(θl,i)

(6.1)

xl+1 =
∑
i

ml,i · bl,i(xl) (6.2)

ml,i = GumbelSoftmax(θl,i|θl) =
exp[(θl,i + gl,i)/τ]∑
i exp[(θl,i + gl,i)/τ]

(6.3)

Since the search scheme is differentiable, it optimizes for both on-device latency

and accuracy by summing the latency and accuracy losses, and doing the supernetwork

backward pass. The latency loss lt is defined as in Equation (6.4), where α and β are

constants, by default equal to 0.2 and 0.6 respectively, and T is the sum of on-device

latencies of the blocks in the current candidate architecture. The values of α and β

can be modified to control the trade-off between low latency and accuracy in the final

architecture.

lt = α(log(T))β (6.4)

Generally, a search epoch is formed of two stages, one which optimizes the block

weights, followed by a shorter stage that optimizes the θ values of the blocks. These θ

values work as an optimization score for the block, and determine the block sampling

probability, as in Equation (6.1). For the first zero or more stages, only the first stage

is done, as this may result in better θ convergence in later epochs.

After the search converges, the block with the highest θ value is selected from

135

each layer, resulting in a fixed, optimized classifier architecture, which is trained until

convergence.

6.2 Experiments with FBNet variants for segmentation

Since the paper-faithful implementation of FBNet targets classification tasks only, we

make modifications to search for and train a segmentation network, partially based

on an existing non-NAS lip segmentation network used in the virtual try-on, from the

Unity and TensorFlow Lite system from Chapter 2.4. This requires a segmentation de-

coder, either fixed or formed of searchable cells, as well as UNet-style skip connections

(Weng et al. 2019) between the encoder and decoder. We tried several different ap-

proaches, detailed in the following sections. The results are compared to the non-NAS

lip model, which had the same decoder as the long encoder, long fixed decoder model

from Subsection 6.2.2, and an encoder of similar length to it.

The code was based on the FBNet implementation from Jh88 (2019). We first

describe the non-NAS segmentation model used for comparison in the next subsection,

followed by the FBNet-based NAS variants in the later subsections.

6.2.1 Non-NAS model architecture and training

The non-NAS mouth segmentation models were not developed by the author of this

thesis, by by colleagues at the company, and are presented only for comparison with

our new NAS models. Aside from initial variants, these non-NAS models employed

the same strategies as MobileNetV2 (Sandler et al. 2018) to optimize for rapid mobile

operation: depthwise separable convolutions and residual network connections. Be-

ing segmentation models, they also used a UNet-like structure with skip connections

(Ronneberger et al. 2015), as shown in Figure 44.

Several variants of the architecture existed, most notably a long version of input

size (1, 96, 192, 3), and a short version of input size (1, 48, 96, 3), although only the

former had been observed to give good results. As a result, the larger input size

model is used for comparisons with the FBNet-based architecture variants in the next

subsections.

This model was trained with Dice loss, which was first implemented for semantic

segmentation in medical images by Milletari et al. (2016), as it was shown to give

better results than the more commonly used pixel-wise cross-entropy loss. This Dice

loss is based on the statistical sample similarity metric known as the Sørensen-Dice

coefficient, developed in the 1940s for biology applications (Dice 1945; Sorensen 1948).

For binary data, in which the ground truth and predicted segmentation mask pixels

136

Figure 44: The original UNet architecture. The skip connection (here copy and crop)
concatenates the max pool input and the up-conv output along the channel axis. Later
adaptations and the architecture used in this chapter do not crop the skip connection
input. Figure from Ronneberger et al. (2015).

can be considered as sets, it is defined as double the cardinal (number of elements) of

the intersection of these sets, divided by the cardinal of the union of the sets. When

extended to pixels with associated class probabilities, it is defined as the pixel-wise

multiplication of the ground truth class probabilities (usually binary, with one and

only one true class per pixel) and the corresponding prediction probabilities, divided

by the sum of the pixel-wise squares of each. This is given by Equation (6.5), where

i covers the height, width, and class dimensions. Pixel-wise cross-entropy loss for

multiple classes is shown in Equation (6.6) for comparison.

D =
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

(6.5)

CE = −
B,H,W∑

i

M∑
c=1

yi,clog(po,c) (6.6)

137

This use of Dice loss was also maintained for our NAS methods, for the training

of both the supernet (the architecture search step), as well as the fine-tuning of the final

chosen architecture. The description of these methods follows in the next subsections.

6.2.2 Partial FBNet encoder with fixed decoder

Given that the implementation of a searched decoder required more changes than mod-

ifying the encoder for segmentation, our first attempt retained the decoder of a short

variant of the existing non-NAS network. There was an initial desire to use the de-

coder from the segmentation variant of MobileNetV3 (Howard et al. 2019), but the

effective output resolution was too low for our purposes, so the existing non-NAS lip

segmentation models of the company were used instead.

This was appended to part of the backbone of the FBNet classifier (the first 6

blocks), which acted as an encoder. We also added UNet-like skip connections (Figure

44), as required for segmentation networks. Since the decoder is from a non-NAS

model, formed of fixed blocks, only the encoder is searched. The resulting supernet

architecture is referred to as short encoder, short fixed decoder.

As for the non-NAS model, a rectangular input size was used, corresponding to

a resized crop of the lip region of RGB face images. We used the CelebAMask-HQ

dataset (Lee et al. 2020) for training and testing. Input sizes of 48× 96, 96× 192, and

144×288 were used, which we refer to as small, normal and large, respectively. Former

non-NAS model variants using the small size had not been deemed to have enough

output quality to be used as candidates for production. Similarly, our FBNet-based

segmentation (FBNet-Seg) architectures also produced unsatisfactory results at this

input size, as can be seen in Figure 45.

To generate the latency tables, all the unique blocks of the supernetwork were

converted to the TensorFlowJS and TensorFlow Lite formats, using the automatic con-

version capabilities of TensorFlow Lite. The TensorFlowJS blocks were benchmarked

in Firefox on a mid-2015 MacBook running MacOS Catalina, using a version of the

official TensorFlowJS local benchmarking utility (Google 2021m), which we modified

to operate on batches of models. The TensorFlow Lite blocks were benchmarked on

the GPU of a OnePlus 6 Android smartphone, using the OpenCL delegate, and the

official benchmark utility (Google 2021l).

Following our initial few training runs for the small and normal variants, and the

subsequent on-device TensorFlow Lite latency results, we observed that the latency

awareness in the training did not have a significant enough contribution to justify the

observed accuracy hit it caused. For example, in the case of the normal-sized model, the

latencies of the latency-aware and latency-unaware short encoder, short fixed decoder

138

Figure 45: Comparison between non-NAS model of input 192 × 96 (the minimum
quality target) and segmentation FBNet model of input 96×48 with fixed decoder and
searched encoder.

models varied between 4 and 5 ms, while the reference non-NAS network had a latency

of 9.6 ms. As a result, and given that the latency loss was observed to make up a

significant portion of the overall loss, latency awareness was disabled by removing its

associated loss, as to not affect the accuracy of the architecture chosen by the search.

After the latency loss was removed, the outputs of the resulting 192 by 96 model

were comparable to but slightly worse than the non-NAS model. This was judged

mainly through visual inspection on unseen data, as shown in Figures 47 to 50.

Since the resulting 192 by 96 model was significantly faster than the non-NAS

model of the same input size, due to it being less deep, the large 288 by 144 input size

was also tested. The latencies of the resulting models were still smaller, but comparable

to the non-NAS model. These models unexpectedly gave worse performance when

tested on unseen data with the Unity and TensorFlow Lite system, when visually

judging the outputs. This is deemed to be due either to bad preprocessing in the

training stage, either to the mouth crop in the training dataset being smaller than

the input size, both of which would lead to blurriness due to upscaling. Since the

frame provided by the Unity and TensorFlow Lite system during live use has a higher

resolution, resulting in less or no upscale blur, this would cause a higher discrepancy

139

between training and real-world use than in the case of the normal 192 by 96 input

shape model. This was not investigated further due to time constraints, and would

have likely required a higher-resolution training dataset to mitigate, which was not

available.

Two other fixed-decoder supernet variants were constructed with a slightly dif-

ferent architecture: one with a longer encoder, named long encoder, short fixed decoder,

and one with both a longer encoder and a longer decoder, named long encoder, long

fixed decoder. Given the results using the small and large input sizes, only the normal

192 × 96 input size was tested for these architectures. The long encoder, short fixed

decoder model was found to be a slight improvement over the short encoder, short

fixed decoder model, but not enough to be better than the non-NAS model. The long

encoder, long fixed decoder model, on the other hand, was found to be a downgrade,

both in general, as well as for difficult cases (as in Figures 49 and 50).

The numerical results for the final sampled models, for all tested fixed-decoder

supernet architectures, are shown in Table 13. The visual results in Figures 47 to 50,

showing the Unity test output, are however a more realistic gauge of the quality of the

models in real-life use. These reflect the superiority of the non-NAS model, followed by

the normal 192 by 96 long encoder, short fixed decoder model, followed by the 192 by

96 short encoder, short fixed decoder model. This was verified on multiple test videos,

by multiple people.

The smoothness of the output of the non-NAS model is unusual when compared to

the FBNet-based models, which have much sharper segmentation mask edges (Figures

47 to 50). It is possible that despite attempts to retain the preprocessing code as

much as possible, it underwent changes between the training of the non-NAS model

and the incorporation of the code into the FBNet-Seg implementation. While this

could be more exhaustively verified by retraining the non-NAS models with the same

preprocessing code, this was not done due to time constraints.

6.2.3 Partial FBNet encoder with reversed encoder as decoder

Given the insufficiently good results when using a fixed decoder, the decoder was mod-

ified to also be searchable. This was expected to result in a more precise model being

found by the search. While the associated supernet architecture comes at the cost of a

longer search, having about twice as many searchable cells, it still has fewer cells than

the original FBNet, which has a relatively low search time. The architecture is referred

to as long encoder, long searched decoder, and was constructed by using largely the

same blocks as the encoder, but in reverse order.

In order to approximate the different types of lip crops that occur in the Unity and

140

TensorFlow Lite system that the lip network was meant to be used in, the preprocessing

step used for all FBNet-Seg versions and the non-NAS lip model allowed for multiple

zoom levels for the lips, as shown in Figure 46. As some zoom levels were assumed

to be rare in practice, and it is easier for the model to support fewer zoom levels, the

lower ones were removed in the long encoder, long searched decoder searches, to try

to increase the average accuracy. However, this visibly led to a significant number

of failure cases during testing on unseen data (as in Figure 48), seemingly indicating

that the removed zoom levels occur often enough in practice to be important. As a

result, while the output was otherwise comparable to the more accurate fixed-decoder

versions, the failures caused it to be inferior overall. The model could not be retrained

with the original scaling factors due to time constraints.

Figure 46: Output for the zoom levels used for the non-NAS and fixed decoder models.
The 64 and 128 levels were disabled for this version (in which both the encoder and
decoder were searched). Augmentations were disabled only during the creation of this
example image. Original image from CelebaMask-HQ dataset (Lee et al. 2020).

6.2.4 Overall results

The accuracies and TensorFlow Lite latencies of all the best search results for each

supernet variant are shown in Table 13. The success of the models depended mainly on

the accuracy on unseen data, so this was visually evaluated on several videos, including

two with difficult dark skin tones. Some more notable visual results are shown in

Figures 47 to 50.

As previously mentioned, the non-NAS model showed the best output overall,

followed by the 192 by 96 long encoder, short fixed decoder FBNet-Seg model, and then

the 192 by 96 short encoder, short fixed decoder FBNet-Seg model. While the supe-

riority of the non-NAS model seems to be partially due to an alternate preprocessing

mechanism during training, its segmentation mask appears to be the best even beyond

this benefit. This indicates the general failure of the FBNet-Seg methods attempted.

141

Table 13: Accuracy and latency results for the various FBNet-Seg NAS models, and the
existing non-NAS model it was compared to. The latter had a long decoder, similar to
the cell length of the long encoder from the NAS models. CPU latencies use XNNPACK
and 4 threads, without quantization, and GPU latencies use the OpenCL delegate, both
being timed on a OnePlus 6 Android device.

Encoder Decoder
Input size
(H ×W)

Accuracy mIOU
Latency

GPU/CPU (ms)

short short, fixed 48× 96 80.59% 34.42% 2.56/1.42
short short, fixed 96× 192 77.19% 38.71% 4.14/5.00
short short, fixed 144× 288 78.17% 39.22% 7.56/13.04
long short, fixed 96× 192 78.23% 38.73% 5.11/6.76
long long, fixed 96× 192 72.44% 30.50% 10.52/10.62
long long, searched 96× 192 68.86% 36.56% 15.55/16.48
fixed long, fixed 96× 192 78.14% 39.20% 9.72/8.61

142

Figure 47: Results on one frame of the easy video, showing that all models work well
in general. 48 × 92-input short encoder, short fixed decoder is not shown, due to
excessively low resolution output.

143

Figure 48: Results on one frame of the easy video, where the fully searched model
is shown to be the only one to fail, due to the scaling in the preprocessing. Similar
failures were also observed in other frames and in the other videos, with the output
sometimes being completely blank despite good outputs from every other model.

144

Figure 49: Results in a case of heavy occlusion in a difficult video. The original non-
NAS model has the best output, with the others failing completely.

145

Figure 50: Results for a normal dark skin image. Two FBNet-based models incorrectly
mark the tongue as lips, while the other three miss part of the upper lip. The origi-
nal non-NAS model has the best output, although it seems to extend beyond the lip
boundary in places.

146

6.2.5 Known and potential causes of issues of the method

Due to a mistake in the removal of the latency loss when training only for accuracy,

only the β value in the latency loss calculation (Equation (6.4)) was set to zero, leading

to a fixed, block latency-independent, but nonzero loss contribution. While minimizing

the overall loss therefore still implies the minimization of the overall loss, the constant

contribution likely leads to training instability as the accuracy loss shrinks, in turn

leading to suboptimal search results.

Furthermore, the relationship between the sum of latencies of the blocks and the

total on-device latency of the model was not verified, mainly due to the early change

in focus to only accuracy-aware training. While the original FBNet work verified this

relationship on mobile devices, it only tested inference on the CPU with INT8 quan-

tization, using the Caffe2 framework. The correlation is expected to be maintained

for GPU inference, but this was not verified for TensorFlow Lite with any GPU dele-

gate, nor for TensorFlowJS. This could be accomplished by simply generating a large

enough number of random sampled architectures based on all the supernet variants,

and observing the dependency between the sum of block latencies and model latencies

for each network. It needs to be noted that without a reasonably good correlation, the

latency awareness scheme of FBNet cannot work.

Finally, the cell blocks of the original FBNet were left as is in our FBNet-Seg

variants, with the exception of adding the fixed decoder in the variants that did not

search it. Since these were selected specifically for classification tasks on smartphones,

they may not be the most optimal for semantic segmentation. This is potentially

exacerbated by the original target being mobile CPUs, as it may have inspired selection

of more CPU-friendly blocks, as opposed to GPU-friendly ones.

6.3 Notes on state-of-the-art

With respect to already existing latency-aware NAS approaches for segmentation, the

state of the art as of August 2021 appears to be FasterSeg (Chen et al. 2019). As

previously mentioned in Subsection 2.8.3, FasterSeg is a neural architecture search

method created specifically for segmentation tasks, using multiple-resolution branches

with candidate cells, but also candidate connections. Each possible path from the

input to the output of the network represents the equivalent of an FBNet-like supernet

architecture, since each cell is also searchable, having several convolution types or a no-

op as candidate blocks. This is similar to the approach in Auto-Deeplab, as mentioned

in the literature review (Section 2.8).

FasterSeg appears to be a more favorable base of research than FBNet for facial

147

feature segmentation, given its express focus on segmentation and claim of improved

balancing of latency and accuracy in its search. However, we did not discover it until

after work on the FBNet adaptation was already underway. Furthermore, given that the

available implementation of FasterSeg (Chen et al. 2020) is written in PyTorch, there

are the same issues regarding model conversion to TensorFlow Lite as were pointed

out in Chapter 3 for the single-shot-pose method. There is also the additional issue of

constructing the latency tables by converting and running all the candidate blocks in

each cell in TensorFlowJS or TensorFlow Lite, which must be carried out before any

other work on FasterSeg, unless restricting the search to only accuracy loss.

To check if the state-of-the-art design is capable of improving on the non-NAS

models used, there was an initial desire to adapt the approach in FasterSeg to our

dataset and latency tables. However, due to the PyTorch-related issues listed, as well

as the code for the approach involving a complicated multi-step process, this could not

be done in the time available. It is considered important future work, as proof of the

ability of the method to create superior models specifically for segmentation already

exists.

6.4 Ethical considerations

As in the face makeup transfer (Chapter 4) and wrinkle and blemish detection projects

(Chapter 5), the main ethical concern was output quality fairness with respect to skin

tone. While efforts had been made by the placement company to provide additional

data to combat underrepresentation in the training datasets, the experiments in this

project only use the data from CelebAMask-HQ, which has a significant Caucasian bias

(Karkkainen and Joo 2021). This appears to be reflected in the lower output quality

on the unseen videos featuring people with darker skin. This could be combatted in

future work by including the extra data collected by the placement company.

As for previous projects (Chapters 3, 4, and 5), this research was intended for

use in the placement company’s apps, which in turn had the purpose of suggesting

makeup products for purchase, and creating a beauty recommendation engine. No

ethical analysis was made in this regard by the author of this thesis, due to lack of

involvement with this aspect of the company’s work.

Real-time, smartphone-optimized semantic segmentation with neural architec-

ture search has many applications beyond beauty, for various augmented reality tasks

like occlusion of virtual objects and background replacement. Smartphone-oriented se-

mantic segmentation can also be used for background removal, either in real-time (for

video calls) or offline (for simple video editing for video sharing apps such as TikTok

148

(TikTok 2022)).

6.5 Conclusions

While some of the FBNet-Seg variants were of acceptable quality and latency for real-

time lip segmentation in the Unity and TensorFlow Lite system, they were slightly

worse than the non-NAS model. Future work on FBNet-Seg would include fixing of the

latency removal issue, verification of the relationship between model latency and sum

of block latencies, and re-comparing with the non-NAS architecture retrained with the

same preprocessing scheme. Further FBNet-based supernet architectures could also be

created and tested, for both segmentation and other real-time tasks, like facial keypoint

estimation.

However, given the explicit focus on segmentation and the improved search space,

the testing or adaptation of the FasterSeg approach for real-time smartphone GPU

operation is deemed to be a better avenue for future research.

149

Chapter 7

Conclusions and future work

The rapid rise of machine learning for computer vision has allowed for efficient solu-

tions to problems that were previously not solvable for real-time applications. These

advances also enabled the extension to more constrained target running environments,

including mobile devices and web browsers. This has lead to growing interest for

CVML-powered applications from various industries, including the beauty industry,

offering many opportunities for research and implementation. However, the technol-

ogy still requires improvement in many areas, for better neural network accuracy and

latency, new or improved algorithms, and dataset collection and processing.

In this thesis, the main focus was on the application of machine learning algo-

rithms and frameworks for beauty apps on mobile devices. As the area is too large

to tackle in its entirety, this work aimed to isolate various elements and solve smaller

problems within the general CVML context.

Overall, the work presented theoretical and practical advances in machine learn-

ing for computer vision applications, with a focus on beauty applications, as was re-

quested by the placement company. The work resulted in the contributions listed

below.

The first was the design of a prototype C++ framework that could run Tensor-

Flow Lite models in Unity on Android device CPUs, and its implementation as a C++

Unity plugin, which aided in the creation of an improved, production-grade framework

capable of running models in Unity applications on Android and iOS, both on the CPU

and GPU (Chapter 2.4). This became the groundwork for most of the projects of this

thesis, as well as other projects done by the company.

The second was a real-time 6DoF hair curler tracking system using two machine

learning models, with good accuracy aside from the roll angle (Chapter 3).

Other contributions were an extension of a method for wrinkle detection to allow

150

for generic blemish detection (like acne and moles), the implementation of both as a

Unity C++ plugin, and the description of a potential alternate method using Gabor

filters (Chapter 5).

Finally, an incremental improvement was made to a makeup style transfer ap-

proach, with fewer output artifacts and lower latency in most execution environments

(Chapter 4).

While strong contributions did not result from every project, some conclusions

can be drawn from the research undertaken in them. Below, we expand and discuss

specific contributions and conclusions for all the projects outlined in this thesis.

7.1 Adaptation of TensorFlow Lite for Unity

In Chapter 2.4, a framework for using the TensorFlow Lite C++ API from Unity was

created and tested, in order to make machine learning inference possible in smartphone

Unity apps. The system that eventually resulted was built upon to try and add extra

GPU functionality, to allow more of the required neural networks to use hardware

acceleration, and have lower on-device latency.

The initial prototype code, mentioned in Section 2.4.4, was not, to our knowledge,

used in later development or production versions of the TensorFlow Lite plugin, except

potentially for reference. It was however a required step, if only as a feasibility study,

as the TensorFlow Lite plugin that eventually emerged became the basis of almost all

the research carried out in this thesis. It further plays a significant and continuing role

in the placement company’s machine learning-based apps.

As the addition of new GPU ops to TensorFlow Lite was partially successful but

not maintainable (Subsection B.3), future work could be investigation of better imple-

mentation approaches. Furthermore, there are other ops that TensorFlow Lite GPU

could benefit from, such as instance normalization layers, as mentioned in Subsection

4.8.4.

7.2 Handheld object pose estimation on smartphones

This project, detailed in Chapter 3, resulted in a working curler pose model and tracking

system. The initial non-tracking version was implemented in an app delivered to the

client company, albeit as a secondary option to a higher-latency but higher-accuracy

model, developed by a different placement company employee.

Future work would focus on improving the YOLOv2-style tail of the model,

following the YOLOv3 multi-resolution output approach. Also, in order to handle the

151

difficult roll rotation estimation, the hand joints could be tracked by treating them as

extra keypoints in the pose model, which would allow for roll speed to be approximated.

The required hand keypoint ground truth could be obtained by using a sufficiently

powerful offline hand pose tracking network.

In addition, the tracking scheme could be improved by using a recurrent form

of the network taking the previous pose result as an extra input, although this would

require the input dataset to have reasonably large sequences of time-adjacent frames

annotated (without significant gaps). Alternatively, this time-adjacency could be sim-

ulated by interpolating motion between available ground truth poses, to mimic real-life

motion and provide synthetic pose data for this recurrent scheme.

As such tracking schemes are not dependent on the base model used, more recent,

efficient or accurate models could be built upon instead, as was planned with the coarse

segmentation-based approach in Section 3.9.

7.3 Face makeup transfer with generative adversarial net-

works

As shown in Chapter 4, the improvements to the output quality were too modest to

allow for a version usable in any app, especially when using unusual makeup style tar-

gets. Furthermore, the latency-improved model was not fully finalized. Still, lessened

output artifacts and overall better results were obtained by using depthwise separa-

ble convolution residual blocks, when the transpose convolutions were retained in the

output branches.

Future work maintaining the general method would involve testing more archi-

tecture variants for improved accuracy and latency. Investigation of on-device failure

cases (particularly on the GPU on Android) could be beneficial, but given the non-

real-time single-frame use case and the overhead of preparing the GPU delegate, the

model could probably be kept CPU-bound without a significant degradation of user

experience.

With greater modifications, the outputs could probably be improved more sig-

nificantly. A promising option is to use the UV-unwrapped face textures as to remove

head pose variation, or preferably, to use a face mesh fitter and a position-aware form

of histogram loss (like the UV loss in Li et al. (2020)). This would likely reduce the

blurriness caused by using histogram loss without position awareness to transfer the

makeup colors.

Finally, the BeautyGAN scheme could be used to instead generate a makeup

overlay instead of a style-transferred image, by calculating the training-time loss using

152

the overlay output composited onto the non-makeup input. This would allow for real-

time use as a virtual try-on, similarly to the preset or manually configured makeup

overlays.

7.4 Wrinkle and blemish detection

In Chapter 5, use of the Jerman enhancement filter for wrinkles (Jerman et al. 2016;

Elbashir and Yap 2020) was extended to facial blemishes, and both were implemented

as a Unity C++ plugin. This gave suitable results, with the wrinkle output quality

being superior to that of the the blemish outputs. An alternative method for wrinkle

detection was also described, using Gabor filters and a direction map. Initial tests

showed mixed results, both when it was used as a postprocessing step for the Jerman

filter, as well as when used as a single process.

The more immediate future work would be better tuning of the σ and τ variables

of the Jerman filter, particularly for the blemishes, to minimize noise and false positives

in the outputs. Alternate normalization schemes could also be attempted, in order to

verify whether they are responsible for any part of the noisy outputs.

Any more significant improvements to the Jerman enhancement filter scheme for

wrinkles would probably need to use wrinkle tracking, for example as in Batool and

Chellappa (2015). These tracing steps do tend to increase the latency of the method,

and may therefore become unsuitable for high resolution images.

As a simple improvement in any app implementation, the Unity plugin could

verify that the image is not too blurry by checking the variance of the Laplacian.

Given that a machine learning approach is required if classifying the blemishes

is also desired alongside their detection, the method could be used for fine-grained

segmentation of manually annotated zones of different blemish classes, as mentioned in

Section 2.7 and Subsection 5.2.5.

With respect to the Gabor filter approach with direction maps, the most relevant

future work would be implementation of the method as a GPU shader, to ensure low

latency. With this implementation, more in-depth testing and validation of the method

could be carried out.

Subsequent future work could include use of a directionality map, as well as the

extension to face poses other than forward-facing, as mentioned in Subsection 5.3.5.

153

7.5 Hardware-aware neural architecture search for seg-

mentation in mobile and web apps

As shown in Chapter 6, quality parity was not obtained with the non-NAS version of

the lip segmentation model, although the apparent best NAS architecture had lower

latency than it, and the other ones were also either faster or comparable. It was also

observed that latency awareness is not relevant in the initial phases of creating a better

NAS model, as the largest factor in end latency was the supernet structure, at least in

the FBNet static supernet scheme.

While the resulting models were more lightweight, having better latencies for

TensorFlow Lite GPU and likely TensorFlowJS GPU operation, this was not due to

latency awareness, and is not deemed a theoretical success, especially given the inferior

accuracy.

Future work would involve investigation of the FasterSeg method (Chen et al.

2019), or another method that uses a variable network-level architecture based on

optimizing a path through a multiresolution cell grid. Other methods using this tactic

are Auto-Deeplab (Liu et al. 2019a) and DCNAS (Zhang et al. 2021). These all target

segmentation directly, and are therefore likely a better starting point than FBNet for

a sufficiently low-latency and high-accuracy segmentation model.

As was the intention in Chapter 6, given the other types of non-NAS models in

use, the FBNet or FasterSeg schemes could be extended to other outputs, like facial

keypoints, or even a combined facial segmentation and keypoint model.

7.6 Discussion and future work

While the undertaken thesis projects were considered only with respect to the beauty

industry, many have applications in other domains. The Unity and TensorFlow Lite

system, for example, can be used for any smartphone or web browser-oriented aug-

mented reality task, like games. Other examples include the object pose detection and

neural architecture search for segmentation projects, as these are general tasks, with

applications in many domains, such as medical or defense. While makeup transfer does

not have applications outside beauty, low-resource generative adversarial networks can

and could be used for various other tasks, such as Snapchat face filters and inpainting

for object removal.

The low latency and low resource requirements of smartphone augmented reality

could likely become more significant with the future emergence of augmented reality

smartglasses. This is because smartphones can capture a camera frame, add virtual

154

elements, and then show the frame on screen. Conversely, many smartglasses, like the

Hololens (Microsoft 2021b), are see-through, so any latency in generating the virtual

elements is more noticeable.

Given the resource requirements of standalone augmented reality glasses, it is

possible that initial future versions may use a connected smartphone as the computing

device, as may be the case for the upcoming Apple Glasses (Rado 2021). As such,

many aspects of smartphone-oriented approaches for augmented reality, as the ones

presented in this thesis, may also apply to these forms of smartglasses.

Despite the emergence of such devices, given the ubiquity of mobile devices,

smartphone-oriented augmented reality approaches and the associated CVML tech-

niques will remain important for many years to come.

155

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,

S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M.,

Yu, Y. and Zheng, X., 2016. TensorFlow: A System for Large-Scale Machine Learn-

ing. Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation, USA: USENIX Association, OSDI’16, 265–283.

Active Beans Inc., 2021. PicBeauty - Apps on Google Play [online]. Available

from: https://play.google.com/store/apps/details?id=com.ywqc.picbeauty

[Accessed 08 October 2021].

Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z. and Shi, W., 2017. Checker-

board artifact free sub-pixel convolution: A note on sub-pixel convolution, resize

convolution and convolution resize [online]. Available from: http://arxiv.org/abs/

1707.02937.

Alamdari, N., Tavakolian, K., Alhashim, M. and Fazel-Rezai, R., 2016. Detection and

classification of acne lesions in acne patients: A mobile application. IEEE Interna-

tional Conference on Electro Information Technology , 2016-Augus, 739–743.

Alarifi, J. S., Goyal, M., Davison, A. K., Dancey, D., Khan, R. and Yap, M. H.,

2017. Facial skin classification using convolutional neural networks. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 10317 LNCS, 479–485.

Aldoma, A., Tombari, F., Prankl, J., Richtsfeld, A., Di Stefano, L. and Vincze, M.,

2013. Multimodal cue integration through Hypotheses Verification for RGB-D object

recognition and 6DOF pose estimation. Proceedings - IEEE International Conference

on Robotics and Automation, 2104–2111.

Aleotti, F., Zaccaroni, G., Bartolomei, L., Poggi, M., Tosi, F. and Mattoccia, S., 2021.

156

Real-time single image depth perception in the wild with handheld devices. Sensors

(Switzerland), 21 (1), 1–17. Available from: http://arxiv.org/abs/2006.05724.

Aleph, 2008. File:Angela Merkel (2008).jpg - Wikimedia Commons [online]. Available

from: https://commons.wikimedia.org/wiki/File:Angela_Merkel_(2008).jpg

[Accessed 26 June 2022].

Alfed, N., Khelifi, F., Bouridane, A. and Seker, H., 2015. Pigment network-based skin

cancer detection. Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, EMBS , Institute of Electrical and

Electronics Engineers Inc., volume 2015-Novem, 7214–7217.

Alquran, H., Qasmieh, I. A., Alqudah, A. M., Alhammouri, S., Alawneh, E., Abughaza-

leh, A. and Hasayen, F., 2017. The melanoma skin cancer detection and classification

using support vector machine. 2017 IEEE Jordan Conference on Applied Electrical

Engineering and Computing Technologies, AEECT 2017 , Institute of Electrical and

Electronics Engineers Inc., volume 2018-Janua, 1–5.

Alrabiah, A., Alduailij, M. and Crane, M., 2019. Computer-based approach to detect

wrinkles and suggest facial fillers. Int J Adv Comput Sci Appl , 10 (9).

Apple, 2021. ARKit Overview - Augmented Reality - Apple Developer [online]. Avail-

able from: https://developer.apple.com/augmented-reality/arkit/ [Accessed

16 September 2021].

Aznar-Casanova, J., Torro-Alves, N. and Fukusima, S., 2010. How Much Older Do You

Get When a Wrinkle Appears on Your Face? Modifying Age Estimates by Number of

Wrinkles. Aging, Neuropsychology, and Cognition, 17 (4), 406–421. Available from:

https://doi.org/10.1080/13825580903420153.

Babenko, B., Yang, M.-H. and Belongie, S., 2009. Visual tracking with online Mul-

tiple Instance Learning. 2009 IEEE Conference on Computer Vision and Pattern

Recognition, Institute of Electrical and Electronics Engineers (IEEE), 983–990.

Bahraini, M. S., Rad, A. B. and Bozorg, M., 2019. SLAM in Dynamic Environ-

ments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC

Algorithm. Sensors 2019, Vol. 19, Page 3699 , 19 (17), 3699. Available from:

https://www.mdpi.com/1424-8220/19/17/3699.

Barowski, T., Szczot, M. and Houben, S., 2019. 6DoF Vehicle Pose Estimation Using

Segmentation-Based Part Correspondences. 2019 IEEE Intelligent Transportation

Systems Conference, ITSC 2019 , 573–580.

157

Batool, N. and Chellappa, R., 2012a. A Markov Point Process model for wrinkles in

human faces. Proceedings - International Conference on Image Processing, ICIP ,

1809–1812.

Batool, N. and Chellappa, R., 2012b. Modeling and detection of wrinkles in aging hu-

man faces using marked point processes. A. Fusiello, V. Murino and R. Cucchiara,

eds., Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), Berlin, Heidelberg: Springer

Berlin Heidelberg, volume 7584 LNCS, 178–188.

Batool, N. and Chellappa, R., 2014. Detection and inpainting of facial wrinkles using

texture orientation fields and Markov random field modeling. IEEE Transactions on

Image Processing , 23 (9), 3773–3788.

Batool, N. and Chellappa, R., 2015. Fast detection of facial wrinkles based on Gabor

features using image morphology and geometric constraints. Pattern Recognition,

48 (3), 642–658.

Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F. and Grund-

mann, M., 2020. BlazePose: On-device Real-time Body Pose tracking. arXiv preprint

arXiv:2006.10204 . Available from: http://arxiv.org/abs/2006.10204.

Bazarevsky, V., Kartynnik, Y., Vakunov, A., Raveendran, K. and Grundmann, M.,

2019. BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs. arXiv

preprint arXiv:1907.05047 . Available from: http://arxiv.org/abs/1907.05047.

Belousov, S., 2021. MobileStyleGAN: A Lightweight Convolutional Neural Network for

High-Fidelity Image Synthesis. arXiv preprint arXiv:2104.04767 .

Bhoi, A., 2019. Monocular depth estimation: A survey. arXiv preprint

arXiv:1901.09402 .

Biron, B., 2019. Beauty Becomes a $532 Billion Industry Thanks to These

Trends [online]. Available from: https://www.businessinsider.com/beauty-

multibillion-industry-trends-future-2019-7?r=US&IR=T.

Biswas, J. and Veloso, M., 2012. Depth camera based indoor mobile robot localiza-

tion and navigation. Proceedings - IEEE International Conference on Robotics and

Automation, 1697–1702.

Bonfiglio, N., 2018. DeepMind and Unity Will Collaborate on Artificial Intel-

158

ligence Research [online]. Available from: https://www.dailydot.com/debug/

unity-deempind-ai/.

Borenstein, J. and Koren, Y., 1988. Obstacle avoidance with ultrasonic sensors. IEEE

Journal on Robotics and Automation, 4 (2), 213–218.

Cai, H., Zhu, L. and Han, S., 2018. ProxylessNAS: Direct Neural Architecture Search on

Target Task and Hardware. arXiv . Available from: http://arxiv.org/abs/1812.

00332.

Cao, C., Bradley, D., Zhou, K. and Beeler, T., 2015. Real-time high-fidelity facial

performance capture. ACM Transactions on Graphics, 34 (4).

Chen, L. C., Papandreou, G., Schroff, F. and Adam, H., 2017a. Rethinking atrous

convolution for semantic image segmentation. arXiv . Available from: http://arxiv.

org/abs/1706.05587.

Chen, W., Gong, X., Liu, X., Zhang, Q., Li, Y. and Wang, Z., 2019. FasterSeg:

Searching for Faster Real-time Semantic Segmentation. Iclr , 1–14. Available from:

http://arxiv.org/abs/1912.10917.

Chen, W., Gong, X., Liu, X., Zhang, Q., Li, Y. and Wang, Z., 2020. VITA-

Group/FasterSeg: [ICLR 2020] ”FasterSeg: Searching for Faster Real-time Seman-

tic Segmentation” by Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang,

Yuan Li, Zhangyang Wang [online]. Available from: https://github.com/VITA-

Group/FasterSeg [Accessed 16 November 2021].

Chen, X., Ma, H., Wan, J., Li, B. and Xia, T., 2017b. Multi-view 3d object detection

network for autonomous driving. Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 1907–1915.

Choi, C. and Christensen, H. I., 2012a. 3D pose estimation of daily objects using an

RGB-D camera. IEEE International Conference on Intelligent Robots and Systems,

3342–3349.

Choi, C. and Christensen, H. I., 2012b. 3D textureless object detection and tracking:

An edge-based approach. IEEE International Conference on Intelligent Robots and

Systems, 3877–3884. Available from: http://ieeexplore.ieee.org/document/

6386065/.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. Pro-

159

ceedings of the IEEE conference on computer vision and pattern recognition, 1251–

1258.

Choukroun, Y., Kravchik, E., Yang, F. and Kisilev, P., 2019. Low-bit Quantization of

Neural Networks for Efficient Inference. ICCV Workshops, 3009–3018.

Chu, X., Zhang, B. and Xu, R., 2020. Multi-objective Reinforced Evolution in Mobile

Neural Architecture Search. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12538

LNCS, 99–113. Available from: http://arxiv.org/abs/1901.01074.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. and Ronneberger, O., 2016. 3D U-

net: Learning dense volumetric segmentation from sparse annotation. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Springer, volume 9901 LNCS, 424–432.

Cliff Dermatology, 2021. Acne — cliff dermatology [online]. Available from: https:

//www.cliff-dermatologist.co.uk/acne [Accessed 19 November 2021].

Collet, A., Berenson, D., Srinivasa, S. S. and Ferguson, D., 2009. Object recognition

and full pose registration from a single image for robotic manipulation. 2009 IEEE

International Conference on Robotics and Automation, 48–55.

Cula, G. O., Bargo, P. R., Nkengne, A. and Kollias, N., 2013. Assessing Facial Wrinkles:

Automatic Detection and Quantification. Skin Research and Technology , 19 (1).

DCGM and Nvidia, 2020. DCGM/ffhq-features-dataset: Gender, Age, and Emotion

for Flickr-Faces-HQ Dataset (FFHQ) [online]. Available from: https://github.

com/DCGM/ffhq-features-dataset [Accessed 10 September 2021].

Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T. and Fox, D., 2021. PoseRBPF: A

rao-blackwellized particle filter for 6-D object pose tracking. IEEE Transactions on

Robotics, 37 (5), 1328–1342. Available from: http://arxiv.org/abs/1905.09304.

Dice, L. R., 1945. Measures of the Amount of Ecologic Association Between Species.

Ecology , 26 (3), 297–302. Available from: http://www.jstor.org/stable/1932409.

Dickmann, J., Klappstein, J., Hahn, M., Appenrodt, N., Bloecher, H.-L., Werber, K.

and Sailer, A., 2016. ”Automotive radar the key technology for autonomous driving:

From detection and ranging to environmental understanding”. 2016 IEEE Radar

Conference (RadarConf), 1–6.

160

Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and mapping: Part

I. IEEE Robotics and Automation Magazine, 13 (2), 99–108.

Elbashir, R. M. and Yap, M. H., 2020. Evaluation of automatic facial wrinkle detection

algorithms. Journal of Imaging , 6 (4), 17. Available from: https://www.mdpi.com/

2313-433X/6/4/17.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J. and Zisserman, A., 2010.

The pascal visual object classes (VOC) challenge. International Journal of Com-

puter Vision, 88 (2), 303–338. Available from: http://link.springer.com/10.

1007/s11263-009-0275-4.

Facebook, 2018. Caffe2 and PyTorch join forces to create a Research + Production

platform PyTorch 1.0 — Caffe2 [online]. Available from: https://caffe2.ai/blog/

2018/05/02/Caffe2_PyTorch_1_0.html [Accessed 15 October 2021].

Facebook, 2020a. pytorch/caffe2/mobile/contrib/libopencl-stub at master · py-

torch/pytorch · GitHub [online]. Available from: https://github.com/pytorch/

pytorch/tree/master/caffe2/mobile/contrib/libopencl-stub [Accessed 15

October 2021].

Facebook, 2020b. pytorch/caffe2/mobile/contrib/libvulkan-stub at master · py-

torch/pytorch · GitHub [online]. Available from: https://github.com/pytorch/

pytorch/tree/master/caffe2/mobile/contrib/libvulkan-stub [Accessed 15

October 2021].

Facebook, 2021a. Home — PyTorch [online]. Available from: https://pytorch.org/

mobile/home/ [Accessed 15 October 2021].

Facebook, 2021b. Home — PyTorch [online]. Available from: https://pytorch.org/

mobile/home/#key-features [Accessed 15 October 2021].

Facebook, 2021c. Integrating Caffe2 on iOS/Android — Caffe2 [online]. Available from:

https://caffe2.ai/docs/mobile-integration.html [Accessed 15 October 2021].

Fan, R., Wang, L., Bocus, M. J. and Pitas, I., 2020. Computer Stereo Vision for

Autonomous Driving. arXiv preprint arXiv:2012.03194 . Available from: https://

arxiv.org/abs/2012.03194v2.

Feng, Y., Wu, F., Shao, X., Wang, Y. and Zhou, X., 2018a. Joint 3D Face Reconstruc-

tion and Dense Alignment with Position Map Regression Network. Proceedings of

the European Conference on Computer Vision (ECCV), 534–551.

161

Feng, Y., Wu, F., Shao, X., Wang, Y. and Zhou, X., 2018b. YadiraF/PRNet: Joint

3D Face Reconstruction and Dense Alignment with Position Map Regression Net-

work (ECCV 2018) [online]. Available from: https://github.com/YadiraF/PRNet

[Accessed 05 November 2021].

Flynn, P. J. and Jain, A. K., 1991. CAD-based computer vision: from CAD models to

relational graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13 (2), 114–132.

Fogel, I. and Sagi, D., 1989. Gabor filters as texture discriminator. Biological Cyber-

netics 1989 61:2 , 61 (2), 103–113. Available from: https://link.springer.com/

article/10.1007/BF00204594.

Frangi, A. F., 2001. Three-dimensional model-based analysis of vascular and cardiac

images. Ph.D. thesis, Utrecht University.

Fu, M. and Zhou, W., 2019. DeepHMap++: Combined projection grouping and corre-

spondence learning for full DoF pose estimation. Sensors (Switzerland), 19 (5).

Garnier, 2021. Virtual Hair Colour Try On — Try On Hair Colour — Garnier [online].

Available from: https://www.garnier.co.uk/virtual-try-on [Accessed 20 April

2021].

Garon, M., Boulet, P. O., Doironz, J. P., Beaulieu, L. and Lalonde, J. F., 2017. Real-

Time High Resolution 3D Data on the HoloLens. Adjunct Proceedings of the 2016

IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct

2016 , Institute of Electrical and Electronics Engineers Inc., 189–191.

Gary, B., 2008. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,

1 (2236121).

Gatys, L. A., Ecker, A. S. and Bethge, M., 2015. A Neural Algorithm of Artistic Style.

Journal of Vision, 16 (12), 326. Available from: https://arxiv.org/abs/1508.

06576v2.

Geiger, A., Lenz, P. and Urtasun, R., 2012. Are we ready for autonomous driving?

the KITTI vision benchmark suite. Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, IEEE, 3354–3361. Available

from: http://ieeexplore.ieee.org/document/6248074/.

Godard, C., Mac Aodha, O. and Brostow, G. J., 2017. Unsupervised monocular depth

162

estimation with left-right consistency. Proceedings - 30th IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR 2017 , 2017-Janua, 6602–6611.

Godard, C., Mac Aodha, O., Firman, M. and Brostow, G. J., 2019. Digging into self-

supervised monocular depth estimation. Proceedings of the IEEE/CVF International

Conference on Computer Vision, 3828–3838. Available from: http://arxiv.org/

abs/1806.01260.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y., 2014. Generative Adversarial Networks. Advances in

neural information processing systems, 2672–2680. Available from: http://arxiv.

org/abs/1406.2661.

Google, 2018. Real-time Human Pose Estimation in the Browser with TensorFlow.js

— The TensorFlow Blog [online]. Available from: https://blog.tensorflow.

org/2018/05/real-time-human-pose-estimation-in.html [Accessed 24 Septem-

ber 2021].

Google, 2019. tensorflow/tensorflow/examples/ios at r2.3 · tensorflow/tensorflow ·
GitHub [online]. Available from: https://github.com/tensorflow/tensorflow/

tree/r2.3/tensorflow/examples/ios [Accessed 15 October 2021].

Google, 2020a. Google Developers Blog: A new wave of AR Realism with the ARCore

Depth API [online]. Available from: https://developers.googleblog.com/2020/

06/a-new-wave-of-ar-realism-with-arcore-depth-api.html [Accessed 19 Au-

gust 2020].

Google, 2020b. google/mediapipe: MediaPipe is a cross-platform framework for build-

ing multimodal applied machine learning pipelines [online]. Available from: https:

//github.com/google/mediapipe [Accessed 05 March 2020].

Google, 2020c. tensorflow/tensorflow/examples/android at r2.3 · tensorflow/tensorflow

· GitHub [online]. Available from: https://github.com/tensorflow/tensorflow/

tree/r2.3/tensorflow/examples/android [Accessed 15 October 2021].

Google, 2021a. Detect faces — Cloud Vision API — Google Cloud [online]. Avail-

able from: https://cloud.google.com/vision/docs/detecting-faces [Accessed

12 November 2021].

Google, 2021b. Firebase Test Lab — Firebase Documentation [online]. Available from:

https://firebase.google.com/docs/test-lab [Accessed 15 October 2021].

163

Google, 2021c. FlatBuffers: FlatBuffers [online]. Available from: https://google.

github.io/flatbuffers/ [Accessed 06 October 2021].

Google, 2021d. GitHub - google/XNNPACK: High-efficiency floating-point neural net-

work inference operators for mobile, server, and Web [online]. Available from:

https://github.com/google/XNNPACK [Accessed 13 October 2021].

Google, 2021e. Hosted models — TensorFlow Lite [online]. Available from: https://

www.tensorflow.org/lite/guide/hosted_models#quantized_models [Accessed

05 October 2021].

Google, 2021f. Hosted models — TensorFlow Lite [online]. Available from: https://

www.tensorflow.org/lite/guide/hosted_models#floating_point_models [Ac-

cessed 15 October 2021].

Google, 2021g. Hosted models — TensorFlow Lite [online]. Available from: https:

//www.tensorflow.org/lite/guide/hosted_models [Accessed 25 August 2021].

Google, 2021h. TensorFlow Lite [online]. Available from: https://www.tensorflow.

org/lite/guide#key_features [Accessed 06 October 2021].

Google, 2021i. TensorFlow Lite [online]. Available from: https://www.tensorflow.

org/lite/guide#1_generate_a_tensorflow_lite_model [Accessed 07 October

2021].

Google, 2021j. TensorFlow Lite 8-bit quantization specification [online]. Available from:

https://www.tensorflow.org/lite/performance/quantization_spec [Accessed

02 April 2021].

Google, 2021k. TensorFlow Lite Roadmap [online]. Available from: https://www.

tensorflow.org/lite/guide/roadmap [Accessed 16 October 2021].

Google, 2021l. tensorflow/tensorflow/lite/tools/benchmark at master · tensor-

flow/tensorflow · GitHub [online]. Available from: https://github.com/

tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark [Ac-

cessed 15 March 2021].

Google, 2021m. tfjs/e2e/benchmarks/local-benchmark at master · tensorflow/tfjs [on-

line]. Available from: https://github.com/tensorflow/tfjs/tree/master/e2e/

benchmarks/local-benchmark [Accessed 15 November 2021].

Gualtieri, M., Pas, A. T., Saenko, K. and Platt, R., 2016. High precision grasp pose

164

detection in dense clutter. IEEE International Conference on Intelligent Robots and

Systems, 2016-Novem, 598–605.

Guha, S., 2015. Computer Graphics Through OpenGL: From Theory to Experiments.

2nd edition. Boca Raton: CRC Press. Available from: http://books.google.com/

books?hl=en&lr=&id=7bCiFepXle0C&oi=fnd&pg=PP1&dq=Computer+Graphics+

Through+OpenGL:+From+Theory+to+Experiments&ots=PK49-WKcsv&sig=Lpxw8-

ZnoDXiHksD8uR86-ZTBwo.

Guo, D. and Sim, T., 2009. Digital face makeup by example. 2009 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition Workshops,

CVPR Workshops 2009 , IEEE, volume 2009 IEEE, 73–79. Available from: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5206833.

Haines, A., 2021. From ‘Instagram Face’ To ‘Snapchat Dysmorphia’: How Beauty

Filters Are Changing The Way We See Ourselves. Forbes. Available from:

https://www.forbes.com/sites/annahaines/2021/04/27/from-instagram-

face-to-snapchat-dysmorphia-how-beauty-filters-are-changing-the-way-

we-see-ourselves/.

Harbison, C., 2019. Snapchat’s New Gender Swap Filter Will Make You Ques-

tion Your Identity: How to Get the Male to Female Filter. Newsweek . Avail-

able from: https://www.newsweek.com/snapchat-gender-swap-filter-how-

get-girl-boy-change-male-female-how-use-not-1425014.

Hare, S., Saffari, A. and Torr, P. H., 2011. Struck: Structured output tracking with

kernels. Proceedings of the IEEE International Conference on Computer Vision, 263–

270.

Harisankar, V., Sajith, V. V. and Soman, K. P., 2020. Unsupervised Depth Estimation

from Monocular Images for Autonomous Vehicles. Proceedings of the 4th Interna-

tional Conference on Computing Methodologies and Communication, ICCMC 2020 ,

904–909.

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 770–778.

He, Y., Sun, W., Huang, H., Liu, J., Fan, H. and Sun, J., 2020. Pvn3d: A deep

point-wise 3d keypoints voting network for 6dof pose estimation. Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 11632–11641.

165

He, Z., Zuo, W., Kan, M., Shan, S., Chen, X., Shan, S. and Chen, X., 2019. AttGAN:

Facial Attribute Editing by Only Changing What You Want. IEEE Transactions on

Image Processing , 28 (11), 1–1. Available from: https://ieeexplore.ieee.org/

document/8718508/.

Held, D., Thrun, S. and Savarese, S., 2016. Learning to track at 100 FPS with deep

regression networks. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Ver-

lag, volume 9905 LNCS, 749–765. Available from: http://arxiv.org/abs/1604.

01802.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S.,

2017. GANs trained by a two time-scale update rule converge to a local

Nash equilibrium. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan and R. Garnett, eds., Advances in Neural Informa-

tion Processing Systems, Curran Associates, Inc., volume 2017-Decem, 6627–

6638. Available from: https://proceedings.neurips.cc/paper/2017/file/

8a1d694707eb0fefe65871369074926d-Paper.pdf.

Hodaň, T., Haluza, P., Obdrzalek, Š., Matas, J., Lourakis, M. and Zabulis, X., 2017. T-

LESS: An RGB-D dataset for 6D pose estimation of texture-less objects. Proceedings

- 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017 ,

880–888.

Holynski, A. and Kopf, J., 2018. Fast Depth Densification for Occlusion-Aware Aug-

mented Reality. ACM Trans. Graph., 37 (6). Available from: https://doi.org/10.

1145/3272127.3275083.

Hopfield, J. J., 1982. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the National Academy of Sciences of the

United States of America, 79 (8), 2554–2558. Available from: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC346238/.

Hoshyar, A. N., Al-Jumaily, A. and Hoshyar, A. N., 2014. The beneficial techniques

in preprocessing step of skin cancer detection system comparing. Procedia Computer

Science, Elsevier, volume 42, 25–31.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L. C., Tan, M., Chu, G., Vasude-

van, V., Zhu, Y., Pang, R., Le, Q. and Adam, H., 2019. Searching for mobileNetV3.

Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob,

1314–1324. Available from: http://arxiv.org/abs/1905.02244.

166

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M. and Adam, H., 2017. MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications. arXiv . Available from: http://arxiv.org/

abs/1704.04861.

Hu, Y., Hugonot, J., Fua, P. and Salzmann, M., 2019. Segmentation-driven 6D object

pose estimation. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2019-June, 3380–3389. Available from: http://

arxiv.org/abs/1812.02541.

Huang, H., Chai, J., Tong, X. and Wu, H.-T., 2011. Leveraging Motion Capture and 3D

Scanning for High-Fidelity Facial Performance Acquisition. ACM SIGGRAPH 2011

Papers, New York, NY, USA: Association for Computing Machinery, SIGGRAPH

’11, 1–10. Available from: https://doi.org/10.1145/1964921.1964969.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and Keutzer, K.,

2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB

model size. arXiv preprint arXiv:1602.07360 . Available from: http://arxiv.org/

abs/1602.07360.

IJoysoft, 2021. Beauty Camera - Selfie Camera – Apps on Google Play [online]. Avail-

able from: https://play.google.com/store/apps/details?id=photo.beauty.

sticker.ar.camera&hl=en_GB&gl=US [Accessed 08 October 2021].

Ikeuchi, K., 1987. Generating an interpretation tree from a CAD model for 3D-object

recognition in bin-picking tasks. International Journal of Computer Vision, 1 (2),

145–165. Available from: https://doi.org/10.1007/BF00123163.

Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. 32nd International Conference on Ma-

chine Learning, ICML 2015 , PMLR, volume 1, 448–456. Available from: http:

//proceedings.mlr.press/v37/ioffe15.html.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and

Kalenichenko, D., 2018. Quantization and training of neural networks for efficient

integer-arithmetic-only inference. Proceedings of the IEEE conference on computer

vision and pattern recognition, 2704–2713.

Jain, S., Jagtap, V. and Pise, N., 2015. Computer aided melanoma skin cancer detection

using image processing. Procedia Computer Science, Elsevier, volume 48, 735–740.

Jamiruddin, R., Sari, A. O., Shabbir, J. and Anwer, T., 2018. RGB-Depth SLAM

167

Review. arXiv preprint arXiv:1805.07696 , 14 (8), 1–18. Available from: http://

arxiv.org/abs/1805.07696.

Jang, E., 2019. Eric Jang: Fun with Snapchat’s Gender Swapping Filter [on-

line]. Available from: https://blog.evjang.com/2019/05/fun-with-snapchats-

gender-swapping.html [Accessed 07 September 2021].

Jerman, T., Pernuš, F., Likar, B., Špiclin, Ž., Pernus, F., Likar, B. and Spiclin, Z.,

2016. Enhancement of Vascular Structures in 3D and 2D Angiographic Images. IEEE

Transactions on Medical Imaging , 35 (9), 2107–2118.

Jerman, T., Pernuš, F., Likar, B., Špiclin, Ž., Pernus, F., Likar, B. and Spiclin, Z.,

2020. timjerman/JermanEnhancementFilter: Jerman’s tubular (vessel) and spher-

ical (blob) enhancement filters [online]. Available from: https://github.com/

timjerman/JermanEnhancementFilter [Accessed 26 November 2020].

Jh88, 2019. jh88/fbnet: A Keras (TensorFlow 2.0) implementation of FBNet [online].

Available from: https://github.com/jh88/fbnet [Accessed 15 November 2021].

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,

S. and Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding.

Proceedings of the 22nd ACM international conference on Multimedia, 675–678.

Jiang, W., 2021. GitHub - wtjiang98/BeautyGAN pytorch: Official PyTorch im-

plementation of BeautyGAN (ACM MM 2018) [online]. Available from: https:

//github.com/wtjiang98/BeautyGAN_pytorch [Accessed 15 March 2021].

Johannes Kepler University Linz Institute of Bioinformatics, 2017. bioinf-jku/TTUR:

Two time-scale update rule for training GANs [online]. Available from: https://

github.com/bioinf-jku/TTUR [Accessed 04 November 2021].

Johnson, J., Alahi, A. and Fei-Fei, L., 2016. Perceptual losses for real-time style transfer

and super-resolution. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Ver-

lag, volume 9906 LNCS, 694–711. Available from: http://arxiv.org/abs/1603.

08155.

Kalal, Z., Mikolajczyk, K. and Matas, J., 2011. Tracking-learning-detection. IEEE

transactions on pattern analysis and machine intelligence, 34 (7), 1409–1422.

Karkkainen, K. and Joo, J., 2021. FairFace: Face Attribute Dataset for Balanced

168

Race, Gender, and Age for Bias Measurement and Mitigation. Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, 1548–1558.

Karras, T., Laine, S. and Aila, T., 2019. A style-based generator architecture for gener-

ative adversarial networks. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2019-June, 4396–4405. Available from:

http://arxiv.org/abs/1812.04948.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T., 2020. Analyz-

ing and improving the image quality of stylegan. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 8107–8116. Avail-

able from: http://arxiv.org/abs/1912.04958.

Kim, J., 2021. taki0112/SPADE-Tensorflow: Simple Tensorflow implementation of

”Semantic Image Synthesis with Spatially-Adaptive Normalization” a.k.a. Gau-

GAN, SPADE (CVPR 2019 Oral) [online]. Available from: https://github.com/

taki0112/SPADE-Tensorflow [Accessed 26 July 2021].

Kim, J.-H., Starr, J. W. and Lattimer, B. Y., 2015. Firefighting Robot Stereo Infrared

Vision and Radar Sensor Fusion for Imaging through Smoke. Fire Technology , 51 (4),

823–845. Available from: https://doi.org/10.1007/s10694-014-0413-6.

Klein, G. and Murray, D., 2009. Parallel Tracking and Mapping on a camera phone.

2009 8th IEEE International Symposium on Mixed and Augmented Reality , 83–86.

Kuznietsov, Y., Stückler, J. and Leibe, B., 2017. Semi-supervised deep learning for

monocular depth map prediction. Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017 , 2017-Janua, 2215–2223.

Laga, H., Jospin, L. V., Boussaid, F. and Bennamoun, M., 2020. A survey on deep

learning techniques for stereo-based depth estimation. IEEE Transactions on Pattern

Analysis and Machine Intelligence.

Lai, K., Bo, L. and Fox, D., 2014. Unsupervised feature learning for 3D scene labeling.

2014 IEEE International Conference on Robotics and Automation (ICRA), 3050–

3057.

Lai, K., Bo, L., Ren, X. and Fox, D., 2011. A large-scale hierarchical multi-view RGB-D

object dataset. 2011 IEEE International Conference on Robotics and Automation,

1817–1824.

Lee, C. H., Liu, Z., Wu, L. and Luo, P., 2020. MaskGAN: Towards Diverse and Inter-

169

active Facial Image Manipulation. Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, 5548–5557.

Lee, J., Chirkov, N., Ignasheva, E., Pisarchyk, Y., Shieh, M., Riccardi, F., Sarokin, R.,

Kulik, A. and Grundmann, M., 2019. On-Device Neural Net Inference with Mobile

GPUs. arXiv preprint arXiv:1907.01989 . Available from: http://arxiv.org/abs/

1907.01989.

Lessel, D., 2021. dominiklessel/opencv-gabor-filter [online]. Available from: https:

//github.com/dominiklessel/opencv-gabor-filter [Accessed 21 June 2021].

Li, J., Xu, W., Cheng, Z., Xu, K. and Klein, R., 2015. Lightweight wrinkle syn-

thesis for 3D facial modeling and animation. Computer-Aided Design, 58, 117–

122. Available from: https://www.sciencedirect.com/science/article/pii/

S0010448514001857.

Li, P., Qin, T. and Others, 2018a. Stereo vision-based semantic 3d object and ego-

motion tracking for autonomous driving. Proceedings of the European Conference on

Computer Vision (ECCV), 646–661.

Li, T., Liu, S., Qian, R., Yan, Q., Lin, L., Dong, C. and Zhu, W., 2018b. Beautygan:

Instance-level facial makeup transfer with deep generative adversarial network. MM

2018 - Proceedings of the 2018 ACM Multimedia Conference, 645–653. Available

from: http://dl.acm.org/citation.cfm?doid=3240508.3240618.

Li, Y., Huang, H., Cao, J., He, R. and Tan, T., 2020. Disentangled Representation

Learning of Makeup Portraits in the Wild. International Journal of Computer Vision,

128 (8-9), 2166–2184.

Lin Hong, Yifei Wan and Jain, A., 1998. Fingerprint image enhancement: algorithm

and performance evaluation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20 (8), 777–789.

Liu, C., Chen, L. C., Schroff, F., Adam, H., Hua, W., Yuille, A. L. and Fei-Fei, L.,

2019a. Auto-deeplab: Hierarchical neural architecture search for semantic image seg-

mentation. Proceedings of the IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, volume 2019-June, 82–92.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei, L., Yuille, A.,

Huang, J. and Murphy, K., 2018. Progressive Neural Architecture Search. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 11205 LNCS, 19–35.

170

Liu, H., Simonyan, K. and Yang, Y., 2019b. DARTS: Differentiable architecture search.

7th International Conference on Learning Representations, ICLR 2019 . Available

from: https://github.com/quark0/darts.

Liu, M., Ding, Y., Xia, M., Liu, X., Ding, E., Zuo, W. and Wen, S., 2019c. STGAN: A

unified selective transfer network for arbitrary image attribute editing. Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, 2019-June, 3668–3677. Available from: http://arxiv.org/abs/1904.09709.

Liu, Q., Liu, B., Wu, Y., Li, W. and Yu, N., 2019d. Real-Time Online Multi-Object

Tracking in Compressed Domain. IEEE Access, 7, 76489–76499.

Liu, S., Ou, X., Qian, R., Wei, W. and Cao, X., 2016a. Makeup like a superstar:

Deep localized makeup transfer network. S. Kambhampati, ed., IJCAI International

Joint Conference on Artificial Intelligence, IJCAI/AAAI Press, volume 2016-Janua,

2568–2575. Available from: http://www.ijcai.org/Abstract/16/365.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y. and Berg, A. C.,

2016b. SSD: Single shot multibox detector. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), volume 9905 LNCS, 21–37. Available from: http://arxiv.org/abs/

1512.02325.

Liu, Y., Jiang, J., Sun, J., Bai, L. and Wang, Q., 2020. A Survey of Depth Estima-

tion Based on Computer Vision. 2020 IEEE Fifth International Conference on Data

Science in Cyberspace (DSC), IEEE, 135–141.

L’Oréal, 2021. Virtual Try On — L’Oréal Paris [online]. Available from: https://www.

loreal-paris.co.uk/virtual-try-on [Accessed 20 April 2021].

Lu, J., Manton, J. H., Kazmierczak, E. and Sinclair, R., 2010. Erythema detection

in digital skin images. Proceedings - International Conference on Image Processing,

ICIP , 2545–2548.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E. and Banzhaf, W.,

2019. Nsga-net: neural architecture search using multi-objective genetic algorithm.

Proceedings of the Genetic and Evolutionary Computation Conference, 419–427.

Lynch, G. and Peckham, J., 2022. Apple Glasses: here’s everything we know so far

— TechRadar. TechRadar . Available from: https://www.techradar.com/news/

apple-glasses#section-apple-ar-glasses-features-and-design.

171

Ma, N., Zhang, X., Zheng, H. T. and Sun, J., 2018. Shufflenet V2: Practical guidelines

for efficient cnn architecture design. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), volume 11218 LNCS, 122–138.

Magic Leap, 2021. Magic Leap 1 — Magic Leap [online]. Available from: https:

//www.magicleap.com/en-us/magic-leap-1 [Accessed 13 March 2022].

Marder-Eppstein, E., 2016. Project Tango. ACM SIGGRAPH 2016 Real-Time Live! ,

New York, NY, USA: Association for Computing Machinery, SIGGRAPH ’16, 25–25.

Available from: https://doi.org/10.1145/2933540.2933550.

Microsoft, 2021a. Facial Recognition — Microsoft Azure [online]. Available

from: https://azure.microsoft.com/en-gb/services/cognitive-services/

face/#demo [Accessed 12 November 2021].

Microsoft, 2021b. HoloLens 2—Overview, Features, and Specs — Microsoft HoloLens

[online]. Available from: https://www.microsoft.com/en-us/hololens/hardware

[Accessed 24 November 2021].

Milletari, F., Navab, N. and Ahmadi, S.-A., 2016. V-Net: Fully Convolutional Neural

Networks for Volumetric Medical Image Segmentation. 2016 Fourth International

Conference on 3D Vision (3DV), 565–571.

Mitchell, T., 1997. Machine learning . New York, New York, USA: McGraw Hill.

Mittal, R., Pathak, V., Gandhi, G. C., Mithal, A. and Lakhwani, K., 2021. Appli-

cation of machine learning in SLAM algorithms. Machine Learning for Sustainable

Development , 9, 147.

Muhimmah, I., Muchlis, N. F. and Kurniawardhani, A., 2021. Automatic Facial Red-

ness Detection on Face Skin Image. IIUM Engineering Journal , 22 (1), 68–77.

Available from: https://journals.iium.edu.my/ejournal/index.php/iiumej/

article/view/1495.

Mungúıa, R. and Grau, A., 2012. Monocular SLAM for visual odometry: A full

approach to the delayed inverse-depth feature initialization method. Mathematical

Problems in Engineering , 2012.

Munkelt, O., 1994. Feature based aspects-trees. Generation and interpretation. Pro-

ceedings of 1994 IEEE 2nd CAD-Based Vision Workshop, 192–201.

Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M. and Van Gool,

172

L., 2017. Fast Scene Understanding for Autonomous Driving. arXiv preprint

arXiv:1708.02550 . Available from: http://arxiv.org/abs/1708.02550.

Newell, A., Yang, K. and Deng, J., 2016. Stacked Hourglass Networks for Human Pose

Estimation. B. Leibe, J. Matas, N. Sebe and M. Welling, eds., Computer Vision –

ECCV 2016 , Cham: Springer International Publishing, 483–499.

Ng, C. C., Yap, M. H., Costen, N. and Li, B., 2015a. Automatic wrinkle detection

using hybrid Hessian filter. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume

9005, 609–622.

Ng, C. C., Yap, M. H., Costen, N. and Li, B., 2015b. Wrinkle detection using hessian

line tracking. IEEE Access, 3 (Xx), 1079–1088.

Ng, C. C., Yap, M. H., Costen, N. and Li, B., 2016. Will Wrinkle Estimate the Face

Age? Proceedings - 2015 IEEE International Conference on Systems, Man, and

Cybernetics, SMC 2015 , 2418–2423.

Ning, G., Zhang, Z., Huang, C., Ren, X., Wang, H., Cai, C. and He, Z., 2017. Spa-

tially supervised recurrent convolutional neural networks for visual object tracking.

Proceedings - IEEE International Symposium on Circuits and Systems, Institute of

Electrical and Electronics Engineers Inc., 1, 9–12.

Noh, H., Hong, S. and Han, B., 2015. Learning deconvolution network for semantic

segmentation. Proceedings of the IEEE international conference on computer vision,

1520–1528.

Nowacki, P. and Woda, M., 2020. Capabilities of ARCore and ARKit Platforms for

AR/VR Applications. Advances in Intelligent Systems and Computing , Springer,

volume 987, 358–370.

Nreal, 2021. Nreal Light [online]. Available from: https://www.nreal.ai/light/ [Ac-

cessed 13 March 2022].

Nvidia, 2021. NVlabs/ffhq-dataset: Flickr-Faces-HQ Dataset (FFHQ) [online]. Avail-

able from: https://github.com/NVlabs/ffhq-dataset [Accessed 10 April 2021].

Odena, A., Dumoulin, V. and Olah, C., 2016. Deconvolution and Checkerboard Arti-

facts. Distill . Available from: http://distill.pub/2016/deconv-checkerboard.

Oh, S., Kim, H. J. S., Lee, J. and Kim, J., 2020. RRNet: Repetition-Reduction Network

173

for Energy Efficient Depth Estimation. IEEE Access, 8, 106097–106108. Available

from: http://arxiv.org/abs/1907.09707.

Pandey, R., Pidlypenskyi, P., Yang, S. and Kaeser-Chen, C., 2018. Egocentric 6-DoF

Tracking of Small Handheld Objects. arXiv preprint arXiv:1804.05870 . Available

from: http://arxiv.org/abs/1804.05870.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L. and Others, 2019. Pytorch: An imperative style,

high-performance deep learning library. Advances in neural information processing

systems, 32, 8026–8037.

Pauwels, K. and Kragic, D., 2015. SimTrack: A simulation-based framework for scal-

able real-time object pose detection and tracking. IEEE International Conference on

Intelligent Robots and Systems, 2015-Decem, 1300–1307.

Peluso, V., Cipolletta, A., Calimera, A., Poggi, M., Tosi, F. and Mattoccia, S., 2019.

Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-

Based Platforms. Proceedings of the 2019 Design, Automation and Test in Eu-

rope Conference and Exhibition, DATE 2019 , 1703–1708. Available from: https:

//ieeexplore.ieee.org/document/8714893/.

Peng, S., Liu, Y., Huang, Q., Bao, H. and Zhou, X., 2018. PVNet: Pixel-wise

Voting Network for 6DoF Pose Estimation. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 4561–4570. Available from: http:

//arxiv.org/abs/1812.11788.

Pérez, P., Gangnet, M., Blake, A., Pérez, P., Gangnet, M. and Blake, A., 2003. Poisson

image editing. ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03 , 5 (3), 313–318.

Available from: http://portal.acm.org/citation.cfm?doid=1201775.882269.

Perfect365, 2021. Perfect365 is the #1 Augmented Reality Beauty Platform [online].

Available from: https://www.perfect365.com/# [Accessed 14 July 2021].

PerfectCorp, 2021. YouCam Makeup — Best Selfie Editor, Makeover & Retouch App

[online]. Available from: https://www.perfectcorp.com/consumer/apps/ymk [Ac-

cessed 31 August 2021].

Plantinga, W. H. and Dyer, C., 1986. An algorithm for constructing the aspect graph.

27th Annual Symposium on Foundations of Computer Science (sfcs 1986), 123–131.

Poggi, M., Aleotti, F., Tosi, F. and Mattoccia, S., 2018. Towards Real-Time Unsu-

174

pervised Monocular Depth Estimation on CPU. IEEE International Conference on

Intelligent Robots and Systems, 5848–5854.

Rad, M. and Lepetit, V., 2017. BB8: A Scalable, Accurate, Robust to Partial Oc-

clusion Method for Predicting the 3D Poses of Challenging Objects without Us-

ing Depth. Proceedings of the IEEE International Conference on Computer Vision,

IEEE, volume 2017-Octob, 3848–3856. Available from: http://ieeexplore.ieee.

org/document/8237675/.

Radford, A., Metz, L. and Chintala, S., 2016. Unsupervised representation learning with

deep convolutional generative adversarial networks. 4th International Conference on

Learning Representations, ICLR 2016 - Conference Track Proceedings. Available

from: http://arxiv.org/abs/1511.06434.

Rado, M., 2021. AR is the future of smartphones, starting with Ap-

ple’s AR glasses - PhoneArena. PhoneArena.com. Available from: https:

//www.phonearena.com/news/apple-augmented-reality-glasses-the-future-

of-smartphones_id135935.

Ramakrishnan, A. G., Kumar Raja, S. and Raghu Ram, H. V., 2002. Neural network-

based segmentation of textures using Gabor features. Neural Networks for Signal

Processing - Proceedings of the IEEE Workshop, 2002-Janua, 365–374.

Real, E., Aggarwal, A., Huang, Y. and Le, Q. V., 2019. Regularized evolution for image

classifier architecture search. 33rd AAAI Conference on Artificial Intelligence, AAAI

2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019

and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2019 , volume 33, 4780–4789.

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once:

Unified, real-time object detection. Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, volume 2016-Decem, 779–788.

Available from: http://arxiv.org/abs/1506.02640.

Redmon, J. and Farhadi, A., 2017. YOLO9000: Better, faster, stronger. Proceed-

ings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2017 , volume 2017-Janua, 6517–6525. Available from: http://arxiv.org/abs/

1612.08242.

Redmon, J. and Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv

preprint arXiv:1804.02767 . Available from: http://arxiv.org/abs/1804.02767.

175

Roeder, L., 2021. lutzroeder/netron: Visualizer for neural network, deep learn-

ing, and machine learning models [online]. Available from: https://github.com/

lutzroeder/netron [Accessed 16 July 2021].

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for

biomedical image segmentation. Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Springer, Cham, volume 9351, 234–241. Available from: https://link.springer.

com/chapter/10.1007/978-3-319-24574-4_28.

Rothe, R., Timofte, R. and Van Gool, L., 2015. DEX: Deep EXpectation of Appar-

ent Age from a Single Image. Proceedings of the IEEE International Conference on

Computer Vision, 2015-Febru, 252–257.

Rothe, R., Timofte, R. and Van Gool, L., 2018. Deep Expectation of Real and Ap-

parent Age from a Single Image Without Facial Landmarks. International Journal

of Computer Vision, 126 (2-4), 144–157. Available from: https://link.springer.

com/article/10.1007/s11263-016-0940-3.

Roy, K., Chaudhuri, S. S., Ghosh, S., Dutta, S. K., Chakraborty, P. and Sarkar, R.,

2019. Skin disease detection based on different segmentation techniques. 2019 Inter-

national Conference on Opto-Electronics and Applied Optics, Optronix 2019 , Insti-

tute of Electrical and Electronics Engineers Inc.

Royo, S. and Ballesta-Garcia, M., 2019. An Overview of Lidar Imaging Systems for

Autonomous Vehicles. Applied Sciences, 9 (19). Available from: https://www.mdpi.

com/2076-3417/9/19/4093.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. C., 2018. MobileNetV2:

Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition, 4510–4520. Available

from: http://arxiv.org/abs/1801.04381.

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X. and

Westling, P., 2014. High-resolution stereo datasets with subpixel-accurate ground

truth. German conference on pattern recognition, Springer, 31–42.

Shaw, A., Hunter, D., Landola, F. and Sidhu, S., 2019. SqueezeNAS: Fast neural

architecture search for faster semantic segmentation. Proceedings - 2019 International

Conference on Computer Vision Workshop, ICCVW 2019 , 2014–2024.

SideFX, 2021. Houdini - 3D modeling, animation, VFX, look development, lighting and

176

rendering — SideFX [online]. Available from: https://www.sidefx.com/ [Accessed

22 November 2021].

Sifre, L. and Mallat, P. S., 2014. Rigid-Motion Scattering For Image Classification.

Ph.D. thesis, École Polytechnique.

Silberman, N. and Fergus, R., 2011. Indoor scene segmentation using a structured

light sensor. Proceedings of the IEEE International Conference on Computer Vision,

601–608.

Silberman, N., Hoiem, D., Kohli, P. and Fergus, R., 2012. Indoor Segmentation and

Support Inference from RGBD Images. A. Fitzgibbon, S. Lazebnik, P. Perona,

Y. Sato and C. Schmid, eds., Computer Vision – ECCV 2012 , Berlin, Heidelberg:

Springer Berlin Heidelberg, 746–760.

Simon, J., 2021. Artbreeder [online]. Available from: https://www.artbreeder.com/

about [Accessed 02 April 2022].

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu, P., Zhang, K., Cai,

S., Nielsen, E., Soergel, D., Bileschi, S., Terry, M., Nicholson, C., Gupta, S. N.,

Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viégas, F. B. and Wattenberg,

M., 2019. TensorFlow.js: Machine Learning for the Web and Beyond. arXiv preprint

arXiv:1901.05350 . Available from: http://arxiv.org/abs/1901.05350.

Snap Inc., 2020. Snapchat [online]. Available from: https://www.snapchat.com.

Snap Inc., 2021. Anime Style by Snapchat [online]. Available from: https://

lens.snapchat.com/b8c89687c5194c3fb5db63d33eb04617 [Accessed 07 Septem-

ber 2021].

Song, S., Lichtenberg, S. P. and Xiao, J., 2015. Sun rgb-d: A rgb-d scene understanding

benchmark suite. Proceedings of the IEEE conference on computer vision and pattern

recognition, 567–576.

Sorensen, T. A., 1948. A method of establishing groups of equal amplitude in plant

sociology based on similarity of species content and its application to analyses of the

vegetation on Danish commons. Biol. Skar., 5, 1–34.

Statista Research Department, 2018. • Number of smartphone users worldwide 2014-

2020 — Statista [online]. Available from: https://www.statista.com/statistics/

330695/number-of-smartphone-users-worldwide/ [Accessed 15 September 2019].

Suay, H. B. and Chernova, S., 2011. Humanoid Robot Control Using Depth Camera.

177

Proceedings of the 6th International Conference on Human-Robot Interaction, New

York, NY, USA: Association for Computing Machinery, HRI ’11, 401–402. Available

from: https://doi.org/10.1145/1957656.1957802.

Suwajanakorn, S., Hernandez, C. and Seitz, S. M., 2015. Depth from focus with your

mobile phone. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, IEEE, volume 07-12-June, 3497–3506. Available

from: http://ieeexplore.ieee.org/document/7298972/.

Suwajanakorn, S., Snavely, N., Tompson, J. and Norouzi, M., 2018. Discovery of latent

3D keypoints via end-to-end geometric reasoning. Advances in Neural Information

Processing Systems, 2018-Decem, 2059–2070. Available from: http://arxiv.org/

abs/1807.03146.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking

the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Los Alamitos,

CA, USA: IEEE Computer Society, volume 2016-Decem, 2818–2826. Available from:

https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A. and Le,

Q. V., 2019. Mnasnet: Platform-aware neural architecture search for mobile. Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 2019-June, 2815–2823. Available from: https://github.com/

tensorflow/tpu/.

Tan, M. and Le, Q. V., 2019. EfficientNet: Rethinking model scaling for convolutional

neural networks. 36th International Conference on Machine Learning, ICML 2019 ,

2019-June, 10691–10700. Available from: http://arxiv.org/abs/1905.11946.

Taraba, M., Adamec, J., Danko, M. and Drgona, P., 2018. Utilization of modern sensors

in autonomous vehicles. 2018 ELEKTRO , 1–5.

Tekin, B., Bogo, F. and Pollefeys, M., 2019. H+O: Unified Egocentric Recogni-

tion of 3D Hand-Object Poses and Interactions. Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 4511–4520. Available from:

http://arxiv.org/abs/1904.05349.

Tekin, B., Sinha, S. N. and Fua, P., 2018. Real-Time Seamless Single Shot 6D Object

Pose Prediction. Proceedings of the IEEE Computer Society Conference on Computer

178

Vision and Pattern Recognition, IEEE, 292–301. Available from: http://arxiv.

org/abs/1711.08848.

Tesla, 2021. Autopilot — Tesla UK [online]. Available from: https://www.tesla.com/

en_GB/autopilot [Accessed 20 September 2021].

The Linux Foundation, 2021. ONNX — Home [online]. Available from: https://onnx.

ai/ [Accessed 30 October 2021].

TikTok, 2022. TikTok - Apps on Google Play [online]. Available from: https://play.

google.com/store/apps/details?id=com.zhiliaoapp.musically&hl=en&gl=US

[Accessed 02 April 2022].

Tong, W.-S., Tang, C.-K., Brown, M. S. and Xu, Y.-Q., 2007. Example-Based Cosmetic

Transfer. 15th Pacific Conference on Computer Graphics and Applications (PG’07),

211–218.

Travelwayoflife, 2012. Nepali Lady at Ghyaru — www.travelwayoflife.com — Flickr

[online]. Available from: https://www.flickr.com/photos/travelwayoflife/

8052522076/ [Accessed 21 November 2021].

Ujiie, T., Hiromoto, M. and Sato, T., 2018. Interpolation-Based Object Detection

Using Motion Vectors for Embedded Real-time Tracking Systems. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),

729–7298.

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2016. Instance Normalization: The Missing

Ingredient for Fast Stylization. arXiv preprint arXiv:1607.08022 . Available from:

http://arxiv.org/abs/1607.08022.

Unity Technologies, 2021a. GitHub - Unity-Technologies/barracuda-release [online].

Available from: https://github.com/Unity-Technologies/barracuda-release

[Accessed 13 October 2021].

Unity Technologies, 2021b. GitHub - Unity-Technologies/ml-agents: Unity Machine

Learning Agents Toolkit [online]. Available from: https://github.com/Unity-

Technologies/ml-agents [Accessed 15 October 2021].

Unity Technologies, 2022a. Mobile Game Engine for Mobile Game Developers — Unity

[online]. Available from: https://unity.com/features/mobile [Accessed 20 March

2022].

179

Unity Technologies, 2022b. Unity Real-Time Development Platform — 3D, 2D VR &

AR Engine [online]. Available from: https://unity.com/ [Accessed 20 March 2022].

Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V. and Chervyakov,

N. I., 2020. Application of the residue number system to reduce hardware costs of

the convolutional neural network implementation. Mathematics and Computers in

Simulation, 177, 232–243.

Veit, A., Wilber, M. and Belongie, S., 2016. Residual Networks Behave like Ensembles

of Relatively Shallow Networks. Proceedings of the 30th International Conference on

Neural Information Processing Systems, Red Hook, NY, USA: Curran Associates

Inc., NIPS’16, 550–558.

Wadhwa, N., Garg, R., Jacobs, D. E., Feldman, B. E., Kanazawa, N., Carroll, R.,

Movshovitz-Attias, Y., Barron, J. T., Pritch, Y. and Levoy, M., 2018. Synthetic

depth-of-field with a single-camera mobile phone. ACM Transactions on Graphics,

37 (4), 1–13. Available from: http://dl.acm.org/citation.cfm?doid=3197517.

3201329.

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T. and Schmalstieg, D., 2010.

Real-Time Detection and Tracking for Augmented Reality on Mobile Phones. IEEE

Transactions on Visualization and Computer Graphics, 16 (3), 355–368.

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen,

K., Vajda, P. and Gonzalez, J. E., 2020. FBNetV2: Differentiable Neural Architec-

ture Search for Spatial and Channel Dimensions. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 12962–12971.

Wang, C., Xu, D., Zhu, Y., Mart́ın-Mart́ın, R., Lu, C., Fei-Fei, L. and Savarese, S.,

2019a. Densefusion: 6d object pose estimation by iterative dense fusion. Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, 3343–3352.

Wang, N., Shi, J., Yeung, D.-Y. and Jia, J., 2015. Understanding and diagnosing vi-

sual tracking systems. Proceedings of the IEEE international conference on computer

vision, 3101–3109.

Wang, R., Cheng, M., Chen, X., Tang, X. and Hsieh, C.-J., 2021a. Rethinking Ar-

chitecture Selection in Differentiable NAS. International Conference on Learning

Representations (ICLR). Available from: http://arxiv.org/abs/2108.04392.

Wang, R., Pizer, S. M. and Frahm, J.-M., 2019b. Recurrent Neural Network for (Un-

)supervised Learning of Monocular VideoVisual Odometry and Depth. Proceedings

180

of the IEEE Conference on Computer Vision and Pattern Recognition, 5555–5564.

Available from: http://arxiv.org/abs/1904.07087.

Wang, S., Lu, H. and Deng, Z., 2019c. Fast object detection in compressed video.

Proceedings of the IEEE/CVF International Conference on Computer Vision, 7104–

7113.

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y. and Loy, C. C., 2019d.

ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. L. Leal-

Taixé and S. Roth, eds., Computer Vision – ECCV 2018 Workshops, Cham: Springer

International Publishing, 63–79.

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y. and Loy, C. C., 2021b. xin-

ntao/ESRGAN: ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Chal-

lenge on Perceptual Super-Resolution. The training codes are in BasicSR. [online].

Available from: https://github.com/xinntao/ESRGAN [Accessed 31 August 2021].

Weng, Y., Zhou, T., Li, Y. and Qiu, X., 2019. NAS-Unet: Neural Architecture Search

for Medical Image Segmentation. IEEE Access, 7, 44247–44257.

Wofk, D., Ma, F., Yang, T. J., Karaman, S. and Sze, V., 2019. FastDepth: Fast monoc-

ular depth estimation on embedded systems. Proceedings - IEEE International Con-

ference on Robotics and Automation, Institute of Electrical and Electronics Engineers

Inc., volume 2019-May, 6101–6108.

Wofk, D., Ma, F., Yang, T. J., Karaman, S. and Sze, V., 2020. FastDepth [online].

Available from: http://fastdepth.mit.edu/ [Accessed 19 August 2020].

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,

Y. and Keutzer, K., 2019. FBNET: Hardware-aware efficient convnet design via

differentiable neural architecture search. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, volume 2019-June, 10726–

10734.

Xiang, Y., Schmidt, T., Narayanan, V. and Fox, D., 2018. PoseCNN: A

Convolutional Neural Network for 6D Object Pose Estimation in Cluttered

Scenes. Robotics: Science and Systems XIV , Robotics: Science and Systems

Foundation. Available from: http://arxiv.org/abs/1711.00199http://www.

roboticsproceedings.org/rss14/p19.pdf.

Xiao, J., Owens, A. and Torralba, A., 2013. Sun3d: A database of big spaces recon-

181

structed using sfm and object labels. Proceedings of the IEEE international confer-

ence on computer vision, 1625–1632.

Yakobchuk, O., 2021. Serine Senior Lady with Wrinkles on Face Stock

Photo - Image of modern, elderly: 90249112 [online]. Available from:

https://www.dreamstime.com/stock-photo-serine-senior-lady-wrinkles-

face-portrait-calm-wrinkled-old-woman-looking-camera-friendly-smile-

isolated-copy-image90249112 [Accessed 09 November 2021].

Yu, C., Gao, C., Wang, J., Yu, G., Shen, C. and Sang, N., 2021. BiSeNet V2: Bilateral

Network with Guided Aggregation for Real-Time Semantic Segmentation. Interna-

tional Journal of Computer Vision. Available from: https://doi.org/10.1007/

s11263-021-01515-2.

Zaeemzadeh, A., Rahnavard, N. and Shah, M., 2021. Norm-Preservation: Why Residual

Networks Can Become Extremely Deep? IEEE Transactions on Pattern Analysis

and Machine Intelligence, 43 (11), 3980–3990.

Zhang, H., Chen, W., He, H. and Jin, Y., 2019. Disentangled Makeup Transfer with

Generative Adversarial Network. arXiv preprint arXiv:1907.01144 . Available from:

http://arxiv.org/abs/1907.01144.

Zhang, L., Wei, L., Shen, P., Wei, W., Zhu, G. and Song, J., 2018. Semantic SLAM

based on object detection and improved octomap. IEEE Access, 6, 75545–75559.

Zhang, X., Xu, H., Mo, H., Tan, J., Yang, C., Wang, L. and Ren, W., 2021. Dc-

nas: Densely connected neural architecture search for semantic image segmentation.

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

13951–13962.

Zhao, Z., Peng, G., Wang, H., Fang, H.-S., Li, C. and Lu, C., 2018. Estimating 6D Pose

From Localizing Designated Surface Keypoints. arXiv preprint arXiv:1812.01387 .

Available from: http://arxiv.org/abs/1812.01387.

Zhou, T., Brown, M., Snavely, N. and Lowe, D. G., 2017. Unsupervised learning of

depth and ego-motion from video. Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017 , 2017-Janua, 6612–6621.

Zhu, J. Y., Park, T., Isola, P. and Efros, A. A., 2017. Unpaired Image-to-Image Trans-

lation Using Cycle-Consistent Adversarial Networks. Proceedings of the IEEE Inter-

national Conference on Computer Vision, volume 2017-Octob, 2242–2251. Available

from: http://arxiv.org/abs/1703.10593.

182

Zhu, M. and Liu, M., 2018. Mobile Video Object Detection with Temporally-Aware

Feature Maps. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 5686–5695.

Zhu, Z., Liu, C., Yang, D., Yuille, A. and Xu, D., 2019. V-NAS: Neural Architecture

Search for Volumetric Medical Image Segmentation. Proceedings - 2019 International

Conference on 3D Vision, 3DV 2019 , IEEE, 240–248.

Zoph, B. and Le, Q. V., 2017. Neural architecture search with reinforcement learning.

5th International Conference on Learning Representations, ICLR 2017 - Conference

Track Proceedings, International Conference on Learning Representations, ICLR.

Available from: http://arxiv.org/abs/1611.01578.

Zoph, B., Vasudevan, V., Shlens, J. and Le, Q. V., 2018. Learning transferable ar-

chitectures for scalable image recognition. Proceedings of the IEEE conference on

computer vision and pattern recognition, 8697–8710.

183

Appendix A

Publications

Valentin Miu and Oleg Fryazinov. 2020. Real-Time Monocular 6DoF Pose Track-

ing for Handheld Objects on Smartphone GPUs. ECCV 2020 - Demos.

Valentin Miu and Oleg Fryazinov. 2020. Real-Time Monocular 6DoF Object

Pose Tracking on Smartphone GPUs. CVMP 2020 - Short Papers. https://www.cvmp-

conference.org/files/2020/short/17.pdf

Valentin Miu and Oleg Fryazinov. 2019. Accelerating Handheld Object Pose Es-

timation on Smartphones in Unity with TensorFlow Lite. CVMP 2019 - Short Papers.

https://www.cvmp-conference.org/files/2019/short/56.pdf

Valentin Miu and Oleg Fryazinov 2018, Real-time 3D Smoke Simulation with

Convolutional Neural Network-based Projection Method, CVMP 2018 - Short Papers

184

Appendix B

Extending TensorFlow Lite with

new GPU operations

As mentioned previously in Subsubsection 2.4.3, in TensorFlow Lite inference, layers

(formed from one or more tensor operations, or ops) can either be run on the CPU,

or on a hardware accelerator (like the GPU, or some other DSP of the device), by

means of a delegate. The latter requires that all the ops be supported by the delegate.

While most TensorFlow operations can be replicated in TensorFlow Lite by means of

one or more TensorFlow Lite CPU operations, the equivalent delegate op is often not

available, and needs to be implemented to fully run the associated model on the GPU.

In general, when attempting delegate execution of a model with one or more ops

unsupported by that delegate, TensorFlow Lite will run part of the model on the CPU

(including the unsupported ops), and part on the GPU or DSP. This is not always the

case - for example if the output tensor size of an op in the model varies independently

of the model input size, leading to a so-called dynamic output tensor, this causes the

entire delegate execution to be aborted. The model must then be run on the CPU in

its entirety, or broken up into multiple models, with only the supported partial models

being run on the GPU. In either case, both the total or partial CPU inference lead to

unacceptable latency increases in most cases, especially if the CPU-executed portion is

not INT8-quantized for lower latency.

During investigation of alternate neural network architectures for higher precision

and better latency, a number of relevant works were looked into that used more exotic

convolutions, which were not available at the time as TensorFlow Lite GPU ops, and

often not even CPU ops either. To allow such works to be tested and potentially used,

there was a desire to extend the available TensorFlow Lite GPU operations.

There was also a more immediate reason for this, given by the inability of Ten-

185

sorFlow Lite to do GPU inference for one of the machine learning models in use at the

time for the virtual try-on app. These unusual op requirements were due to the model

requiring dynamic cropping of some regions of interest internally.

In the GPU operations of TensorFlow Lite, the tensor sizes are generally fixed,

and cannot be changed except on a model-wide basis, by changing the model input and

output sizes, and triggering a recalculation of the new intermediate tensor sizes. In the

case of cropping the region of interest, the crop output size was variable, creating a

dynamically-sized tensor, even if this was then resized to a fixed size. This tensor size

was determined by the previous layers of the model, so the model-wide resizing was not

useful in this case. To resolve this, the cropping and resizing operations were combined

into a single op, which removed the intermediate dynamic tensor from between them.

This was done by taking advantage of an operation combination step, referred to as op

fusion, performed by the GPU delegates in TensorFlow Lite for optimization purposes,

as described in Subsection B.1. This method also allowed the combined op to not

require a corresponding TensorFlow Lite CPU or TensorFlow layer, as will be shown

for the CROP RESIZE operation.

In our efforts to add ops, we address only the OpenGL, OpenCL and Metal

delegates, as they cover most of our GPU use cases. This implies three new shaders

per added op. Since our target delegates have all or almost all the same ops already

implemented, to ensure feature parity between DSPs and platforms, the starting points

for our efforts are largely the same for each GPU delegate.

B.1 Graph optimizations for op fusion or removal

In TensorFlow Lite, as in TensorFlow, the network is represented as a directed acyclic

graph, where the nodes are tensor operations, and the directed edges indicate the

intermediate tensors and the data flow between operations.

Before the graph is run by the TensorFlow Lite GPU delegates, it is modified by

fusing certain recognized sequences of operations into single operations. This is done

either for optimization purposes, or to simplify delegate implementation. Sometimes,

some of the unfused ops have no corresponding GPU ops, and cannot be run without

the fusing step.

Some existing optimizations and fusions involved the merging of padding oper-

ations with convolutions and other ops with built-in padding support, the merging of

convolutions with additions and multiplications (in the absence of nonlinearities be-

tween them), and the removal of identity operations like single-input additions and

concatenations.

186

Aside from helping implement the CROP RESIZE operation, fusing ops can also

help with casting problems in TensorFlow Lite GPU. These arise from TensorFlow Lite

GPU only supporting float tensors, which causes issues for implementing new opera-

tions with integer-output operations, like ARGMAX (which returns tensor indices).

By placing a casting operation from int to float afterward, and then fusing the two into

a single op, a float-output ARGMAX can be implemented in TensorFlow Lite GPU

instead. This technique will also be used for the NOT EQUAL and GREATER THAN

ops, which normally have unsupported boolean outputs.

B.2 Ops added

The ops added are listed below. With the exception of CROP RESIZE, these ops either

had a TensorFlow Lite CPU version with no GPU equivalent implemented, or had a

more restricted GPU implementation unsuitable for the model that needed to be run.

FLOOR DIV

This is the floor of the elementwise division between two tensors, meaning that in the

general case, it follows Equation (B.1).

R(b+ δb, x+ δx, y + δy, c+ δc) = OP (A1(b+ δb1, x+ δx1, y + δy1, c+ δc1),

A2(b+ δb2, x+ δx2, y + δy2, c+ δc2),

...

AN (b+ δbn, x+ δxn, y + δyn, c+ δcn))

(B.1)

Since elementwise operations are treated as a special case in the code, due to the

similarities between them, they are generally relatively easy to implement. However,

some care must be taken to implement both the FLOAT32 and FLOAT16 (half float)

correctly.

NOT EQUAL, GREATER THAN

While these are elementwise operations as well, in the form required by their equivalent

TensorFlow Lite CPU ops, they have a boolean type output tensor. Since the GPU ops

only support float or half float tensors for any of the relevant delegates, they cannot

be implemented directly.

The solution used here is to apply a casting operation from boolean (or integer,

in some of the other ops implemented) to float, implement the NOT EQUAL and

187

GREATER THAN operations with float and half float outputs, and remove the casting

node through a graph optimization operation. Since only float and half float nodes are

supported in TensorFlow Lite, there can be no valid casting operation in a TensorFlow

Lite graph, outside a pointless identity operation. Therefore, the casting operation can

be removed from the TensorFlow Lite graph in all cases, without the need for additional

checks.

REDUCE SUM

The REDUCE SUM operation sums the elements of a tensor along a list of axes, so

that the resulting dimensions are 1 element along those axes, and unchanged for the

other axes. For a single axis, this op follows one of Equation (B.2), depending on the

axis.

Rb(0, x, y, c) =
∑
b

I(b, x, y, c)

Rx(b, 0, y, c) =
∑
x

I(b, x, y, c)

Ry(b, x, 0, c) =
∑
y

I(b, x, y, c)

Rc(b, x, y, 0) =
∑
c

I(b, x, y, c)

(B.2)

For multiple axes, REDUCE SUM is equivalent to the respective single-axis ver-

sions, applied in any order. As such, it was decided that only single-axis versions

would be implemented, and only for the height, width and channel axes, given the

requirements for the model that needed to be supported.

Special consideration was required to implement the channel-wise version of this

op, due to the sampled values being 4-floats (vec4) for speed.

The output of the both the TensorFlow Lite and supported TensorFlow op are

both float-like (float or half-float), so there are no casting considerations to be made.

REDUCE MAX

This op returns the maximum values of a tensor along a given axis, as given by Equation

(B.3).

188

Ry(0, x, y, c) = maxb(I(b, x, y, c))

Ry(b, 0, y, c) = maxx(I(b, x, y, c))

Ry(b, x, 0, c) = maxy(I(b, x, y, c))

Rc(b, x, y, 0) = maxc(I(b, x, y, c))

(B.3)

The shader implementation is similar to REDUCE SUM, and the output is again

float-like.

ARGMAX

This is similar to REDUCE MAX, except the indices of the maximum values are re-

turned, instead of the values themselves. Unlike for REDUCE MAX, the multiple-axis

version cannot be easily reproduced using multiple single-axis versions. However, the

single-axis versions were enough for the purposes of the model, so they were the only

versions implemented, again with the exception of the single batch axis.

As it returns indices, the argmax operation in TensorFlow has an integer output.

This is again handled with a casting operation on the TensorFlow side, which is removed

on the TensorFlow Lite side.

When testing the half float version of this op with random inputs, occasional dif-

ferences were noticed between the float (full float32) implementation, and by extension

the float32 TensorFlow layer. This was due to differences between axis maximums and

the runner-up values being too small to be resolved at half float precision, thereby ap-

pearing equal, while being resolvable at float32 precision. Since this is not technically

incorrect and anyway cannot be “fixed” at half precision, it was left unchanged, and

the testing method was updated to account for this by comparing the values at the

indices, as opposed to the indices themselves.

It should be noted that the TensorFlow argmax layer returns the smallest index

in the case of equality of the two or more largest values, and this behaviour was retained

in this TensorFlow Lite GPU implementation, so the differences are unrelated to this.

CONCAT BATCH

Oftentimes, while a TensorFlow Lite CPU op may have a GPU equivalent, said equiv-

alent is more limited in its operation. In the case of the CONCAT (concatenation) op,

the GPU version cannot concatenate along the batch dimension. Support for batch

concatenation was added to allow for concatenating single-dimension tensors, which

appeared as a result of calculating the cropping parameters through tensor operations.

189

CROP RESIZE

This op involves an XY-crop of the input tensor, followed by a bilinear XY resizing to a

fixed output shape. As mentioned previously, this ensures the absence of the dynamic

tensor by combining the crop and resize.

While there is an equivalent TensorFlow op (tf.image.crop and resize), there is

no equivalent TensorFlow Lite op for the CPU. However, dynamic tensors are supported

in TensorFlow Lite CPU inference, so it can be implemented as separate cropping and

resizing operations, through STRIDED SLICE and RESIZE BILINEAR, respectively.

In this situation, there are two options for the GPU implementation. The first is

to implement tf.image.crop and resize both as CPU and GPU ops. The second is to

implement the crop and resize as separate cropping and resizing ops on the TensorFlow

side, so that it works on the CPU in TensorFlow Lite without any additional changes.

The CROP RESIZE op is then implemented a single GPU op, and the crop and resize

operations are fused into this single op, using a graph-modifying optimization step

before the model is run on the GPU.

The second method was chosen, as the optimization step appeared to be less

complicated than implementing the single CPU op.

It is possible to have a STRIDED SLICE followed by a RESIZE op that works

on the GPU, if the slice parameters (the indices determining what part of the input

tensor to keep) are fixed, thereby causing the intermediate tensor to not be dynamic.

While this is not our use case, to avoid other model inferences possibly breaking, the

optimization step needed a check on the number of inputs to the STRIDED SLICE

(cropping) op, as multiple inputs indicate a variable output tensor size.

B.3 Cost analysis

Since the TensorFlow Lite library is used from within Unity, certain GPU operations

can be implemented on the Unity side as HLSL shaders. Alternatively, they can be

replicated on the CPU with C++ libraries using OpenCV.

Maintenance of the new GPU ops proved too difficult, as merging in a newer

official commit of TensorFlow broke most of them. Most of all, the CROP RESIZE op,

as it required the most and most fundamental changes, was too difficult to maintain. In

retrospect, the first CROP RESIZE implementation option, involving the implementa-

tion of the TensorFlow Lite CPU op, may have been more stable.

In the model considered, all the new ops are in only one specific section, and

address the aforementioned region-of-interest cropping. As such, even a single op re-

quiring to be run outside the GPU delegate would significantly lower the speed of the

190

model by requiring a GPU-CPU tensor copy, running the op in question on the CPU,

and another CPU-GPU copy to run the rest of the model. If the op can be written

as a Unity shader, which requires the model split into multiple submodels, then the

expensive CPU-GPU copies can be avoided, as TensorFlow Lite does allow accessing

externally written GPU memory. Furthermore, having a Unity-side system handling a

sequence of multiple models simplifies the swapping and testing of each model. This

alone was deemed to be enough of a benefit to opt for the Unity-side running, even

without knowing if a Unity shader can be used instead of a CPU implementation with

OpenCV.

191

Abbreviations

6DoF Six Degrees of Freedom.

AdaIN Adaptive Instance Normaslization.

API Application Programming Interface.

AR Augmented Reality.

CGI Computer Generated Imagery.

CPU Central Processing Unit.

CVML Computer Vision with Machine Learning.

D2C Direct-to-Consumer.

DSP Digital Signal Processor.

FID Frechet Inception Distance.

FLOP Floating point operation.

GAN Generative Adversarial Network.

GPU Graphics Processing Unit.

HLSL High-Level Shading Language.

HSV Hue, Saturation, Value.

LeakyReLU Leaky Rectified Linear Unit.

LIDAR Light Detection and Ranging.

MAdd Multiply-add.

mIOU Mean Intersection Over Union.

ML Machine Learning.

NAS Neural Architecture Search.

NNAPI Neural Network Application Programming Interface.

PnP Perspective and Point.

ReLU Rectified Linear Unit.

SIFT Scale-Invariant Feature Transform.

SLAM Simultaneous Localization And Mapping.

SOTA State of the Art.

SSD Single Shot Detector.

192

TFLT TensorFlow-Lite-Tester.

VR Virtual Reality.

VRAM Video Random Access Memory.

193

